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3. 
ABSTRACT  

The small perturbation analysis of interconnected systems 

using eigenvalue methods and multi-state feedback controllers design 

in order to stabilize the generators has been calculated without 

simplifying assumptions. A method of general multi-machine analysis 

considering the effect of load characteristics has been devised. 

It is shown here in a number of studies of single-machine 

infinite busbar and multi-machine systems that the effect of load 

characteristics is considerable. Dynamic stability of a multi-

machine system when the effect of load characteristics is included 

has been analysed. A new approach for obtaining the state .space 

formulation of the linearized system equations is given. This is 

convenient for the evaluation of the open loop system performance 

and also, enables the design of a closed loop multi-input controller. 

The analysis is realised by checking the eigenvalues of the free 

response system in order to determine the asymptotic stability of the 

system when different load characteristics are included. 

Modal control theory is used to improve the steady-state 

performance of the generators by the addition of multiple feedback 

paths. The critical eigenvalues are moved towards the left in the 

complex plane, sequentially in groups using the dominant input for 

each group. It is shown that the nature of the load can change the 

design of the controllers. The effect of network representation has 

also been explored. 

In a multi-machine system a local modal controller is 

derived for each machine from the global control design, where feed-

back to each machine comes from its individual state variables. 
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vd' vq' id' iq 

V = 1VJI 

ifd' 
ikd' 

 ikq 

P, Q 

G, B 

direct and quadrature axis voltages and currents 
of a synchronous machine 

busbar voltage 

rotor circuit currents of a synchronous machine 

active and reactive powers 

conductance and susceptance 

rs' rfd' rkd,  riiq 	stator and rotor circuit resistances of a 
synchronous machine 

xffd' Xafd' Xfkd' 	coupling and self reactances of a synchronous 
Xd' Xakd' Xkkd' 	machine 

Xakq' Xkkq  

coo  rated angular frequency, electrical radians per 
second 

instantaneous angular frequency of bus voltage, 
electrical radians per second 

instantaneous angular frequency of machine rotor, 
electrical radians per second 

per unit instantaneous angular frequency 

rotor angle of synchronous machine, with respect 
to infinite busbar, or reference machine 

r 

H 	machine inertia constant, kLL.secAVA 

M = 2H
A4lo 
	moment of inertia, sect/elec.redian 

Tm  = 2H 	inertia time constant, seconds 

p = d/dt 	differential operator 

vsd, vsq,  isd, isq 
 direct and quadrature stator circuit voltages 

and currents of an induction machine 

ird, irq 	rotor circuit currents of an induction machine 

R 	stator circuit resistance of an induction motor 
s 

R 	rotor circuit resistance of an induction machine 
r 

Xm, Xs, Xr 	coupling and self reactances of an induction 
machine 
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41, X2.2 	stator and rotor leakage reactances of induction 
machine 

w — w 
S = 	r 	induction motor slip 

Ws  
Scr 	induction motor critical slip (corresponding to . 

maximum torque)  

Tg 	air gap torque of a synchronous or an induction 
machine 

Tmech 	mechanical torque 

A 

Tmax 	
pull,-out torque or maximum torque 

Kr 	voltage regulator gain 

Trg 	excitation system time constant, seconds 

air gap line open circuit voltage; excitation Efd = Xafdvfd/rfd  
voltage 

At 	turbine gain 
• 

B equilibrium real gate position 

C 	input signal to governor servo—valve 

Dnom 	turbine damping coefficient 

g per unit real gate position deviation 

h per unit head deviation 

Qg 	servo—valve gain of governor 

W r3lative derivative gain of governor 

TR 	dashpot time constant, seconds 

TW 	water inertia time constant, seconds 

bt 	governor temporary droop ' 

6 	 governor permanent droop 

g1 	real no—load gate position 

D instantaneous turbine damping coefficient 

Xgfd 	field winding leakage reactance 

X.ga, 
X.1;d

, 
 X21cq 	

leakage reactances of a synchronous generator 

Xt 	transmission line reactance 
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rt 	transmission line resistance 

VB 	voltage magnitude at infinite bus bar 

VqB 	quadrature axis infinite bus bar voltage 

Vqd 	direct axis infinite bus bar voltage 

and Xafd=Xakd direct axis magnetizing reactance of a synchronous 
—Xfkd 	

machine 

Xmq—Xakq  quadrature axis magnetizing reactance of a 
synchronous machine 

Da system matrix 

[B] 	control input matrix 

u(t) 	control vector 

y(t) 	state vector 

Sr(t) 	time derivative of y(t) 

11 	 prefix denoting a linearized variable 

i  = M.+0. 	eigenvalues, i = 1,2,...,n 

The remaining variables are defined where they are used. 
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CHAPTER 1  

INTRODUCTION  

1.1 	GENERAL  

Since the industrial revolution man's consumption of 

energy has increased steadily. A major proportion of the power 

requirements of modern society is supplied in the form of 

electrical energy. Industrially developed societies need an ever—

increasing supply of electrical power. Very complex power systems 

have been built to satisfy this increasing demand. The trend in 

electric power production is toward an interconnected network of 

transmission lines linking generators and loads into large 

integrated systems. This vast enterprise for supplying electrical 

energy presents many engineering problems that provide the engineer 

with a variety of challenges. The planning, construction and 

operation of such systems is exceedingly complex. To be able to 

predict the performance of such systems, the engineer is forced to 

seek the most powerful tools of analysis and synthesis. Successful 

operation of a power system 'depends largely on the engineerls 

ability to provide reliable and uninterrupted service to the loads. 

The reliability of the power supply implies much more than merely 

power being available. Ideally, the loads must be fed at constant 

voltage and frequency at all times. In practical terms this means 

that both voltage and frequency must be held within close tolerances 

so that the consumer's equipment may operate satisfactorily, and 

while it is frequently convenient to talk about the power system in 

the steady state, such a state never exists in the true sense. 
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Random changes in loads are taking place at all .times, with 

subsequent adjustments of generation. Furthermore, major changes 

do take place, e.g. a fault on the network, failure of a piece of 

equipment, sudden application of a major load, or loss of a line 

or generating unit. It might be tempting to say that successful 

operation requires only that the new state be a stable state. 

Unfortunately, synchronism is frequently lost in the transition 

period from one equilibrium state to another, or growing oscillations 

may occur over a transmission line, eventually leading to its overload 

and tripping. These problems must be studied by the power system 

engineer and fall in the area of power system stability. 

1.2 	POWER SYSTEM STABILITY 

Power system stability is normally considered'in two forms, 

dynamic and transient stability. Dynamic stability implies that if 

the system is disturbed in a minor way,.such as a slight misjnatch of 

load and generation, it immediately returns to a steady operating 

point near to the original, restoring "forces" existing to maintain 

a steady operating condition. Dynamic instability implies that any 

operating condition is not maintained, any slight disturbance causing 

mounting oscillation, or a steady drift occurring, each of which 

results eventually in pole slipping. 

A system may be dynamically stable but unable to withstand 

a major disturbance, and is then considered to be transiently 

unstable. Transient stability is a relative quality (unlike dynamic 

stability, which is absolute), for all synchronous machines will. lose 
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synchronism if subjected to a long enough fault. The ability to 

withstand a fault of given duration is expressed as the critical 

fault clearance time (c.f.c.t.). If a fault longer than the c.f.c.t. 

occurs, the generator will slip poles and is then normally lost to 

the system, being tripped to prevent the associated large swings of 

voltage, current and power. 

Any system operating condition must be dynamically stable 

and have an adequate transient stability margin. For many years 

attention was directed at the latter but with the growth of power 

systems and some unfortunate occurrences (islanding) it has been 

realised that both require careful consideration. 

The number - of power system components included in any study 

and the complexity of the mathematical description is variable, but 

in general. differential equations are used to describe the various 

components. Study of the dynamic behaviour of the system depends upon 

the nature of these differential equations. The system equations for 

transient stability are usually nonlinear. Here the system is 

described by a large set of coupled nonlinear differential equations. 

In considering the response to a particular fault or disturbance, a 

solution of the nonlinear differential equations is obtained by 

numerical methods with the aid of digital computers. When the 

dynamic stability of the system is investigated, it is convenient to 

assume that the disturbances causing the changes disappear and the 

motion of the system is then free. Stability is assi:red if the 

system returns to its original state. If the system equations are 

linear or have been linearized, the techniques of linear system 

analysis may be used to study the dynamic behaviour. The most common 
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method is to simulate each component by its function transfer equation. 

• The system performance may then be analyzed by such methods as root—

locus plots, frequency domain analysis, Nyquist criterion and Routh's 

criterion. These methods have been frequently used in studies of 

small systems. For larger systems the state space model is more 

common, stability characteristics being determined by examining the 

eigenvalues of the Tia matrix, where EA] is defined by the equation: 

3'(t) = CAJ y(t) + CBJ u( t) 

Up to the present, the efforts of power system analysts 

engaged in the study of the dynamics of power systems have been mainly 

devoted to a better understanding of the modelling of generators, and, 

in more recent times, to seeking reliable and accurate data for use 

in generator models. The performance of the loads in power systems, 

which are equal in magnitude to the generation, has received scant 

attention. Recently this situation has changed, and much more 

attention has been devoted to load behaviour as a function of both 

voltage and frequency variation. There are several reasons for this: 

1. There is a need to improve the quantitative accuracy 

of system simulation. 

2. Digital computers are almost universally used and it 

has become possible to employ more refined representations of 

all the elements. 

3. Methods of control are becoming more complicated and 

their success depends on a full evaluation of the stability of 

the system, including the contribution of the loads. 
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There are two aspects to the load problem. One is the 

examination of system data to determine the most appropriate model 

to use in subsequent studies; the other, the subject of this thesis, 

is the examination of the effect of a range of models on system 

stability. 

The primary aim.of this thesis is to devise a method of 

,digital computation by which the dynamic stability of a multimachine 

power system including the effect of load characteristics may be 

calculated accurately and reliably. 

In addition, the effect of load characteristics in the 

design of feedback controllers in a single machine and in a multi—

machine system have been studied. 

1.3 	REVIEW OF PREVIOUS WORK 

The effect of load characteristics is only one aspect of 

the current interest in dynamic stability calculations. Because. 

developments have already occurred in the representation and analysis 

of generation and transmission systems, attention is now being 

focussed on the adequacy of load representation and elaborate load 

models have been included in analysis programs. 

A number of studies have been made of the contribution of 

different forms of load to stability (8, 10, 11, 12, i9, 23). 

Brereton et al.8  considered that it is of the utmost importance in 

transient stability studies to represent the loads not just as shunt 

impedances but in a more accurate manner. Particular attention has 
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been paid to the load inertia of induction machines. Several methods 

of simulating the behaviour of induction motors have been presented. 

The system studied has usually been a single motor connected to an 

infinite busbar. Kalsi
10,11 

gave a method for obtaining the fault 

contribution made by induction motors in a system. His study included 

the transient stability of a composite system including a large 

induction motor and a synchronous generator. The deep bar effect in 

the squirrel cage motors was simulated by two equivalent rotor windings. 

Alford12 proposed a common method of representation for synchronous and 

asynchronous machines; practical tests were also carried out on a 

model system. The accurate representation of induction motor loads 

located close to the synchronous generator was shown to be important 

in a stability study. Dandeno and Kundur19 presented a novel 

simulation technique to achieve a direct or non—iterative solution 

of algebraic equations while retaining the ability to represent loads 

so that the real and reactive power components at each bus bar could 

vary as any power of the voltage magnitude. Results of computer 

tests on a complex multi—machine system demonstrating the importance 

of load modelling were presented. Shanckle et al.23 have presented 

a method for determining the transient stability of a system 

including synchronous and induction machines. 

The area of small signal stability did not receive much 

attention until recently, although Crary~7 pointed out the importance 

of the load characteristics on the composite system performance as 

early as 1934. In his calculations of synchronising power coeffic-

ients he included the effect of composite loads and induction machines. 

Heffron26 presented a numerical study that shows the effect of shunt 

loads on the steady state stability limit. He concluded that shunt 
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loads have a stabilizing effect on the system except when the load 

is heavy. In the past decade a number of workers have continued 

this study. 

Mauricio and Semlyen14  have shown that the dynamic stability 

limit of a power system is affected significantly by the nature of the 

system load. They showed.that the dynamic behaviour of loads can 

have a decisive influence on the stability limit of a power system. 

Alden and Zein El—Din34  showed that the stability calculated for a 

test system was dependent on the load model, load being modelled as 

several non—linear functions of voltages. Rao and Tripathy35  

concluded that the gain associated with the speed stabilizing signal 

in the excitation system of a generator should be set to match the 

power—voltage characteristics of the load to maximise the damping 

effect. Subramanian and Berg36  discussed the effects of electric 

load on optimal excitation control in a power system. They concluded 

that the state feedback gains for optimal excitation control vary 

significantly with the type of load present in the system. Several 

authors have represented experimental results which have been compared 

with calculated values in order to find the most appropriate load 

model37`41. Induction motor representation and behaviour has been 

considered in detail
42-45 

including the equivalence of induction 

motorsl6. A summary of work in this area is given in reference 18. 
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1.4 	CONTENTS OF THE THESIS  

In Chapter 2 the effect of load characteristics on the 

assessment of dynamic stability of a single machine system with the 

load at an intermediate bus-bar is studied. The load is assumed to 

be static with exponential power-voltage dependence, dynamic in 

nature or a combined load. composed of a constant impedance and 

.induction motors. The equations for the system are linearized about 

an operating point, the computer being used to reduce the whole set 

of differential and algebraic equations to the state space form — 

Sr(t) _ [A] y(t) 3 and the eigenvalues of [A] are obtained. The 

stability limit is obtained as the eigenvalues become positive. 

Results are compared for each load representation. When there are many 

eigenvalues, the results are not easy to interpret. A method of 

finding the rates of change or sensitivities of the critical eigen-

values is applied and this analysis can lead to the identification 

of some of the sources of oscillation. State variable reduction 

techniques to identify states or loops associated with each 

oscillatory mode have also been studied. 

