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ABSTRACT 

A three-dimensional, finite-difference procedure has been 

utilized in the solution of the parabolic partial-differential 

equations which govern the steady flow of fluid through an 

interior subchannel of a bare rod bundle. The rods are 

assumed to be smooth, and the incompressible coolant flow 

is parallel to the axes of the rods. A special non-orthogonal 

coordinate system has been developed to represent the irregular 

geometry of the flow regions considered. The versatility of 

the method has been demonstrated by its application to other 

non-circular passages such as triangular and elliptic ducts. 

Flow and heat-transfer phenomena under both laminar and tur-

bulent conditions have been studied. In the latter case, 

the turbulence has been represented by way of transport equa-

tions for the mean turbulent kinetic energy and its rate of 

dissipation. These have been employed in conjunction with 

an algebraic formulation for the Reynolds-stresses in the 

cross-stream plane of the channel, in order to predict the 

nature and influence of the secondary flow field. This ap-

proach has also been adopted in the successful computation 

of the flow behaviour in equilateral-triangular ducts. 

Rod-bundle geometries involving both triangular and square 

lattices have been investigated, and calculations have been 

made for both the developing and fully-developed regimes. 

Local distributions of velocities, kinetic energy, Reynolds-

stresses, wall shear-stress, heat-transfer coefficients etc, 

together with overall parameters of the flow such as friction 

factors and Stanton numbers have been predicted over a wide 

range of rod spacings. Wherever possible, detailed compari-

son of the results obtained with experimental data has been 

performed: in general, the agreement observed is good. 



PREFACE  

I have been a postgraduate research student in the Mechanical 

Engineering Department of Imperial College, London, since 

October 1975. This thesis presents the results of work per-

formed within the Department, under the supervision of 

Professor Brian Spalding, during the period November, 1976 

to January, 1979. 

The first year of my stay was spent in acquiring knowledge 

of numerical methods and computer programming, both of which 

were fields in which I had only a faint acquaintance prior 

to my arrival at Imperial College. This knowledge was gained 

by following postgraduate courses and by employing the STABLE 

code, owned by CRAM Ltd., to solve various problems involving 

fully three-dimensional 'parabolic' flow situations. Some 

of the interesting results of this early work has been presen-

ted in a Departmental report (Ramachandra and Spalding, 1976) . 

A revised version of STABLE (called STABLER) , developed at 

CRAM Ltd., formed the basis from which the computational work 

reported here was constructed. The early stages of the re-

search on rod-bundle flows was spent in the exploration of 

ways of dealing with the irregular geometries involved; 

methods that involved the use of orthogonal meshes and spe-

cial boundary treatments were tried, but inaccuracies and 

even numerical instabilities dogged the calculations. The 

use of a non-orthogonal mesh had been proposed by Professor 

Spalding, but it only became apparent sometime later that 



this involved the detailed finite-difference formulation of 

all the additional terms that accrue from the use of such a 
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colleague, on this matter, helped in setting me on the right 

track. 
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has encouraged me when my spirits were flagging and he has 

made occasional, constructive criticisms of my technical wri-

ting. Thanks are due to Miss Sue Farmiloe and Mrs. Maggie 

Dean, who have always been eager to help in personal and 

administrative matters. Dr. Tony Ma has also been of assis-
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Sally Chambers for her patient and excellent typing of this 

thesis. 

Finally, I must record my sincere gratitude to the Senate 
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CHAPTER 1 

INTRODUCTION 

1.1 	MI, PROBLEM CONSIDERED 

Nuclear reactor fuel elements generally consist of a cluster 

of parallel rods arranged in a symmetrical pattern, each rod 

being composed of fissile material encased in a suitable 

cladding. The heat generated in the rods by the nuclear-fission 

process is extracted by the circulation of a coolant through 

the open spaces between the rods; the coolant flows longitu-

dinally over the surface of each rod. A schematic . representa-

tion of a typical rod-bundle cross-section is shown in figure 

(1.1.1). Fluid flow in such a rod bundle is a complex three-

dimensional phenomenon ,and a basic understanding of the flow 

and heat-transfer behaviour is essential to the achievement 

of optimum design performance during normal operating conditions. 

The traditional method of procuring such knowledge has been 

to build a scale model of the fuel element assembly and to 

perform forced-convection experiments under the anticipated 

range of operating conditions. Measurements of velocities and 

temperatures are then used to develop correlations for pressure 

drop and heat-transfer coefficients as functions of Reynolds 

number and geometry. This approach, however, has severe 

limitations: a new test model must be built for each new geo-

metry investigated, and scaling from model to design size is 
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FIGURE 1.1.1: CROSS-SECTION OF A TYPICAL FUEL-ELEMENT BUNDLE 
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often difficult. Secondly, limitations on the measuring 

techniques and considerations of expense usually restrict 

data to just global flow and heat-transfer rates, although 

detailed velocity and temperature distributions are often 

required. Finally, the correlations developed from these 

measurements are frequently valid only over the limited 

range of parameters considered. 

A more flexible and attractive alternative has been afforded 

in recent years by the rapid growth in computer technology 

and the development of numerical prediction schemes with 

regard to fluid flow phenomena. These computer-based methods 

may be resolved into two basically different types of approach: 

so-called 'lumped-parameter' and 'distributed-parameter' 

methods. 

In the lumped-parameter approach, the rod bundle is divided 

into a number of sub-channels by arbitrarily defined bounda-

ries, and mean values of velocities and enthalpy are evalua-

ted for each sub-channel via the solution of volume-averaged 

conservation equations for momentum and energy. Some typical 

sub-channel shapes have been depicted in figure (1.1.1). The 

equations for each sub-channel are coupled with those of its 

neighbours via global transport coefficients, which are fed 

in as empirical input. The lumped-parameter technique is 

. presently the most practical means of rod-bundle analysis. 

However, it is critically dependent on the provision of 

accurate information regarding the local convective and 
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diffusive processes within sub-channels, if it is to yield 

reliable predictions for the design engineer. 

The distributed parameter approach attempts to provide such 

information by solving the time-averaged equations for mo-

mentum and energy transport for individual sub-channels. 

Basic calculations are made for a bare rod-bundle, i.e.  

without spacers and heat-transfer-augmenting devices; and 

the problem is often simplified by the assumption of an 

'infinite' lattice of rods, so that attention may be directed 

to small regions of the flow. For example, due to symmetry 

considerations, the characteristic flow area to be analysed 

in a regular triangular array of rods is that shown cross-

hatched in figure (1.1.2). This assumption is an excellent 

approximation for the interior sub-channels of the large 

rod clusters designed for most power reactors. 

This type of analysis is indispensable to fundamental reactor 

technology, since further progress on local descriptions of 

practical rod bundles can only be expected when the behaviour 

of the bare rod bundle has been well understood and predicted 

with sufficient accuracy. This latter aim has however been 

hampered by uncertainties regarding the treatment of turbulence 

in the equations, and by the difficulty of incorporating the 

irregular geometries considered into a satisfactory numerical 

solution procedure. A detailed review of past work in this 

field is given in chapter 2 of this thesis. 

1.2 	THE PRESENT CONTRIBUTION  

The present study concerns the application of a finite- 
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P/D = Aspect ratio 

FIG. 1.1.2: CHARACTERISTIC ROD-BUNDLE FLOW REGION 
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difference calculation procedure to the solution of the 

partial-differential equations governing the three-dimensional 

flow and heat -transfer in the interior sub-channels of bare 

rod-bundle assemblies. The rods are assumed to be smooth, 

and the fluid properties independent of temperature. The 

flow is steady and incompressible and is characterized by 

a predominant flow direction which is parallel to the rod 

axes. The existence of a predominant flow direction ensures 

that: 

(a) Flow properties are convected only from upstream regions 

to downstream, and not vice versa; 

(b) Diffusive transport along that direction is small and 

may be neglected. 

The equations were formulated with reference to a non-ortho-

gonal coordinate system which was constructed such that tide 

coordinate lines were constant with the boundaries of the 

physical flow domain illustrated in figure (1.1.2). Since, 

in the Navier-Stokes equations, the boundary conditions are 

the dominant influence on the character of the solution, the 

generation of such a coordinate system is an important aspect 

of the general numerical solution. 

The finite-difference equations were solved by means of a 

numerical algorithm called SIMPLE (an acronym for Semi-Implicit 

Method for Pressure-Linked Equations) developed by Patankar 

and Spalding (1972). This procedure involves a marching-

integration technique along the predominant flow direction 
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with only two-dimensional computer storage being required 

for the dependent variables. In the present study, cal-

culations have been performed for both laminar and turbulent 

flows in rod bundles, and the results obtained compared with 

all available experimental data. Furthermore, the procedure 

has been successfully applied to the prediction of laminar 

and turbulent flow in other non-circular geometries, e.g. 

the equilateral-triangular duct. 

The treatment of turbulence has been effected by way of a 

two-equation turbulence 'model'; this employs additional 

partial differential equations for the transport of two 

local properties of the turbulence, namely the time-averaged 

kinetic energy of turbulence and the volumetric rate of its 

dissipation. An important feature of the flow in non-circular 

geometries is the existence of secondary currents in the 

cross-sectional plane of the duct. This necessitates a• 

novel treatment for the turbulent-stresses acting in this 

plane; the practice adopted here was based on the work of 

Launder and Ying (1973), who, in their computations of square-

duct flow, calculated the stresses in question from a sim-

plified algebraic form of the general transport equation for 

the turbulent-stresses. 

1.3 	OUTLINE OF 'far; THESIS  

The remaining sections of the thesis which describe the present 

study in greater detail are arranged thus: in the following 

chapter a brief review is made of previous experimental and 

analytical investigations of flow and heat transfer in rod- 
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bundle geometries. In chapter 3, the partial-differential 

equations which govern the flow situations considered in 

this thesis are derived in the non-orthogonal coordinate 

system. The turbulence 'model' approach is discussed, and 

the mathematical details of the present treatment of turbu-

lence are also given. In chapter 4, the above equations 

are transformed into their finite-difference equivalents, 

and the method used for their solution is presented. Valida-

tion of the procedure for laminar flow and heat transfer in 

non-circular ducts and rod bundles is discussed in chapter 5. 

The present method has also been employed to compute the 

fully-developed turbulent flow in an equilateral-triangular 

duct: this is described in chapter 6. In chapter 7, the 

results for turbulent flow and heat transfer in rod bundles 

are presented, while chapter 8 summarizes the main achieve-

ments of the present study and makes recommendations for fu-

ture research. The final sections of the thesis contain a 

description of the nomenclature used, a list of the references 

cited in the text and three short appendices which provide 

supplementary details regarding the mathematical formulation 

of the problem. 
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CHAPTER 2 

PAST WORK 

2.1 	INTRODUCTION  

This chapter contains a brief review of various theoretical 

and experimental studies of flow and heat transfer in regu-

lar arrays of bare rods that have been reported in the rele-

vant literature over the last two decades. The chapter 

divides naturally into two main sections: the first, very 

much the smaller in length, concerns the few theoretical 

studies of laminar flow that have been performed, while, in 

the second, the major turbulence investigations are discussed. 

2.2 	LAMINAR FLOW 

An early analytical treatment of laminar flow in an infinite 

rod bundle was made by Sparrow and Loeffler (1959). Starting 

with the axial-momentum equation they solved for the'fully-

developed velocity profile, expressing the result in the form 

of a truncated trigonometric series and obtaining numerical 

solutions by a six-point matching method. They also calculated 

the fully-developed value of the pressure-drop as a function 

of rod spacing (i.e., pitch to diameter ratio, P/D); the 
results were published for arrays arranged in both square and 

triangular patterns. Axford (1967) has also solved the velo-

city problem for longitudinal laminar flow over an infinite 
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triangular lattice of rods; he employed a finite Fourier 

cosine transform and a point-matching method. Axford's 

equations for the velocity profile agree with the results 

of Sparrow and Loeffler. 

Utilizing this solution as their initial datum, Sparrow, 

Loeffler and Hubbard (1961) solved the temperature equation 

in a similar manner for fully-developed flow and heat transfer 

in an equilateral-triangular array, assuming as their boun-

dary condition a uniform wall temperature in the peripheral 

direction and a uniform wall heat-flux along the length of 

the rods. Later, Dwyer and Berry (1970) repeated these cal-

culations and obtained identical results; they also extended 

the cases investigated to include the thermal boundary condi-

tion of a constant wall heat-flux in both the axial and cir-

cumferential directions. They published tables of Nusselt 

numbers and calculated the variation of local heat-transfer 

coefficients around the rod perimeter, over a wide range of.  

pitch-diameter ratios. 

Experimental work on either the fully-developed heat transfer 

or the entrance flow region in bare rod bundles have not been 

reported to date. 

2.3 
	

TURBULENT FLOW: THEORETICAL INVESTIGATIONS  

2.3.1 
	

Graphical and empirical methods: 

Historically, the first reported attempt to provide information 

on velocity and temperature variations in a triangular lattice 



of rods was that of Deissler and Taylor (1956) . Their tech-

nique was to divide the characteristic flow region into a 

number of radial segments bounded by "velocity-gradient" 

lines across which no momentum transport was assumed to occur. 

From force balances on each of these segments and the assump-

tion of a universal velocity profile in the radial direction, 

constant-velocity lines were determined. The calculation 

was repeated, iteratively, until the requirement that "velo-

city-gradient" lines be perpendicular to constant-velocity 

lines was satisfied. The temperature field in the coolant 

was obtained from a heat-balance between successive radial 

segments, with the circumferential heat transport neglected. 

Dwyer (1966) improved on the above scheme by introducing 

"temperature-gradient" lines, defined so as to intersect 

constant-temperature lines at right angles. However, the 

tediousness of the iterative-graphical procedure, the assump-

tion of a circular tube velocity distribution and the impos-

sibility of accounting for the effect of cross-stream velo-

cities, have resulted in this method being of little more than 

historical interest. 

In their first assault on the problem, Eifler and Nijsing 

(1966) set up momentum and heat balances for radial flow 

segments, and described the circumferential momentum and energy 

transport in terms of radially-averaged properties of the flow. 

In this manner, the two-dimensional fully-developed flow 

situation was reduced to a one-dimensional problem. A similar 

approach was adopted more recently by Kokorev et al. (1971). 
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Two immediate objections to this approach are: (a) the 

effects of cross-stream motions caanot be estimated, and 

(b) the mathematical simplifications introduced are in con-

flict with the symmetry conditions prevailing at the boundaries 

of the domain. 

The converse of the above method is to perform the averaging 

process in the angular direction only. This, indeed, is the 

basis of an early treatment by Dwyer and Tu (1960), in which 

the characteristic flow region was replaced by an annular 

segment of equivalent flow area. The problem was then solved 

by means of the known fundamental solutions for annular geo-

metries. This "equivalent-annulus" approach has been adopted 

by a number of investigators, among others Maresca and Dwyer 

(1964) , Friedland and Bonilla (1961) and Graber (1970) , in 

the calculation of fully-developed Nusselt numbers for liquid-

metal flows in rod-bundles with wide spacings and uniform 

heat generation. The technique is clearly inapplicable to 

rod-bundles with P/D < 1.5, where circumferential effects 

become significant. 

The total transfer of momentum in a channel occurs by way of 

a diffusive component caused by molecular friction and small-

scale turbulent eddies, and a convective transfer arising 

from the large-scale motion of eddies. Ibragimov and co-

workers (1966) suggested that convective transport of momentum 

became important for channels with sharply varying cross-

sectional shapes. They argued that, in such cases, the in-

fluence of the large eddy motion would be greatest in the 
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direction parallel to and adjacent to the wall, where the 

velocity varies slowly. Normal to the channel walls, the 

effect is negligible because of the diffusion that predominates. 

These considerations prompted them to propose a semi-empirical 

relation for the wall shear-stress distribution, determined 

purely from geometrical parameters, which, for a rod array 

subchannel may be written as: 

T 	rr w(e) =CL1 - exp { 7.7 
 

Tw 	 av 
(2.3.1) 

where, 

   

 

A 
c  

 

(2.3.2) 

 

-2 
y  av  

 

A 
c 

= subchannel flow area 

y(0) = distance from wall to maximum-velocity line 

y 
av 

= average value of y(O ) 

C is a normalization constant calculated from the condition, 

AG T (e) 

oā
de = 1 	 (2.3.3) 

O T w  

Along with equation (2.3.1) and the Blasius friction-factor 

relationship for circular pipes, the further assumption was 
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made that the universal logarithmic velocity profile pre-

vailed normal to the channel wall. In a later paper (Ibragimov 

et al. 1967), they offered an expression for the ratio between 

the friction-factor for any specified geometry and that for 

a circular tube. 

This method was incorporated by Bender and Magee (1969) into 

the VELVET-II code, developed for the computation of tempera-

ture fields in rod-bundles cooled by liquid metals. 

The generality of Ibragimov's method constitutes its chief 

attraction, but, unfortunately, the method is incapable of 

yielding any information on secondary motions that affect the 

heat transfer. Moreover, the assumption of a wall shear-

stress distribution that is solely a function of geometry and 

independent of Reynolds number is dubious on theoretical 

grounds, since turbulence parameters are often dependent on 

the Reynolds number. Further, the assumption of a universal 

velocity profile along radial lines is not-generally valid. 

2.3.2 	Numerical methods: 

Numerical solution techniques have been applied in recent 

years by several investigators in the calculation of fully-

developed flow and heat transfer in smooth rod assemblies. 

The starting-point for these analyses is the axial momentum 

equation, which, in cylindrical coordinates may be written as: 

p u aw + 
rae 	P v aw = _~ + 1 a (uaw ) + 1 a (ur aW) 

ar 	az 	r ae 	rae 	r ar 	ar 

1 autw' 	1 3 (rv'w') 
- r āe 	- 7 ar (2.3.4) 
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In the majority of investigations, no account was taken of 

the existence of secondary flow, and the turbulent shear 

stresses were related to the axial-velocity gradients by a 

coefficient defined as the "eddy diffusivity" of momentum, 

eg., 

1 aw v w = - - Em.r Br 
(2.3.5) 

Similarly, a "thermal eddy diffusivity" is defined so that 

the turbulent heat-fluxes in the energy equation are given 

by expressions such as, 

Many expressions have been proposed for the variation of 

M.r and EH.r over the cross-section of the subchannel. Such 

expressions are either deduced theoretically or inferred 

from measurements of the velocity distribution and the rele-

vant cross-correlations. 

Bender, Switick and Field (1967) applied the mixing-length 

theory of Prandtl (1925) to rod-bundle flows. The turbulent 

stresses were written in the form 

_ 2 aw 3w vw = —cl c 1 ār ~ er 

u,w, _ _, c 2.2 	aw 	aw 
c rae I rae 

In these equations lc is the turbulent "mixing-length", 

obtained from a formula suggested by Buleev (1964), and c 



-16- 

is an empirical constant. One major criticism is that, in 

this model, the eddy diffusivities are forced to zero wherever 

the respective velocity gradients vanish. Wall shear varia-

tions calculated with these formulae were found to be unrea-

listically high. 

Eifler and Nijsing (1967) were the first investigators to make 

allowance for secondary flow in their calculations. They pro-

posed a phenomenological explanation of secondary flow, based 

on the experimental observation of fluid ejection away from 

a wall (Kline +fit al. 1967), the rate of which is directly 

related to the local wall shear stress. They concluded that 

in the presence of a lateral wall shear-stress gradient a 

circular motion arises which tends to transport high-momentum 

fluid through the mainflow in the direction of decreasing wall 

shear. For the characteristic flow domain of the infinite 

rod array, this motion has been schematically represented in 

figure (2.3.1) . This reasoning led them to deduce the follow-

ing expression for the circumferential component of the se-

condary flow: 

T 

u= F4 P , A04 . F{-~.} 
Y 

(2.3.9) 

where Ae is the angular extent of the flow domain. The 

following shapes were proposed for the functions in equation 

(2.3.9): 

T 
F ( W , ae. = 2 Csec 	pW • de { ( W) 1. oe 

P Tw 
(2.3.10) 
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FIG. 2.3.1: SECONDARY FLOW PATTERN POSTULATED BY NIJSING (1967) 

P/D = 1.123 	P/D = 1.217 

Re = 2.7 x 104 	(Z 	 Re = 1.49 x 105  

FIG. 2.3.2: SECONDARY FLOW STREAMLINES AS PREDICTED BY 

CARAJILESCOV AND TODREAS (1976) 
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F 07-4 E cos  (a) 	 (2.3.11) • 

The constant Csec 
was set equal to 0.6, and the following 

formulae were employed for the eddy diffusivities: 

= 
	Tw 

CM. r Cr y 	P 
(2.3.12) 

EM.B= 0.154 y p (2.3.13) 

Here C 
r 

assumed to be a function of the aspect ratio P/D and 

the Reynolds number. Eifler and Nijsing were compelled to 

prescribe arbitrarily the peripheral velocity profile, given 

above, because of the lack of secondary flow measurements. 

However, measurements of the wall shear-stress distribution 

obtained by, among others, Kjellstrom (19 71) show that for 

P/D >1.2, the local wall shear does not rise monotonically 

from 0= 0°  to 0 = 30°, but instead shows a peak at an inter-

mediate angular position. Such a distribution would induce 

a more complex secondary flow pattern than that suggested 

by Eifler and Nijsing. 

Buleey (1964) has postulated a model of turbulent eddy inter-

action in which two mechanisms of momentum exchange with the 

surrounding medium are envisaged. In the first mechanism, 

the eddy exchanges momentum with the medium via molecular 

interaction. In the second, the eddy disintegrates into 

smaller eddies under the impact of friction forces, and is - 

transported through the fluid. From these hypotheses Buleev 



was able to calculate the probability that a given eddy would 

reach the point in the flow where the turbulent stress tensor 

was to be determined. Ramm and Johannsen (19 75) applied 

these ideas of Buleev, along with some minor changes, to the 

solution of the momentum and energy equations for rod-bundle 

flow. Secondary motions were neglected, and artificial boun-

daries were introduced to limit the flow region which influenced 

the turbulence properties prevailing at a given point. Aniso-

tropy of the turbulence was described by postulating different 

macrolengths of turbulence for different directions in the 

flow. Although this approach has the attractiveness of start-

ing with physical mechanisms, many arbitrary assumptions are 

required before they take mathematical shape. Moreover, since 

hardly any comparison with experimental data was made by the 

authors, the utility of this model has yet to be demonstrated. 

Meyder (1975) has reported a finite-difference method for the 

solution of the axial-momentum and temperature equations 

describing the flow in a central subchannel of a rod bundle. 

Meyder assumed the absence of cross-stream motions, and pres-

cribed the eddy diffusivity from the Van Driest (1956) formula 

for the 'mixing-length' near a wall. The predicted velocity 

profiles showed only qualitative agreement with experimental 

data. Meyder consequently enhanced the momentum transfer in 

the circumferential direction by introducing an anisotropic 

eddy diffusivity model: starting with the general linear equa-

tion of state for a turbulent flow expressed in terms of 

eddy diffusivities, and involving Prandtl's mixing-length 
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hypothesis, he derived simple algebraic relations for different 

mixing-lengths in the radial and circumferential directions. 

The values of the unknown constants appearing in the formulae 

were adjusted so that the computed wall shear stress distribu-

tion was in acceptable agreement with the data of Kjellstrom 

(1971). There was a considerable improvement in the predicted 

velocity profile in the radial direction. Nevertheless, the 

deficiency of this approach is plain: adjustment to experimen-

tal results is obtained by 'fixing' anisotropy factors, so 

that the essential validity of the model is still left in 

question. 

Carajilescov and Todreas (1976) have recently studied the 

hydrodynamic behaviour in a triangular array of rods by means 

of a one-equation statistical model of turbulence. They 

reduced the conservation equations for fully-developed tur-

bulent flow to equations for the axial momentum, vorticity 

and stream-function; these were then cast into finite-difference 

form and solved by the method of successive displacements. 

The secondary flow was computed by adopting the formulation 

of Launder and Ying (1973) for the Reynolds-stresses in the 

cross-stream plane. Details of this formulation, together 

with a brief review of higher-order statistical models of 

turbulence, will be given in the following chapter. 

Lack of information regarding the distribution of the turbu-

lence length-scale prompted Carajilescov and Todreas to under-

take an experiment of their own in a triangular array of 

aspect ratio 1.123. The experimental results for the length- 
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scale were then fed into their computational code, and the 

constants in the model optimized to ensure satisfactory accord 

between theory and experiment. Comparison between their cal-

culations for different aspect ratios and the experimental 

data of other authors was quite favourable. The predicted 

secondary flow patterns for two different rod spacings are 

shown schematically in figure (2.3.2). A major drawback of 

Carajilescov's method is the dependence on experimental input 

in order to solve the equations. 

2.4 
	TURBULENT FLOW: EXPERIMENTAL INVESTIGATIONS  

2.4.1 
	

Hydrodynamics  

The major part of the experimental work devoted to the study of 

turbulent flow in rod clusters has been aimed at the determi-

nation of the hydraulic resistance and hence the power required 

to pump the coolant. It is only relatively recently that 

detailed measurements of the local flow characteristics have 

been performed. 

A systematic investigation of the fully-developed axial-velocity 

distributions in triangular arrays was undertaken by Eifler 

and Nijsing (1967); they employed a Pitot tube to measure the 

local mean velocities in arrays of aspect ratios 1.05, 1.10 

and 1.15, for three different values of the Reynolds number. 

Palmer and Swanson (1961) measured circumferential axial-

velocity variations for air flow through a closed-periphery 

duct composed of two adjacent cells of an infinite triangular 

rod bundle with a relative pitch of 1.015. They used a fine 
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Pitot tube near the wall and in the extremely narrow gap 

region, and a Kiel-probe elsewhere. More recently, Subbotin 

and co-workers (1971) in Russia investigated axial velocities 

(Pitot tube) and wall shear-stress distributions (Preston 

tube) for P/D ratios of 1.05, 1.10 and 1.20, in the Reynolds- 

number range 18000-81000. The cross-sectional shape of the 

test sections employed in all these studies is depicted in 

figure (2.4.1(a)). Although this duct shape is not an 

accurate simulation of the infinite rod bundle owing to the 

presence of spacer elements, a correction can be made for 

this effect in the evaluation of the data, as indicated by 

Eiffler and Nijsing (1967) . The latter recommend the use of 

a test section with a cross-section as shown in figure (2.4.1(b)); 

this, indeed, is in current use in their ISPRA laboratory. 

