UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING

IMPLEMENTATION OF A POWER SYSTEM
DISTANCE RELAY
USING MICROPROCESSORS

BY

IOUKAS PEIROU
Dipl. Elec. Eng., M.Sc.

Thesis submitted for the Degree of Doctor of Philosophy in the Faculty of Engineering.

ABSTRACT

Using digital techniques for power system protection tasks has many advantages in terms of reliability, flexibility and better response matched to the conditions in the power network. Distance protection is one of the most important functions employed for transmission ines. Existing digital techniques employ a minicomputer for this purpose. Such implementation is helpful for testing different methods and studying the processing requirements, but its application in a power systems network is impractical for economic and technical reasons.

The purpose of this thesis is to implement a distance relay, which performs ali the operations accomplished by existing distance relays, but with a dedicated digital microprocessor.

To achieve fast response, good stability, reliability and flexibility a careful and simple design of both, the hardware and software is required. From the hardware point of view the unit is divided into the data acquisition interface and the protection processor. The processor is composed of bit-slice, bipolar microchips with 16-bit integer arithmetic.

The software development is divided into two areas. Firstly the gereration of an appropriate instruction set for the distance application and secondly the use of an algorithm which can cope with transient conditions occuring after a fault. The algorithm employed solves the differential equations of the protected line, considered as a simple R, L series circuit.

In addition the reiay performs some other functions to ensure stability, discrimination and high availability. Some of them can be met in existing relays, while others are new features introduced by the modular design and programmability of the unit.

ACKNOWLEDGEMENTS

The work in this thesis was carried out under the supervision of Dr. B. J. Cory, B. Sc. (Eng.), D.Sc., ACGI, C. Eng. FIEE, Reader in Electrical Engineering, Imperial College of Science and Technology, London. I wish to thank Dr. Cory for his helpful guidance, constant encouragement and keen interest during the preparation and completion of this project.

I would like also to thank my colleagues in the Power Systems Laboratory. I am particularly indepted to Dr. E. Horne for his valuable assistance in both the technical and other aspects of the project, and to Mr. F. C. Chan, Dr. C. B. Giles and Mr. S. A. Pavlides for their constructive discussions.

The equipment and constructional facilities supplied by G. E. C. Ltd. are greatly appreciated.

TABLE OF CONTENTS

Chapter 1 Introduction.
1.1 Power System relays. 1
1.2 Distance relays. 1
1.3 Advantages of digital protection. 5
1.4 Disadvantages of digital protection. 9
1.5 Organisation of the thesis. 10
Chapter 2 Distance protection.
2.1 Present practice in distance relaying 14
2.1.1 Discrimination. 19
2.1.2 Classification of distance relays. 20
2.1.3 Distance schemes. 23
2.2 Digital distance protection. 27
2.3 The dedicated digital distance relay. 33
2.3.1 The data acquisition unit. 34
2.3.2 The distance protection processor. 34
Chapter 3 Hardware description of the dedicated digital relay.
3.1 Introduction. 37
3.2 The data acquisition unit (DAU). 37
3.2.1 The analogue data channel. 41
3.2.2 The digital data channel. 43
3.2.3 The data output buffer. 44
3.2.4 The phase-locked sampling clock 44
3.2.5 The DAU controller. 45
3.3 The protection processor (PP). 45
3.3.1 The ALU 46
3.3.2 The data buses connected to the ALU. 49
3.3.3 The control section. 50
3.3.4 The main memory section. 57
3.3.5 The data and constant store. 58
3.3.6 The bit test masking memory. 62
3.3.7 The data input port. 62
3.3.8 Circuit breaker control. 63
3.3.9 The data output port to the monitoring computer. 64
3.3.10 The clock generator. 64
3.4 The instruction set. 65
3.4.1 Instruction format. 65
3.4.2 Microcoding of the instructions 67
3.4.3 The basic instruction set. 69
3.4.4 The extended instruction set. 70
3.5 Development and testing support. 75
3.5.1 Development aids at the micro-ievel. 76
3.5.2 Development aids at the macro-level. 78
3.5.3 Aids needed for field service. 79
Chapter 4 Distance algorithms.
4.1 Introduction. 82
4.1.1 The d.c.exponential component. 83
4.1.2 High-frequency harmonics. 85
4.2 Types of distance algorithms. 87
4.2.1 The $\dot{\mathrm{V}}=\dot{\mathrm{I}} \dot{\mathrm{Z}}$ method. 87
4.2.2 The differentiai equation method. 90
4.2.3 Curve fitting methods. 92
4.2.4 Travelling wave method. 93
4.2.5 Simulation of analogue relays. 94
4.3 Criteria for the choice of an algorithm resident in microprocessor. 94
4.4 The distance algorithms programmed in the dedicated microprocessor. 97
4.4.1 The filtering process. 97
4.4.2 Mathematical basis of algorithm. 105
4.4.3 Response of the algorithms. 110
Chapter 5 Program configuration.
5.1 Introduction. 119
5.2 Configuration of the main program. 120
5.3 Auxiliary subroutines. 123
5.4 The impedance calculation 123
5.4.1 The zone selection. 132
5.4.2 The relay settings. 135
5.5 Close-up faults 137
5.5.1 Close-up detection 138
5.5.2 The voltage update routines. 140
5.5.3 The impedance calculation for close-up faults. 141
5.5.4 Switch-on-fault. (SOF) 141
5.6 Out-of-step blocking. 144
5.7 Active and reactive power measurement. 146
5.8 The post-fault routine. 147
5.9 The report program. 153
5.10 Autoreclosing. 158
5.11 The self-test monitoring program. 159
5.12 The graphics routine. 160
Chapter 6 Experimental results.
6.1 Introduction. 162
6.2 The relay performance under different types of fault. 165
6.3 Close-up faults. 176
6.4 Performance of the relay with varying fault positions. 181
6.5 Conclusions. 181
Chapter 7 Conclusions
7.1 General conclusions. 184
7.2 Original contributions. 187
7.3 Further research. 188
References. 191
Appendix 1. The data acquisition unit. 200
Appendix 2 The protection processor. 221
Appendix 3 The instruction set. 238
A3.1 The basic instruction set. 240
A3.2 The extended instruction set. 263
Appendix 4 Off- line support.
A4.1 Software support. 278
A4.2 PROM programmers. 281
A4.3 PROM simulators. 284
Appendix 5 The test rig.
A5.1 The transmission line model. 285
A5.2 Filter and amplifier design. 287
A5.3 The rig-relay connections. 287
Appendix 6 The program listings. 289
A6.1 Listings of low page for the sample and midpoint algorithm. 290
A6.2 Listings of the high page (common to both formulas). 302
A6.3 Listings of the low page (the midpoints formuia). 314
A6.4 Contents of the data store 323
A6.5 Table of the mnemonics. 328
A6.6 Contents of the constant store. 333

CHAPTER 1

INTRODUCTION

1.1. Power systems relays

The role of relays in power systems is to detect any abnormal operating condition and either to initiate a trip command to the associated circuit breakers to isolate the faulty part or to inhibit a switch closure which might cause maloperation. Many different types of relays are available, which individually protect against different risks. The combination of relays is known as a protective system.

The main characteristics of a relay are:
i) an assurance of operation in the event of a fault in the protected zone of the primary system.
ii) to remain inert to all normal load conditions and external disturbances.
iii) to detect the fault, in the shortest possible time, such that loss of synchronism is avoided.

All the above requirements are met by employing reliable protection equipment and by a careful and suitable protection scheme design for a specific part of a power system.
1.2. Distance relays

One of the main tasks in protection is that of feeder protection i. e. overhead lines or cables. The
most popular form of high voltage overhead line protection is that of employing a distance relay. These relays measure the impedance or reactance of a line, which is assumed proportional to the distance between the relaying point and the fault.

Distance relays provide high speed fault detection for front line or main system protection and back-up facilities in a single scheme and overcome the need of pilot lines.

A simple illustration of the distance relay principle is given in fig. 1.1. The relay is supplied with two inputs, namely voltage (V) and current (I) at the relaying point. It then takes a decision based on a comparison of the voltage and the quantity $I Z I$, where $Z \mathrm{~L}$ is the setting of the relay. It sends a trip command on the condition V I Z L i. e. for measurement of an impedance from the relaying point to the fault point less than Z.

For many years electromechanical techniques have been used to construct relays, but as the complexity of power systems has increased, the need for a relay of higher performance with more sophisticated characteristics became apparent. The progress in semiconductors has made possible the construction of analogue relays. I'herefore static- analogue electronic- relays, in many cases,have replaced the electromechanical ones ${ }^{1,2}$.

(b)

Fig. 1.1 Principle of the impedance distance measurement
(a) System schematic
(b) Relay trip zone

$$
\begin{aligned}
& E_{G}=E \cdot M . F . \\
& Z_{S}=\text { Source impedance } \\
& Z_{L}=\text { Line impedance (setting of the relay) } \\
& C T=\text { Current transformer } \\
& V T=\text { Voltage transformer } \\
& C B=\text { Circuit breaker }
\end{aligned}
$$

It has been shown by experience, that by choosing high- reliability components and by careful design, these static relays are superior to the electromechanical ones ${ }^{3}$. On the other hand, by employing analogue devices, some disadvantages are introduced, as have been discussed by Horne ${ }^{4}$.

Briefly these are:
i) Initial and long term accuracy is unpredictable because of the offsets and gain adjustments of analogue elements.
ii) To ensure a reliable analogue relay, components of close tolerance have to be used, which increases the cost of the unit. However the reliability of an analogue functional unit can be calculated beforehand, as opposed to that of the electromagnetic designs.
iii) They offer poor flexibility, in cases where characteristic modification is necessary as the primary system changes.
iv) A basic problem in protection is to detect a failure of the relay unit early enough. Generally a failed component, in a static or electromechanical relay becomes apparent only after a primary fault occurs or during manual testing.
v) A short repair time is important. Usually the maintenance of analogue devices, with possible readjustment takes time.

Therefore the next step was to apply digital techniques for the protection task. The study of such systems started in the late 1960's. A digital device with its programmability can cope with greater performance and flexibility to solve protection problems. In the next sections, a discussion is given of the advantages and disadvantages of digital protection.

1.3. Advantages of digital protection

Some of the following advantages are common to all digital devices, others are dependent on the scheme applied. These are:
i) Greater flexibility.

By employing a suitable processor, which satisfies the protection requirements, the hardware is fixed for all the relaying applications. By calling different programs, different protection and control options can be accomplished. But the most striking attraction of a programmed device is that alterations or additions to the protection scheme can be done easily, without costly rewiring or hardware replacement.
ii) Enhanced reliability

A secure and stable operation of the protection apparatus depends on its reliability. Two kinds of reliability have to be achieved ${ }^{5}$. Firstly a high design reliability is necessary. It includes the design of the specific apparatus and the correct selection of the different
equipments to complete the protection system. Secondly a high technical reliability has to be ensured, which depends on the quality of the manufacturing process.

Digital equipment can improve both of them, by the inherent good reliability of the digital devices and by suitable software design.

The hardware reliability enhancement, stems from the following facts: i) Advances in the semiconductor manufacturing process, have improved the reliability of the digital integrated circuits (ICs) by a factor of 100 in the past 10 years 6. ii) The failure rate of a digital device is lower than that of a linear one. iii) In a digital circuit, the use of passive components is reduced. Those components are prone to failure due to aging, therefore the reliability of the whole unit is increased. iv) If a semiconductor device has a deficiency due to the manufacturing process, then that should be detected during its commissioning period. v) The use of LSI components, leads to fewer interconnections, hence reducing one main source of failure in electronic circuits.

A digital processor is a dynamic device, because it is programmable. By employing software techniques we can cater for missing or erroneous data. Work has been published on this topic concerned with the input data
validation ${ }^{7}$. On the other hand the unit will be more reliable, if the software is as simple as possible.

Finally, because of the monitoring capability of the digital scheme, a failure of any apparatus in the protection network, can produce an alarm immediately for operator attention.
iii) Greater accuracy

In static relays, accuracy can be impaired by the drifting of analogue devices. Besides this fact, that some parts of the digital scheme, i.e. the interface, is still analogue, the accuracy can still be improved by using a processor of suitable word length with a proper type of number representation and with a powerful instruction set.
iv) Adaptive capability

By altering the software, the relay can be programmed such that to adjust its characteristic, according to some criteria, for example load conditions. Therefore more sophisticated responses can be fulfilled.
v) Modular construction

This benefit, does not affect directly the user. From the manufacturer's point of view, it is a great advantage to construct a single piece of apparatus, which can be applied for many applications. Changes of the protection scheme, such that to satisfy the customer's specifications, can be easily done. The assembly
process is simplified by using a limited number of components. The maintenance is becoming easier, with the use of LSI devices, and by the fact that recalibration is not necessary as with analogue equipment. At the same time, the availability of the unit is increased by reduction in the repair time.
vi) Response time

Detection times comparable with those for static relays can be achieved. Reduction of the operating time depends on factors, such as the speed and the processing power of the digital processor and the algorithm employed to fulfill the protection scheme.
vii) Reduced burden on current transformers(c.t's). A c.t. must maintain its ratio, over a wide range of conditions. This ability depends on the impedance of the relay and the resistance of the leads. In the interest of the c.t. cost and space requirements, the relay power should be kept to a minimum. A digital scheme can fulfill this requirement because very little power is necessary on the input to the A / D circuits.
viii) Monitoring capability

In a complete digital protection scheme, depending on the hierarchical levels, a monitoring of all front- line relays is possible. Such monitoring can produce a full report during, a fault, measurement of active and reactive power flows, or even a plot of the measured quantities.

This ability simplifies the installation and the testing of the relay.

All those arguments give a more reliable system, with high availability.

The economic benefits, in terms of capital expenditure are still not clear, caused partly by the fact that hardware costs are deciining and partly on the software complexity involved in the specific appiication. A complex program will need skilfull programmers, which is going to increase the development cost. That depends on the type of programming language applied, the protection scheme employed and on the expected number of sales of a specific unit.
1.4. Disadvantages of digital protection

Besides the many advantages that can be gained by using a digital protection configuration, some disadvantages are introduced. These are:
i) Conversion to digitai form is required for all the analogue measurements, with the input signals taken from conventional c.t's and v.t's. This increases the complexity of the unit and its cost.
ii) Interference problems

The digital relay, working in the substation environment needs to be carefully designed and installed, to avoid electromagnetic interference.

The origin of such noise is a result of sudden change in the circuit quantities caused by switching of circuit breakers
and isolators by lightning strikes or by insulation breakdown. Methods to reduce this interference on the relay are described by various authors ${ }^{8,9}$.
iii) Training of personnel.

By introducing equipment of another technology, a retraining of personnel in its use and service becomes essential.
iv) Testing under all possible conditions. To test the relay as an integral unit i.e. hardware and software together, becomes a difficult task. This is because an almost infinite number of combinations of tests parameters, from possible signal and clock levels, timing conditions, program patterns, power supplies voltages and operating conditions needs, to be taken into account ${ }^{10}$.

1.5. Organisation of the Thesis

This thesis describes the design, construction and operation of a dedicated digital power systems distance relay.

Chapter 2 gives a brief description of a distance relay and reviews the characteristics of different protection schemes. It discusses the possible digital computer configurations. It examines the requirements for a dedicated digital distance relay in conjunction with the existing processing techniques.

Chapter 3 gives a brief description of the
data aquisition unit and its requirements from the line protection point of view. The processor structure in terms of hardware and software is discussed. In this chapter the development aids and the testing facilities necessary for the construction and the testing of the relay are presented. In appendices the hardware and software implementations of this apparatus are given in more detail.

Chapter 4 deals with the distance algorithms. It explains what a distance program has to accomplish, and gives the available types. Then the algorithm chosen, along with the filtering process are discussed and a modified algorithm is presented.

Chapter 5 discusses the organisation of the distance program, in terms of the starting fault elements, and the trip decisions. The additional features of the relay, as the print-out report facilities, the active and reactive power measurement and others are given.

In chapter 6, the performance of the relay and the tests carried out, are reported and the results discussed.

The conclusions are presented in chapter 7.

The original contributions contained in this thesis are claimed as:

1. The selection of a digital line protection scheme, which combines fast response, reliability and flexibility at reasonable cost.
2. The modifications and expansion in the hardware and software design of a special purpose high-speed dedicated microprogrammed microprocessor to match the requirements of a distance algorithm.
3. The modification of an existing algorithm, to achieve a faster response.
4. A complete digital distance relay has been constructed working in real time, which operates in less than 20 ms using 16-bit integer arithmetic with no hardware multipliers. The relay can detect all possible types of internal faults occuring on a protected transmission line. It is of the three- zone stepped type and monitors continuously all six primary fault impedances, hence eliminating the need of a starting technique.
5. In addition to protection, it fulfills all desirable tasks which can be expected of an industrially produced relay (reference 11).

These are:
a) close-up directional discrimination
b) switch-on-fault
c) out-of-step blocking
d) autoreclose
6. Besides the above facilities, it provides:
a) Full fault report, in the monitoring computer, which can be of considerable assistance in system operation.
b) A simple self-test monitoring, which can improve the reliability of the whole protection system and its availability.
c) Measurement of active and reactive power in the transmission line, at any instant.

CHAPTER 2

DISTANCE PROTECTION

2.1. Present practice in distance relaying

The first application of distance relays was in early 1930 's ${ }^{12}$ based on the electromagnetic operating principle.

A simple form of a typical electromagnetic relay is shown in fig. 2.1. A rectifier - bridge current comparator is used, to compare V and I. Two alternating input- currents are applied to the comparator, i.e. the operating current $I_{0}=K_{2} I$, and the restraining current $I_{R}=K_{1} V$, where V, I are measured at the relaying point. The output of the comparator is applied to a sensitive d.c. polarized relay of the moving- coil type(fig.2.1b). The rectified currents, circulate round the interconnecting leads when the a.c. input signals are equal, therefore the coil is de-energised. If one of the inputs is increased with reference to the other, then the difference current will flow in the relay. Depending on the input, the relay will operate, if $I_{0}>I_{R}$ or will restrain if $I_{0}<I_{R}$.

Other types of electromechanical relays exist, which use different principle, for example the induction disc and the induction cup ${ }^{1}$.

Many duties performed by electromechanical
relays have now been undertaken by static devices.

(a)

(b)

Fig. 2•1 A schematic diagram of an impedance distance relay
(a) The rectifier-bridge comparator and its connections with the $C . t$. and V.t.
(b) The moving coil relay

Their lack of moving parts improves the operating time. In addition other impedance characteristics can be obtained, which can cope with different power system configurations and types of faults.

For example, the implementation of the mho relay (discussed later in this chapter) by using linear integrated circuits is indicated in fig. 2.2^{1}. The polarity detectors determine the zero crossings of the a.c. inputs to be compared, i.e. they produce a square wave of the same frequency as the a.c. input. The coincidence detector provides a rectangular wareform having a negative level for both, positive and negative coincidence, and a positive level for non- coincidence. Therefore the shape of this wareform depends on the phase relationship of the inputs. The integrator is charged and discharged according to the duration of the positive and negative output of the coincidence detector. When this output stays more in the positive level than in the negative, the integrator output is increased, which finally becomes greater than the specified operate level. Then the level detector is energized, and a trip command is generated. The three possible operating conditions of this circuit are indicated in fig. 2.2b, c, d.

The ideal distance relay measures the impedance from the measurement point up to the fault point. But

Fig. 2.2 Static mho distance relay
(a) Block diagram
(b) Boundary condition
(c) Operate condition
(d) Restrain condition
the circuit impedance can be affected by the fault arc resistance, the system load and other conditions external to the section being protected. A systematic analysis of the response of distance relays, under different operating conditions is given by Lewis and Tippett ${ }^{13}$.

In the next section are presented the discrimination techniques used, the classification of distance relays and the distance schemes applied.

2.1.1. Discrimination

A distance relay should protect against faults only on its own feeder, but because of measurement errors in the current and voltage transformers, the relay tolerances and the changing operating conditions, the relay cannot cover the whole line with the specified accuracy. Therefore it is usually set to protect up to about 85% of the feeder length, denoted by zone 1 in fig. 2.3. The rest of the feeder is protected by zone 2 , but this also covers part of the following feeder, hence providing back-up protection for this part. In fig. 2.3 to discriminate relay A from relay C, a time-lag is necessary between the issuing of a trip signal for zone 1 and for zone 2. This time-lag depends on the operating times of the relays and of the corresponding circuit breakers. Finally to complete the back-up for feeder CD and to include part of EF, zone 3 is used, which
operates after a further time-lag. This stepped distance/ time characteristic is that most commonly used.

The relay normally incorporates a directional unit, so that the above characteristic is valid only for faults in front of the relaying point.

2.1.2. Classification of distance relays

Relays are classified according to their threshold characteristics on a polar diagram which distinguishes between healthy and faulty conditions within each zone.

The right choice of characteristic depends on the types of faults, the fault arc resistance, the length of the line and the susceptibility to power swings.

In fig. 2.4 AB is the feeder impedance representation on the $R-X$ plane, representing an ideal characteristic, while $A P_{1}$ is the " reach " of zone 1. Taking into account the fault arc resistance, the relay should operate only for those faults inside the shaded area. Also shown in fig. 2.4, are the tripping areas for zones 2 and 3.

Figure 2.5 shows some basic distance relay characteristics ${ }^{14}$.

The impedance characteristic is the simplest and consists of a circle with centre at the origin. Tripping occurs in the shaded area, if a directional element is employed. Such a unit is necessary, because the relay can operate below a certain impedance threshold, which is independent of the phase angle between voltage

Fig 2.3 Time/distance characteristic for a three-stage distance relay (for clarity, the characteristics of A, B, C, D only are shown)

Fig. 2.4 The fault area on the impedance diagram
and current.
The mho relay has a circuiar characteristic too, but now passing through the origin.

The reactance relay polar characteristic is a straight line parallel to the resistance axis. Operation occurs for reactances less than the setting value.

Also shown in all diagrams of fig. 2.5 is the power swing locus PS. Following a transient disturbance in a power network, the operating point changes and PS is the locus of the impedance as seen by the relay under such conditions. The power swing locus, in general is a circle, but for simplicity it can be considered as a straight line in the operating region of the relay. As the phase displacement between the sending and the receiving ends increases, the locus passes through the relay tripping characteristic - To prevent maloperation the relay must be blocked under such conditions. This is achieved by using an additional relay, usually a mho, which embraces the zone 3 characteristic. Under fault conditions both, the measuring and the blocking relay will operate almost simultaneously. But under power swing conditions, the distance relay will operate after the blocking relay, therefore tripping can be prevented.

The conclusions from fig. 2.5 are:
i) The impedance and reactance relays need a directional element to inhibit operation for faults
behind them.
ii) The reactance relay has the greatest tolerance to variable fault resistances.
iii) The mho relay is less tolerant to fault resistances, but it has greater immunity to power swings.
iv) The impedance relay is a compromise between the mho and reactance relays.

In conclusion the reactance relays are useful for short lines, as the fault resistance is a considerable percentage of the line impedance. They are also preferable for ground fault detection, because the resistance of the return path can be high. On the other hand the mho relay is used for long lines, because of the small common part between its characteristic and the power swing locus.

Modifications of those characteristics, using the mho offset and the fully cross- polarized mho relay improve discrimination under different operating conditions.

The ofiset- mho relay has a circular characteristic too, but it is shifted to embrace the origin by introducing a current bias signal into the voltage circuit. This arrangement will cater for close-up faults, even if there is a complete collapse of the voltage at the relaying point. It also provides some back-up protection for the busbars. Usually it is used as a starter and
for the zone 3 measuring unit.
The fully cross-polarized relay uses as inputs to the comparator the quantities $V-I Z_{N}$ and $V_{p o l}$, where $V_{\text {pol }}$ is a polarising voltage derived from one of the other healthy phases. As a result of this configuration, the mho characteristic extends its characteristic along the R axis for unbalanced faults. Therefore the mho relay can cope with greater values of arc resistance.

Another popular characteristic, which is close to the ideal one is the quadrilateral, shown in fig. 2.6. The area covered is greater than the fault area, such as to take into account errors in the measurement of a solid fault on the line or a resistive fault on the busbar.
2.1.3. Distance schemes

There are four types of shunt faults which can occur in a three-phase system. These are, three phase, double phase to earth, double phase and single phase to earth. A distance scheme should detect all of them, but as already mentioned, the measured impedance is a function of the type of fault ${ }^{14}$. To overcome this complication a means of compensation is necessary. This compensation technique is different for phase and earth faults. For the phase fault units, the relay should be fed with the line voltages and the line currents. In an earth fault, the current through the relay depends on the method of

$P S=$ Power swing locus
$D=$ Directional element

Fig. 2.5 Distance relay characteristics

Fig. 2.6 Quadrilateral characteristic
earthing, the number of earthing points and the sequence impendances of the earth loop.

Two methods are used for earth fault distance relay compensation, called the residual and sound-phase compensation methods. The most popular is residual compensation which measures an impedance which is independent of the specific earthing connections of the system by adding a fraction of the residual current to the phase currents.

If \dot{I}_{R} is the residual current, $\dot{z}_{L 1}$ and $\dot{z}_{L 0}$ the positive and zero sequence impedances of the line respectively (see fig. 2.7), then the fraction to be added is $\frac{K-1}{3}$, where $K=Z_{L O} / Z_{L 1}{ }^{14}$. Hence, for the phase(a)ground fault relay, the presented quantities are, $\dot{\mathrm{V}}_{\mathrm{a}}$ the phase voltage and $\dot{\mathrm{I}}_{\mathrm{a}}+\dot{\bar{I}}_{\mathrm{R}}\left(\frac{K-1}{3}\right)$, where \dot{I}_{a} is the phase current.

To protect the line against all possible phase and ground faults, one of the following schemes is applied:
i) the straight forward scheme, uses six distance measuring units, three for phase-phase faults (p.f.) and three for phase to ground faults (g.f.).
ii) the switched scheme, in which one measuring unit is employed with starting elements to apply the appropriate voltage and current to the measuring relay, according to the type of fault.

The starting elements are of the overcurrent or the under-impedance type. The overcurrent starters can be used in all cases where the fault currents are considerably higher than the maximum expected service current. For systems ${ }^{\text {s }}$ where the minimum three-phase fault current is less than the maximum service current, under--impedance starting is employed. The reach of these relays is not a fixed impedance, but an increasing value as the voltage falls. Below a certain voltage level, it behaves as an overcurrent relay ${ }^{1}$.

Use of the switched scheme reduces the relay cost and panel space required. However, it introduces the following disadvantages:
i) a small increase in the total time of measurement, because of the time required for the fault classification.
ii) if the under-impedance relays have to be used, then the cost of the unit is increased.
iii) there is a complete loss of protection, if the measuring unit fails.
iv) there is some inaccuracy because of different characteristics for p.f. and g.f.
v) if the fault changes, before tripping, a possible wrong switching can occur.
vi) its reliability is reduced, because the tripping decision is based on the operation of contacts
in series.

The above disadvantages lead to the conciusion, that the switched scheme can only be applied to middle range of voltages i.e. 11-132 KV.

One weakness of the straight forward system is that more than one relay might operate for one kind of fault, especially for a line with a high X / R ratio and a fault close to the busbar. A detailed examination of such cases is given in reference 15. In general none of the relays in the healthy (sound) phases overreaches i.e. the impedance presented in the relay is never less than the actual, but an occasional tripping by a relay on a close-up fault ir another phase, will contribute to backup protection, at the expense of a wrong flag indication. This action depends also on the relay polar characteristic.

2.2. Digital distance protection

Since 1963 the advantages of using mini-computers for control of substations ${ }^{16}$, to on-line data acquisition and to processing at the national control centre ${ }^{17}$ haye become evident.

Taking into account disadvantages of static relays and advantages that can be gained by introducing digital processing techniques, as discussed in chapter 1 , a study of digital methods for distance protection is an obvious area of research.

The first paper to be published on this subject,
was by Rockefeller ${ }^{18}$ in 1569 . It was concerned with the use of a process-control computer, to protect the equipment in a h.v. substation, and the lines radiating from it.

Most of the work done on digital distance protection has concentrated on the development of different algorithms, which compute the line resistance and reactance under transient conditions. These algorithms have been applied by using either a main frame computer or a minicomputer, and they will be reviewed in chapter 4.

The block diagram of a digital distance relay can be seen in fig. 2.8. Such a system can compete with existing relays only, if it can be shown to be more reliable and economical. Such justification can only come with further development and application.

The reliable and secure protection of a power system network depends on two factors. Firstly the reliability of individual items that constitute the protection scheme(generator, line protection and so on) and, secondly, on the correct selection and interconnection of these items to produce a reliable system.

In a digital scheme, all these factors have to be taken into account. The possible configurations that can be used are:
i) an integrated scheme, consisting of a single

RELAYING POINT R

Equivalent circuit for the faulted phase from the relaying point to the fault point

Fig. 2.7 Earth-fault loop

Fig. 2.8 A block diagram of a digital distance relay
computer programmed for multiple relaying functions. Such a processor has to be a powerful one, therefore a minicomputer has to be used.
ii) a dedicated scheme, utilising separate computers, each one with its own data acquisition unit, for each specific application. Such a processor need not be as powerful as a minicomputer, but it has to be fast enough to cope with the high-speed protection tasks.

Each of those schemes introduces advantages and disadvantages. A summary is given in table 2.1, which has been taken from reference 19. A proposed scheme, by the same authors,combines the advantages of these two solutions, to produce a comprehensive, reliable and cost effective protection network. This configuration is shown in fig. 2.9. As can be seen, the integrated digital scheme has its own interface and fulfills the back-up and monitoring requirements.

The purpose of the research reported in this thesis, is to perform front-line feeder protection by employing a dedicated, fast and cost-effective digital processor. This processor must be designed such that it is compatible with the configuration of the scheme shown in the fig. 2.9. In addition to increasing its reliability, it must be programmed by using simple software techniques. It must also perform all the duties expected of a present typical distance relay.

PROTECTION SCHEMES

	Dedicated	Integrated
Reliability	1.Smaller size gives greater hardware reliability per module. 2.Failure limited to one application.	1.Software complexity gives more errors. 2. Major hardware/software failure could affect all applications, hence redundancy must be adequate.
$\begin{aligned} & \text { Data } \\ & \text { Validation } \end{aligned}$	1.Iimited data vaiidation possible.	1.More data available in common data base to detect hardware software faults i.e.system is more tolerant of failures. 2.Central data base available for onward transmission of data.
Cost	1.Interface costs high for a multiplicity of applications.	1. Shared facilities make for more economic applications. 2. Software costs may be higher for a more complex system.
Speed	1.High processing speeds possible.	1.Careful system design necessary to ensure adequate speed of operation.
FIexibility	1.Each new application requires a separate computer system.	1 .System is radial in concept and easily modified for additions or delitions of plant. 2.Common data base provides access to data for new application.
Maintenance	1.0nly one function at a time need be taken out of service.	1-Adequate redundancy essential since all applications are affected by taking out one system. 2.Larger systems can support more comprehensive monitoring and diagnostics.
Software	1.Software is specific to each processor and is therefore modular and simpler. 2.Any intercommunications at high speed between dedicated machines will be difficult. 3.On-line development impracticai	1.Software, other than for the application programs, is complex. 2. Communication between programs associated with items of plant is achieved via the common data. 3.On-line development possible.
Computer Hardware	1. Total configuration could be complex where intercommunication is required.	$\begin{aligned} & \text { 1. Basically implemented on } \\ & \text { radial principie with compu- } \\ & \text { ter hardware at centre. } \end{aligned}$

Fig. 2.9 A proposed configuration for the combined integrated/dedicated digital protection of a substation.
2.3. The dedicated digital distance relay

In chapter 4, a discussion about the devised distance algorithms will be given. Most of them have been tested in the laboratory, but very few of them have been actually tried in the substation environment. All of them employ a minicomputer as the processing element. Under such operating conditions, their performance has been examined.

The required digital distance relay should be of the dedicated type, therefore a microprocessor has to be employed.

To achieve operating characteristics, similar to those implemented by a minicomputer, the microprocessor must have comparable speed and processing accuracy. Hence the choice of the most suitable family of microprocessors to implement the dedicated distance relay can be based on this criterion.

The performance of the digital relay depends on the way the analogue data are handled, on the actual microprocessor architecture employed and on the software techniques used to implement the distance algorithm.

The digital relay is divided into two units:
i) the data acquisition inverface and ii) the protection processor. The reason for doing this is related to the differing nature of the two functions. Besides that, the processor does not have to control the input of the
analogue data. That reduces the hardware and software requirements of the processor and improves its speed.

A brief description of the operation of each unit will be given. A more detailed discussion is presented in chapter 3.

2.3.1. The data acquisition unit

The duty of this unit is to take regular samples of the three voltages and the three currents at the relaying point. Then those quantities have to be transmitted in a digital form to the processor.

In addition to the analogue inputs, it can accept direct digital data, which can be intertrip signals, circuit breaker status or switch status indicators. A block diagram of the data acquisition interface is given in fig. 2.10 .

2.3.2. The distance protection processor

After the digital data have been transferred from the interface to the processor, the processor must select and process them in a manner according to the algorithm. A decision has to be taken, based on some criterion. Therefore sufficient data and program memory must be provided.

It is a basic requirement, that the algorithm must be run before the next block of samples arrives from the data acquisition unit. Otherwise an erroneous decision will be generated.

A means of sending the control signals to the associated circuit breakers is obvious.

Since this dedicated digital distance relay is going to be used in conjunction with a monitoring computer, a communication output to this computer has to be included.

Fig. 2.11 shows those essential functional blocks of the microcomputer.

Fig. 2•10 Data acquisition unit outline contiguration.

Fig. 2.11 Protection processor outline configuration.

CHAPTER 3

HARDWARE DESCRIPTION OF THE DEDICATED DIGITAL RELAY

3.1 Introduction

The two parts of the digital relay i.e. the data acquisition unit and the protection processor are here described. As the microprocessor employed is microprogrammabie, the structure of the instruction set is vital for the overall performance. The instruction set is described and its limitations are discussed in this chapter.

Finally the hardware and software aids required for the development and testing of the digital processor as an integral unit are examined. The way these aids are implemented are essential in terms of cost, development, debugging time and flexibility.
3.2 The data acquisition unit (DAU)

The DAU design must fulfill two main requirements:
i) accuracy of measurement with faithful digital representation of the primary network quantities and ii) flexibility for different protection schemes. A detailed description of the DAU design and its implemen- • tation has been given by Horne ${ }^{4}$. Here a brief description of this DAU wili be given and in appendix 1 the circuit of each module is detailed.

Fig. 3.1 shows a block diagram of the DAU. In the left hard side of the diagram the analogue signals are

H MAIN DATA PATHS

entered after analogue filtering and amplification. One problem needing attention is the way the signals are transmitted from the transducers to the digital relay inputs. Malfunctioning might occur from induced noise due to electromagnetic radiation. Fiber-optic data links with their immunity to electromagnetic interference, dielectric isolation, improved safety and increased bandwidth could be employed with advantage. The economics and choice of the required fibre-optic system are discussed in references $20,21,22$. The analogue filtering is described later in chapter 4.

One other requirement is that of analogue signal ranging, as the power system signals will have a wide magnitude variation. It must be ensured that the relay signals are within the operating range of the DAU i. e. $\pm 10 \mathrm{~V}$. If the gains of the individual input amplifiers are set to these limits, then inaccuracies can be produced in low magnitude signals. Schemes to improve the reiay performance at this stage are given in reference 4. The one which the author favours, in terms of processing flexibility and fast settling times, is that using gain ranging amplifiers, as shown in fig. 3.2. Four different gain factors are possible, by using four separate amplifiers. The comparators ensure the selection of the correct amplifier, such that the signal to the interface never exceeds $\pm 8 V$ (giving a 20% margin). The range data

indicates which ampiifier is being used at a particular instant and these range bits are used by the processor to reconstruct the real value of the signal.

3.2.1 The analogue- data channel

From the line protection point of view, seven analogue signais are required, namely the voltages and currents for the 3 phases and the reference voltage for the self- monitoring program to be discussed in chapter 5. Therefore seven sampie/hold devices are needed. These devices are essential, otherwise the input signal would change during the conversion and the desired accuracy (defined by the A / D resolution) will be impaired. The alternative solution employing a faster more expensive A/D converter is not possible, when many channels are to be served.

Economics force us to use one oniy A / D converter, requiring an analogue multiplexer. Fig. 3.3 is the block diagram of the analogue multiplexer controller. Switches on the card module define the first and final analogue channels that are to be processed. The unit is capable of multiplexing a maximum of 16 channels.