In Chapter 3 a digital simulation of the small signal 

dynamics model of an arbitrary number of interconnected power generating 

units including the effect of load characteristics is presented in 

state space form. Load is represented in two ways: as a static 

non-linear form, being dependent on voltage, and as a combined load. 

Sparsity techniques were used to minimize the compui'r storage 

requirements. The machine model is 11th  order, a.v.r. and speed 

governor equations being included. The analysis is based on 

calculating the eigenvalues of the characteristic matrix in order to 

to determine the asymptotic stability of the system. 
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In Chapter 11, modal control theory has been applied to the 

design of a controller with linear feedback for a single machine-

infinite bus-bar system which represents a pumped storage plant. 

The effect of different load characteristics on the design of the 

feedback controller has been studied, load being added at the machine 

bus-bar in a non-linear passive form and as a combined load. The 

effect of representing the network of this system in different ways 

on the design of the feedback controller has also been explored. The 

eigenvalues of the system are relocated to satisfactory positions during 

the design process. It is well known that it is possible to achieve 

any closed loop eigenvalue if the open loop is controllable. Here 

it has only been found necessary to re-locate the critical eigen- 

values. 

Lastly, in Chapter 5 a study of the effect of load 

characteristics in the design of feedback controllers for a multi-

machine system is presented. Global and local modal controllers were 

designed and their performance was compared. Local control is 

derived from the global controller by disconnecting the feedback 

paths into a machine from the state variables that come from other 

machines. 
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1.5 	THE CONTRIBUTION OF THE THESIS  

It is thought that the original contributions of the 

thesis are: 

(i) 
	

Comparison between two methods for assessing the 

dynamic stability limits and identification of all the eigenvalues 

of a power system by systematically isolating the state variables. 

Thus the modes of oscillation are fully understood. 

A systematic formulation for the dynamic stability of 

multi—machine power systems in order to study the interaction 

between machines, including the effect of different load 

representation, which'is developed and implemented in a digital 

simulation. 

An assessment of the importance of load characteristics 

and the transient network terms in the design of feedback 

controllers in power systems. 

A method'for the design of a local controller for use 

in multi—machine models. The local controller is obtained by 

removing inter—machine feedback paths. Where this caused 

instability it was found that one path between machines could 

be used to give satisfactory performance. 



Y(t) _ [A] y(t) 

Infinite 
busbar 

Synchronous 
machine 
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CHAPTER 2  

THE EFFECT OF LOAD CHARACTERISTICS IN SINGLE MACHINE  
SYSTEM ANALYSIS  

2.1 	INTRODUCTION 

Several papers contain the analysis of dynamic stability 

of a power system including the effect of load characteristics 
 

34,35,36  Here a single—machine infinite busbar system bas been 

considered with an intermediate load bus-bar, as shown in Figure 

2.1. The method is largely that of Mauricio and Semlyen
14. 

The conditions for each operating point are determined by 

a load flow analysis in polar form using the method of Arriola15. 

The equations of the system are linearised about the operating point 

and obtained in the form: 

Figure 2.1 	Single—machine infinite busbar system. 
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The dynamic stability is assessed by considering the 

eigenvalues of £A] , stability being lost when any eigenvalue has a 

positive real part. The boundaries to stable operation of the system 

are found by considering a succession of operating points. The 

effect of load in different representations14,38,39 has been explored. 

Two generator AVRs have been considered, the generator being a 

hydroelectric machine. 

Sensitivity analysis of the eigenvalues with respect to 

system parameters and a state variable reduction technique t0 identify 

the states and paths associated with each oscillating mode have been 

used. 

2.2 	METHOD OF ANALYSIS 

Every stability study requires a load flow calculation in 

order to determine the equilibrium point about which stability is to 

be investigated. The Newton—Raphson method may be used to obtain load 

flow very efficiently. In the iterative solution the method uses the 

linearized power flow.equations (2.1) which may also represent the 

network in a small—signal stability' study: 

rAP 	
[Jl 	J2  6b I 

AQ_ 	J3 J4_ OVj. 
(2.1) 

The synchronous machine representation, described in detail 

in Section 2.2.1, is referred to a d.q. frame fixed to the machine 

rotor and for which the terminal quantities are vd, Vq,  id, iq. 
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However, the network is represented on the basis of a steady state 

representation and this assumption implies that the transient 

components in the network are ignored. Attention is concentrated on 

the steady state behaviour of the network in a polar frame of 

reference, rather than the rectangular DQ frame adopted in several 

works3'5229.  In this polar frame the terminal (bus) quantities are 

P, Q, ā, V. This also eases the representation of many types of 

.loads whose behaviour is defined by relations of active and reactive 

power as functions of voltage. 

In order to investigate how the load characteristics affect 

the system stability, several types of loads have been considered in 

the computations, and the stability limit has been determined for 

each. 

2.2.1 	Description of Synchronous Machine 

A complete description of the dynamic behaviour of the 

synchronous machine requires consideration of its electrical and 

mechanical characteristics as well as the associated control systems. 

Parkes model describing the dynamic characteristics of a synchronous 

machine in per—unit3'S'47'63,  with the sign convention for currents 

adopted by the IEEE Rotating MachineryCommittee13, is given by the 

following equations. In the per—unit system, each voltage, flux, 

current and impedance is expressed as the ratio of its actual 

value to a selected base value. The equations are: 



fd 	1 

Xafd Efd = rfdifd + Wo n  4/fd 

r 

(2.9) 

0 

1 vd  = — W p yd  — n (Pq  — rsid  (2.10) 

(2.11) 0  _ 1 
1,30 p  Ykd + rlcdikd 

for the direct axis flux linkages: 

(Pfd = Xffdifd + Xafdid + Xfkdikd  

d = Xafdifd + Xdid  + Xakdikd  

Ykd = Xfkdlfd + Xakdid + Xkkdikd 

for the quadrature axis flux linkages: 
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Xgiq  + Xakgikq 	(2.5) 

Ykq - X
akgiq 

 + Xkkglkq 	
(2.6) 

and the direct axis voltages: 

1 
vfd = rfdifd + W p  Yfd (2.7) 

The exciter voltage referred to the armature circuit is 

defined by: 

Efd 
	Xafd v  
 r fd 	fd (2.8) 

Then the field circuit equation can be written as: 
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The quadrature axis voltages are: 

v 	— 1 ', 
q 	CJ0 p (̀pq

+n yd — rsiq  

_ 1 0 	p 
Ykq 

+ rkgi
kq  

(2.12) 

(2.13) 

These equations have been derived neglecting the effects of 

saturation and assuming that all p.u. mutual inductances between 

rotor and stator circuits in each axis are equal to one another. 

On this basis, the following relations between self—mutual and 

leakage reactances pertain: 

Xffd — Xmd + XQfd 

Xd 	
= Xmd + Xea  

Xkkd 
= 

Xmd + XEkd  

Xq 	= Xmq  + Xta  

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Xkkq = • Xmq  + 
q 

(2.18) 

In order to complete the description of the synchronous 

machine, the following equations of motion are necessary: 

Tmpn  =  mech — T g 

P 6r  _ Won 

(2.19) 

(2.20) 

The air gap torque is given by: 

Tg 
 — T dlq 	

( qid 	 (2.21) 
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A widely used model for the automatic voltage regulator
1,2,3,14 

is given by the single delay equation: 

K 
r  

Efd = 1 ;- TEp (vref — vt) (2.22) 

The conventional dashpot hydrospeed governor is represented 

in the following equations for the turbine, the governor, the gate 

servomotor and the water column: 

Tmech 	= 	(A.0 a. At~ — Dn)(1 + h)312 -. AB 	(2,23) 

pC 	= 	— pn — atpg — T (C — n) 	(2.24) 

pg 	= 	Qg(C — 6p g — Wspn) 	(2.25) 

2 
(2.26) ph 	= 	— 2pg — T . 

These equations are similar to those used in other 

p pers 4,5
,1- 

. Any other models for the voltage regulator and speed a  

governor could be easily introduced. 

2.2.2 	Transformation Equations 

A set of transformation equations is necessary in order to 

establish the interconnection between the machine dq frame and the 

network polar frame. The active and reactive powers at the machine 

terminals are referred to the dq frame fixed to the machine rotor. 

In order to relate vd, vq, id, iq to the polar network frame the 

angles in the phasor diagram shown in Figure 2.2 have to be taken 

into account.. 
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Figure 2.2 	Relation between the dq and network reference frames. 

From the phasor diagram in Figure 2.2: 

vq  + jvd  (2.27) 

(2.28) 

then: 

P2  = vdid  + vgiq 	 (2.29) 

Q2 = Vdi  
—vi 

q 	qd 

	 (2.30) 

V2 = vd2 + vq2 	 (2.31) 

t  —1 °d 
g vq 

(2.32) 

hr  = b
2 
- m 	 (2.33) 
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2.2.3 	Linear Power System Model  

If the power system is perturbed, it will acquire a new 

operating state. If the perturbation is small, the new operating 

state will not be appreciably different from the initial one. In 

other words, the state variables or the system parameters will 

usually not change appreciably. Thus the operation is in the 

neighbourhood of a certain quiescent state yo. In this limited range 

of operation a non—linear system can be described mathematically by 

linearized equations. The method of analysis used to linearize the 

differential equations describing the system behaviour is to assume 

small changes in system quantities such as A6r'  &V, AP, change in 

rotor angle, voltage, and power respectively. Equations for these 

variables are found by making a Taylor series expansion about yo  

and neglecting higher order terms1'
5'14. 

If the state space vector y has an initial state yo  at 

time t = to, on the occurrence of a small disturbance, i.e. after. 

t = to,  the state. will change slightly from their previous positions 

or values. Thus: 

+ 6y 
	 (2.34) 

If the state space model is in the form: 

y = f(Y, t) 
	

(2.35) 

the A matrix may be computed by finding the total differential dy 

at yo  with respect to all variables, i.e. with dy = Ay: 

Y = yo  + AY (2.36) 
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DI  
TY--2

8f 	
Y,Z 

+ ... 	
af 

~3' = ay~ 	TY--2 	Y. 
	11 

2 A yn (2.37) 
yo 	yo 	yo 

[
3. f ōf 	4f 

ay1 dy2 	ayn 
yo 

= AAy 	(2.38) 

The elements of the A matrix depend upon the initial value 

of the state vector yo. For a specific dynamic study the A matrix is 

considered constant. The dynamic properties of the system described 

by equation (2.38) are determined from the nature of the eigenvalues 

of the A matrix. The general form of the above equations has been 

used to linearize the power system equations. 

The linearized machine model is given below in a compact 

form, detailed derivations being given in Appendix A.1: 

[ a(fig] = [X] [aig] 	(2.39) 

CA VJ = C R ] [ A i g] f w [IJ + [I*gj [ A (P g3 + C yg*J an 

(2.40) 

Tm pan = AT
mech - AT 

pgr = ()Jo 
©n 

For the automatic voltage regulator: 

Kr  
aE fd = 1 + Trgp aV 

The speed governor and associated equations are: 

(2.41) 

(2.42) 

(2.43) 

T
mech _ At Pg - BDnom A n + 1. 5' .BAt Ah 

13 460 	-pan - Stpag - --(AC + An) 
R- 
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pAg = Qg(AC - 5 Ag - WpAn) 
	

(2.46) 

pAh = -2pag-T 1h 	 (2.47) 
W 

As mentioned earlier, the short-lived transients in the 

transmission system are neglected and the network equations (2.1) 

can be used, which are directly in linear form. In Chapter 4, 

Section 4.4.1, the significance of these transient network terms is 

examined. 

Equations (2.29)-(2.33) can be rearranged in a mair'ix 

form as: 

AP 2 	id 	i 	vd 	vq 	0 

AQ2 -  vq  -id -v vd  0 

AV2 	Vd 	
-- 	0 	0 	0 

2 
A112 	

v 	
0 	0 	1 

v2 2 

Qvd  
Av 

q 
Aid  
Ai 
A bq 

(2.48) 

  

  

2.2.4 	Nonsynchronous Loads Representation  

Several types of loads were considered in the present 

analysis; a non-linear passive load recommended by the IEF'F', group38, 

an induction motor represented by Mauricio and Semlyen14  and a 

combined load recommended by Shackshaft et al.39  that includes a 

constant impedance load in parallel with an equivalent induction 

motor. 

Neglecting the frequency dependence of the non-linear 

load and representing it by a static model of exponential form, 
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the load—voltage dependence can be expressed in linearised form as 

follows, details of derivation being given in Appendix A.1: 

APL = Kp v Av 

Q 
AQL = Kq V 

AV 

(2.49) 

(2.50) 

The representation of an induction motor is desirable in a 

stability study, when appreciable system load is known to be 

induction motors and representational accuracy is of great importance. 

Basically the same set of equations that describes a 

synchronous machine can be used. However, several simplifications 

can be'made, as shown in. Appendix A.1. Thus: 

A 'f mot1 = [XmotJ [imot] (2.51) 	. 

COv] = [R CAimotl + f -— [i:+ Cs ]]. ~ mot 	 mot 

(2.52) 

— 
Tmp An = ATmech 	

AT (2.53) 

The transformation 

APL 

AQL 

~VL 

_6'b j 

equation is: 

id 	zq 	vd 	vq 

iq 	
—id 	

—vq. 	vd 

vd/V 	vq/V 	0 	0 

v /V2 
—vd/V2 0 	0 

Lvd 
Av 

q 

Aid 

— Alq- 

(2.51}) 

The equivalent combined load mode139 consists of an 

induction motor taking powers Pm and Qm, a constant impedance 

static load model Ps and Qs, and a saturation characteristic Qsat 
to 

represent the magnetic saturation of transformer and motor steel. 
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The active and reactive power of the group in a linearized 

form responds to small changes in both the magnitude and phase angle 

of the supply voltage and the following equations apply: 

APL = C2V(Gm+Gs) m  mcos(Am+S)J1v-[V mYmsin(om+6)JQb 

(2.55) 

LPL  = L2V(Bm+Bs)—VmYmsin(8m+cS)] ,V--CVVmYmcos(8m+b)j Q 6 

(2.56) 

Derivation of these equations is given in Appendix A.1. 