The first comprehensive measurements in rod bundles originated 

from AB Atomenergi, Sweden, where a project on fundamental 

studies of turbulent transport has been underway for several 

years. Kjellstrom (1971) measured mean axial velocities, wall 

shear-stress variations and the distributions of five compo-

nents of the Reynolds-stress tensor (constant temperature hot-

wire anemometry, single wire and 45°  slanting wire) for air 

flow through an array with P/D equal to 1.217, at Reynolds 

numbers in the range 149000-355000. He also attempted to 

measure secondary flows but his data showed some considerable 

scatter. Hall and Svenningsson (1971), working with the same 

experimental facility as Kjellstrom, determined wall shear-

stress distributions and peripheral secondary velocities at 

a Reynolds number of 270000. The measurements, in two 
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(a) 

(.b ) 

• FIG. 2.4.1: TYPICAL CROSS-SECTIONS OF TEST SECTIONS FOR 

HYDRODYNAMIC AND HEAT TRANSFER STUDIES (AFTER 
Nijsing (1972)) 
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neighbouring flow cells, indicated these velocities to be 

about one per cent of the bulk average axial velocity, 

but since some of the flow was found to cross the cell boun-

daries the possibility of a measuring error was recognised 

by the authors. 

The most complete single set of experimental measurements to 

date are those of Trupp and Azard (1975), who utilized a 

hot-wire anemometer to investigate mean axial velocities, 

turbulence intensities, shear stresses and the power spectra 

of the axial turbulence for P/D ratios 1.20, 1.35 and 1.50, 

over a Reynolds-number range 12000-84000. Wall shear dis-

tributions were measured with a Preston tube. Data on the 

tangential shear-stress u'w' showed appreciable scatter, so 

that no information could be obtained regarding the relative 

magnitudes of the radial and peripheral eddy diffusivities. 

Trupp and Azard believed that they had indirectly established 

the presence of secondary flows after a careful examination 

of their experimental data. They postulated a basic secon-

dary flow pattern for the flow region under study as consisting 

of a single cell of counter-clockwise circulation similar to 

that shown in figure (2.3.1); they inferred that the strength 

and influence of the motion increased with decreasing aspect 

ratio. 

Carajilescov and Todreas (1976) adopted a laser Doppler ane-

mometer (LDA) to make measurements of the mean axial velocity, 

turbulence intensities and pressure-drop in a flow of water 

within a test section designed to simulate a typical interior 
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subchannel of a rod bundle with aspect ratio (P/D) equal to 

1.123. The LDA was operated in a "fringe" mode with forward 

scattering, and refraction of the laser beams on the curved 

surfaces in the rig were reduced -.tto negligible levels by 

the use of thin transparent films, with water present on 

either side of the film. Measurements were performed for a 

Reynolds number of 27000. A search for secondary motions 

proved inconclusive: the experimental error involved precluded 

identification of secondary velocities with magnitude less than 

0.67 per cent of the bulk axial velocity. 

2.4.2 	Heat transfer: 

Although several experimental investigations of heat transfer 

in rod bundles have been performed, the overwhelming majority 

of them either involve the use of devices such as spacers, 

roughened rods, turbulence promoters etc. or refer to liquid-

metal flows, the treatments of which lie beyond the scope of 

this thesis. Also, much of the experimental information con-

cerning gas and water flows apply only to the particular 

configuration and (often) ill-defined thermal boundary conditions 

tested. Consequently in this brief survey of the relevant 

literature, only the more ambitious type of investigations will 

be reviewed. 

One of the earliest studies reported was that of Dingee and 

Chastain (1956), who tested both square and triangular lattices' 

at pitch-diameter ratios of 1.12, 1.20 and 1.27 with water in 

a nine-rod cluster; the range of Prandtl number tested was 1.18 

to 1.75 and the Reynolds number range was 104  to 106. The 
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error quoted was about eight per cent. The authors concluded 

that (1) the heat-transfer coefficients for the smaller aspect 

ratio was represented adequately by the usual correlation for 

circular tubes, but the date for the larger spacings lay about 

fifteen per cent higher, and (2) there was no variation of 

wall temperature around the periphery of the heated rods. 

However, the experiment was unsatisfactory in that the rods 

were heated by connecting them in parallel and passing a 

current through the walls; no attempt was made to relate the 

results to either the constant-temperature or constant-heat-

flux boundary condition. The inability to detect circumferen-

tial temperature variations was very probably due to the large 

scatter in the data. 

Palmer and Swanson (1961) investigated a very close spacing 

(P/D = 1.015) using a large-scale seven-rod bundle with dummy 

rods at the wall to simulate an infinite array. The employed 

low-temperature air and covered the Reynolds-number range 10 000 

to 60000. They concluded that (1) the circular-tube correla- 

tion represented the mean heat-transfer coefficient for this 

pitch-diameter ratio, (2) the peripheral variation of local 

heat-transfer coefficient was a factor of 3 for a Reynolds 

number of 20000, decreasing with increasing Reynolds number. 

The apparatus used (thick-walled, electrically heated rod) 

provided neither constant heat flux nor constant wall temperatures, 

but the authors conjectured on physical grounds that there was 

no appreciable difference between the two heating conditions. 

Hoffman et al. (1961) performed heat-transfer experiments on 

a seven-rod prototype of a reactor fuel element with a P/D 
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ratio of 1.71. Mass-transfer tests, which involved coating 

the rod surfaces with naphthalene, were also conducted for 

two additional pitch-diameter ratios, namely 1.2 and 1.4. 

However, agreement between comparable heat- and mass-transfer 

tests was poor. The results lacked generality because the 

bounding channel wall had a strong influence on the local 

heat-transfer rates. The authors also deduced, from their 

data, the presence of significant cross-flows in the rod cluster. 

Subbotin et al. (1964) have summarized the work of several 

Russian investigators. Much of the work is with reference 

to liquid metals, but some work with water as coolant is also 

reported. For the latter data at P/D = 1.0, the heat transfer 

and friction factor were substantially below the circular-tube 

correlations, and both increased with increasing rod spacing. 

The peripheral wall temperature around the rods was appreciable 

for P/D = 1.0, but became negligible for P/D > 1.10. 

Sutherland and Kays (1966) have investigated the fully-developed 

heat transfer in triangular rod arrays for pitch-diameter ratios 

of 1.15 and 1.25 over a wide range of Reynolds number. The 

coolant used was air, and each rod in the array was uniformly 

and consecutively heated, and "fundamental solutions", which 

describe the influence of one rod on the others were measured. 

These experimentally determined fundamental solutions were 

incorporated into a method of analysis which involved the 

technique of superposition to predict the heat transfer in 

arrays of various spacings and with arbitrary power distribu-

tion from rod to rod and around the periphery of the rods. 

In the determination of fundamental solutions, the circumferential 
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wall temperature variation around the heated rod was of 

the order of the experimental uncertainty. 

A similar technique was utilized by Redman, McKee and Rule 

(1966) who examined flow passages designed to represent cells 

in infinite triangular lattices of tubes with P/D ratios of 

1.0, 1.10, 1.25 and 1.5. Thin metallic strips deposited on 

the poorly conducting surfaces of the tubes served as the 

heating elements; in this way the heat flux could be built-

up around the circumference of each rod, and from the measured 

temperature distributions step-wise "influence functions" were 

determined. The latter were used to predict the response to 

a uniform wall heat flux; the mean Stanton numbers calculated 

from the Colburn equation were found to be somewhat lower 

than the experimental values. Peripheral variations in the 

local Stanton number were also calculated from the measured 

influence functions. 

Marek, Maubach and Rehme (1973) have reported measurements of 

pressure drop and heat-transfer in square lattices of 9 and 

16 rods, respectively, installed in a square channel. The 

investigations were performed in a helium test rig for 

Reynolds numbers between 104  and 3x105. The rods were 

electrically heated, and wall temperatures of the central 

and corner rods were measured by soldering Ni - NiCr thermo-

couples into the tube walls. The measured bulk Nusselt 

numbers for the 9-tube bundle showed a considerable amount 

of scatter; on average, they were about 7 per cent below 

the Dittus-Boelter relation for circular tubes. The results 
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for the larger bundle were even lower. The authors con-

cluded that a safe statement on the heat-transfer behaviour 

of rod bundles in square arrays would not be possible until 

more systematic experiments became available. 
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CHAPTER 3 

MATHEMATICAL FORMULATION 

3.1 	INTRODUCTION 

The present chapter and the next provide the detailed 

groundwork of the theoretical calculations reported in 

this thesis. The mathematical problem is defined here, 

chiefly by way of the differential equations which have 

to be solved, while the following chapter describes their 

method of solution. The problem itself may be discussed 

mathematically under two main sections: the first concerns 

the employment of a special non-orthogonal coordinate system 

to deal with the irregular geometry investigated, and the 

derivation of the relevant conservation equations for 

fluid motion; the second involves the method adopted to 

effect closure of the equations in the case of turbulent 

flow. 

In the rod bundles, and many other duct configurations, 

the flow cross-section conforms neither to Cartesian nor 

to polar forms. If, for instance, a cylindrical polar-

coordinate grid, with its origin coincident with a point 

on the axis of a rod, were to be used to describe the 

flow domain shown in figure (1.1.2), it would be evident 

that the outer boundaries of the domain would not lie on 
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lines of constant radius or constant angle. This intro-

duces great difficulties in the specification of the 

boundary conditions, which exercise a dominant influence 

on the solution of the Navier-Stokes equations. Consequently, 

it is important to devise a new coordinate system in which 

the flow boundaries are coincident with the coordinate 

surfaces. The details of such a procedure are described 

herein. 

Some comments on the mathematical treatment of turbulence 

are required here. The difficulties involved in the calcu-

lation of turbulent flows via solution of the full, transient 

form of the Navier-Stokes equations are well known. Any 

numerical calculation scheme would require an enormously 

fine mesh and minute time-steps in order to sufficiently 

resolve the details of the turbulence. The alternative 

procedure, now commonly adopted, is to solve the time-averaged 

equations, so that the dependent variables become the time-

averaged velocities, pressure etc; the influence of turbu-

lence is seen in the equations in the form of 'Reynolds 

stresses' and 'turbulent flux' terms, which involve time-

averaged products of fluctuating quantities. These terms 

are evaluated via a set of hypothesis embodied in a 'tur-

bulence model. Details of the model adopted in the present 

calculations are to be found later on in this thesis. 

3.2 	THE NON-ORTHOGONAL COORDINATE SYSTEM  

3.2.1 	The general concept  

The system of curvilinear coordinates chosen is depicted 
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by way of section-projections in figure (3.2.1). The z-

coordinate is aligned with the axial flow direction (normal 

to the plane of the paper), while the n  and  E  coordinates 

serve to define the geometry in the cross-stream plane. 

Since, in all the problems investigated in this thesis, the 

duct geometry is invariant in the axial direction, the n-F 

surfaces always intersect orthogonally with the z-coordinate 

lines. 

The point 0 in figure (3.2.1) represents the origin of the 

(n,F,z) coordinate system. It is to be noted that the n = 

constant surfaces and the = constant surfaces are not 

mutually orthogonal. These surfaces have been defined in the 

following way. The projections of the set of E = constant 

surfaces on the cross-stream plane are a family of straight 

lines which emanate radially from 0. The projections of the 

n = constant surfaces form a family of curves which intersect 

the radial lines so as to divide the latter into segments.of 

uniform relative size. In the characteristic rod-bundle 

geometry (figure 1.1.2), 0 is taken to be a point on the axis 

of a rod, the inner boundary of the domain consists of a cy-

lindrical arc representing the rod surface, and the outer 

boundary is a plane which bisects the space between adjacent 

rods. Between these boundaries, the n = constant surfaces 

vary in shape, merging from cylindrical arcs on the inside to 

planes on the outside. 

3.2.2 	The mathematical definition 

The relationship between the (n ,g , z) and the (.r,e ,z) coordi-

nate systems is expressed by the following definitions: 



constant- n plane 

constant 
-z plane 

0 

constant- c plane 

z 
FIGURE 3.2.1: 'rHii (n ,~ , z) COORDINATE SYSTEM 

FIGURE 3.2.2: RELATIONSHIP OF (n,) COORDINATES TO POLAR (r,6) 
COORDINATE SYSTEM 
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n 
r - rS  
rN  - r3  

e — ew  
eE  — e W  

, 

• 

(3.2.1) 

(3.2.2) 

Here, the subscripts, N, S, W and E refer respectively 

to the North, South, West and East boundaries in the n04 

plane of the calculation domain, as illustrated in figure 

(3.2.2). Thus the flow region of interest is contained 

wholly within the surfacesn = 0, n = 1, g = 0 and = 1. 

eE  and eW  are constants, and define the angular width of 

the flow domain. rN  and rS  are, in general, functions of 

the angular position. 

3.2.3 	The velocity components  

Although a set of non-orthogonal coordinates has been 

employed to define the calculation domain, it is not neces-

sary that the velocity components chosexi for solution be 

aligned with the directions of the coordinate axes. In 

the present work, the orthogonal set of radial (v), circum-

ferential (u) and axial (w) components of velocity, as used 

in the cylindrical-polar system, have been retained as the 

dependent variables in the new coordinate system. 

3.3 	CLASSIFICATION OF THE FLOW  

It has become customary in numerical fluid dynamics to 

classify (ref. Gosman et al, (1969)) steady-flow phenomena 

into two main categories: 'elliptic' and 'parabolic'. In 
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'elliptic' flows - which, strictly speaking, embrace all 

flows excepting wholly supersonic ones - the perturbations 

of conditions at any point in the flow can affect condi-

tions at a given point. In 'parabolic' flows, on the other 

hand, it is assumed that conditions at a particular location 

within the flow are influenced only by upstream events. 

This is valid when the following conditions are met: 

(i) There is no 'recirculation' i.e. velocities in one 

direction (termed the main flow direction) are everywhere 

positive. 

(ii) Diffusive transport in the main flow direction is 

negligible. 

(iii) Velocities at a given location are not affected by 

the downstream pressure field. 

In the rod-bundle flows studied in this thesis recirculation 

does not exist. Further, the Reynolds numbers considered 

are high enough for no significant transfers of momentum 

or energy to occur by diffusion in the axial direction. 

Also, since the rods are taken to be straight, no sharp 

curvatures of the streamlines do arise: so (iii) is a valid 

assumption to make. The flow is also fully three-dimensional, 

owing to the lack of symmetry of the flow geometry. Conse-

quently, the flows investigated here may be classified as 

three-dimensional and parabolic. The significance of this 

'parabolicity' is that the equations governing the flow may 

be solved by means of a single marching integration from 

one end of the duct to the other. The details of this will 
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be clarified in the following chapter. 

3.4 
	

THE GOVERNING EQUATIONS  

3.4.1 
	

The (r,e, z) coordinate system: 

As a consequence of the above classification, the conserva-

tion equations describing the steady flow of an incompressi-

ble, constant-property fluid may be written in their para-

bolic form in (r,e, z) coordinates as follows: 

Mass Continuity  

1 a ( rv) + 1 au + aw = 0 
r ar 	r ae 	az 

(.3.4.1) 

Angular Momentum 

1 a 	1 a 	2 	a 	uv 	1 a 
r ar (prvu) + r āe ( pu  ) + 8z (pwu)  + p r = - 

r  0 

aT 

+ r 	aee  + 12 8r (r2Tre) 	(3.4.2) 
r 

Radial Momentum 

2 1 a 	 Pr 
	+ 	a (pvu)  + a ( pwv)  — p  u = — ap r ar 	r ae 	3z r 	ar 

aT 

4.  r 76 	r TT (rTrr)  
T ee  
r , (3.4.3) 

Axial Momentum 

1 a (prvw) + 1 a (puw) + a 
 (pw2) =— LP TT r ae 	az 	az 

. (3.4.4) 
+1  aT e 	

1 a z  
r ae + r ar (rTrz)  
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In the above equations, the symbols u, v and w stand 

respectively for the velocity components in the angular, 

radial and axial directions; p represents the fluid pressure, 

and p the density of the fluid, assumed.. constant. The 

foregoing dependent variables are, of course, time-averaged 

values. Note that body forces, such as buoyancy, have 

been neglected. The 'T'S represent the shear stresses 

acting in the fluid. 

The left-hand side of the axial momentum equation represents 

the convective transport of axial momentum in the three 

coordinate directions, while the 'T' terms on the right-

hand side of the equation represent the transfer of axial 

momentum in the 0 and r directions by way of viscous and 

turbulent-mixing effects. It will be noted that there is 

no term involving TZz. This is in accordance with the 

assumption made for a parabolic flow that there is no dif-

fusive transfer of momentum in the axial direction. 

Furthermore, since it is presumed that there is no pressure 

transmission from downstream in the fluid, the variation 

of ā2  over the cross-stream plane of the duct is quite small. 

Hence it is possible to calculate R. quite independently 
of the momentum balances in the 0- and r- directions. The 

practice adopted is to employ a pressure p, which may be 

interpreted as the average pressure over the cross-section, 

in the axial momentum equation. p is then a function only 

of z. ,The appreciable simplification achieved by this 

"pressure-uncoupling" (Patankar and Spalding (1972)) will 

be made plain in the following chapter. 
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The shear stresses appearing in the momentum equations 

above comprise molecular and turbulent components. 

8v 	'2 __ 	_ 
Trr 	2u 8'r  pv (3.4.5) 

1 Du 
Tee = 2u (r āe + r) 

- pu'2 (3.4.6) 

= 	 — 
au + 1 3v u 

Tre 	u ( 8r 	r ae 	Ti ) — PU 'v' = Or (3.4.7) 

aw 
TeZ = u  rae — 

purwr = 
TZe 

(3.4.8) 

8w 
T  rz. 	u  ār 

    

— pv'w' 
= Tzr 

(3.4.9) 

The terms pu'2, pu'v' etc. are time-averaged products of 

velocity fluctuations and are known as 'Reynolds stresses'. 

They represent momentum transfer by the turbulent motions. 

3.4.2 	The (n,E,z) coordinate system  

From the defining relations (3.2.1) and (3.2.2), the con-

tinuity and momentum equations in the non-orthogonal 

(n,E,z) coordinate system may be obtained by transformation 

of the equations given above. The following further defi- 

nitions are required: 

Ar = rN  - rs  

AO E
E 
 - 

(3.4.10) 

(3.4.11) 



-39- 

G _ 1 { drS 	d(rN. - rS) 

+ 

n 	} 

r de 	de 
(3.4.12) 

Substitution of the shear-stress relations (3.4.5) to 

(3.4.9) into the momentum equations (3.4.2) to (3.4.4), 

and transformation to the new coordinate system, leads 

to the equations given below. The details of the deri-

vation appear in Appendix A. 

Continuity  

1 a 	1 au u 3(Gr)  aw 
rAr 

an{r(v-uG)} + 
rAe a~ + rAr an 	+ 3z - G 	C3.4.13) 

Angular Momentum 

P 
a Cr (v—uG)u} + —'L a(u2 ) + p a(uw) + p uv 

rAr an 	rAe a 	az  

-1 ag + G arm + u a 	1 au 	G au 
rA6 aE 	Ar an 	rAe DE C rA9 aE — Ar an J 

+ u a r  (1+G2)r au 	G au] + 2u Dv _ 2uG Dv 
rAr, an 	Ar 	an 	AO an 	rA6 DE 	Ar ān 

_ 	u + r u au _ pG au 
u 2 	rAe DE 	Ar an r 

pu -1 1 3(Gr)  
rAr 3n 

p 	a(u'2) + pG 3(u'2) 	p a(u'v') 2 pu'v'  
rA6 DE 	Ar an 	Ar an 	r 

(3.4.14) 

Radial Momentum 

p a { r (v-uG)v } + p 	a (uv) + 	a(vw) 	u2 
rAr an 	rA6 ag 	p az 	p r 

1 ap 	u a r 1 	av - G av 
Ar ān 	rAe aE 	rAO DE 	Ar an 



-40- 

+ u a 
r 
(1+G2)r Dv 	G Dv ] _ 2p 	au + 2uG au 

rAr an 	Ar 	an 	AO aE 	r2A6 aE 	Ar 8n 

_ uv u av _ pG av 	1 a(Gr)  
r2 + C rA6 DE 	Ar an - Puv] rAr an 

P a(v'2) 	P a(u'v') PG aiu'v') 	(ur2- v'2) 
Ar an 	ra6 BE 	+ Ar an 	+ P 	r 	' 

(3.4.15) 

Axial Momentum  

P a 
rAr ān {r(v-uG)w} + p 3(uw) 	a(w2) - 	~P 

ro6 eE 	P  3z 	dz 

u 	a r 	
DE 	Ar 3n

1 aw _ G 	aw ] 
+ rae 3E ra6  

+ u a 	(1+G2) r aw 	G aw 	+ r p aw 
rAr an 	Ar 	3n 	A6 aE 	rA6 aE 

_ u G aw_ 	1 D(Gr) 	p a (rv' w' ) 
Ar an 	p uw 	rAr an 	rAr an 

_ p 	a(u'w') + pG a(u'w') 	(3.4.16) rAe aE 	Ar an 

These are the desired equations of motion in their general 

form. Here G, defined according to equation (3.4.12) is 

a measure of the degree of non-orthogonality of the par-

ticular geometry investigated. If G = 0, then the above 

equations reduce to the polar-cylindrical form. 



v' w' = — 	1  aw 
p 	ut (or an)  7 

-41- 

Laminar flow form of the equations  

If the flow is laminar, then the terms involving the 

components of the Reynolds stress in the above equations 

are all set to zero. 

The turbulent-viscosity form of the equations  

The equations as they stand are incomplete; some means of 

either calculating or specifying the Reynolds stress terms 

is required for solution. It has become common practice 

(reference Launder and Spalding, 1972) to express the Rey-

nolds stresses in terms of a fictitious 'turbulent visco-

sity' (symbol lit) in such a way that they become analogous 

to the viscous stresses. So, 

pu'w' = — u 	
1 aw — G aw 

t 	rae a 	Ar an 

T_ = 	
r 1 au + 1 av 	G av pu 'v' 	 — pt  C Ar an 	rd e a 	Ar an 

 u 
r 

pk 

' 

(3.4.17) 

(3.4.18) 

(3.4.19) 

(3.4.20) 

(3.4.21) 

'2 	2 au 	2G 8u 	2v 	2 pu 	- - -t rAe a 	Ar an + r 	+ 3 

pv
'2 
 = - ut  ( Or an

)  ± 3 pk  

where k, the time-averaged kinetic energy of the turbulent 

motion is defined by 
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k = 2 (u'2 + 
V'2 

+ w'2) (3.4.22) 

Because of the similarity of form of the laminar and 

turbulent-stress relations, it is convenient to combine 

them and work with- an 'effective viscosity' (symbol ueff) 

defined according to: 

ueff 	u + lit 
(3.4.23) 

The momentum equations above may now be re-written in terms 

of the effective viscosity. The complete forms of all 

three equations are given in full in Appendix B. Only 

the final result for the axial velocity is quoted below. 

P a 	 = dP 
rAr an { r(v-uG)w } + rue 8~ 	+ P az 	— dz 

1 a ueff aw 	G 	aw 
+ rAe a. C rhe a - ueff er 3n 

1 a r 	(1+G2)r aw G 3w 
+ rAr an u 	— eff 	Ar 	an 	ueff A6 āg 

(3.4.24) 

ueff 3w _ 	G 3w 	1 a(Gr) 
Crae a 	ueff Ar an - Pu

w~ 
rAr an 

This operation has served merely to transfer attention from 

the Reynolds stresses to the turbulent viscosity. Some of 

the ways of determining ut that have been popular in recent 

years will be briefly reviewed in section 3.6. 
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The use of an 'algebraic stress model'  

In the present work - for reasons which will become clearer 

later on - the turbulent viscosity hypothesis has not been 

used to evaluate the Reynolds stresses appearing in the u 

and v equations. Instead an alternative 'algebraic stress 

model' is employed. In this, equations (3.4.14) and (3.4.15) 

are used as they stand, algebraic expressions are obtained 

for the stresses themselves, and the latter are introduced 

as additional sources of momentum. However, equation (3.4.24) 

is employed without change. 

3.5 	THE CONSERVATION EQUATION FOR A GENERAL 

SCALAR PROPERTY  

The conservation equations for scalar properties such as 

enthalpy, chemical species concentration etc. display a 

similarity of form; consequently they may be represented 

by a single equation property ¢. The boundary-layer form 

of the transport equation for 4 - derived from the general 

equation by neglecting the axial diffusive flux term - is 

given below in cylindrical-polar coordinates. 

-conservation  

p a (rv(1) + p a (u0) + 	a (w4) _ 1 a 	ath  
r 3r 	r 8e 	p az r ae ( r ae) 

1 a 	a 	1 3(u'4') 	a(rv'~') 
+ ār (r r~ 8 ) — p ~r āe 

	I. 

r Br J 

+ S4 	(3.5.1) 
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Here S4) represents any source (or sink) of 0; pu'4)' and 

p v'4)' are known as the 'turbulent fluxes' of ¢ and repre-

sent the transport of 4) by the turbulent motion. The 

quantity r 4) is the laminar exchange coefficient, and is 

often written as: 

r 
4, 

u (3.5.2) 

Hence, az is the ratio of the laminar diffusion coefficients 

for momentum and for 0. When the quantity in question is 

enthalpy (or temperature);a x is the familiar 'Prandtl 

number' of the fluid. 

0 - conservation equation in 61 ,,z) coordinates  

Equation (3.5.1) may be transformed into the (n,E,z) 

coordinate system by means of the definitions (3.2.1) and 

(3.2.2); details of the transformation are given in Appen-

dix A. The final result is: 

p 	a 
rar an {r(v—uG)4)} + ro9 

a uf) + 
p az

w~) 

1 a rr o 	G 
rne DE roe aE - r4) Ar an 

+ 1 a [r (1+G2)r 3(0 
rer 3n 4 	Ar 	ān r G 84) 

0 āe DE 

+ 	- r G 	- 	1 a(Gr) 
1rAe aE 	4) Ar an 	pu4' J ror an 

 

      

r 1 au'4)' 	G Du'4)' + 1 a(rv'4')] 
P L roe 	DE 	Ar 	an 	rer ān 

+ s
4, (3.5.3) 
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It is customary to write the turbulent-fluxes in terms of 

a 'turbulent transport coefficient' 
ut,~' 

defined in a 

manner analogous to that for ut 

pv'~' = - r 	1 3(1)

t top Ar an 
(3.5.4) 

011,(1),= 
— rt,0 roe a 	Ar an • (3.5.5) 

The variation of ut,40 within the flow is usually in close 

accord with the variation of the turbulent viscosity. Thus 

it is useful to connect it with the latter by way of a 

turbulent Prandtl-Schmidt number, vt,41, according to the 

following equation: 

1.14. 
(3.5.6) 

~t,0 	rt 	' 

One may then work with the 'effective transport coefficient' 

defined from, 

reff,43 
- r$ 	rt,o • 

(3.5.7) 

The final version of the 0-equation may now be written in 

terms of reff,O. In the special case of the energy equation, 

with constant fluid properties and no heat generation in the 

fluid, we have: 

pC 

r_ 971 { r(v—uG)T } + 
pep a(uT) 

+ pc 
a(wT)  

ree a 	p az 
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1 a r reff T aT _ reff  T 
rA8 Dg 	rAG 	ag 	Ar 

+ 1 a r r 	_  (1+G2 )r aT - reffT G DT-, 
rAr an 	eff ,T Ar 	an 	AG 	an 

rr eff ,T aT _ 	G DT 	1 3(Gr)  
+ L rae 	a 	reff,T Ar an - PUT ~ rAr 	an 	(3.5.8) 

with, 

r 	= u + ut 	. 
eff,T 	a ~ 	at ,T 

(3.5.9) 

3.6 	THE TURBULENCE MODEL APPROACH 

In the equations for conservation of momentum given in 

section 3.4, there appeared terms involving the time-averaged 

products of velocity fluctuations, which were interpreted as 

turbulent (or Reynolds) stresses. Similarly in the trans-

port equation for the general scalar property 4) in a tur-

bulent flow, given in section 3.5, there arose 'turbulent 

fluxes' which were time-averaged products of velocity and 

fluctuations. Any set of additional differential or alge-

braic equations, which would enable these quantities to be 

evaluated, is referred to as a "turbulence model". 

