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ABSTRACT  

The aim of this thesis is to study the asymptotic behaviour of 

certain Gaussian processes. 

Let X = {X(t), t e ]R} be a centred Gaussian process with 

EX2  (t) = 1 for all t e IR and a (t,$) = [E (X (t) - X (s)) 2] 1/2. Then 

a(t,$) is a pseudometric in IR which we use for all metric considerations. 

Let Z(t) = sup{X(s), s e (0,t]}. Sufficient conditions in terms 

of the metric entropy of the process are obtained for the following 

result: 

lim sup (Z(t) - (2 log t)1/2) < 0 
t90 

a.s. 

It is shown that all continuous, a-separable and stationary 

Gaussian processes satisfy these conditions. 

As more restrictions are imposed on a(t,$) it is possible to 

obtain sharper results. In Chapter 3 we obtain upper and lower bounds 

for P{Z(t) > x} as x -► co for stationary processes that satisfy certain 

local conditions. These inequalities are used in Chapter 4 to obtain 

bounds for the rate of convergence of (Z(t) - (2 log t)1/2) to zero as 

t + 0*, for a wide class of continuous, stationary Gaussian processes 

which satisfy the mixing condition r(s) = 0(s-A) as s -> co for some 

A > 0, where r(s) = EX(t+s)X(t). This class is a subclass of the 

stationary processes having a(t,$) = a(lt-s1) a slowly varying function 

at zero. 
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Chapter I  

Introduction  

In this work we shall be interested in the asymptotic behaviour 

of the maximum of certain Gaussian processes. 

Consider a separable, continuous Gaussian process X = {X(t,w); 

• 
	

t e R , w e R} on a probability space (f,F,P). All the processes we 

shall deal with satisfy; 

EX (t) = 0 
	

EX
2
(t) = 1 

for all t e 112, unless we specify otherwise. We denote the covariance 

by r(t,$) = EX(t)X(s). Define 

• Z(t,w) = sup X (s,w) 
O<s<t 

since X is separable Z(t) is well defined. We say that X is stable if 

Z(t) - (2 log t)1/2  -} 0 

as t -► co, and relatively stable if 

2(t) 	+ 1 
(2 log t) 

as t -} co, the types of convergence considered being almost sure (a.s.) 

and in probability (i.p.). 

We shall be interested in the following two problems: 

1. Under what conditions do we have a.s. stability. 

2. If we have a.s. stability what is the rate of convergence to 

this limit. 

1/2 
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A considerable amount of attention has been given to both problems. 

Concerning the first, Gnedenko [13] in 1943, showed that if 

Zn = max Xi  where Xi  is a sequence of independent identically 
i<i<n 

distributed Gaussian variables satisfying (1.1.1) then 

Zn - (2 log n)1/2  + 0 
	

i.p. 

Berman [2,3] extended this result to stationary Gaussian sequences 

with EX.Xj  = r(i,j) = r(li-jl), and also considered the problem of 

relative stability i.p. The type of condition he introduced is known 

as a mixing condition and concerns the limit behaviour of the covariance 

as l i-j l -} m. 

Pickands [29] proved that r(n) + 0 as n = implies a.s. relative 

stability but is not enough for a.s. stability. Moreover, he establishes 

that a stationary Gaussian sequence is always a.s. upper stable, i.e. 

lim sup (Zn - (2 log n)1/2) < 0 
m4.= 

a.s. 

and that either 

r(n) log n + 0 	as n -} = 

or 

E r2  (n) < 
n=1 

are sufficient for a.s. stability. 

The study of continuous processes requires local as well as mixing 

conditions on the covariance. The first to have obtained results in 

this case seem to have been Cramar [5] and Shur [37]. Let f(X) be the 

spectral density of the stationary covariance r(t). Assume f(A) is of 

bounded variation in (-=,=) and satisfies 

• 

• 
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 (log (1+a) )a  f (X)da < = 
0 

for some a > 1. Then Cramer shows 

lim PtIZ(t) - (2 log t)1/21 < log log 	} = 1 
t-= 	 (log t)1/2  

• and Shur proves that there is a t0(w) a.s. such that for t > t0, e > 0 

Iz (t) - (2 log t)1/21 < (1+e) log log t  
(2 log t)1/2  

These spectral conditions imply the local condition 

r(t) = 1 - ct2  + o(t2) as t 4'0 and the mixing condition 

lim sup tlr(t) I < = 
t-o 

Pickands [29] considered stationary processes with 

a(h) -2 [E(X(t+h) - X(t))2]1"2  = 1  (1 - r(h))1/2  < cha 	(1.1.2) 

as h -► 0 for 0 < a < 1. X is then a.s. upper stable: 

lim sup (Z(t) - (2 log t)1/2) < 0 a.s. 
t+tO 

• and if either 

 

 

r(t) log t O 

or 

r2  (t) dt < 
O 

as t 	 (1.1.3) 

(1.1.4) 

then 

lim inf (Z(t) - (2 log t)1/2) > O a.s. 
t- 
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so that (1.1.2) with either (1.1.3) or (1.1.4) gives a.s. stability. 

Nisio [26] returned to the problem of a.s. relative stability. 

If X is a process with 

E(X(t) - X(s) ) 2  < t1)2 (1t-s1) 

where 1P(h) is nondecreasing and continuous on [0,m) with 

co 	2 

J 4,(e-u  ) du < = 
0 

• 

then 

lim sup 	Z(t) 
1/2 < 1 a.s.— t— 	(2 log t) 

(1.1.5) 

and if 	lim sup 	r(s,t) < 0 
• T40° It -s l >T 

then the converse is true 

lim sup 	Z(t) 1/2 > 1 a.s. 
t- 	(2 log t) 

The first half of this result was also proved by Marcus [20] using 

Fernique's Inequality. By improving this inequality, in [21] he 

weakened Pickand's local condition (1.1.2) for a.s. upper stability to 

a(h) = 0 ( 	1 	) , 	a > 1 
(log 1/h)a  

(There is a mistake in the statement of theorem 1.1 in [21]. The proof 

only works for a > 1 and not for a > 2). In the same paper he obtained 

a general result for the continuous parameter case: all continuous 

stationary Gaussian processes satisfy (1.1.5). He uses an upper bound 
• 



8 

for the probability of {Z(t) > x} as x -►cc. due to Fernique, Landau, 

Shepp and Marcus [10,19,23]. 

We tackle the problem of a.s. upper stability by means of metric 

entropy methods. This type of method has been used with some success 

by Dudley [6,7] and Fernique [11] to study the problem of sample 

path continuity. a(t,$) is taken as a pseudometric on the parameter 

space ]R and all metric considerations are made with respect to it. 

The main tool used is an inequality for the tail of the distribu-

tion of Z(t) (section 2.3) which is more general than Fernique's 

Inequality when the process has constant variance. We show that a.s. 

upper stability holds for a class of Gaussian processes that includes 

all those that are stationary, continuous and a-separable. 

Using the results obtained by Pickands [29] quoted above we get 

that all stationary continuous a-separable processes satisfying (1.1.3) 

or (1.1.4) are a.s. stable. 

Not all continuous, stationary Gaussian processes are a.s. stable, 

however. Marcus [22] has shown that if X has discrete spectrum then 

lim sup 	
Z(t) 	

= 0 a.s. 1/2 

He gives examples of processes in this class having various growth 

rates ranging from (log log t)1/2  to (log t)(1-E)/2, e > 0. 

Let us look now at the second question. To do this define a new 

process Y = {Y(t), t e Ill by 

Y(t) = Z(t) - (2 log t)
1/2  

Then Y(t) ; 0 as t 4- co  a.s. We are interested in obtaining 

continuous curves v1(t) < v2  (t) , vi  (t) 4. 0 as t co for i = 1,2, such 

that the process Y(t) will always stay between the two curves, i.e. we 

t— 	(2 log t) 
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want Y(t) to cross either curve only a finite number of times but to 

get arbitrarily close to both infinitely often as t + m. 

The functions ni  = (2 log t)1/2  + vi(t) will be called the 

envelopes of the process. This question as it stands is much too 

general. Very specific assumptions on the covariance of the process 

are required in order to obtain precise results. Historically, there 

has been more interest in obtaining these conditions for the upper 

envelope problem. The first efforts were directed towards obtaining 

functions r1(t) satisfying some or all the conditions 130,32]. Later 

on, the solution was sharpened by dividing the class of positive, 

continuous nondecreasing functions 6(t) with 6(t) + - as t + co into an 

upper and a lower class in a manner analogous to the classical law of 

the iterated logarithm results of Feller [8,9] and the similar results 

for Brownian Motion (Petrovsky (28]; Chung, Erdos & Sirao [4];  Sirao 

and Nisida [39]). 

We say that 6(t) belongs to the upper class U(X) if there is a 

to(w) with probability 1 such that for all t > t0  

Z (t) < 6 (t) 

If no such t0(w) exists, with probability one, we say that 6(t) belongs 

to the lower class L(X). 

The tests for deciding whether a function 6(t) belongs to either 

class are in the form of integrals I(6) of the function whose convergence 

properties determine whether 6 e L(X) or 0 e U(X). The first such tests 

for Gaussian processes other than Brownian Motion were obtained by 

Watanabe [40] under the local conditions 

clha  < a(h) < c2hn  (1.1.6) 



10 

as h -> 0, 0 < a < 1, cl  < c2  and the mixing condition 

r(t,t+s)s + 0 	 (1.1.7) 

as s -; W uniformly in t. 

His method is based on that of Sirao [38]. Qualls and Watanabe 

[33] used an exact asymptotic result for the tail of the distribution 

of Z(t) obtained by Pickands [31] to relax (1.1.7) in the stationary 

case to 

r (t) = 0 (t ) 

ast-;  cc,  for some X>0. 

They were later able to obtain similar results for all stationary 

Gaussian processes with 

a(h) = haG (h) 	 (1.1.8) 

as h 0 for 0 < a < 1, where G(h) is a slowly varying function at 

zero, i.e. 

lim 
G(h) 

h+0 

for any t > 0. They did this by extending Pickands' asymptotic result 

to this case (see theorem 3.1.1). 

The best result available was given by Pathak and Qualls [27]. 

Suppose a(h) satisfies the following condition: 

G (th) = 1 

a(h) = haG(h) + o (haG (h) ) 

as h 0 for 0 < a < 1, where G(h) is as before and that 
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r(t) = 0 (log t ) (1.1.9) 

• 

as t =. Then 

6(t) e u(x) (L(X)) 

according as 

g(8 (t)) 	82(t) Ice)  _ 	8 (t) 	
gXp{ 	2 	} < °° 	(= co) , 

where g(x) = 	1  
c`f-1(1/x) 

and a (h) = 	hOG (h) . 

They also give a similar result for stationary Gaussian sequences. 

Mittal [24,25] obtained independently results that can be deduced from 

these theorems. 

By means of a time transformation [33,34,401, some of these results 

have been used to obtain similar theorems for non-stationary processes. 

The lower envelope has been studied by Pickands [30,32] and 

Mittal [24,25]. In this case no division into upper and lower classes 

by means of an integral test has been obtained except in the case of 

Brownian motion (Jain & Taylor [15]). The best results presently known 

are those of Mittal who shows that (1.1.6) and (1.1.9) imply 

lim inf (Z(t) - (2 log t)
1/2)  (2 log t)1/2 

a 2 
= 

	

t 	

1 - 1 a.s. 

	

- 	
log log t  

Our efforts are directed in both cases to weakening the local 

conditions assumed by previous authors. In Chapter 3 we obtain upper 

and lower bounds for the tail of the distribution of Z(t), for a class 

of Gaussian processes having a(h) a slowly varying function, i.e. a = 0 

• 

• 
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in (1.1.8). A crucial role is played by the structure function a(h) 

of a(h). (For definitions see section 3.1.) The inequalities are not 

as accurate as Qualls and Watanabe's in the case a > 0 but are enough 

to obtain sharp results in many cases. We show in theorem 3.4.1 how 

our work can be combined with theirs to give a more general set of 

inequalities. 

The results of Chapter 3 are the main tool used in Chapter 4 to 

gain some insight about the general form of the envelopes for Gaussian 

processes. The proofs are based on methods used by other authors. 

Corollaries 4.2.3 and 4.3.1 give precise estimates for the envelopes 

of some of these processes. 

We have been unable to obtain sharp integral tests for the upper 

envelope in the case a = 0 because the inequalities we obtain in 

Chapter 3 are not asymptotically exact. Therefore, even though the 

results are stated in the form of integral tests in theorems 4.2.1 and 

4.2.2, there is still a gap that leaves a class of functions for which 

we obtain no information. 

In section 4.4 we use the time transformation mentioned before to 

get theorems for some non-stationary Gaussian processes. 

Some of the results reviewed have been extended to Gaussian 

Random Fields by Kōno [18] and Qualls and Watanabe [35]. 

We end this chapter with some notation that will be used repeatedly. 

(x) = 1 e-x2/2 

IFW 

r 

11) (x) = 	(X) 

If X is a Gaussian random variable with mean 0 and variance 1 we 

write X '1+ N (0,1) . It is well known that in this case 
• 



P{X>x} < 4(x) 	for x>0 

and 

P{X > x}  + 
(x) 

1 	asx + co 

13 
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Let f(x) and g(x) be two functions defined near the origin. We 

shall write f » g (x + 0) if there exists a u0  > 0 such that 

f(x) > g(x) for any x in (0, u0) . 

We shall put f(x) _ g(x) if there are constants A and B, 0 < A < B < 

and a u0  > 0 such that 

Af (x) < g(x) < Bf (x) 

for all x e (0,u0) . If f(x) + 1 as x + m we say f ti g. 
g(x) 

c and const..denote unknown constants which may change from line 

to line. 

Theorem a.b.c. denotes theorem c of section b, chapter a. Equations 

will be denoted by (a.b.c) with a similar convention. 

4 

• 
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Chapter 2  

Stability of Gaussian Processes  

2.1. Introduction  

The purpose of this chapter is to obtain in section 2.3 an upper 

bound for the tail of the distribution of the supremum of a Gaussian 

process, subject to certain conditions that are weaker than those 

assumed by Fernique's Inequality ([11,14] or Lemma 3.2.2), and with it 

to show, in section 2.4, that a wide class of Gaussian processes, 

including all stationary and continuous processes, satisfy 

lim sup (Z(t) - (2 log t)1/2) < 0 a.s. 
t-° 

In section 2.5 we comment on the conditions under which the lim inf 

is also zero and give conditions for stability a.s. 

Let X = {X (t,w) , t e T, w e Sā}, T C ]R an arbitrary index set, be 

a Gaussian Process with covariance r(t,$) = EX(t)X(s) continuous on 

TxT. To study X we shall use the function defined on TxT by 

a(t,$) = [ECK(t) - X(s))
21/2  

This function is not necessarily a metric on T since 

a(t,$) = 0 	t = s 

We shall call it the pseudometric induced on T by X. It generates 

a topology on T: for every t e T and every real h > 0 let B(t,h) 

denote the open ball having centre t and radius h defined by 

B(t,h) = {s e T: a(t,$) < h} 
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We assume that X is a-separable, i.e. there is a countable set 

S C T called the separating set and a null set Ns such that for all 

w 0 Ns, all teT, all c>O 

x(w,t) e cl{x(w,$) , s e s n B(t,e)} 

where Cl denotes the closure. 

• Our assumptions imply that 

a(t,$) = tE(X(t) - X(s))
2]1/2  

= [E (X2  (t) + X2  (s) - 2X (t)X (s)) ] 1/2  

= (EX2(t) + EX2(s) - 2EX(t)X(s)]
1/2  

[2(1 - r(t,$))]1/2  

and the continuity of r(t,$) on TxT implies the continuity of a(t,$). 

Suppose now that for fixed t, a(t,$) is a monotone increasing 

function of s. Then 

a(t,$) = O => t = s 

• 

and a is a metric. It is topologically equivalent to the usual metric 

d(s,t) = It-sl. But the fact that X is a-separable is equivalent to 

(T,a) being separable. Since (T,a) and (T,d) are topologically 

equivalent, (T,d) is also separable and this implies, in turn, that X 

has a d-separable version X. 