2.2.5 	Basic State Space Formulation Approach  

When the load flow has been obtained for the system and the 

equations have been linearised as explained before, the equations are 

transformed into a form in which small signal analysis can be 

implemented in a digital computer program. 

The small signal form of equation (2.1) may be used to 

represent the network, if: 

C6NJ T  = C .6P MQ L6 LV] 	 (2.57) 

Equation (2.1) may be rewritten as: 

L N:_C(] = 0 	 (2.58) 

where: --00 = E I JJ 
	

(2.59) 

= unit matrix 

and: 	DJ. =.Jacobian matrix as defined by equation (2.1). 
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The terminal quantities of the network can then be matched 

with the small—signal variables of the generators or loads: 

[KO [crit] = Co] (2.60) 

Equations (2.58) and (2.60) completely describe the small 

signal behaviour of the system: 

[K~ [6Z] = 1_07 

or rearranged as: 

[Kl J ytt)+ [K2] y(t)i- [K3] z = [0J 

[K4] Y(tw [K5.1 . z = [0] and: 

(2.61) 

(2.62) 

(2.63) 

where Aare the state variables and z are the algebraic-variables. 

Equations (2.62) and (2.63) are developed in Appendix A.2. The 

state equations of the system are obtained in the normal form: 

y(t)= [A3 y(t) 	 (2.64) 

where: 	[A1 = [K31 -{[K33 CK5r1 [K4] — [K2J} 	(2.65) 

[A] is asymmetric and ill-conditioned. The ei.genvalues are obtained 

using a standard subroutine and the system is stable so long as none 

has a positive real part. 

E gn(2.61) defined as in reference I~1 

K, . 	K2 K3 

0 ky k 5 

  

0 

 

LiCo 

 

z 
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2.3 	APPLICATION OF THE TECHNIQ E 

In this chapter the effect of load characteristics is 

studied in a single-machine system, as shown in Figure 2.1. In this 

section the technique presented in the previous section is applied. 

Several types of load representation were considered: 

1. Non-linear passive load, 

2. induction motor load, 

3. Combined load. 

In Appendix A.2 the system equations are given for each 

case. They have been arranged in such a way that the [K] matrix in 

equation (2.61) can be formed easily by the computer program. This 

section shows how the linear equations that represent the system 

are arranged in a matrix form for each load representation. The 

flow chart of the program is shown in Figure 2.2., For the non-

linear passive load any type or combination of exponential forms of 

load equations (2.49) and (2.50) can be represented very easily by 

merely changing  the value of the constants Kp  and Kq. For example, 

for constant impedance representation, Kp  = Kq  = 2. The [K] matrix 

does not change its structure'when the values of the Ks change. 

The states of the system are: 

yc►)= L_ oy)g, t fd' Air, fin, Ac, AhĪt 	(2.66) 

where: 

A Yg 	C 'Wfd' A(Pd' (Pk d d"t' q ' A4)  ] (2.67). 

and the algebraic variables: 
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ASSESS THE LOAD FLOW BY 
THE NEWTON RAPHSON METHOD 

• 

.r  

'REDUCE [KI MATRIX TO OBTAIN 
THECA] CHARACTERISTIC MATIZT.X 

Figure 2.2 	Flow diagram for the dynamic 
stability program. 

IS INDUCTION 
MOTOR OR COMBINED 
LOAD TO ANALYSE 

CHOOSE K AND Kq  

OF PL  C1V{Ps 

AND QL  = C2Vkq. 

Yes 

ASSESS INDUCTION 
MOTOR. PARAMETERS 

FORM THE DKC MATRIX OF THE 
STATE SPACE EQUATIONS IN 

LINEARIZED FORM 

ASSESS GENERATOR OPERATING 
POINT PARAMETERS 

READ DATA 

FORM Y BUS OF THE 
3 BUSES SYSTEM 

ASSESS THE EIGENVALUES OF [A]l 
TO DETERMINE THE STABILITY 

LIMIT, AND PRINT THEM 
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z = C AP2, AQ2 , M2' AV2' 1~vd' Avq , Alg' AP3, AQ3, A63, AV3]t 

(2.68) 

where: 

(2.69) 

The CK] matrix for this case is shown in Figure 2.3. 

For an induction motor load, the state vector DJ has the 
form: 

y(t) 	C Ayg, AEfd, Abr, An, Ag, Ac, Ah, Ay., Ali t 
(2.70) 

where: 

L m - C AYsd' AYrd' ZA)sq ' A`Yrq] (2.71) 

The algebraic variables are: 

A AS2, Alilhvāf r q L1ig, AP3, AQ3, A 3, Ī1A,60isld't 1 

(2.72) 

where: 

lm 	£ Aisd' A'rd' Aisq' AlrgI (2.73) 

The numerical subscripts are related to the respective 

nodes of the system in Figure 2.1. The [K] matrix for this case is 

shown in Figure 2.4. 

For a combined load the structure of the £K] matrix is 
similar to that in the non—linear passive load representation. 

Only the load equations are changed, equations (2.55) and (2.56) 

being substituted for equations (2.49) and (2.50) in the system 

equations. These are shown in Appendix A.2 and identified in the 

computer program as: 
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. Figure .2.1: Matrix [KJ for the sY8tem, considering the load as non-lit.lenr, P 0i~ Q:: CVk • 
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SPL  = (PART3) ii + (PART,) Ab 	(2.74) 

AAL  = (QART3) 11v + (QART4))1 b 	(2.75) 

These terms appear in thea] matrix at the last two columns and the 

23rd  and 24th  rows of Figure 2.3. 

2.4 	THE DYNAMIC STABILITY LIMIT CONSIDERING THE  
EFFECT OF LOAD CHARACTERISTICS  

Results are presented in this section for the power system 

shown in Figure 2.1. The generator data is given in Table 2.1 and a 

variety of loads are applied at the intermediate bus-bar. Two 

methods are used for determining the stability limit: 

1. A succession of load flows were made for ever-

increasing generated power, as did Mauricio and Semlyen
14, 

keeping the load power constant. The eigenvalues were 

obtained for each operating point indicating the asymptotic 

stability. 

2. _ 	Instead of increasing generated power, the power 

factor of generation was varied keeping within the feasible 

machine operating region. 

It is shown below that the first method gives rise to 

operating conditions that are not feasible and that therefore the 

stability limits devised with it are of little consequence. The 

second method is more realistic as it represents actual operating 

conditions. 



Xffd 

Xafd 

Xfkd 

Xd 

Xakd 

Xkkd 

X 
q, 

Xakq 

kkq 

Kr 

Trg 

A 

1.1 

= 	1.0 

= 	1.0 

= 	1.2 

= 	1.0 

= 	1.1 

= 	0.8 

= 	0.6 

= 	0.8 

= —20.0 

_ 	0.5 sec. 

= 	3 kWSJkVA 

D 	= '1.0 
nom 

bt 	= 	0.33 

Sp 	= 	0.03
. 

Q 	= 	1.0 
g 

At 	= 	1.25 

Ws 	= 	0.5 

gl 	= 	0.16 

g2 	=. 	0.96 

Tj~ 	= 	1.0 sec. 

TR 	= 	4.0 sec. 

Xt 
1 
+Xt 

2 
= 0.3 

Table 2.1: 
	

Typical parameters of a hydro generating set, 

a.v.r., dashpot hydrospeed governor and network. 

All values are in per unit. 

40. 



X 	X 
s 	I 	r  

0.443 I 0.388 

Speed 
revs 

1800 

H = kW  2—   
kVA 

Tmech oC velocity2  

o< velocity 

= constant 

Slip at full load S = 0.016. 

Rs  

0.032 

R 
r  

0.034 

X m  

20.15 
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Operating conditions for the computed results with 

method 1 are shown in Tables 2.3 and 2.4. Load is taken to consist 

of: 

(i) Non—linear passive load with K and Kq  in the ranges 

0-3 and 2-40 and also as O.and 6. Critical eigenvalues are 

shown in Figure 2.5. 

An induction motor with the parameters shown in 

Table 2.2. The eigenvalues of the system when the induction 

motor is at full load are shown in Table 2.5 and critical 

eigenvalues are also indicated in Figure 2.5. The inertia 

constant (H) was varied and the mechanical load torque (Tmech) 

of the induction machine was considered in three different ways, 

in order to investigate the effect in the ,power system stability. 

The eigenvalues associated with transient rotor terms, and that 

with the mechanical oscillation of the induction machine were 

the most affected. Results are summarized in Table 2.6. 

Table 2.2: 	Induction motor parameters p.u. for a 40 MW machine. 



P. F. 
Lagging  0 

2 
V
2 2 

V
1 

 
1 1 

b 
r  

i
d 

 
d q v d v q 

I', 
Td 

Ci) 
`rq P G QG 

0.981 11.058 1.00 9.961 1.00 0.0. 36.530 -0.435 0.568 -0.447 0.895 0.900 0.452 0.700 0.137 

0.964 15.390  1.00 24.676 1.00 0.0 66.306 -1.305 0.846 -0.664 0.748 0.756 0.677 1.500 0.413 

0.940  19.806 1.00 34.830 1.00 0.0 79.770 -1.922 0.907 -0.706 0.708 0.717 0.726 2.000 0.720 

0.920 22.930 1.00 41.586 1.00 0.0 87.043 -2.322 0.920 -0.713 0.701 0.711 0.736 2.300 0.973 

0.900 24.060 1.00 43.996 1.00 0.0 89.414 -2.462 0.921 -0.712 0.702 0.711 0.737 2.400 1.072 

0.900 25.265 1.00 46.580 1.00 0.0 91.877 -2.608 0.920 -0.710 0.712 0.712 0.736 2.500 1.179 

Table 2.3: Machine variables for various armature power factors. Angles are in degrees and all 
other variables are in per unit, using method 1. 



P
L 

 QL  V3  

0.983 

a3 

1.778 

isd 

0.193 

lsq  

-0.409 

ird 

-0.147 

1rcL  

0.416 -0.395 -0.201 

-0.395 	
' 

-0.201 0.965 6.573 0.161 -0.431 -0.114 0.435 

-0.395 -0.201 0.945 9.781 0.139 -0.450 -0.091 0.450 

-0.395 -0.201 0.927 11.853 0.125 -0.462 -0.076 0.461 

-0.395 -0.201 0.920 12.579 0.120 -0.467 -0.071 0.466 

vsd vsq sd (Psq (Vrd wrq PROT Pmech 

0.030 0.982 0.970 -0.036 0.832 0.294 0.378 0.371 

0.110 	• 0.959 0.946 -0.115 0.838 0.219 0.364 0.358 

0.160 0.931 0.918 -0.164 0.831 0.169 0.349 0.343 

0.190 0.908 0.894 -0.194 0.821 0.136 0.336 0.331 

0.200 0.898 0.886 -0.203 - 	0.817 0.125 • 0.331 0.326 

Table_2.4: ' 	Induction motor variables for different operating points. 



br 
A1' 

A2 
A3, A4 A5' A6 17 A8 A9 A10,71'11 )12'.X13 A14 A15 7̀ 16 

36.530 
-20.79 
-j780.84 

-15.70 
1)406.71 

-10.11 
±3 13.01 

_44.11 -31.52 - 8.02 +-0.5 50 -j 8.70 
+- 1.24 
-3 2.57 -0.596 -0.012 -2.000 

66.306 
-20.82 
j-j781.55 

-15.73 
13407.77 

-10.11 
±j 13.06 

-44.00 -32.12 - 7.88 +-0.4 52 
-j 8.90 +- 	

1.07 
-~ 2.s7 

_0.596 -0.012 -2.000 

79.7 0 
-20.83 
+j782.44jIf09.Q8 

-15.73 -10.11 
±j 13.07 

_44•00 -32.29 - 7.71 ±j0.5 5
4 ±j0.897 

-0.596 -0.012 -2.000 

-15.81 
+. 	. -3410.25 

-I0.12 
~. -3 13.06 

-44.00 -32.34 -.7.55 
-0.91~5 
+3 6.52 

+-0.497 
-j 4.32 

-0.596 -0.012 -2.000 
87.043 

-20.84 
+. 	. 
-3783.23 

89.414 -20.84 + . _j783.56 
-15.82 

+ -j41o.73 
-10.12 

1.3  	13.06 
-44.00 -32.35 - 7.48 -1.580 + . -3 5.92 

+0.13fl 
+. -3 4.68 -0.596 -0.012 -2.000 

Table 2.5: The eigenvalues of the [Al matrix at various operating angles. 
Load considered as induction motor. 
S = 0.01642. H = 2 seconds, Tmech 

= constant, Method 1. 



Induction 
Motor 

Oscillation 

Tmech 
= constant H 	= 	2 Rotor 

Angle 
Sr H = 2 H = 3 H = 4 T

mech ()( vel 2 Tmech CX vel 

'5  A6 
-10.11 ± j 	13.0 -11.00 ± j 10.61 -11.69 ± j 9.44 -9.17 ± j 12.57 -10.05 ± j 12.94 36.53 

T5 	6  -10.11 ± j 	13.0 -10.97 ± j 10.70 -11.65 ± j 9.65 -9.82 ± j 12.62 -10.06 ± j 12.99 66.30 

T5 
 A6 

-10.11 ± j 	13.0 -10.97 ± j 10.70 -11.61 ± j 9.56 -9.83 ± j 12.63 -10.06 ± j 12.99 79.77 

A5  A6  -10.11 ± j 	13.0 -10.96 ± j 10.76 -11.59 ± j 9.60 -9.83 ± j 12.63 -10.06 ± j 12.99 87.04 

T5  A6  -10.11 ± j 	13.0 -10.96 ± j 10.76 -11.58 ± j 9.60 -9.83 ± j 12.63 -10.06 ± j 12.99 89.41 

"X
9 

-8.02 -6.23 -4.85 .-7.40 -7.91 

Ag  -7.88 -6.14 -4.80 -7.27 -7.77 

'ra  -7.71 -6.04 -4.75 	• -7.11 -7.61 
11 

A9  -7.55 -5.90 -4.69 -6.95 -7.45 

AQ -7.48 -5.88 -4.66 -6.88 -7.38 

Table 2.6: 
	

Eigenvalues associated with the induction motor for different operating 
points and different motor characteristics. 