3.6.1 	Turbulent viscosity models  

The concept of a 'turbulent viscosity', which relates the 

Reynolds stresses to velocity gradients in the flow, has 

already been introduced. The relevant equations are (3.4.17) 
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to (3.4.21). 

Several authors have proposed various ways of calculating 

pt. In a two-dimensional boundary-layer flow, for instance, 

pt 
may be calculated from a prescribed algebraic expression 

for the variation of the mixing-length Im  (e.g. Patankar 

and Spalding, 1970) . A more complicated way of calculating 

pt  is to relate it to the turbulence kinetic energy k 

(equation 3.4.22) and a length-scale of turbulence 9. k 

is then determined via a transport equation, and 9 is pres-

cribed algebraically (e.g. Runchal (1969), Launder and Ying 

(1973)) . These two approaches are, for obvious reasons, 

referred to as 'mixing-length' and 'one-equation' models 

respectively. A critical assessment of the merits and de-

merits of many such models is to be found in the book by Launder 

and Spalding (1972) . Both types of model suffer from the major 

drawback than 9m and it are known with certainty for only the 

simplest types of flow. In a full three-dimensional flow, 

as in the rod-bundle and other duct geometries investigated 

here, it is almost impossible to prescribe a satisfactory 

distribution of length-scale. 

Consequently, two-equation models, in which a second property 

of the turbulence is solved for along with k, have come into 

vogue in recent years. Of these the most popular has been 

the ktic model developed initially by Harlow and Nakayama 

*Footnote: the second variable has the general form km en 

(see Launder and Spalding, 1972). For the ktic model, 

m = 3/2,  Q = -1. 
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(1968). The assumption is made that the turbulence is 

adequately characterized by two quantities: k, and e, the 

rate of dissipation of k per unit mass of material. Both 

k and a are regarded as obeying "transport equations", not 

unlike those described earlier for the transport of momen-

tum and energy. Although this is an extreme simplification 

of the complexities of turbulent flow, the model contains a 

sufficient element of both to be the basis of useful pre-

dictions. The turbulent viscosity is calculated from the 

following relation: 

ut  = Cu_ p 
 2 . 	(3.6.1) 

where Cu  is an empirical constant. 

The ktie model, and other two-equation models, have enjoyed 

a fair degree of success in the prediction of turbulent flows. 

Among the diverse flow situations investigated in recent years 

with the aid of the ktie model are the following: free turbulent 

flows (Launder et al, 1972) , flow in a curved duct (Pratap 

and Spalding, 1975) , two-dimensional flows in furnaces 

(Khalil et al, 1975), turbulent buoyant jets (McGuirk, 1975) 

and two-dimensional wall boundary-layers (Singhal and Spalding, 

1975) . In general, the performance of the model is satisfac-

tory. Jones and Launder (1972) have modified the model for 

application to low-Reynolds-number flows; the modifications 

include the replacement of constants such as Cu  (equation 

3.6.1) by functions of the local turbulent-Reynolds-number. 

Nevertheless, despite the success of turbulent viscosity 
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models in many applications, several important shortcomings 

in the basic approach may be identified. Some of these, 

of not immediate concern here, are discussed by Launder 

and Spalding (1972) . One important defect (discussed below) , 

however, is directly relevant to the asymmetric three-

dimensional duct flows considered in this thesis. 

It has long been established (Nikuradse, 1926) that for 

turbulent flow in square and rectangular channels, secondary 

motions arise in the cross-stream plane. These motions, al- 

though having a magnitude of only a few per cent of the main 

velocity, exercise an appreciable influence on the friction 

. and heat-transfer performance of the duct. Brundrett and 

Baines (1964) have postulated that the flow is caused by 

imbalances among the Reynolds stresses in the cross-stream 

plane due to the sharply changing geometry. Consequently 

any calculation procedure that does not allow for these 

motions is seriously deficient; for example, friction fac-

tors for flow in a square duct are underestimated by more 

than ten per cent by neglecting secondary flow (Launder and 

Ying, 1973) . A turbulence model of the turbulent-viscosity 

type is unable to predict this flow (see Ramachandra and 

Spalding, 1976) and thus requires some modifications. 

3.6.2 	Reynolds stress models  

The most general and direct approach is to construct and 

solve differential transport equations for the Reynolds 

stresses themselves and for higher-order correlations. Such 

equations have been formulated for two-dimensional boundary- 
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layer flows by Daly and Harlow (1968), Hanjelic and Launder 

(1972) and Launder et al. (1973), while Naot et al. (1972) 

have developed a differential stress model for square channels. 

The cost of generality, however, has been greater complexity. 

In most flow situations of interest, the appropriate form 

of modelling to be employed for the various terms in the 

equations is highly uncertain. Moreover, the computational 

cost of solving seven or more strongly-coupled non-linear 

partial differential equations for the turbulence field alone, 

is a powerful deterrent to the use of such a method in engi-

neering calculations. So, the art of Reynolds stress model-

ling is still in its infancy and requires further nurturing 

before it can hold its own as a viable computational tool. 

Fortunately, though, under certain circumstances it is possible 

to reduce the stress equations to algebraic relations by making 

certain simplifications regarding the convection and diffusion 

terms. For example, Rodi (1972) related the net transport of 

stress by continued convection and diffusion to that for the 

turbulence energy; while Launder and Ying (1973), in their 

successful square-duct predictions, chose to neglect these 

terms altogether. 

In the present work, the method of Launder and Ying (1973) has 

been adopted to model the stresses in the momentum equations 

for the cross-stream velocities. The method yields simple 

algebraic expressions linking the stresses u'2, v'2  and 

u'v' to gradients in the axial velocity, and to k and e. 
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It has been demonstrated (Gessner and Emery, 1976) that, 

in this case, the stresses in the axial-momentum equation 

may still be correctly evaluated via the turbulent viscosity. 

Unlike Launder and Ying who calculated ē through a prescribed 

global length-scale distribution, the present work employs 

the two-equation ktie model, thus providing (and solving) 

a transport equation for e. The mathematical relations are 

given in the following two sections. 

3.7 	THE LAUNDER-YING ALGEBRAIC STRESS MODEL  

In general, the exact form of the Reynolds stress transport 

equations for steady, incompressible flow may be written, 

in cartesian tensor notation, as follows: 

au'u' 	au 	au 	au! 	au' 
i 1 	 i + 	- 	1 	~. 

uk 	axk = - 
(ujuk axk uiuk axk) 	

2v 
( axk 	axk) 

I (convection) II (generation) 	III (dissipation) 

au' 	au! 	au!u'. 	, 	 
+ P (ax. + ā 1) — ax uiujuk _ ax—~ + p (gjkui +ikuj) 

	

i 	k 	k. 

IV (redistribution) 	V (diffusion) 

(3.7.1) 

where puiu is the Reynolds stress tensor and u:1211,!.is the
Ji 

triple velocity-correlation tensor. 

Equation (3.7.1) represents a balance of: 

I the rate of convection of uiuj. 
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II - the rate of generation of the stress by the mean 

velocity field. 

III - the rate of dissipation of the stress into thermal 

energy. 

IV - the rate at which energy is distributed amongst the 

components of the fluctuating velocities by the action 

of the pressure fluctuations. 

V - the rate of diffusion of the stress. 

In simplifying the above equation, Launder and Ying made the 

following assumptions: 

(i) The viscous diffusion term in V may be ignored for 

flows at high Reynolds numbers. 

(ii) On the basis of arguments presented by Hanjalic and 

Launder (1972), diffusion resulting from fluctuating pressure-

velocity interactions may also be neglected as a first approxi-

mation. 

       

(iii) The generation terms for u'2, v'2  

   

and u'v' are negligi- 

ble, because the lateral motions are small in magnitude 

compared with the main velocity. 

(iv) The effect of convection is small, especially near 

walls where the secondary flow influence is greatest, and 

so may be ignored. 

(v) For high-Reynolds-number flows, dissipation occurs in 

the small-scale motion where the turbulence is locally iso-

tropic. Under these conditions the term III in equation 
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(3.7.1) may be represented as, 

 

	

au! 	au' 

	

i 	 ~ 	2 2v ( axk axk 
_ ) = 3 Sus (3.7.2) 

where E is the (isotropic) dissipation rate. Following 

Hanjalic and Launder (1972), the triple velocity-correlation 

tensor associated with diffusion was written in terms of 

second-order correlations as follows: 

k
Bu;uk 	auku! 	au!u! 

u! ujuk = - Cs s ( u! u' ax 	
+ uju' ax 1 + uku2 ax '1 ) 

Q 

(3.7.3) 

where Cs is an empirical constant. 

The final task of simulating the pressure-redistribution 

term IV in equation (3.7.1) was performed by employing the 

form proposed by Rotta (1951) and extended by Hanjalic and 

Launder (1972). The details of this may be found in the 

paper by Launder and Ying (1973) and (in its three-dimen-

sional form) in Tatchell (1975). 

The final results for the (kinematic) stresses in the cross-

stream plane are quoted below. They are, for reasons of 

simplicity, given in cartesian coordinates, where ul and u2 

are the velocities in the cross-stream directional x1 and 

x2 respectively, and u3 the velocity in the axial (x3-

direction. 

'2 	k3 	au3 2 
u1 =aŒ1 k-Œ2 Cu 

2 
(axl) (3.7.4) 
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'2 	k3 au3  2 u2 	= alk - a2 Cu  2 (ax E 	2  

k3 au3  au3  
u1  u2  = 	- a2 Cu  E2 ax1  ax2  

k2 au3  
u'u3 	= 	- Cu s axl  

(3.7.5) 

(3.7.6) 

(3.7.7) 

k2 au3  
u2  u3 	= 	- Cu s 	ax 	 (3.7.8) 

2 

Here, al  and a2  are constants defined according to: 

al  = 
(22CS1  - 26 CS2  - 10) (3.7.9) 
33 (C01  - 2 CO2) 

a2 
4 (3CS2  - 1) 

• (3.7.10) 
11 (CS1  - 2Cs2) 

Where CS1  and Cs2  are, in turn, empirical constants whose 

values were determined by Launder and Ying from an analysis 

of experimental data. The values are given in Table (3.9.1) 

in Section 3.9. 

Equations (3.7.7) and (3.7.8) indicate that the turbulent 

viscosity hypothesis is valid for the stresses which lie 

in planes parallel to the primary velocity. However, the 

implication of equations (3.7.4) to (3.7.6) is that the 

stress-field in the cross-stream plane of the duct is due 
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to the mean strain-rates in planes normal to it; this is 

contrary to the concept of a scalar turbulent viscosity. 

It is the stress-field caused in this way which gives rise 

to the turbulence-induced secondary motions discussed 

earlier. 

The final form of the stress equations pertaining to the 

non-orthogonal coordinate system used in the present work 

are derived from equations (3.7.4) to (3.7.8) by elementary 

coordinate transformations. 

They are: 

u 2  = a k — a C 
k
3 { 1 aw - G aw }2 

1 	2 u  E2 rAe ā Ar an 

3 

vt2  = al  k — a2  Cu k2  { 
rn 

}2 

(3.7.11) 

(3.7.12) 

k3 law 	1 aw 	G aw u v = — 	
s 

2 Cu  2 (ār n)  ( rA9 ai — Ar an ) (3.7.13) 

  

/It { 1 aw —  G 3w } 
p 	rAA ag 	Ar an 

 

u'w'  = - (3.7.14) 

  

ut 1 aw 
p (A r an ) 

 

vt w' _ — . (3.7.15) 

Equations (3.7.11) to (3.7.15), combined with equation 

(3.6.1) for ut,  and the differential equations for k and 

c to be given in the next section, constitute a satisfactory 
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closure to the momentum equations (3.4.14) to (3.4.16). 

3.8 	STATEMENT OF THE EQUATIONS FOR k AND e  

Stated below are the modelled transport equations for k 

and e, which were discussed in the earlier sections. The 

idea that turbulence energy is an entity, like the concen-

tration of a chemical species, which can be created, trans-

ported and destroyed, was first proposed by Kolmogorov 

(1942). A similar equation was first formulated for a by 

Daly and Harlow (1970) . 

(r, e, z) coordinates: 

The differential equations for steady, high-Reynolds number 

flows are (in their boundary-layer form): 

 ak 
r ā6 ('~) + r Dr 	+ p az (wk) — r2 36 (reff,k aē) 

+ r ār ( r reff ,k Dr') + Gk 	pe (3.8.1) 

p a 	+ ? 8 (rve) + p a (we) = 1 a (r 	aE) 
r āe 	r Zr 	az 	r2 aē eff,e aē 

+ r Dr (r reff,E ar) + k (C1 Gk 	C2 pe) 

(3.8.2) 

Here, Gk is the rate of generation of the turbulence 

energy, and is calculated from : 
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2 	2 
G 	p

t L 2 { 
(1 au + _v)  + (—Dv) } + { r a (u) G

k 	r āe r 	Br 	ar r 

1 
ff  
 2 	aw 2 	1 aw 2  

+ r 	} + 
to‘ 

 + (r De /  
(3.8.3) 

When, as in the present problem, the cross-stream velo-

cities are small, Gk  may be written simply as: 

2 	
2 Gk  _ u .t [(3w) 

3r 	+ (r ae ) J (3.8.4) 

(n , E , z ) coordinates: 

The transformation of the above equations into the non-

orthogonal (n,E,z) coordinate system is deduced from the 

transformation for the general variable 4), given in section 

A.2 of Appendix A. The final results are: 

k-equation 

P a { r (v-uG)k }+ p a (uk) + p  a (wk) 
rAr an 	 rAe aE 	az 

_  1  a 	reff,k ak 	reff k 	ak 	1 a  i 	(1+G2)r 3k 
roe āE C . r e@ a - Ar 

	
aff,k Ar r  rAr 31-11.  	ān 

	

G ak 	reff,k ak _ 	G ak - 	 1  3(Gr) 
reff,k 	J + L rAe āE 	reff,k Ar an p  

- 	AO āT 	 J rAr an 

+ Gk  - pE 	 (3.8.6) 
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e-equation  

P {(v-uG)e} + p a  (ue) + p  8 (we) rAr an 	roe TC 	8z 

1 	a reff , e 	ae _ G 	Del 	1 	a 
[reff,e 

(1+G2)r 
ree āE L 	rAe 	DE + reff,e Ar ān  J 	rar ān or 

De 	G De 	reff,e  De 	G ae 	e - pu •  an - reff,e  AO DE] +  C rae 	3 - reff,e er ān 	]' 

•ror 3n (Gr)  + 	(C1 G, 	C2p 
e 
 ) 

(3.8.7) 

With Gk  given by, 

Ī 1  aw 	G aw 
2 +  1 aw 2 Ī 

Gk - Pt  L ( rAo 3E —  Ar ān) 	(ēr an) 
(3.8.8) 

p
t 
 is of course defined by equation (3.6.1). The similarity 

of the above equations - to that for temperature (equation 

(3.5.9)) is immediately apparent. However it will be noticed 

that the equations for k and a contain source and sink terms. 

In accordance with the discussion in section (3.5), reff,k  

and reff a are related to 	according to the following 

definitions: 

ut  
reff,k - u  + at ,k  

Pt  

reff,e - u  + at ,E  

The values of the (assumed) constants a
t ,k 

 and at e'  
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together with those for C1  and C2  which appear in the 

equation for e, will be given in the following section. 

	

'3.9 	AUXILIARY INFORMATION  

Equations (3.4.13) to (3.4.16), (3.5.8). (3.8.6) and (3.8.7) 

comprise a system of seven coupled partial-differential 

equations that describe the flow and heat-transfer beha-

viour under consideration. Additionally, auxiliary rela-

tionships such as equations (3.7.11) to (3.7.15), (3.6.1) 

and (3.8.9) to (3.8.10), serve to relate the unknown terms 

in each of the equations to the dependent variables of 

these equations. The complete mathematical specification 

of the flow problem, however, requires the following further 

information. 

(a) Initial conditions, i.e. initial values of dependent 

variables corresponding to the position along the predominant 

flow direction (the z-direction) at which solution of the 

equation set begins. Note that, because of the parabolic 

character of the equations, conditions at the exit need not 

be specified; they are an outcome of the calculation. 

(b) Boundary conditions, i.e. the constraints on all the 

dependent variables at the four boundaries of the cross-

sectional plane for all values of z. Only the following 

types of physical boundary will be encountered in the present 

study: stationary channel walls and planes of symmetry. At 

the former, all components of velocity are zero. For the 

turbulence quantities wall conditions are deduced from 
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experimental knowledge of near-wall turbulent flows in a 

manner described in chapter 4. At a plane of symmetry, the 

normal velocity is zero, and the normal gradient of all 

other quantities is also zero. 

Note: the full set of boundary conditions peculiar to each 

flow pattern studied in this thesis will be given in detail 

in the chapter appropriate to that problem. 

(c) 	The values of the 'universal' constants. Listed in 

Table (3.9.1) are the values assigned in the present study 

to the various constants which appear in the turbulence 

model described earlier*. The values are those recommended 

by earlier users of the model, and have been determined 

through a combination of data analysis and detailed computer 

optimization. No adjustments have been made during the 

course of the present study. 

In general, the potency of a turbulence model is measured 

by the universality of its constants. In other words, a 

good model is one that is capable of accurately predicing 

a number of flow situations with a fixed set of constants. 

3.10 	CLOSURE 

In summary, the mathematical framework of the present work 

has been presented in this chapter. The partial-differential 

* 
Footnote: the values given are, strictly, for high-Re flows. 

For low-Re flows, the 'constants' should all be made func-

tions of the turbulent Reynolds number (pk t) . 
u 
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TABLE 3.9.1: TURBULENCE-MODEL CONSTANTS  

Constant Appearance Value 
Used Basic of choice 

Cu  Equation (3.6.1) 0.09 Measurements of T and 
k near to a wall - 
Launder and Spalding 
(1972) 

C1  Equation (3.8.2) 1.44 Measurement of tur-
bulence near to a wall- 
Launder & Spalding 
(1972). Value adjusted 
after fine turning over 
a wide range of flow 
situations 

C2  Equation (3.8.2) 1.92 Decay of turbulence 
behind a grid - 
Launder & Spalding 
(1972) 

C¢1 Equation (3.7.9) 2.6 Decay of non-isotropic 
turbulence - Launder 
& Ying (1973) 

C
(1)2 

 Equation (3.7.9) 0.37 Plane homogenous shear 
flow - Launder & Ying 
(1973) 

K Equation (4.5.1) 0.42 Measurements of velo-
cities in Couette 

E Equation (4.5.1) 9.0 flow near a wall 

a
t k '  

Equation (3.8.9) 1.0 Physical arguments 
suggest that at,k & 

a t,£  Equation (3.8.10) 1.23 at,e should be near 
unity. Values shown 
are the result of 
computer optimization 
over a wide range of 
flows - Launder & 
Spalding (1972) 

at T Equation (3.5.9) 0.85 Analysis of heat tran-
sfer data in circular 
pipe - Kestin & 
Richardson (1963) 
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equations that govern the three-dimensional parabolic flow 

have been derived in the non-orthogonal coordinate system 

developed for rod-bundle analysis. In the case of turbu-

lent motion, closure of the equations is achieved via the 

provision of transport equations for the kinetic energy 

and the dissipation rate of turbulence. The special treat-

ment furnished by Launder and Ying (1973) for the Reynolds-

stress terms in the cross-stream momentum equations has been 

reviewed; this algebraic stress formulation, when coupled 

with the transport equations for k and e, forms the basis 

of the turbulent-flow computations reported in this thesis. 
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CHAPTER 4 

THE SOLUTION PROCEDURE 

4.1 	INTRODUCTION  

4.1.1 	Preliminary Remarks  

In the previous chapter,the partial-differential equations 

which govern the three-dimensional flows considered in this 

thesis were set out, along with accompanying auxiliary rela-

tions. The task of the present chapter is to describe the 

numerical procedure which has been employed in the solution 

of these equations. 

As was mentioned in chapter 1, the so-called "finite-difference" 

approach has been used, in which attention is focussed on a 

finite number of points within the domain of interest, regu-

larly located on a "finite-difference grid". Each grid point 

is surrounded by a fictitious "control volume"; and the finite-

difference equations connecting the values of variables at 

the different grid points are obtained by approximate inte-

gration of the differential equations over these control 

volumes. Owing to the irregular geometry of the flow domain, 

a non-orthogonal grid, based on the non-orthogonal coordinate 

system developed in chapter 3, was rendered necessary. 

The resulting finite-difference equations are non-linear and 

strongly coupled. Hence, special care has to be expended in 
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the implementation of a convergent iterative solution scheme. 

One such scheme, the SIMPLE (Semi-Implicit Method for 

Pressure-Linked Equations) method of Patankar and Spalding 

(1972), has proved to be highly successful, and so was 

adopted in the present study. This method exploits to 

full advantage the parabolic nature of the flow: a marching-

integration procedure is employed, and at any given position 

along the duct, the dependent variables are solved success-

ively over the whole cross-stream plane. A "guess-and-

correct" procedure is used to solve the momentum equations: 

the velocity field is calculated from a guessed pressure 

distribution which is then adjusted via the continuity equa-

tion; the "pressure-corrections" so deduced are then used 

to correct the velocity field so that continuity is satisfied 

everywhere. 

The calculation procedure, therefore, comprises the following 

main stages:- 

(a) Subdivision of the flow domain into finite regions 

by a suitable finite-difference grid. 

(b) Derivation of the relevant finite-difference equations 

by integration of the differential equations over 

these finite regions (called "cells" or "control 

volumes"). 

(c) Solution of the resulting set of algebraic equations.' 

A detailed description of each of these stages is presented 

below. 
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4.1.2 	Outline of the chapter  

This chapter comprises four main sections: Section 4.2 

describes in detail the special finite-difference grid 

that has been employed in the present calculations. In 

section 4.3 the differential equations are integrated and 

the desired finite-difference expressions obtained. The 

method of solution of these finite-difference equations is 

described in section 4.4; while the manner in which boundary 

conditions are incorporated into the solution procedure, 

and the special treatment afforded to the near-wall region 

in turbulent flow are discussed in section 4.5. 

4.2 
	

GENERAL CONCEPT  

4.2.1 
	

The finite-difference grid 

The finite-difference grid consists of a number of inter-

secting grid lines disposed over the three-dimensional flow 

domain. The family of grid lines in the cross-stream plane 

are mutually non-orthogonal, as described in chapter 3. 

The mathematical description of the grid is to be found in 

section (3.2) of that chapter. The intersections of these 

lines, known as "grid nodes", serve as'reference locations 

for the identification of the discrete values of the flow 

variables. The spacing between such grid nodes need not 

be uniform but may be varied so as to locate more of them 

in regions of steep property variations. The choice of an 

appropriate grid size is often a compromise between accuracy 

and economy: the computed results must be independent of 
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grid-fineness to within the stipulated degree of accuracy, 

which in turn is usually determined by cost considerations. 

4.2.2 	The location of variables  

Figure 4.2.1 shows the manner in which the flow variables 

are located in the finite-difference grid. The pressure, 

axial velocity w, and all scalar properties such as turbu-

lence kinetic energy, temperature etc. are stored at the 

grid nodes, while the velocity components in the cross-stream 

plane are placed midway between adjacent grid nodes. The 

dashed envelopes shown in the figure are for purposes of 

identification: the variables enclosed by a given dashed 

loop are denoted by the same subscript. This "staggered-

grid" arrangement has a two-fold advantage: 

(i) The velocities are stored midway between the pressures 

that drive them; hence, the pressure-gradients may be 

conveniently calculated. 

(ii) the cross-stream velocities are directly available for 

the calculation of the convective fluxes of flow pro-

perties stored at the grid nodes. 

4.2.3 	Control volumes  

The 'control volumes' represent small arbitrary regions 

surrounding each node, over which the differential equations 

are integrated in order to obtain their equivalent finite-

difference forms. Realistic assumptions are made regarding 

the variation of variables between grid nodes. This micro- 
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integral technique ensures that the finite-difference equa-

tions satisfy the relevant conservation principle. 

Figure 4.2.2 depicts the control volumes for the velocity 

components and for the general variable 0.  P is a typical 

grid node, and its five  nearest neighbours are denoted by 

N, S, E , W & U. ON  is the value of 0  prevailing at the node 

N, OS  is the value of 4)  at node S, and so on. The lateral 

boundaries of the control volume for 0  and w lie midway  

between adjacent nodal points, and the upstream and down-

stream faces contain the upstream and downstream nodes 

respectively. 

4.2.4 	Modifications near boundaries  

The staggered-grid system described above presents a few 

difficulties in calculating the flow variables situated 

adjacent to the boundaries of the flow domain. In order to 

overcome these difficulties slightly different practices are 

employed for locating the near-boundary velocities., Figure 

4.2.3 shows the location of velocities near the boundaries. The 

new locations of the near-boundary velocities also modify the 

associated control volumes; these changes are also illustrated 

in the figure. 