In Chapters 3 and 4 we shall assume that this is true and so will 

only speak of separability. 

Theorem 2.1.1. ([12], theorem 5, page 155) 

Let X = {X (t,w), t e T, w e )} be a a-separable process that is 

• 	continuous in probability, when the continuity is taken with respect to a. 
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Then every countable subset dense in T separates X. 

Let S C T be any subset of T and a any positive real number. The 

minimal number of a-balls B(t,h) with t e S and h < e needed to cover S 

is denoted by N(s,e). The function 

H(s,e) = log N(s,e) 

is called the metric entropy of the set S. When S = T these functions 

will be denoted by N(e) and H(e) respectively. 

Note that N(e) and H(e) are non-decreasing as a decreases. 

Theorem 2.1.2. (Dudley (6,7], Jain and Marcus [14]) 

Let X = {X(t,w), t e T, w e Si} be a centred, a-separable Gaussian 

process with covariance r(t,$) = EX(t)X(s) continuous on TxT. Assume 

that for some v > 0 

1 H1~2 (Ode 
	

OD 

O 

then there is a version X = {X(t,w), t e T, w e SZ} of X with continuous 

sample paths. 

t 
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2.2. Preliminary Results  

Lemma 2.2.1. ([38] lemma 2) 

Let X and Y be jointly Gaussian random variables with means 0, 

variances 1 and correlation r. Then PO.: > b, Y < a) is a nonincreasing 

function of r for a,b fixed, 0 < a < b. 

Lemma 2.2.2  

Let X and Y be as in Lemma 2.2.1. For any a > 0, h > 0, if 

rh - a(1-r) > 0 	 (2.2.1) 

x > a+h, Y < a} < 	
(1-r2)1/2  -h2  

' 	— 	— (a) rh-a(1-r) 	 exp { 2(1-r2) 

a2(1-r)  ah 
2(1+r) 	l+r } (2.2.2) 

Proof 

P{X > a+h, Y < a} = 

1  f f 	2 1/2 exp{ x
2-2rx2+y2 	dydx 

a+h -= 2tr (1-r ) 	2(1-r ) 

o a 

a+h -W 2w(1-r2)1/2  e x2-x2r2+x2r2-2rxy+y2  }dydx 
2 (1-r2) 

= a  __ 	 2 	2 
d r 	1 	{  x _ (y-xr) 
	

dydx 
a+h 271(1-r

2
)
1/2  	

2 2(1-r
2
) 

} y 

• 
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e  x2/2 	(a-xr)/(1-r2)1/2  e-z2/2  

	

j 	 dzdx 
a+h VYW 

02 

	

[ 	e-x2/2 (a-r (a+h) ) / (1-r2)1/2 
-z2/2 

	

< ! 	 dzdx 
a+h 1/57 

CO 

m 
-x2/2 	 -z2/2 

= J e 	dx 	 e 	
dz 

a+h 
hr-a (1-r)  

(1-r2)
1/2  

If (2.2.1) is satisfied 

< (a+h) (hr-a (1-r) ) 
(1-r2)1/2  

(1-r2) 1/2 	
exp { a2+2ah+h2  _ (hr-a (1-r)) 2  

27r (a+h) (hr-a (1-r) ) 	 2 	2 (1-r2) 

(1-r2) 1/2 	h2  h2r2-2rha(1-r)+a2 (1-r) 2  < (a) hr-a (1-r) exp { -ah - 2 	
2 (1-r2) 	

} 

= 	(1-r2)1/2  
(a) hr-a (1-r) e 

h2  	_ a2 (1-r)  _ ah 
2 (1-r2) 	2 (1+r) 	1+r } 

0 
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2.3. Main Inequality  

We now proceed to obtain the main tool needed to get the major 

result of this chapter. It is an inequality for the supremum of the 

process X over an arbitrary interval T C ]R. The method used in the 

proof is a combination of the well-known procedure of Sirao [38], which 

has been employed by many authors [16,17,18,40], with the more recent 

methods of metric entropy introduced by Dudley [6] and also used in 

other works [11,14]. 

Theorem 2.3.1  

Let X = {X(t), t E T} be a a-separable Gaussian process with 

r(t,$) = EX(t)X(s) continuous on TxT. Assume that for some v > 0 

• 
1  H1/2  (u) du < co 
O 

(2.3.1) 

Then 

EO  

P { sup X (t) > x + Al ! H1'2(u)du} < sonst * (x) 
teT  

(2.3.2) 

where e0  (x)is defined by 

1/2 
EO  = inf {E 	

H 	(E) < x } 	 (2.3.3) 
E 

and Al  is a constant. 

Proof 

We start by defining a monotone decreasing sequence En, n = 1,2,... 

in terms of x and the metric entropy of T, H(E). Let 

Sn  = 2 inf {e : H(E) < 2H(en)1 	 (2.3.4) 

f 

• 



x0  

and 

• 
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e 

en+1 
= min ( 	, do  3 (2.3.5) 

for n = 0,1,... 

Note that e0  +0 as x + o, en  + 0 as xi + = and that unless H(s) ? co 

as e + 0, do  and en  will be identically zero for all n greater than 

a certain n0. We assume, for the time being, that 

H(e) fi co 	as e + 0 	 (2.3.6) 

Let 

Tn  = (ti; 1 < i < N(en)} (2.3.7) 

for n = 0,1,... be a minimal en-net, i.e. the set of centres of balls 

of radii < en  that constitute a minimal covering of T, and 

Zn  = sup X (t) 

z = sup X(t) 
teT 

co 
. Z(W) > x + E xi} 

i=0 

n 
An  = {w  : z

n 
(ce) > x + E xi  } 

i=o 

teT 
n  

A = 

n 
Yn  = x + E xi  

O 

where 
log N(e0) 

x 

xi = 2ei-1H1/2(si) 	i > 1 

f 

(2.3.8) 

(2.3.9) 

(2.3.10) 
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Since we have assumed (2.3.6) we have 

all i 	 (2.3.11) 

CO 

Since E = U Ti  is a countable a-dense subset of T and we have assumed X 

that E is a separating set for X. From 

A C AO  U (A1N AO) U (A2» A1) U . . . 

we get 

CO 

P (A) < P (AO  ) + E P (Ani An-1) 	 (2.3.12) 
n=1 

Clearly, for X " N (O,1) , 

log N (e ) 
P(AO) = P{Z>x+ 	x 

O  

log N(s0) 
< N(eO)P{X > x + 	 } x 

<(x) (2.3.13) 

i=0 
to be a-separable and continuous in probability, theorem 2.1.1 implies 

On the other hand, using (2.3.8) 

P (Aā An-1 	n  ) = P{Z 	Y > '. Z 	< Y n' n-1 — n-1 

X(t) > Yn 	for some t e Tn  

X(s) < Yn-1 	for all s E T
n-1  

N (fin) 	X (ti) > Yn  

i=1 	X(s) < Y
n-1  for all s 

e Tn-1  

P 

• 



N (en) 
= E P 

i=1 
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X (ti) > Yn 

X(t 1) < Y 	for all j, 1 < < N (e 	) — n-i 	 n-1 

 

 

  

   

N (en) 	
X (ti) > Yn < E 	_ 

i=1 	X (t~ 
(i) ) < n- 

(2.3.14) 

wheretj
(i) e Tn-1 and a(ti, to-1 (i) ) < en-1 (since Tn-1 is a en-1-net —  

there is such a t~ (i)). 

From 

a2 (t,$) = E (X (t) - X (s)) 2 

= 2(1 - r(t,$)) 

we have 

1 - r (ti; t~(i) ) = 
1 a2 (ti' t.3 „,) 

z 
en-1 

— 2 

Define rn by 

rn 

2 
en-1 (2.3.15) 
2 

then 

r < r (tn, t. . ) 
n — 	i 3 

( 
I) (2.3.16) 

for 1 < i < N(en), and since en < eD for n > 1 and e0 4-0 as x -} co, 

for x large 

1 r > 2 n   n > 1 (2.3.17) 

• 
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Let E and n be centred Gaussian random variables with 

EE2 = En2 = 1 and EEn = rn. Then (2.3.11), (2.3.16) and Lemma 2.2.1 

imply 

X(ti) > Yn 	E > Yn 

n-1 	< P 

X(tj(i)) ~ Yn-1 	n < Yn-1 

and (2.3.14) becomes 

P{An An-1} < N(En)P{ > Yn; n < Yn-i1 (2.3.18) 

At this point we want to use Lemma 2.2.2 to get an upper bound for 

the probability on the right hand side. We have to check that (2.2.1) 

is satisfied, i.e. 

• 

• 

rnxn - (1-rn)Yn, >̀ 0 

o 
for n = 1,2,... and x large. We begin by looking at E xi . 

1 

Lemma 2.3.1  

EO 
E xi < 17 ! H1/2(u)du 

i=0 	0 

Proof 

= 	log N(e0) 	= 	1 
i=0 	

(ei) x 	 + 2 iEl £i-1 H
1/2 (ei) 

H (e0) 	W 	
1/2 + 2 

Esi-1 H 	(ei) 
i=1 

(2.3.19) 

(2.3.20) 

• 
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• 

From (2.3.5) we get 

Ei
-1 

Ei - 3 

3 	1 
2 Ei-2 e

i-1 

1 	3 =>  
0  2 Ei-1 _  2 ei 

 

 

	

3 	_ 
3. 

E1. - 2 	( Ei-1 	Ei) (2.3.21) 

Also from (2.3.3) 

H(e ) 

x0 < E0H1/2  (e0) 

therefore 

co 

(2.3.20) < e0H1/2(e0) + 2 E ei-1 H1/2(ei) 
i=1 

and using (2.3.21) 

2 (co  - el)"H1/2  (Ea) + 3 E (e  i-1 - ei)H1/2  (Ei) 
i=1 

f 
Using (2.3.5) 

co 

< 2 (e-e1  )H
1/2

(e0)   + 3 E (ei-1 Ei) (H1/2 (e3  i=1 
+ H1/2 (6i-1) ) 

w 
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• 

Since (2.3.4) implies that H(Sn) < 2H(en) 

< 3 (e -e )H1/2(eo)    + 9 E (ei-1 - ei)H1/2 (ei-1) 
— 2 O 1 	i=1 3 	3 	3, 

CO 

+ 6 E (ei-1 ei)H1/2(ei-1) i=1 

eo 	ei-1~3 

	

< 2 1 ii2 (u)du + 9 E 	f 	H1/2(u)du 
el 	i=1 ei/3 

= ei-1 

	

+ 6 E 	f H1/2(u)du 
1=1 e. 

i 

< 17 j H1/2 (u) du 
O 

Since e0 + 0 as x -► = this lemma implies that 

co 
E x1 +0 as x-;= 

i=0 

but by definition 

n 
Yn = x+ E x. 

0 

Therefore, for x large 

Yn < 2x, 	all n, 

• 

Co 

0 

• 
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and to prove (2.3.19) it is enough to show that 

rnxn -2 (1-rn)x>0 

for n = 1,2,... and x large. 

Using (2.3.15) and (2.3.17), for any n > 1 and x large 

x

2 rnxn - 3 (1-rn)x > 
2 4 En-1 x 

1/23 2 
- 

En
-1H 	(En) 4 En-1 

= en-1 (H1/2 (en) - 4 En-1 x) 

Since, by definition, en is monotone decreasing and H(e) is non-

decreasing as a decreases 

> En-1(H1/2 (c1) - 4 e0x) 

From (2.3.5) we get El < 3 , and (2.3.3) implies 

H112 (E1) > EOx 

then 

6 E X 
rnxn - 2 (1-rn)x > 

n-4 O 
(2.3.22) 

> 0 

by (2.3.6). Hence (2.3.19) is satisfied and we can use Lemma 2.2.2 in 

(2.3.18) 

(1-r2)1/2 	-x2 

(2.3.18) < N(En)~(Yn) rnxn -(1 -rn)Yn  
exp 

2(1-rn) 

 

(2.3.23) 
Yn (1-rn) Ynxn 

2(1+rn) 	l+rn 
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• 

and 

Y x 
_n n 

Using (2.3.15) and (2.3.22) we get 

(1-rn)1~2 	ce
n-1  __ c 

rnxn - (1-rn)y
n < 

en-1e0x 	cOx 

using (2.3.3) 

~ 	c  

H1/2 (e0) 

+ 0 

as e0 0 (x +} ) . 

Since we also have 

Yn (1-rn) 

2 (l+rn) 	
0 

> 0 
l+r -  

n 

and by Lemma 2.3.1 

and 

Yn ti x as x 

A 
*(Yn) < *(x) 

we get 

2 
x 

(2.3.23) < P (x)N (en) exp { - 2 (l-r) } n 

using (2.3.15) 

= 4t (x) exp { log N (en) - 
x 2 

n 
2 
en-1 
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using (2.3.10) 

= i(x) exp  {H (en) - 4H()} 

= 4 (x) exp {-3H (cn) } 

so that 

E P{A -- A
n-1}  < *(x) E exp {-3H(en)} nn=1 	 n=1 

CO 

< (x) 	E exp 
n=1 

o 
-3H(e2n)/ + E exp 

n=1 
-31-1 (e2n-1)  } 	(2.3.24) 

From (2.3.5) 

en+1 an  an  
en+2 <  3 < 3  < 2 

and using (2.3.4) and the monotonicity of H(e) 

H ( En+2)  > H(.1-1) > 2H (en) 

therefore 

CO [03 

(2.3.24) < (x) E 
 

exp 	(co) } + E exp{-3.2nH (el) } 
n=1 	 n=0 

CO 

< 2,1, (x) E exp{-32nH (co) } 
n=0 

and since we have assumed that H(c0) -} m  as co  + O (x + m), this series 

is convergent and uniformly bounded as x -> co. Hence 

en  
E P{An An-1} < ci, (x) 

n=1 

• 

a 
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Combining this with (2.3.12) and (2.3.13) 

CO 

P(A) < P(A0) + E P(An A
n-1) n=1 

< const *(x) 

and using Lemma 2.3.1 

0 
P{sup X(t) > x + 17 

f 
 H1/2  (u)du } < P (A) 

t8T 	0 

< const *(x) 

We have shown that if (2.3.6) holds then (2.3.2) is true with Al  = 17. 

Now suppose (2.3.6) is not true. Then for some constant K 

H (e) < K 	as e -> 0. 

this means 

N(e) < eK 	as c+0 

and therefore 

P{Z (o) > x} < el(P{X > x} 

< c0 (x) 

since K is independent of x. In this case Al  = 0. 

• 

• 

0 
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2.4. Stability  

Let X = {X(t), t e 20 be a a-separable Gaussian process. 

In this section we give sufficient conditions for upper stability 

to hold, i.e. for 

lim sup (Z (t) - (2 log t)1/2) < 0 
t-►o 

a.s. (2.4.1) 

• 
Theorem 2.4.1  

Let X be a Gaussian process as above with r(t,$) = EX(t)X(s) 

continuous on lkx2R. Let IK = [K,K+1] for K = 0,1,... Assume that 

there exists a non-increasing positive function G(e) and a v > 0 such 

that for all K and all e < v, 

M 

and 

H(IK,e) < G(E) 

f  G1/2(u)du < = 
O 

(2.4.2) 

(2.4.3) 

then (2.4.1) holds. 

Proof 

For each interval IK  we define e
0  00 by 

• 

H1/2(I

K 

,e) 
e0  (K) = inf le :  

	
< x  } (2.4.4) 

Theorem 2.3.1 implies 

e
0
(  

	

P { sup X(t) > x + Al  f 	H1/2  (IK,u) du} < iy (x) 
telK 	0 



• 

• 

r 

Define e0  (G) by 

G 
1/2 

e (G) = inf {e : 	e 
(e) 

0 
	< x} 

then, for any K, 

H1/2 (IK,  e0  (G)) 	G
1/2 

 (e0 (G) ) 
e0  (G) 	 e0  (G) 	

x 

and (2.4.4) implies 

e0  (K) < e0  (G) 

Therefore 

e (K) 	 e (G) 

f 	H1/2  (IK,u)du < f 	H
1/2 

 (IK,u)du 
0 	0 

Using (2.4.2) 

eo  (G) 
< C G1/2

(u)du 
0 

0 as e0  (G) + 0 (x -* o) 

and is independent of K. 