The next task is to convert the analogue signals coming from the power system transducers to digital form. Here the A / D converter ${ }^{23}$ has a conversion time of $6.4 \mu \mathrm{~s}$ and a resolution of 10 bits. Such a choice is justified from the number of channels, the sampling rate and the

Fig. 3.3 Analogue multiplexer module
accuracy required, taking into account the accuracies of existing v.t. s and c.t.s. ${ }^{4}$. At the end of each conversion the digital form of the corresponding analogue signai is stored in the data latch (fig. 3.1). This latch reduces the conversion cycle timing by 18 ξ_{0}°, as the conversion and the data transfer to the F.I.F.O. output store can be accomplished in parallel. The format of the word written in the Iatch is:

3.2.2 The digital-data channel

In addition to analogue signals, digital data has also to be processed for a specific protection task. For example, for transfer tripping ${ }^{1}$ the circuit breaker status and the trip signal from the far end of the transmission line might have to be used at the relaying point.

Another potential use of the digital input channels is to enter data from the monitoring computer or from a control panei.

In the present digital relay, the only digital word provided is the status of the 16 switches on the control panel, the functions being presented in table 3.1

3.2.3 The data output buffer

A FIFO has been used as the interface between the data acquisition unit and the protection processor.

TABLE 3.1

THE CONTROL PANEL

Bit	Function	Bit	Function
0	Fault applied switch	8	Check ref. voltage
1	RG Plot	9	Output V,I of relay
2	YG "	10	" fiItered/unf. data
3	BG "	11	3 currents
4	YB "	12	" 3 voltages
5	RB "	13	Energise digital filtering
6	RY "	14	Start graphics
7	$P-Q$ measurement	15	Input the relay settings

The stored words are transferred one at a time. When the buffer data memory contains valid data, the data ready flag (fig. 3.1) is set. This fiag is checked by the processor using the instruction WFS, after which the first word can be fed to the micro-processor. To transfer the next word stored in the F.I.F.O block, a transfer clock signal is sent from the processor. The maximum transfer rate is one word every $1 \mu \mathrm{~s}$.
3.2.4 The Phase- locked sampling clock

The sampling clock provides sampling rates of
$2,3,4,6,8,12,16,24$ times the reference frequency. It is designed to operate in synchronism with the a. c. system within the range $42-58 \mathrm{~Hz}$, and it is implemented by employing the phase- locked oscillator principle. To select the desired sampling rate, the " rate select switches " have to be set as discussed in appendix 1. (Table A1.7) .
3.2.5 The DAU controller

As the DAU has been designed to match differing protection tasks, the controller is quite flexible in providing configuration and timing control, achieved by a programmable architecture. The flowchart of the controller program is shown in Fig.A1.10. The program is resident in two 32-word, 8-bit PROMs, providing 32, 16-bit instructions. Another PROM (256 words of 8 -bits) is used to implement the instruction decoder, which supplies the control signals to the modules described previously. The contents of this PROM are given in table A1.1.

Further information about the instruction format and the available instructions are available in ref. 4. 3.3. The protection processor (PP)

Experience from previous work at Imperial College 48 has shown that to implement protection methods with digital techniques, the employed processor must have an average instruction time of $1-2 \mu \mathrm{~s}$ and a 16 -bit accuracy.

Faced with selection of a microprocessor, the choice was between a fixed-instruction MOS chip, a bipolar bit-slice chip or a fixed-instruction bipolar chip ${ }^{24}$. The first family of MOS chips in 16 -bit versions have now appeared on the market but they are slow, having a typical instruction execution time of $3-4 \mu s$.

The bipolar bit-slice devices are 2 or 4-bit segments of the central processing unit (CPU) of a microprocessor implemented with low power Schottky bipolar logic. They offer flexibility because they are microprogrammable and they are fast (typical cycle time of $150-200 \mathrm{~ns}$) and with a variable word length.

Fixed-instruction bipolar chips are also recently available, but they do not offer the flexibility of the bit-slice family.

Consequently the PP shown in fig. 3.4 has been built around the IN'PEI 3000 bit-siice family. As with most digital processors, it is divided into four parts, namely the arithmetic and logic unit (ALU), the control section, the memory and the input and output ports. 3.3.1 The ALU

The centrai processing element (CPE) of the INTEL 3000^{25} contains all the circuits that represent a 2-bit wide slice of an ALU; therefore to build a 16-bit wide machine, eight such devices have been used.

To speed up the arithmetic operations, a carry-

look- ahead generator ${ }^{26}$ has been provided, which is capable of anticipating a carry-across a 16-bit word.

Each of the CPE's contains a full function accumulator (AC), an independent memory address register (MAR) and a scratchpad of eleven registers. Register T of this group has two of the AC qualities: i) it can be shifted to the right and ii) it can be loaded directly from the data bus or the flag input bus. Both of these features are quite convenient in implementing doubleprecision instructions.

The registers of the CPE's are allocated as follows:
i) Accumulator(AC) used for storing the result of an arithmetic and/or logical operation, and for outputting data to the data bus.
ii) KO used as the program counter (PC) of the application program and stores the address of the next macroinstruction to be executed. This address is supplied to the MAR, which as can be seen in fig. 3.4 communicates directly with the main program store.
iii) R1 used as the loop counter for the multiplication (MUL) routine.
iv) R 2 is a temporary store used: a) for the multiplicand in the MUL instruction and b) for the first word in a 3-word data block transfer (LMB,SMB).
v) R 3 is a temporary store for the second word in
a 3-word data block transfer.
vi) $\underline{R 5}$ is the counter for the required number of multiple double precision shifts (DMR).
vii) R6 provides temporary storage for the most significant 16 -bits of the product.
viii) R7 stores the return address during: a)subroutine calls and b) indirect indexing addressing mode.
ix) R8 is used as a loop counter for multiple loops in a program. Instructions are provided: a) to load the number of counts required and b) to decrement its value and skip if zero.
x) Rg preserves the $A C$ data for further operations. The final microinstruction in every $A C$ manipulation macroinstruction performs a duplication of the AC data into R9. In the case of an instruction per forming an operation which destroys the AC data, then the contents of $R 9$ are restored back to the $A C$.
xi) T. This register is used for all double pre cision instructions and for the multiplication routine. 3.3.2 The data buses connected to the ALU

The bit-slice processor employed provides five buses for communication with the memory and the $I / 0$ devices. To provide a flexible system but with fewer interconnections, the buses have been allocated as follows (see fig. 3.4):
i) The data bus

While the 3000 CPE provides independent buses for the data input and the data output, both have been combined in one bidirectional bus controlled by the microbit. EDB (enable the output buffer of CPE, i. e. output data to the data bus).
ii) The memory address bus (MAB)

As will be discussed in subsection 3.3.4 the program store and the data/constant store are separate. The MAB transmits the MAR data to the address inputs of the main program memory. There is a facility to address 64 K of store, but as the program size for a dedicated purpose relay is unlikely to exceed 2 K , only 11 bits of the MAB have been used.
iii) The flag-input bus

The I-bus of the CPE is used to test status flags from peripherai equipment. Only the data ready fiag of the data acquisition unit (fig. 3.1) is checked at the present relay.

The other buses shown entering the CPU in fig. 3.4 carry control signals from the microprogram and wili be discussed in the next subsection.
3.3.3 The control section

In a typical microprocessor the control section, that is the part of the computer which generates the required timing pulses at the right instants and selects
the correct functions to control the different devices is fixed by hard- wired logic by the manufacturer.

In the 3000 series family, the control section is defined by microprogramming an idea originated by Wilkes ${ }^{27}$. Microprogramming is a technique for designing and implementing the control function of a computer as a sequence of control signals (microinstructions), to interpret data processing functions (macroinstructions). Many big computers ${ }^{28}$ have been built around this principle.

The main merits of a microprogrammable machine
are: a) customised instruction sets suited to a particular application. b) ability to change the system performance with less hardware modifications. c) higher speeds can be achieved and d) less macroprogram locations are used as subroutines can be implemented as one new instruction residing in the micromemory. Further information about microprogramming can be found in ref. 29.

In designing a microprogrammed system, the foilowing design factors are involved:
i) The choice of a suitable microprogram sequencer (MPS), to generate microprogram addresses unconditionally or conditionally based on the flag status, to controi the carry/shift data and the interrupts. Although many MPSs are available, the one chosen ${ }^{30}$ needs the minimum number of microbits for its control but at
the expense of a more compiicated architecture. Fortunately most of the microprograms required were comparatively short and by modular programming this limitation did not introduce any problems.

ii) The selection of the microinstruction

 word length so as to control efficiently ali the available devices. To retain tie high speeds available b.y the bipolar construction of the MPS, bipolar PROMs 31 were employed for the micromemory (fig. 3.5). It was found that 30 bits were needed to control the PP of figure 3.4.iii) The size of the micromemory depending upon the number and type of the available macroinstructions. The employed MPS can address directly 512 locations. The micromemory is segmented into two parts. The first block of 256 words contains the standard instruction set while in the second block the extended set of instructions is stored.
iv) I'he way the microbits are grouped to form a field and the type of microprogramming employed, i.e. horizontal or vertical. Horizontal microprogramming is used when the microbits control a device directly, while vertical microprogramming is used when the bits are decoded. In most cases horizontal microprogramming is required. Vertical microprogramming is normally applied, when in a group of bits, only one output can be active

Fig. 3.5 Processor micro-program control module.
at any instant, thereby reducing the length of the microword. This has been used for the bus data control (see fig. 3.5), where only one device at a time can have access to the data bus. The microbit grouping can be seen from the table 3.2.
v) The choice of a pipeline or non-pipeline mode. In fig. 3.5 the pipeline registers are shown. By using them the processing time can be speeded up by 30%, as fetch and execution can be accomplished in parallel.

The way a typical macroinstruction is executed by a sequence of microinstructions can be obtained from ref. 4.

TABLE 3.2

DEFINITION OF THE MICROPROGRAM BITS

$\mathrm{F}_{0}-\mathrm{F}_{6}$	INC	$\mathrm{K}_{1}-\mathrm{K}_{4}$	CL	X	COUL	WEN	$\mathrm{B}_{0}-\mathrm{B}_{2}$	$\mathrm{FC}_{0}-\mathrm{FC}_{3}$	ID	$\mathrm{AC}_{0}-\mathrm{AC}_{6}$
31-25	24	23-20	19!	18	16	15	13-12	11-8	7	6-0

$\mathrm{F}_{0}-\mathrm{F}_{6} \quad$ The micro-function bus (μ Func. in fig. 3.4)
selects the AiU function. The possible binary values are fixed by the manufacturer and given in ref. 25.

INC is used to increment the counters addressing the data store (subsection 3.3.5).

TABLE 3.3
THE K- BUS DEFINITION

K_{1}	$\mathrm{~K}_{2}$	$\mathrm{~K}_{2}$	$\mathrm{~K}_{2}$	$\mathrm{~K}_{3}$	$\mathrm{~K}_{4}$	
9						
15	1.4	13	8	0		

K_{1}	$\mathrm{~K}_{2}$	$\mathrm{~K}_{3}$	$\mathrm{~K}_{4}$	Function
0	0	0	0	Select the whole word (16 bits $)$
0	0	1	1	Extend sign of A / D data.
0	1	1	1	Select word sign or range bit 1.
1	0	0	0	Select magnitude of the word.
1	0	1	1	Select range bits $2,3$.
1	1	0	1	Select sign of the A / D data.
1	1	1	0	Select A / D data magnitude

TABTE 3.4
THE DATA BUS CONTROL DEFINITION

B_{0}	B_{1}	B_{2}	Function
0	0	0	No device connected.
0	0	1	Enable the input port (IPE).
0	1	0	Enable the subaddress field of the
			macromemory (JMPE).
0	1	1	Enable data/constant store for read (REN).
1	0	0	Enable data output of the CPU (EDB).
1	0	1	Enable the masking memory (EMM).
1	1	0	Not used.
1	1	1	" "

3.3.4 The main memory section

In conventional computer architecture there is no distinction between the section of the memory where the instructions are stored and the section where data are stored. Such a structure involves a time consuming program counter control.

Taking into account the size of an application program (not exceeding 2 K) and that no more than 1 K of constant/data words are needed, then the most efficient and simplest way is to split the two memories as shown in fig. 3.4. To achieve this the instruction word has to be divided into 2 fields, one 6 bits wide to define the op code routed to the MPS and the other 10 bits long to define the address to the data store, and the next program address in a case of an unconditional jump. This procedure will be discussed in subsection 3.4.1. By this means the program counter controls only the main program sequence, while the addresses for constants and data are defined in the subaddress field.

As the main store is to be $2 \mathrm{~K} \times 16$ bits a low cost, high density, low power memory is favoured. In addition a PROM has to be employed, otherwise the programs will be lost during power failures. The PROMs employed are the 2708 EPROMs 32 , which provide erasing capability, so that reprogramming is possible, if changes are required. However, there is a time penalty introduced,
because these devices are of the MOS type. That is, at least 2 microcycles are needed to access them. For most of the instructions, during the program memory access time, 2 microcycles have already elapsed for the required control actions, but for short- lenght instructions and during skip instructions when the skip criterion is valid, a delay of 400 ns is introduced.

A pipeline register driven by the microbit $C L$, has been used to speed up the macroinstruction execution time (same action as in the micromemory).

For some of the instructions, the subaddress field contains data to be processed by the CPU, thus bus drivers have to be used for the 11 least significant bits. 'The drivers have access to the data bus when the signal JMPE is set. (fig. 3.4).

3.3.5 The data and constant store

The data/constant store is addressed by the 10 least significant bits of the macromemory, therefore a maximum of 1 K data/constant words can be accessed. Some of these addresses have to be reserved for the I/O ports. The 1 K store is split into data and constant memory depending on the application, but usually the data store size is greater than the constant store size.

As in the present design each data and constant store ean address 256 locations, arranged in blocks of 64 words3, 31 the rest of the data/constant memory can
still be employed, but the lacations $377,777,1377$, 1777 cannot be used to address the data store, as these are reserved for the I/O ports.

Fig. 3.6 shows the data/constant store architecture. The primary address decoder shown, is implemented by a PROM, to reduce the number of components. Its purpose is to select one of the eight data/constant modules. The data of this PROM are shown in table 3.5.

Four control bits from the micromemory are needed. WEN and REN control the write and read modes. As the RAMs have an access time of 450 ns , during the microcoding care must be taken to leave sufficient time (3 microcycles) for this purpose. Because of the MOS RAM access time, in many cases the decoding of some microinstructions have to be delayed by one or two microcycles.

The signals COUL and INC control the 8-bit counter. The reason for introducing this counter is to enable addressing of more than one successive location by a single macroinstruction. Hence the subaddress field specifies the first address of the block to be accessed, while the following ones are fetched by successively incrementing the specified address stored in the counter. The number of words accessed is defined either inherently by the macroinstruction or it is defined previously by another instruction(see subsection 3.4.4.). An 8-bit counter has been used, permitting the address of the first

8

Fig. 3.6 Data-constant memory module.

256 locations, this iimitation being taken into consideration when the application program was written.

TABLE 3.5
DATA/CONSTANT STORE DECODER

Address	Data	Function
0000	01111111	RAM 1
0001	11011111	RAM 2
0010	11110111	RAM 3
0011	11111111	Not valid
0100	11111.101	RAM 4
0101	10111111	ROM 1
0110	11101111	ROM 2
0111	11111111	Not valid
1000	11111011	ROM 3
1001	11111110	ROM 4
1010	11111111	Not valid
1111	11111111	Not valid

3.3.6 The bit test masking memory

In fig. 3.4, next to the data/constant store, the masking memory is shown, which permits the masking of any of the 16 bits in the macromemory levei. (to be distinguished from the masking K-bus at the micromemory level.). By introducing this additional memory, a bit can be tested and a decision can be taken depending on its value. This permits great flexibility and time saving in the appiication program.

The counters and the masking memory were not included in the initial processor design. They have been introduced later with no major hardware modifications at a very short time. This demonstrates the flexibility of this processor, stemmed from its microprogrammability. 3.3.7 The data input port

The purpose of this port, shown in fig. 3.4, is to input data from the DAU to the PP.

To speed-up the operation, another pipeline register has been used, controlled by the signal iD. Its operation has been discussed previously in the subsection 3.3.3.

Two types of instruction to input the data are possibie: a) IDM inputs one word at a time in the location specified by the subaddress, while b) IDB, inputs a block of data (this instruction is discussed in the subsection 3.4.4.).
3.3.8 Circuit breaker control

At the end of each sampling interval a decision has to be taken according to the protection and processor status. These decisions are:
a) Trip relay healthy i. e. an internal fauit has been detected and the processor is working properly.
b) No trip- relay healthy i. e. normal operating conditions.
c) No trip- relay failed i. e. the self-test monitoring program has found that there is a failure in the actual hardware.

To achieve better reliability at this critical stage, the following words have been assigned for each operation ${ }^{4}$.

0101...01	Trip-relay healthy
1010...10	No trip-relay healthy
Any other	No trip-relay failed.

These words are stored in a 16-bit latch assigned to the address 3778 . The above words are decoded by a PROM, and the decision is stored in the CB status and in the relay status latches. The $C B$ status is provided directly as a trip signal to the $C B$, while the relay status is transmitted to the monitoring computer for further processing according to the employed digital protection scheme.

Abstract

3.3.9 The data output port to the monitoring computer The purpose of this port is to output data to the monitoring computer, where further processing is continued. Therefore before outputing a block of data, an identification word is transmitted which selects the corresponding service program resident in the monitoring computer. With this facility, fault reports can be typed or the relay performance can be tested by plotting the primary circuit waveforms. The address assigned in the communication port is 1777_{8}.

3.3.10 The clock generator

The ciock pulse generated is used to control the fetch and execution of the microinstructions. By taking into account the timing specifications of the CPE^{25} and the MPS ${ }^{30}$ the application note of reference 34 enables the clock pulse requirements to be found depending upon the design.

A microcycle takes 200 ns , being in the high state for 150 ns and in the low state for 50 ns whilst the write mode occurs in the CPE. For better stability, the clock generator has been built with a crystal controlied osciilator running at 19.6608 MHz . The clock generator provides a start-up facility i. e. following the initial switching-on it starts always from location 0 of the application program.

It also provides a singie- step capability for
both, micro- and macrolevels, thus facilitating tests during the debugging stage.

Appendix 2 gives the circuit detaiis of all the above discussed modules of the protection processor.

3.4 The instruction set

Because the processor is microprogrammable, the instruction set is defined by the user. The basic instruction set has been devised around a typical single Accumulator processor (PDP-15). In addition some other instructions, which by experience have been found useful to be included in the basic assembly instruction repertoire (like SBS, WFS, EXS) have been written.

The initial appiication program design has been started by employing these instructions, but during the program development, it has been found that new instructions could be introduced (the extended set), to improve performance, accuracy, timing and the number of memory locations.

3.4.1 Instruction format

In subsection 3.3.4, the reason for splitting the 16 - bit word in two fields, as shown below have been discussed.

Therefore $64\left(=2^{6}\right)$ instructions can be defined. This is not a serious limitation, as at the present time 52 instructions have been written, permitting 12 more to be added.

The address/constant field may contain:
a) a main program jump address. Ten bits permit addressing of 1 K store, therefore two unconditional jump instructions have been written, i. e. JLP which addresses from $0-1777_{8}$ and JHP which addresses from 2000-37778. During the execution of a jump to subroutine instruction (JSR), the first instruction of the subroutine must aiways lie in the low page $\left(0-1777_{8}\right)$.
b) a data/constant memory address
c) an input/output port request.
d) a constant (immediate addressing).

The instruction set is divided into 4 groups according to the following operations:
a) The control group

These instructions control the processor status, i. e. Halt, Reset, etc.
b) The operate group

These modify the register contents, mainly the AC.
c) The memory reference group (MRI group)

These transfer data from/to the data store or
input/output ports and execute a logical or arithmetic operation. The final result might be left in the AC or stored in the same location in the data memory that the data originated.
d) Skip-jump group

Instructions in this group permit conditional or unconditional jumps to other parts of the main program.

Table 3.6 lists the available instructions in the 4 groups and gives their execution time.

3.4.2 Microcoding of the instructions

In fig. 3.5 the op-code bus is connected to the PX/SX-bus. The data on this bus defines the address of the first microinstruction of the corresponding macroinstruction. Because the microprogram address space is organised as a two- dimensional array, to keep the microprogram flexible all the macroinstructions are started from one of the columns $0,1,8,9$ and from the rows 0 up to 15. Then the macroinstruction is decoded if possible to a single row. otherwise it continues to the next one, always keeping in mind the restrictions imposed by the selected MPS (see Ref. 30). The macroinstructions of the extended set start also from one of the above mentioned locations, but the rest of the microinstructions are contained in the second bank of the micromemory, i. e. from 256 to 511.

TABLE 3.6

THE INSTRUCIION SET

(in parenthese the execution time in $\mu \mathrm{s}$ is given)

CONTROL	OPERATE	MRI	SKIP/JUMP
$\begin{aligned} & \operatorname{HLT} \\ & \operatorname{NOP}(0.8) \\ & \operatorname{PAU}(1000 \mathrm{n}) \\ & \operatorname{RST}(1) \\ & \operatorname{WES}(1+\mathrm{nx0} 0.6) \end{aligned}$	```CIA (0.8) COM (0.8) CSI (1.2-1.4) DEC (0.8) \(\operatorname{DMR}(2.6+(n-1) \times 0.8)\) EXS (1) INC (0.8) MSI (\(1+(n-1) \times 0.6)\) \(\operatorname{MSR}(1+(n-1) \times 0.6)\) NEG (0.8) SHI (0.8) SHR (0.8)```	$\begin{aligned} & \operatorname{ADD}(0.8) \\ & \operatorname{AND}(0.8) \\ & \operatorname{DPA}(2.8) \\ & \operatorname{DPS}(2.8) \\ & \operatorname{DSZ}(1.4-2) \\ & \operatorname{DZM}(1.0) \\ & \operatorname{FMU}(2.4+n \times 0.7) \\ & \operatorname{IDB}(n+0.8) \\ & \operatorname{IDM}(0.8) \\ & \operatorname{ISZ}(1.4-2) \\ & \operatorname{IDA}(0.8) \\ & \operatorname{LDL}(0.8) \\ & \operatorname{IMB}(2.4) \\ & \operatorname{LTR}(0.8) \\ & \operatorname{IRA}(1) \\ & \operatorname{MUL}(17) \\ & \operatorname{SMB}(2) \\ & \operatorname{SRA}(1) \\ & \operatorname{STA}(0.8) \\ & \operatorname{STT}(1) \\ & \operatorname{SUB}(1) \\ & \operatorname{SUM}(1.4) \\ & \operatorname{XOR}(1) \end{aligned}$	$\begin{aligned} & \operatorname{JHP}(0.8) \\ & \operatorname{JLP}(0.8) \\ & \operatorname{JSR}(1.2) \\ & \operatorname{RET}(0.8) \\ & \operatorname{SAD}(1.4-2) \\ & \operatorname{SBC}(1-1.4) \\ & \operatorname{SBS}(1-1.4) \\ & \operatorname{SNA}(0.8-1.4) \\ & \operatorname{SND}(0.8-1.4) \\ & \operatorname{SPA}(0.8-1.4) \\ & \operatorname{SPD}(0.8-1.4) \\ & \operatorname{SZA}(0.8-1.4) \end{aligned}$

n is specified in the subaddress field. In WHS, n depends on how many times the program stays in the loop, waiting for the flag to set. In $F M U, n$ is the number of digits after the binary point.

Other design factors considered, when writing new macroinstructions are:
a) Two microcycles must elapse from the instant the MAR has been updated to the instant a new macroinstruction can be fetched.
b) Many macroinstructions can share the same microinstructions, therefore saving in the micromemory space can be achieved. By so doing the number of locations occupied in banks 1 and 2 are 162 and 123 respectively, hence only 285 of the 512 locations are used for the present set of the 52 instructions.
c) All the macroinstructions finish with a jump to location 15, 14 or 13, depending on the type of instruction (i.e. if saving or restoring of the AC is needed) and on the number of microcycles executed after the instant the MAR has been updated.

As the microprogram is resident in bipolar PROMs , erasing is not possible. Therefore great care has been taken during debugging (see also section 3.5), to ensure a correct set.
3.4.3 The basic instruction set

The basic instruction set includes addition, subtraction, logical addition, exclusive or, shifting and many conditional jumps. The only way of accessing the memories is by direct addressing and one level of subroutine oniy is permitred.

In appendix 3, the description format and microcode of this set are given. 3.4.4 The extended instruction set

This set contains more specialised and complicated instructions and a more detailed explanation is essentiai. This set is divided into three categories:
i) Double- precision arithmetic Multiplication (MUL) of two 16-bit numbers will generally result in a product of more than 16 bits. The way the product is handied depends on the operation followed and on the accuracy required.

There are many methods available to implement binary multiplication ${ }^{35}$ the most popular being Booth's algorithm ${ }^{36}$ or " adds and shifts ". By taking into consideration the limitations of the CPE (multiple masking and shifts not available), then it has been found that by keeping track of the signs and magnitudes and by adding and shifting the multiplication of 2 16 -bit numbers can be executed in $17 \mu \mathrm{~s}$. This has been achieved by keeping the multiplication loop as short as possible having latched the multiplicand onto the data bus continuously.

As the processor handies only integer numbers, if multiplication is needed by a fractional constant (for example in digital filtering), then this needs to be implemented by adding and shifting to the right.

To avoid time- consuming operations, the fractional multiplication (FMU) instruction has been introduced. To improve the accuracy and to save still more processing time, the number of bits after the binary point is defined. The program needed is:
 (as a negative 2's complement number)
LDA y; $y=A d d r e s s$ where the positive fractional constant is stored.

FMU $z \quad ; \quad z=A d d r e s s$ of the data to be muitiplied. STA w

To caiculate the reactance and resistance of a transmission line, division is also needed. The most commonly employed method ${ }^{35}$ is non-restoring, because it handles negative numbers without any modification. For this purpose, the processor should have the ability to shift to the left two registers, otherwise the division becomes time consuming. Such a facility is not provided in the employed microprocessor, therefore the division has not been implemented so far, but the trip decision is taken without division, as discussed in chapter 5.

In the application program there are successive multiplicaiions, and it is possible to reach a point where a number greater than $2^{15}-1$ has to be multiplied by another. This problem has been solved by scaling, implemented by doubie-precision multiple shifts to the right (DNR).

The specified number of shifts depends on the size of the number, therefore accuracy is not impaired. The use of a multiplication routine which handles more than 16 bits will be the ideal solution, but as will be seen in chapter 5, the error introduced by the scaling is quite small.

Addition (DPA) and subtraction (DPS) are straightforward operations, therefore their implementation in double precision does not involve any complexity and accuracy is maintained.
ii) Transferring blocks of data

In many parts of the program, during execution of subroutines a block of 3-words has to be transferred in a common section addressable by the subroutine. For each such operation 6 program locations are needed. Improvements in the timing and in the number of locations has been achieved by using the instructions lMB, SMB where each data block consists of 3-words. A more flexible implementation, which handles a variabie number of words from $2-6$, increases the complexity of the microprogram, the size of the micromemory required and the execution time.

For comparison of the corresponding samples of successive cycles, the data samples are stored in different locations. The instruction IDB (input data block) accomplishes this by using the program:

LDA N; N=number of data samples
IDB A; $A=A d d r e s s$ in the data store where the first data in the block sample will be stored.

The foliowing addresses in the data store are accessed by incrementing the counter (fig. 3.6).
iii) Additional addressing modes

To execute nested subroutines, a method of storing the return address of the higher priority subroutine is needed. This is done by transferring the contents of R7 (subsection 3.3.1) to the data store (SRA), then executing the subroutines and finally reloading them back into R7 (IRA).

The operations for a singie-ievel and a 2-level subroutines are shown below:

single- level

Program store

Data store

177 : 31

Two-level
subroutine

Indexed addressing ${ }^{37}$ is quite useful for addressing different locations in the program memory arranged with equal spaces between them. For example such a program could be the accessing of successive data samples, as in the following program, i. e. in the first sample iocation X is addressed, while at the next one, location $X+2$ is addressed and so on.

X: LDA 2
JIP 241 ; go back into the main program
$\mathrm{X}+2$: LDA 3
JIP 421

For implementation a program which controls such
a procedure is produced by an indirect indexed addressing, thus:

ISZ $y \quad ; \quad y$ is a iocation in the data store with ISZ y initial value $X-2$. Instead of assigning a separate index register to indicate the required step, the data is incremented and stored directly in the data location. Therefore the indexing has been accomplished.

LRA y; This is the indirect step, because the RET address/constant field specifies the address of the next jump address. When the instruction REP is executed, the program jumps to the location X.

To close the loop, the value of y has to be checked ${ }^{37}$. If it contains the iast address in the program block, then location y has to be reset to its initial value.

The above group of instructions can be written in a microprogram, and one instruction can implement the indirect indexed addressing mode. Such a procedure has not been considered necessary for the present program, because it is not used extensively.
3.5 Development and testing support

The development and testing of a microprocessorbased system is quite different from that required for a simple digital circuit. The complexity invoived at
this stage stems from the fact that 16 channels of data have to be checked simultaneously plus some other controi signals. In addition the system has to be checked as an integral unit, i. e. hardware and software working together. Sometimes it is difficult to identify if the maloperation of the unit is caused by hardware or software errors.

To build-up the system, additional aids are needed as PKOM simulators, PROM programmers and crossassemblers.

In the following these aspects will be discussed. In this microprocessor, with its two levels of programming (micro- and macro-), the development stage becomes more complicated.
3.5.1 Deveiopment aids at the micro-level.

Once the actual hardware has been built and any wiring errors corrected, the power supplies have the specified polarity, level and ripple, there is no improper selection of components and no improper timing specifications, then the system is ready for testing.

To ease the testing of the microinstructions, a bipolar PROM simulator is necessary, having a RAM memory with access time similar to that of the PROMs for the micromemory. Data into the RAM is written by selecting suitabie switches on the control panel. Loading of these data through a minicomputer is unnecessary as
most of the microprograms are short. For this reason the employed simuiator is 16-word deep, 32-bit wide. By connecting the simulator through a cable to trie sockets of the micromemory, the actual debugging of the microinstructions can be accomplished. Macroinstructions decoded in more than 16 microinstructions can be tested in parts.

The next step is to generate the 32-bit binary code corresponding to each microinstruction. A cross-- assembler has been written in the NOVA 1210, which permits the generation of the binary data for all the specified fields.

The final stage is to transfer the data into the PROM. For this purpose a bipolar PROM programmer has been constructed, which generates the required pulses to program the PROMs. More details about the above aids are given in Appendix 4.

Needless to say that during the testing stage logic probes and a fast oscilloscope are necessary. If a logic analyser ${ }^{38}$ is available, with its sophisticated timing analysis, then the fast solution of many logic problems is possibie in a microprocessor-system.

In the present design, a single-step mode and a means of resetting the system and restarting its program, together with a dispiay of the microaddress and data bus are provided.

Abstract

3.5.2 Development aids at the macro-level

Once the microprocessor is working satisfactorily with some small test programs, most of the expected errors will be software errors in the main program.

A cross- assembler for the devised instruction set has been written which generates the 16 -bit binary code. This assembier is of the pass one type, hence mnemonics for the address/constant fieid cannot be used. Finally the binary data generated have to be transferred into the EPROMs . To accompiish this another programmer driven by the NOVA 3 has been used, therefore the EPROMS 32 programming procedure is different from that of the bipolar PROMs, thus another type of programmer is necessary.

The employed EPROMs are guaranteed for 15 erasures but for a large program it is better first to test it by using a MOS PROM simulator. This simulator works on the same principle as the previous one, but its RAMs are of the MOS type having an access time of 450 ns . In addition the data can be Ioaded from the NOVA 3, which speeds-up the operation tremendousiy. Another advantage of a computer-driven simulator is that all the tested versions of the program can be stored in a diskette for future comparison.

If the program does not operate properly, then
breakpoints can be inserted at the suspected locations by storing there a HLT (modifications in the program already stored in the simulator can be done easily through its control panei.) When the processor halts, the data on the data bus is the contents of the accumulator. An additional display of the macroprogram address is provided.

If a minicomputer is available a more advanced development system 39,40 can be used, which tests more efficiently the performance of the microprocessor. The facilities provided by such a system are:
a) A part of the program already tested can be contained in the EPROMS, while the one tested for the first time can be resident in the simulator.
b) During a breakpoint, a printout of the microprocessor state is possible, therefore the programmer can have information about the program flow.

3.5.3 Aids needed for field service

There are many tools which can locate failures in the system, in the field. Some of them rely on signature analysis techniques ${ }^{41}$, in which each mode of the processor is assigned a special state called signature. There is a possibility of 99.998% of detecting an erroneous data stream. But such a procedure needs some special features to be taken into account during the design stage. i'he great advantage of this technique
is that testing can be achieved by a simple portabie device and with minimum personnel training.

Other methods are based on software testing techniques ${ }^{42}$. Using such methods the response of the processor can be compared with what it should be. These methods can be of the self- diagnostic type in which, for each module of the processor, a test is performed, e. g. CPU functions, I/O testing, memory testing.

The PROMs can be tested by comparing their contents with the contents of a master copy, while a RAM can be tested with algorithmic pattern generation.

In the present application program the following tests are executed during the normal protection calculations:
a) The correct operation of the data acquisition unit and its power supplies is checked every sampling intervai.
b) The three voltages and currents are checked at the relaying point, which gives a rough idea about the integrity of the whole system.
c)

If the power flow at the relaying point is known by other measurements, then by comparing the corresponding values computed by the relay, it can be seen, if the impedance algorithms are working properly.

Further diagnostics can be inciuded. However
they cannot be executex during normal operation, because they need considerable processing time. If their execution takes less than a sampling interval, then one solution is to steal one sample during which the normal protection operation is repiaced by the diagnostic execution. This can be done over regular intervals or upon a request from the operator.

CHAPTER 4

DISTANCE ALGORITHMS

4.1. Introduction

The purpose of a distance relay is to measure the impedance of a line up to the fault point. To achieve this by digital techniques, an algorithm has to be employed which calculates the line characteristics continuously.

When a disturbance occurs in a power system network, the digital distance relay should calculate the measured impedance in a short time interval, preferably less than 20 ms . This is difficult to achieve, because a sudden change in the state of a power system alters the network stored electrical and magnetical energies. As a consequence the voltage and current waveforms are considerably distorted.

The main transients components generated after a fault disturbance are:
i) a d.c. decaying exponential and
ii) a band of high frequency oscillations having varying amplitudes. These can appear in both, the voltage and the current waveforms, but in general (i) appears mostly in the current waveform and (ii) in the voltage.

4.1.1. The d.c. exponential component

When a fault occurs on a power system, a d.c. component is generated to satisfy the physical condition of zero current change at the instant of the fault.

If the capacitance in fig. 4.1 is neglected, the instantaneous value of the primary current is: ${ }^{46}$

$$
\begin{aligned}
& i_{p}(t)=\frac{E}{Z}\left[\sin (\omega t+a-\varphi)-e^{-t / T} \sin (a-\varphi)\right] \\
& \text { where } \quad \ddot{Z}_{Z}=\dot{Z}_{S}+\dot{Z}_{I}=Z \underline{Q}=R+j \omega L
\end{aligned}
$$

$$
\begin{aligned}
a= & \text { angle after zero voltage, at which the } \\
& \text { fault occurs }
\end{aligned}
$$

and

$$
T=I / R \text { sec. }
$$

By referring to the secondary side of the c.t. (fig.4.2)

$$
\begin{equation*}
v=-\frac{N_{2}}{N_{1}} \frac{E}{Z} Z_{a}\left[\sin \left(\omega_{1} t+\alpha_{1}-\varphi+\varphi_{a}\right)+\frac{X_{a}}{Z_{a}}\left(\frac{R}{X}-\frac{R_{a}}{X_{a}}\right) e^{-R t / L_{\sin }(\alpha-\varphi)}\right] \tag{4.2}
\end{equation*}
$$

As can be seen from (4.1) and (4.2), when $\alpha-\varphi=90^{\circ}$, the d.c. offset has a maximum value. As in $h . v$. systems φ is clase to 90°, this condition corresponds to a fault applied at approximately zero voltage. On the other hand the d.c. component vanishes when $a \simeq \pi \div 2$

Equation (4.2) produces the conclusion that, if the burden of the c.t. is selected such that:

$$
\begin{equation*}
\frac{X_{a}}{R_{a}}=\frac{X}{R} \tag{4.3}
\end{equation*}
$$

Then the exponential term becomes zero.
As R / L includes the source and the line up to the fault point, exact cancellation is not possible. But the following conditions have to be considered:
i) for $h . v$. lines, it can happen $X_{L} / R_{L}>X_{S} / R_{S}$ which makes the ratio X / R of the primary circuit impedance Z almost identical to that of the transmission line.
ii) for accuracy the critical point in terms of discrimination is at the far end of the line. Therefore, matching can be achieved reasonably well, if X / R is composed of the source and 85% of the line impedance.
iii) the majority of short circuits in h.v. systems occur close to the voltage maximum, because in a flashover, the line potential is raised by induction until the sum of the induced potential plus the phase voltage exceeds the line insulation limit, which obviously will occur first on the phase nearest to the voltage maximum.
iv) in digital protection, an algorithm can be employed, which takes into account the exponential term.