4.3 	THE FINITE-DIFFERENCE EQUATIONS  

4.3.1 	Integration of the differential equations  

It was observed in chapter 3 that the partial-differential 

equations which govern the transport of momentum, enthalpy, 

turbulence kinetic energy and dissipation rate have the same 
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general form, namely as follows: 

P a
{r(v-uG)(0 + p a(u(p) + 

p a(w(P ) __ 1 a [1. 4,eff  
ror 3n rne a 	az 	roo aE 	•roe aE 

_ r~,effG 34' 1 + 1 a 	r 	(1+G2)r 94)
_ r 	G a~ or 	an J Thr an C 4,eff 	or 	an 	$,eff ōe aE 

eff a(1)_ 	G a~ 	I 1 a(Gr) 
r4),eff 	an - pu~ ror 8n 	+ S roe 	aE 	Ar (I) • 

(4.3.1) 

The nomenclature employed here is the same as that in the 

previous chapter. The equations for the different variables 

are distinguished from one another through the values of 

r~,eff and the 'source' term S. This is clarified in 

Table 4.3.1, from which the individual equations may be 

directly obtained. This similarity of form may be exploited 

in deriving the appropriate finite-difference equations. 

Equation (4.3.1) is now integrated over the control volume 

for the 4 variable appropriate to the arbitrary grid node P. 

The control volume face in the cross stream plane is depic-

ted in figure 4.3.1. The notation in the figure is self-

explanatory. Note that while the captions N, E etc. refer 

to the nodal points, the small letters, n, e, etc. denote 

cell interfaces. Also, U refers to the node immediately 

upstream of P. The volume of the cell is given by 

AV = AS Az 	 (4.3.2) 
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TABLE 4.3.1: 	THE COEFFICIENTS IN THE (0—EQUATIONS  

r4) 
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Ar an 	r . 
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where AS is the area of the ntig surface shown in the figure, 

and Az the inter-modal width in the z-direction. 

It is demonstrated in Appendix C that the third term on the 

right-hand side of equation (4.3.1) vanishes when the latter 

is integrated over the control cell. The integration is per- 

formed in 

equation 

z 	n 

z 
I 
u ns 

+ 

+ 

P 	
n 

Appendix C; the final integral equivalent 

(4.3.1) is given below. 

e 

+ r 	Dr dndz [ 

of 

n 
re6 dEdz 

S~ rAr0edEdndz 

rA 6 	8 

I 

. r 	the 	[ p(v-uG) 
zu 	'w 

P 
t e t

n 
n [ p~10 ] 

w 	TiS 	u 

Ar an Jw 

r(l+G2) 	ai + rG 	acp 
Ar 	an 	rA6 	8g 

II 

z 	n 
rorAedndg = 	t p t e t n 

Zu 	~ w 	nS 

(4.3.3) 

4.3.2 	Physical meaning of the terms in the equations  

Before proceeding to the final formulation of the desired 

finite-difference equivalent of equation (4,3.1), it is 

* 
Footnote: Here and throughout the remainder of this 

section, the subscripts '4),eff' are, for the sake of con-

venience, omitted from the diffusion coefficient r. 
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worthwhile to consider the physical meaning of the various 

integrals in the above equation. 

The first integral, labelled I, represents the net transport 

of 0  by convection (the p term) and diffusion (the r terms) 

across the east and west faces of the control volume. The 

velocity u is normal to these faces, but the gradient of 

normal to the east face, say, which is required for the 

diffusion calculation, is the vector sum of the gradient in 

the direction of the line from P to E and of the component 

tangential to that face. In the case of an orthogonal grid, 

the latter component would not appear, since the line from 

P to E would be normal to the east face of the cell. 

Similarly, the integral term II on the left-hand side of 

equation (4.3.3) represents the net convective and diffusive 

flux of through the north and south faces of the control 

volume. Here the first term in the integral expresses the 

resultant convective component of the flux in the direction 

normal to the north and south faces, while the second and 

third terms represent the net normal diffusion - comprising 

the vector sum of the radial and circumferential gradients - 

across the same faces. Hence, all the terms involving 'G' 

in the integrals in equation (4.3.3) above are due directly 

to the "sheared" shape of the control volumes in the non-

orthogonal grid. In the normal course of events with an 

orthogonal grid, the finite-difference equation connecting 

the value of 0 at P with its neighbours would only make 

reference to the nearest neighbours N, S, E and W; however, 

it is now to be expected that, owing to the additional G-terms, 
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the equation in the non-orthogonal grid will also include 

values of at the more remote neighbours NW, NE, SW and SE. 

Finally, note that the term III in equation (4.3.3) represents 

the net axial convective flux of $ through the downstream and 

upstream faces, while term IV is simply the net 'source' of 

$ in the cell. Equation (4.3.3), therefore, expresses the 

overall conservation of q  for the control volume surrounding P. 

4.3.3 	Final finite-difference form 

In order to discretize the various integral terms in equation 

(4.3.3), certain assumptions must first be made regarding 

the variation of between grid nodes. The assumptions made 

here are: 

(a) For diffusion in the ry'  plane, the variation of 4) 

between adjacent nodes is assumed to be linear. 

(b) For the convective flux in the ro.g plane, account is 

taken of the local flow direction: the value of cp transported 

across a cell face is taken to be the value prevailing at the 

grid node on the upwind side of the face. The "upwind-

differencing" scheme is not only physically realistic, but 

also ensures the stability of the iterative procedure. 

(c) For convection in the z-direction, the value of 

which is convected to the upstream value cpu, whose variation 

in the cross-stream plane is assumed to be step wise, i.e. 

cpu  is constant over the dotted region shown in figure 4.2.2 

but changes abruptly at its edges, to the values at the 
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neighbouring nodes. 

Equation (4.3.3) may now be written as the following finite-

difference form: 

Le ~E - Lw ~W 	+ Ln N -  Ls 4S + Fp 	4 p - Fu U 

= Te ( 4)E - ¢p) 	TW ( 43p 	4W ) + Tn ( 4)N - 41P) 

- Tsn (4p - 'Ps) 	S u + S p 	+ S' (4.3.4) 

In the above equation, the symbols L, T and F stand for 

the following expressions: 

Lē = AMAX [ 0, - puE MnPE Az J 

LW = AMAX [ 0, pup AnWp Az ] 

Lnn = AMAX [ 0, - p{vN - 
G 
4 (uP + uE + uN + uNE)} rn DeWe Al 

G 
Ln = AMAX [ 0, p { vP 	4 (uP + uE + uS + uSE)} rs Aewe 

~z1 

T = re An Azez 
Te 	re G ee 

g _ rw AnWP Az 
Tw 	r (Se  w w 
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Tn = T 	
(
1+Gn) rn AOwe 

Az 

n 	n "NP 

Tn = r 
(1+G

2
) rs AOWe Oz 

s 	s 	6nPS 

Fu = (pw)u AS 

Fp = (pw)p AS 

with, 

AS = rp AOwe 0.5 (dnNP + dnps) • (4.3.5) 

The notation used is that of figure 4.3.1. The terms S(1), u 

and S~
,p
¢p in equation (4.3.4) represent the contribution 

due to the source terms; they have been obtained by lineari-

zing S so that the integral labelled IV in equation (4.3.3) 

may be written as: 

f f f S~ rtriOdEdndz =S 	
+ S~,P ~P 	(4.3.6) 

Av 

where U and P refer to the upstream and 'current' values 

respectively. 

Finally, the last term in equation (4.3.4) has been written 

as a pseudo-source S ,u; it comprises the components of the 
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diffusional flux terms which involve the remote grid nodes 

NW, SW etc. In the evaluation of the gradients of (p, central-

difference formulae have been employed. The full expression 

for S ou is given below: 

Ge r St 

	

,u = 4 { APEe (4N + 'NE 	~S - 4'SE) AnPE 
Az 

Gw 
- Anrw (1N + (pNW - cpS 	rp

SN) AnWP Az 
} 

WP 

G r 1{  n n 	(~ + 	- 	- 	) r Ae 	Az 
4 rnAOWe E 	NE 	W 	NW n we 

Gsrs 
	 (~ + 	- 	-) r AO 	Az} 
rsAOWe E SE W SW s we 	(4.3.7) 

The expressions (4.3.5) (4.3.7) may be substituted into 

equation (4.3.4) to yield the following equation for (pp: 

4) = E (P E 	(W + A ~N +AS P 	$S+B~ 

where, 

_ A /A 

AW = AW/AP , 

(4.3.8) 

AN = AN/AP 



-80- 

cP 

and 

AE 

= 

= 

B' /A; 

T 	- e LE e 

AN = T 	- 
w 

L w 

AN = Tn - Ln 

AS = Tn - Lns 

B = S 	
+ S~,u + Fuu 

= AĒ + At_ + A` + A - S cp , p + Fp . 	(4.3.9) 

Equation (4.3.8) represents the final form of the required 

finite-difference equivalent of the differential equation 

(4.3.1). It relates 4 to the 4) values at neighbouring 

nodes on the numerical grid. Note that no .downstream 

nodes appear in the equation; it is this feature which 

allows the use of a marching solution procedure. 
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Momentum Equations  

The finite-difference counterparts of the three momentum 

equations are, by analogy with the general equation (4.3.8), 

deduced to be as follows: 

WP = AE WE + AP WW + AN WN + AN wS + BW + DP (PU - PP); 

(4.3.10) 

up = AE uE + N uTN + AN uN + AS uS + Bu + DP ( PW Pp);  

(4.3.11) 

vP = AĒ ve + AW v~ + AN vN + AS vs + Bv + DP (PS - PP); 

(4.3.12) 

The A and B coefficient in the above equations have similar 

meanings to those in equation (4.3.9). The new symbols 

DP, DP, DP are defined according to: 

DP = AS/AP" 

DP = Anwp Az/ApU 

DP = rs A0We Az/ApV (4.3.13) 

The A's have the same meanings as in equation (4.3.9). 

Note the following modifications for the u and v equations. 

(i) The computational cells for u and v are different 
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from those for other (1)'s, as illustrated in figure 4.2.2. 

Hence, the appropriate inter-nodal distances and cell 

dimensions must be used in evaluating the A's and B's. 

(ii) The transport coefficients and mass fluxes for the 

u and v control volumes must be calculated in an appropriate 

manner. 

(iii) In the u-equation, the radial component of pressure 

that appears has been absorbed into the B term by calculating 

it explicitly from the upstream pressure field. 

The Continuity Equation  

The discretized form of the continuity equation may be ob-

tained by directly substituting a value of unity for 4) 

in the integral equation (4.3.3) and setting S(1)  to zero. 

The resulting expression is: 

( P Ce  uE  - p cu  uP ) 	( Per  VN  - p Cs  VP) + ( P Cwp  ; P- p CP Wu  = O 

(4.3.14) 

where the quantities Cu, Cv  and Cw  represent the cell 

areas normal to the corresponding velocity components. 

VP  and VN  are defined as follows: 

VP 

 E vp 4 Gs (up  + uE + uS + uSE)  

G 
VN VN 	(uP + uE  uN + uNE ) 

(4.3.15) 
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4.4 
	

ThE SIMPLE" SOLUTION METHOD  

4.4.1 
	

Main features  

The SIMPLE (Semi-Implicit Method for Pressure-Linked 

Equations) procedure of Patankar and Spalding (1972) was 

implemented to solve simultaneously the finite-difference 

equations (4.3.8), (4.3.10) to (4.3.12) and (4.3.14). The 

unknowns in these equations are the three velocity compo-

nents u, v and w, the pressure and the scalar flow variables. 

Since the longitudinal momentum equation is not coupled with 

the lateral momentum equations, it may be solved independent-

ly, provided the coefficients and the pressure-gradient 

terms are correctly prescribed. The main features of the 

solution procedure as used in the present study are des-

cribed below: 

(1) 	A 'guess-and-correct' procedure is used to calculate 

the pressure and velocity fields at a given longitudinal 

station. The momentum equations are first solved for an 

estimated pressure field. The mean pressure p and the 

axial velocities are thereupon corrected by reference to 

continuity and the axial momentum equation so as to ensure 

that the mass flow rate through the cross-sectional plane 

is the same as the flow rate at the inlet of the duct. 

The lateral velocities are corrected via a 'pressure-

correction' equation so that local mass continuity is 

satisfied. 
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(2) The flow variables are computed by 'marching' through 

the flow domain in the predominant flow direction, i.e. the 

z-direction. All variables are calculated at a given cross-

stream plane before proceeding downstream. Usually it is 

sufficiently accurate to employ only upstream values in 

computing the variable field over a cross-stream plane; 

however, because of the non-linearity of the finite-difference 

equations it is sometimes necessary to refine the calculation 

by iteration before a given step can be regarded as having 

been completed. 

(3) The finite-difference equations are solved by a tri-

diagonal matrix algorithm (TDMA) along lines in the n and E 

directions; when the equations are solved along lines of 

constant n, the variable values at adjacent E-locations 

are kept fixed, and vice versa. 

(4) Only two-dimensional arrays, at most, are required to 

store the values of all variables and finite-difference 

coefficients. These arrays are updated as the solution 
moves from station to station. 

4.4.2 	Calculation of velocities and pressure  

Preliminary values for the cross-stream velocities are 

calculated from: 

* 
Footnote: These equations are solved by a fast alter- 

nating-direction TDMA method, which is described in 

section 4.4.3. 
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* p~U * U * U * U * U U u P AE uE + Aw uW + AN uN + AS us + B + DP ( = 	 (p 'w -pp*), 	(4.4.1) 

v* 	V v* + V v* +AA~V~~v* +AV v* + BV +DV * 
P AE E 	A W AN N 	S S 	P (pS - pp). (4.4.2) 

where the superscript * on u and v denotes that they are 

obtained from an assumed pressure field P* (in most cases 

the P*'s will be set equal to the upstream pressures). 

The velocities so obtained will not, in general, satisfy 

the continuity equation (equation (4.3.14)); there will 

therefore exist at each cell, a finite "mass error" mp, 

defined as follows: 

m = p CP ( WP- WU ) + (p Cn VN - Cs Vp ) + (p Ce uE p cw up) 

(4.4.3) 

where Vp is defined, from equation (4.3.15), as: 

Vp = vP - 4 Gs CuP +U 	+ ds +USE) (4.4.4) 

A set of "pressure-corrections" (p') are now calculated in 

such a way that the resulting velocity corrections (u' and 

V') will reduce these mass errors to zero. 

So, 

( p Ce uĒ - p Cw U') + (p Cv VN - p 	Cv V') = - mp • (4.4.5) 

This is accomplished by relating the velocity and pressure 
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corrections in an approximate linear manner. Namely, 

uP =EP (Pw - pP) 

(4.4.6) 

Vp = EP (PS - PP) 

The question of how the coefficients EUand EV  are eva-

luated will be deferred till later. 

Substitution of equation (4.4.6) (and of equations of the 

same form for UT and VN) into equation (4.4.5) leads to 

the following "pressure-correction" equation: 

pP =ApĒ + AWp+ AIN)  pN+Asps+Bp 	(4.4.7) 

where, 

AN  = 	 EN  

etc. 

Bp 	- m / Ap  

AP = p (Ce  EE + Cw  EP ) + P (Cn EN + Cs EP ) (4.4.8) 

This equation is solved to obtain values for the p's. 

The pressures and velocities are then corrected as follows: 

Pp=Pp + Pp (4.4.9) 

.up =uP + tit 
	

(4.4.10) 
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vP  = vP + V ' + 
4  G 	(u' + uE + uS  + uSE ) P 

(4.4.11) 

Evaluation of EU  and E  

The full expression for, for example, uP,is obtained by 

subtracting equation (4.4.1) from equation (4.3.11); 

up = A uE  + Aw  ui  + AN  uN  + AN uS + DP (p' - pP) 	(4.4.12) 

In order to arrive at a relation of the required linear 

form (equation (4.4.6)), it is necessary to make some 

assumption regarding the velocity corrections at neigh-

bouring nodes. In the original method of Patankar and 

Spalding (1972), all these terms were neglected, so that 

EU  = DU  P 	P (4.4.13) 

This assumption, however, was found to lead to numerical 

instabilities when the axial step length Az was prescribed 

to be larger than the lateral grid dimensions. 

The problem was overcome by Tatchell (1975) who proposed 

that, in a systematically developing flow, the velocity 

corrections at neighbouring nodes may, as a good approxi-

mation, be set equal to that at P. The expression for EP, 

therefore, becomes: 

Ep = DP / { 1 - (AE + Aw + AN + AN) } . (4.4.14) 

This modified relation has been used throughout the present 

work. 
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Calculation of mean pressure  

The axial-momentum equation is first solved for an estimated 

mean pressure-gradient to yield a w* field. 

WP 
	ppW~ w* + W w* + p~W_w* + AW w +BW +DW (p- - p*). (4.4.15) P AE E • W AN N 	S S 	P U 	P 

A correction to pP, (pi), is then calculated so that the 

corrected velocities satisfy the overall continuity equation 

for the duct, which may be stated as: 

( pwP Cp )= m  •  
all nodes 

(4.4.16) 

where m is the total mass inflow at the channel inlet, since 

fluid loss through the walls does not occur in the present 

study. 

A velocity-correction wp is defined so that, 

w' = EW p' P P P 

In accordance with the practice discussed earlier, EP is 

calculated from: 

4=D/l -(4+4+4+A )} 

(4.4.17) 

(4.4.18) 

Combination of equation (4.4.15) with equations (4.4.16) 

* Footnote: The usual practice is to estimate pp from the 
-* 

upstream gradient: i.e.,  (dz) 	( ai) 
P U 
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and (4.4.17) yields the following value for pP : 

= m - E (Pw*CW)p 
(4.4.19) 

 

E(pEW CW )p 

4.4.3 	Method of solution of the difference equations  

Reference has been made above to 'solving' finite-difference 

equations of the form of equation (4.3.8). In SIMPLE this 

is accomplished by the use of an alternating-direction ver-

sion of the well-known tridiagonal matrix algorithm (TDMA). 

The TDMA sweeps are performed in the n and directions as 

follows. First, for the c-direction sweep, equation (4.3.8) 

is written as: 

4)P =AE 'PE +A. 4)N +(AN 4)N. 	AS 4S +B ) (4.4.20) 

where the superscript I denotes values obtained after the first 

sweep and the terms in brackets are taken as known. 

Equation (4.4.20) is solved by elimination, and the second 

sweep is performed in a similar manner for the n-direction. 

The equation now solved is, 

4pII = AN 4)NI 	AS 4)SI + (AA 
4)Ē 

+ A 
 

°W 	B~ ) (4.4.21) 

This completes the double sweep. Since the expressions in 

the brackets in equations (4.4.20) and (4.4.21) are based 

on old (0's, the double sweep must be repeated in order to 
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obtain an accurate (i.e. converged) solution. For equa-

tions for variables other than p', convergence is rapid, 

and one double sweep usually suffices. However, for the 

p'-equation, convergence is slower; for the solutions re-

ported in this thesis between five and thirty double sweeps 

were required. 

4.4.4 	Summary of the calculation procedure  

The following main sequence of operations is performed at 

each longitudinal station:- 

(1) First, the u* and v* fields are calculated from 

equations (4.4.1) and (4.4.2), using the upstream pressure 

distribution. 

(2) The axial velocity field w* is calculated (equation 

(4.4.15)) from the upstream pressure-gradient. 

(3) The mean pressure-correction is then evaluated from 

equation (4.4.19) and the w's and p are corrected. 

(4) All scalar variables (k, E, T in turbulent flow with 

heat transfer) are solved for (equation (4.3.8)). The 

convection terms used here are evaluated from the upstream 

values of the variables. 

(5) The coefficients in the pressure-correction equation 

(equation (4.4.7)) are calculated and the p's deduced. La-

teral velocities and pressures are thus corrected. 

(6) The whole cycle is repeated until further changes are 

reduced to below an acceptable level. 
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(7) The solution proceeds to the next downstream station. 

The above solution procedure, embodied in the computer code 

STABLER (Steady Three-dimensional Analyser of Boundary-

Layer Equations, Revised), was employed in all the calcula-

tions presented in this thesis. 

4.5 	INCORPORATION OF AUXILIARY INFORMATION 

4.5.1 	Boundary conditions  

Reference was made in section (3.9) to the two types of 

boundary condition encountered in this thesis: namely, 

whether the value of a variable or the value of its flux 

is specified. The incorporation of either kind of boundary 

condition into the calculation procedure is easy, and is 

achieved by either modifying the source term or the appro-

priate coefficient in the finite-difference equation for 

the near-boundary control volumes. 

Conditions at the inlet to the channel are specified by 

simply assigning the relevant starting values for all grid 

nodes at the first 	plane. 

4.5.2 	Treatment of near-wall regions  

The near-wall region poses some special problems in the 

numerical computation of turbulent flows. Close to a wall 

the variations of the flow properties is so steep that 

excessively fine grids are required there for accurate cal-

culations. Furthermore, the equations developed for k, c 
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and the Reynolds stresses are valid only for fully-turbulent 

flows; modifications to the model are required in regions 

where the local Reynolds number of turbulence (=pks./u) 

is low. 

There are two possible approaches to the treatment of the 

near-wall region: either the use of an empirical "wall-

function" method or the modelling of the low-Reynolds-number 

phenomena. In the present investigations, the former method 

has been adopted, chiefly because of its greater economy 

in both computer storage and computer time. The use of wall 

functions permits the near-wall grid node to be placed far 

from the wall in the fully-turbulent region. 

Launder and Spalding (1973) have summarized the wall-functions 

that have been proposed and used by various authors. It is 

these wall functions, with their appropriate extension to 
r 

three dimensions, which have been employed here. 

The practice adopted is as follows: 

If P is the grid node adjacent to the wall - but sufficiently 

far from the wall for the turbulent Reynolds number at P to 

be much greater than unity - then, the logarithmic velocity 

profile is presumed to prevail at P. 

So, 

P 	__ 1 zn 
 
(EYP(:t) )  

(Tw/p) 	K 	u 
(4.5.1) 

where the subscript P refers to the values at node P, while 
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the subscript w denotes values at the wall. yp  is the 

normal distance of P from the wall and K and E are the 

well-known constants whose values are listed in Table 3.9.1. 

W P  is the resultant velocity at P and is assumed to be 

parallel to the wall shear-stress. 

The variation of k and c in the uniform-shear layer near 

the wall may be deduced from solution of the kinetic energy 

equation (equation (3.8.6)) with convection and diffusion 

neglected, and from the knowledge that the length-scale 

varies linearly near the wall (see Launder and Spalding, 

1972). The relevant expressions are: 

Tw  = p Cū  kp 	 (4.5 .2) 

ep  = Cū kp3/2/Kyp 	 (4.5.3) 

Thus, the value of a at the near-wall node is fixed accord-

ing to equation (4.5.3) above; while for the k control-

volume adjacent to the wall, diffusion of energy is set to 

zero, and the generation term modified by way of the wall 

shear-stress calculated from equation (4.5.4) below: 

Tw  = PK Cū kp 
P (4.5.4) 

iEyp  Cupkp  
in 

This expression is obtained by combining equations (4.5.1) 

and (4.5.2) above. 
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The wall functions for the transport of temperature 

(or enthalpy) are derived in a similar manner. A loga-

rithmic temperature profile is assumed, the final expression 

being as follows: 

PC (T — T ) (T /P) 	 Ey (PT )l  p WP 	K  9.n 	P 	
uw 	+PT 

Q 
  
W at 

where Tw  is given by equation (4.5.2) and Qw is the heat-

flux from the wall. The additional term PT  represents 

the resistance offered by the laminar sublayer to the trans-

port of heat. Jayatilleke (1965) has extensively catalogued 

the different functional expressions for PT  to be found in 

the literature. After comparison with experimental data, 

he himself proposed the following formula which he believed 

gave the best 'fit' to the data: 

az  
PT  = 9.24 {(---)   - 1} {1 + 0.29 exp (-0.007 ast/at)}. 	(4.5.6) 

t 

where aQ  and at  refer, respectively, to the laminar and 

turbulent Prandtl-numbers for temperature. This expression 

for PT  has been used in the present study. 

4.6 	CLOSURE  

In this chapter, a novel non-orthogonal computational grid 

has been described in detail, and the partial-differential 

equations for parabolic flows integrated over the appropriate 

grid control volumes to yield equivalent finite-difference 
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forms. The physical significance of the various terms in 

the latter equations were also discussed. Furthermore, a 

general solution scheme for these equations has been des-

cribed, Wand special computational practices adopted for 

near-wall regions have been presented. This completes the 

mathematical formulation of the problems investigated in 

this thesis. 
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CHAPTER 5 

LAMINAR FLOWS 

5.1 	INTRODUCTION  

5.1.1 	Objectives of the Study  

The work reported in this chapter was performed with a 

two-fold purpose in view: firstly, to test the accuracy 

of the non-orthogonal finite-difference formulation deve-

loped in the previous two chapters of this thesis by its 

application to the calculation of velocity and temperature 

distributions in irregular geometries for which simple, 

exact solutions are available for comparison; and secondly, 

to predict the laminar flow and heat transfer behaviour of 

rod-bundles in equilateral-triangular and square configura-

tions. 

The equations solved, in each case, were the continuity rela-

tion, the three momentum equations and the temperature (energy) 

equation, in the forms appropriate to a constant-property 

laminar flow (see section 3.4). 

The numerical model was first tested through employment in 

the solution of a simple pipe flow problem, and a comparison 

of the results obtained with the well-known polynomial profiles 

for axial velocity and temperature was made. Then two non-

circular geometries, viz. the elliptic duct of arbitrary 

aspect ratio and the equilateral-triangular duct, were selected 
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for investigation, since, in both cases, exact analytical 

solutions, with which the numerical results could be compared, 

exist. Moreover, since orthogonal finite-difference meshes 

are applicable to these geometries only with great difficulty, 

it was hoped that the relative ease and greater universality 

of the present procedure would be demonstrated. 

Computations are presented here of the flow and heat-transfer 

performance of rod-bundles under laminar conditions; and com-

parisons are made, wherever possible, with the results of 

earlier authors whose work has been summarized briefly in 

section 2.2 of Chapter 2. Quantities calculated include 

local distributions of velocity, shear-stress, heat-transfer 

coefficient etc, as well as overall parameters of the flow 

such as rod-averaged Nusselt numbers and friction-factors, 

over a wide range of rod spacings. For the equilateral-

triangular array of rods, three different wall heating con-

ditions were investigated:- 

(i) Uniform heat-flux in all directions, corresponding to 

the case studied by Dwyer and Berry (1970) . 

(ii) Uniform wall temperature in the circumferential direc-

tion, coupled with a uniform axial heat flux; this corres-

ponds to the situation attended to by Sparrow, Loeffler and 

Hubbard (1961) . 

(iii) Uniform wall temperature in both the circumferential and 

axial directions. 

The above sets of thermal boundary conditions will be referred 

to as A, B and C respectively. 