Let 

g(x) = 

e0  (G,x) 

J G
1/2

(u)du 

31 

0 

then g(x) is independent of K and tends to zero as x -> co. Also 

P{ sup X(t) > x + g(x)}  < op (x) 
teIK  

• 
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Let 

x = ZK  = (2 log K)1/2 +  log log  

(2 log K)
1/2 

then 

PK  E P( sup X (t) > zK  + g (zK) ) < ctb (zK) 
IK  

and 

C 	 C0  
E 	PK <c E 	

1 
3/2 <1— 

K=RO 	K=K
C 

K(log K) 

and the Borel-Cantelli lemma implies that given any d > 0 

sup X(t) > (2 log K)1/2  + ō 
teIK  

only a finite number of times as K -> = with probability one. But 

since the processes we are considering are continuous this implies that 

there is, with probability one, a t0(w) such that for t > to  

Z(t) < (2 log t)1/2  + S 

and (2.4.1) holds. 

0 

M 

• 

41,  
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2.5. Comments  

Let X be a stationary process. This means that a(t,$) = a(It-s I) 

is invariant under translations along the real line. Hence the metric 

entropy is also invariant and we can choose 

H(zx.c) = G(c) 

for all K. 

By a theorem of Fernique ([11] theorem 8.1.1), for stationary 

processes continuity is equivalent to 

V 
G1/2 (u)du < = 

O 
(2.4.3) 

Therefore theorem 2.4.1 includes all stationary and continuous 

Gaussian processes. This extends results of Marcus [21] where (2.4.1) 

is proved under the stronger condition: 

a(h) = 0 ( 	
1 	

), a > 1 
(log 1/h)a  

As we mentioned in Chapter 1, Pickands [29] has shown that either 

r(t) log 	0 ast -}= 

• or 

f r2  (t) dt < = 
O 

imply 

lim inf (Z (t) - (2 log t)1/2) > 0 

• 

A 

a.s. 
t4to 
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So we have 

Theorem 2.5.1  

Let X = {X(t), t e IR} be a stationary continuous Gaussian process 

satisfying either 

or 

r(t) log t -> 0 ast ->= 	 (2.5.1) 

J r2 (t) dt < 
O 

then 

Z(t) - (2 log t)1/2 -} 0 	a.s. 

M 
as t -> =. 

Recently Mittal [411 has weakened (2.5.1) to 

Aft: 0 < t < s; ~ r (t) I > lf f(t) } = o (ss) 

for some 0 < R <1 and some f(t) = 0(1), and r(t) = o(1) where X denotes 

Lebesgue measure. 
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Chapter 3  

Bounds for the Tail of the Distribution of the Maximum  

3.1. Introduction and Definitions  

Let us turn now to the second question stated in the introduction. 

• 	We shall consider in the next two chapters real, separable, continuous, 

stationary Gaussian processes X = {X(t), t e 10 satisfying 

EX (t) = 0, EX
2
(t) = 1, all t. 

We shall denote such processes by the letters G.P. In this case 

the structure of the process is determined by its covariance function 

r(h) = EX (t+h)X(t), or equivalently by the increments variance 

a2(h) = E(X(t+h) - X(t))2  

= 2(1 - r(h)) 	 (3.1.1) 

We shall assume in all cases that this function is monotone increasing 

near 0. As we pointed out in the comments before theorem 2.1.1. this 

implies that separability with respect to the usual metric and 

CI -separability are equivalent. Henceforth we shall only speak of 

separability. 

In order to obtain detailed information about the rate of convergence 

of Z(t) - (2 log t)1/2  to zero as t co we need more knowledge of the 

distribution of Z(t) than one can get from theorem 2.3.1. Ideally one 

would like to get an exact asymptotic estimate of the tail of the 

distribution, i.e., a function R(x) which depends on the process, and 

a function of the increments variance S(a), independent of x and t, such 

that, for fixed t, 

• 



P{Z (t) > x}  
lim 

t*(x)R(x) 	= S(a)  

This type of result has been obtained for G.P. having a(h) a 

regularly varying function of order a, 0 < a < 1, by Pickands [31] 

and Qualls and Watanabe [34] (see also theorem 3.1.1 below). We 

investigate the case of G.P. having rougher sample paths, in particular 

those whose increments variance a(h) belongs to a subclass of the slowly 

varying functions. Unfortunately, we have been unable to obtain an 

asymptotically exact result. We can only obtain bounds for the function 

R(x) in terms of certain functions derived from a(h). When a(h) is 

small these bounds are good and they will enable us to obtain accurate 

estimates of the rate of convergence in the next chapter. As a(h) 

increases, i.e. as we get nearer to the discontinuous case, the bounds 

get worse, so that our results depend on the smoothness of the paths. 

The fact that we have not solved this problem completely means 

that we will not be able to decide in all cases whether a positive 

continuous, nondecreasing function which tends to = as t -> = belongs to 

the upper or the lower class. 

Definitions  

Regularly Varying Function  

Let F(h) be a positive function defined on (0,T] for some T, 

0 < T < co. We shall say that F(h) is a regularly varying function at 

zero with exponent a > 0 (r.v.f. (a)) if, for any t > 0 

F(th) 	a 

h40F (h) = t  

36 
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Slowly Varying Function  

Let G(h) be a positive function defined on (0,T] for some T. 

0 < T < o. We shall say that G(h) is a slowly varying function at 

zero (s.v.f.) if, for any t > 0, 

lim G (th) 
1140G (h) 

= 1. 

Regularly varying functions and slowly varying functions at a are 

similarly defined. All the functions of this kind that we shall 

consider will have the relevant property at zero unless otherwise 

specified. 

The results we shall now quote about these functions can be found 

in [34,36]. 

(3.1.a) F(h) is a r.v.f. (a) iff F(h) = haG (h) with G(h) a s.v.f. 

(3.1.b) Representation theorem 

If G(h) is a s.v.f. then it can be expressed as 

c 

G(h) = n(h) exp (- ayy)  dy) 
h 

(3.1.2) 

for some co, 0 < co lt, where n is a bounded function such that 

ri(h)+ A as h 4'0,  A being a constant, and a(h) is a continuous function 

on (0, co) with a (h) 4'0  as h 4'0.  a (h) is said to be the structure 

function of G(h). It can be chosen to be differentiable and we 

shall always do so. 

If n(h) = A, G(h) is said to be a normalized slowly varying 

function. (n.s.v.f.) 

(3.1.c) If G(h) is a n.s.v.f. then for any e > 0 there exists a 

> 0 such that 

• 
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e 	G (th) 	-s 
t G (h) 	

t 

for all O < t < 1 and all h such that th < d . 

(3.1.d) If G(h) is a s.v.f. then for any e > 0 

lim h eG(h) 
h4O 

lira he  G(h) = O 
h40 

(3.1.e) If G(h) is a n.s.v.f. then, for any a > 0,haG(h) is monotone 

increasing near 0. 

(3.1.f) If L(x) is a s.v.f. at = then 

log L (x)  
log x as x -> =. 

(3.1.g) If F(h) is a monotone increasing r.v.f. (a) then its inverse 

F-1(h) is a r.v.f. (1/a) . 

Let G(h) be a n.s.v.f. Using (3.1.2) 

h 

dh G (h) = G (h) dh 	
ayy)  dy 

Co 
 

so that in this case 

G (h)a (h)  
h (3.1.3) 

a (h) = 
hG ' (h) 
G (h) 

(3.1.4) 

For the rest of this chapter and Chapter 4 all the slowly varying 

functions we shall deal with will be normalized and continuous. 

The case of G.P.'s with a(h) a r.v.f. (a), 0 < a < 1 has been 

pointed out in the introductory remarks. Pickands [31] considered the 
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case 

a(h) = cha  + o(ha) 

and obtained an asymptotic expression for the tail of the distribution 

of the supremum. Later Qualls and Watanabe [34] extended this result 

to processes with 

a(h) = haG (h) + o(haG (h) ) 

where G(h) is a n.s.v.f. 

Theorem 3.1.1 ([34]) 

Let X = {X (t) , t e Ill be a G.P. with 

a(h) = haG (h) + ō(haG (h) ) 

as h -} 0 where 0 < a < 1 and G(h) is a n.s.v.f. 

Let 

a (h) _ 	haG (h) 

If 

a2(h) > 0 for 	0 

then 

lim P{Z(t) > x} 	= Ha 
x-o tp (x) /& 1(1/x) 

where 
Q-1 

 denotes the inverse function of v and 0 < Ha < o. 

We concentrate in the next two sections on G.P.'s having a(h) a 

n.s.v.f. 

In [16] Kōno, in order to study the modulus of continuity of G.P.'s 

with a(h) continuous, nondecreasing and satisfying Fernique's condition: 

• 

• 
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CO 
2 

J a (e-u  ) du < = 

proposes a classification of G.P.'s. 

Let 

i (a,h) = 
2 

a (he_ u  ) du 

and 

-Jul)   = I(a,h) 
a(h) 

The classification is as follows: 

I. X belongs to Class I if a(h) is bounded 

II. X belongs to Class II if a(h) is not bounded but 

lim 	v (h) 	= 0 
x40 1 

III. X belongs to Class /II if 7(h) ;log 1 

IV. The rest of G.P.'s. 

Kano ([16,17] prop. 1) has shown that if C(h) is a r.v.f (a) 

then the process is of Class I and if a(h) is a s.v.f. it is not. We 

deal with processes belonging to Classes II and III. As examples of the 

sort of processes considered in the theorems of the next section we have 

in Class II those with 

a(h) = A e- (log 1/h) Y 

for 0 < y< 1 and A constant, and in Class III those with 

a(h) _ 
	A  

(log 1/h)a  

for a > 
2 and A constant. 

• 
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3.2. Preliminary Results  

In this section we quote some results that will be useful in the 

proofs of the next section. 

Lemma 3.2.1 ([31] Lemma 2.3) 

Let X and Y be jointly normally distributed random variables with 

mean 0, variance 1 and covariance r. Then, for x > 0 

2 P{X>x,Y> x}< 	
1/2 
 exp 

{ (1-~)x  }P{X> x} 
x (1-r) 

(3.2.1) 

Lemma 3.2.2 (Fernique's Inequality)  

Let X = {X(t), t e MO be a centred, separable Gaussian process 

with 

E(X(t) - X(s))2 < a2 (It-sI) 

where a(h) is a nondecreasing continuous function satisfying 

2 
f 6(e -u )du < = 	 (3.2.2) 

Then, for any bounded interval K C ]R with diameter d(K) we have 

• 

P{sup IX (s) I > u(r1/2 + 4I (a,d (K))) } < c p2' (u) 
seK 	

K 	
1 

for any p > 1 and u> 1+4 logp where 

(3.2.3) 

rK = 	sup Ir(s,t) I 	 (3.2.4) 

There are several versions of this lemma (Fernique [11], Marcus [20], 

Jain and Marcus [14]). The present one can be found in Kōno (16,17]. 

t,sex 

• 
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Assume that a(h) is a s.v.f. with structure function a(h) 

satisfying 

42 

(3.2.5) (i) a(h) » log  

as h 4'0 for y > 1/2 

(ii) There exists a constant D1  > 0 such that 

a (hl+e) » D1   (h) 

as h -} 0 uniformly for any 0 < e < 1. 

Then 

-17-01)  	2 (a,h) < D2 
o(h) — 

for some constant D2  > 0. 

• 

(3.2.6) 

• 
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3.3. Inequalities  

Theorem 3.3.1  

Let X = {X (t) , t e MO be a G.P. with 

E(X(t) - X(s))2  = a2  (It-sI) 

where a(h) is a continuous positive, monotone increasing for 0 < h < T, 

some T > 0, n.s.v.f. with structure function a(h) and satisfying 

inf a(h) = C > 0 	 (3.3.1) 
h>T 

We assume that a(h) satisfies 

a (h) » 
log 1/h 

(3.2.5) 

as h 0 for y > 1/2, and that there exists a constant D1  > 0 such that 

a (hi e) » Dla (h) (3.2.6) 

as h 0 uniformly for any 0 < e < 1. Also a(h) is nondecreasing for 

0 < h < T, so that the continuous function 

F (h) - a (h) ✓aih)'  (3.3.2) 

is monotone increasing for 0 < h < T. Define N = N(x) implicitly by 

S F (1/N) = 2 x 
(3.3.3) 

and P (x) by 

P (x) = exp { 	
1  

a  (1/N (x)) 
(3.3.4) 

Then there are constants 0 < c1  < c2  such that 

• 
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1 cl 	P{Z (t) > x} 	
3 c2 

2 P (x) 	t* (x) N (x) 	< 2 P (x)  (3.3.5) 

asx -*W. 

This theorem is a consequence of theorems 3.3.2 and 3.3.3 where 

the lower and upper inequalities are proved separately. The purpose of 

(3.3.1) is to avoid the periodic case. However, if X is periodic with 

period t1  then (3.3.5) holds with t replaced by t2  = min (t,tl) in the 

denominator. 

Since F(h) is continuous and monotone increasing for 0 < h < T, it 

has an inverse F-1  which is also continuous and monotone increasing. 

Therefore we can write 

N(x) = -1 
 1(2/x) 

for x sufficiently large and it is possible to see that N(x) is monotone 

increasing as x + co. 

Because a(h) is nondecreasing as h increases for 0 < h < T and 

a(h) -} 0 as h + 0, we have that 

P(x) = exp a(1/N1(x)) 

is nondecreasing and tends to W  as x 

Theorem 3.3.2  

Let X = {X(t), t e IR} be a stationary G.P. satisfying all the 

conditions of theorem 3.3.1. Let M = M(x) be defined by 

cl 
M(x) = IF (x) N (x) ] 	 (3.3.6) 

where ( ] denotes the integer part and cl  is independent of x. Define 

1 

Z(t) = max {X (M  -x)) ; 0 < i < [tM (x) ] } (3.3.7) 
• 



i i - 0,1,..., [tM] ti 	M (x) 

then 

P{ZX (t) > x} > 1 t P (x) N (x)1 (x) (3.3.8) 
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as x 

Proof 

Note that the remarks before the theorem imply that M(x) is a 

non-decreasing function of x as x -> co. Define 

• 

Ai  = {X (ti) > x} 

we have 

1 - r (ti,tj) = 2 a2  (Iti-ti l  ) 

= 
2 

Q  2  (Ii-jI) 

We start with 

[tM] 
P{Zx (t) > x} = P{ u Ai} 

i0 

(tMl 

> 	P(Ai) - 	E E 	P(A (1 Aj) 
i=0 	0<i<j<(tM] 

Let X ti N(0,1). Using Lemma 3.2.1 

> tMP{X > x} 

- E E 	
c 	exp{- 4(1-r(ti,tj))x 2}P (Ai) 

i<j x(1-r(ti,tj))
1/2  



• 

a 

= tMP{X > x} 

	

[tM]-1 	[tM] 	2 

iE 
P (Ai) E 	

xa (~) 
~{ 	8 a2 

(2_M1) } 
j=i+1 	M 

(tM]-1 	[tM] 	2 

	

c 
> tMP{X > x} - 	E P (Ai) E xa (K/M) 

exp{ - 8 
a2 

(M) } 
i~ 	

K=1 

x
2 	

K 
= tMP{X > x} { 1 - [tE xa(K/M) exp{ 	8 

a2 (M)} } 

K=1 
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(3.3.9) 

We concentrate now on obtaining a bound for the sum on the right 

hand side. 