• • 



Ileal part of 

critical eigenvalue X. 
1 

1.0 	1.5 -1.5 	-1.0 	-0.5 
	

0.5 

46. 	• 

100 
Non—linear passive load Kp=0 Kq=6 

Non—linear passive load K 0-33 Kg230 

80 Induction motor, S = 0.016 

60 

40 

Figure 2.5: 	Locus of real part of the critical eigenvalues 

with changing rotor angle, for different types 

of load. using Method 1 (medium load). 
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Method 2 was used in order to improve the system 

representation, different generator power factors being considered, 

as shown in Table 2.8. 

Three different types of load representation were analysed, 

the first two being, as with Method 1. For non—linear passive load 

with several values of K and Kq  , critical eigenvalues are shown in 

Figure 2.6. Induction motor load was considered as an equivalent 

motor with the parameters of the largest motor shown in Table 2.7. 

Eigenvalues when full load operation is considered are shown in 

Table 2.9. Figure 2.6 shows the critical eigenvalue variations for 

both full load and overload induction motor operation, i.e. operating 

near maximum torque 
(Tmax). 

 An alternative approach suggested by 

Hacking and Berg46  in which the load is a number of induction 

machines of different sizes is shown in Appendix A.3, but has not 

been used here. 

.Shackshaft's combined load model (described in Section 

2.2.4) was used with the same power load as in previous analyses. 

60% of the load was induction motor load with the parameters used 

earlier. The remainder was considered as constant impedance load. 

The eigenvalues for this type of load are shown in Table 2.10. 

The significance of these results appears to be that for 

a medium load compared with the generated power the non—linear 

passive load may be either stabilizing or unstabilizing, depending 

on the values of K and K . Induction motor load reduces the 
p 	q 

stability limit only when it is operating near the maximum torque. 

Different induction motor inertias and mechanical loads were 
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HP V 
RATED 

SPEED 
r.p.m. 

Rs  Rr  L1=L2  

H 
LM 

g 

J 

kg.m2  

3 220 1710 0.435 0.816 0.0713 0.0693 0.089 

25 460 1695 0.249 0.536 0.0602 0.0587 0.554  

50 460 1705 0.087 0.228 0.0355 0.0347 1.662 

100 460 1700 0.031 0.134 0.0193 0.0189 4.449 

250 2300 1769 0.681 0.401 0.2342 0.2277 6.918 

500 2300 1773 0.262 0.187 0.1465 0.1433 11.062 

800 2300 1778 0.131 0.094 0.0976 0.0957 21.262 

1000 2300 1778 0.112 0.074 0.1452 0.1436 29.871 

1500 2300 1783 0.056 0.037 0.0532 0.0527 44.542 

2250 2300 1786 0.029 0.022 0.0352 0.0346 63.971 

6000 4160 1787 0.022 0.022 0.0597 0.0589 674.971 

Table 2.7: 
44 45 

Parameters of typical induction motors ' . 
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considered for the induction motor representation. The stability 

limit of the power system was not affected, but the damping of the 

oscillations introduced by the induction machine(eigenvalues ?, A6, 

%19  of Table 2.6) were affected, with the possibility of instability 

due to the induction motor's undamped oscillations. Table 2.10 shows 

the results when a combined load model was used. These results are 

similar to those of the non—linear passive load and the induction 

motor load (at full load). However, this combined load can be 

considered as a static load representation because no dynamic 

equations are included. The combined load is sufficiently general to 

be a good representation in any system. It has been used in the 

multi—machine stability studies in the following chapters. 

Mauri.cio and Semlyen14  have suggested that the non—linear 

passive load can have a significant effect on the stability of a 

power system, indicating high power stability limits (Pma).  They 

tried to show that the dynamic behaviour of loads can have a decisive 

influence on the stability limit of a power system. Their results 

are in contrast with the results shown in this thesis, because: 

1. Different magnitudes of loads have been used in the 

present analysis. 

2. A different approach to obtaining the operating 

conditions was taken. 

3. Differenc induction motor parameters were used. 

However, when the load at the intermediate bus bar was 

considered to be of high magnitude, i.e. PL  = 2.0 p.u. and QL  = 



P.F. 0 V2  62  
V1 bl 6   ld lq vd  

vq Yd q  PG QG 

-0.899 26.0 1.06 9.279 1.00 0.00 30.7 -0.5377 0.4945 -0.390 0.991 0.996 0.395 0.70 0.340 

-0.899 25.8 1.07 12.410 1.00 0.00 37.6 -0.720 0.582 -0.582 0.976 0.825 0.466 0.90 0.436 

1.000 0.0 0.93 16.510 1.00 0.00 58.5 -0.714 0.792 -0.627 0.696 0.704 0.634 1.00 0.000 

+0.940 -19.0 0.77 20.500 1.00 0.00 88.0 -1.010 0.909 -0.717 0.296 0.305 0.727 1.00 -0.350 

+0.920 -21.0 0.74 21.600 1.00 0.00 95.0 -1.130 0.902 -0.710 0.211 0.220 0.721 1.00 -0.400 

+0.920 -22.0 0.72 22.100 1.00 0.00 98.1 -1.190 0.894 -0.703 0.175 0.184 0.715 1.00 -0.420 

+0.910 -24.0 0.71 22.640 1.00 0.00 100.8 .-1.250 0.886 -0.696 0.145 0.153 0.709 1.00 -0.430 

Table 2.8: Machine variables for various armature power factors; angles are in degrees and 
all other variables are in per unit. Method 2; PL  0.382 p.u., QL  = 0.127 p.u. 

- Lagging P.F. 
+ Leading P.F. • 



6 X1'  ?40  a3 ' a4 7'5' 	A6 A7  A9 A10' al l a12' A13  A14 A15 A16  
30.7 -20.9±j802 -16.0±j437 -5.35±j108 -44.1 -31.4 -11.34 -0.615±j9.23 -1.319±j2.6 -0.596 -0.012 -2.00 

37.6 -20.9±j801 -16.0±j436 -5.35±j108 -44.1 -31.5 -11.36 -0.583±j9.54 -1.288±j2.6 -0.596 -0.012 -2.00 

58.5 -20.9±j806 -1. 6.1±3442 -5.33±j107 -44.0 -31.77 -11.25 -0.561±0.57 -1.119±j2.54 -0.596 -0.012 -2.00 

88.0 -21.0±j813 -16.3±j449 -5.26±j106 -44.0 -31.98 -11.09 -0.755±j6.59 -0.78±j2.97". -0.596 -0.012 -2.00 

95.0 -21.0±j815 -16.3±j451 -5.23±j105 -44.0 -32.0 -11.04 -1.030±j5.55 -0.50±j3.51 -0.596 -0.01.2 -2.00 

98.0 -21.0±j816 -16.3±j452 -5.22±j105 -44.0 -32.0 -11.02 -1.500±j4.97 -0.01±j3.83 -0.596 -0.012 -2.00 

100.8 -21.0±j816 -16.4±j453 -5.20±j105 -44.0 -32.0 -11.00 -2.1000±j4.74 +0.48±j3.80 -0.596 -0.012 -2.00 

The eigenvalues of the EAJ matrix at various operating angles. 
Load considered as induction-equivalent motor. 
S = 0.0057, H = 5 seconds, Method 2. 



br X1 	T2 a4 5̂ 	~6 T7 	T8 T9 T10 11 

30.77 -20.9±j745 -44.1 -31.3 -0.56±j9.31 -1.32{j2.58 -0.596 -0.012 -2.0 

37.6 -21.0±j745 -44.0 -31.5 -0.52±39.6 -1.29±j2.59 -0.596 -0.012 -2.0 

58.53 -21.2±j743 -44.0 -31.9 -0.51±j8.6 -1.12±j2.50 -0.596 -0.012 -2.0 

88.00 -21.2±j741 -43.9 -32.2 -0.717±j6.8 -0.80±j2.85 -0.596 -0.012 -2.0 

95.00. -21.2±j741 -43.9 -32.2 -0.94±j5.85 -0.59±j3.31 -0.596 -0.012 -2.0 

98.16 -21.2±j740 -43.9 -32.2 -1.25±j5.25 -0.28±j3.60 -0.596 -0.012 -2.0 

100.88 -21.1-J740 -43.9 -32.2 -1.70±j4.88 +0.23±j3.80 •-0.596 -0.012 -2.0 

Table 2.10:. Eigenvalues of the FAD matrix for the different operating points. 
Load considered as combined load CEGB model 60% induction motor 
load and the rest as constant impedance. Method 2. 
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X cc 

	

100 	Non—linear passive load: Kp=0, Kq=6 

Non—linear passive load: K =0a3,K =2.>0 

and induction motor (full ?oad) q  

Inductiōn motor load operating near 

	

80 	maximum torque (P 	): S = 0.02 
max 

40 

20 

Real part of 

critical eigenvalue 

—1.5 —1.0 	—0.5 0.5 1.0 	1.5 

Figure - 2.6: Locus of real part of the critical eigenvalues 

with change in the rotor angle; for non—linear 

passive load and induction motor load, using 

Method 2 •(medium load). 
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Figur 2.7: Locus of real part of the critical eigenvalues 
with change in the rotor angle; for non-linear 
passive load and constant impedance load; using 
Method 1 (high load). 

non-linear passive load, K =0,K =6 
P 	q 

constant impedance load, K =t{ 
P 

non-linear passive load, K =3,K =0 p 	Q 

Real part of 
critical eigenvalue 

1.0 	1.5 0.5 -1.5 
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1.0 p.u., and the operating conditions assessed by Method 1, as 

shown in Figure 2.7, the stability limits are very near to those 

presented in Reference 14. 

2.5 	OSCILLATING MODES IDENTIFICATION 

In the simulation of-complex systems, eigenvalue analysis 

is difficult to interpret, i.e. the location of the principal causes 

-of the oscillating modes is not easy to find. Mauricio and Semlyen14  
comment that it is not very easy to directly associate an eigenvalue 

to one particular loop, unless the respective eigenvector indicates 

this. Here, two methods of locating the source of oscillations have 

been tried. 

Firstly, the sensitivity of eigenvalues to system para-

meters can indicate "the cause" of oscillations; secondly, a state 

variable reduction method can indicate their source. 

The variation of the eigenvalues of the LA] matrix with 
system parameters is indicative of the effect that changes in the 

system will have on stability. Each time a system parameter or 

operating point changes, the TO matrix and corresponding eigenvalue 
change. 

The basic method for calculating eigenvalue sensitivities 

was taken from Van Ness et al.50: 

a CAS 
BW. 	( aa  xi, vi) 

Si - 	ace.. - 	(x., v.) (2.76) 
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where: 	are the eigenvectors of [A] , 

are the eigenvectors of [A] t ( [A] transposed). 

In the program written here, any parameter variation was 

• assumed to be a linear function of a variableA. 

Using equation (2.65) for the formulation of, the [A] matrix, 

it is clear that all the main parameters of the a.v.r. and speed 

governor are located in matrices [K1] , [K2] and [K3]only. If 

equation,(2.76) is applied to equation (2:65), hence; 

a [A] 
aaa - 

[Kl] a 
aoc1J — 
	 [K1] 1 f [K3] [K5] 1[K4] — CK2] 

l a [3] 	1~ 	 l a [K 	1 [K5]- LK4] - [K3] [K5] 	a«.
5] 

[K5~ [K4] 

+[K [K -~-1 a[K4]-
8[K2] 

3] 5] as 	aa. 	 (2.77) 

For the particular case of the a.v.r. parameters, equation (2.77) can 

be simplified to: . 

aCA] - [K1~ -1 
a 
aoKt3] [K ] -1 

[K4] - 
a 

eot~ 	(2.78) J 	 5 

n a similar way for the speed governor parameters, the 

simplified form is obtained as: 

[A] 
_ [tc1 J 1  aal] [K1]-1 [K3] [K51-1 [K] - [K2] 

[x1] -1  a 
J 

(2.79) 
• 

Once the eigenvectors of [A] and [A]t and their eigenvalues 

are obtained, the digenval::z sensitivities can be assessed by applying 

equations (2.76)-(2.79) as indicated above. 
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The flow diagram for this process is given in Figure 2.8. 

Results are presented for this analysis in Table 2.12, 

showing that changes in a.v.r. (using a.v.r recommended by the IEEE 

Committee16, Figure 2.9 and Table 2.11) parameters are related with 

the variations of the critical eigenvaluesa3, 	717, A8, 7'9' X10' 
associated with the a.v.r. loops, and the mechanical oscillations. 

The state variable reduction technique has been used by 

Alden and Nolan28 to obtain reduced synchronous machine models on 

the basis of physical assumptions. A similar technique was used in 

this study to identify sources of oscillations. Once the 

characteristic matrix EA: is obtained, rows and columns can be 
eliminated systematically corresponding with each state variable no 

longer wanted. For example, applying this process to equation (2.80) 

and eliminating the last row and column, putting yn = 0 gives 

equation (2.81) and the reduced set is given by equation (2.82). 

if yn =0: 

yl 

51.2 

yn 

yn-1 

0 

a11 

a21 

• 

[a 1 

A11 

— A
21 

a12 

a22 

an2 

. 

I 	-- 
~ 	Al2 

r 
I 	A22- 

.I 

yn-1 

yn 

aln 

a2n 

ann 
I 

yl 

Y2 

. 