Hence the error caused by the d.c. offset in the impedance calculation can be considerably diminished.

A d.c. exponential can be apparent in the voltage signal too. This component is not as serious as the
corresponding one in the current, because it vanishes, when:
i) $\varphi=\varphi_{I}$ i.e. $X / R=X_{L} / R_{L} \quad$ or
ii) $a=\varphi$ i.e. zero voltage fault incidence angle.
4.1.2. High - frequency harmonics

If a fault occurs at a voltage maximum, the electrical energy stored in the line capacitance discharges through the short circuit and the source impedance. On a transmission line with distributed line capacitance, travelling waves are generated after a fault occurrence. The velocity of those travelling waves, which are propagated along the line and reflected at the source and at the fault point, determine the dominant high- frequency oscillation. The propagation velocity depends on the distributed inductance, capacitance and 47
resistance of the line.
The dominant frequency will lie approximately in the range:

$$
\begin{aligned}
& f_{h f}=\frac{1}{4 \tau} \cdots \frac{1}{2 \tau} \mathrm{~Hz} \\
& \text { where (4.4) } \quad \tau=\frac{1}{V}=\text { travel time of the wave between } \\
& \text { source and fault point. } \\
& I=\text { length of the line } \\
& v=\text { line's characteristic propagation velocity = } \\
& \frac{\omega}{\sqrt{2 y}} \quad \simeq \frac{\omega}{\sqrt{x y}}
\end{aligned}
$$

where $\dot{z}=r+j x=$ Impedance of the line/mile
and $\mathrm{r}, \mathrm{x}, \mathrm{y}=$ resistance, reactance and shunt susceptance respectively of the line/mile.

These two limits of $f_{h f}$, depend on the source impedance $\dot{\mathrm{Z}}_{\mathrm{S}}$

In a three phase system the travel time for phase faults(p.f.) and ground faults (g.f.) are different and different frequencies are introduced for p.f. and g.f. The ground surge is slower, therefore it introduces a lower frequency oscillation, i.e. closer to the fundamental one and hence more difficult to filter.

In addition non- harmonics are generated, caused by non- linearities in the transducers.

The electromechanical relays are inherently low- pass filters. For static relay a filtering process has to be implemented.

In digital distance relays there are two ways to filter these frequencies:
i) by a suitable choice of analog and digital filter combinations, or
ii) allowing the algorithm to take directly into account these harmonics.

In the next section, a brief discussion of the available types of algorithm for distance protection and their properties will be given.

4.2. Types of distance algorithms

Many types of distance algorithm have been proposed, but their performance depends on the sampling rate, the filtering provided and on the applied conditions.

An extensive study of their frequency- response, magnitude characteristics is given by Ranjbar. 48

A survey of some of the present algorithms, which compares and evaluates them according to specific criteria, has recently been published by Gilbert et.al. 49

Generally these algorithms can be divided into five categories, according to the way they perform the impedance calculation from samples of voltage and current waveforms. A brief discussion of these methods and their problems are given below.
4.2.1. The $\dot{\mathrm{V}}=\dot{\dot{S}}_{\mathrm{L}} \dot{\mathrm{I}}$ method

One way to describe the transmission line
parameters is by using phasors i.e. $\dot{\mathrm{V}}=\dot{\mathrm{Z}}_{\mathrm{L}} \dot{\mathrm{I}}$ (fig.4.3). Such a description is valid only for a steady- state condition. Under transient conditions, however, the presence of d.c. and high- frequency components will produce errors in the impedance calculations.

Such methods are:
i) The peak determination method.

This method finds the magnitude and the angle of

$$
\begin{aligned}
& \dot{Z}_{S}=R_{S}+j X_{S} \\
& \dot{Z}_{L}=R_{L}+j X_{L} \\
& C=\text { CAPACITANCE OF } \\
& \text { THE LINE }
\end{aligned}
$$

Fig.4•1 Equivalent circuit for one phase

Fig. 4. 2 C.T. equivalent network

Fig. 4-3 Transmission line parameters
the line impedance, by the predictive calculation of peak voltage and peak current. To achieve this, the first derivative of voltage and current are salculated. This method is sensitive at the presence of high- frequency and d.c. components.

Rockefeller ${ }^{51}$ suggested that the effect of the d.c. component can be reduced by using the first and second derivative of voltage and current.

To remove the high- frequency components, especially those close to the fundamental, a higher-- order filter with a low cut-off frequency has to be employed. Typically a third order 90 Hz filter has to be used.
ii) Fourier method 52,53

By numerical computation of the Fourier series integrals, the complex value of the fundamental component of voltage and current can be extracted in rectangular form. The inherent filtering process of the Fourier analysis gives a slow but smooth and accurate response. While the Fourier method can remove the constant d.c., it cannot filter the exponential one, hence its accuracy is impaired.

Another approach to the online evaluation of the Fourier transform is described by johns. It needs a small window of information and is independent of the power system waveforms. In addition it enables the
measurement of the line impedance to be effected at any chosen frequency. The advantage of this method is that a trip decision can be reached in an interval of about 3/4 of a cycle after the fault inception, while the previous Fourier methods require about one cycle detection time.
iii) The square- wave method 55

To reduce the arithmetic calculation, square waves (Walsh functions) can be used in place of the sinusoidal ones in the Fourier method. The response of this method is quite close to that of the Fourier approach.
4.2.2. The differential equation method

Another way to describe the transmission line parameters is by the equation:
$v=R_{L^{i}}+I_{I} \frac{d i}{d t} \quad$ (see fig. 4.3) (4.5)
The great advantage of this method, compared with that of the section 4.2 .1 , is that eq.(4.5) is valid for both steady- state and transient conditions. Therefore d.c. offset and harmonic components are recognized as valid components. However, an error is introduced as eq.(4.5), neglects the shunt capacitive effect. For long transmission lines where the capacitance discharge becomes apparent as travelling waves, harmonics and nonharmonics are generated. In such a case a simple filter, which counts for these frequencies can
be used.

Some methods, which use this equation, are:
i) The McInnes and Morrison method. 56

By integrating the equation (4.5) for the time intervals $\left(t_{0}, t_{1}\right)$ and $\left(t_{1}, t_{2}\right)$, where $t_{1}-t_{0}=t_{2}-t_{1}=1 / 4$ of a cycle,two equations can be obtained. From this pair of simultaneous equations, R_{L} and I_{L} can be calcuiated.

Another choice of the integration limits is mentioned by Ranjbar. If the limits are ($t_{k}, t_{k}+T \frac{N}{2}$) and $\left(t_{k+1}, t_{k+1}+T \frac{N}{2}\right)$, where $T=20 \mathrm{~ms}$ for a 50 Hz system and N the sampling rate, then all the harmonics can be considerably attenuated.
ii) The harmonic filtering method ${ }^{77}$

By selecting overlapping limits of integration chosen to eliminate low order harmonics and their multiples, a suppression of high frequencies can be achieved. For efficient and accurate calculation, the sampling rate must be a multiple of the positive harmonic order that is intended to be removed.
iii) Mean square error ${ }^{58}$

Equation (4.5) can be rewritten as:
$L_{L} \frac{d i}{d t}+R_{L} i-v=\varepsilon(t)$

Where $\varepsilon(t)$ is the error caused by shunt capacitance and noise. The principle of the method is to calculate R_{L}
and L_{L} by minimising the error function $\varepsilon(t)$ over a period of time $(0, t)$.
iv) Minimisation of errors over several intervals ${ }^{58}$

The same principle as above can be applied by dividing the interval into n parts and applying the same method. The final result is better than that of (iii), but the computation is time-consuming.
v) Solution of the differential equation by using first differences 59,60

In the McInnes method, equation (4.5) has been solved by integration. A simpler way to solve the differential equation is by converting it to a difference equation. This method requires the minimum of computation time of all previously mentioned methods and wifl be examined later in more detail.
4.2.3. Curve fitting methods

All previous methods have calculated R_{L} and L_{L} by using the raw samples of voltage and current with a possible prefiltering by analogue and/or digital methods. Instead, the samples could be fitted to a predefined waveform. Hence a new pair of voltage and current can be obtained, which are exact if the analogue signals change in the assumed manner. By employing different kinds of curve fitting, the following algorithms have been published:
i) Sinusodial curve fit

This method fits the sampled data, to
fundamental sinusoidal quantities, by using three consecutive samples. Hence it is sensitive to d.c. offsets and higher harmonics.

Another method proposed by Makino uses two samples to calculate $\mathrm{V}^{2}, \mathrm{I}^{2}$ and VIcose, where V and I are the magnitudes of voltage and current respectively and φ their phase difference. To achieve a better performance a combination of filters is employed to attenuate d.c. offsets and the higher harmonics.
ii) Least- squares fit

The real and imaginary parts of voltage and current can be calculated by using the sampled data being fitted to an offset sine wave with a second harmonic. 63 64
Sanderson employs a second order Polynomial curve fitting, prior to the inductance and resistance calculation. Equation (4.5) is used to calculate the impedance of the line.
4.2.4. Travelling wave method

After the occurence of a fault, transient travelling wave phenomena distort the waveforms of voltage and current. Some algorithms have been published based on travelling wave theory. Some of them rely on the relaying point data, ${ }^{65}$ others on data from both ends of the 66 line.

The first paper by. Vitins derives the fault distance as a time delay between two quantities associated with the travelling waves at the relaying 66 point. The other method by Takagi derives an equation which is valid only for internal faults. Both methods seem promising because of the fast response, but they require a computation of some complexity.
4.2.5. Simulation of analogue relays

67
A recent paper by Mitani simulates the conventional relay characteristics, such as mho or reactance, by employing digital techniques. A highorder digital filter is used to attenuate the d.c. offset and higher-frequency components.
4.3. Criteria for the choice of an algorithm resident in a microprocessor

The previous brief discussion indicates the large number of the available algorithms for distance protection. As has been mentioned the majority of them employ either a scientific or a process-contol computer.

Application of a distance algorithm in a fixed point arithmetic microprocessor implies some limitations. Firstly the accuracy of the computations will be impaired due to round- off errors. Techniques to improve these have been discussed in chapter 3. Secondly the program and data memory locations are limited. Extension of the memory is possible, but with a time penalty.

Thirdly its processing speed cannot be compared with that of large mainframe computers. The microprocessor employed here has a speed comparable to that of a minicomputer which affects the possible sampling rate.

Consequently a compromise has to be arrived at for the algorithm choice. From the point of view of microprocessor application, distance algorithms can be divided into two categories:
i) those that process a large number of samples covering a major portion of a fundamental cycle to extract information about the fundamental waveform. Although it takes longer to reach the new value of the impedance, it is reached smoothly because of the inherent filtering properties of the algorithm.
ii) those which have short data windows extending over a small portion of the cycle. As the number of the processed samples is small, they follow changes in the impedance faster than the methods of category (i). But as they might pass frequencies other than the fundamental one, their response is rather variable until they settle down to the correct value.

The most important aspect of a distance algorithm is how fast it will settle to the new operating conditions, after which the maximum permissible variations in the impedance must be about $\pm 5 \%$. Its noisy response during the transient period will not
affect the trip decision, if a suitable strategy is applied. This will be discussed in the program organisation in chapter 5.

Methods belonging to category (i) need more processing time and more memory locations that those of category (ii). So for this application it was decided to employ an algorithm of the second category to accomplish distance measurement.

As time was not critical, a digital filter was used, to remove the higher harmonics. Instead of using another filter to remove the d.c. offset, it was better to use an algorithm which took it into account.

Two more reasons contributed to this decision:
i) The advantages of a non- switched distance scheme have been examined in chapter 2. These advantages apply also to a digital scheme. This implies that between two samples, six impedance algorithms have to be computed, producing continuous tracking of changes due to possible fault disturbances, to run this program in real time i.e. before the arrival of the next sample, a simple algorithm has to be applied.
ii) Experience has shown that considerable time is needed for the handling and modification of the data, in a form which can be used by the subroutines. So the calculation for the actual impedance has to be kept to a minimum.
4.4. The distance algorithms programmed in the
dedicated microprocessor

A simple algorithm which can cope with the d.c. offsets can be obtained by solving the differential equation of the line using first differences.

As has been mentioned earlier, for long h. V . transmission lines, a filter has to be used for any method based on this description because of errors introduced by travelling waves and other effects. Therefore instead of using the McInnes and Morrison- 56 method, which has inherent filtering properties due to the integrations, it was decided to use the simpler solution of the differential equation (4.5) with an appropriate filter.

At the next subsections the filter process and the algorithms employed are discussed.
4.4.1. The filtering process

A sampling rate which permits the execution of the algorithm has to be determined. The faster the sampling rate, fewer will be the numerical errors. It 48
has been found that 8 samples/cycle is a good compromise, as 2.5 ms are available for the processing time.

It is well known in communication theory that if an analogue signal is sampled, the conversion will be distortionless if the signal is bandlimited i.e. it does not contain frequencies greater than half the sampling
frequency. Otherwise an aliasing effect takes place which means that higher frequencies are folded back and appear as lower frequencies. This is caused by the sampling process at equally spaced points. Once the sampling has been performed, the effect cannot be mitigated.

The only way to avoid such a distortion is by ensuring that the analogue signal is bandlimited, by employing an anaiogue lowpass filter with a cutoff frequency less than the half of the sampling frequency, i.e. equal to the Nyquist frequency.

As the sampling rate is 400 times per sec., that means that the Nyquist frequency is 200 Hz , hence an analogue filter having a cutoff frequency of about 200 Hz has to be constructed. To ensure sufficient filtering, a second- order Butterworth active lowpass filter with a cutoff frequency of 180 Hz was implemented, using the design tables of ref. 69. The circuit details of the filter are shown in Appendix 5.

Such a filter was applied to all current and voltage waveforms sampled from the three-phase system. By using the group delay characteristics graphs of Butterworth filters, it can be shown that the group delay for the system fundamental frequency (50 Hz) is 1.376 ms .

The removal of the unwanted harmonics was accomplished by digital filtering. The voltage waveforms
are most seriously affected by the presence of higher harmonics, but both voltage and current have to be filtered by the same amount, otherwise a phase difference will be introduced. For the same reason, the filtering has to be done by digital, rather than analogue techniques. Analogue filters, because of the drift of the analogue components can have non- matched phase responses, i.e. different phase delays. To build analogue filter with low drift, expensive devices have to be used. As a digital filter is advantageous and processing time is available, digital filtering at this stage is preferable.

The filter used is a second- order Butterworth lowpass digital filter with a cutoff frequency of 120 Hz . The choice of such filter is based on the conclusions of reference 47 . By using equation (4.4) and the data of a typical 230 KV or 400 KV transmission line, it can be shown that for a line 300 miles long the highest minimum frequency will be about 124 Hz .

For a shorter bine, this filter might be unnecessary, as the analogue antialiasing filter is present. Hence the relay has two options, i.e. if filtering is desirable, the digital filter routine is activated by a switch on the front panel of the relay. The group delay for a digital filter will be longer than that of an analogue equivalent. For the specific filter
the group delay at 50 Hz is 2.4 ms .
The transfer function of the digital filter is:
$H(z)=a_{0} \frac{1+a_{1} z^{-1}+a_{2} z^{-2}}{1+b_{1} z^{-1}+b_{2} z^{-2}}=\frac{Y(Z)}{X(Z)}$
where
$X(Z)=Z$-transform of the input $x(t)$
$Y(Z)=Z$-transform of the output $y(t)$

As the filter process has to be repeated six
times for a three- phase system, a configuration which requires the minimum of data- memory locations was applied.

Such a configuration is shown in fig. 4.4., called " direct realization ". Its software realization in the microprocessor is shawn in fig. 4.5.

The filter's coefficients have been calculated
by using the bilinear techniques and are:

$$
\begin{aligned}
& a_{0}=0.391336 \\
& a_{1}=2.000 \\
& a_{2}=1.000 \\
& b_{1}=0.369527 \\
& b_{2}=0.195816
\end{aligned}
$$

Since most of the coefficients are fractional numbers, there are two ways of implementing them. One way is to generate them by multiple shifting additions and subtractions. The second way is by using the fractional multiplication command (see chapter 3). Both methods can only give approximated values of the

Fig.4.4 Direct block diagram of the second-order digital filter

Fig. 4.5 Software realization of the digital filter shown in Fig. $4 \cdot 4$
coefficients. The second method is faster in execution, requires less memory locations and the approximated coefficients can be very close to the computed ones. The reason for trying to achieve a close approximation of the filter coefficients is that quantization of them is equivaltent to an additive source of noise. Such a process can affect the stability of the filter. 73 The filter's frequency response and impulse response can be seen in fig. 4.6, for the computed and the approximated coefficients. This approximation does not affect its performance significantly.

The approximated coefficients are:
$a_{0}=0.390625$
$b_{1}=0.369141$
$b_{2}=0.195313$
To demonstrate the ability of the filter to filter out higher harmonics, the oscillograms of fig. 4.7 have been taken by generating harmonics in the transmission line model used. The analogue signal is passed through the antialiasing filter, and then after the digital conversion is filtered by the digital filter implemented with the approximated coefficients in the microprocessor. It requires a processing time of about $45 \mu \mathrm{~s}$ for each signal at each sample. The harmonics shown in fig. 4.7 have been generated by connecting a $65 \mu \mathrm{~F}$ capacitor at the relaying point and applying a fault on

Fig. 4.6. The digital filter responses

- Computed coefficients

A A Approximated coefficients

(a) Voltage

Fig. 4.7 Unfiltered/filtered data by the lowpass second-order Butterworth filter with a cutoff frequency of 120 Hz
the transmission line.

After the voltage and current filtering has been accomplished, the next step is to compute R_{L} and L_{L} as seen by the relay, by using the filtered samples.

4.4.2. Mathematical basis of algorithm

The differential equation (4.5) is used to describe the transmission line with the unknowns R_{I} and L_{L}.

In fig. 4.8 successive samples $1,2,3,4 \ldots$. of voltage or current are shown. There are three ways in selecting the points for which eq. (4.5) can be solved from these samples.
i) The midpoints formula

This method solves eq. (4.5) at the midpoints between two consecutive samples i.e. 1c,2c,3c..., by calculating v, i and $d i / d t$ at these instants.

By considering first differences, i.e. a straight line approximation between two consecutive sample points, the following quantities can be computed:
$v_{1 c}=\frac{v_{1}+v_{2}}{2} \quad i_{1 c}=\frac{i_{1}+i_{2}}{2} \quad \frac{d i_{1 c}}{d t}=\frac{i_{2}-i_{1}}{t_{2}-t_{1}}=\frac{i_{2}-i_{1}}{h}$
Where $h=\frac{2 \pi}{\omega N}$ is the sampling interval in secs, and N is the sampling rate in Hz .

The same procedure can be repeated for the midpoint $2 c$. Generally, the first midpoint is called A, and the second

Fig. 4.8 Waveform of voltage or current and its samples
one B.
Consider as:
$\left.\begin{array}{ll}V A=v_{1}+v_{2} & V B=v_{2}+v_{3} \\ C A=i_{1}+i_{2} & C B=i_{2}+i_{3} \\ D C A=i_{2}-i_{1} & D C B=i_{3}-i_{2}\end{array}\right\}$

Then the following pair of simultaneous equations can be formulated by using equation (4.5) at the instants A and B .

$$
\left.\begin{array}{l}
\mathrm{VA}=\mathrm{R}_{\mathrm{L}} \mathrm{CA}+\frac{2 \mathrm{~L}_{\mathrm{L}} \mathrm{DCA}}{\mathrm{~h}} \\
\mathrm{VB}=\mathrm{R}_{\mathrm{L}} \mathrm{CB}+\frac{2 \mathrm{~L}_{\mathrm{L}} \mathrm{DCB}}{\mathrm{~h}}
\end{array}\right\}(4.10)
$$

By algebra, the values of R_{L} and I_{L} can be obtained, as follows:

$$
\begin{align*}
& R_{L}=\frac{V A D C B-V B D C A}{C A D C B-C B D C A}=\frac{N_{R}}{D} \tag{4.11}\\
& I_{L}=\frac{h}{2} \frac{V B C A-V A C B}{C A D C B-C B D C A}=\frac{h}{2} \frac{N_{L}}{D} \tag{4.12}
\end{align*}
$$

If pure sinusoidal signals are considered, then it can be seen that the quantities present in (4.11) and (4.12) are not the true values of the analogue signals. Specifically they are:
$V A=2 \hat{V} \sin \left(\omega t+\varphi-\frac{\pi}{N}\right) \cos \frac{\pi}{N} \quad V B=\hat{V} \sin \left(\omega t+\varphi+\frac{\pi}{N}\right) \cos \frac{\pi}{N}$ $\hat{C A}=2 \hat{I} \sin \left(\omega t-\frac{\pi}{N}\right) \cos \frac{\pi}{N}$ $C B=2 \dot{I} \sin \left(\omega t+\frac{\pi}{N}\right) \cos \frac{\pi}{N} \quad(4.13)$ $D C A=2 \hat{I} \cos \left(\omega t-\frac{\pi}{N}\right) \sin \frac{\pi}{N} \quad D C B=2 \hat{I} \cos \left(\omega t+\frac{\pi}{N}\right) \sin \frac{\pi}{N}$ where \hat{V}, \hat{I} are the voltage and current amplitudes
respectively and φ their phase difference.
Therefore because of the sampling process some constant terms are introduced in $N_{\mathrm{R}}, \mathrm{N}_{\mathrm{L}}$, $\mathrm{H}_{\text {, shown }}$ in eq. (4.14)

$$
\begin{aligned}
& N_{R}=-\left(2 \sin ^{2} \frac{2 \pi}{N}\right) \hat{V} \hat{I} \cos \varphi \\
& N_{L}=-\left(4 \cos ^{2} \frac{\pi}{N} \sin \frac{2 \pi}{N}\right) \hat{V I} \sin \varphi \\
& D=-\left(1-\cos \frac{4 \pi}{N}\right) \dot{I}^{2}
\end{aligned}
$$

For a sampling rate of 8 samples/cycle, these become:

$$
\begin{align*}
& N_{R}=-\hat{V} \hat{I} \cos \varphi \tag{4.15a}\\
& N_{L}=-2.414 \hat{V} \hat{I} \sin \varphi \tag{4.15b}\\
& D=-\hat{I}^{2} \tag{4.15c}
\end{align*}
$$

But:

$$
R_{L}=\frac{\hat{V}}{\hat{X}} \cos \varphi \quad \text { and } \quad X_{L}=\frac{\dot{V}}{\hat{I}} \sin \varphi \quad(4.16)
$$

comparing eq.(4.15) and eq.(4.16) it can be seen for the selected sampling rate, that the only term needing correction is N_{I}. As will be seen in chapter 5 , this correction does not need the additional multiplication, as this term can be taken into account in the reactance limit.

This method needs a data window of 2 sampling intervals i. e. 3 samples. Referring to fig. 4.8, the calculations start ?fter sample 3, by using the values at the midpoints 1c, 2c. Then the next sample (point 4) enters and the calculation is continued, by using the midpoints $2 c$ and $3 c$ and so on.
ii) The sample formula

Instead of evaluating eq.(4.5) at the midpoints 1c and 2c, the actual samples 2 and 3 can be used, then only di/dt has to be computed.Samples 1 and 3 are needed for(di/dt) 2 and samples 2 and 4 for $(d i / d t)_{3}$.

Thus a data window of 3 sampling intervals is necessary. To avoid this, a new method has been devised which uses one sample and one midpoint, as shown next.
iii) The sample and midpoint formula.

The two points used are the sample point 2, and the midpoint 2c, hence point 1c of the midpoint formula has been replaced by sample point 2. That means that the computation moves faster to the postfault data.

By following the same nomenclature as previously, it can be seen from fig. 4.8 that:

$$
\begin{array}{ll}
V A=v_{2} & V B=v_{2}+v_{3} \\
C A=i_{2} & C B=i_{2}+i_{3} \tag{4.17}\\
D C A=i_{3}-i_{1} & D C B=i_{3}-i_{2}
\end{array}
$$

Again if pure sinusoidal data are considered, the following corrections are needed, because of the sampling process:
\(\left.$$
\begin{array}{lr}\begin{array}{l}V A=\hat{V} \sin (\omega t+\varphi) \\
C A=\hat{I} \sin (\omega t) \\
D C A=2 \hat{I} \cos (\omega t) \sin \frac{2 \pi}{N}\end{array}
$$ \& VB

CB\end{array}\right\} \quad\)| same as |
| :--- |
| previously |

To apply (4.18) in (4.11) and (4.12), DCB has to be multiplied by $4 \cos ^{2} \frac{\pi}{N}$. Therefore in place of $D C B$ in (4.11) and (4.12), 3.414 DCB is used.This requires one more multiplication than method(i). By substituting the expressions (4.18) and the modified DCB, in (4.11) and (4.12) it can be found that for 8 samples/cycle:
$\mathrm{N}_{\mathrm{R}}=-\hat{\mathrm{V}} \hat{I} \cos \varphi$
$N_{L}=-\left(\sin \frac{2 \pi}{8}\right) \dot{\mathrm{V}} \dot{\mathrm{I}} \sin \varphi=-.707 \hat{\mathrm{~V}} \sin \varphi$
$D=-\hat{I}^{2}$
This method needs again a data window of 2 sampling intervals. The calculations begin after sample 3, using points 2 and 2c, then at the next sample the points 3 and $3 c$ are used and so on.
4.4.3. Response of the algorithms

To compare the response of these algorithms, data have been received from the model of the line and the program has been run off- line on a main- frame computer.

Fig 4.9 refers to the midpoints formula. It can be seen that the reactance during the prefault period is not steady caused by the numerical errors. The tests shown in the following figures have been carried out using a resistive load. The only reactance present in the model was that of the transmission line. The power factor for these tests was 0.997 i. e. $Q=4.4^{\circ}$. As N_{L} is analogous to $\sin \varphi$, and $\sin \varphi$ is in the neighborhood of

Fig. 4.9 Response of the midpoints formula
zero, it is almost linear with a very steep slope. Small changes in the angle will produce a big change in the value of $\sin \varphi$. Taking into account the A / D converter resolution and the fact that the prefault current is small, then errors are introduced because of the quantization of the current signal. The switching- gain amplifiers ${ }^{4}$ will improve the results in such cases. In addition the offsets present in the antialiasing analogue filters, introduce further errors, especially in the region of zero current.

Tests have been carried out, by connecting a motor at the far end of the line lowering the power factor to 0.96 i. e. $\varphi=17^{\circ}$. Fig. 4.10 compares the results under these two different types of load. It can be seen that the algorithm behaves within the specified accuracy, i. e. about $\pm 5.2 \%$. The inaccuracy in the reactance calculation with resistive load is not critical because the resistance computed is accurate and well outside the trip area, therefore the relay is stable.

Fig. 4.9 shows that the resistance needs 6 sampling intervals to move inside the resistance limit, while the reactance needs 5 sampling intervals. Therefore a total time of 15 ms is necessary for the fault to be detected at $8 \mathrm{~s} / \mathrm{c}$. It can be seen that the response is noisy during the first two intervals,

$$
\mu_{x \rightarrow 0}
$$

(a) R,X response with $\cos \varphi=0.997$

(b)R-X response with $\cos \varphi=0.96$
Fig. 4.10 Response of the algorithm under different loads.
because of the short data window.
Fig. 4.11 has been obtained for the same type of fault by using the midpoint and sample formula from which the detection time achieved is the same as previously. It will be seen later that for faults up to 50% of the line, the detection time is less that the first method.

As method(iii) moves faster to the fault data, the response is more noisy. In fig. 4.11 it can be seen that after the fault inception, two spikes occur, which are outside the trip zone.

Fig. 4.12 has been recorded by using the same method as in fig. 4.11, but with a simple averaging of the reactance. By doing so, the response becomes smoother i. e. the spikes are not so large in amplitude. With the averaging, the fault is detected in 12.5 ms , i. e. faster response has been achieved for the far end of the line.

While the averaging process can show such an improvement, consider now fig. 4.13 computed by the microprocessor: The fault is at the end of zone 1 and there is a big spike in the positive direction. Averaging for this case will give a slower response than the one obtained by a direct application of the midpoint and sample formula.

The responses of fig. 4.11 and 4.13 have been

Fig. 4. 11 Response of the somple and midpoint formula

Fig. 4.1\% Response of the sample and midpoint formula with reactance areiraging

recorded under different inception angles. In fig. 4.11 the fault angle was 0°, while in fig. 4.13 it was 90°. In both cases digital filtering has not been used. Filtering will improve the response, but not dramatically, as the spikes are caused by the short data window. Therefore the averaging improves marginally the detection time for faults up to 75% of zone 1 , and impairs it for faults at the far end of the line.

Hence two options are open:
i) The sample and midpoint formula without averaging, which gives the same detection time as the midpoints formula, but a faster response for faults up to 50% of the line.
ii) The same formula, but with reactance averaging.

In chapter 6, the performance of the dedicated relay by using the midpoints method and the sample and midpoint formula without averaging will be compared. But firstly, the way the output values are converted into a relaying decision will be described. This procedure, the program organisation and the additional features of the relay will be given in chapter 5 .

CHAPTER 5

PROGRAM CONFIGURATION

5.1 Introduction

The performance of the relay depends on the way the software is organised. The main objective is to build a program which meets all the specifications as simple and as reliable as possible. In addition, all the calculations need to be performed before the arrival of the next data block, otherwise the unit will run out of synchronism. One final requirement is that the program length must be kept within the 2K limit. This suggests that the program has to be built in blocks of subroutines called by a main program. By doing so, although the execution time will be increased, as long as the algoritm runs in less than a sampling interval, no problems are introduced. By organising the software in such a way, the program remains quite general and modifications can be easily introduced by rewriting the subroutines.

Other advantages are:
i) tests on relay operation becomes easier as the program is building- up in blocks.
ii) in later versions of the relay, these subroutines can be coded in microinstructions producing faster response, fewer main program memory locations required and the generation of a higher - level protection
purpose- oriented language.

In this chapter the way the fault program is organised and the provision of other facilities are discussed.

5.2 Configuration of the main program

Fig. 5.1 presents the flowchart of the main program. It begins with the initialising routine, which resets or clears some flags and data- memory locations. In addition, the relay settings are specified by reading the switches of the control panel. Ideally the relay settings will be in the constant store, but as they are different for the two algorithms, it is better for testing purposes to store them in the data- memory. The way the relay settings are defined will be discussed in the subsection 5.4.2.

As has been examined in chapter 4 , the employed algorithms have a data window of 2 sampling intervals. Therefore when the relay is switched on for the first time, the first two samples are used to calculate the quantities $V A, C A, D C A, V B, C B, D C B$. Impedance calculations start after the first two samples.

As the program has been arranged, such that no starting elements are necessary, all six impedances are evaluated with the sequence $R-G, Y-G, B-G, Y-B, B-R, R-Y$. When the program has finished with the execution of the six impedances, it goes back to the beginning of the

$\mathrm{N}^{\text {th }}=$ sample. The program stays inside this loop, until an internal fault has been detected, after which it jumps to the post- fault routine.

In appendix 6, the program listings, the data and constant store locations and the flags table are given.

In the next sections, the main facilities provided by the relay will be described.

5.3 Auxiliary subroutines

Fig. 5.2 shows the flowcharts of some subroutines, needed to form functions of the voltage and current samples. For example " LOAD " stores the samples, and converts the 10 -bit data to 16 -bit words, " INIT " resets some data locations and inputs the settings, " RC " calaulates the residual current, " PHASE " computes the phase voltages, " GR " performs the zero- sequence compensation for the three line currents and voltages, while " PH " does the phase compensation, " B " calculates the quantities VB,CB,DCB and finally " ZERO " checks for a data sample of zero value. " FILTER " implements the digital filter discussed in chapter 4. This subroutine acts upon a request from the front panel (setting of the switch 15).
5.4 The impedance calculation

The purpose of this routine, shown in fig 5.3 is to calculate the quantities N_{R}, N_{L} and D. Afterwards

Note :-

- Normal return(N) = Return to main program entry point N
(IAN) Return to the main program, indirectly entry point N

Fig. 5.2 Continued

Fig. 5.3 The impedance calculation flowchart

the resistance and reactance is computed and compared with the corresponding limits.

In chapter 3, the difficulties involved in the microcoding of the division instruction have been discussed. Therefore, an alternative way to avoid division has been used.

The transmission line model, used for the tests does not have the same ratio X_{L} / R_{L} for the different taps, as can be seen in fig. 5.4. Therefore the line $c c^{\prime}$ can be considered as a composition of the transmission line added to a resistive fault.

By employing this model the p. u. values of a system with a primary network ratio (X / R) of 6.5 can be simulated, i. e. a typical 230 KV system. The maximum lenght of the line simulated is 135 miles.

The chosen pclar characteristic for zone 1, is the area $A B C D$.

Hence the following conditions have to be met:
and

$$
\begin{equation*}
0<X=\frac{N_{I}}{D}<X_{L} \tag{5.1}
\end{equation*}
$$

$$
0<X<\left(R-R_{a}\right) \tan \varphi \quad \text { or } \quad(5.2)
$$

$$
\begin{equation*}
0<\frac{N_{L}}{D}<\left(\frac{N_{R}}{D}-R_{a}\right) \tan \varphi \tag{5.3}
\end{equation*}
$$

If, instead of dividing by D, a multiplication is executed then

Fig. 5.4 The relay characteristic
eq. (5.1) and (5.3) become
$\left.\begin{array}{ll}N_{L}<0 & (5.4) \\ N_{R}<0 & (5.5) \\ N_{L}-X_{L} D>0 & (5.6) \\ N_{L}-N_{R} \tan \varphi+R_{a} D \tan \varphi<0 & (5.7)\end{array}\right\}$ if $D<0$

The above inequalities are reversed, if $D>0$.
Therefore an internal fault will be detected, if the inequalities (5.4), (5.5), (5.6), (5.7) are valid. Such a procedure does not compute the resistance and reactance values, but it achieves an accurate and fast fault detection decision. This is not a drawback, as the dedicated relay communicates with a monitoring computer, in which the division can be executed off- line at a later time.

In (5.6) and (5.7), N_{R} and D must be 16 -bit numbers, otherwise an erroneous result will be produced by the multiplication instruction. The double-precision instructions written can be useful in handing numbers bigger than $\left(2^{15}-1\right)$. The procedure followed can be seen in fig. 5.2, where by multiple double-precision shifting to the right, numbers smaller than ($2^{15}-1$) are produced. By calculating the maximum number possible to be generated by computation, it is found that $D=750$ 000. The program as written can handle numbers
up to 4194 303. The number of the required shifts is not fixed but variable according to the size of the quantities N_{R} and D.

The error introduced by scaling is very small. For example consider the inequality (5.6). By executing n shifts to the right, (5.6) becomes

$$
\begin{equation*}
\frac{N_{I}}{2^{n}}-X_{L} \frac{D}{2^{n}}>0 \tag{5.8}
\end{equation*}
$$

As long as $N_{L}-X_{L} D>2^{n} \quad$ the inequality (5.8) will lead to the same result as (5.6). If $N_{L}-X_{L} D=2^{n-1}$, then $N_{L}-X_{L} D / 2^{n}=1 / 2$, which means that the processor will detect $\left(N_{L}-X_{L} D\right) / 2^{n}=0$, because it handles integer numbers. Such a case corresponds to:
$X=\frac{N_{L}}{D}=X_{L}+\frac{2^{n-1}}{D}$
But as D is a large number, the error term $2^{n-1} / D$ is quite small. On the other hand, (5.9) suggests that (5.8) gives an erroneous result for faults close to the setting point. For such faults the current is comparatively small and D will also be small and so scaling was not considered necessary.

There are two exits from the impedance routine. The first corresponds to an internal fault and the second to an external fault or to normal operation. For each impedance calculation, a counter is assigned, the value of which controls the trip signal to the circuit breaker.

The counter is reset to 3 if no internal fault is detected, i. e. if the inequalities (5.4) - (5.7) are invalid, otherwise the counter is decremented by one. If the relay computes that an internal fault persists for 3 consecutive samples, it sends a trip signal to the CB. In addition, some other flags are set which will be useful for the fault output report. If graphics have been requested, the relay opens the $C B$ and selects the corresponding data to be plotted. This process will be described later. Fig. 5.3a shows the flowcharts of the program followed, after a fault has been found. 5.4.1 The zone selection

The calculations previously discussed are referred to zone 1 settings. In addition, a starting element for the zone 2 and the zone 3 timers has to be included.

The starting element calculation is an impedance test similar to that for zone 1, but with a different setting, such as to embrace zone 3. To save processing time for other operations, only three starting calculations are executed in each sampling interval. So in one sampling interval, the starting calculations for g.f.s are executed, in the next the same procedure is repeated for the p.f.s and so on. Therefore, if the fault is in zone 1 , it will be detected without any delay, while, if the fault lies somewhere in zone 2 or 3 , it
might be detected 2.5 ms later, but such an error is not critical.