Let X be the value of h in the interval [0,1] that satisfies 

a(h) = 	Since, by definition, < a(T) this is well defined. If 

= a(T) then T = X, otherwise T>X and we have that a(h) is monotone 

increasing in [0,x] and if h > x then a(h) > a(x). Using this 

[tM] 

xa (K/M) 
exp {- 

1 
x2a2 (M) } 

K=1 

[XM] 
< X 	E xa 

(K/M) 
exp {- 8 x2a2 (M) } 

K=1 

(3.3.10) 

Since a(h) is increasing in the range of summation the terms 

decrease as K increases and so 

(XM] 

2 xa (K/M) 
exp { 8 x

2a2 (M) } 

XM f1 
< 	J 

1  
xa (u/M) 

x2a2 (u/M) } du 
8 

1 
S 
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and 

1 	exp{- 1 x2a2(1/M)} < 2 
1 
 ; 	1 	exp {_ x2

a2(u/M) }du 
xa(1/M) 	8 	— 	xa(u/M) 	8 

1/2 

Hence 

• 

ct [XM1 

X 	xa ( 	) 	' {- 	x2a2 (M) } K=1 

XM 
ct 

X 1~2 xv (u/M) exp {- 8 x2ct2 (M) }  du — 

Let 

u . = Mw, 	du = Mdw 

(3.3.11) = CMt 	
X 	

1 	
x2Q

2 (w) Xx 112M 
 

0.(w)  exp {- 8 w) }dw 

(3.3.11) 

(3.3.12) 

and the rest of the proof is devoted to showing that this expression 

tends to zero as x -> = for c1 suitably chosen in the definition of M. 

We make the following change of variables 

a (w) = 1 

• a'(w)dw = 2 dv 
V 

dw = 2 
-1 	

dv 
v o' (w) 

and using (3.1.3) 

dw = 	w 	
dv v2

a (w)a (w) 

---w— dv 
va (w) 



0 

s 

x C 

[a (a-1
(1/C))  ] 1/2 	2  

(3.3.15) 
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Since we have assumed a(h) to be continuous and increasing in 

the range of integration it has an inverse c 1(h) which is also 

continuous and increasing. Therefore 

w = a 1() 

and 

dw 	-a 1(1/v)  dv 

va (a 
-1

(l/V)) 
(3.3.13) 

With this transformation 

(3.3.12) _ 

1/a(l/2M) 
CMt 	a-1

(1/v) 	exp {- x22  }dv 
1/a (X) 

a(a
-1
(1/V))  	8v 

1/a (1/2M) 	
2 cMt • 1 

	

1  -1 
Xx 	-1 	e 1og a (v) - 

x  
}dv 

1/c (X) 	a (a (1/v) ) 	8v 

(3.3.14) 

We now look for the maximum of the exponent in (3.3.14). Using (3.3.13) 

2 -1
(1/v) 
	2 

Tv. (log c
_ 1
(1/v) - 

x 
 2) - -1 -c 	 1 	

+ X 3 

	

8v 	c (1/v)va(a (1/v)) 4v 

1 	_ 	2 

v ( -1 1 	
x 2) = 0 

a(a (1/v)) 4v 

and the exponent has a maximum at v = E where  E is defined by 



1 N = 	 
-1 a (1/g) 

(3.3.17) 
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Hence 

2 1/a(1 /2M) 
(3.3.14) < cMt 	

_ x 	} I 1 dv {log exp a(1/) - 
Xx 8E2 

1/a (X) 
a (a-1(1/v) ) 

and using the monotonicity of a(h), 

< cMt 1 - 1 	1 	 -1 1 - x2 
Xx (a( 	a(X)) a(i) exp {1°9' 

a () 	8 2 
2M 

<  cMta-1(1/)• x2 } exp {-  

Xxa (2M)a ZM) 	
8E2 

using (3.3.15) 

eMti-1(1~) exp{ 	-ī1 	} 
Xxa(aM a(2M 	2a(a (1/E)) 

(3.3.16) 

By comparing (3.3.15) with the definition of N(x), (3.3.3), we get 

a (1/N) (a(1/N)]1"2 = [a (a 

 

-1(1/E)) J 1/2 

which gives 

or equivalently 

= a (1/N) 

Hence 

(3.3.16) _ cMt -1  
{ 2a (1/N) } xxa )a )N 



• 

• 
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using the definition of P 

eMtP
-1/2 

Xxa ( a ()N 

and using the definition of M 

cī l/2 
ctP 

(3.3.18) 
Xxa(-1—i 	"1. (  

Using property (3.1.c) for > 0 arbitrary, x large 

a( 
1 ) 

2NP 1 

> 	 a (N) 
(2P

c 
1) 

e 

and so 

(3.3.18) < 

ctPC1/41-Ea1 

 

Xxa (1/N) a 2M 

Using the fact that we have assumed 

a (h) » 
log l/h 

 

as h-~0 for y> 2 we get 

	

c1 	c1/a (1/N) 

	

2M < 2NP 
cl 

	2Ne 

c logN/y 
<2Ne 1 

1+2c1 
< N 

for x large. So 

"rd  1 	> 
a (1/N 	

1) 
1+2c 



(3.3.18) < ctP 

(3.3.19) xa(1/N) = 	2  
a( 

c1(l+E) -1/2 

If c1  < 2 we can use (3.2.6) and get 

(70 > D1  a (1/N) 

which implies . 

c1(1+e)-1/2 

(3.3.18) < ctP  
D1Xxa (l/N) a (1/N) 

and since, by definition, 
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s 

D1X 	aa (  

Choose c1  so that c1  < 2(1+e) . Then the expression above tends to 

zero as x -> = since t and x  are fixed and P(x) } = as x -> co. This, 

together with (3.3.9), (3.3.10) and (3.3.11) show that 

c 
P{Zx(t) > x} > 2 tP (x)N(x)* (x) 

where 0<c1 < 2 . 

C 

Corollary 3.3.1  

Let X = {X(t), t G at} be a G.P. satisfying all the conditions of 

theorem 3.3.1. Then 

cl  
P{Z (t)  > x} > 2 t P (x) N (x)i (x) 

as x -> =. 

e 
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Theorem 3.3.3  

Let X = {X(t), t e Ilt} be a G.P. satisfying  all the conditions 

of theorem 3.3.1. Then, as x + = 

P{Z(t) > x} < Z t P (x) N(x)*(x) 

where c2 is independent of x. 

Proof 

We start by showing that 

a(h) » lol 	 (3.2.5) 

as h } 0 for y > 1/2 implies that a(h) satisfies Fernique's condition: 

2 
a(e u )du < = 	 (3.2.2) 

Using the Representation theorem, (3.1.b), 

CO  

a(h) = A exp {- f  a 	}dy 
h 

co  
Y  < A exp {- h Y log  1/y dy}  

A exp {-y log log 1/h + y log log 1/c0) 

const. 

(log 1/h)Y 
(3.3.20) 

Therefore 

2 
f a(e_ u  )du < f const. du < = 

u Y  

since y > 2 . 
To study the process we subdivide the interval (0,t] into sub-

intervals of length 1/N. Let x be large enough so that 1/N < T and 
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D3 
define Q - au/N1 , D3 > 0 a constant to be specified later. Using 

stationarity 

P{Z (t) > x + 2} < Nt P{Z (1/N) > x + g } x — 

< NtP{ (X (0) > x) U (Z (l/N) > x + 2. f X (0) < x) } 

lx (0) < x 	 (3.3.21) 

The probability in the second term can be expressed as 

x 
f P{Z (1/N) > x + 22i IX (0) = u} • (u)du 	(3.3.22) 
-c, 

We make the following changes of variables 

	

u = x - 
z 	

du = 
-1

dz 

	

x 	 x 

(3.3.22) = ty (x) 1 P{Z(1/N) > x + 2.~X(0) = x - X 
} 

0 

ez-z2/2x2 dz 

The parameters of the conditional distribution of Gaussian random 

variables are well known (see e.g. (1]) 

E (X (s) IX (0) = x - X) = r(s) (x - X) 	(3.3.23) 

and 

cov(X(s)X(v) IX(0) = x - X) = r(Is-vj) - r(s)r(v) 	(3.3.24) 

Let {Y1(s), s e (o, 1/N]} be a Gaussian process having mean (3.3.23) 

and covariance (3.3.24). Then 

• 

< NtP{X(0) > x} + Nt? 
Z(l/N) > x + 

• 
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> x + } ez-z2/2x2dz (3.3.22) = P(x) $ P{ sup Y.(s) 	x 0 [0,1/N] 

CO 

< *(x) j P{ sup Y1(s) > x + . }ez dz 
0 [0,1/N] 

(3.3.25) 

Since 

x+ - r(s) (x - X) 

= x(1-r(s)) + Q+ rr(s)z 

> 4.  rz 
— x x 

for all s e [0, 1/N], where r = r(1/N), and letting  {Y(s), s e [O, 1/N]} 

be a centred Gaussian process with covariance (3.3.24) we get 

(3.3.25) < 111(x) f P{ .sup 	Y(s) 
0 [0,1/N] 

> 2 +  rX }ez  dz (3.3.26) 

The increments variance of Y(s) is 

E (Y (s) - Y (v)) 2  = EY2(s) + EY2(v) - 2EY (s)Y (v) 

= 1 - r2(v) + 1 - r2(s) - 2r(Is-v)) + 2r(s)r(v) 

= 2(1 - r(Is-vI)) - (r(v) - r(s))2  

1 < 2(1 - r(Is-vI)) = a
2 
 (1s-v1) 

for all s,v in [0, 1/N] and we have shown at the beginning of the proof 

that a(h) satisfies Fernique's condition. Therefore we can use 

Fernique's Inequality to obtain an upper bound for the probability in 

(3.3.26). In this case we have K = [O, 1/N] and d(K) = 1/N. From 

(3.3.24) we get 
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rK = 	sup 	(1 - r2 (s) ) 
se(0,1/N] 

= a2 (1/N) 

therefore 

1/2 4I (a, l/N) 	 41(a; 1/N)  u (rg + 	= ua(1/N) (1 + 	1/2  
(log p)

1/2 
 (log P') 	a (1/N) 

ua(1/N) 	(1 + 4all/N~2 

and using lemma 3.2.3 

< ua(1/N) (1 + 	
2 

1/2 
(log p- a (1/N) ) 

Let log p = a(i/N) 
and D4 = 1 + 4D2. Then Fernique's Inequality is 

P{ sup 	Y (s) ( > D4ua (1/N) } < 	Pix) (u) 	(3.3.27) 
(0,1/N] 

provided u > ( 1 + a
(l 

)1/2 
/N) (3.3.28) 

To use this in (3.3.26) we want 

(log P. ) 

4D 

• 
u 1 	Q+rz

) D4a(1/N) ( x 
(3.3.29) 

and we have to check that (3.3.28) is satisfied 

u > 	4 
- D4xa(1/N) 

using (3.3.19) 

Q a( 2D4  

• 
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and using the definition of Q 

D3  

2D4  a(  

Let 

D3  > 4D42  (3.3.30) 

then (3.3.28) is satisfied for x large and we can use (3.3.27) with u 

as in (3.3.29) . Therefore 

(3.3.26) 	< 	*(x) f c Pi(x)4, (u) ez  dz 
O 

D xc (1 /N) 	2 
< c*(x)P(z) 0 Q  rz 	{ 	(2 2 rz) 	 + z} dz 

0 	2b4x a (1/N) 

cti (x)P2  (x)xa (1/N)  	
{ 

42+r2z?+2rQz  + z } dz 
0 	2D4x2Q2  (1/N) 

Using (3.3.19) 

c*(x)p2(x)  ' exp. (_ •a (l/N)  (Q2+r2z2+2rQz) + z} dz 
Q 4777 0 	8D4  

using the definitions of Q and P 

4757- P(x) 
 

{- 	(r2z2+2rz
2-

z. 
 

= c* (x) 	3 	4 J 	 )  + z} dz 
0 	8D4  

2-D2/8D2  
= c* (x) a ( 	P (x) 3 	

4  

{_ a(1/NZr2z2  _ z(
rD2 

- 1) } dz 	(3.3.31) 
0 	8D4 	4D4 
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Since D3 > 4D4 and r S r(1/N) -> 1 as x + co we have, for x large 

enough 

_

D 

2 co 
(3.3.31) < cti (x) 47517.P(x)  4 J ex{ - a (1/N) r2 z21 dz 

0 	8D4 

2 a D4 2-2D4 
clr (x) 41-377--N) 	 P (x) 2

ra( 

but D4 = I + 4D2. Therefore 

-SD 
< c* (x) P(x)2  . 

Using this in (3.3.21) 

-SD 
P{Z(t) > x + 	< t N (x)* (x) (1 + cP (x) 2 ) 

< (1+S) t N(x) r(x) (3.3.32) 

D 
for > 0, x large, where Q = 	3 

a(I/N) • 

D 
Let w = x + xa(1/N) . Then (3.3.32) becomes 

P{z (t) > w} < (1+S) tN (x) ip (x) 

D
3 	

D
3  (1+6) tN 

(w- xa (I/N)) '~ (w - xa (I/N) ) 

Since N(x) increases with x 

D
3  < (1+S) tN 

(w) 4 (w - xa (1/N) ) (3.3.33) 
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(3.3.19) implies 

D3 	
D3a(1/N) 

xa(1/N) 	2 a 

and using (3.2.5), for x large 

D 

< 3 
1 	a (l/N) 

Finally, using (3.3.20) we get 

D3 	const.  
xa(1/N) 	

(log N)y-1/2 
 .4. 0 	as x -►= 

since y > 2 . 
Hence, 

(3.3.33) < 	(1+6)tN(w) 	exp {- 1 (w  - 	D3 	)2} 
D 	_ 	2 	xa( 1/N) 

(w  xa(1/N))/27. 

.tN(w) 	 W2 ..... D3w,.. 
< (1+2d) 	exp { - 

	+ xa (1/N Cx)) w 

and using again the fact that N(x) is increasing and'a(h) is nondecreasing 

D3w 
< (1+20 tN (w) * (w) exp{ xa (1/N 	(w)) 

but by definition 

D
3 

 
x= 1+ 2  3 	m -} 1 	as x -r 

xa(1/N)  (1/N) 

• 



Let c2  > D3. Then 

c 
P{Z (t) > w} < 2 tN (w) P(w)*(w) 

as w-►m. 
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r 

O 
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3.4. Comments  

3.4.1. From the proofs of the theorems it is easy to see that the 

constants 2 and  2  in (3.3.5) can be replaced by (1-6) and (l+S) 

respectively, for any d > 0 and x large. Also cl  < 2. The value of 

c2, however, is not so clear. We need 

c2  > 4 (1 + 4D
2)
2  

but D2  depends on the product a 	Q(h) which may depend on the 

particular process being considered. It is evident that c2  > 4 in all 

cases. 

3.4.2. It seems interesting to point out that in theorem 3.3.3 the 

definition of N(x) can be changed to 

F (1/N) = x 

for any v > 0. In this case N(x,v) decreases as v increases but c2  is 

now an increasing function of v since it must satisfy 

c2  > v2(1 + 4D2)2  

It is not clear what is the value of v which makes 

c2 (v) 
N (x,v) P (x) 

a minimum. 

In theorem 3.3.2 we need v = 2 for the proof to work. Since the 

method used in this proof is rather rough it is possible that a more 

accurate method for estimating this probability would yield a different 

value. 

• 

• 
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3.4.3 Suppose X is a G.P. satisfying the conditions of theorem 3.3.1. 

If we have that 

a(h) » 	
ō  

log 1/h 

as h 9'0 holds for any ō > 0 then ([16], proposition 2) X belongs to 

Class II, and from the definition of P(x) we get that for any c > 0 

Pc  (x) 
N (x) 

0 

as x -; m. On the other hand, if we have constants A2  and A3, 

2 < A2  < A3  such that 

logg 

• as h -} 0 then ([16], proposition 2) the process is in Class III and in 

this case 

N 2(x) < P(x) < N 3(x) 

We see that, in the first case, the difference between the bounds 

in (3.3.5), in terms of N(x), is of a smaller order of magnitude than 

in the second case, which is the process with the larger increments 

variance. 

This illustrates how the precision of our result decreases as we 

approach the discontinuous case. 

3.4.4 Let us now consider the case of a G.P. having a(h) a r.v.f. (a), 

0 < a < 1, i.e. a(h) = haG(h) where G(h) is a n.s.v.f. with structure 

function b(h). We propose to show how our results relate to theorem 

3.1.1 and how, by a suitable extension of the definitions of the 

functions a(h), N(x) and P(x), we can obtain from this theorem and from 

• 



62 

theorem 3.3.1 a set of inequalities covering both cases. 