• 
y

n- 

(2.80)  

(2.81) 
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-1 
11 	[Ali — Al2A22 A21 	n-1 

(2.82) 

In this study the element by element elimination algorithm 

given by Kimbark32  was used in order to avoid matrix inversions. 

This algorithm is indicated below, where the nth  element is to be 

eliminated: 

Y 
— 	a gnk 

ajk = ajk — a nn  

where: 	atk 
 = new element of DAO 

J 

ajk  = old element of [A] , 

j = 1,2,...,n-1 	k = 1,2,...,n-1 

(2.83) 

The columns of Table 2.13 show the full matrix (column 2) 

eigenvalues, and in the following columns the remaining eigenvalues 

as rows and columns of the A matrix are removed. Identification is 

achieved by observing which eigenvalues disappear with which state 

variable.. For instance, in the third column a state variable in the 

speed governor has been removed (h) and the eigenvalue —2.0 has been 

lost. 

State variable elimination was carried out in the following 

order; 

1. states related with the speed governor h, C and g; 

2. state related with rotor speed n; 

3. state related with the a.v.r. loop; 

4. state related with damper winding in q axis; 

5. state related with transient stator term in q axis; 

6. state related with damper winding in d axis; 

7. state related with transient stator term in d axis; 

8. state related with field winding. 
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READ PARAMETER VARIATIONS 0c., 
OF GAINS AND TIME CONSTANTS 

DO I = 1, N 

PRINT RESULTS.:: 

MAIN PROGRAM ASSESSES THE 
EIGENVALUES Ti AND EIGENVECTORS 

Vi OF THE [Al] AND [Apt MATRICES 

SENS = 1 
or SENS = 0 

CALL SENSI AND ASSESS ci[AJ/ōm 
AND FINALLY THE 

CO 
DN. (----x, )vLau.3. 

si = aoc 	x.v.
3. 3. 

Figure 2.8: 	Flow dienram for sensitivity analysis of the 
eigenvalue ~ using "SENSI" subroutine. 

59. 



E ~~_ 
Vref 

Ē f 

VR 
max 

kA  
1 + PTA 

1  
kE PTE 

VES R . 
min 

PKf  
1 + pTf 

60. 

Figure 2.9: 	Type 1 excitation system representation 
IEEE Model. 

• 50 amplifier gain 

• 0.01 exciter gain 

Kf 	= 0.057 Regulator stabilizer feedback gain 

TA 	= 	0.02 sec. regulator time constant 

TE 	= 	0.146 sec. exciter time constant' 

Tf 	= 0.45 Feedback time constant 

VR 	= 	1.0 p.u. Maximum value of regulator -voltage 
max 

VR 	= —1.0 p.u. Minimum value of regulator voltage 
min 

Table 2.11: 	Parameters of the excitation system 
IEEE Type 1 Model. 

Ef• d 



Eigenvalues 
without parameter 
variations 

KA  TA  KE  TE  Kf  Tf  

21A2 -20.95±j745 -20.95± j745 -20.95-J745 -20.95±j745 -20.95± j745 -20.95-J7!5 -20.95-j745 

y7,.-25.66±39.35 -25.64±j46.24 -32.0±j42.34 -25.63±j39..32 -25.61±j46.22 -25.7±j43-38 -26.014 j46.55 

A5 = -43.43 -43.43 -43.43 -43.43 -43.43 -43.43 -'13.43 

N 	= -31.37 -31.37 -31.37 -31.37 -31.37 -31.37 -31.37 

'A7,8=-0.534±j9.316  -0.533±J9.318 -0.534+j9.317 -0.533±j9.317 -0.532±j9.312 -0.54±j9.32 -0.541±j9.32 

A9,1 	-1.27±j1.341 -1.28±j1.341 Ō 1.315 -1.27± j1.345 -1.34±j1.32 -1.35±j -1.1 - j1.2 -1.0 - j1.5 

All  = -0.596 -0.596 -0.596 -0.596 -0.596 -0.596 -0.596 

T12 = -0.0125 -0.0125 -0.0125 -0.0125 -0.0125 -0.0125 -0.0125 

A15 = -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 

Table 2.12: 	Eigenvalue sensitivities of power system, with respect to the a.v.r. type no. 
(25% change). 

6  parameters, 



Matrix Order 

Eigenvalues  
11 10 9 8 7 6 5 4 3 2 1 

Stator 
Transient 
Terms 

-20.9+j745 
-20.9-j745 

-20.9+j745 
-20.9-j745 

-20.9+j745 
-20.9-j745 

-20.9+j745 
-20.9-j745 

-29.60+j744 
-29.60-j744 

-30.8+j745 
-30.8+ j746 

-17.1+j645 
-17.1- j645 -20150.4 3 -18.5x10' 

. 

Damper 
Windings 

-44.11 
-31.38 

-44.11 
-31.27 

-44.0 
-30.7 

-44.1 
-32.33 

-44.8 
-38.0 

-44.1 
-36.9 

-44.1 -43.0 • 

Mechanical 
Oscillations 

-0.5+j9.31 
-0.5-j9.31 

-0.64+j9.9 
-0.64-j9.9 

-1.28+j12.5 
-1.28-j12.5 

-O.1+j1.57 
-0.1-j1.57 -10.2 -10.3 -11.8 -11.7 -11.8 -11.9 -12.0 

A.V.R. 
and field 
Winding 

-1.32+j2.58 
-1.32-j2.58 

-1.32+j2.58 
-1.32-j2.58 

-1.32+j2.57 
-1.32-j2.57 

-1.4+j2.6 
-1.4-j2.6 

-1.3+j2.5 
-1.3-j2.5 -4.25 -4.30 -4.38 -4.37 -4.37 

-0.596 
-0.0125 	. 
-2.00 

-0.596 
-0.0125 -0.0129 Speed 

Governor 

Table 2.1: 	Oscillating mode identification by state variable reduction technique. 
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The first two columns show the identification obtained in 

this way. 

	

2.6 	CONCLUSION  

The effect of load characteristics has significant effect 

,on the system stability and in some circumstances the effect is 

substantial. However, this effect-depends on the magnitude of the 

load and the way in which each operating point is considered. Non-

linear passive load may be either stabilizing or unstabilizing 

	

r 	70-98°, Figures 2.5-2.7), depending on the values of K and Kq. 

In the case of a big isolated load considered by an induction motor 

load representation, it was shown that the effect of inertia constant 

variation and the mechanical load representation do not affect the 

stability limit. A critical case was found when the induction motor 

load operated at near the pull out torque (Tenax), which is rather 
• 

unusual. A combined load seems to give a good approach for a better 

representation of the load. However, with this type of load the 

dynamic behaviour of the induction machines cannot be considered as 

it is essentially a static representation. 

• The two methods of oscillating mode identification by 

sensitivity analysis and state variable reduction technique, have 

been tried. The former method does not identify all the oscillating 

modes exactly and the state with which they are related. The latter 

is a simple process requiring comparatively little computer memory 

and is able to identify all the oscillating modes, by systematically 

isolating each state variable. 
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CHAPTER 3  

DYNAMIC STABILITY IN MULTI-MACHINE SYSTEMS  
INCLUDING THE EFFECT OF LOAD CHARACTERISTICS  

3.1 	INTRODUCTION 

Many works have. been devoted to the analysis of the dynamic 

•stability of multi-machine systems using the state space formulation 

and assessing the eigenvalues of the characteristic matrix of the 

system, in order to study the interaction between machines. A 

review of these investigations is given. All of this work has been 

directed towards the mathematical problems of system formulation, 

brought about by computer limitations and the difficulties of working 

with ill-conditioned matrices which are difficult to invert. No 

method has previously been devised to include the effect of the load 

characteristics. 

In this chapter a small-signal dynamic model of an 

arbitrary number of interconnected power generating units including 

the effect of several load representations is developed in state 

space form. This form is convenient for the evaluation of system 

dynamic performance when conventional forms of control are utilized, 

and it also enables new forms of controllers to be developed using 

concepts of modern control theory. The analysis of large systems is 

limited by the memory capacity of the computer used. The use of 

sparsity techniques reduces the amount of memory req,.;ired and has 

enabled the full machine representation including a.v.r. and speed 

governor equations for a system with a mixture of thermal and 

hydroelectric plants. With this model matrix inversion is not 
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necessary. However, the response of the system to a small disturbance 

can be checked by numerical integration. The computational arrange-

ments of the method are described, where examples of its use are shown. 

3.2 	PAST WORK 

The small perturbation analysis of interconnected systems 

using the eigenvalues method has received a great deal of attention 

during the past decade. An important aspect of these studies is the 

development of a suitable system dynamic model. For certain items 

of power system equipment in connection with the dynamic modelling 

of synchronous machines, this model may be exceedingly complex and a 

systematic method of handling the system equations using a digital 

computer becomes essential. A number of authors have acknowledged 

this by devoting entire papers. to the problem 
 

However, none of them have included the effect of load characteristics 

in the system dynamic model. Reference 14 proposed a dynamic model 

including this effect but only for a single generator connected to 

an infinite bus-bar. 

Laughton1  proposed a method for dealing with the multi-

machine case using matrix elimination to obtain the [A] matrix from the 

set of differential and algebraic equations, a submatrix of order ne  

having.to be inverted. Also the machine model used was very simple. 

_ Undrill5  placed commendable emphasis on building the [A] matrix 

from submatrices representing system segments and this avoided large 

blocks of null elements. Nevertheless this procedure involves the 

inversion of an lln x lln matrix, where n is the number of units 
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included in the system. Alden and Zein 
29 
 obtain the LAI matrix 

using the formulation based on the PQR Technique, i.e. the form 

of equation: 

[a]G7+CnlC°7 

which gives' the efficiency of submatrix build up. This method requires 

the inversion of an nv  order matrix, where nv  is the number of 

algebraic variables. Anderson et al.6°  used the PQR method, but 

the state equations and output equations for each unit are formed 

separately and are subsequently interconnected to the network. 

This procedure requires the inversion of 15th  order matrices n 

times, where n is the number of machines included in the system. In 

all of these works nonsynchronous loads were represented by constant 

admittances incorporated in the admittance network matrix. 

Other methods have been used to model single generators 

connected to an infinite bus bar. Anderson25  considered a single 

machine system, both linear and non-linear models being considered 

using the PQR method. Mauricio and Semlyen14  presented a new 

formulation of the dynamic model of a single generator connected to 

an infinite bus bar, as explained in Chapter 2. With this method a 

submatrix G of order na  has to be inverted where na  is the 

number,of algebraic equations. For big systems this submatrix 

can become very ill-cur_ditioned. Mauricio and Semlyen14  indicated 

that the same problem occurs for a system of two generators and an 

induction motor load. 
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3.3 	DERIVATION OF  THE STATE SPACE FORMULATION 
FOR, MULTI—MACHINE SYSTEMS  

The method described in this section is an adaptation of 

that proposed by Mauricio and Semlyen14, described in Chapter 2. The 

system model may be open or closed—loop. In the latter case, set 

points such as desired terminal voltages or speed changer settings 

are explicitly available. This form enables novel schemes of control 

to be derived directly using various methods of multi—variable control 

system design. The procedure presented here avoids the need to 

directly invert any submatrix in obtaining the [A] characteristic 

matrix. A matrix inversion—multiplication is obtained instead, which 

copes with the ill—condition and sparsity of a submatrix. Neither of 

these advantages were directly. available using the procedure 

recommended by Mauricio and Semlyen14. 

The method requires that the state of the system be described 

in terms of a set of first order differential equations in terms of 

the perturbed values in the form: 

3(t) = EA] y(t)-1- EB] U j 
	 (3.1) 

The EA] matrix may then be examined for stability using 

eigenvalue analysis. 

3.3.1 	System Representation  

Any power system has the configuration shown in Figure 3.1, 

in which three types of components are identified, namely synchronous 

machines, linear passive networks and non—synchronous loads. Each 
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synchronous machine is described by the set of Park4s equations
13,14  

as given in Appendix B.1. The network is described by the power load 

flow equations of Newton—Raphson polar form given in Chapter 2 for 

a simple power system and developed for a multi—machine system in 

Appendix B.1. In order to investigate how the load characteristics 

affect the system stability several types of load have been considered. 

These are: 

1. Non—linear passive loads, which are a function of 

voltage38, the function being variable. 

2. Shackshaftos load model39, having a constant impedance 

passive load in parallel with induction motors. Power 

consumption is related to voltage and phase variations. 

These"two types of load are incorporated in the network equations, 

as shown in Appendix B.1. 

The excitation systems are assumed to have a single time 

constant14. Each primemover is controlled by an appropriate speed 

governor. A typical hydrospeed governor similar to that used in 

Reference 55 was used for the hydraulic plants and for the thermal 

plants the arrangement was based on the Kingsnorth and Didcot 

installations63. Block diagrams and equations for both types are 

given in Appendix B.2. 
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3.3.2 	Derivation of the State Equations  

The complete system of differential and algebraic equations 

has, after linearization, the general form: 

= EBo] u(t) 	 (3.2) 

which can be rewritten in a developed form as: 

[Klu y(t) + [Kg y(t) + pK3] z = [B ] u(t) 

[K43 y(t) + EK5] z = [0] 

(3.3) 

(3.4) 

These equations give the state space equation (3.5), which may be 

used to assess the dynamic stability of the system: 

S7 (t) = CAJ y(t) + [BJ u(t) (3.5) 

where: CA: = Cl~1~ LEK EK5T1 CK4] - CK27 (3.6) 

DJ= [Kl~ [B0] 	 (3.7) 

Numerical difficulties were to be expected in the inversion 

of the submatrix LK5] for multi—machine systems as this matrix was 

found to be very ill—conditioned even for small systemsll}. In 

order to avoid this difficulty, the new formulation described in 

this section reduced some of the algebraic equations in equation (3.4), 

minimizing the order of [K5] , thus reducing computer storage and 

processing time. Also, instead of inverting FKO in equation (3.6) 

by a direct method, it was solved as a set of real linear equations 

[K] 

 

Sr(t) 

y(t) 

z 

   

   



E E 
2 

H - M 

E 
n 

LINEAR PASSIVE NETWORK 

Non-synchronous loads 

Figure 3.1: 	Configuration of typical power system for dynamic stability studies. 
E-excitation system, M-primemover system, G-synchronous machines. 
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with multiple right—hand sides, FK51 EXSOLJ = [ICta
] ' by Croutls 

method31, which gives directly the product [K511 [K4] required in 

equation (3.6). 