-98- 

Although in reality the flows in reactor cores are highly 

turbulent, the theoretical study of the laminar flow case 

is of some interest in connection with abnormal operation 

of a power reactor, such as may arise from a partial block-

age of a fuel sub-assembly. 

5.1.2 	Outline of the chapter 

The rest of this chapter consists of three main sections: 

section 5.2 contains a discussion of the test cases which 

were investigated with a view to checking the mathematical 

formulation. Computations performed with the present proce-

dure for rod-bundle flow and heat-transfer are reported and 

discussed in section 5.3, while section 5.4 closes the chap-

ter with a brief assessment of the results achieved. 

5.2 
	

TEST CASES  

5.2.1 
	

The circular duct  

A preliminary test of the equations derived for the non-

orthogonal grid was performed by obtaining solutions for 

the velocity and temperature fields under fully-developed 

conditions in a straight, circular pipe. 

The calculation domain was similar in shape to that used later 

for rod-bundle flows, and was located in a quadrant of the 

pipe as illustrated in figure (5.2.1(a)). A point on the 

axis of the pipe was taken as the origin of the coordinate 

system, and the family of n-lines coincided with the radii 

of the circle about that point. The boundaries of the domain 

were arbitrary fluid surfaces. The well-known fully-developed 
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FIG. 5.2.1(a): CALCULATION DOMAIN FOR CIRCULAR DUCT 

FIG. 5.2.1(b): CALCULATION DOMAIN FOR ELLIPTIC DUCT 



-100- 

solutions for the velocities and temperatures, correspon-

ding to a given flow-rate and a constant heat flux on the 

pipe wall, were prescribed on the boundaries; the object 

of the exercise was to compute the values of velocity and 

temperatures at the internal grid nodes. 

5.2.1.1 	Computational details: 

A uniform 12x12 grid was employed in the ntiF  plane, and 

integration performed until the axial velocity w and the 

temperature (TW- T) , where Tw  was the wall temperature, at 

all internal nodes reached their constant final values. 

Some computations were made with a 17x17 grid, and results 

to the same degree of accuracy as before were obtained. 

The velocity solution was executed first, and this was then 

used as input in the integration of the temperature equation. 

5.2.1.2 	Inlet and boundary conditions: 

Velocity solution: 

At z=0; 	u = v = 0 

w = constant 

z > 0; 	u = v = 0, at g = 0; g = 1; n = 0; 

n = 1, 

w=2w(1-(i)2), at g=0;g= 1; 

n = 0, n= 1. 

(5.2.1) 

(5 .2.2) 

(5.2.3) 

(5.2.4) 

Temperature solution: 

At z = 0; 	u = v = 0 	 (5.2.5) 

T = constant 	 (5.2.6) 
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w = 2w (1 - (r)2) (5.2.7) 

"w 3z > 0; Tw- T = kLLa (16 a2  + — 	 ,  16a 

at 	= 0; 	= 1; n = 0, n = 1 . (5.2.8) 

5.2.1.3 Results: 

The predicted velocity distribution within the calculation 

domain is compared with the exact parabolic profile in 

figure (5.2.2). The angular width of the domain in this 

case was 60 degrees, and the values chosen for the para-

meters ro  and rs  (see fig. 5.2.1(a)) are given in the figure. 

Similar comparisons are made in figure (5.2.3) between the 

predicted. temperatures and the analytical temperature-

profile corresponding to a constant wall heat flux thermal 

boundary condition. It is seen that the numerical results 

for both axial velocity and temperature are almost coinci-

dent with the analytical solutions. 

5.2.2 	The elliptic duct  

A more rigorous test of the procedure is afforded by the 

case of a straight elliptic duct of arbitrary aspect ratio. 

A quadrant of the duct (see figure 5.2.1(b)) was spanned 

by the non-orthogonal grid described in chapter 4. In 

this case, the n = constant surfaces from a family of con-

centric ellipsoids about the axis of the duct. The aspect 

ratio, X, is defined as b/a, where b is the half-length of 
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Exact Solution 
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FIG. 5.2.2: LAMINAR VELOCITY-PROFILES IN CIRCULAR DUCT 
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of the minor axis and a the half-length of the major axes 

of the ellipse. 

The exact velocity-profile (fully-developed) in such a duct 

is given by (see, for example, Rohsenow and Hartnett, 1973):- 

w=2w C1- (1)2 - (b)2 J (5.2.9) 

where w is the mean axial velocity over the cross-section 

of the duct. 	Hence, since all the grid nodes lie on 

ellipsoidal surfaces, a velocity solution independent of 

angular position and parabolic along any ri-line is to be 

expected. 

Heat transfer computations were made of the cooling of a 

fluid in an elliptic duct with a uniform wall temperature 

less than the fluid temperature at the inlet. This corres-

ponds to the situation studied analytically by Dunwoody 

(1962), using a complex-variable technique. He obtained 

values of the heat transfer rate as a function of the long-

itudinal distance down the duct. The results were later 

checked and extended by Schenk and Han (1967) . 

A second thermal boundary condition investigated was that 

of a uniform heat input in both the axial and peripheral 

directions. This corresponds to the problem analysed by 

Iqbal et al. (1972) , whose treatment of free and combined 

convection, by means of a variational procedure, included 

tables of Nusselt numbers for the case of pure forced 

convection. 
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5.2.2.1 	Computational details: 

For the calculations involving ducts of aspect ratio greater 

than 0.6, satisfactory results were obtained with a cross-

stream grid comprising 12x12 uniformly distributed nodes. 

For smaller aspect ratios, however, a 19x19 grid, with a 

greater concentration of nodes near the major axis of the 

ellipse, was required before accurate, essentially grid-

independent results were attained. 

Fully-developed velocity conditions were assumed to have 

been reached when the w-profiles ten hydraulic diameters 

apart were consistent to within one per cent. An axial 

step length of one per cent of the equivalent hydraulic 

diameter (De). was chosen at the inlet, and this was increased 

exponentially until a value of 0.5 De  was reached. For the 

velocity solution, one integration per step sufficed, but 

for the calculation of temperature, 3-5 iterations at each 

station were necessary for convergence. 

The manner in which the thermal boundary conditions were 

introduced into the computational procedure will be des-

cribed later, when rod-bundle flows are considered. 

5.2.2.2 	Inlet and boundary conditions  

Velocity solution 

At z=0; 	u=v=0 

w = constant 

z > 0; 	u=v=w=0, at n =1 ; 

(5.2.10) 

(5.2.11) 

(5.2.12) 
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Du 	av 	aw = 0, at E = 0; E = 1 ; 	(5.2.13) 

au_ aw 0  
an - an at n = 0 	(5.2.14) 

Temperature solution  

At z = 0; 

z > 0; 

W = fully-developed solution , 	(5.2.15) 

T = constant 	 (5.2.16) 

T = TW ,  at n = 1 (Const. Temp. case) (5.2.17) 

k  an 	Qw  , at n = 1 (Const. Flux case) (5.2.18) 

8 
= 	, at g = 0; g  =1 ; 

āT =O , at n=0 
n  

(5.2.19) 

(5.2.20) 

5.2.2.3 	Results: 

Figures (5.2.4(a)) and (5.2.4(b)) show the results obtained 

for the fully-developed velocity profiles in an elliptic 

duct of aspect ratio 0.6 when, (a) the terms involving the 

function G (equation 3.4.12) - which arise through the non-

orthogonality of the grid - are omitted from the axial-

momentum equation, and (b) the complete equation is pro-

grammed and solved. It is evident that in case (a) the ex-

pected angular independence is not obtained. This discre-

pancy worsens with diminishing aspect ratio, i.e. with 
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FIG. 5.2.4: VELOCITY PROFILES IN ELLIPTIC DUCT (ASPECT RATIO = 0.60) 
(a) NO "G-TERMS". I N W-EQUATION 
(b) "0-TERMS' INCLUDED IN W-EQUATION. 
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increasing grid non-orthogonality, and this is clearly 

demonstrated by figures (5.2.5(a)) and (5.2.5(b)) which 

show profiles corresponding to a value of A of 0.3. 

Figure (5.2.6) depicts the variation of the wall shear-

stress around the periphery of the duct for two different 

aspect ratios. The ordinate in the figure is the shear-

stress, non-dimensionalized through division by the averaged 

shear-stress, while the abscissa is the angular position 0. 

The analytical solution shown is from the summary by Shah 

and London (1971). This peripheral variation is one of 

the interesting features of flows in non-circular geometries. 

As is obvious from physical considerations, the maximum 

shear-stress occurs at the position aligned along the minor 

axis, where e = 0°. Flattening of the duct leads to an 

enhanced non-uniformity of the stress distribution. It is 

clear that the solution of the complete "non-orthogonal" 

equations, developed earlier in this thesis, yields excel-

lent agreement with the analytical results for velocity and 

wall shear-stress over a range of duct aspect ratios. 

The temperature equation was solved in a similar manner. 

Figure (5.2.7) compares the predicted longitudinal variation 

of the 'cup-mixed' mean temperature difference ē(z), averaged 

across the cross-section of the duct, with the curve obtained 

via the complex-variable method of Dunwoody (1962) . 0(z) is 

defined according to: 

T - T~ 
e(z) = T ~r- 

1 	-w 

where T is the constant temperature at the duct wall ,, and 

(5.2.21) 
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assumed to be less than the inlet fluid temperature Ti. 

The abscissa in the figure is the parameter (z/De/Pe), 

where z is the distance downstream from the inlet, Pe the 

Peclet number and De  the equivalent hydraulic diameter of 

the flow region. Agreement between the present. predictions 

and Dunwoody's results is very good. 

The heat-transfer capability of the duct is normally expressed 

by way of the Nusselt number, defined according to, 

Nu= fi De  
kL  (5.2.22) 

where h is the mean heat-transfer coefficient around the 

periphery of the duct, and kL  the molecular thermal con-

ductivity of the fluid. Schenk and Han (1967) have extended 

Dunwoody's calculations for different aspect ratios, and 

published values of the Nusselt number Nu', defined accord-

ing to: 

Nu' - fi 2b  kL  (5.2.23) 

where 2b is the length of the minor axis of the duct. Nusselt 

numbers calculated in this way are given in Table (5.2.2) 

below, along with values obtained with the present procedure. 

TABLE 5.2.2 

x Nu' 	(Schenk) Nu' 	(present) 

0.80 3.31 3.29 

0.50 2.88 2.90 
0.25 2.59 2.62 
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The agreement between the two sets of results is very 

satisfactory. 

Computed Nusselt numbers corresponding to the case of a 

constant wall heat flux in all directions are given in figure 

(5.2.8) as a function of aspect ratio. The analytical results 

are those obtained by Iqbal et al (1972) by way of a varia-

tional solution technique. Note that the Nu values are 

defined from equation (5.2.22) above. Once again, agreement 

between the present numerical predictions and the analytical 

results is gratifying. 

5.2.3 	The Equilateral-Triangular duct  

The duct geometry is shown in figure (5.2.9). Half of the 

duct was spanned by a non-orthogonal grid, an apex of the 

duct serving as the origin of the coordinate system. This 

geometry was chosen for study because the large axial velo-

city gradients in both the radial and angular directions 

constitute useful tests of the accuracy of the discretized • 

diffusion terms in the axial-momentum equation. 

5.2.3.1 	Computational details:  

Computations were performed with a non-uniform 17x17 cross-

stream grid, with a greater concentration of nodes in the 

vicinity of the walls than in the core. Grid independence 

of the results was confirmed by making comparative calcula-

tions with a 25x25 grid and observing essentially identical 

solutions. A maximum axial step length of 0.5 De  was used 

and one integration performed per station, until the fully-

developed velocity field was attained. 
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FIG. 5.2.9: CALCULATION DOMAIN FOR EQUILATERAL-TRIANGULAR DUCTS 

FIG. 5.2.10: CALCULATION DOMAIN FOR ROD BUNDLE 
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0, at = 1, n = 1, n = 0(5.2.26) 

at = 0 ; (5.2.27) 

at = 0 ; (5.2.28) 

At z = 0; u = v = 0 

w = constant 

z > 0; 	u = v = w = 

u = 0 

8v 	8w = 0 
3E = ā~ 
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5.2.3.2 	Inlet and boundary conditions:  

5.2.3.3 	Results  

The exact solution for the point velocities in an equila-

teral triangular duct is (from Rohsenow and Hartnett, 1973): 

w = - d . 4u (1 d) (3x2 - y2) (5.2.29) 

d is the axial pressure-gradient (constant) and the symbols 

x, y and d are defined in figure (5.2.9). 

In figure (5.2.11) the velocity field, obtained from the 

present numerical procedure, is plotted as a function of 

radial position n for any given angular location, the latter 

being measured from the duct bisector. The ordinate in the 

figure is the axial velocity, non-dimensionalized with res-

pect to the mean velocity in the duct. The steep gradients 

of velocity are plainly evident. Also shown in the figure 

is the velocity-profile plotted from equation (5.2.29) and 

represented as a solid curve. The agreement between the latter 

and the numerical prediction is excellent. 
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FIGURE 5.2.11: VELOCITY PROFILES IN EQUILATERAL-TRIANGULAR DUCT 
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5.3 	ROD-BUNDLE FLOWS  

The symmetry element in an infinite array of rods is the 

segment shown cross-hatched in figure (1.1.2 ). A non-

orthogonal mesh was imposed on this segment in the manner 

indicated in figure (5.2.10), and computations made of both 

flow and heat-transfer parameters. 

In the case of an equilateral-triangular array, for which 

most of the calculations presented in this thesis were per-

formed, the angle e0  in figure (5.2.10) has the value of 

30 degrees; while for rods arranged in a square pattern, 00  = 

45 degrees. The general angular position 0 is defined 

such that along the line of minimum separation between rods, 

e = 0 degrees; 

For the triangular array, the equivalent hydraulic diameter 

of the flow region is given by the following expression_: 

2 
De  = rs  { 2.20 (D) - 2.0 } (5.3.1) 

For the square array, 

2 
De  = rs  { 

8 (D) - 2.0 } f (5.3.2) 

The parameter P/D, where D = 2 rs, is the "pitch-diameter 

ratio" of the configuration. 

5.3. 1 	Inlet and boundary conditions: 

The flow region shown in figure (5.2.10) is bounded by the 
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following surfaces in the cross-stream plane: 

(i) The rod wall (the south boundary, i.e. n = 0) 

(ii) Two planes of symmetry which pass, on extrapolation, 

through the central axis of the rod. At these planes (E = 0 

and E = 1) the normal flux of any quantity p is zero. So, 

a~ 	- 1 	 =0 rae 	rae aE 	Ar an (5.3.3) 

in the notation of the non-orthogonal coordinate system. 

(iii) A north boundary (n= 1) comprising a plane of symmetry 

which bisects the region separating two adjacent rods. Here 

too, therefore, the normal flux is zero. 

Hence, 

0 	 , 	 (5.3.4) 

where n is the normal to the boundary. In the (n,) coordi-

nate this may be expressed as: 

_ 
an 

(1+G2) I — G 	_ Ar an rae DE 0 (5.3.5) 

Thus, the complete set of inlet and boundary conditions are 

as follows: 

Velocity solution  

At z=0; 	u = v = 0 

w = constant 

z > 0; 	u=v=w=0at n =0 

(5.3.6) 

(5.3.7) 

(5.3.8) 
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u = 0 at 	= 0; g = 1 	(5.3.9) 

1 ō¢  
— 

G 	= 0, for cp = u, v, w at e = 0; c= 1 (5.3.10) 
ro6 ag 	or an 

(1+G2) 	- 
	

= 0, for 4 = u, v, w at n = 1 . (5.3.11) 
Ar an 	r2"0e a~ 

Temperature solution  

At z=0; u = v = 0 

w = fully-developed solution 
	

(5.3.12) 

T = constant 

z > 0; 	rpe 8E 	r an 	0, at g = 0; g = 1 . (5.3.13) 

(1+G2) aT _ G DT 
= 0, at n = 1. 	(5.3.14) 

Ar 	an 	rae ag 

Three different thermal boundary conditions at n = 0 were 

investigated (see section 5.1). The manner in which these 

were incorporated into the computational procedure is 

described in the following section. 

5.3.2 	Computational details  

As in the calculations hitherto described, the finite-

difference equations for u, v, w and T were solved by means 

of the solution method presented in chapter 4. The fully-

developed velocity solution was first obtained, and this 

was then introduced as initial data for the temperature 
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equation which was solved independently. 

For both triangular and square arrays, calculations were 

performed with a uniform 15x15 grid in the cross-stream 

plane; grid independence was established by a comparison of 

the axial-velocity field with thoje obtained with non-uniform 

19x19 and 23x23 grids. For calculations in the entrance region 

of the flow domain, an axial step length of 0.01 De,  rising 

smoothly to a maximum 0.20 De  was employed. No additional 

iterations were required at'any station. Fully-developed 

velocity solutions were obtained with a maximum step length 

of 0.50 De. The temperature solution was also obtained with 

a maximum step length of 0.50 De; however, 3-6 iterations 

per step were necessary for satisfactory convervence. A 

typical solution for the fully-developed hydrodynamic and 

temperature variables with a 15x15 grid required approximately 

100 sec. of computer time on a CDC-6600 machine. 

The three different heating constraints on the temperature 

equation were incorporated into the computational scheme as 

follows: 

(i) Boundary condition A:- the wall heat flux was pres-

cribed and introduced as a 'source' term (see section 4.3) 

for the control volumes adjacent to the rod wall, diffusion 

to the wall having been set to zero. 

(ii) Boundary condition B:- this required a special treat-

ment in the finite-difference scheme since the wall tempera-

ture at any axial station was not explicitly known. However, 



-121- 

what was known, in any forward step, was the total heat 

input to the flow, viz. 

Az 	, 	 (5.3.15) 

where Qw  is the (known) axial heat transfer per unit length 

of rod, and Az the forward step length. For near-wall con-

trol volumes (for temperature) the finite-difference ex-

pression for the total heat flux over the next forward 

step is: 

Az 	E 	- kL 	 rs 60 = Qw rod wall 	Sy 
(5.3.16) 

In the above expression, TP  is the temperature prevailing 

at the grid node P adjacent to the wall, Tw  is the required 

wall temperature, Sy is the normal distance of P from the 

wall,  rs  the radius of the rod and kL  the thermal conduc-

tivity of the fluid. On re-arrangement, equation (5.3.16) 

yields: 

kL TP  Qw 	E 	rs  60  

Tw _ 	rod wall 	Sy 	 (5.3.17) 
kL  rs  60  

	

rod wall 	S y 

This value of T was calculated from known and upstream 

values, and was stored on all wall boundary.  nodes prior to 

the calculation of the finite-difference coefficients in 

the temperature equation. It was found necessary to iterate 

on the latter three or four times before satisfactory con-

vergence was obtained. 
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(iii) Boundary condition C:- A constant value of T was 

specified as initial datum, and stored at all wall nodes. 

The coefficients linking the latter to the near-wall nodes 

were set equal to zero and the heat flux at the wall intro-

duced via the linearized source terms (see section 4.3) for 

the near-wall control cells. 

5.3.3 
	

Results and Discussion  

5.3.3.1 
	

Hydrodynamics: 

(a) Developing flow:- Figure (5.3.1) shows the predicted 

development of pressure-drop with axial distance in triangu- 

lar arrays for three different values of the pitch-diameter 

ratio. The ordinate in the figure represents the mean 

pressure difference between the inlet and an arbitrary 

station a distance z downstream, divided by the 'dynamic 

head'. It can be seen that the pressure falls very sharply 

near the entrance, due to the high shear-stresses in the 

thin wall boundary layers in this region. Far downstream, 

the pressure gradient assumes the constant fully-developed 

value. The smaller the value of P/D, the greater is the 

length of the entrance region. This is intuitively reasonable, 

since, at close spacings steep axial velocity gradients 

develop in the cross-stream plane, and so a longer length 

of duct is required for the initially uniform profile to 

settle down to its strongly non-uniform fully-developed 

state. 

The actual development of the axial velocities down the 
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FIG. 5.3.2: DEVELOPING VELOCITY-PROFILES, TRIANGULAR ARRAY 
(P/D = 1.10) 
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length of the rods is illustrated in figure (5.3.2) for 

a typical value of P/D = 1.10. The velocities are plotted 

in the radial direction for two different angular positions, 

viz. e = 0 degrees, where the rods are at their minimum 

separation, and e = 30 degrees, where the rods are relati-

vely farthest apart. The abscissa is the non-dimensional 

radial coordinate n, which may be written as: 

n = y/i (5.3.18) 

where y is the normal distance of any given point from the 

rod surface, and y the distance between the rod surface and 

the maximum velocity plane (the north boundary of the cal-

culation domain), corresponding to the angular location e. 

It is seen from the figure that as the boundary layer deve-

lops along the rod length, momentum is transferred around 

the periphery of the rod from e = 0 degrees to e = 30 degrees. 

Moreover, fully-developed conditions are not attained simul-

taneously around the rod; the velocities along the 30°  line 

reach their fully-developed values approximately ten hydrau-

lic diameters before the velocities along the 0°  position. 

Unfortunately, no information of either an experimental or 

theoretical nature, with which the present predictions could 

be compared, is available to date. 

(b) Fully-developed flow:-

Axial velocity distribution  

As was indicated above, the velocity distribution in rod- 
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bundle flows is a strong function of the angular (or cir-

cumferential) position as well as the (radial) distance 

from the wall. This angular dependence of the axial velo-

city is of great interest, and a representative solution, 

corresponding to a triangular array with P/D = 1.10, is 

shown in figure (5.3.3). The ordinate in this figure re-

presents the radially-averaged velocity we  at any circum-

ferential location e, non-dimensionalized with respect to 

the me an ve to city w in the flow domain. Mathematically, we  

is given by the following relation: 

6 
= ō w(y,e)dy 

y 
I dy 
0 

(5.3.19) 

where y and y are as in equation (5.3.18) above. The solid 

curve in the figure represents the analytical solution of 

Sparrow and Loeffler (1959), who obtained an expression for 

the velocity profile in the form of a trigonometric series. 

It is evident that the computed values are in excellent 

agreement with those calculated from the analytical solution. 

The velocity profile in the radial direction is depicted in 

figure (5.3.4) as .a function of angle 0, for the same geo-

metry represented by the previous figure. The curves obtained 

from the analytical solution are indistinguishable from the 

present results shown in the figure. 

Wall shear-stress distributions  

y 

Since the velocity distribution varies with angular position, 
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so also will the local shear stress exerted by the wall on 

the fluid. The manner in which the shear-stress varies is 

depicted in figures (5.3.5) and (5.3.6) for triangular and 

square arrays respectively. In each figure, the results 

for three different rod spacings are given. The ordinate 

in each figure is the local shear stress normalized with 

respect to the peripherally-averaged value. 

The influence of neighbouring rods on the flow behaviour 

around a given rod is clearly evident from these figures. 

For open spacings, i.e. P/D > 1.50, the wall shear stress 

is uniform around the rod periphery; but as the rods are 

brought closer together, the asymmetry of the flow is en-

hanced by the interference of near neighbours, and so a 

greater dependence of the local shear stress on angular 

position is manifested. As would be expected on physical 

grounds, the highest shear-stress levels occur at the loca-

tions of maximum velocity (e = 30 degrees, and 0 = 45 degrees), 

and the lowest shear stresses at the location of lowest velo-

city (0 = 0 degrees). 

Excellent agreement between the computed solutions and the 

Sparrow-Loeffler results is obtained for both triangular 

and square configurations over the range of P/D ratios 

investigated. 

Friction-factors  

The friction-factor ti  Reynolds-number dependence has been 

computed for each array as a function of rod spacing, and 

the results are plotted in figure (5.3.7). Note that the 
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Reynolds-number (Red) in this plot is based on the rod 

diameter, and that the abscissa is the "porosity", E, 

which is a relative measure of the area available to the 

flow. For the triangular array, E is given by: 

while, for the sqaure array: 

E = 1 
4(P/D)2  

(5.3.21) 

This choice of axes for the plots of figure (5.3.7) -was 

made in order to directly compare the present predictions 

with those given in this form in the paper by Sparrow and 

Loeffler. Also, by relating the Reynolds-number to the 

rod diameter instead of the conventional 'hydraulic diameter', 

it is possible to given an intuitive explanation of the 

shape of the curves shown. 

For a given flow and porosity, a rod in a triangular array 

is surrounded by more neighbours, and hence would be expec-

ted to feel a greater fluid resistance, than an identical 

rod in a square array. This, however, is only true for 

close spacings (small porosities), where the flow passages 

for the two geometries are appreciably different. At large 

spacings (large E), when the effect of neighbouring rods 

is insignificant, and the flow passages are similar in 

shape, the curves for both arrays merge into one. It is 
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evident from figure (5.3.7) that the computed values are 

in excellent agreement with the results of Sparrow and 

Loefflers' analysis for the wide range of pitch-diameter 

ratios considered. 

A representative friction-f actor ti Reynolds-number relation 

for a triangular array with a P/D value of 1.10 is depicted 

in figure (5.3.8). Here, the conventional Reynolds-number, 

i.e. that based on De, is employed as the abscissa, and f 

is defined, as indeed for the previous figure, according to: 

f 
Tw  

(5.3.22) 

5.3.3.2 	Heat transfer  

(1) Uniform wall heat flux in all directions (Boundary  
condition A) is:- 

The heat-transfer characteristics of the flow have been cal-

culated with the present numerical procedure for both 

developing and fully-developed heat-transfer conditions. 

Figure (5.3.9) illustrates the development of the heat 

transfer rate in the entrance region of a triangular array 

for three different rod spacings. Fully-developed hydro-

dynamic conditions and a uniform temperature profile at 

z = 0 have been assumed. The Nusselt numbers are defined 

according to: 

Nu h De 
kL  (5.3.23)1 

where E is the peripherally-averaged heat-transfer coefficient 
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between the heated rod surface and the moving fluid, and 

De  is defined by equation (5.3.1). As was observed in the 

developing-flow calculations, the smaller the value of the 

pitch-diameter ratio the greater is the length of the thermal 

entrance region. For example, for the rod array with P/D = 

1.20, the Nusselt number reaches its constant fully-developed 

value after an entrance length of about sixty equivalent 

hydraulic diameters; while for the rod array with P/D = 1.05, 

more than 100 equivalent diameters are required before the 

fully-developed value is attained. 

Figure (5.3.10) shows the development of the average wall 

temperature Tw  and the mean fluid temperature Tm  along the 

length of the rod arranged in an array with P/D = 1.05. An 

arbitrary constant heat flux has been specified. Tm  in-

creases linearly from the entrance, as expected, while Tw  

rises rapidly at first and then°gradually slows down to a 

rate of increase equal to that of Tm. It is when this identity 

of longitudinal gradient has been reached that 'fully-developed 

heat transfer' is said to have been attained. 