For each of the six impedances, an independent timer is provided. To make the program more efficient the following format has been assigned to the timers:

15	14					$0-9$

Bit 15 is the identification bit for zone 2
Bit 14 is the identification bit for zone 3

Bits 0-9 contain the negative of the time delay in multiple of 2.5 ms .

For example, the initial value of a five cycles timer for zone 2 is:

The relay provides an independent $3-$ zone scheme for each impedance calculation. If the fault has been removed, then the starter is reset and computation continues in the normal mode, i. e. zone 1 for every sample and the starting zone for every other sample. The flowchart of this scheme is shown in fig. 5.5.

As can be seen in fig. 5.4, the right hand limit of the characteristic, for simplicity has been kept the same for all zones. The limits for zones 2,3 and starting depend on the specific application.

Fig. 5.5 Zone selection routine (Z S)

5.4.2 The relay settings

The zone settings are defined in exactly the same way as for conventional relays, i. e. in terms of the secondary reactance and resistance. The only difference is that now the secondary quantities are the outputs of the anti-aliasing analogue filters, therefore all the intermediate gains have to be taken into account. In addition the correction terms discussed in chapter 4 , need to be included. It has been found that

$$
\begin{equation*}
\left(N_{L}\right)_{\text {computed }}=C\left(N_{L}\right)_{\text {real }} \tag{5.10}
\end{equation*}
$$

where

$$
C=2.414 \text { for the midpoint algorithm }
$$

$$
C=0.707 \text { for the sample and midpoint algorithm. }
$$

From eq.(5.6) and (5.7) it can be seen that the quantities to be defined are $X_{L}, \tan \varphi$ and $\left(R_{a} \tan \varphi\right)$. Substituting (5.10) in (5.6) and (5.7) the quantities to be defined are:

$$
\begin{equation*}
C X_{L}, C \tan \varphi, C R_{a} \tan \varphi \tag{5.11}
\end{equation*}
$$

Appendix 5 gives the attenuation of the voltage and the current signals as 82.87 and 6.05 respectively. Therefore

$$
\begin{equation*}
R_{a}=\frac{\left(R_{a}\right)_{\text {primary }}}{13.69752} \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{L}=\frac{\left(\mathrm{X}_{\mathrm{L}}\right)_{\text {primary }}}{13.69752} \tag{5.13}
\end{equation*}
$$

In the test rig used:

By substituting (5.14) in (5.12) and (5.13), gives

$$
\begin{aligned}
& R_{a}=0.2074609 \Omega \\
& X_{L}=0.299324 \Omega
\end{aligned}
$$

Therefore the settings for the midpoints (A), and the sample and midpoint (B) algorithms are as in table 5.1.

TABLE 5.1

THE RELAY SETTINGS

Abstract

5.5 Close-up faults

During a close-up fault, the voltage collapses to a very small value. As the A / D resolution is 19.57 mv , the representation of this voltage to the relay cannot be accurate, unless the gain ranging amplifiers discussed in chapter 3, are used. Such a voltage representation might give an erroneous result because of numerical errors.

In the event of a close-up fault, the main functicil is to determine if the fault is in front of the relay or behind it. Accurate calculation of the impedance value is not necessary. In conventional relays, there are two ways to solve this problem employing cross-- polarisation or memory principles.

In the cross- polarisation scheme , a voltage called the " polarising voltage " is obtained from a pair of sound phases. But in the event of a close-up 3- phase fault, there is no polarising voltage, so this. scheme fails to operate under 3-phase faults.

The memory principle employs a memory circuit which preserves the prefault voltage by a resonant circuit tuned to 50 Hz . The latter method will always work except in the case of closing the CB onto a line line already having a 3 - phase fault. (e.g. earthing leads are not removed).

Although these methods have been extended to
digital protection, ${ }^{74}$, 7 here is a trade off on which method to choose. Cross- polarisation is easier to program as it does not need prefault samples, but it cannot be used in the event of a 3- phase fault. Therefore the memory principle has been applied here. To cover the case of switching-on to a 3- phase solid fault, another program i, e. the switch- on- fault has been written, which will be examined in the subsection 5.5.4.
5.5.1 Close-up detection

There are three ways which can be employed to identify a close-up fault:
i) by an over-current detector
ii) by checking for small values of reactances or iii) by monitoring the voltage samples.

Method (i) is dependent on the loading conditions of the system. On the other hand, the current amplitude calculation will need extra processing time.

Method (ii) is reliable and independent of the network characteristics, but it needs considerable processing time, because the implemented algorithm does not compute the actual value of the reactance.

Method (iii) checks every voltage used in the six impedance calculations, i. e. $V_{a}, V_{b}, V_{c}, V_{A}=V_{b}-V_{c}$, $V_{B}=V_{c}-V_{a}, V_{C}=V_{a}-V_{c}$. If any of them has been found below
a predefined limit for two successive sampling intervals, then a close- up fault is diagnosed. The threshold voltage below which a fault is classified as close-up depends on the resolution of the A / D converter and on the attenuation of the voltage signal. Knowing these parameters, the minimum voltage, which leads to accurate impedance calculations can be found. Below this voltage the fault has to be classed as a close- up. Typical reach of the close- up detector is about 5 miles for a 100 miles long line.

In fig. 5.6 the subroutine " CU " detects the occurence of close-up faults. If one of the voltages collapses below the threshold limit, then a flag is set (CUF) and at the same time the corresponding close-up phase flag is set according to the table 5.2.

TABLE 5.2

Voltage < Threshold	Type of close-up fault
V_{a}	$\mathrm{R}-\mathrm{G}$
V_{b}	$\mathrm{Y}-\mathrm{G}$
V_{c}	$\mathrm{B}-\mathrm{G}$
V_{A}	$\mathrm{Y}-\mathrm{B}$
V_{B}	$\mathrm{B}-\mathrm{R}$
V_{C}	$\mathrm{R}-\mathrm{Y}$

Some other operations also take place, which are concerned with the setting of some pointers for calling the corresponding prefault voltages.

5.5.2 The voltage update routines

As has been discussed previously, the memory voltage principle has been applied, therefore a subroutine which stores the samples over a cycle is needed. Because the incoming samples after the fault occurence will overwrite previous data, it is necessary to store the samples for two cycles. Such a process needs 48 data locations. The initial design of the processor however included 128 data lacations, therefore a different method was required with less storage. As it takes less than a half cycle to classify a fault as a close-up, storage of voltage for $11 / 2$ cycle will be sufficient. By following this procedure, the program becomes more complicated and more processing time is consumed.

Fig. 5.6 shows the flowcharts of the subroutines used by the close-up algorithm. The subroutine STORE saves the voltages of the 3 phases in a data block arranged in a ring mode.

Because of the direct addressing applied to the data store, modifications of the subaddress bus are not possible. A pointer is assigned to address different sections of the main program, each one specifying explicitly the addresses of the voltage samples data store. The control of this pointer is implemented by an indirect indexing mode as discussed in chapter 3.

When a fault is classified as close-up, the

STORE routine is disabled, and the routines PFNI, PFC are used to control the substitution of the sample voltages by the corresponding prefault voltages. These two programs would be much simpler if the voltages are stored for two cycles. Fortunately the next version of the digital relay will include 512 data locations, this procedure becomes possible, thus simplifying the program.

5.5.3 The impedance calculation for close-up faults

 74Holden and Morrison have shown that by using the corresponding prefault voltage samples in place of the real ones, a pseudo - impedance can be calculated. This value is meaningless, but its sign defines the position of the fault i. e. in front or behind the relay.

In the impedance calculation routine, a check is made, if the close-up fault flag is set, following which the signs of the quantities N_{L} and D are checked. If N_{I} and D have the same signs, then the fault is internal, while for N_{I} and D with different signs, the fault is external and the ECUF (external close-up flag) is set. As a back-up facility, the relay opens the $C B$, if the external fault persists for a specified number of cycles.
5.5.4 Switch- on- fault (SOF)

The " SOF " subroutine, shown in fig, 5.6 runs only for the first cycle after the instant of the CB

STORE

CU i.e. classification | of a close-up fault

Fig. 5.6 Close-up routines

switching-on. If the voltages $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{C}}$ are below a limit, then a $3-$ phase close-up fault is present on the line. Identification of such a condition for 3 consecutive instants, generates a trip signal to the $C B$ and the message of fig. 5.13 e is typed on the teletype.

5.6 Out-of-step blocking

In chapter 2, the problem of blocking the $C B$ under a power swing condition has been discussed. Discrimination between a fault and a power swing is achieved because the impedance seen by the relay during a power swing varies slowly. Therefore in fig. 5.7 the impedance during a fault moves from A to B almost instantly, while a predefined time delay is normally associated with the same movement during a power swing. Two settings have to be specified i. e. R_{b} and φ.

Point A corresponds to a machine angle which must not encroach the steady-state load conditions of the system. Therefore for the specific source impedances and e.m.f's, R_{b} can be defined. The angle φ can be the same as that for the right- hand side of the trip characteristic. The second limit of the power swing locus is the right-hand side of the quadrilateral characteristic.

According to the mean speed of swing between the points A and B, the mean time required to traverse between these two points can be defined. Fig. 5.8 shows the flowchart of the out-of-step blocking program. The

Fig. 5.7 The out-of-step blocking relay

Fig. 5•8 Out-of-step blocking program

OOSC (out-of-step counter) is incremented as long as the operating point lies somewhere between A and B . The two checks are:

	$N_{A}=N_{L}-N_{R} \tan \varphi+R_{a} D \tan \varphi>0$
and \quad	for $D<0$ (5.15)
$N_{L}-N_{R} \tan \varphi+R_{b} D \tan \varphi<0 \quad(5.16)$	

To save computation time, as $R_{b}=R_{a}+R_{a b}$, eq. (5.16) is written:
$N_{A}+R_{a b} D \tan \varphi<0$

As can be seen in fig.5.3a, when the operating point moves inside the polar characteristic the value of OOSC is checked. If it is smaller than the predefined limit the relay trips, otherwise the trip decision is blocked and the program continues its normal looping.

The out-of-step blocking relay has been implemented for one phase only, because a power swing is a three-phase condition.
5.7 Active and reactive power measurement

In chapter 4 it has been found that:
$N_{R}=-\hat{V} \hat{I} \cos \varphi$
$\mathrm{N}_{\mathrm{L}}=-\hat{\mathrm{CV}} \dot{I} \sin \varphi$
where C is the correction factor.
If eq. (5.17) are divided by -2 , then the r.m.s. active (P) and reactive (Q) power flowing from or to the
relaying point can be computed. To obtain the 3-phase power values, the corresponding values of N_{R} and N_{L} for the RG, $Y G$ and $B G$ calculations have to be added.

In chapter 4, the variation of N_{L} with loads having power factors close to unity has been discussed. To achieve a reliable measurement of P and Q, the average of N_{R} and N_{L} is taken over a cycle.

Fig. 5.9 shows the routine PQM , which controls the computation of P and Q. Information required in the fault report includes the prefault values of P and Q for which, these values have to be stored for three consecutive cycles. Fig. 5.9 shows, how the relay outputs to the monitoring computer values of P and Q upon a request from the operator.
5.8 The post-fault routine

After a fault has been detected, the relay sends a command to the $C B$, but the $C B$ contacts remain closed for the next 2 cycles. Therefore during the first cycle after fault detection, reliable computations can be still carried out thus obtaining a more accurate result.

During this cycle a more accurate calculation of the position of the fault is determined. The subroutine " SELECT ", shown in fig. 5.10 runs the impedance algorithm calculation initiating the trip command, and its average is taken over one cycle.

Fig. 5.9 The flowcharts for the P and Q measurements

Fig. 5.11 Simpson's integration routine.

At the same time the r.m.s values of the fault current at the relaying point and the residual current are computed, from the equation (5.18)

$$
\begin{equation*}
I_{r m s}=\frac{\pi}{\Phi \sqrt{2}} \int_{0}^{T / 2} I \sin \omega t d t \tag{5.18}
\end{equation*}
$$

For a more accurate calculation of these currents, the integration is performed using Simpson's method 76 .e.

$$
\int_{a}^{a+2 h n} f(x) d x=\frac{h}{3}\{f(a)+4 f(a+h)+2 f(a+2 h)+4 f(a+3 h)+\cdots+f(a+2 h n)\}
$$

where a is the starting sample,
h the sampling interval $=\frac{\pi}{4}$ for $8 \mathrm{~s} / \mathrm{c}$ and $f(x)$ is defined by equation (5.18).

Fig. 5.11 shows how this integration has been implemented in the microprocessor. Finally the type of fault is classified, according to the values of the six counters assigned to each of the six impedance calculations, and identified according to table 5.3.

The post-fault program is organised as in fig.
5.12. At the end of this post-fault cycle, the dedicated relay outputs to the monitoring computer the information shown in fig. 5.12, to be used by the report program, discussed in the following section. After that, the program waits in a loop, until the CB opens its contacts, stopping the $C B$ clearance time counter, so the $C B$

TABLE 5.3

CLASSIFICATION OF THE FAULT TYPE

	R-G	Y-G	B-G	B-Y	R-B	$\mathrm{Y}-\mathrm{R}$
R-G	\checkmark					
Y-G		\checkmark				
B-G			\checkmark			
$B-Y$				\checkmark		
B-B					\checkmark	
Y-R						\checkmark
$B-Y-G$		\checkmark	\checkmark	\checkmark		
$\mathrm{R}-\mathrm{B}-\mathrm{G}$	\checkmark		\checkmark		\checkmark	
$\mathrm{Y}-\mathrm{R}-\mathrm{G}$	\checkmark	\checkmark				\checkmark
$\mathrm{R}-\mathrm{Y}-\mathrm{B}$				\checkmark	\checkmark	\checkmark
$R-Y-B-G$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Note: $\sqrt{ }$ means corresponding counter $=0$

Fig. 5.12 The post-fault routine
operating time can be reported．The program then exits from this routine to the autoreclosing program discussed in the section 5．10．

5．9 The report program

One of the advantages of digital protection is the information that can be obtained about the status of the power network as seen at the relaying point．

This information is processed offline by the monitoring computer．The available reports printed on the teletype are shown in fig．5．13．

In fig． $5.13 a, b, c$ typical reports for a fault inside the line are shown．Fig． $5.13 d$ indicates that the autoreclose has functioned once，and found that the fault was permanent．Fig． 5.13 e has recorded a fault caused by closing the $C B$ onto a line submitted to a 3－phase close－up fault．In the case of a close－up fault， two reports are available，fig．5．13f refers to an internal fault，while fig． 5.13 g applies to an external close－up fault cleared by the line protection after some delay．Therefore operators can be kept fully informed of all conditions concerning the fault inception．

Fig．5．13h is typed to an operators request for the active and reactive power measurement．

In case of failure of the relay hardware，the message of fig．5．13i concerned with the measurement of the reference voltage is outputed．
RELA' MONITOR 11/9/78
DISTANCE RELA: $N 0=1$
LINE FAULT
RESISTANCE $=0.898$ OHMS REACTANCE $=\quad 1.9120$ OHS
DISTA.VCE $=64.75$ MILES
FAULT: RED, BLUE
FAULT CURRENT- $\quad 10.749$ AMPS RMS
RES.CURRENT $=0.195$ AMPS RMS (a)
$P=2468.0 \mathrm{~W}$
$0=\quad 256.7 \mathrm{VA}$
TRIP TIME= $\quad 15.00$ MSECS
CB CLEARING TIME= $\quad 217.50$ MSECS
DATE 3/12/78 TTME 11:51:12
TYPE I TO ACKNOWLEDGE I
RELAY MONITOR 11/9/78
DISTANCE RELAY NO=1
LINE FAULT
RESISTANCE $=0.675$ OHMS REACTANCE $=0.943$ OHMS
DISTANCE $=\quad 31.95 \mathrm{MILES}$
FAULT: RED/BLUE/GROUND
FAULT CURRENT= 11.460 AMPS RMS
RES.CURRENT $=10.087$ AMPS RMS
$P=\quad 2471.9 \mathrm{~W}$
$0=\quad 263.4 \mathrm{VA}$
TRIP TIME= $\quad 10.00$ MSECS
CB CLEARING TIME $=257.50$ MSECS
DATE 3/I2/78 TIME 11:53:45
TYPE I TO ACKNOWLEDGE

Fig. 5.13 Reports from the dedicated digital distance relay.
＊＊＊RELAY MONITOR $1: / 9 / 78 * * *$
DISTANCE RELAY NO＝1
LIME FAULT
RESISTANCE $=1.155$ OHMS \quad REACTANCE $=2.878$ OHMS
DISTANCE $=\quad 97.49$ MILES
FAULT：RED／GROUND
FAULT CURRENT $=10.879$ AMPS RMS
RES．CURRENT：$=8.786$ AMPS RMS
$\mathrm{P}=2492.7 \mathrm{~W}$
$0=250.6 \mathrm{VA}$
TRIP TIME＝$\quad 15.00$ MSECS
CB CLEARING TIME $=360.00$ MSECS
DATE 3／12／78 TIME $11: 35: 22$
TYPE I TO ACKNOWLEDGE 1
＊＊＊RELAY MONITOR $11 / 9 / 78 * * *$
DISTANCE RELAY NO＝1
CIRCUIT BREAKER LOCKEDOUT BY AYTORECLOSE
（d）
DATE 3／12／78 TIME 11：39： 8
TYPE † TO ACKNOWLEDGE

Fig．5．13 Cont＇ed

```
***RELAY MONITOR 11/9/78***
DISTANCE RELAY NO=1
SWITCH ON FAULT
TRIP TIME= 7.50 MSECS
CB CLEARING TIME= 300.00 MSECS
DATE 2/12/78 TIME 7:32:12
TYPE | TO ACKNOWLEDGE |
***RLLAY MONTTOR 11/9/78***
DISTANCE RELAY NO=1
CLOSE UP
FAULT:RED/GROUND
FAULT CURRENT= 11.785 AMPS RMS
RES.CURRENT= 8.818 AMPS RMS
P}=1688.0\textrm{W
O= 238.4 VA
TRIP TIME= 15.00 MSECS
CB CLEARING TIME= 175.00 MSECS
DATE 2/12/78 TIME 7:33:54
TYPE | TO ACKNOWLEDGE |
***RELAY MONITOR !1/9/78***
DISTANCE RELAY NO=1
EXT. CU CLEARED BY LINE PRDTECTION
TRIP TIME \(=100.00 \mathrm{MSECS}\)
CB CLEARING TIME \(=370.00\) MSECS
DATE 2/12/78 TIME 7:35:49
TYPE I TO ACKNOHLEDGE
```

RELAY MONITOR 11/9/78
DISTANCE RELAY NO=1
PO MEASUREMENT
$\mathrm{P}=2471.4 \mathrm{~W}$
$0=\quad 257.6 \mathrm{VA}$
DATE 2/I2/78 TIME 6:56:33
TYPE I TO ACKNOWLEDGE !
RELAY MONITOR!1/9/78
DISTANCE RELAY NO=1
MEASUREMENT ERROR
REF .VOLTAGE=-10.00 CORRECT VALUE $=+6.19$
DATE 2/I2/78 TIME 6:57:32
TYPE I TO ACKNOWLEDGE

Fig. 5.13 Cont'ed.
5.10 Autoreclosing

Statistics of faults on overhead lines show that $80-90 \%$ of them are transient, so that after the deionization of the fault, reenergisation of the line will restore healthy conditions. Therefore, if the $C B$ is tripped out, and reclosed again after some delay, then the transient fault will be cleared succesfully. If the fault is permanent, the reclosing operation will be unsuccesful, and the $C B$ must trip again. Usually in EHV lines, only one reclosure is permitted (singleshot autoreclosing), the CB being locked out after an unsuccesful reclosure.

For autoreclosing the following five parameters need to be defined:
i) The dead time, equal to the $C B$ operating time plus the deionization time of the fault. Fig. 5.14 shows that during this time delay, the program stays idle inside a loop. After this time has been expired, a command to switch-on the $C B$ is sent.
ii) The reclosing impulse time, which depends on the $C B$ closing time. After that time the program starts again.
iii) The reclaim time. As can be seen in fig. 5.8, if no fault has been found during the first cycle, after the $C B$ has reclosed its contacts, the flag RC is cleared (autoreclose is reset).

This time interval is the reclaim time. Fig. 5.3a, 5.12 and 5.14 show that,if a fault is found during this interval, the CB opens again and is locked out.
iv) The implemented scheme permits a singleshot autoreclosing. In a multi-shot scheme the lockingout happens after the $C B$ has opened for the specified number of times.
v) Single- phase of poly- phase tripping. In the case of a single-phase fault, it would be better if only the faulted phase is tripped, such that interchange of power can take place through the healthy phases. Such a configuration is implemented easily, as there is no starting element.

The program written in the digital distance relay implements a simple three-phase, single- shot autoreclosing scheme.
5.11 The self- test monitoring program

The analogue data sampled by the data acquisition unit includes a reference voltage derived from a resistive network to all four power supplies. This vaiue is 6.19V. The processor tests if the reference input stays between $\pm 5 \%$ of the correct value. The flowchart of this program is shown in fig. 5.15.

In an event of a failure the report of fig. 5.13i is outputed to the monitoring computer. After that the program enters a wait loop until the failure has been
acknowledged.
5.12 The graphics routine

This routine can be used for testing the relay performance. It is not necessary as a standard feature of the relay, unless it is desired to be used as a diagnostic to check the correct operation of the microprocessor. Different types of data can be plotted according to the way the switches are set on the control panel. Table 5.4 gives the available features of the graphics routine.

TABLE 5.4
 SELECTION OF THE REQUIRED PLOT

PLOT	SET SWITCHES
Trip signal and V, I as seen by the algorithm.	$A^{\S}, 11,16$
V or I of the three phases	$14(13), 16$
Filtered/unfiltered data	$B^{\S}, 12,16$
R and X versus time	$A^{\S}, 16$

$\S A$ and B is 1 or 2 or 3 or 4 or 5 or 6 , where
1 corresponds to $R-G$ for A and V_{a} for B

2	$"$	$"$	$Y-G$	$"$	$"$	$"$	V_{b}	$"$	$"$
3	$"$	$"$	$B-G$	$"$	$"$	$"$	V_{c}	$"$	$"$
4	$"$	$"$	$Y-B$	$"$	$"$	$"$	I_{a}	$"$	$"$
5	$"$	$"$	$R-B$	$"$	$"$	$"$	I_{b}	$"$	$"$
6	$"$	$"$	$R-Y$	$"$	$"$	$"$	I_{c}	$"$	$"$

Fig. 5.16 describes in a flowchart the way the above plots are serviced.

Using these graphics the relay performance has been tested, the result being shown in the following chapter.

Fig. 5-15 The self-test monitoring program

Fig. 5.16 Graphics routine

EXPERIMENTAL RESULTS

6:1. Introduction
A digital distance relay should be satisfactory if it fulfills the following qualities:
i) Reliability

The advantages in terms of reliability of employing digital techniques have been discussed in chapter 1. Software in this relay has been kept as simple as possible by choosing a simple algorithm and by eliminating the need of starting elements. In addition a monitoring program has been written which checks the correct operation of the digital relay.
ii) Selectivity

The relay should only trip for faults inside its defined zone. For single-phase autoreclosing, the correct detection of the faulty phase is essential. As discussed in chapter 5, this goal has been achieved by ensuring that the reactance and resistance seen by the relay are inside the specified polar characteristic. Care has been taken to avoid unnecessary tripping during a power swing. iii) Reach accuracy and fast response

Ideally a distance relay should operate at the shortest possible time (less than a cycle) with an accuracy of $\pm 5 \%$ of its reach. In addition its reach should be
independent of the actual values of voltage and current at the relaying point i.e.independent of the fault position and the source impedance. On the other hand, the most serious faults are those close up to the relaying point. Therefore a small increase in its operating time as the fault moves towards the far end of the line is permissible.

Existing distance relays are specified in terms of a basic operating time, but these times vary depending upon the fault position and the values of voltage and current i. e. on the ratio Z_{S} / Z_{N}, where Z_{N} is the nominal setting of the relay and Z_{S} the source impedance. Therefore curves of the form of fig. 6.1 are produced, which show that for a short line with a large source impedance kehind it, the operating time increases due to the low voltage present at the relay terminals, when Z_{S} / Z_{N} is large. Existing relays can be sensitive down to about 3 V , with a normal secondary source voltage of 110 V .

The following sections describe the tests carried out on the digital relay for a fixed source impedance and a variable fault position.

The main characteristics to be considered are the detection time, discrimination and the correct fault type classification. Tests have been performed with the midpoints formula and the sample and midpoint method,

Fig. 6.1 Performance graph of a distance relay
and their relative performance compared.
For the shown tests $Z_{S} / Z_{N}=5$ and an increase in this ratio, will produce a slight increase in the operating time, which can be kept small than that of existing relays by using the gain ranging amplifiers mentioned in chapter 3.

So the operating times achieved will be of the same order as those presented below. Such tests have not been carried out, because the initial design of the data- acquisition unit did not incorporate signal ranging amplifiers although the processor provides the necessary capabilities for handling the range bits.
6.2. The relay performance under different types of fault

Initially performance for distant, faults has been examined because there accurate performance is more critical. Later on the performance for faults at different positions along the line will be examined.

During these tests, the values of Z_{S} and Z_{L} were $(2.6+19.6 j) \&$ and $(1.15+4.2 j) s$ respectively, therefore the $\frac{X}{R}$ was equal to 6.35 , implying that the exponential reaches $1 / 3$ of its value in a little more than a cycle.

Higher harmonics were not possible to be generated on the test equipment, but the performance of the analogue and digital filters used, should kave
eliminated them, as has been demonstrated in chapter 4.

The detection times mentioned are in multiples of samples.

In the following figures, the nomeclature is as follows:

1 - Result using the first algorithm with a $\cos \varphi=0.997$

$2-"$	$"$	$"$ second	$"$	$"$	$"$	$"$
$3-$	$"$	$"$ first	$"$	$"$	$"$	$=0.966$
$4-$	$"$	$"$ second	$"$	$"$	$"$	$"$

The small letter following means:
a: Fault detection time: This signal is zero during normal operation. When the fault is applied, it goes high and it goes down again, when the processor has detected the fault.
b: The current waveform, in compensated form used by the algorithm. The d.c. offset can be seen in this curve and the relative ratio of prefault and fault current.
c: The compensated voltage waveform.
d: The reactance variation with time. The prefault variation of the reactance, as discussed in chapter 4 , can be seen. When the fault occurs, a large spike occurs and finally the value settles down to the new value.
e: The resistance variation with time.

Unfortunately, throughout the tests the point--on-wave apparatus was not working reliably and so the faults have been applied manually by a switch. But from the voltage and current waveforms, the inception angle can be found and is given in the diagrams.

Fig. 6.2 refers to a R-G fault at the end of zone 1. It can be seen that both algorithms give almost the same detection time. There is no difference in the detection time for loads of different power factor. During normal operating conditions with a power factor close to unity, it can be seen that the reactance might move inside the limit, but the relay will still be stable as:
a) Three successive points inside the limit are required for a trip decision.
b) The resistance will be well outside the trip characteristic.

Similar results have been recorded for different types of faults. The R-Y fault in fig. 6.3 shows similar behaviour.

Fig. 6.4 gives the result of a R-Y-G fault. During such a fault, three impedance calculations see the fault i.e.the $R-G$, the $Y-G$ and the $R-Y$. Although it may take different times for each one to detect the fault, the relay trips on the one which first moves inside the tripping area. As it has been discussed in

chapter 5, the calculations continue for one cycle after the fault, therefore a correct classification of the type of the fault present on the line is achieved. Fig. 6.4.1 has been recorded as a R-Y fault, while 6.4.2 as Y-G fault.

Fig. 6.5 shows a three phase fault, in which the same comments apply.

Fig. 6.6 shows the case of a three-phase fault, but this time with digital filtering applied. An increase of about 2.5 ms in the detection time can be noticed.

6.3. Close-up faults

The curves shown in fig. 6.7 apply to the case of a close-up fault at the relaying point. In fig. 6.7a the fault was in front of the c.t., where the voltage exhibits severe collapse.

The instant, the fault is classified as close-up, the prefault voltages are used in the subsequent calculations. The detection time was 10ms.

Fig. 6.7b applies to a fault behind the c.t., where current reversal can be noted. The relay remains inoperative, but as a back-up facility has been included, the relay trips in 4 cycles, because the busbar protection relay has failed to clear the fault.

Fault detected
160
(a) Internal fault

(b) External fault

Fig. 6.7 Close-up fauit (red ground)

6.4. Performance of the relay with varying fault positions

The two algorithms can be compared by plotting the detection time versus fault position. The results shown in figs. 6.8 and 6.9 are average times with 30 measurements taken at each point. If filtering was applied, the detection would have been increased by an average of 2.5 ms maximum.

Fig. 6.8 refers to g.f., while fig. 6.9 is concerned with p.f. It can be seen that the sample and midpoint algorithm has slightly faster operating times. The detection times for g.f. and p.f. are almost the same.

There is a slight improvement in the operating time of both algorithms as the fault moves closer to the relaying point.

6.5. Conclusions

The digital relay detects all types of internal fault in less than a cycle. Because of the short datawindow, its initial response (the first 3 samples after the fault) contains spikes, but it moves fast enough into the tripping area and it stays within the permissible accuracy of $\pm 5 \%$.

In addition close-up faults, even at the relaying point are correctly discriminated. The switch-on-fault facility trips the circuit breaker in 7.5 ms , in a case

Fig. 6.8 Detection times for phase-ground faults

Fig. 6.9 Detection times for phase-phase faults
the earth leads are still present when the relay is switched on.

CHAPIER 7

CONCLUSIONS

Abstract

7.1 General conclusions

This thesis has described a new approach to distance relaying using digital techniques. 'the combination of a hardware configuration impiemented by a cost-effective microprocessor and of a software structure to cope with the transient conditions occuring after a fauit, can produce a distance relay offering many benefits in terms of flexibility.

In chapter 1 , a discussion about the advantages and disadvantages of digital protection in general was given and in chapter 2 the problems invoived in distance protection were discussed. The development of the described distance relay is based on the digital protection scheme proposed by Cory, Dromey and Murray ${ }^{19}$, in which the front-iine protection is accomplished by inexpensive, efiicient and fast microprocessors (dedicated scheme) communicating with a monitoring minicomputer (integrated scheme) to implement back-up protection.

Such a scheme when examined overall, has the potential of achieving the required high reliability and availability demanded of a protection system, but to achieve it, ali the individual parts of the scheme must be carefully seiected and designed. Hence the specifications of the desired front-line distance relay were
defined i. e. fast, cost-effective, compatible with the configurations of other protection items included in the scheme, reliable and with simple, efficient and dynamic software.

For these purposes, the dedicated digital distance relay has been divided into two units, namely the data acquisition interface and the protection processor.

The requirements of the interface for a distance relay were presented in chapter 3, where a brief description of the unit was given.

The heart of the digital relay is the processor, therefore its efficient design was important. Based on previous experience in the digital distance protection domain, it has been found that a 16-biv processor with an instruction execution time of about $1 \mu s$ was needed. In addition 2 K of program store and at ieast 200 data memory locations were sufficient for programming a distance algorithm. The processor has been designed with great flexibility and to give a fast response. 'Ihis has been achieved by its microprogrammability, the extensive pipeiine configuration used and the restricted size of the program and data memories.

Because the employed microprocessor is microprogrammable it is equally important to pay great attention to the instruction set. The basic instruction set and the extended set introduced to improve the
distance algorithm performance, were also presented in chapter 3.

Finally the development aids required for testing and commissioning the dedicated distance relay as an integrai unit were described.

In chapter 4, the existing distance algorithms were discussed. The algorithm finally chosen was of the short data window type, so as to reduce the size of the program and the data memories. The algorithm can cope with the d.c. exponential component present in a fault waveform on a long transmission line. A combination of analogue and digital filtering was provided for the high- frequency harmonics. To evaluate the performance of the algorithm, the same program has been run off-ine on a main - frame computer. The recorded results were similar to those obtained by the microprocessor.

Software organisation for the application program is critical for a real-time application and that used here was presenved in chapter 5. It was shown that by executing ail six impedance calculations at every sampling intervai, a switched distance scheme has been avoided with its attendant difficulties of starting a phase selection. The polar characteristic adopted is the quadrilateral one. For close-up fauits, discrimination has been achieved by using the prefault voitages to calculate the sign of the impedance.

Care has been taken in providing information to the monitoring computer, such that the relay performance can be recorded as shown in chapter 6. The relay has responded with a great selectivity to all kinds of faults applied in the test rig. It took 7.5ms to enter the trip zone for the first time, but the trip decision taken when 3 consecutive calculations are inside the zone, to ensure discrimination. ihe tests have shown that the relay operates within 15 ms , with an a accuracy of $\pm 5 \%$ of its reach for all types of faults. 7.2 Original contributions

The original contributions presenved in this thesis are:
a) A digitai feeder protection scheme which combines flexibility, fast response and of a cost comparable with that of analogue relays.
b) Modifications in the hardware and software design of a special purpose microprogrammed microprocessor to match and improve the requirements of a distance protection specification.
c) The modification of an existing algorithm, which gives a faster response as it moves quicker into the post fault data.
d) The development of a dedicated digital distance relay having operation times of about 15 ms . The relay is of the non- switched three-zone stepped type.
e) The provision of all features expected by existing distance schemes, e. g. close-up directional discrimination, switch-on-fault, out-of -step blocking and autoreclosing facilities.
f) Additional features, not available in present relays which improve availability and the operation of the protection scheme in general have been included e. g. a full fault report, a self-test monitoring and measurement of active and reactive power at the relaying point.

7.3 Further research

Since a digital system has almost unlimited possible configurations, the final choice depends on its application to a specific transmission line. By keeping to a modular software organisation such a procedure is possible.

Other types of algorithm can be used in place of the present one to calculate the fault position. Methods such as curve fitting 63,64 and travelling wave ${ }^{65,66}$ look promising in terms of faster response. However, with more complex software involved in conjunction with a possible higher sampling rate, wiii make it more difficult to run the distance algorithm in real time. Time can be saved by having starting eiements of the overcurrent type or by executing only the three phase-phase fault impedance caiculations at every sampie, until
the residual current is above a threshold limit, when the three ground-fault impedances can be calculated. Such a scheme provides saving in processing time while its performance in terms of seiecting the faulty phase is between that of a switched and non-switched configuration. Therefore it can be employed only if the application program is time consuming.

Time can be saved by abandoning the calculations for the additional features provided, but that reduces the versatility of the distance relay.

One of the main advantages of digital protection is its capability to adjust the characteristic according to load conditions. Such a feature has not be included in the present design. It is even possible to have different types of characteristics for ground and phase faults, such that the probiems introduced by the arc resistance can be taken into account.

In addition, special compensation or calculations needed for the installation of distance relays in parallel or teed ines could be included in the digital distance relay.

Such a relay, to be competitive with existing analogue ones, needs extensive testing under different operating conditions, especially for different ratios of Z_{S} / Z_{L}, power swings and fault types.

Testing techniques which use a digitai computer to generate fault conditions will ease the testing task ${ }^{79}$.

Further research can also be oriented to the subject of generating a special purpose protection language, such that testing and operating of the relay can become considerably easier.

The development of a more advanced system for testing a new software program is essential for a fast development time.

Replacement of the processor by a more modern fast microprocessor might reduce the number of devices used, hence the cost of the unit, but it is unlikely to produce any improvement in performance. On the other hand, a new design wouid be necessary and some fiexibility may be lost, if a non- microprogrammable, bipolar-- microprocessor is used.

A careful watch on new microprocessor developments is required to maintain digital protection practices at their best within the design principles laid down in this thesis.