Using the Representation theorem 

1 
haG (h) = A exp { - f a+— y (Y) dy } 

h 

for any a > 0. Define 

a(h) = max (a,b (h)) 	 (3.4.1) 

In the case a = 0 we get that a(h) is, as before, the structure function 

of the n.s.v.f. a(h). In the case a > 0 we may, abusing the language, 

call a + b(h) the structure function of a(h), and we are taking as our 

definition of a(h) the dominant part of the structure function since 

b(h) -* 0 as h -> 0, i.e. 

a(h) rt. a+b(h) 

We use (3.4.1) to define N(x) in the case a > 0: 

F(1/N) = a(1/14) a ( 	= a (1/N) /  

cr (1/N) = 	2 
~āx 

= a 1 ( 2 
1 x 

but by (3.1.g) if a is a r.v.f. (a) then a-1 is a r.v.f. (1/a). Hence 

or 

1 
N 

1 
ti ( 2 )1/a Q-1 (1/x) 



D5  
N(x) •' -1 

 1(l/x) 
(3.4.2) 

and 
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for some constant D5  depending on a. Since 

a 1(1/x) 	3-1(1/X) 

* 	we get 

1 

-1  a (1/x) 

On the other hand P(x) is defined by 

P (x) = exp 
1  

a (l/N(x) ) 

and since a(h) = a for all h, P(x) is simply el/a  in this case. 

Hence, for properly chosen constants cl  and c2  (3.3.5) is a conse-

quence of theorem 3.1.1 when a > O. In this sense theorem 3.3.1 can be 

said to be an extension of theorem 3.1.1. Taking into account these 

comments we can state: 

Theorem 3.4.1  

Let X = {X(t), t e 1R} be a G.P. with a(h) a positive, continuous, 

monotone increasing function for 0 < h < T for some T > 0 which can be 

• 	 expressed as 

a (h) = haG (h) 

for 0 < h < T where 0 < a < 1 and G(h) is a n.s.v.f. with structure 

function b(h). Assume 

inf a(h) = 
	> 0 

h>T 

N(x) 

• 



• 

i 
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and if a = 0 we also assume that b(h) satisfies the following conditions: 

a) b(h) is nondecreasing for 0 < h < T 

b) b (h) » logyl/h as h -' 0 for y > 1 

c) 

 

there is a constant D1 >0 such that 

b (h1+E
) » D1b(h) 

as h -► 0 uniformly for any 0 < c < 1. 

Define 

a(h) = max (a, b(10) 	 (3.4.1) 

1  
P(x) = exP 

a (1/N (x)) } 

where N(x) is defined implicitly by 

a(1/N) ICTI771TT = 

then there are constants 0 < c1 < c2, 0 < c3 < 1 < c4 such that 

c3P (x) <_ t~ (x) )N (x) } < c4Pc2(x) (3.4.3) 

as x + m. 

In the case a > 0, cl = c2. If a = 0 then c1 < 1/2 and c2 > 4. 

3.4.5. Property (3.1.3) is satisfied asymptotically by a(h) as h 0, 

with (3.4.1) as the definition of a(h), when a > 0 

a ̀  (h) = 
dh (haG (h) ) 

= aha-1G (h) + ha G' (h) 

= ha-1 G (h) (a + b (h) ) 

• a (h) a (h)  
ti 

 as h+0. (3.4.4) 
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3.4.6. Finally, to end this chapter we give a partial discrete version 

of theorem 3.4.1. The case a ="0 follows from theorem 3.3.2 and the 

case a > 0 from Qualls and Watanabe ([34] Lemma 2.3) by choosing a 

appropriately. 

Theorem 3.4.2  

Let X = {X(t), t e IR} be a G.P. satisfying all the conditions of 
theorem 3.4.1. Define 

(3.3.6) 

and 

• 	then 

c 

ZX(t) = max {X(M(x) ); 	
0 < i < [t M(x)l} (3.3.7) 

c  P{Zx  (t) > x} > const. t P l(x)N(x)p (x) 	(3.4.5) 

as x -> m. 

M (x) = (P 

-- 

• 
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Chapter 4  

The Upper and Lower Envelopes  

4.1 Introduction  

Let X = {X(t), t e fit} be a G.P. The results of Chapter 2 imply 

that 

z(t) - (2 log t)1/2  + 0 

as t -} = with probability one, as long as X satisfies a not too 

restrictive mixing condition like 

r(t)log t + 0 	 (4.1.1) 

as t =. In this Chapter we shall be interested in estimating the 

rate at which this convergence takes place. 

We shall state the problem in a different form. We are interested 

in obtaining continuous curves w1(t) and n2  (t) , 'l  (t) < n2  (t) such that 

the process Z(t) gets arbitrarily near to both infinitely often as 

t -} = but only crosses either of them a finite number of times. Such 

functions are called the lower and upper envelopes respectively. 

Let 8(t) be a nondecreasing continuous function with 8(t)+ = as 

t + = and consider the following events 

w : there is a t0(w) with Z(t,w) < 8(t) 
SO) _ 

for all t > t0  (w) 

T(8) = 
w : there is a t0(w) with Z(t,w) > 8(t) 

for all t > t0  (w) 



• 
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Note that P {S (e) } = 1 (or 0) is equivalent to e e u(x) (LW). 

Our objective is to obtain conditions for these events-to have  

probability 0 or 1. If one is able to characterize these events with 

sufficient precision then one can obtain information about the envelopes 

by investigating functions of the type 

e(t) = (2 log t)1/2  + g(t) 

with g(t) + 0 as t m. 

To carry this out we have to restrict the class of processes under 

investigation to those for which we have some detailed information about 

the distribution of the maximum. This means that we shall concentrate 

on those processes that satisfy the conditions of theorem 3.3.1 plus a 

standard mixing condition stronger than (4.1.1). 

This type of investigation has been done for G.P.'s having a(h) 

a r.v.f. (a). The event S(e) has been characterized by an integral 

I(e) of the function whose convergence properties determine whether 

P{S(e)} = 0 or 1. This result is quoted in theorem 4.2.3. About T(e), 

less is known; in this case no sharp division in terms of integrals has 

been obtained for G.P.'s and only specific functions e(t) for which 

P{T(6)} = 0 or 1 are known ([25,32]). 

In section 4.2 we give integral tests for deciding whether 

P{S(0)} = 0 or 1. These tests, however, are not sharp enough to decide 

in all cases which alternative takes place, since the results depend 

crucially on theorem 3.3.1 and we have cl  < c2. Nevertheless the results 

obtained are sufficiently good to give precise estimates of the upper 

envelope. This is illustrated in a general way in Corollary 4.2.3 and 

for particular processes in the comments we make in 4.2.4. 

As regards T(e) we obtain in section 4.3 a function 02(t,c,c) 

such that, for any c > 0 
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P{T (82  (t,c2,-c) } = 0 	P{T (82  (t,c1, e)) } = 1 

This result gives an estimate of the lower envelope that complements 

the results of 4.2. It is given in Corollary 4.3.1 and the comments 

of 4.3.4. 

Define the functions N(x) and P(x) in terms of o(h) as in theorem 

3.3.1. These functions will be used repeatedly throughout this Chapter 

and play a very important role. By combining Corollaries 4.2.3 and 

4.3.1 we get, for X having a(h) a n.s.v.f. satisfying the conditions of 

theorem 3.3.1., 

r(s) = 0(s ) 	as s -} 02 for X > 0 

and 

a (l/N (x) ) = o(log x) 	as x.4. o, 

the following result about the asymptotic behaviour of Z(t): 

Urn sup (Z(t) - (2 log t)1/2 - log N((2 log t)1/2)  ) (2 log t)
1/2  

t- 	 (2 log t)1/2 	2 log log t 
3. 

lim inf (Z (t) - (2 log 
t)1/2 - log N((2 log t)1/2))  (2 log t)1/Z  = -1 

t-0 	 (2 log t)1/2 	
2 log log t 

with probability one. 

In 4.2.4 and 4.3.4. we also comment on how the results obtained in 

each section relate to the known results for processes with a(h) a 

r.v.f. (a), 0 < a < 1. For the upper envelope we summarize all these 

results in theorem 4.2.4. 

Finally, we point out that in the case a(h) a r.v.f. (a) the results 

can be obtained under a weaker mixing condition [25,27]. 

4 
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4.2. The Upper Envelope  

Let 8(t) be a positive, continuous, nondecreasing function with 

e(t) m as t + o. In this section we shall denote N(8(t)) by Nt  and 

P(e(t)) by Pt. 

4.2.1 Lower Bound  

Theorem 4.2.1  

Let X = {X (t) , t e 1R } be a G.P. with 

E(X(t) - X(s))2  = a2(It-sI) 

where a(h) is continuous, positive, monotone increasing for 0 < h < T, 

some T > 0, n.s.v.f. with structure function a(h). We assume that a(h) 

is nondecreasing for 0 < h < T, satisfies 

a(h) » 	y 
log 1/h (3.2.5) 

as h -r 0 for y > 2 and 	that there exists a constant Dl  > 0 such that 

a (h1+e) » D1a(h) 

as h + 0 uniformly for any 0 < E < 1. 

We also assume that 

r(s) = 0(s-A) 

(3.2.6) 

(4.2.1) 

as s + o for some A > 0. 

If 

c 
Il  (8 ) = ` Pt'  Nt  (8 (t)) dt = ce (4.2.2) 



Also 

log N(x)  4, 0   
x as x -} 0 	 (4.2.4) 
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then 

P{S(9)} = o 

where 0 < c1  < 2 is the constant in theorem 3.3.1. 

The proof follows the method of Qualls and Watanabe 1331. The 

following lemmas will be needed in the proof. The first one gives an 

idea of how large N(x) is in the cases under consideration. 

Lemma 4.2.1  

For any B>0 

asx+Y (4.2.3) 

t 

• 

Proof 

Since F(h) = a(h) VT(IT is continuous and monotone increasing in 

the interval [0,11 , it has a continuous and increasing inverse F-1  and, 

for x sufficiently large, we have 

N(x) =  
1 
 (4.2.5) 
F (2/x) 

If G(x) is also a continuous monotone increasing function with 

F(h) » G(h) as h -> 0 then, for all x large 

1 	1
— F-1(2/x) > G-1(2/x)  

(4.2.6) 

But from property (3.1.d) we see that if a(h) is a n.s.v.f. then, for 

any e > 0, 

a(h) » he/2 
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as h 4'0, and since we have assumed that 

a(h) » log 1/h 

y > 2, h -► 0, we get, for any c > 0 

» hc/2  

(3.2.5) 

as h -> O. Therefore 

F (h) » he  

as h 4- O. Choose c L S . Then (4.2.5) and (4.2.6) imply 

N(x) > (2)1/c 

which gives 

N (x) > 	1 1/0-a 
xs  — 21/c 

and (4.2.3) follows. 

To obtain an upper bound for N(x) we choose the largest possible 

F(h),  which by (3.2..5) above is 

F(h) = A 

   

(log 1/h) y  (log 1/h)1/2  

c 

(log 1/h)(1/2y  

for y > 
1
. Therefore 

log N(x) < (2 x) 2/(1+2y) 

and (4.2.4) follows. 

0 

• 
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The next lemma shows that Ip(x) is the dominant function in the 

integrand of 11(x). 

Lemma 4.2.2  

Pc(x) N(x)4J(x) is a decreasing function of x, for all large x and 

any c > 0. 

Proof 
2 

Pc(X)N(X)*(x) = 	1  exp {- 2 + log N(x) + 
a(1/N) 

v/Trx 

2 
let 	f(x) = 2 - log N(x) - a (l/N) 

It is sufficient to show that this is increasing and for this it is 

enough that'f'(x) > 0 for all x large. 

N(x) is defined by N(x) _ _ 
1  

F l  (2/x) 

where F (h) = a (h) 4":117 . and from (3.1.3) we get 

a' (h) = a(h)a(h)  
h (4.2.7) 

This, together with the fact that a(h) is nondecreasing and has a 

positive lower bound given by (3.2.5) imply that for some co  > 0, 

F1(h) > 0 for h e (0,c0], and then, by the inverse function theorem, 

N(x) has a positive derivative for all x large. We have 

N' (x) = 
d 	( 	1  
dx 

F  1(2/x)  

2N2 2(x) F-l(h) 
x h=2/x 

(4.2.8) 

   

• 



F' (F-1(h) )  
dd— h F 1(h) = 	1  (4.2.9) 

and 
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but 

F' (h) = a' (h) 	+ Q (h) a' (h)  
2 

> a' (h) 417) 

because a(h) and a(h) are positive and nndecreasing. (4.2.7) _implies 

F' (h) 	h  

F (h)a (h)  
h 

for h small. Therefore (4.2.9) gives 

F-1(h) < 	 -1
(h)  

ha(F (b)) 

and 

F 1(h) 	< 	
(2/x)  

h=2/x 	2a (F 
1 

(2/x) ) 

• 	 x 
2N (x) a (1/N (x) ) 

Hence (4.2.8) gives 

N' (x) < 	N (x)  
xa(l/N(x)) (4.2.10) 

a (h) (a (h)) 3/2  

• 



f (x) = x - N (x) 
N' (x) 	c 	2 1 	cx2v (N)  a' (N)  N' (x) 

-  xa (j) + 
2N2  (x) 

Also, from the definition of N(x) we see that 

c 
a (l/N) = 4 x2a2  (1/N) 

so that we have 

74. 

and since the last term is nonnegative 

> 	- N' (x) 	C 	21 x 

	

	
N (x) 	2 xv 

 (N 

_ 1 	c 2 1 x 	xa (1/N) - 2 xc (IJ)  

using (3.2.5) 

x   2 log N(x) -  c Q2 (1)  
x 	2 	N 

> 0 

for all x large by (4.2.4) and the fact that a2  (1/N) 0 as x ; o. 

0 
Lemma 4.2.3  

If theorem 4.2.1 is true under the additional restriction that 

for large t 

  

(2 log t)1/2  < 0(t) < (3 log t)
1/2  

(4.2.11) 

 

then it is true without it. 

 

 

Proof 

  

 

Let e(t) satisfy (4.2.2) . Define 

 

• - 

 

g(t) = min (max (6 (t) _ (2 log t)1/2) ; (3 log t)
1/2) 
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Suppose first that there is an infinite sequence {tn} such that 

e(tn) < (2 log t
n)1/2 

and to + = as n + 	Then 

W c 
f Pt 1 Nt *(e(t))dt = = 

w w 	w 	w 
where Pt = P (9 (t)) and Nt = /loft)),  because in this case 

e(tn) = (2 log t
n)1/2 

and 

° C 	 tn C 

5 P. NtV~ (9 (t)) dt > I 	Ptl 	 (t) 
t
I 	1 

c 
> (t - t1) Ptl Nt * (e (tn) 

n n 

(tn.-.t1) .Pcn .Ntn 

to 	(2 log t
n)1/2 

and by (4.2.3) this tends to eo as n + m. 

Next suppose e(t) > (2 log t)1/2 for all t large. Then 

e(t) = min (e (t) , (3 log t)1/2) 

therefore, for all t large 

Pt1 Nt* (e (t)) < Ptl Nt* (9 (t) ) 

and (4.2.2) implies 

j Ptl Nty (ē (t)) dt = 

c 

• 



So that in both cases we have Ii(6) = co. Furthermore 

(2 log t) 1/2 < 6(t) < (3 log t)
1/2 

and by the assumptions of the lemma there is with probability one, a 

sequence T1  < T2  < ... < Tn, Tn  ; co as n -* co such that 

X (Tn) > g(Tn) 

the results of Chapter 2 imply that 

(3 log 
T)1/2 > x(Tn) 	for all n > no  a.s. 

therefore 

(3 log Tn)1"2  > 6(Tn) 	for all n > n0  a.s. 