The fully-developed values of Nusselt number have been cata-

logued in Table 5.3.1 for a wide range of pitch-diameter 

ratios. Also shown, for purposes of comparison, are the 

analytical solutions of Dwyer and Barry (1970). The agree-

ment between the two sets of calculated Nusselt numbers is 

good. The Nusselt numbers corresponding to a square pattern 

of rods have also been computed, and are presented in figure 

(5.3.11). No other analysis of this geometry is currently 

available for comparison. 
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Table  

P/D Nu Nu(Analy.tical.) 

1.03 0.58 0.58 

1.05 1.06 1.06 

1.07 1.72 1.70 

1.10 2.96 2.94 

1.20 6.95 6.90 

1.30 9.12 9.03 

1.50 11.28 11.22 

1.80 13.75 13.66 

2.00 15.38 15.26 

A greater insight into the physical processes involved is 

offered by the investigation of the behaviour of the average 

heat-transfer coefficient E. Figure (5.3.12) indicates the 

variation of the H/kL  over a wide range of pitch-diameter 

ratios. For large spacings, h decreases with increasing values 

of P/D, because the heat flow through the coolant is wholly 

in the radial direction. At very close spacings, however, 

circumferential heat transfer becomes dominant; hence, in this 

range of P/D ratio, h increase with an increase in the P/D 

ratio, all else being equal. The result is that the rod-

average heat-transfer coefficient passes through a maximum 

as the value of P/D is varied over a wide range. From the 

figure, it is seen that the maximum value of h occurs at a 

P/D ratio of about 1.20; this is in accord with Dwyer and 

Berry's conclusions. 
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Another effect of practical importance is the variation of 

the local temperature around the surface of the rod. This 

variation is shown in figure (5.3.13); the ordinate represents 

a dimensionless temperature difference which is actually the 

reciprocal of the local Nusselt number. As anticipated on 

physical grounds, the peak temperature occurs at e = 0 deg., 

which is the location of the smallest open area for flow. 

For the situation corresponding to P/D = 1.05 there is a small 

region (between e = 28 degrees and 6 = 30 degrees) where the 

surface temperature is slightly less than the bulk temperature 

of the coolant. This small circumferential region of nega-

tive values of(TW  - Tm) grows as the P/D ratio is further 

diminished. 

Once again agreement between the present wall temperature pre-

dictions and those of Dwyer and Berry (1970) is seen to be 

excellent. 

(ii) Uniform wall heat flux in axial direction and uniform 
wall temperature in the circumferential direction  
(Boundary condition B)  

This boundary condition corresponds to the case of uniform 

internal heat generation in a fuel rod encased in a cladding 

of high thermal conductivity. Once again, the overall heat-

transfer performance is described in terms of the rod-average 

Nusselt number, defined according to equation (5.3.23) and 

tabulated below. Shown alongside are the analytical solutions 

of Sparrow, Loeffler and Hubbard (1961), which were checked 

and extended over a wider P/D range by Dwyer and Berry (1970). 
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All values in the table are for fully-developed heat transfer 

in triangular arrays. 

Table 5'.3.2 

P/D Nu Nu (Analytical) 

1.03 2.11 2.14 
1.05 2.79 2.82 

1.10 4.58 4.62 

1.20 7.44 7.48 

1.30 9.10 9.19 

1.50 11.20 11.26 

1.80 13.48 13.68 

The two sets of computations are in good agreement, which 

attests to the accuracy of both calculation methods. A com-

parison between Table (5.3.2) and table (5.3.1) reveals 

that for P/D ratios greater than about 1.30, the distinction 

between the cases of peripherally uniform temperature and 

peripherally uniform heat flux disappears. 

Since the velocity distribution varies with angular position 

(figure 5.3.3) and the wall temperature is prescribed to be 

independent of angle, it is evident that there is a peripheral 

variation in the local heat transfer rate Q.  In figure 
• " 

(5.3.4), Qw, non-dimensionalized with respect - to -the average 

value, is shown as a function of peripheral location for 

three different rod spacings. For open spacings (P/D > 1.50) 

the heat transfer is essentially constant around the rod 

circumference. For closer spacings, however, the trend of 

the velocity profile towards greater asymmetry is 
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accompanied by an increasing non-uniformity in the heat 

transfer rate. 

(iii) Uniform wall t 
Condition 

erature in all directions (Boundar 

 

    

Although this heating constraint is not of any interest to 

the heat-transfer specialist working with reactor fuel ele-

ments, it does arise in the operation of some steam condensor 

units. Calculated average Nusselt numbers for fully-developed 

heat transfer in triangular arrays are tabulated below in 

Table 5.3.3, for some representative P/D ratios. No other 

treatment of this boundary condition exists in the relevant 

heat-transfer literature. 

Table 5.3.3 

P/D Nu 

1.05 2.03 

1.10 3.28 

1.20 5.88 

1.30 7.94 

1.50 10.92 

1.80 13.60 

5.4 	CLOSURE 

In this chapter, the finite-difference equations formulated 

for the non-orthogonal coordinate mesh have been successfully 

tested in circular, elliptic and triangular duct flows with 

heat transfer under laminar conditions. The procedure has 

also been applied to the prediction of laminar flow and heat 



-143- 

transfer in rod bundles for both triangular and square 

patterns. The universality of the method has been demon-

strated by investigating three different thermal boundary 

conditions for the case of the equilateral-triangular array. 

In all cases, the computed local velocity field, wall shear-

stress distributions, friction-factors, wall temperature 

variations et cetera have been compared with published results 

obtained via earlier analytical methods; and the agreement was 

found to be very good. Moreover, the superiority of the pre-

sent method over such analytical techniques is clearly seen 

in the ability of the former to predict situations - such 

as the entrance flow region and the fully-developed heat 

transfer performance of square arrays - for which neither 

experimental data nor analytical results are currently 

available. 
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CHAPTER 6 

PREDICTION OF TURBULENT FLOW IN EQUILATERAL-TRIANGULAR 

DUCTS 

INTRODUCTION  

Objectives of the study  

The validation of the non-orthogonal finite-difference 

formulation developed in this thesis has been described 

in the preceding chapter for the case of laminar flow and 

heat transfer in a number of non-circular ducts. In the 

present chapter, attention is focussed on the fully-

developed turbulent flow in a straight duct with a cross-

sectional shape of an equilateral triangle. Predictions 

have been made of the flow behaviour in such a duct with 

the aid of the ktie turbulence model and the Launder-Ying 

algebraic stress formulation described in chapter 3. 

Three motivations for the present study may be identified. 

Firstly, owing to its helical nature, the turbulent flow 

in an equilateral-triangular duct is of much interest to 

the turbulence investigator. This helical motion is 

caused by secondary currents which arise in the plane 

normal to the duct walls owing to the asymmetry of the 

cross-section. The capability of a two-equation model 
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of turbulence, in conjunction with the Launder-Ying 

algebraic stress model, to correctly predict such motions 

needs to be demonstrated. Secondly, the asymmetric duct 

geometry constitutes a rigorous test of the accuracy and 

utility of the 'non-orthogonal' calculation procedure 

presented earlier. This geometry, moreover, may be seen 

as a rough approximation to an equilateral-triangular 

array of rods with a pitch-diameter ratio of unity. Thirdly, 

a detailed experimental investigation of the turbulent flow 

characteristics in such a duct has been performed recently 

by Aly, Tripp and Gerrard (1978); consequently, the predic-

tions of the present model with respect to the mean velo-

city field, turbulent kinetic energy, wall shear-stress 

distribution etc. may be carefully assessed against the 

experimental results reported. 

6.1.2 	Review of previous work  

Although square and rectangular ducts have been studied 

most extensively with both experimental and analytical 

techniques, similar studies for turbulent flow in trian-

gular ducts are severely limited. Nikuradse (1930), 

following his pioneering investigations of square duct 

flow, observed that lines of constant mean velocity (iso-

vels) in triangular ducts tended to bulge towards the 

corners, and concluded that secondary motions analogous 

to those existing in square ducts were present. His con-

clusions were confirmed by flow visualization. Cremers 

and Eckert (1962) measured mean axial velocities and five 
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Reynolds stresses in an isosceles triangular duct with 

an apex angle of 11.5°  at a Reynolds number of 10900. 

They reported a lack of direct evidence for the existence 

of secondary flows, although contour plots of axial velo-

city fluctuations suggested the presence of secondary 

flows near the base. Carlson. and Irvine (1961) investi-

gated the pressure drop in acute-angled isosceles triangles 

and concluded that the friction-factors in these ducts 

were over-predicted by the Blasius. equation by as much as 

twenty per cent. As in the case of a square duct, the 

'equivalent hydraulic diameter' concept was clearly inade-

quate. 

The first theoretical treatment of triangular ducts was 

that of Deissler and Taylor (1959) who applied a tedious 

semi-graphical procedure developed for non-circular duct 

shapes. No allowance was made for secondary flow. Kokorev 

et al. (1971) combined an experimental analysis of square 

duct flow with a theoretical estimate of the wall shear 

stress distribution is an isosceles triangular duct with 

a vortex angle of 20°. They assumed a universal velocity 

profile to prevail normal to the channel walls and a 

secondary flow was prescribed through the square duct 

results. Gerrard (1974) applied a finite-element technique 

to predict the axial velocity contours in an equilateral-

triangular duct; the Reynolds stresses were represented 

by way of an eddy viscosity of the Van Driest type. Owing 

to the lack of experimental data as input, secondary flows 

were not taken into account. 
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Recently a joint experimental and analytical investigation 

of the turbulent flow in an equilateral triangular duct 

was undertaken by Aly, Trapp and Gerrard (1978). The 

experimental study was performed with air flowing through 

a duct of 12.7 cm sides, over a Reynolds number range of 

53000 to 107300. Mean axial velocity and wall shear stress 

measurements at the highest Reynolds number were made with 

a large Pitot tube used in conjunction with a Betz projec-

tion manometer; while a Fuess manometer and a smaller Pitot 

probe was used at the lower Reynolds numbers. They found 

that friction factors, based on the equivalent hydraulic 

diameter, were about 6% lower than for pipe flow. Turbu-

lence measurements were made with the use of constant-

temperature linearized hot-wire anemometry. Secondary 

velocities were measured with both X-array probes and a 

rotatable miniature 45°  slanting probe. The observed se-

condary flow pattern consisted of six counter-rotating 

cells bounded by the corner bisectors of the duct. For 

each cell, the circulation was from the central core region 

to the corner via the corner-bisector, with fluid returning 

to the core along the wall. 

Aly et al. (1978) also employed a computational technique, 

based on the general elliptic finite-difference procedure 

of Gosman et al. (1968) and the Reynolds stress representa-

tion of Launder and Ying, to predict the flow corresponding 

to the experimental conditions investigated. The continuity 

and momentum equations were reduced to an equation in terms 

of the vorticity and the stream-function. A fine numerical 
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grid based on a cartesian coordinate system was used, and 

the turbulence length-scale distribution required to 'close' 

the governing equations was prescribed from the geometric 

formula suggested by Buleev (1963). The necessity of 

specifying a length-scale as input is an inherent drawback 

of this method. Moreover, the values of the constants 

appearing in the Launder-Ying formulation (see section 3.9) 

were inexplicably altered by the authors. The resulting 

predictions were in satisfactory agreement with their 

experimental data. 

The calculations to be presented in the following pages 

were initiated independently of any knowledge regarding 

the work of Aly et al. The high-Reynolds-number k" E 

turbulence model described in section (3.8) was used in 

conjunction with the algebraic stress formulation of 

Launder and Ying (section 3.7); the values of the constants 

employed were those given earlier in section (3.9). 

6.2 	COMPUTATIONAL DETAILS  

6.2.1 	Calculation domain  

Owing to the symmetry of the duct about its corner bisec-

tors, it was only necessary to consider the flow domain 

shown cross-hatched in figure (6.2.1(a)). The entire 

triangular duct comprises six such domains of identical 

shape and size. The main flow direction is normal to the 

plane of the paper. 

The non-orthogonal grid developed and described earlier in 
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(a) 
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(b ) 

FIGURE 6.2.1: (a.) EQUILATERAL-TRIANGULAR DUCT 

(b) COMPUTATIONAL GRID 
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this thesis was employed to span the above flow domain 

in the manner indicated in figure (6.2.1(b)). In this 

case, the family of n = constant lines consists of straight 

lines running parallel to each other and to the wall of 

the duct. The = constant grid lines emanate radially 

from the origin 0, which is the centroid of the triangular 

cross-section. The intersection of the coordinate lines 

serve to define the grid nodes at which the main variables 

are stored in the finite- difference procedure. 

The boundaries of the calculation domain are mathematically 

defined as follows: The South boundary consists of a cir-

cular arc of infinitesimal radius, the East and West 

boundaries are symmetry planes across which the flux of 

any variable is zero; while the North boundary is a sta-

tionary half-wall of the duct at which all momenta are 

destroyed. 

6.2.2 	Equations solved  

The equations solved comprised the continuity and momentum 

equations (3.4.13) to (3.4.16), and the equations (3.8.6) 

and (3.8.7), together with the auxiliary relations (3.7.11) 

to (3.7.15) for the turbulence quantities. The values of 

the 'turbulence model' constants given in Table (3.9.1) 

of section (3.9) were used without modification. Some 

calculations were also performed in which the Reynolds-

stress terms appearing in the u and v equations were repre-

sented via an isotropic turbulent viscosity; in these 
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cases, the relevant momentum equations solved were (B.2) 

to (B.4). The solution scheme which was described in 

detail in chapter 4 was utilized in the solution of these 

equations. 

6.2.3 	Inlet conditions  

The computations to be presented in the following pages 

were performed in two stages. In the first stage, the 

fully-developed flow field was obtained for the case when 

the u and v equations were solved via the conventional 

turbulent viscosity hypothesis, i.e. the secondary motion 

was neglected. This converged solution was subsequently 

employed as input for the calculations in which the formu-

lation of Launder and Ying (1973) was used to represent 

the stress terms in the cross-stream momentum equations. 

Consequently, it is only necessary to specify here the 

inlet information provided for the first state of the cal-

culation. 

The initial cross-stream velocities were set to zero, and 

a uniform w-profile was assumed to prevail over the duct 

cross-section. 

Initial distributions for the turbulent kinetic energy and 

the dissipation rate are generally specified from a know-

ledge of the turbulence at the inlet in the flow situation 

under study. However, since no such information exists 

in the present case, 'likely' conditions had to be estimated. 

Fortunately, the predictions are not very sensitive to these 
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initial guesses. The following inlet profiles were pres-

cribed for the turbulent kinetic energy and for the tur-

bulence length-scale: 

k 	= 	0.02 WIN 	 (6.2.1) 

2, 	= 	0.07 Dg 	 (6.2.2) 

where WIN is the uniform inlet velocity and Dg is the 

equivalent hydraulic diameter of the duct. The constant 

in equation (6.2.2) was varied in the range 0.07-0.40 and 

hardly any change in the predicted flow variables was 

detected at distances more than thirty equivalent-diame-

ters downstream. 

6.2.4 	Boundary conditions  

As mentioned in (6.2.1), the east and west boundaries of 

the flow domain are planes of symmetry, so that: 

1 34  Gr 	_ 
3 AO ~ Ar 3n 

0 (6.2.3) 

for any variable cp. Also, the angular velocity 	u (and, 

therefore, the convective flux of 0 is zero at both these 

boundaries. At the south boundary (an infinitesimal arc), 

1 3i _ 
Ar 3n 

0 	 (6.2.4) 

The manner in which these constraints were incorporated 

into the finite-difference solution scheme was described 

in section (4.5.1). 
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At the wall of the duct, the velocities and the kinetic 

energy of turbulence are zero. The "wall-function" 

approach outlined in section (4.5.2) was employed to deal 

with the steep property variations in the region. The 

assumptions of a linear length-scale variation and the 

proportionality of the wall shear to the turbulent energy 

were also introduced in the manner described in (4.5.2). 

The assumptions made in the derivation of the Reynolds-

stress expressions (equations (3.7.4) to (3.7.8)) are not 

valid in the region close to a wall. In the absence of 

any reliable method of calculating these terms in the 

vicinity of a wall, the practice was adopted here of 

simply neglecting these terms altogether for the near-wall 

control cells for the u-equation, and introducing the 

effect of the wall through the logarithmic wall function. 

5.2.5 	Grid and accuracy  

Computations were performed with an initial axial forward 

step length of 0.01 DH, which was subsequently expanded 

by a factor of 1.1 until a maximum value 0.25 DH  was reached. 

Fully-developed conditions were defined to have been 

attained when the velocities and turbulent quantities were 

consistant to within one per cent over an axial separation 

of ten equivalent diameters. 

In the lateral directions, a non-uniform mesh comprising 

20x20 nodes was employed. The numerical accuracy of the 

solutions obtained were checked by comparison with the 
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results procured with a 30x30 grid. The effect of grid 

size on the axial-velocity profile is depicted in figure 

(6.2.2). The upper figure represents the velocity distri-

bution (normalized by•the bulk velocity) along the mid-wall 

bisector, while the lower figure indicates the velocity 

profile along the corner bisector of the duct. It is 

seen that the use of a 30x30 grid yields values that are 

within one per cent of those obtained with the 20x20 grid. 

Consequently, for reasons of economy, the latter grid 

distribution was adopted in the present computations. It 

is worth noting, however, that the magnitudes of the cross-

stream velocities proved to be more sensitive to grid size 

than either the axial velocities or the turbulence quanti-

ties; maximum variations of about eight per cent were 

observed in the former when the finer grid was employed. 

In the case of the 20x20 grid, 2-3 iterations per step 

were required in the developing region of the flow in 

order to secure convergence of the results. Solution of 

the pressure-correction equation was relatively slow: 15-25 

double sweeps of the TDMA were found to be necessary for 

satisfactory convergence, whereas just one double sweep 

sufficed for the other equations. 

6.3 	RESULTS AND DISCUSSION  

6.3.1 	Secondary velocities  

Figure (6.3.1) is a qualitative representative of the pre-

dicted secondary flow pattern in the duct cross-section. 
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FIGURE 6.2.2: GRID-INDEPENDENCE TESTS FOR AXIAL VELOCITY IN 
EQUILATERAL-TRIANGULAR DUCT 
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FIGURE 6.3.1: PREDICTED SECONDARY FLOW PATTERN 

FIGURE 6.3.2: COMPARISON OF PREDICTED AND MEASURED 
X-DIRECTION VELOCITY, Re = 53000 
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In accordance with the observations of Nikaradse (1930) 

and Aly et al. (1978), it consists of a single cell of 

anti-clockwise rotation. High-momentum fluid from the 

centre of the duct is transported to the corner via a 

path adjacent to the corner bisector and returns along 

the wall. 

The maximum secondary velocities occur in the return flow 

along the wall. This is indicated in figure (6.3.2), in 

which the resultant velocity ux  parallel to the duct wall 

(non-dimensionalized with respect to the average friction 

velocity Ty is plotted along different vertical planes. 

The circular points represent the measurements of Aly et 

al. which were made with both X-probes and a rotatable 

miniature 45°  slanting probe. The full curves are the 

present author's predictions, which were obtained by 

interpolation amongst the cross-stream velocities computed 

and stored at the finite-difference grid locations. x/L 

represents the non-dimensional distance along the wall, 

measured from the mid-wall bisector, and y/H is the rela-

tive distance normal to the wall. 

It is seen that the predicted magnitudes of ux/uT  are in 

good agreement with the experimental data except in the 

region close to the corner. The maximum value of ux  was 

calculated to be about 2.2% of the bulk velocity in the 

duct; this was in contrast with the 1.5% determined by 

Aly et al. At least part of this discrepancy is attributable 

to the interpolation errors caused by the steep velocity 
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variations in the corner region. However, the influence 

of the wall on the experimental probes would almost cer-

tainly have produced a deterioration in the measurement 

accuracy, and thus the actual magnitudes of the secondary 

velocities close to the wall - and especially in the cor-

ner of the duct - are subject to much uncertainty. 

6.3.2 	Local wall shear stress  

The calculated distribution of the wall shear stress 

around the periphery of the duct is shown in figure (6.3.3),' 

together with the measurements of Aly, Trapp and Gerrard 

(1978) corresponding to two different Reynolds numbers. 

The ordinate represents the local value of the shear stress 

at any position a distance x from the centre of the duct 

wall, normalized by the averaged value along the length 

of the wall. 

Also shown in the figure is the eurve obtained when no 

allowance is made for the influence of secondary flow, i.e. 

when an isotropic turbulent viscosity is employed to model 

the turbulent-stress terms in the cross-stream momentum 

equations. In this case u and v tend to zero in the fully-

developed state, and the shear stress decreases smoothly 

from its peak value at the mid-wall towards the corner of 

the duct. In the latter region the shear stress is under-

estimated by as much as twenty per cent. There is very 

little dependence of the measured shear-stress distribution 

on the Reynolds number, in the range investigated by Aly et 

al. Clearly, the effect of secondary flow is to equalize 
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to an appreciable degree the shear stress around the duct 

periphery. 

Figure (6.3.4) compares the predicted shear-stress dis-

tribution with that computed by Aly et al. by way of an 

elliptic finite-difference scheme and a prescribed turbu-

lence length-scale. The latter approach predicts a pro-

file in which the peak value of the shear is displaced 

towards the corner, but not quite as far as for the square 

duct case, for which investigators have reported a maximum 

at x/L = 0.5 (see Launder and Ying (1973), Ramachandra and 

Spalding (1976)). However, the predictions obtained with 

the present method involving the knie turbulence model indi-

cate a more flattened distribution in which the peak is 

barely perceptible. This is more in accord with the measured 

distribution of Aly et al, as is evident from the figure. 

The shear stress is over-estimated near the corner of the 

duct; this may be due to increased anisotropy of the tur-

bulence dissipation in this region, which invalidates some 

of the assumptions inherent in the model. However, agree-

ment with the experimental data is very satisfactory over 

much of the duct periphery. Moreover, the use of the knie 

model has obviated the need to guess a suitable length-scale, 

of the kind necessarily postulated by both Launder and Ying 

(1973) and Aly et al. 

6.3.3 	Mean axial velocities  

Mean axial velocities in the equilateral--triangular duct 

were measured by Aly et al. with the aid of Pitot tubes, 
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FIGURE 6.3.5: AXIAL-VELOCITY CONTOURS IN EQUILATERAL 
TRIANGULAR DUCT (Re = 53000) 

FIGURE 6.3.6: AXIAL-VELOCITY CONTOURS IN EQUILATERAL 
TRIANGULAR DUCT (Re = 53000) 
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and depicted in the form of plots of lines of constant 

velocity (isovels). One such plot has been reproduced 

in figure (6.3.5), in which the contour levels have been 

normalized by the bulk velocity. It was estimated that 

the measured velocities were accurate to within 1%, while 

the estimated accuracy of the bulk velocity (obtained by 

numerical integration of the point velocities over the 

duct cross-section) was ±2%.  Also shown in figure (6.3.5) 

is the pattern predicted by Gerrard (1974) with a finite-

element technique that neglected the presence of secondary 

flow. The distortion of the isovels produced by the secon-

dary currents is appreciable. The latter tend to diminish 

the axial velocity in the central regions of the duct and 

to increase the velocity in the corner. 

The isovel plots obtained with the present method have 

been superimposed on the experimental plot in figure (6.3.6). 

The influence of the secondary flow on the axial velocities 

is well predicted: the computed and measured distributions 

are nearly identical, except for small discrepancies near 

the corner-bisector and the duct centreline. 

Figure (6.3.7) represents a similar plot for a higher 

Reynolds-number flow. There is a minor dependence of 

the distribution on the Reynolds number:, the normalized 

centreline velocity is decreased as the value of Re in-

creases. Once again, the agreement between the predicted 

contours and the measurements is good. 

6.3.4 	Turbulent kinetic energy  

Aly et al. have presented measurements of the mean turbulent 
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kinetic energy in a triangular duct in the form of contour 

plots of k/ūT, where ūT  is the average friction velocity. 

Such a plot is shown in figure (6.3.8) for a Reynolds-

number of 53000. Shown alongside is the k-distribution 

predicted via the present method. In accordance with ob-

servations in square ducts (Launder and Ying (1973)), the 

kinetic energy profile is more strongly affected by the 

secondary flow than either the axial velocity or the wall 

shear stress. 

The calculated distribution of turbulent kinetic energy 

along the mid-wall bisector of the duct (the west boundary 

of the calculation domain, see figure 6.2.1(b)) is compared 

with the experimental points of Aly et al. in figure (6.3.9). 

As usual, the k values are greatest near the wall (y=0) 

where turbulence is generated, and lowest near the duct 

centreline. Agreement between prediction and experiment 

is good. 

6.3.5 	Normal stresses  

The experimental values of turbulent -kinetic energy described 

above were derived from measurements of the individual tur-

bulence intensities u'2, V'2  and w'2  by means of hot-wire 

probes. Distributions of u'2  and v'2  along the mid-wall 

bisector of the duct are depicted in figures (6.3.11) and 

(6.3.12) respectively. The full curves shown in these 

figures represent the distributions calculated with the 

present method based on the Launder-Ying formulation. Aly 

et al. have not presented their own predictions of these 
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normal-stress profiles. There is reasonable agreement 

between the present calculations and the experimental 

data, especially for the velocity fluctuations parallel 

to the wall (u'2). The latter are seen to exceed those 

normal to the wall, although the differences in magnitude 

diminish and eventually disappear as the duct centre is 

reached. 

6.3.6 	Friction-factors  

The dependence of the duct-friction-factor on the Reynolds-

number was investigated, and the characteristic curve 

obtained is shown in figure (6.3.10), along with the 

values determined experimentally by Aly et al. for the 

three Reynolds numbers considered. The predicted friction-

factors deviate by a maximum of about 3% from the experi-

mental values; this, however, is comparable to the estima-

ted accuracy of the measurements. In contrast, the values 

computed with the conventional Blasius correlation (based 

on the equivalent hydraulic diameter) lie about 8% above 

the experimental points. 

6.4 	CLOSURE 

The present numerical procedure, incorporating the two- 

.equation ktie model of turbulence and the Launder-Ying 
r 

formulation for the Reynolds stresses, has been successfully 

applied to the prediction of fully-developed flow in an 

equilateral-triangular duct. The secondary flow pattern 

has been correctly predicted, although the, magnitude of 
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the secondary velocities close to the wall are slightly 

overestimated in comparison with the experimental data of 

Aly, Trapp and Gerrard (1978). The computed distributions 

of axial velocity, wall shear stress, turbulence energy etc. 

are in good agreement with the measurements of the above 

investigators. 