REFERENCES

1. G.E.C. Ltd.: " Protective relays application guide " G.E.C. Measurements Itd., 1975.
2. Electricity Council: " Power system Protection " Volumes 1,2 Macdonald, London 1969.
3. Seymour C: " Statistics of C.E.G.B. protection performance 1968 - 1973 ". IEE conference on developments in power system Protection. Conference publication No. 125, March 1975.
4. Horne E.: " The design of microprocessors for digital protection of power systems ". Ph. D. Thesis, Imperial College London 1978.
5. Ungrad H, Wildhaber E. : "Methods of ensuring the reliable performance of protection equipment " BBC Review, June 1978, Volume 65.
6. Peattie C.G, et. al.: " Elements of semiconductor-- device reliability ". Proceedings of the IEEE Volume 62, February 1974.
7. Gonzales, G.E. " Data validation and reliability calculations in digital protection systems ". Ph. D. Thesis, Imperial College, London 1976.
8. Lomas T.: " Digital equipment in electrically hostile equipment ". Post experience course on digital protection of power systems, Imperial College, June 76
9. Kimble G.: " Hot time in the old factory ". Digital design February 1977.
10. Colbourne ED, Caverly GP, Beher SK: " Reliability of MOS LSI circuits". Proceedings of the IEEE Febr. 1974.
11. G.E.C. Measurements: " Performance specification for non- switched distance protection for H. V. Overhead lines and underground cables ".Confidential.
12. Crichton L.N.: " High speed protective relays ". Transactions of AIEE October 1930.
13. W. A. Lewis, L. S. Tippett: " Fundamental basis for distance relaying on 3- Phase systems" . Transactions of AIEE. Volume 66, (1947).
14. A. E. Guile and Paterson W. : " Electrical power systems, Volume 2 ". Oliver and Boyd, Edinburgh 1972.
15. Warrington A. R. van C.: " Graphical Method for estimating the performance of distance relays during faults and power swings ". Transactions of AIEE, Volume 68 (1949).
16. B.E. Murray and G. Dromey: " Practical design considerations affecting the use of digital computers in high voltage substations ". Fourth IFAC/IFIP Conference on Digital Computer Applications to Process Control, Zurich March 1974.
17. J. H, Harris and A.D.N. March: " Experience with our line computing facilities at the National Control centre ". Report by C.E.G.B.
18. Rockefeller G. B.: " Fault protection with a digital computer ". IEEE transactions, Vol. PAS-88 No. 4, April 1969.
19. Cory B. J., Dromey G., Murray B. E.: " Digital systems for protection ". CIGRE paper $34-08$, August, 1976.
20. Jag Uradnisheck: " Estimating when fiber optics will offer greater value in use ". Electronics, Nov. 9, 1978.
21. Albert Bender and Steven Storozum: " Charts simplify fiber optic system design ". Electronics, Nov. 23, 1978.
22. Harvey J. Hidin: " What designers should know about off-the shelf fiber- optic links ". Electronics, Dec. 21, 1978.
23. Burr- Brown: " Model ADC 85 Hybrid A/D Converters ". Device data sheet and application note. Burr- Brown Research Corporation. Note No. PDS-320 Jan. 1975.
24. Altman Lawrence: " Microcomputer families expand, Part 1: The new chips ". Electronics Dec. 8, 1977.
25. Intel: " 3002 Central Processing Element ". Intel Corporation 1975.
26. Intel: " 3003 Look ahead carry generator " Intel Corporation 1975.
27. M. V. Wilkes, J. B. Stringer: " Microprogramming and the design of the control circuits in an electronic digital computer ". Proceedings of the Cambridge Phil. Soc. 1953.
28. Tucker S. G. : " Microprogram control for system/ 360 ". IBM systems Journal, Vol. 6, No. 4, 1967.
29. Davies P. M. : " Readings in microprogramming ". IBM system Journal No. 1, 1972.
30. Intel: " 3001 Microprogram control unit. " Intel corporation 1975.
31. Texas Instruments Ltd : "Series 54/74,54S/74S programmable read only memories "•Device data sheet. Texas Instruments bulletin,No DL-5712258. May 1975.
32. Texas Instruments Ltd : "TMS 2708JL 1024-word 8-bit erasable programmable read-only memories ".Device data sheet.Texas instruments.Jan. 1977.
33. Texas Instruments Ltd.: " TMS 4036 JL , NL 64-word by 8-bit static random-access memories ". Device data sheet Texas Instruments bulletin, No. DL-57512277, May 1975.
34. Fielland G.: " Series 3000 System timing considerations ". Application note. Intel corporation 1975.
35. E. L. Braun: " Digital Computer design ". Academic Press New York 1963.
36. A.D.Booth: " A signed binary multiplication technique ". Quart. J. Mech. and Appl. Mathem. Vol. IV, Pt2.
37. Ivan Flores: " Computer programming System/360 ". Prentice Hall inc. 1971.
38. Ken Pine:" What do logic analysers do? " Digital design, September and October 1977.
39. John Leatherman: " System integration and testing with microprocessors-I. Hardware aspects. IEEE transactions on industrial electronics and control instrumentation. Vol. IECI-22 No. 3, Aug. 75
40. P. Burger: " System integration and testing with microprocessors-II. Software aspects. ibid.
41. Hewlett- Packard: " A designer's Guide to Signature analysis. " Application Note 222, April 1977.
42. Austin Lesea, R. Zaks: " Microprocessor interfacing techniques ". Sybex 1978.
43. Intel: " Designing with Intel PROMS and ROMS ". Application note AP-6. Intel corporation 1975.
44. National: " DM7573/DM 8573 data sheet ". National semiconductor 1972.
45. Signetics: " MOS and bipolar POR/PROM ". Signetics Corporation 1975.
46. P. Mathews and B.D. Nellist: " Transients in distance protection ". Proceedings of IEE, Vol 110, Febr. 63.
47. G. W. Swift: " The spectra of fault- induced transients ". PES summer meeting, July 1978.
48. A. M. Ranjbar: " Computer protection of high voltage transmission lines ". Ph. D. thesis, Imperial College London, 1975.
49. J. G. Gilbert, E. A. Udren, M. Sackin: " The development and selection of algorithms for relaying of transmission lines by digital computer ". Power system control and protection. Edited by B. Don Russel and Marion E. Council, Academic Press 1978.
50. B. J. Mann, J. F. Morrison: " Digital calculation of impedance for transmission line protection ". IEFE Transactions Vol. PAS-90, Jan/Febr. 1971.
51. G. D. Rockefeller, E. A. Udren: " High- speed distance relaying using a digital computer ". Parts I and II. IEEE Trans. Vol. PAS-91, May/June 1972.
52. G. R. Slemon, S. D. T. Robertson, M. Ramamoorty: " High speed protection of power systems based on improved models ". CIGRE paper 31-09, 1968.
53. P. G. Mclaren, M. A. Redfern: " Fourier series techniques applied to distance protection ". Proc. IEE 1975 122(II).
54. A. T. Johns, M. A. Martin: " Fundamental digital approach to the distance protection of e.h.v. transmission lines."Proc. of IEE Vol. 125(5) May 1978.
55. Horton, John W.: "The use of Walsh functions for High- speed Digital relaying ", IEEE Summer power meeting 1975, Paper No. A 75 582-7.
56. McInnes B.E., Morrison I. F:: " Real time calculation of resistance and reactance for transmission line protection by digital computer " IEA(Australia) March 1971.
57. Ranjbar A. M.,Cory B.J.: "An improved method for the digital protection of high voltage transmission lines ". IEEE PES summer meeting, July 74.
58. Poncelet P.: " The use of digital computers for network protection ". CIGRE paper No. 32-08, 1972.
59. Breingan W. D. , Chen M. M., Gallen T. F.,: " The laboratory investigation of a digital system for the protection of transmission lines ". IEEE PES winter meeting, 1977.
60. Gallen T. F., Breingan W. D., Chen M. M. : "A digital system for directional- comparison relaying. " IEE PES, Summer meeting, 1978.
61. Gilbert J. G., Shovlin R. J.: " High-speed transmission line fault impedance calculation using a dedicated mini- computer ". IEE PES winter meeting., Jan. 1974. Paper T 74032-9.
62. Makino J.,Miki Y.: " Study of Operating principles and digital filters for protective relays with digital computer ". IfEE PES winter meeting 1975, Paper No. C 75 197-9.
63. Luckett R. G., Munday P. J., Murray B. E.: " A substation based computer for control and protection." IEE conference on developments in power system protection, March 1975.
64. Sanderson J. V. H., Olopade O.L.: " A new algorithm for distance protection ". 13th Universities power engineering conference, April 1978.
65. Vitins, M.: " A correlation method for transmission line protection ". IEEE PAS-97 No. 5, Sept/Oct. 78.
66. Tanagi, Baba, Uemura, Sakaguchi: " Fault protection based on travelling wave theory ". IEEE, PES Summer meeting 1977. Paper No. 77 750-3.
67. Mitani I.,Yamaura M, Okamura M. : " Distance protection by digitai technique ". IFAC meeting Melbourne 1977.
68. Carlston A. Bruce: " Communication Systems " McGraw- Hili 1968.
69. David E. Johnson, John L. Hilburn: " Rapid practical designs of active filters ". John- Willey 1975.
70. Arthur B. Wiliiams: " Active filter design ". Artech House 1975.
71. Daniels: " Approximation methods for electronic filter design ". McGraw- Hill 1974.
72. William D. Stanley: " Digital Signal processing ". Reston Publishing Company 1975.
73. Knowles J.B., E.M. Olcayto: " Coefficient accuracy and digital filter response ". IESE transactions CT-15, March 1968.
74. Holden A.E.K., Morrison I. F.: " Directional discrimination for close-up faults in transmission line protection by digital computer. " IEE conference on modern developments in protection. March 75.
75. Holden A.E.K. : M.E. Thesis, 1972, School of Electrical Engineering, University of N.S.W., Australia.
76. R. W. Hamming:" Numerical methods for scientists and engineers ". McGraw- Hill 1962.
77. Farrant W. S.: " Construction of a 3- phase rig for testing protection relays." Project report 1977. Imperial Coilege.
78. Texas Instruments Ltd., " The TrIL data book for design engineers ". Texas Instruments 1976.
79. IEE meeting in " Fault simulation in long distance transmission systems ". Jan. 1979.

THE DATA ACQUISITION UNIT

This appendix gives the detailed circuit diagrams for the data acquisition unit.

Further information about the ICs are given by the data sheets of the manufacturers. For the 74 series TTL chips, the TTL data book for design engineers by Texas Instruments can be referred to. 78

Resistors nomenclature
100 value in ohms
4.7K value in kohms
3.9M value in Mohms

Capacitors nomenclature
The form A / D stands for value in microfarads/working voltage (volts).

Symbols nomenclature
36. indicates a printed circuit edge connector

A indicates a wire link from the printed circuit board.

FIG.AI.4 ANALOGUE DIGITAL CONVERTER CIRCUIT.

FIG.AI,5 DIGITAL INPUT BUS DRIVERS

FIGAI, 8 ACQUISITION SYSTEM TIMING

Fig. A1.10 Program flow chart for data acquisition interface controller.

ADDRESS						DATA																INSTRUCTION	
	BINARY					ROM\# 1								ROM \# 2									
													O1										
0	O	O	O	O	O	O	O	\bigcirc	\bigcirc	x	O	O	\bigcirc	x	x		$\times 0$		0	O	\bigcirc		JMP
1	\bigcirc	\bigcirc	0	O	1	1	1	O	0	X	x 1	11	0	x	X		$\times 0$		0	0	0		CLR RTC
2	0	O	O	1	O	1	1	11	11	x	$\times 1$	11	O	x	x		-		01	O	0		FLG RTC
3	\bigcirc	0	0	1	1	0	0	0	0	X	$\times 1$	0	\bigcirc	X	x		$\times \mathrm{O}$		0	01	O		JMP 2
4	O	O	1	O	O	1	1	10	0	X	x 1	11	1	x	x		$\times 0$		0	0	0		CLR DRD
5	0	\bigcirc	1	0	1	1	1	O	0	X	X 1	0	O	$\frac{\mathrm{x}}{} \times$	x		x 0		0	0	0		CLR MUX
0	\bigcirc	\bigcirc	1	1	\bigcirc	1	1	10	\bigcirc	X	X 1	\bigcirc	1	x	x		\times		O 0	-	O		CLR ADCV
7	\bigcirc	\bigcirc	1	1	1	1	1	O	01	X	x 1	0	1	x	X		$\times \mathrm{x}$		0	0	\bigcirc		PLS ADCV
8	O	1	O	O	O	1	1	1	0	X	\times	O	O	X	x		\bigcirc		O	0	- 0		STR DIG A
9	\bigcirc	1	0	O	1	1	1	1	0	X	O	0	1	x	X		$\times \mathrm{O}$		0	-	0		STR DIG B
10	\bigcirc	1	O	1	0	1	1	,	0	X	\bigcirc	-	\bigcirc	X	X		x		0		0		STR DIG C
11	\bigcirc	1	0	1	1	1	1	1	0	X	0	1	1	x	x		$\times 0$		0		0		STR DIG D
12	\bigcirc	1	1	0	\bigcirc	1	1	1		X		0		x	x		$\times 0$				\bigcirc		FLG ADCV
13	O	1	1	0	1	O	0	0	0	X	O	0	0	x	x		\bigcirc		1	10	O		JMP 12
14	0	1	1	1	\bigcirc	1	1	11	0	X	X 1	0	1	X	x		x 0		0	\bigcirc	0		STR ADC
15	0	1	1	1	1	1	1	1	11	X	X 1	0	\bigcirc	x	x		x $\quad 1$		01	10	0		LG MUX
10	1	0	0	O	0	1	1	O	0	x	x 1	O	0	x	x		$\times 0$		0	0	0		PLS MUX
17	1	O	-	O	1	1	1	O	0	X	1	\bigcirc	1	x	x		$\times \mathrm{O}$		0	\bigcirc	0		CLR ADCV
18	1	\bigcirc	O	1	\bigcirc	1	1	10	0	X	1	O	1	X	\bar{x}		$\times 0$		0	\bigcirc	0		LLS ADC
19	1	\bigcirc	0	1	1	O	0	0	0	x	x 0	0	\bigcirc	x	x x		$\times 0$		11	O	0		JMP 12
20		-	1	O	\bigcirc	1		10	0	X	1	11	1	x	x		$\times \mathrm{O}$		0	0	0		PLS DRD
21	1	O	1	O	1		0	0	0	X	x 0	0	10	X	X		x O		0	0	O		JMP I

FIG. AI,II ACQUISITION SYSTEM PROGRAM PAI. ROM. MAP

ADDRESS						DATA																INSTRUCTION
$\mathrm{a}^{\mathrm{c}^{3}}$	BINARY					ROM \# I								ROM \#2								
	A4	A3	A2	Al	AO	O	O7	O6	O5	O_{4}	O_{3}	O 2	O1	O	O7	O6	Os	O_{4}	O3	O 2	O_{1}	
O	\bigcirc	\bigcirc	\bigcirc	O	O	O	O	O	\bigcirc	X	\bigcirc	\bigcirc	\bigcirc	x	X	X	\bigcirc	O	0	O	1	JMP I
1	0	0	O	0	1	1	1	O	0	X	1	1	O	x	x	x	\bigcirc	O	\bigcirc	O	0	CLR RTC
2	0	O	\bigcirc	1	O	1	1	1	1	X	1	1	0	x	x	X	\bigcirc	\bigcirc	1	\bigcirc	O	FLG RTC
3	0	\bigcirc	\bigcirc	1	1	O	O	O	0	X	O	O	O	X	X	x	\bigcirc	O	\bigcirc	1	O	JMP 2
4	\bigcirc	O	1	O	0	1	1	\bigcirc	\bigcirc	X	1	1	1	x	X	x	\bigcirc	\bigcirc	O	\bigcirc	O	CLR DRDY
5	\bigcirc	0	1	0	1	1	1	\bigcirc	0	X	1	O	0	$\frac{x}{x}$	x x	x	\bigcirc	\bigcirc	0	O	\bigcirc	CLR MUX
0	0	\bigcirc	1	1	O	1	1	\bigcirc	0	x	1	O	1	x	x	X	\bigcirc	O	0	O	\bigcirc	CLR ADCV
7	\bigcirc	\bigcirc	1	1	1	1	1	O	1	X	1	O	1	x	x	x	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	PLS ADCV
8	\bigcirc	1	O	0	0	1	1	1	1	X	1	O	1	x	x	x	\bigcirc	1	O	1	O	FLG ADCV
9	0	1	\bigcirc	O	1	O	O	O	0	X	0	\bigcirc	O	X	X	x	\bigcirc	1	O	\bigcirc	O	JMP 8
10	0	1	O	1	0	1	1	1	0	X	1	O	1	x	x	x	\bigcirc	O	\bigcirc	O	O	STR ADCV
11	O	1	O	1	1	1	1	1	1	X	1	O	O	X	X	X	\bigcirc	1	1	1	O	FLG MUX
12	0	1	1	0	O	1	1	0	1	X	1	\bigcirc	0	X	x	X	\bigcirc	O	0	0	\bigcirc	PLS MUX
13	0	1	1	O	1	O	O	O	0	X	0	O	O	x	x	X	\bigcirc	\bigcirc	1	1	O	JMP 0
14	O	1	1	1	0	1	1	O	1	X	1	1	1	x	X	X	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	PLS DRDY
15	O	1	1	1	1	0	0	\bigcirc	0	X	0	0	0	X	X	X	\bigcirc	O	\bigcirc	O	1	JMP I

I_{0}	I_{1}	Fo		${ }_{1}$	$\mathrm{D}_{2} \text { V } \quad 17$	Jump address
					3	5

Device address group;

Device	Mnemonic	D_{0}	D_{1}	D_{2}
Digital input port 1	DIG A	0	0	0
" " ${ }^{2}$	DIG B	0	0	1
" 3	DIG C	0	1	0
" " " 4	DIG D	0	1	1
Analogue Multiplexer	MUX	1	0	0
Analogue-Digital conv	ADCV	1	0	1
Phase locked clock	RTC	1	1	0
Data ready flag	DRDY	1	1	1

Function group:
Function Mnemonic $\quad I_{0} \quad I_{1} \quad F_{0} \quad F_{1}$

Program jump	JMP	0	0	0	0
Clear device or flag	CLR	1	1	0	0
Clock device -	PLS	1	1	0	1
Transfer data	STR	1	1	1	0
Test device status	FLG	1	1	1	1

Interface controller instruction formats.

Interface programming examples.

The following programs demonstrate the application of the interface instruction set in two cases:
i) acquisition of digital and analogue data,
ii) analogue data only

The flow chart, Fig. Al. 10 is applicable to both programs, and the corresponding controller program R.O.M. maps are illustrated in Fig.Al.11, Al.12.

Control program identification
The pairs of P.R.O.M's which contain the controller programs are identified by four character codes:

X	X	X	1(2)
Digital data	Analogue data	Number of samples per block	R.O.M number
i) Digital data			
The first character of the code indicates the			
digital input channels used, if any, and is an alphabetic			
sequence from A to P			
e.g.	- input	A only	
	- inputs	ABC	
	- inputs	ABCD	

The letter X indicates that the digital inputs are unused.
ii) Analogue data

The second character is the letter A if ánalogue channels are included in the data block, otherwise the letter X is used. The channel numbers in use will depend on the multiplexer switch settings and thus can not be indicated in the program code.
iii) Number of samples per block

This figure is an indication of the number of samples stored in the output buffer prior to the setting of the data ready flag. In most applications it is unlikely to exceed 1.
iv) R.O.M. number

The final digit i.e. -1 or -2 corresponds to
the numbered program memory sockets on the controller module. ROM - 1 contains the function and device address groups of the instructions, whilst ROM -2 holds jump address information.

INPUT SOCKETS (McMURDO RED-RANGE 16 WAY).

PIN NO	DIGITAL I	INPUTS	ANALOGUE INPUTS		
1	DATA IN 1	15 MSB	ANALOGUE IN	1	
2	1	14	IDENT DATA	2	(MSB)
3	1	13	"	1	
4		12	"	0	(LSB)
5		11	ANALOGUE IN	2	
6		10	IDENT DATA	2	
7		9	"	1	
8		8	"	0	
9		7	ANALOGUE IN	3	
10		6	IDENT DATA	2	
11		5	"	1	
12		4	"	0	
13		3	ANALOGUE IN	4	
24		2	IDENT DATA	2	
15		1	"	1	
16		O (LSB)	"	0	

TABLE Al.3 Acquisition interface input plug details.

PIN NO		FUNCTION	PIN NO	FUNCTION
1	DATA	OUT O(LSB)	13	DATA OUT 12
2	"	1	14	13
3	"	2	15	14
4	"	3	16	15 (MSB)
5	"	4	17	NC
6	"	5	18	DATA READY FLAG
7	"	6	19	NC
8	"	7	20	DATA TRANSFER CLOCK
9	"	8	21	- NC
10	"	9	22	OUTPUT ENABLE
11	"	10	23	NC
12	"	11	24	POWER-ON CLEAR (O/P)

$\mathrm{NC}=$ NOT CONNECTED.

POWER PLUG (MCMURDO RED-RANGE 8 WAY).
PIN NO FUNCTION
$1 \& 5-15 \mathrm{~V}$
$2 \& 6+15 \mathrm{~V}$
$3 \& 7+5 \mathrm{~V}$
4 \& 8 OV (GND)

TABLE Al. $4 \quad$| Acquisition interface output socket |
| :--- |
| and power plug details. |

Front of card.

First (SW1)/Last (SW2) channel address switches.

First/Last channel.	D	C	B	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
10	1	0	0	0
11	1	0	0	1
12	1	0	1	0
13	1	0	1	1
14	1	1	0	0
15	1	1	0	1
13	1	1	1	0
1	1	1	1	1

TABLE Al. 6 Phase locked sampling clock, mode select switches (SWI).

Sampling rate (s.c)	D	C	B	A
Clock off	X	X	X	1
2	0	0	0	0
3	1	0	0	0
4	0	1	0	0
6	1	1	0	0
8	0	0	1	0
12	1	0	1	0
24	0	1	1	0

TABLE Al. 7 Phase locked sampling clock, clock rate select switches (SW2).

APPENDIX 2

THE PROTECTION PROCESSOR

The circuit diagrams for the protection processor are given. For comments see Appendix 1.

Fig．A＇2．1 PROTECTION FROCESSOR CLOCK GENERATOR CIRCUIT

Fig A2. 2 MICROPROGRAM SEQUENCER CIRCUIT

Fig A2. 3 MICROMEMORY CIRCUIT

Fig A2.4 CPU HIGH BYTE CIRCUIT

Fig A. 25 CPU LOW BYTE ORCUII

Fig A2. 6 MACROMEMORY CIRCUIT

Fig. A2.7 MACROMEMORY BUS DRIVERS CIRCUIT

Fig. A2. 8 DATA-CONSTANT MEMORY CIRCUIT

Fig. A 2.9 The data memory counters

Fig. A2.10 BIT MASKING MEMORY CIRCUIT

Fig. A2. 11 CIRCUIT BREAKER CONTROL PORT CIRCUIT

Fig. A2. $12 \begin{aligned} & \text { INPUT/COMMINNICATION OUTPUT PORT } \\ & \text { LOW EYTE HIGHEYTE)CIRCUIT }\end{aligned}$

ADDRESS	DATA ROM 1	DATA ROM 2	MASK BIT
D----A	8---------1	8---------1	
0000	11111111	11111110	0
0001	11111111	11111101	1
0010	11111111	11111011	2
0011	11111111	11110111	3
0100	11111111	11101111	4
0101	11111111	11011111	5
0110	11111111	10111111	6
0111	11111111	01111111	7
1000	11111110	11111111	8
1001	11111101	11111111	9
1010	11111011	11111111	10
1011	11110111	11111111	11
1100	11101111	11111111	12
1101	11011111	11111111	13
1110	10111111	11111111	14
1111	01111111	11111111	15

Address E set to "O"

Table A2.1 Bit masking memory ROM contents map.

ADDRESS	DATA ROM 1	DATA ROM 2
H------A	$\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$	$\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$
10101010	1111	1111
01010101	0011	0011
ALL OTHER ADDRESSES	0000	0000

Table A2.2 Breaker control port, control word decoding ROM $(Q 2,3)$ map.

OUTPUT SOCKET (MC MURDO RED-RANGE 24 WAY).

PIN NO	FUNCTION		PIN NO	FUNCTION
1	DATA OUT	O (LSB)	13	DATA OUT 12
2	"	1	14	13
3	"	2	15	14
4	"	3	16	" 15 (MSB)
5	"	4	17	NC
6	"	5	18	OUTPUT READY FLAG
7	"	6	19	NC
8	"	7	20	CLEAR FLAG
9	n'	8	21	NC
10	"	9	22	OUTPUT ENABLE
11	"	10	23	NC
12	" 1	11	24	NC

POWER PLUG (MC MURDO RED-RANGE 8 WAY)

PIN NO	FUNCTION
$1 \& 5$	-15 V
$2 \& 6$	+15 V
$3 \& 7$	+5 V
$4 \& 8$	$O V(G N D)$

Table A2.4 Protection processor data output socket and power plug details.

INPUT PLUG (MCMURDO RED-RANGE 24 WAY)

Table A2.5. Protection processor data input plug and breaker control socket details.

APPENDIX 3

THE INSTRUCTION SET

The instruction repertoire of the 52 instructions implemented is presented here. A brief description of the instruction function, the mnemonic used as it is recognised by the cross assembler and the binary code are given.

Then the sequence of the microinstructions which implement each instruction is given as in the example:

110 ACMA FF1 REN JCR13 00010110111100000011001100111101
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)
where
(i) is the micromemory location address
(ii) is the mnemonic for the ALU array control. These are defined by the manufacturer(ref.25). The first 3 letters represent the ALU function and the following number or letter represents the register used. When there is no fourth character, then by default RO is specified.
(iii) Ihis group contains any special functions to control the different modules of the processor. It can be one or more of the followings:
a) K-bus definition (see table 3.3)
b) Carry/shift flag output control, specified in ref. 30.
c) Data bus controi (see table 3.4).
d) Carry/shift flag input control, specified in ref. 30.
(iv) The microprogram jump address or the LD signal when a new macroinstruction is going to be fetched (see ref. 30).
(v) Contents of the PRONS IA or IB in fig. A2.3

(vi)	$"$	$"$	$"$	$"$	IIA $"$ IIB	$"$	$"$	$"$
(vii)	$"$	$"$	$"$	$"$	IIIA	"IIIB	$"$	$"$
(viii)	$"$	$"$	$"$	$"$	$Q_{2} "$	Q_{3}	$"$	$"$
A2.2								

Section A3.1 gives the basic instruction set, while in A3.2 the extended set is presented.

```
INSTRUCTION Restart the processor at main memory
    location \varnothing.
MNEMONIC RST
```

FORMAT

| 1 | 1 | 1 | 1 | 1 | 1 | NOT USED |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MICRO-CODE

\varnothing

| CLR JZR6 | 10000000 | 11110000 | 0000000 | 00100110 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LMI FF1 JZR7 | 00100000 | 11110000 | 00000011 | 00100111 |
| CLAA JZR15 | 10010110 | 11110000 | 00000000 | 00101111 |

Loc 15 is the start of a short fetch, whilst 14 is an extended fetch for use with short micro-code routines which are executed before macro memory access is possible.

14 SDR9 FFl CL LD 01010010000010000000001110000000 15 SDR9 FFl JZR14 01010010000000000000001100101110

The SDR9 instruction is used for accumulator restoration purposes.

INSTRUCTION

MNEMONIC
HLT.
FORMAT

MICRO-CODE

1 NOP JZRI 11000000111100000000000000100001

INSTRUCTION Wait until the input data ready flag is set (i.e. logical l).

MNEMONIC WFS

FORMAT

MICRO-CODE

| LMI FF1 JZR5 | 00100000 | 11110000 | 00000011 | 00100101 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ORIT KllO1 JZR4 | 11011100 | 11010000 | 00000000 | 00100100 |
| NOP JFL O | 11000000 | 11110000 | 00000000 | 01000000 |
| NOP JZR5 | 11000000 | 11110000 | 00000000 | 00100101 |
| NOP JZR13 | 11000000 | 11110000 | 00000000 | 00101101 |

Wait for n milli-secs., where n is specified by the contents of the data field. This instruction must be preceded by loading the accumulator with the constant l664. i.e. LDA loc where (loc) $=1664$.

MNEMONIC PAU.

FORMAT

MICRO CODE

16	LDMT	JMPE JCR6	00110100	00000000	00100000	00110110
22	LMI	FFl JCR3	00100000	11110000	00000011	00110011
19	DCAA	JCR4	00111110	00000000	00000000	00110100
20	TZAA	JCR5	10111110	00000000	00000000	00110101
21	NOP	JFLl	11000000	11110000	00000000	01000001
18	TZRT	K1100 JCRl5	10111100	11000000	00000000	00111111
31	ILR9	JFLI	00010010	11110000	00000000	01000001
26	SDR9	FFI CL LD	01010010	00001000	00000011	10000000
27	DCAT	JCR3	00111100	00000000	00000000	00110011

INSTRUCTION No operation.

MNEMONIC NOP

FORMAT

MICRO-CODE

9 LMI FFI JZRIO 00100000111100000000001100101010
10 NOP JZR15 11000000111100000000000000101111

INSTRUCTION Decrement the loop counter and skip the following instruction if the result is zero. (count skip loop).

MNEMONIC CS L
FORMAT

0	1	0	1	1	1	NOT	USED

MICRO-CODE

| 160 | DSM8 | JCR4 | 00110000 | 00000000 | 00000000 | 00110100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 164 | TZR8 | JCR5 | 10110000 | 00000000 | 00000000 | 00110101 |
| 165 | LMI FFI JFL10 | 00100000 | 11110000 | 00000011 | 01001010 | |
| 162 | LMI FFI JCR3 | 00100000 | 11110000 | 00000011 | 00110011 | |
| 163 | NOP | JZR15 | 11000000 | 11110000 | 00000000 | 00101111 |

INSTRUCTION

MNEMONIC LDA

FORMAT

MICRO-CODE

| 64 | LMI FFI REN JCR6 | 00100000 | 11110000 | 00110011 | 00110110 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 70 | NOP REN JCR 7 | 11000000 | 11110000 | 00110000 | 00110111 |
| 71 | LMFA REN JZR 14 | 11010110 | 11110000 | 00110000 | 00101110 |

INSTRUCTION Store the accumulator in the data store location or output port as specified by the sub-address.

MNEMONIC STA

FORMAT

MICRO-CODE
LMI FFI EDB JCR4 00100000
11110000 0100001100110100

NOP EDB WEN JCR5 11000000111100001100000000110101
NOP EDB WEN JZR14 11000000111100001100000000101110

INSTRUCTION

Add (2's complement) the data in the constant/data store location as specified by the sub-address to the contents of the accumulator.

MNEMONIC ADD

FORMAT

1	0	1	1	0	1		

MICRO-CODE

| 72 | LMI | FFl REN JCR14 | 00100000 | 11110000 | 00110011 | 00111110 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 78 | NOP REN JCR15 | 11000000 | 11110000 | 00110000 | 00111111 | |
| 79 | AMAA REN JZRI4 | 00010110 | 00000000 | 00110000 | 00101110 | |

INSTRUCTION Logically 'and' the contents of the constant/data store location as specified by the sub-address to the contents of the accumulator.

MNEMONIC AND.

FORMAT

1	0	1	1	0	0	SUB	ADDRESS

MICRO-CODE

| 73 | LMI | FF1 REN JCR12 | 00100000 | 11110000 | 00110011 | 00111100 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 76 | NOP | REN | JCR13 | 11000000 | 11110000 | 00110000 | $0 C 111101$ |
| 71 | ANMA | | JZR14 | 10010110 | 00000000 | 00110000 | 00101110 |

INSTRUCTION

MNEMONIC XOR

FORMAT

Exclusive or the contents of the data/constant store location as specified with the contents of the accumulator.

MICRO-CODE

| 80 | LMI | FF1 REN JCR5 | 00100000 | 11110000 | 00110011 | 00110101 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 85 | NOP | REN | JCR6 | 11000000 | 11110000 | 00110000 | 00110110 |
| 86 | XNMA REN | JCR7 | 11110110 | 00000000 | 00110000 | 00110111 | |
| 87 | CMAA | JZR 14 | | 11111110 | 11110000 | 00000000 | 00101110 |

INSTRUCTION Subtract the contents of the data/constant store location as specified from the contents of the accumulator.

MNEMONIC
SUB

FORMAT

MICRO-CODE

| 81 | LMI | FFI REN JCR2 | 00100000 | 11110000 | 00110011 | 00110010 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 82 | NOP | REN | JCR3 | 11000000 | 11110000 | 00110000 | 00110011 |
| 83 | LCMT REN | JCR4 | 11110100 | 11110000 | 00110000 | 00110100 | |
| 84 | ALRT FF1 | JZR14 | 00011000 | 00000000 | 00000011 | 00101110 | |

INSTRUCTION

MNEMONIC
Decrement the contents of the data store location as specified and skip the following instruction if the result is zero. DSZ

FORMAT

MICRO-CODE

| 88 | NOP REN JCR15 | 11000000 | 11110000 | 00110000 | 00111111 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 95 | NOP REN JCC6 | 11000000 | 11110000 | 00110000 | 00000110 |
| 111 | LDMA REN JCR13 | 00110110 | 00000000 | 00110000 | 00111101 |
| 109 | LMI FFI JCC5 | 00100000 | 11110000 | 00000011 | 00000101 |
| 93 | TZAA EDB WEN JCR12 | 10111110 | 00000000 | 11000000 | 00111100 |
| 92 | NOP EDB WEN JFL5 | 11000000 | 11110000 | 11000000 | 01000101 |
| 91 | ILR9 CL LD | 00010010 | 11111000 | 00000000 | 10000000 |
| 90 | LMI FFI JCC6 | 00100000 | 11110000 | 00000011 | 00000110 |
| 106 | ILR9 JZR15 | 00010010 | 11110000 | 00000000 | 00101111 |

MICRO-CODE

89	NOP	REN	JCR14	11000000	11110000	00110000	00111110
94	NOP REN	JCC6	11000000	11110000	00110000	00000110	
110	ACMA FFI	REN JCR13	00010110	11110000	00110011	00111101	
109	LMI FF1 JCC5	00100000	11110000	00000011	00000101		
93	TZAA EDB WEN JCR12	10111110	00000000	11000000	00111100		
92	NOP EDB WEN JFL5	11000000	11110000	11000000	01000101		
91	ILR9 CL LD	00010010	11111000	00000000	10000000		
90	LMI FF1 JCC6	00100000	11110000	00000011	00000110		
106	ILR9 JZR15	00010010	11110000	00000000	00101111		

INSTRUCTION Deposit zero in the data store location as specified by the sub-address.

MNEMONIC DZM

FORMAT

MICRO-CODE

96 LMI FFl JCR2

98 CLAA EDB JCC
NOP EDB WEN JCR3 11000000111100001100000000110011
NOP EDB WEN JZRI3 11000000111100001100000000101101

INSTRUCTION
Sum the accumulator data in the memory location specified.

MNEMONIC
SUM
FORMAT

MICRO-CODE

| 97 | LMI FF1 REN JCR3 | 00100000 | 11110000 | 00110011 | 00110011 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 99 NOP REN | JCR4 | 11000000 | 11110000 | 00110000 | 00110100 |
| 100 AMAA REN | JCR5 | 00010110 | 00000000 | 00110000 | 00110101 |
| 101 NOP | JCR6 | 11000000 | 11110000 | 00000000 | 00110110 |
| 102 NOP EDB WEN | JCC7 | 11000000 | 11110000 | 11000000 | 00000111 |
| 118 NOP EDB WEN | JZR13 | 11000000 | 11110000 | 11000000 | 00101101 |

INSTRUCTION Transfer data from input port to data store location as specified.

MNEMONIC IDM.

FORMAT

MICRO-CODE

1111000010010000
00101110


```
INSTRUCTION Form the l's complement of the accumulator
contents.
MNEMONIC COM.
```

FORMAT

| LMI FFI JCR7 | 00100000 | 11110000 | 00000011 | 00110111 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CMAA JZR15 | 11111110 | 11110000 | 00000000 | 00101111 |

INSTRUCTION

MNEMONIC CLA

FORMAT

| 0 | 1 | 1 | 1 | 1 | 0 | NOT USED |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MICRO-CODE

NOTE: Shares u-code with instruction RST.
INSTRUCTION Form the 2 's complement of the
accumulator contents.
MNEMONIC \quad NEG

FORMAT

MICRO-CODE

136	LMI	FFI	JCR15	00100000	11110000	00000011	00111111
143	CIA	FFI	JZR15	00111110	11110000	00000011	00101111

INSTRUCTION Extend the sign of the A-D converter input
data through the M.S.BS of the accumulator.
MNEMONIC
EXS

FORMAT

137	TZAA	KllO1 JCR14	10111110	11010000	00000000	00111110	
142	LMI FF1 JFL8	00100000	11110000	00000011	01001000		
138	TZR9	K1110 JCR13	10110010	11100000	00000000	00111101	
139	CSAA	JCR12		01010110	11110000	00000000	00111100
140	ORR9	K0011 JZR13	11010010	00110000	00000000	00101101	
141	ILR9	JZR 14	00010010	11110000	00000000	00101110	

INSTRUCTION

MNEMONIC

FORMAT

MICRO-CODE

144 LMI FFl JCR6 00100000111100000000001100110110 150 SDAA JZR15 01010110 00000000 00000000 00101111

INSTRUCTION Increment the accumulator.

MNEMONIC INC

FORMAT

MICRO-CODE

145 LMI FFI JCR7 OO100000 11110000 00000011 00110111
151 INAA FFI JZR15 O1111110 11110000000000110010111

INSTRUCTION
Shift the contents of the accumulator one place left and fill the L.S.B. with zero.