As the [Ka matrix in equation (3.:2) is extremely sparse, 
sparse matrix techniques are applied for the storage of the submatrices 

in equations (3.3) and (3.4). This technique is applied mainly when 

the [K1_1 elements were obtained directly without the inversion of 

that matrix, and stored as the subniatrices [K] , [K3] and [B0] in 

equations (3.6) and (3.7). This gives a simpler form of [Almatrix which 

is easier to use. 

The state variables for the description of n machines is 

selected as: 

Y(t)  _ [ ' ifd1 A4)d1 `1kd1 Wq1 'ikg1 AEfd. L br
1 tn1 

A C)hl i1 l)h2 A Lai 2 .... 	(1)rd LWd A4)Ikd 	 q n 	n 	n 	n 

Q'tt 11,, t" kgn aEfdn Abrn Ann . Qgfn Ag Ahn] 

(3.8) 

The algebraic variables for an n machine and m mode system are 

selected and ordered as follows: 

t z = [ Ad1 Avi ... Abm Avm P1 dQl ... APm Aq. Avdl ... 

Av AvAv ... Av n Aifd Aid 	 'kd Ai Aik q •
q 	1 	]. 	1 	ql 	ql 

... 

~i fd Aid Aikd Aiq ' kq 	(3.9) 
n n n n n 

Non—linear passive loads with only voltage dependence have 

been taken into the analysis. The linearized form can be expressed 
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as in Chapter 2 by: 

_ 	PLi DP Li = K. Vi - DVi 

An 	= K QLl  - Dv. Li 	qi Vi  

i = 1, 2, ..., n°  of load. 

(3.10) 

(3.11) 

A combined load was also taken into the analysis; the 

linearized form of the equations is obtained in Chapter 2 and they 

are repeated in this section as follows: 

D PLi ' E2Vi(Gm.+Gsi)  miYm.cos(0 .+6.)J DVimi 

+ [V.V Y sin(0  
i mi mi 	mi i 	i 

DQLi - E2Vi(Gmi+Gsi)-Vmiymi sin (0.  +S .1  AV. 

— CVi mi .Y 	.+S.)166. 

i = 1, 2, ..., no. of load. 

(3.12) 

(3.13) 

The detailed linearized system equations for a two-machine 

system and three nodes are given in Appendix B.l. These equations are 

arranged in order to obtain the equations (3.3) and '(3.4). This 

sample system is given as an example, but the method and the program 

are general for n machines and m nodes, only being limited by the ' 

computer storage capacity. The program was written in Fortran IV 

for CDC 6400 and Cyber 174 computers, available at the Imperial College, 

and is able to hold a system of nine machines with full representation 

(7 states), a.v.r. (1 state) and speed governor (3 states), and 

thirteen nodes with a variety of load characteristics. 
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3.3.3 	Selection of the Angular Reference  

An important point in the stability studies of multi-machine 

systems is the selection of the angular reference. For the present 

analysis the method presented by Undrill5 was used. He considered 

that the network frequency is identical to that of one arbitrarily 

chosen machine so that the network reference rotates in synchronism 

with the axes (dj, q.) of that machine. This implies that the rotor 

angle deviation L Or of the jth machine is always zero and that 

rotor angle changes may conveniently be expressed relative to the 

rotor angle of this machine in the system model, so that in general: 

Abri. = Q bri - Abr. 	 (3.14) 

This expresses the rotor displacement of the 
.

machine relative to 

the jth, as defined in Figure 3.2. It follows directly from 

equation (3.14) by differentiation, that: 

p Abrij = Wo(Ani - 'An~ ) (3.15) 

The procedure to implement these changes in equation (3.5) 

when the jt~ machine is the selected reference is: 

(i) delete the Lbr and p A Srj from the vectors 

Sr(t) and y(t); 

(ii) delete the row corresponding to p Abrj and the column 

corresponding to A61. in the [Ia matrix of equation (3.2) 

before the EA1 matrix is built up; 

(iii) delete the row corresponding to p A bre in matrix 

1 B0] of equation (3.2); 
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subtract Wo  from the elements of Da matrix whose 
column corresponds to Q 	 and -whose row corresponds to p A Srj. 

This change leaves (3.5) of order 11n-1 with all rotor 

angles referred to the jth  machine. It should be remembered that 

the jth  or reference machine does not represent an infinite bus bar. 

If it is desired to simulate an infinite bus bar as the reference, 

all that is required is to delete its speed variable from y(t) and 

y(t) and to delete the corresponding row and column from the EK] 

matrix, equation (3.2) 

low 

• 

!ALF WOR K EFERENCE 

    

Figure 3.2: 
	

Angular relationships between network 
reference frame. and synchronous machine 
reference axes. 
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3.4 	DIGITAL COMPUTER PROGRAM  

A computer program based on the above formulation has been 

written which makes a dynamic stability analysis of a multi—machine 

power system in which the effect of load characteristics is considered. 

The main features of the program are described below. 

For this sort of analysis a very large number of matrices 

is required. The dimensions of these matrices are in general different 

and if each matrix is represented and stored in a separate two—

dimensional array, the storage capacity required becomes excessive 

even for a very small power system. In this program only four 

matrices in two—dimensional array have been used for storing and 

assessing all the matrices required by the method. This was based on 

the logic of the computing approach; once the information in an array 

has been used, the array may easily be used for storing the 

information of other matrices with different dimensions. Furthermore, 

because of the structure of the matrices explained in Section 3.3.2, 

sparsity techniques have been used, and substantial computer 

memory saving has been made.. 

A general block diagram of the program is given in Figure 

3.3, and the basic steps given below. In any dynamic stability 

analysis, load flow calculations are required to determine the 

operating point of the system. These calculations are not included 

in the main program but the variables at each operating point are 

calculated from the magnitude and phase angle of the voltages and 	' 

the active and reactive powers at each node, already provided in a 

magnetic tape by a separate load flow program. After that the 
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2 	3 

Load Flow 
Newton-
Raphson 

READ DATA: 

Machines, Loads, 
AVR, Speed Gov. 
Parameters 

READ DATA: 

Number of Lines 
Number of Buses 
Impedances, Power 

TAPE 3 

Print: Load 
Flow Results 
and Jacobian • 

1~ 1 

5 

8 
	Y 

Sub Chara. 
Assess the 
EAJ Matrix 

Oscill. 
Integrate y(t) _ pl=y(t) 

Runge—Kutta-Merson 

11 

Ta e 4
Print LA=I Matrix 

7 

Sub K matrix 
build up the 
EK] matrix 

10 

Update Main 
Program 

for dynamic stability 

Compute eigenvalues 
and print them. 

Figure 3.3: 	Block diagram of the multi—machine 
dynamic stability computer program. 
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submatrices of.the DI matrix are built up systematically in order to 

assess the EA] characteristic matrix of the system. Once this matrix 
is obtained a standard subroutine31  is used to compute the 

eigenvalues of EA:. The eigenvalues of a linear dynamical system 
correspond to its natural modes of oscillation, with each real part 

giving the reciprocal decay time constant or damping coefficient of 

a mode and each pair of imaginary parts giving a natural angular 

frequency. The necessary and sufficient condition for dynamic 

stability is that all the eigenvalues have negative real parts, while 

the forcing frequencies which could lead to hunting problems may be 

determined by examination of the imaginary parts of the eigenvalues. 

Thus the program provides .a direct check on dynamic stability simply 

by checking the eigenvalues for positive real parts. This program 

can also determine the eigenvectorsof the system if it is required. 

Furthermore, the program can use another magnetic tape in order to 

save the EAS matrix,'which may be used to check the results by 

integrating a system of linear equations y(t) = [AJ y(t), giving the • 

the free response of the system for a small disturbance, using an 

integration Kutta-Mer3on subroutine31. This method uses five inter-

'mediate stages in an interval to get the Last-Value. The Kutta-

Merson process uses the equations: 

Y1  = Yo  + y, hi (x0, Y0) 

Y2  = yo  + hf (x0,y0) + 6  hf (xo  + šb,   y1) 

y3  = yo  + 8  hf (x0,y0) +  hf (x0  + 3 

y = y0  + 2  hf (x0,y0) +  hf (x0  + 3  , y2) 
+ 	2hf(x0  + 2 , y3) 

Y5 = Yo  + 6  hf (x 0,y0) + 3 hf (x0  + 2  ,Y3) + 1 hf (xo+h, y,) 
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The value of y accepted at the end of the step h is: 

Y = S(Y - 5) 

The results of the integration are plotted by Library subroutine 

and kept in microfilm. 

3.5 	APPLICATIONS AND RESULTS  

In this section results of dynamic stability studies for 

two multi-machine systems, one of two machines and three bus-bars, 

and the other of four machines and five bus-bars, are presented. 

The systems are shown in Figures 3.4 and 3.5. A variety of load • 

representations was tried in both systems. Finally, a system of 

nine machines and thirteen bus-bars shown in Figure 3.10 was tested. 

In all the cases analysed in this section, the parameters 

of the units were those given by Davison et a159. All the machines 

were assumed to be of the same capacity, i.e. 1.0 p.u. Data are 

given in Table 3.1. The values of power, voltage and phase angle 

obtained by a standard load flow analysis are indicated on each 

system diagram. These systems were specified quite arbitrarily, but 

they are intended to be representative of typical real systems. In 

all cases the action of the speed governors is represented by the 

models given in Appendix B.2 and the.a.v.r. are considered in a 

classic single time constant representation14. 

In this analysis it was found that the eigenvalues 

associated with the machine transient stator terms have very high 

r 



Figure 3.4: Four—machine system, all values are in p.u. 
referred to a common base. 
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3,4 Hydroelectric machines. 
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Tyco—machine system, all values are in p.u. 
referred to • a common base. 
,- Thermoelectric machine. 

_ Q, . Hydroelectric machine. 

Figure 3.5: 



Xffd 
= 2.018 X" 

q 
= 0.175 

Xa£d = 1.89 rid = 0.00124 

Xd = 2.04 rkd = 0.013 

Xfkd = 1.89 rkq = 0.0261 

Xakd = 1.89 rs = 0.00125 

Xkkd = 
1.908 Tdo 0.031 

X = 2.04 Tāo 4.3 

Xakq = 1.89 Tqo 0.0167 

xy~ = 0.15 H = 6.75 

Xā = 0.27 K 
r 

= —20 

xd = 0.175 TE = 0.5 

Table 3.1: Representative parameters of a 500 MW 
thermal machine, and a.v.r. constants. 
Machine parameters are in p.u. at 
rated power base. 

Note: The only change made in the constants of the 
hydraulic machine (apart from the speed governor 
representation) is in the constant Xq which'was 
assumed equal4o Xq = 1.29 p.u. following 
Davison et all . 
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damping and a'very high natural frequency when a steady state 

network representation is used, and loads are represented as constant 

impedances, i.e. K = Kq  = 2 for the non-linear passive form. 

When loads are non-linear and passive with coefficients 

Kpi, Kqi  approaching constant current or constant power -or when a 

combined load is considered and the induction motor load is 

dominant, this eigenvalue can become highly undamped, indicating an 

oscillatory system. Table 3.2 shows the eigenvalues for the two- 

machine system of Figure 3.5 with non-linear passive loads, K =.K 	2, q  =  

Kp  Kq  = 1, and Kp  = Kq  = 0. A variety of load configurations in 

both systems Figure 3.4 and Figure 3.5 were considered at each bus- 

bar. Tables 3.3 and 3.4 indicate when this eigenvalue is negative 

or positive. 

It appears that when an infinite bus bar is considered as 

the reference machine, this mode of oscillation is absent. A test 

was performed with a four-machine system, Figure 3.4, but considering 

all the units as hydroelectric plants with similar data to those used 

for the system in Chapter 2. Results are shown in Table 3.5. 

Figures 3.6-3.9 show the results when the integration 

subroutine, is applied in order to check the eigenvalue results without 

an infinite bus bar being present and load is constant impedance. 

A small disturbance in the field flux of 0.05 p.u. was applied to 

machine no. 1 of the two-machine system in Figure 3.5. The machine 

is well damped, confirming the eigenvalues of Table 3.2, column 1. 

The multi-machine system shown in Figure 3.10 was used in order to 

check the computer program capacity. A typical output of the program 

for this system is shown in Tables 3.6 and 3.7. The EA] matrix was 

of the order 98 and the c.p. time was 101.8 seconds. 
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Kp = 2 

K
q
=2 

Kp = 1 

K
q
=1 

Kp = 0 

K
q
=0 

-1.52x105 + j5.70x103 -5.980 x 108  31.59 x 104  

-1.52x105  - j5.70x103  -1.72 x 104  - 1.61 x-105  

-1.76x101  + j6.02x102  -1.76x101  + j6.02x102  -1.76x101  + j6.02x101  

-1.76x101  - j6.02x102  -1.76x101  - j6.02x102  -1.76x101  - j6.02x101  

-5.13 x 101  -5.13 x 101  -5.13 x 101  

-3.90 x 101  -3.88 x 101  -3.86 x 101  

-3.63 x 101  -3.62 x 101  -3.62 x 101  

-0.34x101  + j0.77x101  -0.34x101  + j0.77x101  -0.33x101  + j0.77x101  

-0.34x101  - j0.77x101  -0.34x101  - j0.77x101  -0.33x101  - 30.77x101  

-1.0 x 101  -1.0 x 101  -1.0 x 101  

-0.697 x 101  -0.715 x 101  -0.733 x 101  

-0.333 x 101  -0.30 x 101  -0.430 x 101  

-0.101x101+j0.283x101 -0.101x101+j0.280x101  -0.100x101+0.277x101  

-0.101x101-j0.283x101  -0.101x101-j0.280x101  -0.100x101-j0.277x101  

-0.153x101+j0.135x101  -0.153x101+j0.135x10I -0.173x101+j0.135x101  

-0.153x101-j0.135x101  -0.153x101-j0.135x101  -0.153x101-j0.135x10
1 

 

-0.116 + j0.914 -0.114 + j0.917 -0.112 + j0.92 

-0.182 -0.182 -0.182 

-0.999 -0.999 -0.999 

-1.0 x 102  -1.0 x 102  -1.0 x 102  

Table 3.2: 
	

Typical output showing the eagenvalues of a 

two-machine system. Load represented as non-

linear passive load. 