The use of the ktie model has rendered unnecessary the pre-

scription of a satisfactory turbulence length-scale, of the 

kind necessarily made by Aly et al. in the theoretical part 

of their investigation. Also, the generality of the model 

was preserved by making no modifications to the values of 

any of the empirical constants appearing in the turbulence 

equations. Moreover, the present calculations of axial 

velocity and wall shear variations represent a significant 

improvement on the latter's results. 
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CHAPTER 7 

PREDICTION OF TURBULENT FLOW IN ROD BUNDLES 

7.1 	INTRODUCTION 

Predictions have been made of the turbulent flow and heat-

transfer phenomena in bare rod arrays of varying aspect 

ratio. The physical flow situation considered was that re-

presented by the symmetry element (shown cross-hatched) in 

figure (1.1.2) of chapter 1: this region was mathematically de- 

fined bythe (n 	z) coordinate system and a computational grid 

imposed on it in the manner depicted in figure (5.2.10). The 

turbulence was treated by utilization of the ktie model in 

conjunction with the formulation of Launder and Ying (1973) 

for the cross-stream components of the Reynolds-stress ten-

sor, as discussed in chapter 3. 

Calculations have been performed for both developing and 

fully-developed flow; however, the emphasis throughout has 

been on the prediction of situations investigated in detail 

by experimental researchers and on the comparison of the pre-

sent results with previous analyses. A review of these experi-

mental and theoretical approaches to the problem has already 

been presented in chapter 2 of this thesis. 

The rest of this chapter comprises three main sections: infor-

mation on the computational aspects of the work are given in 

some detail in section 7.2; the major part of the work, 
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consisting of the results obtained for the flow, turbulence 

structure and heat-transfer characteristics of rod bundles 

are presented and discussed in section 7.3. Finally, a brief 

summary of the achievements of this chapter is contained in 

section 7.4. 

7.2 
	

COMPUTATIONAL DETAILS  

7.2.1 
	

Calculation domain  

As mentioned above, the domain of interest in the present 

calculations is that illustrated in figure (5.2.10): the 

figure represents the nti4  cross-sectional plane of the rod 

bundle, the main flow direction being normal to this plane. 

Details of the non-orthogonal coordinate system and finite-

difference mesh have been given elsewhere (sections 3.2 and 

4.2); it is sufficient merely to recall that the family of 

= constant lines, on extrapolation, through the centre 

of the rod, while the n = constant curves vary smoothly 

from circular arcs near the rod surface to straight lines 

parallel to the outer boundary of the flow domain. 

The boundaries of the flow region are mathematically represen-

ted as follows: the South boundary is the impermeable rod 

surface at which allvelocities are zero, while the West, East 

and North boundaries are symmetry planes across which the 

fluxes of all variables are zero. For an equilateral-

triangular array, the angular width of the domain is thirty 

degrees, and for a square array, forty-five degrees. 
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7.2.2 	Equations solved 

The equations solved were the continuity and momentum equa-

tions (3.4.13) to (3.4.16), and the equations (3.8.6) and 

(3.8.7) for the turbulence variables. The algebraic relations 

(3.7.11) to (3.7.15) were used to calculate the auxiliary 

variables in the above equations. For the heat transfer 

predictions, equation (3.5.8) was also solved. The values 

of the 'turbulence-model' constants given in table 3.9.1 of 

section 3.9 were employed without modification. Some results 

were obtained with the Reynolds-stress terms in the cross-

stream momentum equations represented via an isotropic tur-

bulent viscosity; in this case, the relevant momentum equa-

tions solved were (B.2) to (B.4). The marching-integration 

technique described in section (4.4) was utilized-in the 

solution of these equations. 

	

7.2.3 	Inlet conditions  

At the entrance to the duct (z=0), zero cross-stream velocities 

and a uniform axial-velocity profile were prescribed. In the 

absence of any information regarding the distribution of the 

turbulence quantities k and e at the inlet, initial values 

were estimated. Fortunately, the fully-developed solutions 

and much of the developing flow field is not very sensitive 

to these initial guesses. The following uniform profiles 

were specified: 

k = 0.02 WIN 

= 0.07 De  
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where WIN  is the (constant) axial velocity at the inlet, and 

De  the equivalent hydraulic diameter of the flow domain, 

calculated from either equation (5.3.1) or (5.3.2). 

In the heat transfer predictions, a constant temperature 

distribution was specified at the inlet and the fully-developed 

hydrodynamic field introduced as input to the temperature equa-

tion, which was solved separately. 

7.2.4 	Boundary conditions 

At the radial (east and west) boundaries of the computational 

domain, the normal fluxes of all variables vanish. 

Hence, 

1 —  G 3$=0 roe a 	Ar an (7.2.3) 

Moreover, the circumferential velocity u (and, therefore, 

the convection of (0) is zero at both these boundaries. 

Similarly, the flux of normal to the north boundary (the 

maximum-velocity line) is also zero: 

(1+G2)
acp 	G 

Lt.
= O 

Ar 	an — rAG ag 
(7.2.4) 

The manner in which these constraints were represented in 

the finite-difference solution scheme was described in section 

4.5.1 

At the wall, the velocities and turbulent kinetic energy are 

zero. The "wall-function" approach, presented in section 
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4.5.2, was adopted to deal with the steep property variations 

in this region. The assumptions of a linear length-scale 

distribution and the proportionality of the wall shear stress 

to the turbulent energy were used in the manner discussed 

in 4.5.2. 

The assumptions involved in the derivation of the Reynolds-

stress formulations (equations 3.7.11 - 3.7.15) are, strictly, 

invalid in the vicinity of a wall. In the absence of any 

reliable method of calculating these terms close to the wall, 

the practice was adopted (as in the triangular-duct predictions) 

of simply neglecting these terms altogether in the circumferen-

tial-velocity equation, and of introducing the influence of 

the wall via the logarithmic wall function . 

7.2.5 	Grid and accuracy  

Computations were performed with an initial forward step length 

of 0.01 De, which was gradually expanded by a factor of ten 

per cent to a constant value of 0.50 De. Fully-developed 

hydrodynamic conditions were assumed to have been attained 

where the value of each independent flow variable was constant 

to within one per cent over an axial separation of ten hydrau-

lic diameters. For the case of a uniform wall heat flux, 

fully-developed heat transfer was defined to occur with the 

invariance of (Tw  - Tm) with longitudinal distance. 

In the cross-stream plane of the duct, a non-uniform mesh 

comprising 21x21 nodes was employed. The grid-independence 

of the resulting solutions was confirmed by experimentation 

with finer meshes. Typical tests are illustrated in figures 



-175- 

(6.0) 

(5.0) 

(4.0) 

(3.0 

(2.0) 

(1.0) 
5.0 .r 

r 
i 
! 

(0) 
4.0 

3.0 

2.0 

1.0 

0 	0.2 	0.4 	0.6 	0.8 	. 1.0 

Y = Y 

FIGURE 7.2.1: GRID-INDEPENDENCE TESTS FOR VELOCITY DISTRIBUTION 
(P/D = 1.123, Re = 27000). 

30x30 grid 

X 	21x21 grid 

_. — 14x14 grid 

I 



(0.2) 

(0.6) 

(0.4) 
1.2 

1.0 

0.6 

0.4 

0.2 

(1.0)—  

(0.8)—  

-176- 

0.2 	0.4 	0.6 	0.8 	1.0 

Y/Y 

FIGURE 7.2.2: GRID-INDEPENDENCE TESTS FOR KINETIC ENERGY 
DISTRIBUTION (P/D = 1.123, Re = 27000). 
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(7.2.1) and (7.2.2). The former figure shows the distributions 

of the fully-developed axial velocity normal to the rod sur-

face, for both the west (0 = 0 deg.) and east (0 = 30 deg.) 

boundaries of an equilateral-triangular array with aspect 

ratio (P/D) 1.123 and a Reynods number of 27000 . These flow 

conditions correspond to the experimental flow situation of 

Carajilescov and Todreas (1976) . The abscissa represents 

the non-dimensional distance from the wall, y/y, where ÿ 

is the radial distance between the wall and the maximum-

velocity surface. It is seen that the values of w predicted 

with the aid of the 21x21 mesh are indistinguishable from 

the results obtained with the 30x30 mesh which contains more 

than twice as many nodes as the former; while, from figure 

(7.2.2), the predicted values of turbulent kinetic energy 

agree to within one per cent. It is worth noting that the 

magnitudes of the computed secondary velocities were more 

sensitive to grid dimensions: differences of up to five per 

cent between the velocities predicted by both grids were 

observed. 

In the developing regime, 3-4 iterations per axial step were 

required to obtain well-converged results; however, the 

fully-developed solutions were independent of the number of 

iterations employed. 15-25 sweeps of the Tri-Diagonal Matrix 

algorithm (TDMA) were necessary for the solution of the 

pressure-correction equation before satisfactory convergence 

was achieved, whereas just one sweep sufficed for the other 

equations. 
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Computing costs were moderate: a typical calculation of the 

full hydrodynamic field with a 21x21 grid (no iterations) 

required 4 mins. of computer time and 30K storage on a CDC 

6600 machine. 

7.3 	RESULTS AND DISCUSSION  

7.3.1 	Developing region  

Although no experimental information on the developing flow 

regime in bare rod bundles has been reported to date, some 

representative results obtained with the aid of the present 

numerical technique have been included for interest. Figure 

(7.3.1) depicts the variation of mean pressure with longitu-

dinal distance in three different rod arrays at identical 

Reynolds numbers. The ordinate represents the pressure at 

a given location (with reference to PIN,  the pressure at the 

entrance), divided by the 'dynamic pressure' (ipw2); while 

the abscissa gives the axial location downstream in terms of 

the equivalent hydraulic diameter. It is seen that, as in 

the laminar flow, the greater the relative "openness" of 

the geometry to the flow, the smaller is the pressure-drop 

required to overcome friction in the duct. However, the 

development length is not as strong a function of the P/D 

ratio as it is in the laminar case. In all three arrays 

represented in figure (7.3.1), the flow attained in fully-

developed state after 90-120 equivalent diameters. 

The manner in which the axial-velocity profile develops 

in the entrance region is illustrated by figure (7.3.2). The 
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geometry and Reynolds number represented are those corres-

ponding to the investigation of Carajilescov and Todreas 

(1976). Distributions along the radial boundaries of the 

domain at various axial stations are indicated in the figure. 

Momentum is transferred from the gap region (e = 0°) around 

the periphery of the rod towards the east boundary (e = 30°) 

as the flow develops. However, some momentum is also con-

vected in the opposite direction by the build-up of secondary 

flow in the cross-stream plane of the channel. The fully-

developed axial and secondary flow field, together with the 

turbulence and heat-transfer characteristic of the flow, 

are described in the following sections. 

7.3.2 	Mean 	axial-velocity distributions 

Figures (7.3.3(a)), (7.3.3(b)), (7.3.4(a)) and (7.3.4(b)) 

show the axial-velocity profiles along lines normal to the 

rod walls for different angular locations, corresponding 

to the triangular-array geometries investigated experimen-

tally by Eifler and Nijsing (1967). The ordinate in each 

frame represents the local axial velocity normalized with 

respect to the mean velocity in the duct, and the abscissa 

represents the non-dimensional radial position y/y, where y 

is the radial distance from the wall to the maximum-velocity 

surface at the angular location O. The experimental values 

were determined by means of a Pitot tube. Uncertainties 

in the position of the latter and its influence on the flow 

close to the wall constituted the chief sources of error in 

the measurements. Eifler and Nijsing estimated a maximum 
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FIGURE 7.3.3(b): AXIAL-VELOCITY DISTRIBUTION, P/D = 1.10. 
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possible error of about 10% near the wall, and about 4% 

in the region where the profile is nearly flat. The 

present calculations are thus seen to be in very satisfac-

tory agreement with their measurements. 

Predicted axial-velocity distributions are plotted in a 

similar manner in figure (7.3.5) for comparison with the 

data of Kjellstrom (1971) for an array aspect ratio of 1.217 

and a Reynolds number of 149 000 . Agreement between the two 

sets of results is good. Also shown is the curve obtained 

by Ibragimov's (1966) semi-empirical method (section 2.3.1), 

which, apart from its other defects, did not take into account 

any secondary flow. 

The experimental measurements of Carajilescov and Todreas 

(1976) have been reproduced in figure (7.3.6), along with 

the w-profiles obtained with the present numerical procedure. 

The error bands shown represent uncertainties in the measure-

ments, and were attributed by the authors to the electronics 

associated with laser Doppler anemometry. It is clear that 

the present calculations yield values that are in quite good 

agreement with the data; the worst deviations arise in the 

gap region (0 = 0°) where the velocities are under-estimated 

by up to 4%. Carajilescov (1975) has indeed suggested that 

the velocity distribution in the gap may not have been quite 

fully-developed at the measuring station; and since the 

velocities here tend to decrease (see figure 7.3.2) with 

longitudinal distance, this could well be the reason for, 

at least, part of the discrepancy. The experimental and 
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FIGURE 7.3.6: AXIAL-VELOCITY DISTRIBUTIONS, P/D = 1.123, 
Re = 27000. 
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predicted velocity fields have also been plotted in the 

form of isovels (constant-velocity lines) and super-imposed 

on each other in figure (7.3.7). The curvature of the iso-

vels for 6 ,300  reflects the existence of secondary currents 

which move away from the wall and towards the subchannel 

symmetry (maximum-velocity) line. 

The present prediction method has also been tested against 

the experimental data of Trupp and Azard (1975). Figure 

(7.3.8) displays the peripheral variations of the axial 

velocity (non-dimensionalized through division by the bulk 

velocity) in an array with P/D equal to 1.35: the solid curves 

represent the present calculations for several fixed values 

of the radial distance, y, measured from the rod surface. 

The velocity measurements were performed with a Pitot tube 

and a differential pressure manometer, and the accuracy of 

the results was estimated by the authors to be typically 

about two per cent. The computed distributions agree very 

well with the data, although there are deviations of about 

4% near the intersection of the maximum-velocity line (y=y) 

and the radial (e=30°) boundary; a probable cause is the lack 

of exact symmetry at the y=y boundary in the experimental 

test section, which would result in the exchange of momentum 

between adjacent subchannels. Trupp and Azard report that 

comparisons were made between their velocity data and the 

prediction techniques of Buleev (1964) and Bender and Switick 

(1968) , and substantial discrepancies, especially in the gap 

region (6=00) were noted. The present method, however, has 

taken into consideration secondary flows which can convey 
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momentum into the gap, and thus succeeded in predicting the 

measured velocities. 

7.3.3 	Secondary flow  

The predicted secondary flow distribution in rod arrays was 

a complex function of the aspect ratio (P/D) and the Reynolds 

number. Figures (7.3.9(a)) and (7.3.9(b)) are qualitative 

representations of the flow patterns in triangular and square 

arrays respectively, for identical values of the P/D ratio 

and Reynolds number. The latter conditions were selected 

to correspond with those in the experimental study of 

Carajilescov and Todreas (1976). In either case, the basic. 

secondary flow pattern consists of a single cell of counter-

clockwise circulation, fluid being convected away from the 

wall along a path parallel and adjacent to the east boundary 

of the domain, and returning to the wall via the gap separa-

ting neighbouring rods. This pattern is identical to that 

postulated by Nijsing (1972), (q.v. figure 2.3.1), but is 

contrary to that predicted by Carajilescov and Todreas 

(figure 2.3.2); it is likely that the latter's calculations 

were ill-converged. 

The greatest secondary velocities were found to occur in 

the region close to the rod surface and in the flow adjacent 

to the maximum-velocity boundary of the sub channel. For 

the triangular array, the maximum velocities were about 

1.1-1.2% of the bulk velocity, while in the square array 

a maximum velocity of about 1.5% w was predicted. The 

strength of the flow, when scaled on the bulk velocity, was 
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FIGURE 7.3.9(a): SECONDARY FLOW PATTERN IN TRIANGULAR ARRAY; 
P/D = 1.123, Re = 2.7x104  

FIGURE 7.3.9(b): SECONDARY FLOW PATTERN IN SQUARE ARRAY; P/D = 
1.123, Re = 2.7x104 
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FIGURE 7.3.10(a) SECONDARY FLOW PATTERN, TRIANGULAR ARRAY; 
P/D = 1.35, Re = 60000. 

FIGURE 7.3.10(b): SECONDARY FLOW PATTERN, TRIANGULAR ARRAY; 
P/D = 1.217, Re = 270000 
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only weakly dependent on the Reynolds number, but decreased 

with increasing aspect ratio. 

In contrast with the above results, it was observed that 

for P/D values greater than about 1.20, the calculated 

secondary flow pattern was a strong function of the Reynolds 

number. Figures (7.3.10(a)) and (7.3.10(b)) show the qua-

litative flow distributions for P/D ratios of 1.35 and 1.217 

respectively. A small secondary swirl, rotating counter to 

the main loop, was found to exist very close to the gap 

separating neighbouring rods. The strength of this _swirl 

was less than the main one, but grew with increasing Reynolds 

number. For both geometries shown (and under the given 

flow conditions) the maximum velocities were about 0.6% of 

the bulk velocity in the main swirl and about 0.3% of w .in 

the smaller one. For the smaller aspect-ratio array (figure 

7.3.10(b)) this minor swirl disappeared altogether when the 

Reynolds number was reduced below about 1x105. Similar 

patterns were computed for the secondary flow field between 

rods arranged in a square pattern. 

The geometry and Reynolds number represented by figure 

(7.3.10(b)) are identical to the experimental conditions in 

the study of Kjellstrom (1971), who attempted to measure the 

distribution of the circumferential velocity u. The present 

predictions have been plotted, along with his scattered data, 

in figure (7.3.11) for three different angular locations. 

Although no definite conclusions can be drawn, the analytical 

results do follow the general trend of the data. 
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7.3.4 	Wall-shear-stress distributions  

The distribution of the local shear stress around the peri-

phery of the rod surface is of considerable interest. As 

in laminar flow (section 5.3.3.1) this variation diminishes 

with increasing aspect ratio (P/D). However, the secondary 

flows discussed above tend to greatly reduce the non-uniformity 

of the shear-stress distribution, as is demonstrated in 

figure (7.3.12). The ordinate in the figure represents the 

local wall shear stress (normalized with respect to the 

peripherally-averaged value) corresponding to any angular 

position 9. The steepest curve in the figure is that ob-

tained by the assumption of an isotropic turbulent-viscosity 

hypothesis for the turbulent stresses in the cross-stream 

momentum equations, thereby neglecting to account for secon-

dary motions. The predicted homogenizing of the shear stress 

is expected from the secondary flow distribution indicated 

in figure (7.3.9(a)). It is also seen from figure (7.3.12) 

that for the given pitch-diameter ratio the wall shear 

variation is only slightly influenced by the Reynolds number. 

The predicted wall shear stress distribution for P/D = 1.10 

is compared with the experimental curve of Subbotin et al. 

(1971) in figure (7.3.13). The agreement between the two 

is very close. Also indicated in the figure is the analy-

tical result deduced via the semi-empirical method of 

Ibragimov (1966) which is embodied in the VELVET II code 

of Bender and Magee (see section 2.3.1). 
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FIGURE 7.3.12: PERIPHERAL DISTRIBUTION OF WALL SHEAR STRESS: 
P/D = 1.10. 
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FIGURE 7.3.13: SHEAR-STRESS DISTRIBUTION: COMPARISON WITH 
EXPERIMENT, P/D = 1.10, Re = 28000. 
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Variations in the local wall shear stress about the rod 

perimeter for an aspect ratio of 1.217 have also been com-

puted, and the results are displayed in figure (7.3.14), 

where Tw .is as before, the rod-averaged shear stress. 

Comparisons are made with the results of other investigators. 

Both the data of Hall and Svenningsson (1971) and Kjellstrom 

(1971) indicate that the wall shear does not increase mono-

tically as is predicted by computational schemes that neglect 

secondary flows (e.g. Ibragimov (1966)). The profile peaks 

instead at 8 = 20°. The present calculations are in very 

favourable agreement with the experimental measurements and, 

moreover, represent an overall improvement on the predic-

tions of Carajilescov and Todreas (section 2.3.1). 

Comparison of the present results with the experimental data 

of Trapp and Azard (1975) are illustrated in figures (7.3.15) 

and (7.3.16). In the former figure, the predictions reveal 

a smooth increase of wall shear stress with angle, and de-

viate from the experimental points near the radial boundary 

(0= 300). The latter points are suspect, however, owing to 

an asymmetry effect in the test section. Otherwise, the 

agreement between the present results and the experimental 

data is good. In contrast, the method of Bender and Switick 

(1968) predicted variations in the shear stress of about 24% 

around the rod periphery for PID = 1.20. 

Measurements via a Preston tube of the shear stress variations 

for P/D = 1.35 are shown in figure (7.3.16). Maximum varia-

tions of about 4%, with a peak occurring at 8 = 18°  were 

observed. The predicted curve tends to slightly over- 
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FIGURE 7.3.17: COMPUTED PERIPHERAL DISTRIBUTION OF WALLSHEAR 
STRESS IN SQUARE ARRAY (Re = 1.2x10
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estimate the influence of secondary flow in homogenizing 

the shear stress, but agreement is within the experimental 

error. Predictions performed for aspect ratios greater 

than 1.40 indicated an essentially uniform shear-stress 

distribution for all values of the Reynolds number. The 

shear-stress variations in square arrays are similar to 

those predicted for triangular arrays; two representative 

shear-stress profiles are depicted in figure (7.3.17). 

	

7.3.5 	Friction factors  

The computed fully-developed values of the friction factors 

for pitch-diameter ratios greater than 1.1 were found to be 

higher than for flow through smooth circular tubes at the 

identical Reynolds number. The present results for P/D 

values of 1.20 and 1.35 are compared with the results of 

experimenters over the same Reynolds-number range in figure 

(7.3.18). For the smaller aspect ratio, the calculated 

friction factors lie, on average, 7% above the Blasius pre-

dictions for pipe flow, but about 4% below the mean experi-

mental data. Corresponding figures for the larger (P/D = 

1.35) array are 8% and 5% respectively. 

	

7.3.6 	Turbulent kinetic energy distributions 

Calculated turbulent kinetic energy fields have been compared 

against the limited number of experimental data available. 

One such comparison is shown in figures (7.3.19 (a) , (b)) : 

the experimental points are the hot wire measurements of 

Kjellstrom, performed in a triangular array of aspect ratio 
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1.217. The kinetic energy values have been scaled with 

respect to the local friction velocity tit, and radial 

distributions for three different azimuthal positions in 

the flow have been plotted. Agreement with the present 

predictions is excellent, except in the region approaching 

the wall, where the measuring errors are likely to be sig-

nificant owing to the influence of the wall on the probe. 

It will be observed that the turbulent energy levels in 

the outer regions of the flow are higher for 0 = 18°  than 

for the two radial boundaries. This is probably caused by 

the secondary flows which, as seen from figure (7.3.10(b)), 

convey turbulent energy from the wall where it is generated 

into the 'core', induce mixing, and then turn inward to-

wards the wall. 

In figure (7.3.20) the radial distribution of turbulent 

energy has been compared with the hot-wire measurements of 

Trupp and Azard (1975) , for a pitch-diameter ratio of 1.35. 

Here, the k-values are normalized with respect to the average 

friction velocity. As before, an angular dependence, es-

pecially in the regions far from the wall, is observed. 

Agreement between the two sets of results is very satisfactory. 

The present predictions have been compared with the experi-

mental data of Carajilescov and Todreas (1976) for a rela-

tively close rod spacing (.P/D = 1.123).  Distributions of 

the turbulent energy along the radial boundaries of the flow 

domain, and for the angular location 0 = 15°, are presented- 

in figures (7.3.21(a) , (b) and (c)) . The error bands around 
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the experimental points represent measurement uncertainties 

associated with the laser Doppler technique employed. Note 

that the kinetic energy values have been scaled by the mean - 

axial velocity in the channel. Once again, in view of the 

enhanced inaccuracies in measurements near the wall, the . 

results predicted with the present method are extremely 

favourable. 

The above results have been cast into the form of constant-

kinetic-energy contours; these are displayed in figure 

(7.3.22). The satisf actory'agreement between the predicted 

levels and the experimental profiles is evident. 

7.3.7 	Reynolds-stress distributions  

The experimental mean turbulent energy values discussed 

above were deduced from measurements of the individual tur-

bulence intensities v'2, u'2  and w'2. Typical results for 

one such component, viz. v'2, for the test section used for ' 

Trupp and Azard, are shown in figure (7.3.23). The ordinate 

is equivalent to the square root values of the radial nor-

mal stress divided by the average wall shear stresses. The 

abscissa is, as usual, the radial distance from the rod 

surface normalized by the distance to the maximum-velocity 

line (y=y). The distribution of the radial turbulent inten-

sity for fully-developed pipe flow, as determined by Laufer 

(1954), has been included for purposes of comparison. The 

latter deviates from the rod-bundle data by about twenty 

per cent. The divergence of the present predictions from 

the mean data is of the order of experimental error. 
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P/D= 1.35, Re = 60000. 
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The measured radial distributions of the shear stress pv'w' 

(generally the primary stress) along the 0 = 0°  and 0 = 30°  

boundaries of the flow cell in an array of aspect ratio 1.35 

are reproduced in figure (7.3.24) ; also shown for reference 

is the theoretical distribution for pipe flow. The mean 

data exhibit a linear trend over much of the channel, but 

lie about twenty per cent below the pipe flow profile. In 

contrast, the results obtained with the present numerical 

procedure are in good agreement with the measurements of 

Trupp and Az and . 

7.3.8 	Local heat-transfer coefficients  

Computations have been performed for the case of a uniformly 

heated triangular array of rods, and the distribution of 

the local wall 	temperature - and hence the rate of 

heat transfer - around the periphery of the rods was deter-

mined. The results of one such calculation, corresponding 

to the experimental situation investigated by Redman et al 

(1966), are displayed in figure (7.3.25). The ordinate is 

the fully-developed Stanton number at any arbitrary angular 

location 0, normalized by the peripherally-averaged .value. 

The Stanton number has been defined in the conventional 

manner, viz. 

St = h 	
- 	• ft 

Pc ir 	p cpw (Tw  - Tm  ) 
(7.3.1) 

where h represents the local heat-transfer coefficient and 

Tw  the wall temperature at the azimuthal position 0. Qw is 

the (constant) heat flux at the wall. 
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The experimental values shown in the figure were deduced 

by superposition of the measured "heat-influence functions" 

(see section 2.4.2). As expected on physical grounds, the 

least effective cooling of the surface occurs at the posi-

tion corresponding to the minimum separation between adja-

cent rods (8 = 0°) where the velocity of the coolant is a 

minimum. It is seen that the present method tends to over-

estimate the circumferential heat-transfer dependence: 

variations of ±17% in St/St about the central position 

(8 = 15°) are predicted, in contrast with the value of ±10% 

indicated by the experiments. In the case of the larger 

aspect-ratio array (P/D = 1.25) investigated by Redman et 

al, the experimental points plotted in figure (7.3.26) re-

present the scatter about the mean line St/St = 1, indicating 

an essentially uniform heat transfer rate around the rod. 