MNEMONIC SHL

FORMAT

| 0 | 1 | 1 | 0 | 0 | 1 | NOT USED |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MICRO-CODE
152 LMI FFI JCR15 00100000 11110000 0000001100111111
159 ALRA JZR15 00011010000000000000000000101111

INSTRUCTION

MNEMONIC
SHR

FORMAT

MICRO-CODE
153 LMI FFl JCRl4 00100000 llll0000 0000001100111110
158 SRAA JZR15 00011110 llll0000 $0000000000101 i l$

INSTRUCTION

MNEMONIC
FORMAT
Shift the contents of the accumulator left n times, where n is specified by the 4 least significant bits of the address field. MSL
 MICRO-CODE
00110100000000000010000000110111 00100000111100000000001100110110

182	TZRT	JCR4	10111000	00000000	11100000	00110100
180	ALRA	JFLIl	00011010	00000000	00000000	01001011
178	SDR9 FFI CL LD	01010010	00001000	00000011	10000000	
179	DCAT	JCR6	00111100	00000000	00000000	00110110

INSTRUCTION Shift the contents of the accumulator right n times, where n is specified by the 4 least significant bits of the address field.

MNEMONIC

 MSRFORMAT

$$
\mathrm{n}=1-15
$$

MICRO-CODE
177 LDMT JMPE JCR5 00110100000000000010000000110101
181

| 197 | TRRT | JCR4 | 10111000 | 00000000 | 00000000 | 00110100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 196 | SRAA | JFL12 | 00011110 | 11110000 | 00000000 | 01001100 |
| 194 | SDR9 FFI CL LD | 01010010 | 00001000 | 00000011 | 10000000 | |
| 195 | DCAT | JCR5 | 00111100 | 00000000 | 00000000 | 00110101 |

INSTRUCTION

MNEMONIC

Jump. in high page i.e. fetch the next instruction from the location specified within the range $1024 \rightarrow 2047$.

JHP
FORMAT

| 0 | 0 | 1 | 1 | 1 | 1 | LSBS JÜB Jump address |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

192 LMMA JMPE FF1 JCR6 OO110110 11110000 00100011 00110110
198 SDR FFI JCR7 01000000 00000000 00000011 00110111
199 ILR9 JZR14 00010010 1111000000000000010110

INSTRUCTION Jump in low page. i.e. fetch next instruction from the location specified within the range $0 \rightarrow 1023$.

MNEMONIC
JIP

FORMAT

MICRO-CODE
193 LMMA JMPE FFl JCR6 OO110110 111100000010001100110110
198 SDR FFI JCR7 01000000 00000000 00000011 00110111
199 ILR9 JZR14 00010010 111100000000000000101110

INSTRUCTION	Return from subroutine to instruction
following subroutine call.	
MNEMONIC	RET

FORMAT

MICRO-CODE

| LMI7 FFI | JCR15 | 00101110 | 11110000 | 00000011 | 00111111 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ILR7 | JCR14 | 00001110 | 11110000 | 00000000 | 00111110 |
| SDR FF1 | JZR13 | 01000000 | 00000000 | 00000011 | 00101101 |

INSTRUCTION Jumpt to subroutine starting at the address specified.

MNEMONIC JSR

FORMAT

| 201 | ILR | JCRlO | | 0000000 | 11110000 | 00000000 | 00111010 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 202 | SDR7 FFl | JCR11 | | 01001110 | 00000000 | 00000011 | 00111011 |
| 203 | LMMA | JMPE FFI | JCR12 | 00110110 | 11110000 | 00100011 | 00111100 |
| 204 | SDR | FFl | JCR13 | 01000000 | 00000000 | 00000011 | 00111101 |
| 205 | ILR | | JZR14 | 00010010 | 11110000 | 00000000 | 00101110 |

INSTRUCTION | Skip the following instruction if the |
| :--- |
| contents of the accumulator differ from |
| the contents of the data/constant store |
| MNEMONIC |
| location as specitied. |
| SAD |.

MICRO-CODE

| 225 | LMI FFI REN JCR2 | 00100000 | 11110000 | 00110011 | 00110010 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 226 | NOP REN JCR3 | 11000000 | 11110000 | 00110000 | 00110011 | |
| 227 | XNMA REN JCR4 | 11110110 | 00000000 | 00110000 | 00110100 | |
| 228 | CMAA | JCR5 | 11111110 | 11110000 | 00000000 | 00110101 |
| 229 | TZAA | JCR15 | 10111110 | 00000000 | 00000000 | 00111111 |
| 239 | NOP JFL14 | 11000000 | 11110000 | 00000000 | 01001110 | |
| 234 | ILR9 CL LD | 00010010 | 11111000 | 00000000 | 10000000 | |
| 235 | LMI FFI JCR12 | 00100000 | 11110000 | 00000011 | 00111100 | |
| 236 | ILR9 JZR15 | 00010010 | 11110000 | 00000000 | 00101111 | |

Skip the following instruction if the accumulator bit, specified by the 4 LSBs of this instruction, is clear.

MNEMONIC SBC
FORMAT

208	LMI FFl	EMM	JCR7	00100000	11110000	01010011	00110111
215	ANMA	EMM	JCR13	10010110	00000000	01010000	00111101
221	NOP	JFLI3		11000000	11110000	00000000	01001101
218	LMI FFl		JCR12	00100000	11110000	00000011	00111100
219	ILR9 CL	LD		00010010	11111000	00000000	10000000
220	ILR9		JZR15	00010010	11110000	00000000	00101111
INSTRUCTION			Skip the following instruction if the accumulator bit specified by the 4 LSBs of this instruction is set.				
	MNEMONIC		SBS				

209 LMI FFI EMM JCR6 00100000 11110000 0101001100110110

| 214 | ANMA | EMM JCR5 | 10010110 | 00000000 | 01010000 | 00110101 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 213 | NOP | JFL 13 | 11000000 | 11110000 | 00000000 | 01001101 |
| 210 | ILR9 | CL LD | 00010010 | 11111000 | 00000000 | 10000000 |
| 211 | LMI FFl | JCR4 | 00100000 | 11110000 | 00000011 | 00110100 |
| 212 | ILR9 | JZR15 | 00010010 | 11110000 | 00000000 | 00101111 |

INSTRUCTION | Skip the following instruction if the |
| :--- |
| converter data is positive i.e. sign bit $=0$. |
| MNEMONIC |\quad SPD

FORMAT

232	LMI FFI JCR13	00100000	11110000	00000011	00111101
237	TZAA KllO1 JCCl3	10111110	11010000	00000000	00001101
221	NOP JFLI3	11000000	11110000	00000000	01001101
218	LMI FFI JCR12	00100000	11110000	00000011	00111100
219	ILR9 CL LD	00010010	11111000	00000000	10000000
220	ILR9 JZR15	00010010	11110000	00000000	00101111

INSTRUCTION Skip the following instruction if the converter data is negative i.e. sign bit $=1$.

MNEMONIC SND

FORMAT

0	0	0	1	0	0	NOT USED

MICRO-CODE

| 233. | LMI FFl JCR14 | 00100000 | 11110000 | 00000011 | 00111110 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 238 | TRAA KllO1 JCR15 | 10111110 | 11010000 | 00000000 | 00111111 |
| 239 | NOP JFL14 | 11000000 | 11110000 | 00000000 | 01001110 |
| 234 | ILR9 CL LD | 00010010 | 11110000 | 00000000 | 10000000 |
| 235° | LMI FFI JCR12 | 00010000 | 11110000 | 00000011 | 00111100 |
| 236 | ILR9 JZR15 | 00010010 | 11110000 | 00000000 | 00101111 |

INSTRUCTION				Skip the following instruction if the				
MNEMONIC				$S N \mathrm{~A}$.		
FORMAT								
					!			
0	0	0	1	11	NOT	USED		
MICRO-CODE								
224		LMI	FFl	JCR7	00100000	11110000	00000011	00110111
231		TZAA	K0111	1 JCR15	10111110	01110000	00000000	00111111
239		NOP	JFLI		11000000	11110000	00000000	01001110
234		ILR9	CL LD		00010010	11111000	00000000	10000000
235		LMI	FFl	JCR12	00100000	11110000	00000011	00111100
236		ILR9	JZR		00010010	11110000	00000000	00101111

INSTRUCTION

MNEMONIC
FORMAT

MICRO-CODE

| 216 | LMI FFI | JCR15 | 00100000 | 11110000 | 00000011 | 00111111 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 223 | TZAA | | JCR13 | 10111110 | 00000000 | 00000000 | 00111101 |
| 221 | NOP | | JFL13 | 11000000 | 11110000 | 00000000 | 01001101 |
| 218 | LMI FFl | JCR12 | 00100000 | 11110000 | 00000011 | 00111100 | |
| 219 | ILR9 | CL | LD | 00010010 | 11111000 | 00000000 | 10000000 |
| 220 | ILR9 | | JZR15 | 00010010 | 11110000 | 00000000 | 00101111 |

INSTRUCTION Skip the following instruction if the contents of the accumulator are positive MNEMONIC SPA

FORMAT

MICRO-CODE

| 217 | LMI FFl JCR14 | 00100000 | 11110000 | 00000011 | 00111110 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 222 | TZAA | KOll1 JCR13 | 10111110 | 01110000 | 00000000 | 00111101 |
| 221 | NOP | JFLl3 | 11000000 | 11110000 | 00000000 | 01001101 |
| 218 | LMI FFI JCR12 | 00100000 | 11110000 | 00000011 | 00111100 | |
| 219 | ILR9 CL LD | 00010010 | 11111000 | 00000000 | 10000000 | |
| 220 | ILR JZR15 | 00010010 | 11110000 | 00000000 | 00101111 | |

A3. 2 THE EXTENDED TNSTRUCTION SET

INSTRUCTION Multiply the contents of the accumulator by the contents of the data/constant store location specified. The signed 32 bit product is in Accumulator (MSB's) and Register T (LSB's).

MNEMONIC MUL
FORMAT

| 1 | 0 | 0 | 0 | 1 | 1 | SUB ADDRESS | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MUL (Conta.)

266	INR1	FFl	REN	STC JFL
315	AMAA	REN	HCZ	JCR10
314	SRAA	REN	STZ	JCR9
313	SRAT	FFZ	REN	HCZ JCFO
267	SRAA	STZ	JCR12	
268	SRAT	FFZ	HCZ	JCR13
269	SDR6	FFl	EDB	JCR14
270	ILR2	EDB	JCR15	
271	NOP	EDB	WEN	JCC2 3
383	LMI	FFl	EDB	WEN JCR14
382	ALR9	Koll	11 EDB	JCR13
381	TZAA	KO111	11 EDB	B JCRI2
380	ILR6	EDB	JFL5	
347	CIAT	FFl	STZ	JCR12
348	CIAA	FFZ	EDB	JCR10
346	SDR9	FFl	CL Id	LD

ROM CONTENTS.

112	10111110	01110000	00000000	00010000
256	00010010	11110000	00110000	01000000
259	00111110	11110000	00110011	00110010
258	01011000	00000000	00110011	00110001
257	10110110	01110000	00110000	00010011
305	00010110	11110000	00110000	01000011
307	01000100	00000000	00000011	00110111
311	00111110	11110000	01000011	00110100
308	11000000	11110000	11000000	00110101
309	11000000	11110000	11000000	00110000
306	01000100	00000000	00000011	00110000

ROM CONTENTS (Contd.)

304	01011010	11110000	00000000	00110110
310	00011010	00000000	00000000	00010000
262	00011010	00000000	00000000	00110101
261	00011010	00000000	00000000	00110100
260	00011010	00000000	00000011	00110111
263	01000010	00000000	01000011	00111000
264	10010110	11110000	00001000	00111001
265	00011100	11110000	00111100	00111010
266	01100010	11110000	00110111	01000011
315	00010110	00000000	00111100	00111010
314	00011110	11110000	00111000	00111001
313	00011100	11110000	00111101	01010000
267	00011110	11110000	00001000	00111100
268	00011100	11110000	00001101	00111101
269	01001100	00000000	01000011	00111110
270	00000100	11110000	01000000	00111111
271	11000000	11110000	11000000	00010111
383	00100000	11110000	11000011	00111110
382	00010010	01110000	01000000	00111101
381	10111110	01110000	01000000	00111100
380	00001100	11110000	01000000	01000101
347	00111100	11110000	00001011	00111100
348	00111110	11110000	01000001	00111010
346	01010010	00001000	00000011	10000000

INSTRUCTION Load R7 from the data store as specified by the sub address(i.e.load the return address)

MNEMONIC LRA

FORMAT

MICRO-CODE

185	LMI FF1 REN JCC25	00100000	11110000	00110011	00011001
409	NOP REN JCR10	11000000	11110000	00110000	00111010
410	LMFA REN JCR11	11010110	11110000	00110000	00111011
411	SDR7 FF1 JZR13	01001110	00000000	00000011	00101101

INSTRUCTION Store R7 (i.e. the return address of the S / R), in the data store location as specified by the sub address.

MNEMONIC SRA

FORMAT

0	1	0	0	0	1	SUB ADDRESS

MICRO-CODE

184	LMI FF1 JCC25	00100000	11110000	00000011	00011001
408	ILR7 EDB JCR15	00001110	11110000	01000000	00111111
415	NOP EDB WEN JCR14	11000000	11110000	11000000	00111110
414	NOP EDB WEN JZR13	11000000	11110000	11000000	00101101

```
INSTRUCTION Load Reg. I from the data/constant store
                                    as specified by the sub address.
MINEMONIC LTR
```

FORMAT

MICRO-CODE

00110011
00010110
11110000
00110000
00110111
0011000000101110

INSTRUCTION

MNEMONIC

Store Reg. T in the data store location as specified by the sub address. STT

FORMAT

MICRO-CODE

113	LMI FF1 JCC18	00100000	11110000	00000011	00010010
289	ILRT EDB JCR2	00011000	11110000	01000000	00110010
290	NOP EDB WEN JCR3	11000000	11110000	11000000	00110011
291	NOP EDB WEN JZK13	11000000	11110000	11000000	00101101

Load R2,R3 and AC with three consecutive data words from the data store. The sub-address specifies the address of the first word.

MNEMONIC LMB

FORMAT
 MICRO-CODE

168	NOP	REN	JCC23		
376	NOP	REN	JCR11		
379	LMFA	REN	COUL	JCRO	
368	SDR2	FF1	INC	COUL	JCR1
369	NOP	REN	COUL	JCR2	
370	NOP	REN	COUL	JCR3	
371	LMFA	REN	COUL	JCR4	
372	SDR3	FF1	INC	COUL	JCR5
373	LMI	FF1	REN	COUL	JCR6
374	NOP	REN	COUL	JCR7	
375	LMFA	REN	COUL	JZR14	

ROM CONTENTS.

168	11000000	11110000	00110000	00010111
376	11000000	11110000	00110000	00111011
379	11010110	11110001	00110000	00110000
368	01000101	00000001	00000011	00110001
369	11000000	11110001	00110000	00110010
370	11000000	11110001	00110000	00110011
371	11010110	11110001	00110000	00110100
372	01000111	00000001	00000011	00110101

IMB (Contd.)

373	00100000	11110001	001.10011	00110110
374	11000000	11110001	00110000	00110111
375	11010110	11110001	00110000	00101110

INSTRUCTION Store R2,R3 and AC in three consecutive locations in the data store. The subaddress specifies the address where the first word has to be stored.

MNEMONIC SMB
FORMAT

MICRO- CODE

169	ILR2	JCC23			.	
377	NOP	EDB	WEN	JCR10		
378	NOP	EDB	WEN	COUL	JSO24	
393	ILR3	INC	COUL	JCRO		
384	NOP	EDB	WEN	COUL	JCR1	
385	LMI	FF1	EDB	WEN	COUL	JCR2

| SHB | (contd.) | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 386 | ILR9 | INC | COUL | JCR3 | |
| 387 | NOP | EDB | WEN | COUL | JCR4 |
| 388 | NOP | EDB | WEN | COUL | JZR14 |

ROM CONTENTS

169	00000100	11110000	00000000	00010111
377	11000000	11110000	11000000	00111010
378	11000000	11110001	11000000	00011000
393	00000111	11110001	00000000	00110000
384	11000000	11110001	11000000	00110001
385	00100000	11110001	11000011	00110010
386	00010011	11110001	00000000	00110011
387	11000000	11110001	11000000	00110100
388	11000000	11110001	11000000	00101110

INSTRUCTION Shift the contents of the $32-b i t$ word contained in $A C, T=M S B, L S B$, right n times, where n is specified by the 4 least significant bits of the address field. The final result is in AC,T with extended sign.

ITNEMONTC . DMR .
FORMAT

MICRO-CODE

49	SDR6	FF1	JCC26
417	LDMA	JMPE	JCR15
431	SDR5	FF1	JCR14
430	ILR6	JCR13	
429	TZR6	KO111	STC
JCR12			

DMR (contd.)

428	NOP	HCZ	JFL10	
427	SRAA	FF1	STZ	JCR8
426	SRAA	STZ	JCR8	
424	TZR5	HCZ	JCR9	
425	SRAT	FFZ	HCZ	JFL11
442	LMI	FF1	JCR7	
439	NOP	JZR15		
443	DSM5	HCZ	JCF2	
ROM CONTENTS				

49	01001100	00000000	00000011	00011010
417	00110110	00000000	00100000	00111111
431	01001010	00000000	00000011	00111110
430	00001100	11110000	00000000	00111101
429	10101100	01110000	00000100	00111100
428	11000000	11110000	00001100	01001010
427	00011110	11110000	00001011	00111000
426	00011110	11110000	00001000	00111000
424	10101010	00000000	00001100	00111001
425	00011100	11110000	00001101	01001011
442	00100000	11110000	00000011	00110111
439	11000000	11110000	00000000	00101111
443	00101010	00000000	00001100	01010010

INSTRUCTION Store in the data store n words from the I/P port, starting from the address specified by the subaddress field. (The number of the words is specified by a LDA instruction which proceedes IDB in the program).

MNEMONIC IDB

FORMAT
1 0 0 0 0 1 SUB- ADDRESS

MICRO- CODE

| 120 | NOP | IPE | JCC20 | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 328 | DCAA | IPE | WEN | COUL | JCR7 |
| 327 | TZAA | IPE | WEN | COUL | JCR6 |
| 326 | NOP | LD | INC | COUL | JFL5 |
| 338 | IMI | FF1 | JCR1 | | |
| 339 | NOP | COUL | JCR8 | | |
| 344 | NOP | IPE | COUL | JCC 20 | |
| 337 | NOP | JZR15 | | | |

ROM CONTENTS

120	11000000	11110000	00010000	00010100
328	00111110	00000001	10010000	00110111
327	10111110	00000001	10010000	00110110
326	11000001	11110001	00000000	11000101
338	00100000	11110000	00000011	00110001
339	11000000	11110001	00000000	00111000
344	11000000	11110001	00010000	00010100
337	11000000	11110000	00000000	00101111

INSTRUCTION Add (2's complement) a 32-bit data word stored in two consecutive iocations in the data store (the subaddress specifies the least significant 16-bits) to the contents of a similar size word contained in $A C$ and T. The result is stored back as a 32-bit word in the 2 consecutive locations specified by the subaddress.
MNEMONIC DPA

FORMAT

1	1	0	0	0	1	SUB-ADDRESS

MICRO- CODE

56	NOP	REN	JCC28			
456	ILRT	REN	JCR10			
458	LMFT	REN	JCR11			
459	ALRT	STZ	JCR12			
460	NOP	EDB	WEN	HCZ	JCR13	
461	NOP	EDB	WEN	HCZ	COUL	JCR14
462	NOP	INC	HCZ	COUL	JCR15	
463	NOP	REN	HCZ	COUL	JCR2	
450	LMI	FF1	REN	HCZ	COUL	JCR3
451	LMFA	REN	HCZ	COUL	JCR4	
452	ALR9	FFZ	COUL	JCR5		
453	NOP	EDB	WEN	COUL	JCR6	
454	NOP	EDB	WEN	COUL	JZR14	.

ROM CONTENTS

56	11000000	11110000	00110000	00011100
456	00011000	11110000	00110000	00111010
458	11010100	11110000	00110000	00111011
459	00011000	00000000	00001000	00111100
460	11000000	11110000	11001100	00111101
461	11000000	11110001	11001100	00111110

DPA (contd.)

462	11000001	11110001	00001100	00111111
463	11000000	11110001	00111100	00110010
450	00100000	11110001	00111111	00110011
451	11010110	$11110001 \cdot$	00111100	00110100
452	00010010	00000001	00000001	00110101
453	11000000	11110001	11000000	00110110
454	11000000	11110001	11000000	00101110

INSTRUCTION Subtract a 32-bit word stored in two consecutive locations in the data store(the subaddress specifies the least significant 16--bits) from the contents of a similar size word contained in AC and T. The result is stored back as a 32-bit word in the two consecutive locations specified by the subaddress.

MNEMONIC DPS

FORMAT

MICRO- CODE

121	NOP	REN	JCC22			
361	IIRT	REN	JCR10			
362	LCMT	REN	JCR11			
363	ALRT	FF1	STZ	JCR12		
364	NOP	EDB	WEN	HCZ	JCR13	
365	NOP	EDB	WEN	HCZ	COUL	JCR14

366	NOP	HCZ	COUL	INC	JCR15	
367	NOP	REN	HCZ	COUL	JCR2	
354	LMI	FF1	REN	HCZ	COUL	JCR3
355	LCMA	REN	HCZ	COUL	JCR4	
356	ALR9	FFZ	COUL	JCR5		
357	NOP	EDB	WEN	COUL	JCR6	
358	NOP	EDB	WEN	COUL	JZR14	
ROM CONTENTS						

121	11000000	11110000	00110000	00010110
361	00011000	11110000	00110000	00111010
362	11110100	11110000	00110000	00111011
363	00011000	00000000	00001011	00111100
364	11000000	11110000	11001100	00111101
365	11000000	11110001	11001100	00111110
366	11000001	11110001	00001100	00111111
367	11000000	11110001	00111100	00110010
354	00100000	11110001	00111111	00110011
355	11110110	11110001	00111100	00110100
356	00010010	00000001	00000001	00110101
357	11000000	11110001	11000000	00110110
358	11000000	11110001	11000000	00101110

INSTRUCTION Multiply the AC by a positive fractional constant of the constant store as specified (The number of bits after the binary point is stored in \mathbb{T}). The result is scaled ta the nearest integer and stored to AC.

MNEMONIC FMU

FORMAT

MICRO- CODE

57	ILRT	EDB	JCC 29		
434	NOP	JCR4			
435	INRA	JCR4			
436	NOP	JZR14			
466	INR 1	FF1	REN	STC	JFL14
467	TZRT	K0111	JCR4		
468	LMI	FF1	JFL11		
473	SDR1	FF1	JCR12		
474	SRAT	REN	HCZ	JCC30	
475	SRAT	REN	HCZ	JCR2	
476	IIR 9	REN	JCR13		
477	SDRIT	FF1	REN	JCR14	
478	LTMA	K0111	REN	JCR15	
479	CLAA	REN	JFL 13		
481	SRAT	FFZ	HCZ	REN	JCF5
482	SRAA	FF1	STZ	REN	JCR1
483	AMAA	REN	HCZ	JCR2	
484	LMI	FF1	JFL 11		
490	INR1	FF1	REN	STC	JFL15
491	TZRT	K0111	JCR4		

505	SRAT	FFZ	HCZ	REN	JCF6
506	SRAA	STZ	REN	JCRG	
507	AMAA	REN	HCZ	JCR10	

ROM CONTENTS

57	00011000	11110000	01000000	00011101
434	11000000	11110000	00000000	00110100
435	01111010	11110000	00000011	00110100
436	11000000	11110000	00000000	00101110
466	01100010	11110000	00110111	01001110
467	10111000	01110000	00000000	00110100
468	00100000	11110000	00000011	01001011
473	01000010	00000000	00000011	00111100
474	00011100	11110000	00111100	00011110
475	00011100	11110000	00111100	00110010
476	00010010	11110000	00110000	00111101
477	01011000	00000000	00110011	00111110
478	10110110	01110000	00110000	00111111
479	10011010	11110000	00110000	01001101
481	00011100	11110000	00111101	01010101
482	00011110	11110000	00111011	00110001
483	00010110	00000000	00111100	00110010
484	00100000	11110000	00000011	01001011
490	01100010	11110000	00110111	01001111
491	10111000	01110000	$000 v 0000$	00110100
505	00011100	11110000	00111101	01010110
506	00011110	11110000	00111000	00111001
507	00010110	00000000	00111100	00111010
40				

APPENDIX 4

OFF-LINE SUPPORT

A4.1 Software support

The first cross- assembler written, produces the binary code for the 32- bit microword. Fig. A4.1 shows the different fields, as have been defined in table 3.2. The user has to type the required mnemonic for each field, but in a case of a field defined by default, a carriage return is typed. When all the program has been typed, then a tape is punched with the data for the micromemory. After that, the listings of these data can be obtained in the format shown in fig. A4.2. For corrections, modifications or extension of the micro- program, the binary tape is loaded into the computer, and the same process is repeated to produce the new program.

The second cross- assembler in principle works at the same way as the previous one, but with a change in the symbol tabie and some additional support. Fig. A4.3 shows the listings provided by the crossassembler. Because the EPROM programmer is driven by the computer, the program is arranged such that to transfer directly the produced binary code into the EPROMS.

MICROIN CPU*******
LOC 000
FJMCTION BUS CL.
REGISTER ZERO
INC COUNTERS
KBUS
CLOCK LATCH
LOAD COUNTERS
UR CONTROL
daTA BUS
FLAG I? CON
FLAG OP CON
LOAD
MCU ADDR CON JZR 006

Fig. A4.1 The fields for the microinstru corresponding cross- assembler				
COMMAND ? LIST				
NO OF ROM !				
0000000	000800800	18000000		
00806080	000000110	00100000	ROM1:	Bits 31-24
0807807	000000111	10810118	Rom2:	Bits 23-17
NO OF ROM 2			ROM3:	Bits 16-8
0080800	808000080	11110000	ROM4:	Bits 7-0
00806006	800000110	11110000	(a):	Number of row
0807807	008080111	11110000	(b):	Number of column
NO OF RO, 3			(c):	Decimal address
0000000	000000000	00000000	(d):	Binary address
0006006	098080110	00809011	(e):	Contents
0807807	080080111	00080800		
NO OF ROM 4				
0000000	808000800	00108110		
00800806	080000110	00108111		
0807807	008000111	00191111		
(a) (b) (c)	(d)	(e)		

[^0]| (a) | | (b) | (c) | (d) | (e) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000000 | JLP | 008550 | 034550 | 080871 | 080150 |
| 008550 | LDA | 008571 | 136571 | 000275 | 008171 |
| 088551 | STA | 000377 | 134377 | 000270 | 080377 |
| 008552 | LDL | 000802 | 110002 | 080228 | 000002 |
| 000553 | STA | 000000 | 134080 | 000270 | 088000 |
| 008554 | DSZ | 000000 | 122008 | 000244 | 080000 |
| 000555 | JLP | 000554 | 034554 | 000871 | 000154 |
| 008556 | CSL | | 056000 | 008134 | 080080 |
| 008557 | JLP | 008553 | 034553 | 000871 | 000153 |
| 008560 | LDA | 008572 | 136572 | 080275 | 000172 |
| 008561 | STA | 080377 | 134377 | 808270 | 008377 |
| 008562 | ULP | 008550 | 034550 | 088071 | 080150 |
| COMMAND? | | | | | |

Fig. A4. 3 Output listings provided by the cross-
a): Address
b): Mnemonic of the instruction
c): Binary code of the 16 -bit word
d): Contents of the ROM1 i. e. 8 most significant bits
e): Contents of the ROM2 i. e. 8 least significant bits.

Note: All numbers are in octal

Additional facilities are:
a) Reading of the data contained in the EPROM.
b) Verification of the EPROM data, with those contained in the minicomputer.
c) Copy of the EPROM data, into the minicomputer
d) If few instructions have to be changed, it is easier to type them in a binary form, than to go through the assembler, therefore this facility is provided.
e) Other commands provide deleting and interleaving data locations and moving data blocks in other locations.

A4.2 PROM programmers

The programmer for the bipolar PROMS is operated manually through switches. The operator has to select some switches to define the type of the PROM used, then selects the address and the data to be programmed there and finally presses the clear and start push buttons. When the programming procedure has finished, the interrupt light comes on. The above operation is then repeated for the remaining locations to be programmed. A block diagram of this programmer is shown in fig. A4.4.

The specified address and data are latched,

Fig. A4.4 The block diagram for the bipolar PROM programmer
then the relays (I) are closed to compare the contents of the PROM with the data entered through the switches. The four possible states of the comparator are:
a) P corresponds to programming
b) SP means that programming is not necessary
c) The bipolar PROMs are of the fusible link type, therefore an already programmed bit cannot change back.To inform the user of such operation, signal S comes on.
d) INT signais the end of programming.

These signals together with some others which define the type of the PROM, are decoded by the controller, such that the right timing pulses are generated. These are ampiified accordingly, relays(I) open, while Relays (II) close, and the programming of one bit at a time occurs.

The types of PROMs which can be programmed are:
a) Texas Instruments $74188,74 \mathrm{~S} 287,74 \mathrm{~S} 471$, 745472^{31}.
b) Intel 3601^{43}.
c) National DM $7573 / \mathrm{DM} 8573^{44}$.
d) Signetics 825123^{45}.

The EPROM programmer is driven by the computer, therefore its control pulses are defined by software.

I'he oniy haraware needed is to fenerate the amplified pulses.

A4.3 PKOM simulators

The necessity for the PKOM simulators has been discussed in chapter 3. Fig. A4.5 shows the block. diagram of the EPROM simulator driven from the NOVA 3. The RAMs can be addressed either by the NOVA(load mode) of by the processor (read mode). In the load mode the data are fed from the NOVA to a buffer and a timing circuit generates the write pulses. The address is controlled by a counter. In the read mode, the processor supplies the address to the simulator and the data then are fed back to the processor.

Fig. A4.5 The block diagram for the EPROM simuiator

APPENDIX 5

THE TEST RIG

A5.1 The transmission line model
The digital relay performance has been tested by using the rig described in reference 77.A schematic diagram is given in fig. A5.1. Variable source and line impedances are provided. Because of unbalances in these impedances, only the value of $\mathrm{Z}_{\mathrm{S}}=20 \Omega$ has been used. By connecting the fault link in different phases and at different positions, the relay performance under different fault conditions has been tested.

The c.t.s used are of the bar- primary design with $400 / 1$ secondaries. The class of these c.t.s is 15 S 10 and have 1.528 secondary winding resistance. As the maximum current in the model is about 60 A , the primary contains 20 turns, to give a more accurate measurement. To avoid high voltage occuring in the secondary, when it is accidentally open- circuited, while the primary is still energised, a low burden of 0.5Ω has been applied. At the same time, as the secondary output of the c.t. feeds the high impedance input of the analogue filter operational amplifier, a transformation of the current to voltage is achieved.

The v.t.'s used have a ratio of $240 / 24$ and maximum burden 25 VA. A voltage divider is necessary

in the secondary of the v.t., such that the maximum signal fed to the filters is approximately $\pm 10 \mathrm{~V}$. A5.2 Filter and amplifier design

Fig. A5. 2 gives the circuit details for the antialiasing analogue filters and the corresponding amplifiers. The filter design has been discussed in chapter 4.

The amplification has been selected such that for the maximum possibie values in the primary network, saturation does not occur in the signals fed to the data acquisition unit.

Offset and gain adjustments are provided. By taking into account ali the intermediate attenuating factors between the primary network quantities and the outputs of the filter/amplifier it has been found that for the system used the voltage attenuation is 82.87 while the current is 6.05. Small variations of negligish effect have been found due to unbalances in the system and inaccuracies in the transformers. Such errors correspond to a maximum error of 2 lsbits in the A / D.

A5.3 The rig- relay connections

In fig. A5.1, the way the dedicated relay is connected to the filters/amplifiers is shown. NOVA 3 is the monitoring minicomputer used, connected to a VDU.

Fig. A5.2 $2^{\text {nd }}$ order Butterworth low pass filter and amplifier

APPENDIX 6

THE PROGRAM LISTINGS

Appendix 6.1 refers to the low page i.e. the first 1 K locations for the sample and midpoint formula. In appendix 6.2 the listings for the high page (common to both methods) are given.

Because the software has been kept modular, the low page for the midpoints method is the same, except that part of the program which manipulates the data such that the quantities VA, $C A, D C A, V B, C B$ and $D C B$ to be derived. Therefore the empty or missing locations in appendix 6.3 are the same as the corresponding ones for the sample and midpoint formula.

Appendices $6.4,6.5$ and 6.6 present the contents of the data and constant store.