Case 
Load Coefficient "X < 0 

-X) 0 Kp 	Kq 
 

1 1 	1 - 
2 1.5 	1.5 - 

3 2.0 	0 - 

4 3 	0 - 

5 3• 	2 - 

6 0 	0. + 

1 1 	. 	0 + 

8 0 	1 + 

9 0 	6. + 

' 	. 	10 	. 0 	2 	- 
+ 

11 
Combined load including 60% 

induction motor load.' 
+ 

Table 3.3: 	Sign of an eigenvalue for different load 
configurations of a two-machine and three-
node system. 
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Case 

Bus No 2 Bus No 3 Bus No 4 Bus No 5 0 

X> 0 Kp K. 
q 

Kp KR K~ K~ K~ Kq 

1 0 - 0 2 2, 0 . 	0 2 2 — 

2 0 0 0 0 2 2 2 2 — 

3 1 1 1 1 1 1 2 2 — 

• 4 0 ' 	0 2 2 2 2 0 0 - 

5 1 1 1' 1 2 2 2 2 - 

6 2 2 2 '2 1 1 1 1 — 

• 7 2 2' 2 2 2 2 2 2 — 

8 0 2 0 2 . 	2 2 2 2 — 

9 0.5- .2 2 0 0.1. 1.5. 2 0 — 

10. 1.1 .1.5 0.1 1.5 2 2 2 2 — 

11 2 0 2 , 0 2 . 0 2 0 — 

12 1 1 1 1 . 	1. 1 1 1 + 

13 0 0 0 0 0 0 0 0 + 

14 1 1. 2 . 2 0 0 0 0 + 

15 0.5, 2 0.5 2 . 	0.5 2 0.5 2 + 

16 0. 2 0 2 ' 	0 2 0 2 + 

'17 0 0 0 0 0 . 	0 • 2 2 + 

18 2 2 

• 

Combined 
Load: 6% 
induction 

Motor Load 

2 
2 

Combined 
- Load: 	6% 
Induction 

Motor Load 

- 

19 2 2 

Combined 

Load: 47% 

Induction 
Motor Load 

2 
2 

Combined 

Load% 47% 

Induction 
Motor Load 

+ 

Table 3.4: 	Sign of an eigenvalue for different load configurations 
of a four—machine system and five nodes. 
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Non-linear passive load K =K =0 
P 	q 

Machine no. 1 as a reference. 

Non-linear passive load K =K =0 
p 	q 

Infinite bus-bar as reference. 
Matrix of order 42 Matrix-of order 33 

-1.98 x 103  
• 

+1.74 x 103  2  
-0.30x102±jo.573x103  -0.32x10-0.706x103  
-0.24x102±j0.478x103 +- -0.27x102 
-0.19x102±j0.44x103  -0.19x102±j0.45x103- 
-0.46 x 10 -0.46 x l02  
-0.45 x 102  -0.45 x 102  
-0.45 x 102  -0.44 x 102  
-0.40 x 102  -0.37 x 102  
-0.38 x 102 	• -0.35 x 102  
-0.36 x 102  -0.32 x 102  
-0.34 x 102  
-0.22 x 102 	.  
-0.138x1o1}j0.131x102  -0.129x1o1+j0.126x102 
-0.109x101+j0.115x102  -0.80x101±'0. 10x102  
-0.125x101+ 	0 .113x102  -0.126x101-j0.114x102 
-0.121x10-1-j0.282 
-0.185 x 101  -0.113 x 101' 
-0.180 x 101 -0.151 x 101  
-0.171 x 101  -0.122 x lol 
-0.628 x 101  -0.17 x 10

i
1  

-0.114 x 10 -0.18 x 101 
 x 101 	. .-0.13 x 101  

-0.130 x 101  
-0.134 x 101  
-0.326 -0.42 
-0.42 -0.42 
-0.42 -0.42 
-0.42 
-0.89 x 10-2  -0.88 x 10-2  
-0.89 x 10

-2  
-0.88 x 10

-2  

-0.89 x 10
-2  

-0.88 x 10 
-2.00 
-2.00 -2.00 
-2.00 -2.00 
-2.00 -2.00 

Table 3.5: 	Four-machine system dynamic stability results 
when non-linear passive load representation and 
different reference machine representation are 
considered. 
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Figure 3.10: 	Nine—machine and thirteen—node. system . 
Values are in p.u. referred to a common 
base. 
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Bus 
Number 

Voltage V 
Magnitude 

Delta 
(degrees) PG ~G PL QL 

1 1.150 0 , 	0.105 0.068 

2 1.151 -0.169 0.400 0.200 

3 1.155 -1.367 0.30o 0.300 -0.400 -0.100 

It 1.150 -0.753 0.200 0.100 -0.200 

5 1.227 8.184 0..600 0.300 

6 1 .263 10.599 0.700 0.400 -0.200 

7 1.280 11.827 0.500 0.300 

8 1.300 13.260 0.600 0.200 

9 1.293 10.788 0.700 0.500 -0.500 =0.l00 

10 1.135 -1.580 -0.800 -0.500 

11 1.133 -0.240 -0.500 -0.400 

12 1.229 - 	8.056 -0.700 -0.400 

13 1.170 2.285 -0.800 -0.400 

Table. 3.6: 	Operating point for a nine-machine and thirteen-node system. 
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3.6 	CONCLUSION  

The signal dynamic model of an arbitrary number of inter-

connected power generating units including the effect of load 

characteristics has been developed and implemented in a digital 

simulation in normal state space form. The results have been 

checked by integrating the system equations for a small disturbance. 

In particular: 

(i) Different load representations have been included in 

a multi—machine dynamic stability program, machines being 

represented in full with a.v.r. and speed governor control 

equations. The program is able to represent loads as non-

linear static loads which are functions of voltage and also as 

combined loads composed of constant impedance and an equivalent 

induction motor load. The problem of getting ill—conditioned 

matrices during the construction of the EA] matrix has been 

sorted out by making a small rearrangement in the way the 

algebraic equations are built up, and avoiding matrix inversion.. 

An additional feature of the present model is that an open or 

closed loop model may be obtained and the system inputs appear 

explicitly in the state space form. 

(ii) It was found that transient stator terms produced very 

highly damped modes of oscillation when loads were represented 

as constant impedance, but when the load was represented as non-

linear and passive, with coefficients K , K approaching 
Pi qi 

constant power, this mode of oscillation had negative damping. 

When the reference machine was considered as an infinite bus bar, 

this undamped oscillation was not present even for a constant 

power load characteristic. 
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CHAPTER 4  

THE EFFECT OF LOAD CHARACTERISTICS ON TIIE DESIGN  
OF FEEDBACK CONTROLLERS OF GENERATORS  

4.1 	INTRODUCTION 

The steady-state stability of power systems becomes doubtful 

when transmission distances are large and special precautions may 

become necessary. In recent years the optimal linear regulator 

theory of linear time-invariant systems with quadratic performance 

indices has been applied to design controllers for power systems 

for obtaining improved dynamic behaviour of these systems52,53,55~ 

Anderson2and-Yu et al55 have suggested multiple feedback 

controllers, considering a power system consisting of a hydro-

generator with exciter, AVR and governor connected to an infinite bus 

bar through a transmission line. The non-linear mathematical model 

describing. this system was linearized around an operating point to 

obtain a linear time-invariant state model of the system, valid for 

small disturbances. Closed form solutions to the minimum integral 

control problem can be readily obtained if the system is represented 

in the standard notation by the equation: 

y(t) = [A] y(t) + CB] u(t) (4.1) 

where EA] and EB] are, respectively, nxn and nxp matrices, y(t) is 

an nxl vector and u(t) is a pxl vector. 

Defining a quadratic performance index: 

J = f (yt@y + uPRu)dt 
00 	 _. 	 (4.2) 
0 
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where Q and R are constant positive—definite symmetric matrices 

and, as usual, the primes denote transposition; Yu et a155  derived 

a feedback law in the form: 

u(t) _ —R BQKy(t) 
	 (4.3) 

where K is the constant nxn positive—definite symmetric gain matrix 

which is the solution of the algebraic equation: 

KBR 1BIK -. Q — AQK — KĀ = 0 	(4.4) 

The resulting closed loop system defined by the equation: 

Y(t) = Gy(t) 	 (4.5) 

where: 

G = A — BR 1B 9K 

is asymptotically stable, that is, the eigenvalues of the matrix G 

all have negative real parts, with better dynamic response than 

the uncontrolled system given by equation (4.1). In this method 

the weighting matrices Q and R, specified in the performance index, 

are arbitrary and a systematic search is necessary to obtain values 

which give 'a suitable response.- 

In this chapter an alternative approach using modal 

control theory57,58 is  used which directly yields the feedback law 

while shifting the closed loop eigenvalues to the desired locations. 

It is well known that any eigenvalues are obtainable for a closed—

loop system if the open loop system is controllable. However, in 

many practical situations only the critical eigenvalues require 

re—location, and so long as the part of the system with which 

they are principally associated is controllable, they may be moved 



96. 

by the addition of feedback loops. This method is used in this 

chapter to stabilise the performance of the pumped storage station 

at Ludington (U.S.A.) which was found to be unstable when pumping 

in extreme conditions54. Feedback controllers are designed for 

several operating conditions, including the effect of local load 

on the station h.v. bus bar. It is shown that the nature of the 

load can change the design of the controller. 

4.2 	METIIOD OF ANALYSIS 

For this study the power system equations are expressed in 

the state space form, equation (4.1), by linearizing the differential 

and algebraic equations around the operating point using the methods 

explained in Chapters 2 and 3 and that given by Baker et al47  shown 

in Appendix C.1. 

In order to improve the transient response of the system 

for small perturbations, the eigenvalues of the Da matrix are 

assessed. The impulse response of the system without additional 

control was also obtained. If the response is unsatisfactory, the 

system behaviour can be improved by shifting the 1r1  critical 

eigenvalues NI, X2, ..., Ar  using modal control technique57, to 

the corresponding new locations e1, 	, ..., `2r, leaving the other 

eigenvalues undisturbed in the closed loop, system. 



J 	p. TT(ki —N.) 

i=1 

(4.7) 	• 
TT (ei— ),,j) 

— i=1 K. 
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4.2.1 	Theoretical Approach 

Modal control theory, given by Porter and Crossley57, is 

merely that of generating the input vector of a system by linear 

feedback of the state vector in such a way that prescribed eigen-

values are associated with the dynamical modes of the resulting 

closed—loop system. The critical eigenvalues are shifted to the 

left—hand side of the complex plane such that in the closed—loop 

system all the eigenvalues are situated within a prescribed region 

which ensures adequate stability. 

	

4.2.2 	Single Input Modal Control Systems  

In the case of a state—controllable linear system whose 

state can be influenced by only one input (or control) variable, 

u(t), equation (4.1) has the form: 

Sr(t) = EAI y(t) + hu(t) 	(4.6) 

where b is an nxl vector and u(t) is a scalar. 

The proportional—controller gains necessary to alter Sri 

system eigenvalues from 
X• N2' " " Ar, to any, desired new positions 

~1' ~2'•••, ̀i, are given by: 

which indicates that K. is calculable if: 
J 

= 1, 2, ..., 0 
	

(j 
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that is, the 'r' modes of the system are controllable and defined 

by the equation: 

pj 	'V!= 	~ b (4.8) 

where V. is the eigenvector corresponding to the jth eigenvalue of 

the transposed matrix Oa of the uncontrolled system. The feedback 

gain vector g is given by: 

0.9) 

yielding an input variable u(t) given below. If all the elements of 

the state vector y(t) can be measured by appropriate transducers or 

estimated by means of an observer: 

u(t) = F y(t) 

where: 	F = gt. 

(4.10) 

The control law obtained by substituting from equations 
1 

(4.7) and (4.9) into equation (4.10) has the form: 

u(t) = 
r TT 01. — 

J J i=1  

J l p. FT(xi_ X.) 
J 1=1 	J - 
1Ij 

y(t) 	(4.11) 

  

This control law will alter the eigenvalues 
A1' 

A
2' ...' ~r 

go of the uncontrolled system to prescribed new values 
e ' 2' " '' 	' 

leaving the remaining (n—r) eigenvalues unaltered. It follows by 

substituting the expression for u(t) given in equation (4.11) into 

g 	> K.
J 
V., 

j=1 
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equation (4.6) that the governing equation of the resulting closed—

loop system is: 

y(t) = [A:1 y(t) + b F y(t) 
	

(4.12) 

which may be compressed to: 

Y(t) = G y(t) 
	

(4.13) 

The eigenvalues and eigenvectors depend upon the feedback 

loops. 

4.2.3 	Illustrative Example  

The theory of single—input modal control presented in the 

preceding section can be illustra+ed by designing a feedback 

controller for a sample third order system for which the state 

equation (4.6) has the form: 

   

-~l 

 

 

—2 —1 1 

	

1 	0 	1 

—1 	0 	1 

  

Y(t) = y(t) + 1 

 

u(t) 	(4.14) 

      

      

      

The eigenstructure of this system is given by the following 

matricea: 

A 

1 	0 	0 

0 —1+j 0 

0 —1—j 

(4.15a) 
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U = 

0 

1 

5 

-3-j4 

5 

-3+j4 (4.15b) 

1 2+j 2-j 

-2 l+j 1-j 

2 j —j (4.15c) V = 10 

8  —j j 

A nxn eigenvalue matrix of Da and EA] 1. 