Hence 

6 (Tn) = max (6 (Tn) , (2 log Tn)
1/2) 

> 6 (Tn) 

for all n > no  a.s. and thus 

X (Tn) > e (Tn) 

for all n > no  a.s. 
0 

Lemma 4.2.4 ((33] Lemma 1.5) 

Let {x(t), t e IR} be a G.P. and define 

HK  = {X (tic, u) < xK,u  : v = 0.1, ... ,mK} 

K = 1,2,...,n and all 	aree distinct. Then 

76 

• 
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n n 

	

IP { 
n..} 

- 	P{HK} 
1 	1 

m. mi 	1 
< E 	E 	E 	E 	Irl f g(x. , x, t zr)dz 
1<i<j<n u=0 v=0 	0 	

iv 
~u 

where g(x,y; zr) is the standard bivariate normal density with 

correlation coefficient 

zr = zr(t. , tju
) 

Proof of theorem 4.2.1  

We want to show that there is an increasing sequence ti, ti + co 

as i -* c, such that 

Z (ti) > e (ti) 

for all i. 

To do this we consider a sequence of intervals of fixed length 

and investigate the behaviour of the process in a set of points within 

each interval. These points getcloser together and their number 

increases as the intervals get further away from 0. 

Assume that (4.2.11) holds. We start by giving some definitions: 

2n = [np, np + S] 	0 < S < p, n = 1,2,... 

both p and d constants. 

c
1 	C1 M = Pt N. = P t 	 (e (t)) N (9 (t) 

GK = {tKrV = Kp + M 
	

t 	v = 1,2,... [SMKp+S]} 
RA+S 

• 

• 



HK  = { sup x(s) < e (KA+ō) } 
seGK  

Suppose d < T. Theorem 3.3.2 gives,• with Hg = S1 HK  

P{H} > c ō MKA+6 IPte (KA+S) ) 

and using Lemma 4.2.2 

o 
f Mt  (8 (t) )dt < 	E 	MicA* (8 (KA) ) 
co 	K=Ko  

c 
where KD  = [--1 - 1, and this implies that 

E P{HK} > c EMKa+S * (e (KA+d) ) = = 
K=K0 	K=KQ  

Since 

co 	co 

P{HK 1.0.1 = P (1 u HK  
m=1 K=m 

• 

= 

m 
Iim 	P 	U 	If; 
m-o 	K=m 

CO 

1-limP 	n 

	

m- 	K=m 

we have 

1 - P{HK i.o.} = 

w 

lim P 
m- 

(1 	HK  
K=m 

00 

= 	lim 
m403 

P (1 
K=n 

HK  œ - fl 	P (HK) 
m 

+ g 
m 

P{HK} 
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(4.2.12) 

• 
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o~ 	 m 	m 
= 1im n P{EiQ} + 1im P r H - 	P{iiK} 

	

m+- m 	m-+~ 	m 
(4.2.13) 

and the first term is zero by (4.2.12). 

Using Leama 4.2.4 

	

n 	n 
Am,n 

	

= P m 	- m P
{HK}1 

(.9] MP] 	1 

< 	E 	E 	E 	E 	In' 	f g(ei3O ; zr) dz 
m<i<j <n u=0 	v=0 	0 

where M~ = M. 	and ej = e(jA+a). 

Since 

IL- _ 	v t j u - t
iv 

j 
A+ M] 	Mi 

> (j - i)A -M* 

>A - a 

by (4.2.1) we can choose A so that 

Ir(tju, tip) 1 < Q0((j-i)~ - d)
-a 

for all j,i > m and some constant QO > 0, and such that for some w > 0 

Ir1 <w 

Now 

QO 	QO  
((j-i)A-d) 	((j-i)6 - (j-i)d)A 

QO 

(j-i)AAA (1 - d)A 



(j -i) 
~AJ1 

where Q = go o. - d ) -X 

Also 

g(el,ej; zr) _ 1 e. + e~ - 2zreie. 3. 	
} 

2(1-z2r
2
) 27r (1-z

2r2)1/2 

1  

2w(1-w 2 ) 
1/2 exp { - 2 (ei + 82 2wq) } 

Using (4.2.11) 

1  exp {- log (in+S) - log(jd+d) + 3w log(ja+S)} 
21-(1-w

2
)
1/2 

const. 

(1-w
2)1/2 

(iA+d) (j A+6) 
1-3w 

Therefore 

MtMtQ 
Am,ce <6 E 	E 	1  

m<i<j<o 	(j-i)
XAX

(iA+S) (jA+5)l-3w 

	 (Mt ) 2 . 
<c E E 

m<i<j<co (j-i)~ (ia+d) (j11+d)
1-3w 

but for some constant D (3.2.5) implies 

2c 
(M~)2 = (MJA+S)2 	NJA+S PjA+d 

(4.2.14) 
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• 

— jA+6 - 8 (j,6+S) ) 



and for j large, (4.2.4) implies 

exp{ 	e (ja+d) } 

using (4.2.11) 

< exp{ 2 (3 log jd+6)1/2  } 

< (jA + 6)w 

Hence 

(4.2.14) < c E E 
1  

m<i<j<o (j-i)A  (iA+a) (.A+a)
1-4w  

< const. E E 	X, 1_4w m<i<j<= (j-i) 1  ] 

Putting K = j - i 

CA 	00 

= c E E 
i=m K=1 KXi (i+K)

1-4w  

< 
C 
i 	Kl KXi1+w 	1-5w (i+K) 

1 	1 

< c i=m i +̀ '' K=1 K
1+X-5w  

if 5w < X and then 

lira A 	= 0 
m4= 

m= 

using this in (4.2.13) the theorem is proved. 

• 0 

81 

1 

1 

1 
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4.2.2 Upper Bound  

Theorem 4.2.2  

Let X = {X (t) , t e ]R } be a G.P. with 

E(X(t) - X(s))2 = a2(It-sI) 

where a(h) is continuous, positive, monotone increasing for 0 < h < T, 

some T > 0, n.s.v.f. with structure function a(h). We assume that a(h) 

is nondecreasing for 0 < h < T, satisfies 

a(h) » log / 	 (3.2.5) 

as h -~ 0 for y > 2 and 	that there exists a constant D > 0 such that 

a (h
1+e

) » Dla (h) 	 (3.2.6) 

as h + 0 uniformly for any 0 < E < 1. 

If 

I2(0) = 	Pt2 Ntt?(e(t))dt < 
C 

then 

P{S (e) } = 1 	 (4.2.15) 

Proof 

By theorem 3.3.1 

CIO 

E 	P{ sup 	X(s) > e (n) } 
n=n0 	(n,n+l] 

c 
< c E 	Pn2 Nn*(e(n)) 

n=n 0 
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O 

If no  is large enough the terms of the sum are decreasing so 

< c j 	
Pt2 

Nt41(e (t) )dt < m 
n0  -1 

The Borel-Cantelli lemma yields 

w : there is a n*(w) such that sup 	X(s) < e(n)  
p 

	

	 (n,n+l] 
for all n > n* 

and this implies (4.2.15). 

4.2.3 Corollaries and Special Cases  

In this section we intend to investigate in more detail some 

consequences of the previous theorems. The first two corollaries give 

functions satisfying the conditions of theorems 4.2.1 and 4.2.2 for all 

the processes being considered. Using them we obtain, in Corollary 4.2.3, 

a more interesting result for a reduced class of processes, namely those 

with smaller increments variance. The estimate we obtain for the upper 

envelope in this corollary is reasonably precise and will be complemented 

by a similar estimate for the lower envelope in Corollary 4.3.1. More 

detailed results for specific processes will be given in section 4.2.4. 

Definitions 

St = (2 log t)
112  

log N(8t) 	c 	
(l+e) log St  

yi  (t,c, e) = 	S 	+ a (1/N (R ) ) 0 + t 	t t 
	at  

01(t,c,E) = St  + y (t,c,e). 

o 	c 

• 
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These functions will be denoted sometimes by yl  and 81  to 

simplify the expressions. 

Since we are assuming 

a(h) >>
log 
	 (3.2.5) 

as h + 0 for y > 2, and we have shown in Lemma 4.2.1 that 

log N(x)  + 0 
x (4.2.4) 

as x -* = we have that y1(t,c,e) + 0 as t + = for any c. 

The next two lemmas show that N(81) and P(81) are asymptotically 

equal to N(St) and P(St) respectively. 

Lemma 4.2.5  

N (st  

as t+= for any c > 0. 

Proof 

Since N(x) is increasing we only have to show that for any c1 > 0 

N(81(t,c4c)) < 1 + 
g 

N (Bt) 	1  

for t sufficiently large. The mean value theorem gives 

N(81) = N(Bt  + yl) 

= N(Rt) + y1N'(St  + Eyl) 

for E e (0,1) . Using (4.2.10) 

ti N(81(t,c,e)) 

• 



N ($t) 	Yl 
1 

0t+Ey1)a(1/N(8t+Ey1)) 

N (e1) < N( t) + (St+Ey1) a (1/N (St+ey1) ) 

<N (5t) + ($t+CY1)a (1/N  (0t+KY1) ) 

and 

N(01) 	y1N (81) 
N(St)  < l + (St+ 	y1)a(1/N(St+gyl))N(St ) 

therefore 

N (81) 	11  
N(Bt)  (1 - (St+Cy1)a(1/N(8t+Ey1)) ) < 

1 

and 

No 1) 

 

1 
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Y1N(0t  + gY1) 

y
1
N(8

1) 

using (3.2.5) 

1 
2y1  log N(Rt+Cyl) 

1 	
8t+EY1 

and using 

log N(x) } O 
x 

as x + m  we get that, for t large, 

N (01) 

N (St) 
<1 +e1 

(4.2.4) 

0 



el  (t,c,e) < St + 
t 

D log N(Rt) 
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Lemma 4.2.6  

  

1 	_ 	1 	+ 
a(1/N(e1)) 	a(1/N(at)) (4.2.16) 

 

as t->m. 

 

 

Proof 

  

♦ Since we have assumed 

 

  

a (h) >> log 1/h  (3.2.5) 

as h -} 0 for y > 4, and using Lemma 4.2.1 we have, for some constant D > 0, 

• Hence 

e2(t,c,e) < St + 3D log N(Rt) 

From the definition of N (x) we get. 

a (1/N (x)) - q` al  (1/N (x)) x
2  

and the left hand side of (4.2.16) can be expressed as 

4 a2(1/N(el)) e2 - 4  al(1/N(0t)) st 

< 4 l  (1/N (e 1)) (st + 	3 D log N (St)) - a2  (1/N (Rt)) st La  

and since 

 

 

N(01) > N(K) (4.2.17) 

• 
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this is 

4 3D a2 (1/N (el)) log NO t ) 

In Chapter 3 we showed that (3.2.5) implies 

a (h) 	const.  

(log 1/h)Y 

for y = 2 + S, S > 0. Using this 

(4.2.18) 

(3.3.20) 

3D 	log N(at) 
(4.2.18) < ~-- 4 

(log N(8
1 
) )1+2S 

(log N(81 ) ) 

const. 
2S + 0 as t -r m. 

Note that this lemma implies that for any c > 0 

Pc(el) , Pc(Rt) 

as t + 

0 

We are now ready to give some corollaries to theorems 4.2.1 and 

4.2.2. 

Corollary 4.2.1  

Let X = {)C(t) t e Mt} be a G.P. as in theorem 4.2.1. Then, for 

any c > 0 

z(t) > el (t,c,-c) 
	

i.o. 

as t -* = with probability one. 

• 
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Proof 

cl  
11  (el  (t,cie-e)) = 	P(01) N(e1)p(e1)dt 

using (4.2.17) 

>  f P(St) N(Rt)41(e1)dt 

o 

' 	l-e dt = 
r 	1 	= 

c t(log t) 
 

and the result follows from theorem 4.2.1. 

Corollary 4.2.2  

Let X = {X(t), t e 1R} be a G.P. as in theorem 4.2.2. Then, for 

any e > 0, 

z(t) > el(t, c2,e) 	i.o. 

as t -> = with probability zero. 

Proof 

(4.2.19) 

 

0!0 c2 
I2  (el  (t,c2,e)) = J P (El i) N (e1)r (e1)dt 

 

using lemmas 4.2.5 and 4.2.6 

 

 

C2  
ti } P(St) N(St)*(81)dt 

co 
<c f 	1 	dt<= 

c t(log t)
1+e  

 

• 
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and (4.2.19) follows from theorem 4.2.2. 

0 

Corollary 4.2.3  

Let X = {X(t), t 6 IR} be a G.P. satisfying all the conditions 

of theorem 4.2.1. Suppose a(h) is such that 

then 

1 	
= o (log x) a (1/N (x) ) asx4= 	(4.2.20) 

log N(0t)  s 
1 msup (Z (t) - Rt  - 	

$t 	log tst  = 1 

with probability one. 

Proof 

The process satisfies the conditions of cor. 4.2.1. and 4.2.2. 

The first yields, for any e > 0 

z(t) > 61(t,c1,-e) 	i.o. 

log N ($t) 
> s

t 
	

s 	
+ (1—e 

t 
i.o. 

as t = with probability one. This implies 

log N(s) 	8t  sup (Z (t) - et  
 t  ) 	t  > 1 

t4= 	Bt St  st   

with probability one. 

For the converse inequality note that (4.2.20) implies that for any 

constant c and c > 0 given, 



C 	
E a (l/N (Rt)) st <  

log $t 

at 

90 

and by cor. 4.2.2 there is, with probability one, a t0(w) such that 

for all t > to 

Z(t) < 01(t,c2, e) 

log N(St) 	log St 
< ~

t 
+ 	 + (1+2e) 

	

st 	st 

which implies 

log N(R ) 	S 

	

lim sup (Z (t) - $t 	
t 	t 	1 t 	 Rt 	log St 

with probability one. 

4.2.4 Comments  

We give below examples of processes included in Corollary 4.2.3 

and of processes included in Corollaries 4.2.1 and 4.2.2 but not in 

4.2.3. We assume that all processes satisfy the mixing condition 

(4.2.1) . 

a. Let a (h) = Ae
-B (log 1/h) 1 

for 0< y< 1 where A and B are 

• 

positive constants. For this function 

a(h) =  
(log 1/h)

1_ 
Y 

and the conditions of theorem 4.2.1 hold so that the conclusions of 

Corollaries 4.2.1 and 4.2.3 are valid in this case. N(x) is defined by 

A (By)
1/2 

e 
B (log N) Y 	2 

(1=r2 	x (log N) Y 

B 



or 

B(log N)Y = log x - 1:--X log log N + log A(BY2 

1/2 
log N = B1 (log x - 	log log N + log A(By)

1/2, 
)1/Y 	(4.2.21) 

therefore 

log N R, (125-2541/Y 

as x -> = and 

1 	_ (log N)1-Y 
a (1/N (x) ) 	 By 

ti 1 (log  )(1-0/y 
By B asx -►~ 

and (4.2.20) is only satisfied for 2 < y < 1. Let's consider this case 

in more detail. From (4.2.21) 

log N(x) = (I log x)l/Y(1 - 1-Y log log N 
+ Const )1/y 

2 	log x 	log x 

(1 log x) 	(1 
(1 - 1-v log log N  _ flog log N)) 

= B 	2y 	log x 	log x 

(B log x)l/Y- 1-Y (log (log x)1-Y/Y log log N 
2yB 

+ (log x)1/Y o (log  log N) 
log x 

= ($ log x) l/y + o (log x) 

91 

1/2 
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since 1-Y  < 1 for 2 < Y < 1. 

Therefore, for these processes we get 

a
t um sup (Z(t) - at  - (B log st)1/YS  ) logs = 1 	(4.2.22) 

t- 	 t 	t 

with probability one. 

For the case 0< y < 2 the best general result we can get from 

corollaries 4.2.1 and 4.2.2 is 

Z(t) > 

S  + 1 (log  0t)1/Y 

	
(log St)1 Y/Y log log St  

t B1/Y St 	2y2B1/Y 	Rt  

cl  (1-e ). (log . 0 ).1-Y/Y 

Bl/Y,y et  

infinitely often as t -> op with probability one, and there is, with 

probability one as well, a t0(w) such that for all t > t0  

	

1  (log 0t)1/Y 	1-Y 	(1og 0)1-Y/Ylog  log St  
Z(t) < St + B1/1 	at 	2y2B1/Y 	Rt  

•. (1+s1c2  . (1og8t)1 K/Y 
+ B

1/Y 
y 	

at 

Here we can see clearly how the fact that cl  > c2  affects the precision 

of the results. 

b. Next we look at processes with less regular paths. Let 

c (h) = 	
A 	Y= 2+ d, ō> O 

(log 1/11)! 