A6.1 LOW PAGE (THE SAMPLE AND MIDPOINT FORMULA)

000	JIP	16	033	JLP	1760	066	LDA	12
001	LDA	572	034	STA	33	067	STA	106
002	STA	377	035	JLP	532	070	JSR	1062
003	DZM	423	036			071	LDA	12
004	DZM	426.	037	WFS		072	STA	107
005	LDA	543	040	JSR	477	073	JSR	1102
006	STA	140	041	IDA	415	074	IDA	12
007	STA	136	042	SBC	15	075	STA	110
010	STA	137	043	JSR	1677	076	JSR	1120
011	LDA	542	044	JSR	532	077	JSR	1160
012	STA	100	045	JSR	1013	100	LDA	12
013	STA	101	046	JSR	1044	101	STA	111
014	STA	102	047	JSR	1062	102	JSR	1176
015	JHP	1703	050	JSR	1102	103	LDA	12
016	WFS		051	JSR	1120	104	STA	112
017	JSR	477	052	JSR	1160	105	JSR	1220
020	LDA	415	053	JSR	1176	106	LDA	12
021	STA	73	054	JSR	1220	1.07	STA	113
022	WFS		055	JLP	56	110	JIP	142
023	JSR	477	056	WFS		111	LDA	104
024	LDA	415	057	JSR	477	112	STA	414
025	SBS	17	060	IDA	415	113	LDA	157
026	JLP	22	061	SBC	15	114	JSR	1263
027	LDA	415	062	JSR	1677	115	JLP	1442
030	MSL	2	063	JSR	465	116	JLP	1451
031	MSR	3	064	JSR	1013	117	STA	104
032	STA	56	065	JSR	1044	120	JSR	1176

121	JSk'	1243	156	JLP	134	213	JLP	1364
122	IDA	112	157	SBS	16	214	JLP	1372
123.	JSR	1152	160	JLP	207	215	STA	100
124	STA	112	161	LDA	33	216	JSR	1044
125	IDA	410	162	MSI	3	217	JSR	1243
126	STA	275	163	JIP	653	220	LDA	106
127	IDA	411.	164	IDA	415	221	JSR	1152
130	STA	く76	165	SBC	16	222	STA	106
131	JSR	1571	166	JLP	677	223	IDA	400
132	JSR	1571	167	SBS	14	224	STA	275
133	JHP	50	170	JLP	174	225	IDA	401
134	DZM	52	171	LDA	0	226	STA	276
135	IDA	415	172	STA	1177	227	JSR	661
136	JIP	157	173	JLP	745	230	JSR	1561
137	SZA		174	SBC	1	231	JHP	12
140	$J I P$	164	175	JLP	207	232	IDA	275
141	JLP	207	176	SBC	2	233	STA	400
142	$J H P$	415	177	JLP	243	234	IDA	276
143			200	SBC	3	235	STA	401
144	DZM	22	201	JIP	307	236	LDA	- 0
145	JLP	146	202	SBC	4	237	STA	65
146	WFS		203	JIP	340	240	IDA	167
147	JSR	405	204	SBC	5	241	STA	66
150	DZM	34	205	JLP	111	242	JSR	517
151	JSR	410	206	JIP	455	243	LDA	101
152	SBC	15	207	LDA	100	244	STA	414
153	JSR	1677	210	STA	414	245	LDA	1
154	JSR	1013	211	LDA	0	246	JSR	1263
155	JSR	1120	212	JSK	1263	247	JLP	1377

250	JIP	1405	305	STA	66	342	LDA	156
251	STA	101	306	JSR	517.	343	JSR	1263
252	JSR	1062	307	LDA	102	344	JLP	1425
253	JSR	1243	310	STA	114	345	JIP	1434
254	LDA	107	311	LDA	2	346	STA	103
255	JSR	1152	312	JSR	1263	347	JSR	1160
256	STA	107	313	JLP	1412	350	JSR	1243
257	LDA	402	314	JIP	1420	351	LDA	111
260	STA	275	315	STA	102	352	JSR	1152
261	IDA	403	316	JSR	1102	353	STA	111
262	STA	<76	317	JSR	1243	354	LDA	406
263	JSR	661	320	LDA	110	355	STA	275
264	JSR	$156: 3$	321	JSK	1152	356	LDA	407
265	JHP	20	322	STA	110	357	STA	276
266	IDA	275	323	LDA	404	360	JSR	577
267	STA	402	324	STA	275	361	JSR	1567
270	IDA	273	325	IDA	405	362	JHP	151
271	STA	403	326	STA	276	363	LDA	275
272	IDA	415	327	'JSR	661	364	STA	406
273	SBC	13	330	JSR	1565	365	IDA	276
274	JIP	751	331	JHP	35	366	STA	407
275	SBS	14	332	LDA	2	367	IDA	415
276	JIP	302	333	STA	65	370	SBC	13
277	IDA	1	334	LDA	171	371	JIP	753
300	STA	1177	335	STA	66	372	SBS	14
301	JIP	307	336	JSR	517.	373	JLP	377
302	LDA	1	337	JLP	666	374	LDA	2
303	STA	65	340	LDA	103	375	STA	1177
304	IDA	117	341	STA	414	376	JLP	111

377	LDA	3	434	IDA	543	471	SZA	
400	STA	65	435	SAD	145	472	JLP	474
401	LDA	172	436	JHP	1441	473	ISZ	147
402	STA	66	437	LRA	420	474	IDA	415
403	JSR	570	440	IDA	415	475	AND	540
404	JLP	111	441	RET		476	JIP	34
405	CILA		442	JHP	1044	477	IDM	415
406	STA	23	443	DZM	436	500	IDM	0
407	JLP	477	444	LDA	275	501	IDM	1
410	JHP	176	445	STA	410	502	IDM	2
411	JHP	430	446	LDA	276	503	IDM	3
412			447	STA	411	504	IDM	4
413	LDA	275	450	LDA	4	505	IDM	5
414	STA	404	451	STA	65	506	IDM	76
415	LDA	276	452	LDA	173	507	IDA	0
416	STA	405	453	STA	66	510	EXS	
417	JLP	332	454	JSR	470	511	STA	0
420			455	LDA	105	512	LDA	1
421	IDA.	546	456	STA	414	513	EXS	
422	SAD	151	457	LDA	160	514	STA	1
423	JLP	437	460	JSR	1263	515	LDA	2
424	ISZ	151	461	JLP	1457	516	EXS	
425	LDA	156	462	JLP	1466	517	STA	2
426	JSR	1004	463	STA	105	520	LDA	3
427	LDA	157	464	JLP	625	521	EXS	
430	JSR	1004	465	LDA	415	522	STA	3
431	LDA	160	466	SBC	0	523	IDA	4
432	JSR	1004	467	JLP	474	524	EXS	
433	ISZ	145	470	LDA	146	525	STA	4

526	LDA	5	563	SBC	10	620	JLP	726
527	EXS		564	JLP	551	621	LDA	65
530	STA	5	565	JLP	1	622	JSR	777
531	RET		566	ISZ	23	623	IDA	66
532	LDA	415	567	JHP	566	624	JLP	726
533	SBS	10	570	IDA	34	625	JSR	1220
534	RET		571	S2A		626	JSR	1243
535	LDA	76	572	JHP	441	627	LDA	113
536	EXS		573	LDA	22	630	JSR	1152
537	STA	76	574	SZA		631	STA	113
540	MSR	2	575	JLP	1100	632	LDA	412
541	EXS		576	LDA	26.2	633	STA	275
542	JHP	357	577	SZA		634	LDA	413
543	LDA	573	600	RET		635	STA	276
544	JSR	777	601	LDA	$4<3$	636	JSR	566
545	IDA	76	602	SZA		637	ISR	1573
546	STA	1177	603	JLP	757	640	JHP	0
547	CLA		604	JHP	1771	641	LDA	275
550	STA	377	605.	JHP	401	642	STA	412
551	WFS		606	JSR	777	643	LDA	276
552	IDM	415	607	LDA	415	644	STA	413
553	IDM	0	610	SBC	0	645	LDA	5
554	IDM	0	611	JLP	617	646	STA	65
555	IDM	0	612	LDA	146	647	LDA	174
556	IDM	0	613	SZA		650	STA	66
557	IDM	0	614	JLP	617	651	JSR	570
560	IDM	0	615	LDA	571	652	JHP	1113
561	IDM	76	616	JIP	726	653	STA	34
562	LDA	415	617	CLA		654	LDA	415

655	LBS	0	712	JLP	606	747	STA	52
656	ISZ	144	713	LDA	162	750	JLP	207
657	IDA	34	714	JSR	777	751	LDA	4
660	JLP	137	715	LDA	161	752	JLP	300
661	ISZ	123	716	JSK	777	753	IDA	5
662	IDA	57	717	LDA	164	754	JLP	375
663	SZA		720	JSR	777	755	LDA	546
664	JHP	566	721	LDA	163	756	STA	1177
665	JHP	636	722	JSR	777	757	LDA	146
666	ISZ	25	723	LDA	166	760	INC	
667	ISZ	437	724	JSR	777	761	STA	146
670	JIP	340	725	LDA	165	762	STA	22
671	JLP	340	726	STA	1177	763	LDA	23
672	LDA	145	727	LDA	557	764	STA	32
673	SZA		730	SUB	144	765	LDA	25
674	DSZ	145	731	SNA		766	STA	31
675	JLP	437	7.32	JLP	146	767	LDA	571
676	JLP	437	733	LDA	146	770	STA	377
677	IDA	3	734	SKA		771	DZM	e65
700	JLP	172	735	JLP	743	772	DZM	266
701	IDA	415	736	LDA	571	773	JHP	146.7
702	SBC	11	737	STA	377	774		
703	JIP	707	7.40	IDA	146	775		
704	SBC	12	741	INC		776	JLP	1000
705	JLP	621	742	STA	146	777.	STA	1177
706	JLP	713	743	DZM	144			
707	LDA	10	744	JLP	146			
710	JSR	777	745	CLA				
711	LDA	11	746	INC				

1000	LDL	67	1033	RET		1066	LDA	1
1001	CSL	.	1034	LDA	146	1067	STA	124
1002	JIP	1001	1035	SZiA		1070	STA	10
1003	RET		1036	JLP	1276	10.71	LDA	4
1004	SNA		1037	LDA	571	1072	ADD	416
1005	JLP	1007	1040	STA	377	1073	STA	11
1006	NEG		1041.	DZM	146	1074	STA	125
1007	SUB	542	1042 .	ISZ	146	1075	IDA	430
1010	SNA		1043	JIP	1276	1076	STA	435
1011	JLP	1173	1044	IDA	122	1077	RET	
10.2	RET		1045	STA	14	1100	IRA	267
1013	LDA	3	1045	LDA	123	1101	RET	
1014	ADD	4	1047	STA	12	1102	LDA	431
1015	ADD	5	1050	IDA	0	1103	STA:	435
1016	STA	152	1051	STA	122	1104	LDA	126
1017	L'TR	564	1052	STA	10	1105	STA	14
1020	IDA	570	1053	LDA	- 3	1106	LDA	127
1021	FMU	152	1054	ADD	416	1107	STA	12
1022	STA	152	1055	STA	11	1110	LDA	2
1:23	MIUL	67	1056	. STA	123	1111	STA	126
1024	STT	416	1057	IDA	427	1112	STA	10°
1025	RET		1060	STA	435	1113	LDA	5
1026	SBA		1061	RET		1114	ADD	416
1027	NEG		1062	LDA	124	1115	STA	11
1030	MSR	2	1063	STA	14	1116	STA	127
i031	SZA		1064	LDA	125	1117	RET	
1032	JLP	144	1065	STA	12	1120	SRA	420

1121	. JLP'	1124	1156	LDA	12	1213	LMB	100
1122	LDA	414	1157	RET		1214	SMB	103
1123	JIP	1236	1160	IDA	130	1215	DZM	146
1124	LDA	2	116:1	STA	14	1215	DZM	147
1125	SUB	1	1162	LDA	131	1217	JIP	1705
1126.	STA	156	1163	STA	12	1220	LDA	134
1127	LDA	0	1164	LDA	156	1221	STA	14
1130	SUB	2	1165	STA	10	1222	LDA	135
1131	STA	157	1166	STA	130	1223	STA	12
1132	IDA	1.	1167	LDA	153	1224	LDA	160
1133	SUB	0	1170	STA	11	1225	STA	10.
1134	STA	160	1171	STA	131	1226	STA	134
1135	IDA	5	1172	LDA	432	1227	IDA	155
1136	SUB	4	1173	STA	45	1230	STA	11
1137	STA	153	1174	RET		1231	STA	135
1140	IDA	3	1175			1232	LDA	434
1141	SUB	5	1176	LDA	433	1233	STA	435
! 142	STA	154	1177	STA	435	1234.	RET	
1143	LDA	4	1200	LDA	132	1235	LDA	542
1144	SUB	3	1201	STA	14	1236	SRA	421
1145	JHP	155	1202	IDA	133	1237	ISZ	421
1146	IDA	21	1203	STA	12	1240	ISZ	421
1147	SZA		12.04	LDA	157	1241	LRA	421
1150	JLP	1452	1205	STA	10	1242	RET	
1151	JLP	1475	1206	STA	132	1243	LDA	14
1152	STA	7	1207	LDA	154	1244	ADD	10
1153	LDA	11	1210	STA	11	1245	STA	17
1154	SUB.	7	1211	STA	133	1246	IDA	12
1155	STA	13	1212	RET		1247	ADD	11

298

1250	STA	15	1305	SZ.A		1342	LMB	230
1251	IDA	11	1306	RET		1343	JIP	1361
1252	SUB	12	1307	IS2.	21	1344	LMB	233
1253	STA	16	1310	ISZ	264	1345	JLP	1361
1254	LTR	506	1311	LDA	542	1346	LMB	236
1255	IDA	511	1312	RET		1347	JLP	1361
1256	FMU	16	1313	ADD	550	1350	LMB	114
1257	$A D D$	16	1314	SAD	516	1351	JLP	1361
1260	SHL		1315	IDA	550	1352	LMB	117
$!261$	STA	16	1316	STA	443	1353	JLP	1361
1262	RET		1317	IS2	444	1354	LMB	200
$i 263$	SPA		1320	RET		1355	JLP	1361
1264	NEG		1321	SRA	273	1356	LDA	550
:265	SUB	544	1322	ISZ	272	1357	STA	272
1266	SNA		1323	IS 2	272	1360	LMB	203
1267	JLP	1653	1324	LRA	272	1361	SMB	265
1270	LDA	414	1325	RET		1362	LRA	273
1271	SZA		1326	LMB	206	1363	RET	
1272	JLP	. 1302	1327	'JLP	1361	1364	STA	136
1273	LDA	264	1330	LMB	211	1365	JSR	1321
1274	SAD	557	1331	JLP	1361	1366	IDA	265
1275	JIP	1667	1332	LMB	214	1387	STA	122
1276	SRA	421	1333	JLP	1361	1370	JSR	1575
1277	ISZ	421	1334	LMB	217	1371	JLP	21.4
. 1300	IRA	421	1335	JIP	1361	1372	LSR	1321
1301	RET		1336	LMB	222	1373	LDA	265
1302	DSZ	414	1337	JLP	1361	1374	STA	0
1303	JIP	1122	1340	LMB	225	1375	CLA	
1304	IDA	21	1341	JLP	1361	1376	JIP	215

1377	STA	137	1434	JSR	1321	1471	STA	160
1400	JSR	1321	1435	LDA	267	1472	CLA	
1401	LDA	266	1436	SUB	266	1473	JLP	463
1402	STA	124	1437	STA	156	1478		
1403	JSR	1575	1440	CLA		1475	ISZ	272
1404	JIP	250	1441	JLP	346	1476	ISZ	272
1405	JSR	1321	1442	STA	142	1477	ISZ	176
1406	LDA	266	1443	JSR	1321	1500	ISZ	176
1407	STA	1	1444	IDA	<65	;501	LRA	176
1410	CLA		1445	SUB	267	1502	LMB	0
1411	JLP	251	1446	STA	132	1503	RET	
1412	STA	140	1447	JSR	1575	1504	SMB	200
1413	JSR	1321	1450	JLP	116	1505	JLP	421
1414	LDA	267	1451	JSR	1321	1506	SMB	203
1415	STA	126	1452	LDA	265	1507	JLP	421
1416	JSR	1575	1453	SUB	267	1510	SMB	206
1417	JLP	314	1454	STA	157	1511	JLP	421
1420	JSR	1321	1455	CLA		1512	SMB	211
1421	LDA	267	1456	JIP	117	1.51\%	JLP	421
1422	STA	2	1457.	STA	143	1514	SMB	214
1423	CLA		1460	JSR	1321	1515	JLP	421
1424	JLP	315	1461	IDA	266	1516	SMB	217
1425	STA	141	1462	SUB	265	1517	JLP	421
1426	JSR	1321	1463	STA	134	1520	SMB	222
1427	LDA	267	1464	JSR	1575	1521	JLP	421
1430	SUB	266	1465	JIP	462	1522	SMB	225
1431	STA	130	1466	JSR	1321	152:3	JLP	421
1432	JSR	1575	1467	LDA	266	1524	SMB	230
1433	JLP	345	1470	SUB	265	1525	$J I P$	421

1526	SMB	233	1563	LDA	137	1620	SUM	175
1527	JLP	421	1564	JHP	66	1621	LTR	504
1530	SMB	236	1565	LDA	140	1622	L'DA	505
1531	JLP	421	1566	JHP	66	1623	FMU	276
1532	SMB	114	1567	LDA	141	1624	NEG	
1533	JLP	421	15.70	JHP	66	1625	SUM	17.5
1534	SMB	117	1571	LDA	142	1626	LDA	275
1535	LDA	565	1572	JHP	66	1627	SHL	
1536	STA	176	1573	LDA	143	1630	ADD	175
1537	IDA	550	1574	JHP	66	1631	SUM	276
1540	STA	'272	1575	LDA	444	1632	LTR	506
1541	JLP	421	1576	SZA		1633	LDA	507
1542	ISZ	271	1577	RET		1634	FMU	276
1543	LDA	271	1600	LDA	272	1635	RET	
1544	SUB	544	1601	SAD	516	1636	SRA	267
1545	SZA		1602	LDA	550	1637	JLP	207
1546	JLP	1552	1603	STA	274.	1640	SRA	267
\%547	LDA	443	1604	ŞUB	516	1641	JLP	243
1550	STA	272	1605	ADD	523	1642	SRA	267
1551	JLP	437	1606	SNA		1643	JLP	307
1552	SUB	544	1607	JLP	1313	1644	SRA	267
1553	SZA		1610	ADD	522	1645	JIP	340
1554	- JLP	4.37	1611	JLP	1314	1646	SRA	267
1555	LDA	274	1612			1647	JLP	111
1556	STA	272	1613	STA	. 175	1650	SRA	267
1557	D2M	271	1614	ITR	564	1651	JLP	455
1560	JLP	437	1615	IDA	503	1652	JHP	1703
1561	IDA	136	1616	FMU	275	1653	LDA	414
${ }^{1} 562$	JHP	66	1617	NEG		1654	SZA	

301

1655	JIP 1	1235	1712	LDA	73	1747	DZM	151
1656	DZM	150	1713	SHR		1750	DZM	74
1657	D2M	21	1714	STA	73	1751	D 2 M	57
1660	DZM	264	1715	DZM	264	1.752	LDA	565
1661	LDA	565	1716	DZM	74	1753	STA	176
1662	STA	176	1717	DZM	57	1754	D2M	144
1663	LDA	550	1720	DZM	60	1755	LDA	567
1664	STA	272	1721	LMB	147	1756	STA	272
1665	DZM	271	1722	SMB	61	1757	JHP	124
1666	JLP	1235	1723	SMB	241	1760	WFS	
1667	IDA	144	1724	SMB	21	1761	JSR	477
! 670	SUB	556	1725	D2M	400	1762	LDA	415
1671	SZA		1726	DZM	401	1763	SBC	17
1672	JLP	1276	1727	DZM	402	1764	JIP	1760
1673	IDA	34	1730	D2M	405	1765	IDA	415
1674	SZA		1731	DZM	244	1766	MSL	2
1675	JLP	1034	17.32	D2M	64	1767	MSR	3
! 676	JHP	135	1733	DZM	146	1770	STA	75
1677	LMB	0	1734	DZM	47	1771	AND	565
¡700	SMB	167	1735	DZM	24	1772	STA	67
1701	LMB	3	1736	DZM	25	1773	IDA	75
! 702	SMB	172	1737	DZM	145	1774	MSR	3
i703	JIP	1704	1740	JIP	1653	1775	STA	75
1704	JHP	457	1741	AND	555	1776	JIP	1741
1705	DZM	403	1742	STA	53	1777.	RE'r	
1706	D2M	404	1743	IDA	. 75			
1707	DZM	276	1744	MSR	3			
1710	D2M	- 271	1745	STA	50			
1711	DZM	- 275	1746	JLP	1			

A6.2 HIGH PAGE

0	STA	143	33	JLP	144	66	STA	262
1	STT	434	34	JHP	1467	67	SZA	
2.	JLP	641	35	STA	140	70	JHP	72
3	LDA	3	36	STT	431	71	RET	
4	SPA		37	JLP	413	72	SUB	560
5	NEG		40	LIR	435	73	STA	262
6	MSR	3	41	RET		74	RET	
7	JHP	1454	42	DZM	57	75	IDA	262
10	STA	35	43	JHP	246	76	SAD	543
11	JHP	23	44	DZM	26	77	JHP	101
12	S'TA	136	45	DZM	74	100	JIP	144
13	STT	427	46	IDA	571	101	LTR	563
14	JLP	232	47	JHP	1444	102	IDA	56
15	SES	1	50	STA	142	103	FMU	36
16	JHP	325	51	STT	433	104	STA	70
17	JHP	317.	52	JLP	443	105	LTR	70
20	STA	137	53			106	LDA	557
21	STT	430	54	ISZ	57	107	DPA	40
22	JLP	266	55	JHP	254	110	SNA	
23	LDA	163	56			111	JHP	32
24	STA	36.	57	LTR	435	112	ISZ	422
25	LDA	16.5	60	SRA	270	113	JIP	144
26	STA	37	61	ISZ	270	114	IDA	151
27	IDA	166	62	LDA	543	115	SAD	546
30	STA	420	63	LRA	270	116	DZM	423
31	JHP	1023	64	STA	262	117	JHP	1743
32	DZM	422	65	RET		120	LDA	560

121.	STA	47	156	LDA	22	213	SZA	
122	DZM	24	157	SZA		214	JHP	226
123	JHP	42	160	RET		215	LMB	241
124	D2M	444	16.1	JLP	1146	216	SMB	245
125	DZM	445	162	DZM	427	217	IDA	244
126	DZM	406	163	DZM	430	220	STA	250
127	DZM	407	164	DZM	431	221	JHP	247
130	DZM	410	165	DZM	432	222		
131	DZM	411	166	DZM	433	223		
132.	DZM	412	167	DZM	434	224	DZM	47
133°	DZM	413	170	DZM	437	225	JHP	211.
134	JHP	162	171	DZM	422	226	SUB	546
135	IDA	556	172	LMB	136	227	SZA	
136	INC		173	SMB	141	230	JHP	237
137	STA	1177	174	DZM	440	231	LMB	241
140	JHP	44	175	JLP	1213	232	SMB	251
141	STA	11	176	DZM	262	233	LDA	244
142	JSR	411	177	LDA	77	234	STA	254
143	LDA	57	200	SBS	7	235	JHP	247
144	SZA		201	JHP	224	236		
145	JHP	1542	202	LDA	47	237	SUB	546
146	LDA	11	203	SZA		240	SZA	
147	SUM	266	204	JHP	211	241	JIP	46.5
150	JHP	1673	205	LDA	24	242	LMB	241
151	STA	141	206	SZA		243	SMB	255
152	STT	432	207	JHP	15	244	LDA	244
153	JLP	363	210	JHP	54	245	STA	260
154			211	LDA	25	246	DZM	25
155	STA	155	212	SUB	546	247	D2M	2.41

250	DZM	242	305	JHP	271	342	LDA	35
251	DZM	243	306	LMB	255	343	MUL	50
252	DZM	244	307	SMB	241	344	DMR	3
253	JLP	465	310	LDA	260	345	DPS	40
254	LDA	25	311	STA	244	346	LTR	37
255	SUB	546	312	IDA	460	347	LDA	420
256	SPA		313	STA	44	350	DPS	40
257	JHP	277	314	JHP	271	351	SNA	
260	SUB	546	315			352	JHP	47
261	SPA		316			353	IDA	524
262	JHP	306	317	LDA	241	354	STA	435
263	LMB	245	320	STA	1177	355	JHP	57
264	SMB	241	321	LDA	244	356		
265	LDA	250	322	STA	241	357	SUB	574
266	STA	244	323	ISZ	24	360	ADD	544
267	LDA	560	324	JIP	465	361	SPA	
270	STA	44	325	SBS	2	362	JLP	543
271	LDA	44	326	JHP	271	363	SUB	546
272	STA	1177	327	LDA	243	364	SNA	
273	LDA	242	330	STA	1177	365	JLP	543
274	STA	44	331	JHP	120	366	JHP	1322
275	ISZ	24	332	JHP	1333	367	STA	30
276	JLP	465	333	ISZ	436	370	LDA	1
277	LMB	251	334	LDA	557	371	JSR	605
300	SMB	241	335	STA	41	372	STA	137
301	IDA	254	336	LTR	563	373	JHP	1341
302	STA	244	337	LDA	56	374	STA	30
303	LDA	560	340	FMU	36	375	LDA	0
304	STA	44	341	STA	40	376	JSR	605

377	STA	136	434	IDA	152	471	IDA	175
400	JHP	1336.	435	SPA		472	STA	20
401	SNA		436	NEG		473	LDA	53
402	JHP	404	437	STA	152	474	STA	275
403	NEG		440	RET		475	LDA	60
404	SUB	544	441	IDA	146	476	STA	276
405	SNA		442	SZA		477	LDA	1
406	JHP	413	443	JHP	453	500	JSR	1613
407	LDA	30	444	LDA	262	501	STA	1
410	SUB	560	445	SZA		502	LDA	275
411	STA	30	446	JHP	453	503	STA	60
412	RET		447	IDA	57.1	504	LDA	175
413	IDA	543	450	STA	377	505	STA	53
414	JHP	411	451	DZM	146	506	LDA	61
415	LDA	3	452	IS2	146	507	STA	275
416	JSR	1026	453	LDA	52	510	LDA	62
417	LDA	4	454	SZA		511	STA	276
420	JSR	1026	455	RET		512	LDA	2
421	LDA.	5	456	JLP	701	513	JSR	16.13
422	JSR	1026	457	SRA	267	514	STA	2
423	SPA	56	460	LDA	20	515	LDA	27.5
424	LDA	560	461	STA	275	516	STA	62
425	LDA	560	462	LDA	43	517	LDA	175
426	STA	22	463	STA	276	520	STA	61
427	JLP	56	464	LDA	0	521	LDA	63
430	LDA	11	465	JSR	1613	522	STA	275
431	SPA		466	STA	0	523	LDA	64
432	NEG		467	LDA	275	524	STA	276
433	STA	11	470	STA	43	525	IDA	3

526	JSR	1613	563	RET		620	JHP	622
527	STA	3	564	DZM	275	621	JHP	1752
530	LDA	275	565	DZM	276	622	LDA	166
531	STA	64	566	LDA	17	623	XOR	164
532	IDA	175	567	MUL	13	624	SPA	
533	STA	63	570	STT	161	625	JHP	57
534	LDA	445	571	STA	162	626	IDA	162
535	STA	275	572	IDA	14	627	COM	
536	IDA	446	573	MUL	16	630	STA	46
537	STA	276	574	DPS	16.1 .	631	IDA	164
540	LDA	4	575	LDA	14	632	COM	
541	JSR	1613	576	MUL	15	633	STA	45
542	STA	4	577	STP	165	634	JHP	661
543	LDA	275	600	STA	166	635		
544	STA	446	601	LDA	17	636	LDA	17
545	LDA	175	602	MUL	12	637	MUL	13
546	STA	445	603	DPS	162	640	STT	161
547	IDA	72	604	LDA	15	641	STA	162
550	STA.	275	605.	MUL	13	642	LDA	14
551	IDA	263	606	STT	163	643	MUL	16
552	STA	286	607	STA	164	644	DPS	161
553	LDA	5	610	LDA	12	645	DPA	241
554	JSR	1613	611	MUL	16	646	LDA	14
555	STA	5	612	DPS	163	647	MUI	15
556	LDA	275	613	LDA	164	650	S1T	165
557	STA	263	614	SNA		651	STA	166
560	LDA	175	615	JHP	770	652	LDA	17
561	STA	72	616	LDA	414	653	MUL	12
562	LRA	267	617	SZA		654	DPS	165

655	DPA	243	712	LDA	162	747	LTR	163
656	DZM	27.5	713	XOR	164	750	LDA	164
657	DZM	276	714	SPA		751	DMR	1
660	JHP	604	715	JHP	1244	752	STT	36
661	LDA	557	716	LDA	166	753	LTR	16.5
662	STA	41	717	XOK	16.4	754	LDA	166
663	JHP	1005	720	SPA		755	DMR	1
664	SPD		721	JHP	1244	756	STT	37
665	JHP	1026	722	JHP	40	757	STA	277
666	LDA	525	723			760	JHP	1023
667	STA	435	724	LDA	161	761	LDA	162
670	DZM	275	725	JHP	10	762	XOR	161
671	DZM	276	726	IDA	45	763	SNA	
672	LTR	563	727	JHP	1121	764	JHP	724
673	LDA	526	730	DZM	437	765	THP	743
674	JHP	1030	731	LDA	423	766	LDA	46
675	SPD		7.32	SZA		767	JHP	1125
676	JHP	672	733	JHP	1736	770	LDA	557
677	LDA	554	734	JHP	1504	771	STA	41
700	STA	435	735	LDA	164	772	LDA	162
701	DZM	275	736	JHP	1033	773	STA	46
702	DZM	276	737	LDA	164	774	LDA	164
703	IDA	527	740	XOR	163	775	STA	45
704	MUL	36	741	SNA		776	LDA	414
705	DMR	3	742	JHP	76.1	777.	SZA	
706	STA	41	743	LITR	161			
707	STT	40°	744	LDA	162			
710	JHP	1032	745	DMR	1			
711			746	STT	35			

1000	JHP	1002	1033	LrR	37	1066	JHP	57
1001	JHP	1752	1034	DPS	40	1067	IDA	437
1002	LDA	166	1035	DPA	275	1070	SBS	0
1003	SPA		1036	DMR	1	10.71	JHP	57
1004	JHP	57	1037	STA	276	1072	LDA	420
1005	LDA	46	1040	STT	275	1073	LTR	37
1006	SPA		1041.	SPA		1074	DMR	4
1007	JHP	57	1042	JHP	1064	1075	SUB	40
1010	SZA		1043	ISZ	436	1076	SPA	
1011	JHP	726	1044	LDA	557	1077	JHP	57
1012	IDA	45	1045	STA	41	1100	JHP	333
1013	SZA		1045	LTR	563	1101	ISZ	435
1014	JHP	1121	1047	LDA	56	1102	LDA	435
1015	JHP	737	1050	FMU	36	1103	SBC	17
1016	LDA	422	1051*	ITR	37	1104	JHP	664
1017	SUB	556	1052	IDA	35	1105	SBC	16
1020	SNA		1053	MUL	- 50	1106	JHP	675
1021	JLP	144	1054	DMR	3	1107	SPD	
1022	JLP	755	1055	DPS	40	1110	JHP	703
1023	LDA	435	1056	LTR	37	1111	DZM	435
1024	SZA		1057	IDA	420	1112	JHP	10<6
1025	JHP	1101	1060	DPS	40	1113	IDA	423
1026	LTR	563	1061	SNA		1114	SZA	
1027	LDA	73	1062	JHP	57	1115	JHP	114
1030	FMU	36	1063	'JHP'	40	1116	JHP	1743
1031	STA	40	- 1064	LDA	435	1117		
1032	LDA	420	1065	SZA		1120		

1121	. $\mathrm{SUB}{ }^{\text {- }}$	46	1156	DMR	7	1213	IDA	166
1122	SPA		1157	STT	35	1214	DMR	5
1123	JHP	766	1160	LTR	163	1215	JHP	1153
1124	LDA	45	$116: 1$	LDA	164°	1216	IDA	162
. 1125	STA	75	1162	DMR	7	1217	DMR	4
1126.	ITR	161	1163	STT	36	$1220{ }^{\circ}$	STT	35
1127	SBC	5	1164	LTR	165	1221	LTR	163
1130	JHP	1155	1165	LDA	166	1222	LDA	164
1131	SBC	4	1166	DMR	7	1223	DMR	4
1132	JHP	1170	1167	JHP	1153	1224	STT	36
1133	SBC	3	1170	LDA	162	1225	LTR	165
1134	JHP	1203	1171	DMR	6	1226	LDA	166
1135	SEC	2	1172	STT	35	1227	DMR	4
1136	JHP	1216	1173	LTR	163	1230	JHP	1153
1137	SBC	1	1174	LDA	164	1231	LDA	162
1140	JHP	1231	1175	DMR	6	1232	DMR	3
1141	IDA	162	1176	STT	36	1233	STT	35
1142	DMR	2	1177	LTR	165	1234	LTR	163
1143	STT	35	1200	LDA	166	1235	LDA	164
1144	LTR	163	1201	DMR	6	1236	DMR	3
1145.	LDA	164	1202	JHP	1153	1237	STT	36
1146	DMR	2	1203	LDA	162	1240	LTR	165
! 147	STT	36	1204	DMR	5	1241	LDA	166
1150	LTR	165	1205	STT	35	1242	DMR	3
1151	LDA	166	1206	LTR	163	1243.	JHP	1153
1152	DMR	2	1207	LDA	164	1244	LDA	264
1153	STT	37	1210	DMR	5	1245	SAD	557
1154	JHP	30	1211	STT	36	1246	JHP	57
1155	LDA	162	1212	LTR	165	1247	DEC	

310

1250	STA	264	1305	LDA	141	1342	SZA	
1251	JHP	57	1306	JSR	777	1343	JHP	1375
1252			1307	LDA	162	1344	LDA	141
1253	Sum	265	1310	JSR	777	1345	SZA	
1254	JHP	1406	1311	IDA	143	1346	JHP	1370
1255	SUB	546	1312	JSR	777	1347	LDA	142
1256	SPA		1313	LDA	265	1350	SZA	
1257	JHP	1431	1314	JSR	777	1351	JHP	1363
1260	SUB	546	1315	IDA	266	1352	LDA	143
1261	SPA		1316	JSR	777	1353	SZA	
- 262	JHP	1424	1317	LDA	147	1354	JHP	1356
1263	LIMB	245	1320	STA	1177	1355	JHP	1654
1264	SMB	241	1321	JHP	1451	1356	STA	30
1265	LDA	250	1322	LDA	415	1357	LDA	160
1266	STA	244	1323	FET		1360	JSR	605
:267	LDA	242	1324	LDA	33	1361	STA	143
1270	JSR	777	1325	MSL	3	1362	JHP	1654
1271	LDA	241	1326	STA	34	1363	STA	30
1272	JSR	777	1327	LDA	21	1364	LDA	157
1273	LDA	244	1330	SZA		1365	JSR	605
1274	JSR	777	1331	JHP	332	1366	STA	142
1275	LDA	243	1332	JHP	1513	1367	JHP	1352
1276	JSR	777	1333	IDA	136	1370	STA	30
1277	LDA	136	1334	SZA		1371	LDA	156
. 1300	JSR	777	1335	JHP	374	1372	JSR	605
1301	LDA	137	1336	LDA	137	1373	STA	141
1302	JSR	777	1337	SZA		1374	JHP	1347
1303	LDA	140	1340	JHP	367	1375	STA	30
1304	JSR	777	1341	LDA	140	1376	LDA	

1377	JSR	605	1434	STA	244	1471	DZM	241
1400	STA.	140	1435	JHP	1267	1472	DZM	242
1401	JHP	1344	1436	DZM	74	1473	DZM	243
1402			1437	ISZ	26	1474	DZM	244
1403	LDA	542	1440	JHP	1451	1475	D2M	54
1404	STA	1177	1441	LDA	544	1476	DZM	55
1405	JLP	757	1442	STA	1177	1477	WFS	
1406	LDA	242	1443	JHP	44	1500	JSR	405
1407	JSR	777	1444	STA	377	1501	DZM	57
1410	IDA	241	1445	WFS		1502	ISZ	57
1411	JSR	777	1446	JSR	405	1503	JHP	730
1412	LDA	55	1447	LDA	145	1504	DZM	34
1413	JSR	777	1450	STA	1177	1505	JSR	465
1414	LDA	54	1451	WFS		1506	SBC	15
1415	JSR	777	1452	JSR	405	1507	JSR	1677
1416	LDA	244	1453	JHP	3	1510	JSR	1013
1417	JSR	777	1454	SZA		1511	JSR	1120
1420	IDA	243	1455	JHP	1436	1512	JHP	$13<4$
1421	JSR	777	1456	IDA	74	1.513	IDA	32
1422	IDA	31	1457	INC		1514	SBS	0
1423	JHP	1255	1460	STA	74	1515	JHP	1523
1424	LMB	255	1461	SUB	543	1516	SBC	1
1425	SMB	241	1462	S2A		1517	JHP	1635
1426	LDA	260	1463	JHP	1437	1520	SBS	2
1427	STA	244	1464	IDA	26	1521	JHP	1640
1430	JHP	1267	1465	STA	1177	1522	JHP	1643
1431	LMB	251	1466	JHP	1720	1523	SBS	1
1432	SMB	241	1467	DZM	27	1524	JHP	1645
1433	LDA	254	1470	D2M	<6	1525	SBS	2

1526	JHP	1647	1563	JHP	1572	1620	SZA	
1527	JSR	1615	1564	LDA	15°	1621	JHP	1477
1530	JHP	1641	1565	SHL		1622	JHP	1632
1531	ITR	161	1566	SUM	265	1623	JSR	405
1532	DPA	2.41	1567	LDA	11	1624	LDA	415
1533	IDA	166	1570	SHL		1625	SBC	15
1534	ITR	165	1571	SUM	266	1626	JSR	1677
1535	DPA	243	1572	JHP	1713	1627	JSR	1013
1536	IDA	164	1573	LDA	136	1630	JSR	1120
1537	ITR	163	1574	SZA		1631	JHP	1654
1540	DPA	54	1575	JSR	1636	1632	DZM	57
1541	JSR	411	1576	LDA	137	1633	WFS	
1542	ISZ	26	1577	SZA		1634	JHP	1623
1543	IDA	27	1600	JSR	1640	1635	JSR	1642
1544	SZA		1601	LDA	140	1636	LDA	5
1545	JHP	1553	1602	SZA		1637	JHP	1651
1546	IDA	15'	1603	JSR	1642	1640	JSR	1636
1547	STA	265	1604	IDA	141	1641	LDA	3
1550	IDA	11	1605	SZA		1642	JHP	1651
1551	STA	266	1606	JSR	1644	1643	JSR	1646
1552	JHP	1572	1607	LDA	142	1644	JHP	1636
1553	SBS	0	1610	SZA		1645	JSR	1644
1554	JHP	1564	1611	JSR	1646	1646	JHP	1650
1555	LDA	152	1612	IDA	143	1647	JSR	1640
1556	MSL	2	1613	SZA		1650	LDA	4
1557	SUM	265	1614	JSR	1650	1651	STA	11
1560	IDA	11	1615	JHP	1616	1652	LDA	162
1561	MSL	2	1616	LDA	27	1653	JHP	1531
1562	SUM	266	1617	SUB	546	1654	LDA	32

1655	SBS	0	1712	JLP	1747	1747	JLP	144
1656	JHP	1664	1713	ISZ	27	1750	$J H P$	101
1657	SBC	1	1714	LDA	21	1751		
1660	JHP	1675	1715	SZA		1752	IDA	11
1661	SBS	2	1716	JHP	1616	1753	MSR	2
1662	JHP	1677	1717	JHP	1573	1754	SZA	
1663	JHP	1675	1720	LDA	533	1755	JHP	1767
1664	SBS	1	1721	STA	424	1756	ISZ	150
1665	JHP	1701	1722	WFS		1757	IDA	150
1666	SBS	2	1723	DS2	424	1760	SUB	542
1667	JHP	1701	1724	JHP	1722	1761	SPA	
1670	JHP	1677	1725	LDA	572	1762	JHP	712
1671			1726	STA	377	1763	LDA	561
1672			1727	IDA	523	1764	SZA	
1673	LDA	152	1730	STA	425	1765	JLP	3
1674	JHP	1.253	1731	ISZ	423	1766	JHP	1244
1675	LDA	5	17.32	WFS		1767	DZM	150
1676	JHP	141	1733	DSZ	425	1770	JHP	712
1677	LDA	3	1734	JHP	1732	1771	LDA	414
1700	JHP	141	1735	JLP	3	1772	SZA	
1701	LDA	4	1736	LDA	573	1773	JHP	1016
1702	JHP	141	1737	MSL	2	1774	JHP	1403
1703	D2M	20	1740	STA	1177	1775		
1704	DZM	43	1741	ISZ	426	1776		
1705	DZM	53	1742	HLT		1777.		
1706	DZM	445	1743	LDA	436			
1707	DZM	446	1744	SZA				
1710	DZM	72	1745	JHP	75			
1711	DZM	263	1746	JSR	442			