The present predictions, however, yield a variation of 

about 6% between the positions 8 = 0°  and 8 = 30°. 

The discrepancies between the predicted and measured peri-

pheral heat transfer are very probably due to finite-array 

effects which are present in any actual experimental test 

section. Enthalpy exchange by turbulent 'mixing' arises 

between adjacent subchannels that are never entirely homo-

genous. Also, 'cross-flows' can be induced which serve to 

augment the influence of the secondary motions in flattening 

the peripheral Stanton-number distributions in the array. 

Such mixing between subchannels has not been taken into 

consideration.in the present model, and so the non-uniformity 
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of the peripheral heat-transfer rate has been overestimated. 

However, the present method yields predictions that are 

very much superior to other theoretical schemes which attempt 

to calculate the heat transfer by neglecting secondary flow. 

For purposes of comparison, the results of figure (3.7.25) 

have been reproduced in figure (7.3.27), along with the 

local Stanton-number distribution calculated by the technique 

of Deissler and Taylor (see section 2.3.1) which is included 

in the paper of Redman et al. It is clear that the latter 

method grossly exaggerates the percentage variation in the 

local heat-transfer coefficient. Note also that a very 

weak dependence of this variation on the Reynolds number 

was detected by means of the present procedure: this is con-

sistent with the observations of Redman et al. 

7.3.9 	Overall Nusselt numbers  

The fully-developed mean Nusselt numbers were compared with 

the data of Redman et al and found to be underpredicted by 

about fifteen per cent. The experiments yielded an average 

value (for P/D = 1.10) that lay approximately twenty per 

cent above that calculated from the Dittus-Boelter correla-

tion for pipe flow, viz. 

Nu = 0.023 Re0'8  Pr0'4 	 (7.3.2) 

where Pr is the laminar Prandtl number of the fluid. The 

underprediction of the overall heat transfer by the present 

calculation method is in accord with the earlier discussion 

(section 7.3.8), where it was pointed out that enthalpy 
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interchange through turbulent mixing and 'cross-flow' 

between subchannels served to enhance the level of heat 

transfer in any practical test section involving a small 

number of rods. 

Predictions have also been made for a pitch-diameter ratio 

of 1.15 over the range of Reynolds number investigated by 

Sutherland and Kays (1966). The latter concluded from 

their measurements that equation (7.3.2) above gave pessi-

mistic predictions of the heat-transfer rate in triangular 

rod arrays with P/D =1.0. In the following table, the ex-

perimental values for the mean Nusselt number are compared 

with both the Dittus-Boelter correlation and the present 

computations over a relatively wide range of Reynolds number. 

Re Nu.(Exptl) Nu (Present) Nu (eqn.7.3.2) 

10 000 40 -* 31 
15 000 54 - 43 
20 000 •67 59 55 
30 000 91 82 76 
50 000 135 121 114 
70 000 176 159 150 

100 000 230 	. 209 200 
150 000 320 286 275 
200 000 400 359 347 

The values in the third column of the above table were com-

puted with a constant value of 0.85 ascribed to the 'turbulent 

footnote: The lower Reynolds numbers shown cannot be 
accurately investigated with the present turbulence model, 
and hence no attempt was made to obtain solutions in this 
range. 
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Prandtl number', at T, for temperature (section 3.5 and 

Table 3.9.1) . It was observed that the calculated Nusselt 

numbers were very sensitive to the value chosen for at T'  

generally increasing with decreasing Prandtl number. This 

is illustrated by way of figure (7.3.28) where the contents 

of the above table have been graphically represented. Also 

indicated in the figure is the prediction obtained when 

a
t ,T 

 was reduced to 0.7 in the temperature equation. In 

the latter case, the computed Nusselt numbers fall within 

the experimental uncertainty associated with the measurements 

of Sutherland and Kays. Consequently, no definite statement 

on the accuracy of the present model for heat transfer can 

be made until more reliable information converning the. 

distribution of the'turbulent Prandtl number' for tempera-

ture in rod bundles becomes available. 

An interesting observation from figure (7.3.28) is that, 

for the particular aspect ratio investigated, both the 

experimental Nusselt numbers of Sutherland and Kays and 

those predicted by the present method show' a dependence on 

the Reynolds number that is consistent with the 0.8-exponent 

in the Dittus-Boelter relation (equation 7.3.2.). 

7.4 	CLOSURE  

In this chapter, the results of calculations performed with 

the ktic model of turbulence and the Launder-Ying formulation 

for the cross-stream Reynolds stresses have been presented. 

The emphasis has been placed on the prediction of flow and 
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heat-transfer situations investigated by experimental 

workers; hence fully-developed flow in triangular arrays 

has received the greatest attention. Calculated distribu-

tions of axial velocity, wall .shear stress, pressure drop, 

turbulence intensities etc. were found to be in very favour-

able agreement with the available experimental data. A 

secondary flow pattern consisting of a single loop of anti-

clockwise rotation was predicted for smaller pitch-diameter 

ratios; at P/D values greater than about 1.20, a small 

counter loop began to form very near the gap, but became 

significant only at high Reynolds numbers. Generally, the 

strength and influence of the secondary flow field increased 

with diminishing aspect ratio. The computed levels of heat 

transfer were somewhat lower than experimental measurements, 

and the peripheral variation of the local heat-transfer 

coefficient was overestimated by a few per cent. Apart from 

deficiencies in both model and experiment, the most likely 

explanation is that finite-array effects influence the 

enthalpy exchange across subchannel boundaries more than 

they do for momentum. However, the present results repre-

sent a very appreciable improvement on other theoretical 

analyses hitherto performed. 
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CHAPTER 8 

CONCLUDING REMARKS 

8.1 	PRESENT ACHIEVEMENTS  

In conclusion, the main achievements of the research des-

cribed in this thesis may be summarized as follows:- 

a) A non-orthogonal finite-difference formulation that is, 

in principle, capable of application to three-dimensional 

flow problems in ducts of arbitrary geometry, has been 

successfully demonstrated. The major advantage of this 

approach is that, being based on a boundary-fitted coordinate 

system, it easily permits the accurate prescription of the 

conditions at the flow boundaries which generally determine 

the solution to the governing equations. This technique 

has been embodied in a three-dimensional computational pro-

cedure for parabolic flows, devised by Patankar and Spalding 

(1972). 

b) Numerical solutions have been obtained for laminar flow 

and heat transfer in infinite rod arrays arranged on both 

square and equilateral-triangular lattices. This work re-

presents the first application of finite-difference procedures 

to such problems. Wherever possible, predictions of axial 

velocities, wall shear-stress distributions, pressure drops, 

local heat-transfer coefficients, overall Nusselt numbers 

et cetera have been compared with existing analytical results; 
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very good agreement was observed. The greater flexibility 

of the present method over earlier analyses, however, has 

been illustrated by the ready accommodation of diverse wall 

heating conditions in a single analysis. Moreover, the de-

veloping flow region in these geometries? which has not been 

investigated to date, has been predicted. 

c) A two-equation (ktie) model of turbulence, in conjunction 

with the algebraic formulation for the Reynolds stresses in 

the cross-stream plane developed by Launder and Ying (1973) , 

has been employed in the calculation of the fully-developed 

flow in an equilateral-triangular duct. The secondary flow 

field and its influence on both the local and bulk parameters 

of the flow have been successfully predicted. The universa-

lity of the model was preserved by making no alterations to 

the currently accepted values of the empirical constants con-

tained within it. The Launder-Ying model has thus been 

demonstrated to be an accurate and efficient tool for the 

investigation of duct flows of interest to the engineer. 

d) The present work represents the first reported three-

dimensional analysis of the turbulent flow and heat-transfer 

behaviour in central subchannels of rod arrays. The use of 

the ktie model has obviated the need to depend on rod-bundle 

experimental input or empirical formulae in the computational 

procedure. This has been employed in conjunction with the 

algebraic shear-stress formulation of Launder and Ying (1973). 

As above, no modifications to the constants in the model were 

necessary, so that its universality was preserved. Results 
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obtained with the present procedure compare very favourably 

with available experimental data and, even in the few cases 

of relatively poor agreement, represent a significant im-

provement on other hitherto published calculations. Moreover, 

such improvements have been secured at only modest computa-

tional expense. Consequently, the present method has proved 

itself as a powerful and efficient means of obtaining fun-

damental knowledge for rod-bundle design. 

8.2 	TOPICS FOR FUTURE CONSIDERATION  

The following topics, stemming from the present work, are 

considered worthy of further investigation:- 

a) With regard to the non-orthogonal coordinate system, it 

is anticipated that when duct cross-sections of very severe 

"non-orthogonality" are considered, poor convergence - 

owing to the neglect of the extra terms in the pressure-

correction equation will arise. Consequently, future work 

involving highly "distorted" flow domains may require the 

formulation of the full pressure-correction equation and 

the adoption of a more efficient means of solution than the 

ADI technique employed here. 

b) The extension of the present method to wall and corner 

subchannels in a full rod bundle is the next logical step. 

However, there is experimental evidence that the anisotropy 

of the turbulence is even more severe here than in the cen-

tral regions of the bundle. Hence, it will probably be 

necessary to replace the present model with one that involves 
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the solution of equations (either differential or algebraic) 

for all components of the Reynolds stress. This step awaits 

further progress in the art of turbulence modelling. 

c) Detailed experimental investigations of the turbulence 

structure in rod bundles have only recently been initiated. 

Moreover, as was discussed in chapter 2, many of the reported 

investigations leave much to be desired. In the narrow re-

gions characteristic of most rod-bundle designs, the use of 

measuring probes that interfere with the flow is very un-

desirable. Consequently, the application of recent advances 

in laser-Doppler anemometry offers the greatest promise in 

the elucidation of the correct secondary flow distribution 

and turbulence structure in rod arrays. 

d) Attention was drawn in chapter 7 to the fact that the 

turbulent heat-transfer calculations were sensitive to small 

changes in the value of 6t T. More information of both a 

theoretical and an experimental nature concerning at,T  and 

the temperature "wall function" is necessary: this is especially 
true for liquid-metal flows, where much of the available in-

formation is still in a state of confusion. 

e) The present method has not been applied to the solution 

of (turbulent) rod-bundle flows at low Reynolds numbers in 

very 'tight' (i.e. P/D less than about 1.08) clusters; this 

was because of the invalidity of the turbulence model under 

such conditions. However, almost all practical rod bundles 

are designed for normal operation at relatively high Reynolds 
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numbers. Further extension of the present method to low-Re 

flows at narrow rod spacings would require the use of the 

low-Re version of the ktic model mentioned in section 3.6. 
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NOMENCLATURE  

Symbol 	 Meaning  

a 	Radius of circular pipe (fig. 5.2.1(a)) or 

semi-major axis of elliptic duct (fig. 5.2.1(b)). 

A 	Coefficients in the general finite-difference 

equation (eqns. 4.3.8, 4.3.9). 

b 	Semi-minor axis of elliptic duct (fig. 5.2.1(b)). 

B 	'Source-term' in the general finite-difference 

equation (eqns. 4.3.8, 4.3.9). 

C1, C2  

C¢1' C42 

Empirical constants appearing in transport 

equation for e. Values given in Table 3.9.1. 

Constants in Launder-Ying algebraic stress 

model (eqns. 3.7.9-3.7.10). Values given in 

Table 3.9.1. 

Cu 	Empirical constant, defined via eqn. (3.6.1). 

Cp 	Specific heat at constant pressure. 

Csec 	Constant in Nijsing's secondary-flow profile, 

eqn. (2.3.10). 

D 	Diameter of rod. 

De 	Equivalent hydraulic diameter, defined as 4 x 

flow area/wetted perimeter. 
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E Empirical constant in logarithmic law of the 

wall, eqn. (4.5.1). 

f 	Fully-developed friction factor, defined by 

equation (5.3.22). 

G Geometric function, expressing non-orthogonality 

of calculation domain: definition - eqn. (3.4.12). 

Gk 	Rate of generation of the turbulent energy per 

unit volume, given by eqn. (3.8.3). 

h Local heat-transfer coefficient 

h 	Wall-averaged heat-transfer coefficient. 

k 	Time-averaged turbulent kinetic energy: eqn. 

(3.4.22). 

kL 	Molecular thermal conductivity of fluid. 

Length-scale of turbulence: 9.= Cuk3/2/E. 

mp 	'Mass error' in pressure-correction equation, 

defined through eqn. (4.4.3). 

Nu 	Mean Nusselt number, defined by eqn. (5.3.23). 

p 	Pressure 

Mean pressure at any longitudinal station. 

P 	Pitch of rod array (fig. 1.1.2). 

PT 	tJayatilleke P-function' for temperature: 

eqn. (4.5.5). 
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Molecular Prandtl number of fluid. 

Wall heat flux. 

Radial coordinate in cylindrical-coordinate 

system. 

rs 	Radius of rod (=D/2) in rod-bundle flow. 

Re 	Reynolds number, usually defined as WDe/v. 

St 	Stanton number, defined by eqn. (7.3.1). 

Rod-ayeraged Stanton number defined as h/pcpw 

Temperature ( 0C). 

Local wall temperature. 

TW 	Average wall temperature. 

Tm 	"Cup-mixed" mean temperature. 

uT 	Local 'friction velocity', defined as (Tw/p). 

ūT 	Mean friction velocity, defined as ( Tw/p) 

u,v,w 	Time-averaged velocity components in circum- 

ferential, radial and axial directions 

respectively. 

Volume-averaged (bulk) velocity in the duct. 

WIN 	Mean axial velocity at the inlet. 

y 	Normal distance from a wall. 

Pr 

r 

St 

T 
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y 

ymax 

In rod bundles, radial distance from rod 

wall to maximum-velocity surface for arbitrary 

angular location. 

Maximum value of y in a given geometry. In 

triangular arrays this corresponds to y at 

e = 300. 

z 	Axial coordinate. Distance downstream of the 

inlet. 

Greek symbols  

a1, a2 Empirical constants, defined through eqns. 

(3.7.9) and (3.7.10). 

Laminar "exchange coefficient" for general 

variable f . 

T 
t,cp 	

Turbulent "exchange coefficient" for (p. 

T eff,4) 	
Effective "exchange coefficient" for q): eqn. 

(3.5.7). 

er, De 	Geometrical parameter, defined by eqns. 

(3.4.10) and (3.4.11). 

Dissipation rate of turbulent kinetic energy 

per unit volume 

e M.r' e M.e 

n, 

Eddy diffusivities for momentum in radial 

and peripheral directions respectively. 

Cross-stream coordinates in non-orthogonal 

coordinate system. 
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0 	Angular coordinate. In rod bundles, measured 

from the line of least separation between rods. 

K Constant in logarithmic law of the wall, eqn. 

(4.5.1). 

Aspect ratio (T.) of elliptic duct. 

u Molecular viscosity. 

ut' ueff  Turbulent and effective viscosities respec- 

tively: _eqn. (3.4.23). 

✓ Kinematic viscosity (=u/p). 

General scalar variable. 

p 	Density (constant) of fluid. 

a t 	Turbulent Prandtl-Schmidt number for T. 
Defining eqn. (3.5.6). 

T 
w 	

• Local wall shear stress. 

Tw 	Average wall shear stress. 
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APPENDIX A 

A.1 TRANSFORMATION OF THE CONTĪNUITY AND MOEMTUM 

EQUATIONS INTO THE (11,,z) COORDINATE SYSTEM 

Combination of the equations (3.4.1) to (3.4.4) with the 

shear-stress expressions (3.4.5) to (3.4.9) yields the 

following differential equations for continuity and momentum 

in the (r,e , z) coordinate system:- 

Continuity  

a (rv) + l au + aw =0 
— ar 	r dU az (A.1.1) 

u-velocity 

   

L au 2 + p a 	+ p a(wu) + p uv = _ 1 aP 
rae r r (r~) a z r rae 

1 	a2u + l a 	au + 2 Dv 	u u 	 (r ar) 	2aē - r2 r ae 	r 

 

_ 	r au 2 + a u'v' + 2 u'v' 
P rae ar 	r (A.1.2) 

v-velocity  

P a (vu) 	2. a(rv2) 	a(wv) 	u2 	 ap 	1 a2v — 
r ae 	+ r ar 	p 

az
- p r - - ar + u 	r2 862 

+ 1 a 	av, 	2 au  
r ar ( r ar) 	r2 ae - r2 

p 	avt2 + 1 ~u'v') + (v 	- u
'
2) 	(A.1.3) 

ar 	r ae 	r 
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w-velocity  

p a (uw) +  p a (rvw) + 	- aw2 	dP + 
r ae 	r ā 	p az 	dz 

a 2w+1 a 	aw 
ae2, r Dr (r ar ) 

- p r ār (rv'w') + r āe (u'w' ) J. 	(A.1.4) 

The transformation of the above equations proceeds by way 

of the transformation identities: 

_ 3 	an 	a 	DE 
Dr - an • ar + aE ' ar 

(A.1.5) 
a _ a 	an + a 	aE 
ae 	 an ' ae 	āE ' ae 

From the definitions (3.2.1) and (3.2.2), we obtain the 

following relations: 

3 	1 a 
ar - or art 

(A.1.6a) 

a _ 1 a 	1 	ars 	d(rn- rs) 	a 	i a 	Gr a 
aē -  ōe DE Ar 	+n 	de 	• an - ōe āE - āran • 

(A.1.6b) 

where or, De and the geometric function G have been defined 

via equations (3.4.10) to (3.4.12). 

On employment of (A.1.6a) and (A.1.6b), and after some tedious 

but straight forward manipulation of terms, equations (A.1.1) 

to (A.1.4) now transform to the forms (3.4.13) to (3.4.16) 

presented in section 3.4 of this thesis. 



- r G 
	as. 

] 4) Ar an 

+ 1 	a (rv'4)') _ G a(u'4)')Ī + S 
rAr an 	Ar an 	J 	4) 

+ 	1 	a rr 4) as _ P (~ 1 a(u' 4)' ) 
rAr an (Ar 	an) 

(A.2.1) 
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A.2 TRANSFORMATION OF THE 4) -EQUATION INTO THE NON-

ORTHOGONAL COORDINATE SYSTEM  

The conservation equation for the general scalar variable 

has been given in polar-cylindrical coordinates in section 

3.5 (namely, equation 3.5.1). 

The use of the transformation relations (A.1.6a) and (A.1.6b) 

in equation (3.5.1) leads to: 

p a (rv4)) 	p a OW , 	(w0 _ 	G 30.10)
rAr an 	} rAe aE 	+ 	az 	P Ar an 

1 a 	 G a~1 G a ._ a0 

	

rA9 DE [ rAe DE 	r4) 
Ar an J Ar an IrA9 aE 

The terms on the right-hand side of equation (A.2.1) may 

be re-arranged as follows: 
2 

R.H.S. = 
1 a ī _ at _ r G a~ + 1 a 	rr~(1+G ) Lt. 

rAe ā4 L rAe aE 	0 ōr- an] rAr an L 	Ar 	an 

G a~ l 	1 a 	G2rr 0 	) + 1 3 	G a4 

- r 4 AO DE J - rAr a n ( Ar 	a n 	rAr a . ( r 0 ne aE ) 

Ar 
GB 
 an ( rA 0 āE) + r an (r fi r an) 

[
_ P 	1 	30.1.'(0')  +  	1 	a (r17 1 0')  _   G aut4)']+   s rAe   āE  	rAr a n 	 Ar a n  	.1  	4) 



-250- 

On simplifying, this becomes: 

	

1 a 	8~ - r 	- + 1 a Ifrr0(1
+G
2) 30 _ r G 30 

	

R.H.S. = rAO a 	ra DE 	0 an 	rer 3n L 	Ar 	an 	0 AO DE C 	 ~ 

r 	 a _ r G a~1 	l a (Gr) 	1 a (u'0') 
rue DE 	~ or an J ' rtr an 	- P LrA0 aE 

1 a (rv' 4') 	Ga(u' 4' )1 + S 
ror an 	Ar 3n J 

(A.2.2) 

The left-hand side of equation (A.2.1) may be written as: 

L.H.S. E P 	{r(v-11G)0}+ P a(uO) + p a(0) _ p G a (u~). (A.2.3) 
Thr an 	 rue DE 	az 	or an 

The combination of equations (A.2.3)and (A.2.2) yields the 

desired result, namely equation (3.5.3) of section 3.5. 



-251- 

APPENDIX B  

The effective-viscosity form of the momentum equation in  

the (n,~,z) coordinate system  

The equations (3.4.17) to (3.4.21) relate the Reynolds stresses 

to the 'turbulent viscosity', pt. Direct substitution of 

these relations into the momentum equations (3.4.14) to 

(3.4.16) yields - after some rearrangement of terms - the 

desired equations in terms of the 'effective viscosity', ueff' 

given by: 

ueff - ut + u 	 (B.1) 

The algebraic manipulation is straightforward but rather 

tedious. The final equations are given below. 

u-velocity 

P 	{ru(v-uG)} + p au
2 + p a(uw) + 

p 
uv _ 	1 ap 

rAr an 	 roe DE 	az 	r 	ree aE 

▪ G a 	1 a reff au 	G au 
or an roe DE oe āg — ueff Ar an 

+ 1 a 	ueff (1+G2)r 3u 	G u 	au 
rer an [ 	or 	an 	eff AO DE 

ueff au 	G au 	2 1 a(Gr) 	1 a ueff au 
+ (rue āg - ueff or ān - pu ) rar an 	+ rAe āi (roe DE' 

1 a ueff MT 	
2 k 	

ueff WV 
+ rer an (rAe āg) + 	r2Ae 	( ueffV) + r2fle ag 
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u a ueff u _ 1 a 	G au 
—

 
rAr an - ueff 2 rAe āg (ueff Ar an) 

G a ueff au 	G au 	1 a 	G av 
— Ar ān ( ros ā — ueff Ar 	rAr an (ueff Ar an ) 

rAr an (ueff v) — ueff rAr an (B.2) 

v—velocity 

p a 	 p a(uv) 	3(vw) 	u2 _ _ 1 a~ 
rAr an {rv(v—uG) } + re9 ag 	+ P az 	P r 	Ar an 

1 3 	ueff DV _ ueffG a v 
+ rte ag C rAe a 	Ar an 

1 a 	(1+G2)r 3v 	G av 
+ rAr an C ueff 	Ar an ueff AO a  

ueff av, 	av 	1 a(Gr) 	1 a ueff au 
+ (rAO āg - eff or 	a n — Puv) rAr an 	+ roe ā- (or an ) 

+ 1 3 ueff r av - 2 ueff au 	1 9 
(u u) rAr an (Ar 	an 	r2AO  ag 	 2 De ag eff 

— 2 u 

 

v 	G a ( ueff au) + G a ( u u) eff r2 Ar an Ar an' rAr 9n eff 

G au 
+ 2 ueff rAr an (B .3) 
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w—velocity  

P 	 3(m) 	 3w2 __ _ 

	

rar an {rw(v—uG)} + rte a& ) + p az 	~z 

+ 1 a 	ueff aw — ueff G aw + 1 a 1 eff (1+~)r aw 
rte ā rte ā ar 	an] rer an ~ 	Ar 	an C 

_ u 	
ōe 
G 3w1 + ( 	u 	

— pes) ueff aw 	G aw 	1 a(Gr) 	(B,4) eff 	a 	rte a& — effōran 	raran 
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APPENDIX C 

Integration of the 0-conservation equation over the main  

control volume  

The partial-differential equation appropriate to the general 

variable , is equation (4.3.1) of chapter 4. This is to be 

integrated over the control veil for 0, the cross-section 

of which is depicted in figure (4.3.1). The differential 

volume element is given by, 

dV = rEr AO dE dn dz 	 (C.1) 

The notation used throughout is that of section (4.3.1). 

The left-hand side (L.H.S) of equation (4.3.1) yields, on 

integration over the control volume: 

	

z E 	 z n e 
L.H.S. = fP  fe  p(v-uG)r4I 	oedEdz + fp  fn  puc1 trdndz 

	

zu  ew 	s 	zu. ns 	w 

- fff p 0 T dEdndz 
V 

n 

	

+ fe  fn  pw01 	rAr eedEdndz 
Ew S  

On integration, the right-hand side (R.H.S) reduce to: 

R.H.S. = !p  fn 	rue 8g 	or an ] w ordndz z n 
v s 

(C.2) 
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+ 	( r 	a~ 	TG i•) aor drdndz + _ 	 Ip le 
w 

_pu ~ ) 

r(1+G2)r 	34) 
--/r'  roe 	ag 	Ar an 	ag 	z 

u 

rG 	"In AGdgdz + III ( r 	a~ 	rG 21 _ 

L 	Ar 	an 

1 	a(Gr) 
AO 	ag 	s 	v 	rAe 	ag 	Ar 3n rAr an 

. rAOArdndgdz 

+ III S rAr AG do dg dz 
	

(C.3) 
V 

Combination of equations (C.2) and (C.3), and re-arrangement 

of the integral terms leads to the following equation: 

Il +'I2 + I3 = I4 + I5 (C.4) 

where the integrals 

Z n 
I I p 

	I 
1- z n 

u 	s 

zp 

Ii etc are: 

r 	rG a 
sv 	

_ e l
_ 	

or dndz 
w 

(C.5) 

n 

I. [u4,
roe DC 

	
Ar 

I e r(1+G2)r rG Aedgdz,(C.6) P(v-uG)r 
2-  

gI w 
Ar an Ae 	a~ s 

I 	= 
3-  

ge 

I w 
nn 

	:11) I 	Cpwcp 	rae Ar dn dg 
ns 	u 

(C.7)  

I4 = III S 	rAe Ar do dC dz (C.8)  
V 



-256- 

r a 	rG a~ 	1 aGr _ 1 aAr 
15 - III ( ro9 	- Ar an - pl")) 'rAr an 	rAr aE ) dV 	(C.9) 

From the definitions of Ar and G (equations (3.4.10) and 

(3.4.12)) respectively, the terms in the second bracket of 

15 reduce to: 

1 a { drs + n dAr, 	1 dAr _ 0 
rAr an 	de 	de 	rAr de 

Consequently I5 is identically zero, and the final integrated 

form of (4.3.1) is given by equation (4.3.3) of the main text. 