• 



and A constant. For this function 

a (h) = 	
 

log 1/h 

and N(x) is defined by 

A 	__ 2 

(log N)1+6 
	x 

or 

(log N)
1+6 

= 
A
47— x 
2 

log N = ( 	
x)1/1+S 

2 

and (4.2.20) is clearly not satisfied. However the conditions of 

theorem 4.2.1 are and we get from the corollaries 

Z(t) > t 
 + (y+c1)  (A✓y')1/ 1+as-a/1+a + (1-s) 

log $t 
2 	

t 	st 

infinitely often a.s. as t -} co. Also, with probability one there is 

a t0(m) such that for all t > to  

(y+c2) (A✓  )̂1/l+6 S 6/1+6 + (1+c) log  $t  
Z(t) < St + 	2 	

t y 	 St 

c. To end this series of examples consider any increasing n.s.v.f. 

a(h) with a nondecreasing structure function a(h) satisfying 

93 

a (h) (log 1/h)1/2  -> co 	as h -> 0 
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Then, for c > 0 arbitrary and x large 

1  
a(1/N(x))  < 

c(log N (x) )1/2  

but then the Representation theorem implies 

a(h) < e- (log 1/h)1/2  

and by the argument used to prove Lemma 4.2.1 N(x) < Q(x), where the 

latter is defined by 

e- (log Q  (x) )1/2 
	

C 
x 

for some c > 1. Therefore 

log Q(x) = (log x - log c) 2  

< 	(log  x)  2  

and 

a(1/N) 	a(1/Q(x)) < c log x 

and since c is arbitrary (4.2.20) is satisfied. Case a. is included 

in this case. Also functions like 

a(h) = exp {- log h (log log h) y } 	y > 0 

a(h) = exp {- (log 1/h)y(log log 1/h)S  } 2 < y < 1 

< S < 

a(h) = exp {-(log 1/h)1(log log 1/h) 13 (log log log l/h)(3} 

1 < y<1, 	-03<a,s < o 

• are included. 
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Theorems 4.2.1 and 4.2.2 were obtained under the assumption of 

stationarity but by using Slepian's lemma [14] this condition can be 

relaxed somewhat. We shall not develop this fully. Another way of 

obtaining results for non-stationary processes by means of a time 

transformation is given in section 4.4. 

The definitions and results obtained in 3.4.3 of the last chapter 

can be used to get a link between the theorems of this section and the 

integral tests for processes having v(h) a r.v.f. (a), 0 < a < 1, 

given by Qualls and Watanabe in [341. 

Theorem 4.2.3 ([34], theorem 3.1) 

Let X = {X(t), t e ]R} be a G.P. with 

a (h) = haG (h) + o (haG (h) ) 

as h > 0 where 0 < a < 1 and G(h) is a n.s.v.f. Let 

;(h) = v haG (h) 

If 

r (s) = 0 (s ) 

as s -> = for some X > 0 then, for any positive, nondecreasing function 

9(t) on some interval [c,=) 

P{s(9)} = 1 or O 

as the integral 

03 

I (9) = 	
~̀~9 (t) ) 	at 

c a (1/8(t)) 

converges or diverges. 

s 
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In 3.4.3 we defined a(h) = a for these processes and showed that 

N(x) 1  
3-1(1/x)  

P(x) = el/a 

therefore we get that in this case 

I(e) _ I1(8) - I2(e) 

We can now put together all these results. 

Theorem 4.2.4  

Let X = {X (t) , t e 20 be a G.P. with 

E(X(t) - X(s))2  = c2(jt-sI) 

where a(h) is continuous, positive, monotone increasing for 0 < h < T, 

some T > 0, and can be expressed as 

a(h) = haG (h) 

where 0 < a < 1 and G(h) is a n.s.v.f. with structure function b(h). 

If a = 0 we assume that b(h) is nondecreasing for 0 < h < T, satisfies 

b(h) » 	Y 
log 1/h 

as h + 0 for y > 2, and that there is a constant Dl  such that 

b (h
1+e) » Dlb (h) 

as h + 0 uniformly for any 0 < E < 1. 

Assume also that 

r (s) = 0 (s-X) 

(3.2.5) 

(3.2.6) 

• 
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as t -' = for some A >0. 	Define a(h),  N (x) and P(x) as in theorem 3.4.1. 

Let e(t) be a positive, continuous nondecreasing function on some 

interval [c,=) . 	Denote N (9 (t)) by Nt  and P (e (t)) by Pt. 	Then 

11(e) = = => p{s(e)} = 0 

I2(0) < = => P{S(e)} = 1 

From Chapter 3 we have that cl  < c2. Also, for a n.s.v.f., a(h) 9-0 

as h } 0 and this means that P(x) -} = as x ; =. This implies that there 

is a set of functions 0(t) for which we cannot decide whether P{S(e)} 

is 0 or 1 in the n.s.v.f. case. The results in theorems 4.2.1 and 4.2.2 

were stated in the form of integral tests to emphasize their relation 

with previously known results, as explained above. 

• 

e 

• 
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4.3. The Lower Envelope  

We turn to the lower envelope problem. We deal with the same 

processes considered in 4.2 and obtain in 4.3.1 and 4.3.2 upper and 

lower bounds for this envelope. 

In 4.3.3 we get, as a consequence of the results mentioned above, 

a more precise estimate of the lower envelope for the same class of 

processes that we considered in Corollary 4.2.3. It is interesting to 

compare these corollaries since they give a good evaluation of the rate 

of convergence of Z(t) - (2 log t)1/2  to zero as t 4 co for this class of 

processes. 

Comments along the lines of 4.2.4 about specific processes are made 

in 4.3.4. 

Definitions: 

st.  = (2 log t)1/2  

log N(St) 	
c 	(1+e)log $t 

Y2  (tl,c, c) 	
St 	a (1/N (Rt)) Bt 	8t  

82 (t,c,c) = t  + y2  c" c) 

Since 

N(ot) < N(82(t,c,c)) < N(81(t,c,c) ) 

lemmas 4.2.5 and 4.2.6 hold with 81  replaced by 82. 

(4.3.1) 
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4.3.1 Upper Bound  

Theorem 4.3.1  

Let X = {X (t) •, t e ]R } be a G.P. with 

E(X(t) - X(s))2  = a2((t-sI) 

where a(h) is a continuous, positive n.s.v.f. which is monotone 

increasing for 0 < h < T, some T > O, and has structure function a(h). 

We assume that a(h) is nondecreasing for 0 < h < T, satisfies 

a(h) » log l/h (3.2.5) 

as h -► 0 for y >I, and that there is a constant D1  > 0 such that 

a (h1+e) >>
1a (h) (3.2.6) 

as h -> 0 uniformly for any 0 < e < 1. 

Then, for any e > 0 

:Z(t) < 02(t, c2, -e) 	i.o. 	 (4.3.2) 

as t + = with probability one. 

Proof 

We adapt Mittel's method 124]. 

To prove (4.3.2) it is enough to show that 

P{Z (t) < 62(t, 02, -e) finitely often } = 0 

This probability is 

02 

< P{ U  fl (m+1) > e2(X, c2, -e))) 
n X=n 
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CO 

< E p{ (1 (Z (K+1) > 62(K, c2, -0)} 
n 	K=n 

L 
< E lim p{ (1 (Z (K+1) > 62  (K , c2, -e))1 

n L+02 	K=n 

< E lim P { z (L+1) > 82(L, c2, -e) ) 
n L 

and it is sufficient to prove that 

15{Z (L+1) > e2  (L, c2, -e) } + 0 	as L } co 	(4.3.3) 

This probability is equal to 

LT-1 

P{ U 	( sup 	X(s) > e2  (L, c2, -s)) } 
K=0 	[KT, (K+l) T] 

where LT  = [
L+1

] 
T 

LT-1. 

< E P{ 	sup 	X(s) > 82(1„ c2, -e) } 
K-0 	IKT, (K+l) T] 

and using theorem 3.3.1 

with 

NL  = 11(e2(1"  c2, -e) ) 

and 

PL  = P (e2  (L, c2, -c3) 

c 
< LTctPL2  NL  ip(e2(L, c2, -e)) 

Using Lemmas 4.2.5 and 4.2.6 

c 
< C L P 

2
(13 ) N (BL)1 (92  (L, c2, -e) ) 

= c Le -r O 

and (4.3.3) is proved. 

as L4. CO 

0 
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4.3.2 Lower Bound  

Theorem 4.3.2  

Let X = {X (t) , t e MI} be a G.P. with 

E(X(t) - X(s))2  = a2 (It-s1) 

where a(h) is a continuous, positive, n.s.v.f. which is monotone 

increasing for 0 < h < T, some T > 0, and has structure function a(h). 

We assume that a(h) is nondecreasing for 0 < h < T and satisfies 

a(h) » log 1/h (3.2.5) 

as h -> 0 for y > 2 , and that there is a constant Dl  > 0 such that 

a(h1) » D1a(h) (3.2.6) 

as h -} 0 uniformly for any 0 < e < 1. Assume also that 

r (s) + 0 	 (4.3.4) 

as s =. Define 

Lt  = N(St)P 1(6t) 

and suppose that for every e > 0 small there is a v > 1 and a a, 0 < S < 1 

such that 

lim (log t)v  D(e,t) = 0 	 (4.3.5) 
t4= 

where 

[tLtl 	
n 	

e2(t,cl,e) 
D(e,t) 	t Lt 

n=[S ] r
(Lt) 	1 + r(n/Lt) 

L t  

(4.3.6) 

• 



• 
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then there exists a to(w), with probability one, such that for all 

t>t0  

z(t) > e2  (t, cl, e) 	 (4.3.7) 

This theorem will be proved after a series of lemmas. We shall follow 

Pickand's method (323. 

Lemma 4.3.1  

Let t(c,m) be a real valued function of c > 0 and the integer m. 

Assume that for every c > 0 sufficiently small 

e2  (t (e,m) , cl, e) > e2  (t (e, m+1)'  c1, 2e) 

for all m sufficiently large.. Tf, for c > 0 small 

Z(t(c,m)) < e2(t (c,m), cl,c) 

(4.3.8) 

(4.3.9) 

only a.. finite number of times with probability one, then (4.3.7) holds. 

Proof 

Let c > 0 be arbitrary but so that (4.3.8) is satisfied. There 

exists m0  such that for all m > m0. 

z (t (c,m)) > 02(t (c,211), eve) 

But Z(t) and 92(t, eve) are nondecreasing for large t. Let 

t > t(c,m0) and m be such that 

t(c,m) < t < t(c,m+l) 

Then 

Z(t) > Z (t (e,m) ) 

> e2(t(e,m), c1,c) 

• 
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0 

>92  (t (E,m+l) , cl, 2e) 

> 82  (t, cl, 2e) 

Lemma 4.3.2  

(4.3.8) is satisfied if t(s,m) = eem. 

Proof 

We want to show that for in large, e > 0 

82  (t (e,m) , cl, e) - 82  (t (e,m+1) , Cl, 2e) > 

Let B (t (e,m)) be denoted by S (e,m) , N (R (e,m)) by N(e,m) and 

a(1/N(e,m)) by a(e,m). Then we want 

(R (e,m) - B (s,m+l)) + (1og N (e,m)  -  log N (e,m+l)  ) 
S (cm) 	S (e,m+l) 

1   	1  

	

+ c1 (a (cm) S (e ,m) 	a (e,m+1) S (e,m+1) 

+ (1+e) (log s (e,m+l)   - log 0(e, in) ) 
S(e,m+l) 	S(e,m) 

+ e log S (e,m+1)  
8 (e,m+l) 

5 
E Ri  > 0 

i=1 

Since t (e,m) = eem, a  (e,m) = Re7n. 

a. 	Rl  = S (e,m) - S (e,m+l) 

= 2 	- 2e (m+l) 

(4.3.10) 

• 
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= 2✓ em - 2✓ em (I + 1)1/2 

ti - (C)1/2 

b. R2 
_ log N(e,m)  _ log N(e,m+l)  

(c,m) 	S (e,m+l) 

_ log 

 

N(11a)  _ log N (2e)  

2►~em 1/3767115-  

> 1 (log N ( 2✓ em) - log N ( 2e 	) ) 

log 
N (2e)  

N ( 2) 

-c 

The last step follows from an argument similar to that of Lemma 4.2.5. 

c. Since, by definition, 

1  	x2c2 (1/N (x) )  
a (1/N (x)) 	4 

1 	 1  R3 = c1 [a (e,m) S (e,m) 	a (e,m+1) S (e,m+l) 

= 4 [ B (e,m) a2 (1/N (e,m)) - $ (e,m+l) a2 (1/N (e,m+l)) ] 

= 4 [ 2(1/.a(1_) - VIETITU a2 (1/N ( 2e 	) ) ] 

= 4 [ 2~em a2 ( 	1 ) - 'Fe; (1 + )1/2 a2( 	1 	) 
N(27) 	N(2e) 
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> -41  a2( 	1 ) (2 	- 2a (1+-- ... )) 

4 
(C )1/2 62 1  ( 	) 

and 

a2( 1  ) + 0 
N(727m) 

as m+ co 

d. 	R = (1+E) 
(log R(e,m+1) _ log R(E,m)  

4 	8 (c,m+1) 	8(c,m) 

(1+c) flog 2c 	- log 2' , 

/117174:7 2✓iem 

c 

N(2) 

(1+E) log 2✓ em 
Via  (1 + m-)1/2  Via 

= (1+c) log 
2cat 	

( (1 + m1 -1/2  - 1) 
Via 

_ c log 2cm  
(cm3  )1/2  asm+ce 

R5  _ 
 e log B(c,m+l)  e. 	S (c,m+1) 

_ c log 2c (m+1)  

215517477  

'L 
 c 11)

1/2 
 log 2cm as m + 02 

Of all the terms in the sum the dominant one as m + = is the last 

one, R5, which is positive. Hence (4.3.8) is satisfied. 

• 0 



Lemma 4.3.3  

In order that (4.3.7) hold, it is sufficient that for every 

e > 0 small enough there exists a v > 1 such that 

lim (log t) v  P{Z(t) < A2  (t, cl, e) } = O 
t-+= 

(4.3.11) 

Proof 

By Lemmas 4.3.1 and 4.3.2 it is sufficient to show that for every 

e > 0 sufficiently small 

OD 

m=1 
E P{Z (t (c,m)) < 92  (t (e,m) , cl,e) } < CO 

and for this it is sufficient that for any e > 0 and some v > 1 

lint mvP{Z (t (s,m)) < 82  (t (e,m) , ci, e) } = 0 
m-  

this is equivalent to (4.3.11). 

Lemma 4.3.4  

0 

Let P( ) and P'( ) be two multivariate Gaussian measures assigning 

means 0, variances 1 and covariances rij  and rij  respectively. Then, for 

any d < m real 

IP { max Xi  < d} - P'{ max Xi  < (3}1 	< Wn  
1<i<n 	1<i<n 

Wn = 	E 

 (4.3.12) 

with 

Ir. 
	 ij 
	 1 +-dr 	} 	(4.3.13) 

i,j=l [1 - (rij)

2 

]

1/2  

i7 

where r?. = max(rij, rij). 

106 

• 
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This lemma is another version of Lemma 4.2.4. For a proof see [29]. 

Proof of Theorem 4.3.2  

Let 0 < å < 1 be a constant. Define 

Z1(K) = max {X (L  ) ; I (K+d ) Lt] <  i  <  [ (K+1) Lt] Lt  

Let e > 0 be arbitrarily chosen and assume that (4.3.5) is satisfied. 