A6. 3 LOW PAGE (THE MIDPOINTS FORMULA)

000	033	066	JSR	1250
001	034	067	LMB	100
002	035	070	SMB	12
003	036	071	LMB	15
004	037	072	SMB	100
005	040	073	JSR	1062
006	041	074	JSR	1250
007	042	075	LMB	103
010	043	076	SMB	12
011	044	077	LMB	15
012	045	100	SMB	103
013	046	101	JSR	1102
014	047	102	JSR	1250
015	050	103	LMB	106
016	051	104	SMB	12
017	052	105	LMB	15
020	053	106	SMB	106
021	054	107	JSR	1120
022	055	110	JLP	227
023	056	111	LDA	104
024	057	112	STA	414
025	060	11.3	IDA	157
026	061	114	JSR	1263
027	062	115	JLP	1442
030	063	11.6	JLP	1451
031	064	117	STA	104
032	065	120	JSR	1176

121.	JSk	1250	156			213	JLP	1364
122	IMB	114	157			214	JLP	1372
123.	SMB	12	160			215	STA	100
124	LMB	15	161			216	JSR	1044
125	SMB	114	162			217	JSR	1250
126	JSK	566	163			220	LMB	100
127	JSR	1571	164			221	SMiB	12
130	JHP	50	165			222	LMB	15
131			166			223	SIMB	100
132			167			224	JSR	661
133			170			225	JSR	1563
134			171			226	JHP	12
135			172			227	JSR	1160
136			173			230	JSR	1250
137			174			231	JLP	240
140			175			232	LDA	0
141			176			233	STA	65
142			177			234	LDA	167
143			200			235	STA	66
144			201			236	JSR	570
145			202			237	JLP	243
146			203			240	LMB	111
147			204			241	SNIB	12
150			205			242	JEP	263
151			206			243	LDA	101
152			207	LDA	100	244	STA	414
153			210	STA	414	245	LDA	1
154			211	IDA	4	246	JSR	1263
155			212	JSK	1263	247	JLP	1377

250	JIP	1405	305			342	LDA	156
251	STA	101	306			343	JSR	1263
252	JSR	1062	307	LDA	102	344	JLP	1425
253	JSR	1250	310	STA	414	345	JLP	1434
254	LMB	103	311	IDA	2	346	STA	103
255	SMB	12	312	JSR	1263	347	JSR	1160
256	LMB	15	313	$J L P$	1412	350	JSR	1250
257	SMB	103	314	JLP	1420	351	LMB	111
260	JSR	661	315	STA	102	352	SMB	12
261	JSR	1563	316	JSR	1102	353	LMB	15
262	JHP	20	317	JSR	1250	354	SMB	111
263	LMB	15	320	IMB	106	355	JSR	566
264	SMB	111	321	SMB	12	356	JSR	1567
265	JLP	267	322	LMB	. 15	357	JHP	151
266	JLP	272	323	SMB	106	360	LMB	15
267	JSR	1176	324	JSR	661	361	SMB	114
270	JSR	1250	325	JSR	1565	362	JLP	364
271	JIP	327	326	JHP	35	363	JLP	367
272			327	LIMB	114	364	JSR	1220
273			330	SMB	12	365	JSR	1250
274			331	JIP	360	366	JLP	452
275			332	LDA	2	367		
276			333	STA	65	370		
277			334	LDA	171	371		
300			335	STA	66	372		
301			336	JSR	570	373		
302			337	JIP	340	374		
303			340	LDA	103	375		
304			341	STA	414	376		

377	434			471
400	435			472
401	436			473
402	437			474
403	440			475
404	441			476
405	442			477
406	443	DZM	436	500
407	444	IDA	4	501
410	445	STA	65	502
411	446	IDA	173	503
412	447	STA	66	504
413	450	JSR	570	505
414	451	J.LP	455	506
415	452	LMB	117	507
416	453	SMB	112	510
417	454	JLP	636	511
420	455	IDA	105	512
421	456	STA	414	513
422	457	IDA	160	514
423	460	JSR	1263	515
424	461	JLP	1457	516
425	462	JLP	1466	517
426	463	STA	105	520
427	464	JLP	625	521
430	465			522
431	466			523
432	467			524
433	470			525

526	563			620		
527	564			621		
530	565			622		
531	566			623		
532	567	JHP	564	624		
533	570			625	JSR	1220
534	571			626	JSR	1250
535	572			627	LMB	117
536	573			630	SMB	12
537	574			631	LMB	15
540	575			632	SMB	117
541	576			633	JSR	566
542	577			634	JSR	1573
543	600			635	JHP	0
544	601			636	LMB	15
545	602			637	SMB	117
546	603			640	JLP	142
547	604			641	LDA	5
550	605			642	StA	65
551	606			643	IDA	174
552	607			644	STA	66
553	610			645	JSR	570
554	611			646	JHP	1113
555	612			647		
556	613			650		
557	614			651		
560	615			652		
561	616			653		
562	617			654		

655			712	747
656			713	750
657			714	751
660			715	752
661			716	753
662			717	754
663			720	755
664	JHP	564	721	756
665			722	757
666			723	760
667			724	761
670			725	762
671			726	763
672			727	764
673			730	765
674			731	766
675			7.32	767
676			733	770
677			734	771
700			735	772
701			736	773
702			737	774
703			740	775
704			741	776
705			742	777
706			743	
707			744	
710			74.5	
711			746	

1121	1156			1213		
1122	1157			1214		
1123	1160	LDA	130	1215		
1124	116.1	STA	6	1216		
1125	1162	IDA	131	1217		
1126.	1163	STA	7	1220	IDA	134
1127	1164	LDA	156	1221	STA	6
1130	1165	STA	10	1222	IDA	135
1131.	1166	STA	130	1223	STA	7
1132	1167	IDA	153	1224	IDA	160
$1 i 33$	1170	STA	11	1225	STA	10
1134	1171	STA	131	1226	STA	134
1135	1172	IDA	432	1227	LDA	155
1136	1173	STA	435	1230	STA	11
1137	1174	RET		1231	STA	135
11:0	1175			1232	IDA	434
1141	1176	LDA	433	1233	STA	435
1142	1177	STA	435	1234	RET	
1143	1200	LDA	132	1235		
1144	1201	STA	6	1236		
1145	1202	IDA	133	1237		
1146	1203	STA	7	1240		
1147	1204	IDA	157	1241		
1150	1205	SmA	10	1242		
1151	1206	STA	132	1243		
1152	1207	LDA	154	1244		
1153	1210	STA	11	1245		
1154	1211	STA	133	1246		
1155	: 212	RET		1247		

1250	IDA	6	1305	1342
1251	ADD	10	1306	1343
1252	STA	17	1307	1344
1253	LDA	7	1310	1345
1254	ADD	11	1311	1346
1255	STA	15	1312	1347
1256	IDA	11	1313	1350
i257	SUB	7	1314.	1351
1260	STA	16	1315	1352
1261	FET		1316	1353
1262			1317	1354
1263			1320	1355
1264			1321	1356
1265			1322	1357
! 555			1323	1360
i267			1324	1361
:270			1325	1362
: 271			1326	1363
1272			1327	1364
1273			1330	1365
1274			1331	1366
1275			1332	1367
1276			1333	1370
1277			1334	1371
.1300			1335	1372
1301			1336	1373
1302			1337	1374
1303			1340	1375
1304			1341	1376

A6. 4	CONTENTS OF THE DATA STO	
Addr.	Data	Addr. Data
0	V_{a}	26 CBCT
1	V_{b} V,I samples	27 IC
2	V_{c} tered values	30 Temp. storage
3	$\left.I_{a}\right\rangle \begin{aligned} & \text { if the } \\ & \text { tal filter } \\ & \text { is applied }\end{aligned}$	31 Duplicate of 25$\} \begin{aligned} & \text { used } \\ & \text { by the }\end{aligned}$
4	I_{b}	32 " " $23 \underset{\text { report }}{\text { fault }}$
5	I_{c}	33 MCW
6	$\mathrm{V}_{\mathrm{N}-1}$,	34 MSCW
7	$\left.\mathrm{I}_{\mathrm{N}-1}^{1}, \mathrm{I}_{\mathrm{N}-2}^{2}\right\}$ compensated	$35 \quad \mathrm{~N}_{\mathrm{R}}\left\{\begin{array}{l}\text { After shifting, } \\ \text { to obtain }\end{array}\right.$
10	V_{N} (36 D $\}$ single-
10	V^{N}	$37 \mathrm{~N}_{\mathrm{T}} \int \begin{aligned} & \text { precision } \\ & \text { numbers. }\end{aligned}$
11	$\mathrm{I}_{\mathrm{N}} \quad \mathrm{l}$	37 N ${ }_{\text {L }}$ numbers.
12	CA	$40 \quad L S B X N_{L}-N_{R} \tan \varphi+\mathrm{R}_{\mathrm{a}} \mathrm{D} \tan \varphi$
13	DCA	41 MSB
		42 -
14	VA	
15	CB	$43 \quad\left(\mathrm{~V}_{\mathrm{a}}\right)_{\mathrm{N}-2}$
16	DCB	44 Identification bit for P, Q output ($=1$)
17	VB	45 D
20	$\left(\mathrm{V}_{\mathrm{a}}\right)_{\mathrm{N}-1}$	$46 \quad \mathrm{~N}_{\mathrm{R}}$ Drplicate of MSB
21	CUF	47 PSI
22	FI	$50 \tan \varphi$
23	KOFI	51
24	PQOC	52 VOC
25	PQSC	$53 \quad\left(\mathrm{~V}_{\mathrm{b}}\right)_{\mathrm{N}-1}$

Note: 1: The midpoints algorithm
2: The sample and midpoint formula

224	V_{c}	7th
225	V_{a}	8th
226	V_{b}	
227	V_{c}	
230	V_{a}	9th
231	V_{b}	
232	V_{c}	
233	V_{a}	10th
234	V_{b}	
235	v_{c}	
236	∇_{a}	$11 . \mathrm{th}$
237	V_{b}	
240	V_{c}	
241	LSB	comm
242	MSB	
243		common
244	MSB	
245	LSB	P_{N-2}
246		
247	LSB	Q_{N-2}
250	MSB	
251	LSB	P_{N-1}
252	MSB	
253	LSB	Q_{N-1}
254	MSB	
255	LSB	
256	MSB	

$\left.\begin{array}{ll}257 & \text { LSB } \\ 260 & \text { MSB }\end{array}\right\} Q_{N}$
261 -
262 Common fault counter
263 ($\left.I_{c}\right)_{N-2}$
264 ECUF
$\left.\begin{array}{cc}265 & \nabla_{a} \\ 266 & \nabla_{b} \\ 267 & V_{c}\end{array}\right\} \begin{aligned} & \text { Prefault } / I_{0} \text { rms } \\ & \text { common } / I_{F} \begin{array}{l}\text { rms }\end{array} \\ & \begin{array}{l}\text { Return } \\ \text { address }\end{array}\end{aligned}$
270 Return address for imped. calc.
271 OCC
272 LPFD
273 RA for loading prefault voltages
274 FPPB
275 N-1 sample for filtering
276 $\mathrm{N}-2$

277 -

A6.5 TABLE OF THE MNEMONICS

The used mnemonics are grouped according to their function and are listed in alphabetical order. In parenthesis the address of the data location, where the corresponding flag stored, is given in octal.

A6.5.1 The following flags, initially are set to 3.
They are decremented by one, on the condition described, otherwise they are reset.

BGF(140): Internal blue-ground line fault
BRF(142): " blue-red " "
RGF(136): " red-ground " "
RYF(143): " red-yellow " "
YBF(141): " yellow-blue " "
YGF(137): " yellow-ground " "
CFF(262): Common loc. for the above 6 counters
A6.5.2 The next group of flags is functioning as above, but their initial value is equal 2.

CUBG(102): Internal red-ground close-up fault
$\operatorname{CUBR}(104): \quad$ blue-red " "
CURG(100): " red-ground " "
CURY(105): " red-yellow " "
CUYB(103): " yellow-blue " "
CUYG(101): " yellow-ground " "
A6.5.3 The next words are used to control the operations described.

CW(415): The digital word, which controls the the graphics routine.

```
    IC(27) : Controls the Simpson's integration
    routine.
    MCW(33) : The digital word with the msbit and
    the lsbit being masked.
MSCW(34): Same as above, but shifted 3 times to
    the left.
```

A6.5.4 The following locations are used as counters. Counting starts on the condition given. CBCI(74): It is incremented, when the current is zero for successive samples. Indicated the $C B$ interruption instant. CBCT(26): Counting starts when a fault has been detected, and stops, when the contacts of the $C B$ have opened, i.e. $C B$ clearence time.

CBCTC(425): Indicates the time required by the CB , to close its contacts.

DTC(424): The dead time for the autoreclosing scheme.

FCC(151): Is incremented for the first cycle, after the switching-on of the CB.

OCC(271): One cycle counter
OOSC(422): Out-of-step timer

PQOC(24) : Counts the number of data transmitted
to the monitoring computer for a $P-Q$ measurement.

PQSC(25): Three-cycle timer, used to store the $P-Q$ values for 3 consecutive cycles. SOFC(145): Is incremented when a switch-on-fault has been detected.

TTC(147) : Counting begins when the fault has been applied and it stops when the fault has been detected, i. e. detection time counter.

A6.5.5 The following data locations are used to indicate the starting address of a program block, which is going to be addressed indirectly by indexing. The function of each of these locations is given below.

FAPB(516): First address of the prefault voltage block.
$\operatorname{FPPB}(274):$ The starting address of the prefault voltage block, for reading.

LAPB(550): Last address of the prefault voltage block.

LPFD(272): Pointer to the address of the corresponding prefault voltage block, for reading.
$\operatorname{SPFD}(176):$ Pointer to the address of the corresponding prefault voltage block, for writing.

SPPB(443): The last address of the prefault voltage block, for reading.

A6.5.6 The next group of flags is set on the condition described.

CBS (146) : When the command to open the $C B$ has been sent.

CCUF(414): Common close-up flag
CUF(21) : If a fault has been classified as close-up.
$\operatorname{CUP}(444)$: If more than one phase is involved in a close-up fault.

ECUF(264): In a case of an external close-up fault.

FI(22) : When an internal fault has been detected.

GFC(57) : When a ground-fault impedance is executed.

KOFI(23) : Indicated which of the six impedance calculations has detected the fault. It is 1 for RG, 2 for $Y G, 3$ for $B G, 4$ for $Y B, 5$ for $B R, 6$ for RY.

LOUTC(426):	If a permanent fault is on the line,
	i. e. CB has locked out.
$\operatorname{PSI}(47):$	If the operators request for a $P-Q$
	measurement report has been
	accomplished.
$\operatorname{RAB}(436):$	If the resistance calculation for
	a RY fault has been executed.
$\operatorname{RC}(423):$	Indicates the number of times the
	autoreclose has operated.
$\operatorname{SIS}(437):$	Is incremented during every sampling
	interval. If the resulting number is
	even then the ground fault starting
	elements are executed, while for an

VIZ(150): When both voltage and current are zero.
VOC(52) : When a plot of the three voltages or currents has been requested.

A6. 6	CONTENTS OF THE CONSTANT STORE		
Address	Data	Address	Data
503	b_{1}	557	-1
504	-7	560	1
505	-6	561	0
506	a_{0}	563	-8
511	0.703125	564	-9
516	1356(octal) $=$ FAPB	565	1502(octal)
522	1360(octal)	567	1322(octal)
523	18	570	$1 / 3=0.33398437$
524	Zone 2 timer	571	$\}_{C B} \text { Control words }$
525	Zone 3 timer	572	,
526	Zone 2 setting	573	16
527	Zone 3 setting	574	79
530	Zone 3 time limit		
533	Dead time		
534	$\mathrm{R}_{\text {ab }}$		
540	-130		
542	2		
543	3		
544	4		
545	5		
546	8		
550	1324(octal) $=$ LAPB		
554	-2		
555	7		
556	31		

Papers presented:

1) I. Petrou, E. Horne, B. J. Cory: " Micrc-computer applications in protection relaying ". 12th UPEC conference, April 1977:
2) I. Petrou, E. Horne, B. J. Cory: "A microprocessor power system protection relay ". MECO'78, Athens.

Micro-computer applications in protection relaying.

> L. Petrou, E. Horne, B..I. Cory. Imperial College, London SW7.

1.1 rintroduction

The appiication of digital computing techniques to the task of power system protection has been a topic of research by power utilities, industry and universities for several years. The advent of the relatively inexpensive "mini" computer provided a great impetus to studies in this field, and the majority of schemes which have been proposed or implemented are based on processors of this type.

Work undertaken at Imperial College using a multi-mini computer system (Fig 1) for protection and control of one corner in a mesh type substation has demonstrated that schemes of this nature are subject to inter-related economic and technical constraints which may prove unacceptable for widescale application.

1.2 Disadvantages of mini-computer protection

Inevitably in any type of main protection scheme a duplication or triplication of the relaying equipments involved is necessary if the stringent reliability criteria of the task are to be satisfied. From an economic viewpoint, therefore, a multiminicomputer solution will represent a substantial investment, despite the reductions in cost which have been achieved for these machines. As a result, the tendency, evident in literature published by research groups, has been to develop the concept of integrated protection methods in which multiple relaying functions are embodied in a single computer. Whilst this integrated approach ensures maximum utilisation of the installed computing power, it also gives rise to several intractable technical difficulties. The major problems are summarized as:-
a) Complex Software

The software required for the integrated protection system may be classified into two distinct groups, (i) the algorithms capable of performing the required protective functions, and (ii) the "operating system" for these routines. As the extent of integration increases, the complexity of the operating system software also increases and its operational reliability deteriorates.
b) Initalisation

The initalisation of protective routines is basically a
function of the operating system mentioned above. In this context the correct icientification of the appropriate plant protection routine at the onset of a fault condition entails a difficult programning task.
c) Response time

Due to the sequential nature of the digital computer the time consumed by the organisational software during a fault may well result in a degredation of clearance speeds, particularly in cases of incorroct initalisation selection, This factor obviously assumes increasing importance as the transmission system load approaches its maximum.
d) Reliability

A high level of hardware and software reliability is

Fig. 1 Proposed hardiware configuration for mesh corner protection and control.
required in the integrated system since any major failure in either area will affect a substantial portion of the protection facilities. The provision of high reliability systems would impose further economic penalties.

From the foregoing it is seen that the major limitations of the mini-computer oriented scheme largely originate as a consequence of the integration of the protection processes.

2.1 The Microcomputer dedicated relay

To overcome the difficulties outlined above, an alternative approach has been adopted which, in common with current electromechanical and static analogue relaying practice, proposes a dedicated parallel unit organisation.

The rapid advance of semiconductor technology has made economically possible the employment of a dedicated digital relay for each task, based upon low cost computing devices which fall within the general term "nicroprocessor". A single relay will consist of two component sub-systems broadly similar to the mini computer configuration, these being the data acquisition or measurement subsystem, and the protection computation processor. Irrespective of the relaying task to be performed, each unit can comprise common hardware but allows for considerable flexibility in use.

2.2 The Measurement sub-system

The function of this sub-unit is primarily one of data collection. This requires that at intervals the a.c. quantities required for the protection algorithm are simultaneously sampled and held at the appropriate transducer outputs and the sampled values are then multiplexed from the sample-holds to an analoguedigital converter, as shown in Fig 2. The resulting digital values are loaded into a first-in-first-out buffer store with breaker' isolator status information which may be required to await the demand of the protection processor.

The timing and configuration control of these elements is provided by an 8 bit micropocessor of the MOS type. Although of low speed, the 8 bit devices which are available are more than adequate for the requirements of the unit, and enable a simple stored program controller to be implemented with a minimum number of integrated circuits whilst providing a flexibility of data acquisition which would not be available in a hard wired arrangement. It should, however, be noted that in this scheme the primary multi-bit data paths are independent of the control processor and thus no provision is made for data pre-processing.

2.3 The Protection Processor

The task of the second portion of the relay differs widely from that of the processor application in the measurement unit. For each block of sampled data provided by the measurement unit, the protection processor must solve the particular fault detection algorithms to which it is dedicated. In this respect the protection algorithm is regarded as including any data filtering which may be required, the fault detection routines, and output switching commands.

An emphasis must thus be placed in this unit upon the ability to perform logical and arithmetic operations, and in order to satisfy these requirements several factors must be considered in

From

Fig. 2 The Measurement Subsystem

SUBADDRESS BUS
Fig. 3 The Protection Processor
the choice of processor. The most important of these are outlined below, and they indicate that the bipolar bit-slice family of micro-processors can provide a satisfactory solution.
a) Word length

For arithmetic operations employing an 8 bit word length consistent with that commonly found in the single chip microcomputer great care must be taken to avoid a serious degredation of accuracy due to rounding and truncation errors. The bit slice devices allow a great freedom of word length in 2 or 4 bit multiples and the processor shown in Fig 3 has a 16 bit structure.

b) Operating speed

Previous work has shown that in order to achieve a complete evaluation of the a.c. system data between consecutive samples (i.e. 2.5 ms), an instruction cycle time of mini computer standard (i.e. $1-2 \mu \mathrm{~S}$) is desirable. Once again this requirement is satisfied by a bipolar design, whereas with existing M.O.S. devices these speeds are not realizable, particularly if multiple byte operations are involved to maintain accuracy, or to provide a usable instruction format.

c) Powerful Software and Architecture

Although the bit-slice devices are more primitive basic components than their single chip counterparts, they do thereby allow the overall processor architecture to be closely matched to its proposed function. The system of Fig 3 bears only a superficial resemblance to a conventional computer architecture providing as it does only limited read-write storage which is separated for address purposes from the main program memory. This structure combined with extensive pipelining in the control paths and a modified form of Direct Memory Access for input data from the measurement sub-system serves to optimise the unit performance.

Finally from a software viewpoint the micro-programmable organisation of the processor allows a highly efficient dedicated macro-languare to be developed for the description of fault detection algorithms.

3. Conclusions

It is well known that in order to achieve optimum results from micro-computers they should be used to perform limited and closely defined tasks. Extension to multiple task or general purpose use negates many of the valuable attributes which the devices possess, and a more parallel structure is desirable (i.e. multi-processor) beyond a certain task complexity. This implies that for power system protection use they are ideally employed as dedicated single function first and second main relays, and the major advantages which may be obtained from such an implementation are:-

a) Standardisation

Since the component sub-units of a relay are constructed with standard hardware features, individual rolays for sinecific functions can be assembled by inclusion of appropriate concrol algorithms. A considerable casirg of the difficulties encountered when an equipment manufacturer is confronted with special requirements, which currently require design changes in convenitomal electromechanical or statc relays, is thus achieved. For the
reldy user, standardisiation of many items provides a considerable simplification of testing and maintenance operations, and reduces the burden of personnel training.
b) Flexibility

The micro-computer based relay offers the great adaptability which characterises all stored program digital machines. Alterations to the power system plant configuration or parameters may thus be easily reflected in corresponding relaying modifications avoiding protracted and costly re-wiring or re-setting.
c) Reliability

Although the basic components relibilities within a microcomputer relay are only comparable with those used, for example, in a static analogue relay, the dynamic nature of the device enables many of the well proven error detection and self test routines to be incorporated in the operating programs. Thus the possibility of a coincident system/relay fault is minimised and the overall protective equipment reliability enhanced.
d) Compatibility

As a final consideration it is possible to examine the role of the dedicated digital relay within a hierarchical sub-station control scheme. It is envisaged that the microcomputer front line equipment would be provided with a back-up system incorporated in a mini-computer based integrated protection system. The software ? imitations of the integrated solution mentioned in Section 1.2 would not be critical in a back up mode, and the sophisticated mini machine would provide a constant monitoring servjce for the front line relays, in addition to communication with controlling stations. For such an implementation the value of a uniform digital device structure is obvious and the micro-computer relay reduces the problems of equipment compatibility.

Currently, effort at Imperial College is directed towards the construction of a protection relay based on the principles outlined in this paper, and it is hoped that the performance of the equipment will be evaluated for several typical relaying tasks in the near future.

References

Micro-processors:

1) M. Healey: Minicomputers and Microprocessors. Hodder and. Stoughton. 1976.
2) B. Francis: Microprocessors; the minicomputer/random logic alternative ? Electronic Engineering. March, 1975.
3) Justin Rattner: Bipolar LS1 computing elements usher in new era of digital design. (Electronics Sep 5, 74)
4) Uzunoglu Vasil: Analysis and design of digital systems. Gordon and Breach 1975.

Digital Protection:

5) B.J. Cory, G. Droney, B.E. Murray: Digital system for protection. CIGRE 1976. Daper 34-08.
6) Murray, B.E., Dromey, G: : "Practical desigr considerations affecting the use of digital computers in substations." (4th IFAC/IFIP Conference on digital Computer Applications to Process Control, Zurich, March 1974, page 292)

ABSTRACT

First a brief discussion is given outlining the reasons for developing the digital protection scheme described. Next the design of a dedicated digital protection relay is considered, from the hardware and sof̂tware points of view.

In the last chapter some applications of the relay for different protection schemes are examined.

1. INTROCLITIION

Digitel computers are already well established in several areas of fower system control. They are widely employed in network control and dispatch centres and in power stations.

An extension of digital techniques in power system protection, is an obvious area of development. Digitai protection offers improved accuracy. enhanced reliaもility, better protection characteristic masching, greater flexibility and modular construction. However it introduces some disadoantages, for example, the need to convert the analogue measurements of the system to digital ouantities, interference problems and difficulty in completely testing the system under all possible operating conditions.

The first applications of digital protection, used a minicomputer as the processirg device. However the use of minicomputers imposes inter-related economic and technical constraints upon the schemes proposed, most of which are encountered when a scheme cf this type was constructed at Imperial College. For reliability a duplication or triplication of the relaying equiprent used in a multi-minicomputer scheme is required, which represents a considerable cost. As a compromise of this, "integrated protection" schemes have been proposeo, in which nultipie protection functions are ambodied in a single computer to maximize usage of the inste?led computer power. It has teen found that the integreten scheme suffers from several jifficulties, such as complex software, critical initialisaticn, desrecation of clearance speeds and reliability[3]. nin alternative epprosch[2] is to replace the existing eiectromechanical or static analogue relays by dedicated digit.ii relays constructed with inicroprecessors. Eact-up protection and monitcring of the dedicated relays are provided by a mini or
microcomputer. Our paper concentrates on the design of a microprocessor based relay.

2: THE MICROCOMPUTER DEDICATED RELAY

In each relay the data acquisition and processirg functions are separated. Thus two units comprise a relay, they are: 1) the data acquisition interface and ii) the protection processor. This division of the relay components, is dictated by the differing nature of the two functions.

2.1 The data acausition interfacs

This unit is concerned with data collection, and has been designed to fulfill the requirements of many different protection schemes. It is a selfcontained unit, controlled by a programmable device. The interface can handle up to 16 analogue channels and 4 digital channels. A block diegren of the unit is shown in "Fig. 1". The analcgue signals are the a.c. quantities of the systen and the digital inputs determine circuit breaker (CS) and isolator status. The analogue signals ere derived from the power system by the configuration shown in "Fig. 2". These signals are filtered by second-order Butterworth anti-aliasing filters with a cutoff frequenci dependent on the sampling rate. The analogue signals are sampled simultaneously and held on the corresponding sample-hold devices. They are then multiplexed to an analogue-digital converter (ADC). The A/D conversion tekes Eus and has a resolution of 10 bits. The resulting digital values are stored in an output buffer, together with the CB/isolator status (digital inputs). A data ready flag is generated, which indjcates to the protection processor that data have been prepared. The timing control of the unit is imolemented by councers \& ERNMs. Another pair of PROMs defines the configuration control i.e. the number of analogue and digital channels, to be used. The sampling rate is variable within the range of $2-24$ samples per fundamenial system cycle, corresponding to a period of 20 ms at 50 Hz and 16.7 ms at 60 Hz .

The unit thus has good flexibility and its interrial interface controller relieves the main protection processor of the simple, but time constiming, data acquisition control overheads.

2.2 The grotection processer

Studise of existing algorithms for protection, indicate that a processer with a speed close to that of a minicomputer is required. In addition aecuracy requiroments demand the use of a 16-6:t machine. It would be also desirable to construct a flexible system which could be teilored to spccific applications.

All the above requirements are met by using a bitslice bipolar microprocessor. The processor is constructed using the INTEL 3000 device, block ciasram of the microcomputer scheme being given in "Fig. 2". Ir the following sections some critical Jesign factors are described.

2.2.1 Processor control

The INTES 3000 is a microprogramable processor meaning that the control portion of the processor is not hard-wired but is software defined by instructions stored in the micromemory. Microprocrarmatle control permits a flexible instruction set to be defined for specific applications. Additionally it simplifies hardware design.

The contrel module consists of the microsequencer which controls the execution of the microinstructions, "stored in the micromemory. Pipelina registers are used to permit a parallel fetch/ execution cycle, which improves the microcycle time by 30%.

Each microinstruction contrals the CPU, the memories, the I/O ports and defines the address of the next micrcinstruction to be fetched. A microinstruction word of 32 bits satisfies those requirements. Each main program instruction (macroinstruction), is thius executed by a seqience of microinstructions.

A max, of 512 locations can be addressed by the microsequencer but on average each macroinstruction is executed by just five microinstructions.

2.2.2 The CPU

The 16 bits CPU of the processor, comprises an array of 8 2-bit slice elements. It provides one eccumulator, eleven internal registers and a macrome:nory address register (MAR). The accumulator is connected directly to the data bus of the processor. The mecromemory is addressed by a separate bus which is defined by the MAR. Sume of the internal registers have been designated as program counter, loop counter, subroutine raturn address register, as well as for other special operations such as multipifation and multiple shifts.

2.2.3 Data buses

The macromenary address bus has been discussed above. The data bus is bidirectional, through which the CFU communicates with the momorinc and I/D ports. Some other buses, for example the masking (bit testing) bus and flag input bus which improve the system timing are used only at the microinstruction level.
2.2.4 Main memory (macromemory)

Although the CPU can adfuress a maximum of 64 K of memory, this is ereatiy in excess of the requirements for dedicated protection purposes. From exicting alcorithrs, is found that a $2 k$ memory is adequate. Ey employing a b-bit operation code, wo can address the whole memory direstly which saves time and leads to a simpler design. The relay application program must be stored in a nonvalatile memory, for which Efroits have been used. These devices offer high stcrage density, low cost, low power consumption and they are erasable. A pipsline architecture is employed in the maeromemory to provide speed improvements.

2.2.5 Data and constant store

Typically less than 200 locations are required for the storage of data and constants. As the data storage is limited, a complete separation of tha program and data memories produces reduction of program counter manipulations. Adciresses for the data memory are supplied via the subaddress bus of "Fig. 3", from the 10 lsbits of the macroinstructions. 1024 locations of storage or I/O ports can thus be directly addressed. The data memory consists of banks of RAMs, each 128-word deep and of PROMs each 32-word deep.

2.2.6 Input - output (İ/O) ports.

The input port provides an interface between the processor data store and the output buffer of the data acquisition unit.

The data output module is dedicated to communication with a superviscry, back-up/monitoring computer. I/O commurications are controlled by flags.

For CB control an additional output port is providad with three states, nameiy: i) trip/relay heaithy. ii) no trip/relay healthy and iii) no trip/relay failed. The trip signal is used to control CBs, whilst the relay status signal is decoded by backup equipment.

2.2.7 Processor timing

In the design presented a complete microcycle takes 200 ns : The clock circuit has been specifically designed to have a stable and predictable start-up performance following initial switch-on or a transient disturbance of the relay power supply.

3. INSTRUCTION SET:-

Since the processor is microprogrammable the instruction set is not fixed, but can be defined by the user to satisfy a specific application. n basic sat of typical minicomputer assembler level instructions has been used. Additionally, several instructions required by the protection algorithms have been included. The instruction set can be divieed into 4 groups i.e. control, memory reference, operate and jump/skip instrictions. Each instruction consists of 2 fields, a 6 -bit operation-code and a 10 bit address/constant field. Therefore a maximum of 64 instructions can be defined. The average instruction execution time is approximately 0.0-1 $\mu \mathrm{s}$, which
indleates that the main objective i.e. to construct a micromrocessar with speed similar to a minicomputer has been satisfied. This performance was only achicvable by employing a bipolar microprocramable processor with an extensive pipeline configuration.

As multiplication is one of the main features that must be included in the processor, a microproeramed implementation rather than a hardware one has teen chosen. This approach reduced both cost and power requirements. Typically the multiplication routine handles two signed 16 -bit numbers and produces a 32-bit product in $17 \mu \mathrm{~s}$.

4. DEVELCPMENT AIDS

To facilitate development of protection processor software, an assembler for the processor language and an EFROM programer control package have been written. These aids are resident in a host minicomputer (NOVA 3). Another PROM programmer has been built, for programing the bipolar PROMs used in the micromemory and in the constant store.

For the initial testing and development of the microinstructions a bipolar PROM simulator was employed. Development time can be reduced if application routines are first tested using a MOS PROM simulator. For this purpose another PROM simulator has been built which can accommodate up to 512 16-bit words.

Finally extensive programs have been written in the monitoring computer, to enable the relay performanœe to be assessed. Additionally a monitoring program, which types fault reports has been written.

5. AFPLICATIONS

The great- edvantage of a digital relay is that common hardware can be used for different protection purposes, simply by changing EPROMs, which contain the protection algorithms. In the following sections, a brief discussion of some protection schenes is given.

5.1 Generator negative sequence protection

Tne protestion of expensive generating olant is an important area of relay application. Specifically, prislonged asymmetrical loading of a generator can produce considerable heating within the machine, through negative sequence current generation in the rotor. A digital negative sequence protection relay has teen developed using the microprocessor equipment described. The relay algorithm employs symmetrical component techniques to determine the magnitude of the negative sequence components present in the generator load currents. Vector rotation required by symnetrical component analysis is readily avallable if the a.c. quantities are sampled at 12 times per power system cycle.

A further portion of the algorithm then evaluates a tripping characteristic from the expression:

$$
I_{2}^{2} t=K
$$

where $I_{2}=$ negative sequence current magnitude
$t=$ time to trip
$K=$ constant dependent upon the heating characteristics of a farticula: machine type

Laboratory tests have shown that the digital implementation fully satisfies the requirements of the protection function. In several areas. particularly those of alarm facilities and reduced frequency sensitivity in the digital negative sequence filter, the microprocessar relay represents an improvement on existirg static analagua equipments.

5.2 Distance reiay

A distance protection aigorithm, is now being implemented. It uses the McInnes and Marrisan cancept of a transmission line compused of R and L onIy[A]. A simple algorithm can be written which salves the equation Ri + Ldi/dt $=V$, using first differences[5].

The computed R and L are campared with the naminal values and a decision is taken according to the conditions: i) no fault, ii) external fault and iii) internal fault. For this algarithm the primary system quantities are sampled eight times per cycle. Eetween each sampling point i.e. 2.5ms. the relay executes 6 impedence calculations, i.e. $_{\text {. }}$ three to detect phese-phase faults, and three more for phase-earth faults.

Tests have been cerried out for a phese-phase fault which indicate a detection time of abaut 3/4 cycla
"Fig.4". For close-up faults a directional element is needed to discriminate between IIns faults and faults benind the relay. A valtage memory principle is easy to apply, as the prafault voltages are available. The sane relay structure has been used for overcurrent, earth faults, transformer and generator unit protection.-

6. CONCLUSIDNS

An hierarchical digital protection scheme can be implemented, with an improved reliability and reasonable cost, by using front line releys af tios type described. The system affers good flexibility and compatability in a complete digital pratectian scheme. From the marufacturers paint of view standardisation of relay hardware is an attractive feature.

Further, differing prctective functians, ean te easily implemented with characteristics to accompodate changes in the power system. The fault repart produced by the monitnring computer, is alsa a very useful addition in the system aperation.

REFERENCES

1. Protective relays application guide by G.E.C.

2. B.J. Cory, G. Dromey, B.E. Murray: Digital systen for protection. CIGRE 1376, Paper 34-08.
3. L. Petrou, E. Horne, B. I.Cury: Microcomputer. applications in protection relaying. UPEC: meeting 1977.
4. A.D. licinnes, I.F. Morrisun: Real tims calculation of resistance and reactanco for transempision line protection by dicital computer. IEA (Austrolia) Murch 1371.
5. W.D. Breingan, M.N. Chen, T.F. Gallen: The luboratory investigation of a digital system fur the protection of transmission lines. IEEE PES mecting 1977.

- . Justin fattner: Bipolar LSI computing elements usher in new era of digital design. Electronics Sept. 5, 1974.

Fig. 1 The data aquisition interface

jig. 2 Digilal reidy test hardware

Fig. 4 :a)ractance, (b)resistance for double phase fault calculated by the processor

[^0]: Fig. A4.2 The micromemory contents generated by the cross- assembler