Let 

Z2  (t) = max {Z1(K) f 0 < K < [t-1] } 

Clearly, for any x, 

P{Z (t) < x} < P{Z2  (t) < x} 

therefore by Lemma 4.3.3 it is enough to show that for some v > 1 

lim (log t)v  P{Z2  (t) < 92  (t, cl,e) } = 0 
t4 	- 

We first show that 

lim (log t)v  P'{Z2(t) < e2(t, c1,e)} = 0 	(4.3.14) 
t-+= 

where P' is the measure which confers independence among successive half 

closed intervals (K,K+1] but is otherwise identical to P. The second 

part consists in showing that 

lim (log t)v IP{Z2(t) < e2(t,c1,e)} - P'{Z2(t) < 92(t,c1,e)}) = 0 
t4= 

(4.3.15) 

First. 

It-1] 
P' {Z2  (t) < 92  (t,cl,e) }  < 	11 P{Z1(K) < e2  (t,c1,e) } 

K*:10 

• 

a 



so 

-log P' {Z2  (t) < 02 (t, ci, e) } 

It-1] 
> - E 	log P{zi(K) < e2(t, ci,e)} 

K=O 
(4.3.16) 
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but if F(x) is a distribution function 

- log F(x) = -log (1 - (1 - F(x))) 

= 1 - F(x) + O((1 - F(x))2) 

as F(x) + 1. Therefore 

- log P(zi(K) < e2(t, c1,c)} 

> B P(Z1(K) > 62(t, c e)) 

for some B < 1 and t large. 

We have assumed that r(s) } 0 as s -► co. Since X is stationary this 

implies that 

r(s) < 1 for s > 0 	 (4.3.17) 

This is equivalent to a(s) > 0 for s > 0. Therefore X satisfies all the 

conditions of theorem 3.3.1 and 

- log P{Zi(K) < e2(t, c1,E)} 

c 
> const. N(e2)P 1 (e2)(92) 

and by lemmas 4.2.5 and 4.2.6 

c 
> const N(13t)1)   1(St)* (e2)  

• 



• 

• 

• 
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Using the definition of 02  

> const. (log t) E 
— 	t 

Therefore (4.3.16) gives 

- log P' (Z2  (t) < 02  (t, cl, e) ) > c(log t) e 

and 

P'{z2(t) < 62(t, cite)} < 
e-c(1°5 t) e 

as t = and (4.3.14) holds. 

We now prove (4.3.15). Looking at (4.3.12) and (4.3.13) we see that 

the terms of the sum are zero whenever we consider i and j such that 

i,/Lt  and j/Lt  belong to the same interval (K+S,K+1] since, in this case, 

r. = r':. ij 	ij 

If they belong to different intervals rij  = 0 and rij  = rij. But 

we know that (4.3.17) holds and we are "chopping off" a piece of each 

interval of length d. Therefore rlj  has an upper bound and we can 

replace (1 - (rj)2)1/2 by a positive constant. Therefore 

Z2  (t) < 02  (t,,c1,E) } - P'{Z2  (t) < e2  (t, c1,E) ) 1 

[t-1] [ (K+1)Lt] 	[t-1] 	[ (£+1)Lt] 

E E E 
r(i , ) 

K=0 i=[(K+6)Lt] £=K+1 j=[ (lG+d)Lt] 	Lt Lt  

exp 
1 + r {— , ) Lt  Lt 

<CE  

82 (t,c1, 	e) 

i 

• 
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[tLt] 	[tli
t] 	

L 	A2 (t, cl, e) < c E 	- E 	r(1:1) ) exp  
+r(1:26) ) i~ 7 -i+ [ SLt] 	t 	1 	 Lt 

	

[mit] 	( 
4 c t Lt 	r (L) exp, j- 

	

n=[SLt] 	
t 	(( 	t 

= c D (e,t) 

and (4.3.6) implies (4.3.15). 

0 

Theorem 4.3.3  

Let X = {X(t), t e IR } be a G.P. satisfying all the conditions of 

theorem 4.2.1. Then (4.3.7) holds. 

Proof 

Clearly (4.2.1) implies (4.3.4) so we need only show that under the 

assumptions of theorem 4.2.1 (4.3.5) holds. Note that 

e-x2/1+r 
= (e

-x2/2.2/1+r 
' 

so that 

-e2
2 /1+r 	(8t1+e)

2/1+r 

t't 

( • log • t)(l
±eyl+r 

(tL )24l+r) 
t 

Define 

A (q) = sup 	
2r (s)  

s<' 
1 + r(s) 

R  

02 (t, cl, e) 
1 + r (n/L ) 

f 



Note also that a(S) < 1 ) 

rn = r (L ) 
t 

and for some t0 fixed 

(1+ '1+r 
(t0Lt] 	r (log t) 	n 

Di(e,t) _ (log t)v tLt 
	

2/1+rn 
n=[SLt] 	

(tLt) 

(1+4/1+r 
[ttt] 	r (log t) 	• 	

n 

D2(e,t) = (log t)9 tLt 	
n 	

2/l+rli 
n=(t0Lt]+1 (mit) 

In the first case since n > (SLt] we have rn < M(S) for all n so 

fl+v+ 2 clog 	Lt ‘011‘°1    
Dl (e,t) < 

	(tL ) 
2/l+0 (S ) 

t 

< (1 t) Lt 
2e (S)/l+A (S)t(A (a)-Wl+e (S) 

°C~ 	t 

We defined Lt by 

Lt 	N(St)P l(St) 	N(Rt)eXp{ a(1/N(st )) } 

and we have assumed that 

a(h) » 
log 1/h 

as h 4'0 for y > 2, and have shown in lemma 4.2.1 that 

log N(x)  -r 0 
x 

111 
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as x + co. Hence for el  > 0 arbitrary and t large 

elst Lt  < e 

and 

1+v+e 	2A(8)e
1 

   
Dl  (e t) 	I ) /l+a (S)  

exp{ 
1 + p (S) (2 log t)1/2  } 

+ 0 

as t + 02  since 0(S) < 1. 

It only remains to show that D2(e,t) also tends to zero as t + = 

(tLt] 	r
n  D2(e,t) < (log t)

1+v+e 
 tLt 	E 	2 / 

n=[t0Lt]+1 (tLt
)l+rn 

 

< (log t )1+v+e 	[ 't] 	2rn/1+rn 

tLt 
	n=[t0Lt]+1 

	

(log t)
1+v+e (tL ) (t0) 	(tLt] 

t  
tLt :E: rn  

n=(t0Lt]+1 

a Let t0  be so large that r(s) < B s 1, for s > to, some 0 < Al  < 1 and . 

B > 0. Then 

L
t 
 J1 

rn  = r(—)  < B (—n) 1 
Lt  

and 

(1+v+d 0 (t
0) x1+A  (t0) 	(tLt] 	-1 B(log t) 	t 	Lt 	 n 1  

D2(e,t) < 	tLt  
n=(t0Lt]+1 

• 
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[tLt) 	-a 
< Bog  t)(1"-c)

t (t0) -1) Lt 1 +Q (t0) -1) 	I 	y 	āY 
[t0Lt) 

1-A 	1-1 

< B lo t)(1+v+e) (A (t0) - 1) Lt (t0) (t 	1  - t0 	1) 

( g — 	 t 	1 - X1 

= B  (log t)(l+v+e)  ta (t
0) -A1 L) d (t0) 

 t  

Choose t0  so large that A(t0) < A1. Then D2(e,t) + 0 as t + = 

and the theorem is proved. 

0 

4.3.3 Special Cases  

We look at the same processes we considered in Corollary 4.2.3. 

The proof will follow along the same lines. 

Corollary 4.3.1  

Let X = {X(t), t e Ilt} be a G.P. satisfying all the conditions of 

theorem 4.2.1. Suppose a(h) is such that 

1 	 = o(log x) a (1/N (x) ) as x + = 	(4.2.20) 

then 

log N(ßt) 	St  
lim inf (Z (t) - St 	

/3t 
	 ) 	_ -1 	(4.3.18) 

t+= 	t 

with probability one. 

Proof 

The process satisfies all the conditions of theorems 4.3.1 and 

4.3.3. Hence, for c > 0 

• 



log N(Bt) 
=

t  + 	Bt 	a (1/N (Bt)) Bt  

(1-e)log Bt  

Bt  

c2  

a (1/N (Bt)) Bt < 	at  

c2  E log Bt  

log N(Bt) c2  

+ a(l/N(Bt))Bt  

(l+e)log 
Bt 

Bt  Bt  + 	
Bt 

Z(t) < 02(t, c2, -e) infinitely often a. s. 
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and, as in Corollary 4.2.3 

for t large. Therefore 

(1-2e)log Bt  
	 i.o. 

as t -► « with probability one and this gives 

log t) B

t  lim
t+ce

inf (Zit) - Bt  - 	
Bt 	log S

t 
<-1 

with probability one. 

From Theorem 4.3.3 we know that there is, with probability one, 

a t0  (w) such that for all t > t0  

z(t) > @ 2  (t, c1, c) 

Z(t) < 
Bt + 	B t  

log N(0t) 

at  

log N(Bt) (l+c)log Bt  

Bt  
> Bt  + 	

Bt 

and so 

log N(B) 	

t limninf (Z(t) - Bt - 	Bt 	log Bt > -1  

with probability one. 

0 
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For comparison we quote the result of Corollary 4.2.3. 

log N(St) 	St 
lim sup (Z (t) - Rt 	

B 	log $ t4a 	t 	t 
= 1 

with probability one. 

4.3.4 Comments  

We consider here the same processes we looked at in 4.2.4. The 

details are very similar so we shall only give the results. 

a.  Let a(h) = A e  B (log 1/h)1' for z< y< 1 

where A and B are positive constants. In this case (4.2.20) is satisfied 

and 

Y 	
S

t 
li inf (z(t) - St  - (g l 	1/og  St) 	at) log 

with probability one. c.f. (4.2.22) 

b. If a (h) _ A 	. 	 2 Y = + S, 	S >o 
(log 1/h)Y 

and A constant then (4.2.20) is not satisfied. From theorem 4.3.1 and 

4.3.3 we get 

z(t)>St + 
(Y+c ) 	(l+e)log 1 (A_)l/1+S 	S S/l+a 	t  

Y 	2 	t 	et 

for all t > t
0 
 63)with probability one and 

(Y+c2)  .A )1/1+6 S
S/1+6 (1-c) log St  

Z(t)  < t + 	Y 	2 	t 	- 

infinitely often as t -goo with probability one. 
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c. The conclusion of Corollary 4.3.1 also applies to the class of 

processes considered in c of 4.2.4. 

We pointed out in 4.2.4 that the assumption of stationarity can 

be relaxed. The same applies for the theorems of 4.3. Moreover, in 

theorems 4.2.1, 4.3.2 and 4.3.3 it is enough to have 

E(X(t) - X(s))2 > a2(It-s J) 

and in theorems 4.2.2 and 4.3.1 

E(X(t) - X(s))2 < cr2(It-s~) 

is sufficient. 

We shall make use of this in the next section. 

It is also possible to show, as we did for theorem 4.2, that the 

conclusions of theorems 4.3.1 and 4.3.3 can be deduced, in the case of 

a process having a(h) = cha, 0 < a < 1, from the results of Mittal [25]. 

It is not difficult to extend this to a(h) a r.v.f. (a). 

• 
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4.4. Extension to Other Processes  

In this section we make use of a time transformation and the 

results of the previous two sections to obtain information about some 

nonstationary processes. 

Theorem 4.4.1  

Let {Y (t) , t e ml) be a G.P. with 

E (Y (t+h) - Y (t)) 2  > a2 (h)  (4.4.1) 

for all t e ]R and h < T for some T > 0, where a(h) satisfies all the 

conditions of theorem 4.2.1. Assume also that 

r(v, vs) = O((log s) X) (4.4.2) 

as s = for some X > O,. uniformly in v. Let r(t) be a nondecreasing 

continuous function with lim r(t) = =. Then if 
t4= 

I3(r) = f t Ptl  Nt*(r(t))dt = = 

P{s (r) } = 0 	 (4.4.3) 

where all these functions are defined as in theorem 4.2.1 with r(t) 

instead of e(t). 

Proof 

Define a new process {X(s), s e fit} by 

X(s) = Y(es) 



I- 
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Then, if t > s, 

E (X (t) - X (s)) 2  >  a2 	S  (et-S ) 
e 

a2(et-s - 1) 

> a2(t-s) 

for tes e IR with It-si < T. Also, for s,v e IR 
E (X (v+s)X (v)) = r (ev{s, e ) 

= O(s  x)  

as s -► = for some A > 0 uniformly in v. Therefore {X(s), s e IR.} 
satisfies all the conditions of theorem 4.2.1. 

Suppose r(t) is such that I3(r) _ _. We make the following change 

of variables in the integral 

t = es 	dt = ends 

I3  (r) = f Pcs N s ip (r (es)) ds = 
ec e e 

let 
8 (s) = r (es) 

then 

I1(8 ) = CO 

and theorem 4.2.1 implies that, with probability one 

sup X (s) > 8 (t) 
(0,t] 

i.o. 

i.e. 

sup Y (es) > r (et) i.o. 
(Olt] 
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and this implies (4.4.3) 

0 

Corollary 4.4.1  

Let {Y(t), t e )R} be as above. Define: 

at  = (2 log log t)1/2  

log N(at) 	
c 	(l+e)log at  

T1(t, c, e) = at + 	at 	a (1/N (at)) at  + 	at  

then, for e > 0 

sup Y(s) > r1(t,cl,-e) i.o. 
[o,t1 

as t+ ea 

with probability one. 

• c.f. Corollary 4.2.1. 

Theorem 4.4.2  

Let CY  (t) , t e Ill be a G.P. with 

E(Y(t+h) - Y(t))2  < a2 (—h 

for all t e ]R and h < T for some T > 0, where a(h) satisfies all the 

conditions of theorem 4.2.2. Then if 

I4(r) 	] t Pt2  Nt4(r(t))dt < eo 

p{s (r) } = 1 

The proof is similar to that of theorem 4.4.1 and will not be given. 

Corollary 4.4.2  

Let {Y (t) , t e IR} be a G.P. as above. Then, for e > 0 

sup Y(s) > ri(t, c2,e) i.o. 
• (0,t] 



• 
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as t = with probability zero. 

c.f. Corollary 4.2.2. 

Theorem 4.4.3  

Let {Y(t), t e IlZ} be a G.P. as in theorem 4.4.1. Define 

log N(at) 	(l+e) log a 

r2 (t,cl, e) = at + 	at 	+ a (l/N (at)) at 	at 	
t 

then 

P{T (r2 (t,cl,c)) } = 1 

Once again the proof follows along the lines of theorem 4.4.1. 

c.f. Theorem 4.3.3. 

Theorem 4.4.4  

Let {Y(t), t e 10 be a G.P. as in theorem 4.4.2. Then 

P{T (r2 (t, c2, -0)) 

c.f. theorem 4.3.1. 

Corollary 4.4.3  

Let {Y(t), t e ]R} be a G.P. with 

E (Y (t+h) - Y (t)) 2 = a2 (t) 

• where a(h) satisfies all the conditions of theorem 4.4.1. Assume that 

(4.4.2) and (4.2.20) are also satisfied. Then, with probability one 

log N(at) 	at 
lim sup ( sup Y(s) - a - 	) 
t+1*[O,tl 	t 	at 	log at = 1 

	

log N (at) 	at 
lim inf ( sup Y(s) - a - 	 
t-~ 	[O,t] 	t 	at 	log at 

c.f. Corollaries 4.2.3 and 4.3.1. 
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4.5. Final Remarks  

Although we have not been able to solve the problem we dealt with 

in this chapter completely, it seems to us that the results are 

interesting and encouraging in that they point towards a possible 

general solution for continuous stationary Gaussian processes with a(h) 

slowly varying, and indicate the relation with the known solution for 

other processes. 

It seems clear that the problem will not be solved until 

asymptotically exact estimates for the tail of the distribution of Z(t) 

are available, since the accuracy of the results of this chapter depends 

crucially on the precision of these estimates. Such results could be 

used for tackling other problems and would therefore be of independent 

interest. 

• 
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