... un] nxn modēl matrix of [A] . 

ui  (i = 1, 2, ..., n) eigenvectors of Da . 

V = Ev1 v2 ... vnJ nxn modal matrix of LAJ 1. 

vj  (j = 1, 2, ..., n) eigenvectors of GAJ 1. 

n = 3 for this particular example. 

The corresponding mode-controllability matrix is: 

P = V' b = 1
0  1 

8 
1+j 

17j 

 

   

   

(4.16) 

In the absence of control (open loop) the system (4.14) 

has the eigenvalues 	= 1, Ā2  = -1+j, N3  = -1-j. It is unstable 

because of Ā1, but controllable by the input u(t) since pl  ,1 0. 

The second and the third modes are asymptotically stable and are also 

both controllable by u(t) since p2  0 and p3  ' 0. 
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The eigenvalues can be changed to -e = -1, ~ = -2+j2, 

and e3 = -2-j2 by the proportional controller gains (K5) associated 
with the appropriate vectors vi, v2 and v3. 

E1 
	Al)(•e2- al)(3 Al) 	(4.17a) p1( X 2- A1)(a3 Al) 

(*e l- ' 2)(-2 2- A2)(e3- ?) 
K2 = 	p2(i\ 1-72)(7`3- A2) 	

= 7+j 

Equations (4.7) and (4.11) indicate that the required 

(4.17b) 

( -1- T5)('e2- N3)(se 3 A3)  
P3( Xi- 73) ( X 2- k3) 	7-J 

	(4.17c) 

feedback control law is given by the expression: 

u(t) = Klviy(t) + K21y(t) + K3v3y(t) 

which, in this case, assumes the form: 

u(t) = 2.5 yl(t) - 1.5 y2( ) — 5 y3(t) 

(4.18) 

(4.19) 

The G matrix of the closed loop system defined by equations (4.14) 

and (4.19) is: 

0.5 -2.5 -4 

3.5 -1.5 -4 

1.5 -1.5 -4 

and the.eigenvalues of this matrix are 

el = - 1, 	€2 = -2+j2 and -E 3 = -2-j2 

as required. 
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4.3 	MULTI—INPUT MODAL  CONTROL SYSTEMS  

The theory for single input systems presented in Section 

4.2.2 can be used sequentially to design feedback loops for multi—

input systems governed by state equations of the form (4.1). Thus, 

if the input matrix CBJ has the partitioned form: 

[B] = Cb1 b2  ... bpi 

 

(4.19) 

then equation (4.1) can be expressed as: 

 

    

sr(t) = CA] y(t) 

 

bi ui (t) (4.20) 

 

=1 

  

Hence Porteros57modal control method applicable to single 

input systems can be applied sequentially to the system described by 

equation (4.1) using a multi—stage design procedure, by dividing the 

oro dominant eigenvalues into tpe  groups and shifting in tpt  stages. 

Only one input defined by Pai et al61  as the dominant input is used 

at each stage. Each ui(t) in equation (4.20) will therefore have 

the form: 

r  

u(t) 	K.(i) 	(i)t 
	g! 1 

 
j 	v. 	y(t) = g y(t) 

j=1 
(i  

where K. 	are the proportional controller gains associated with 
J 

the ith  stage of the design procedure. The resulting closed—loop 

system has the form shown in Figure 4.1. If tr1t  eigenvalues are 

shifted in the first stage by using the input u1(t), the modal 

controller gains associated with the first groups are determined 

(4.21) 

by: 



r • 

K.V
J 

j=1 

f 

(t) 	 

KJV~ 

. 1 

up(t) 

P 

y(t) 

A 
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Figure 4.1: 	Controller design structure. 



r1 

T1- i- ~) 
K. = i- 

rI 

p U (ki- 
~ i=1 
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(4.22) 

 

J3i (J = 1,2,..., r-) 

(4.23) where: 

Then the feedback -gain vector gl is given by: 

g1 = 

 

k. v~ (4.24) 

   

After shifting the first group of eigenvalues, the system 

matrix for the controlled system becomes: 

[A] 	= [A] + blgl 	 (4.25) 

The matrix EA] 
l 
is used for shifting the second grcup of 

eigenvalues and the method is applied sequentially for all the groups, 

only the dominant input being used for each group. 

EA] 	= DAJ + blgi + b2g2 + ... + bpg' • 

Hence the feedback law is expressed as: 

u(t) = F y(t) 

(4.26) 

4.~7) 

where the pth row of the modal controller matrix is given by: 

9 F = gp (4.28) 
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4.3.1 	Criterion for the Selection of the Dominant Input  

If additional inputs are used for feedback control, these 

provide means of optimizing the feedback structure. The criterion 

used here is that of dividing the total number of eigenvalues to be 

shifted into groups, each group controlled by one particular input 

called by Pai et al61  the dominant input for that group. In 

applying the multi—stage design procedure, the modes to be controlled 

at the ith  stage are chosen on the basis of the magnitudes of the 

elements of the appropriate mode-controllability matrix; 

Pi 	Vi B. 3. 3. 
	

(i = 1,2,...,PĪ 	(4.29) 

It is evident from equation (4.22} that the gain Kj  will be 

minimum when the P. element of the controllability matrix is maximum. 

Hence the optimal modal controller feedback matrix F is obtained if 

the control input u(t0 for shifting the jth  eigenvalue is so chosen 

that the absolute value of pj  is maximum. Such an input is known as 

the dominant input. All eigenvalues for which u (t) is the dominant 
P 

input form the pth  group. 

4.3.2 	Sector Criterion 

To preassign the new locations for the critical eigenvalues 

of the uncontrolled system so as to improve its dynamic behaviour, a 

sector criterion given by Pai et al58  is used, which is based on the 

fundamental concept of damping ratio 5 and undamped natural frequency 
(1)n, as explained in Figure 4.2. 

The new locations for the first critical pair of complex 

conjugate eigenvalues of the uncontrolled system (ū. ± j i3) are 
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■ 

Figure 4.2: 	 Sector definition. 
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assigned with a desired degree of damping ratio and undamped natural 

frequency. The remaining critical complex eigenvalues 6 and n are 
specified to lie within the sector shown in Figure 4.2 to the left 

of the first pair. The new location for the critical real eigenvalues 

is arbitrarily chosen such that its value is sufficiently large and 

negative. However, this choice of new locations for the critical 

eigenvalues has to be modified when the control law results in high 

feedback gains which are not practicable. The gains of the feedback 

matrices obtained for various cases are compared by using a 

performance index (P.I.) defined by Pai et al
61: 

n  

F1j2  

i=1 j=1 

(4.30) 

4.4 	APPLICATION AND RESULTS  

A schematic diagram of the power station studied in this 

section is given by Figure 4.3. Using the published data54  shown in 

Table 4.1, the system at Ludington was represented as a single-machine 

infinite bus-bar system. The electrical machines are studied at 

full load in both pumping and generating modes. The power station 

contains six units of 325 MVA each. The machine terminal power was 

taken as 1.04 p.u. during pumping and 1.0 p.u. during generation. 

These figures are referred to a base of 1950 MVA. 

The AVRs keep the machine terminal voltage constant at 

about 1.02 p.u. and the infinite bus bar voltage was taken to be 

1.00 p.u. 	During pumping, the gate controls being fixed in one 

position, transient response was improved by using modal control 



V=1.0 p.u. 

Load 
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X 
e  	 Infinite 

network 	f bus-bar 

AVR and 
exciter 

Valve 

Wt 

Turbiee 

High 
speed 

governor 

AQ1 

Synchronous 
machine 

T 

Figure 4.3: 	The power system at Ludington. 
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Symbol Description Value 
in p. u. 

Xd  d—axis armature reactance 0.85 

Xq  ,q—axis armature reactance 
• 

0.48 

Xmd 
d-axis magnetizing reactance 0,73 

Xmq  q—axis magnetizing react?nce 0.36 

Xfd  field reactance 	- 0.935 

Xkd  d—axis damper reactance 0.89 

.Xkq  q—axis damper reactance 0.46 

r s armature resistance 0.0016 

rid  d—axis damper resistance 0.014 

rkq  q—axis damper resistance 0.014 

rfd  field resistance 0.00041 

H inertia constant 7.5 sec 

X transmission line + transformer 0.49 
e 'reactance 

r 
e 

transmission line + transformer 
resistance 

0.00 

Table 4.1: 	Power system parameters. 
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at the excitation reference voltage, and the effect of different 

network representation was analysed. During generation, similar 

control was applied to the excitation reference and the speed 

reference point, and the effect of various types of load coupled 

at the machine terminals was considered. 

The synchronous machine in both cases was represented by 

Parkos equation of 7th  order in poi. explained in Chapter 2. The 

excitation system was the IEEE Type No. 1 model (3rd  order), 

similar to that given in Section 2.5, and in generating mode the 

speed governor was represented by a 3rd  order model similar to that 

used in Chapter 3, Figure B.2.3. Data for both systems are given 

in Tables 4.2 and 4.3, respectively. In Appendix C.1 the non-

linear and linear dynamic system equations are given in detail. 

4.4.1 	Pumping Mode Operation  

The following cases were studied during pumping with the 

speed governor out of service throughout: 

Case 1: The AVR was connected to the system (conventional control). 

Case 2: No control loops were considered in the system, i.e. the 

AVR was out of service (manual control). 

Case 3: The AVR was in service, together with modal control. 

The non—linear system equations were linearized about the 

operating point shown in Table 4.4. The linear equations in this 

part of the analysis were considered in the manner of Baker and 



Symbol Description Value 

KA  Regulator gain 38.6 

TA  Regulator amplifier time constant 0.1 sec 

KE  Exciter gain 0.182 

TE  Exciter time constant 0.133 sec 

KF  Regulator stabilizing loop gain 0.015 

TF  Regulator stabilizing time constant 0.5 sec 

SE  0.247 
x,max Exciter saturation function 

S E 0.038 
75 x max 

VR max(p.u.) 
Maximum value of .VR  1.64 

V
R min(p

.u.) Minimum value of VR  —1.08 

Table 4.2: AVR and Excitation System Parameters. 

Symbol Description Value 

• Sp 

Tg 

Ta 

Fla 

TW 

Permanent droop 

Gate time constant 

Governor actuator time constant 

Governor actuator gain 

Water column time constant 

0.045 

	

0.1 	secs. 

	

0.01 	sec. 

1.0 

1.6 secs. 

Table 14.3: 	Speed Governor Parameters. 
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Symbol Description - Value 
in p. u. 

Sr rotor angle respect to infinite bus -52.8 (deg)  

P.F. power factor (over-excited) 0.96 

V2  terminal voltage 1.02 

Vb  infinite bus bar voltage 1.00 

P active power -1.04 

id  d-axis current -0.668 
• 

iq  q-axis current -0.825 

vd  d-axis voltage 0.397 

vq  q-axis voltage 0.940 

Efd  excitation voltage 1.506 

ifd  field current 2.063 

Table 4.4: 	Operating point for pumping mode. 
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Krause47  using the sign convention explained in Chapter 2. In this 

representation the transient network terms are included directly. 

Later in this chapter an alternative network representation is 

discussed. The state variables for the synchronous machine when 

pumping mode.are: 

y(t) = C big  Aid q Alkd fd Ai An AS r AEfd  , AVR  , AV ES]r  

(4.31) 

Table 4.5 shows the eigenvalues of the system for Case 1 

and Case 2. From these eigenvalue locations it can be seen that 

the system can be stabilized, but the transient response is highly 

unsatisfactory. The plot of the eigenvalues for Case 1, given in 

Figure 4.4, shows that all but the conjugate pair associated with 

the natural mechanical oscillation appear in the stable left—hand 

half—plane. Figure 4.5 shows that the transient response of the 

system with conventional control (AVR loop only) is quite oscill-

atory and unstable. When manual control of the terminal voltage 

is applied the response is as in Figure 4.6. The system is stable 

but is poorly damped. 

The single input modal control method explained in Section 

4.2.2 was used to obtain the gain of feedback loops to move the 

critical eigenvalues firstly to the positions shown in column 2 of 

Table 4.6, and then to those in columns 3 and 4. The basic control 

structure is illustrated in Figure 4.7. The transient response, 

Figures 4.8 to 4.10, iq very much better. The resulting feedback 

gains needed to bring about this relocation are shown in Table 4.7. 

Three network representations were then used in order to 

show how transient network terms affect the dynamics of the system 
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Location of oscillation AVR Control only No Control Loops 

Stator winding -1.039 + j 377 
-1.039 - j 377 

-1.039 + j 377 
=1.039 - j 377 

d-axis damping winding -17.83 -17.82 
q-axis damping winding -15.99 -15.93 

Excitation system -5.42 + j 7.32 
stabilizer -5.42 - j 7.32 

AVR and ,field winding -2.15 + j 2.238 
-2.15 - j2.238 -18.5 

Mechanical 
+0.273 + j4.74 
+0.273 - jli.74  

-0.223 + j4.94 
-0.223 - j4.94 

Table 4.5.: 	Eigenvalues of the equivalent machine 
infinite bus-bar Ludington system. 
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Figure 4.4: 	Eigenvalues for the one-machine infinite bus bar 
equivalent of Ludington ;;hen conventional control 
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TI MES T I M ES 

TIMES 

Various system variable responses following a 
change of Ai

fd 
= 0.01 p.u. when manual control 

is applied. 

Figure !.f): 
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AVR Control 
only 

Modal Control 1 
P.I. = 2176 

Modal Control 2 
P.I. = 68 

Modal Control 3 
P.I. = 93 

75.4 ± j7.3 -6.o ± j8.0 -6.0 ± j8.0 -6.0 ± j8.0 

+0.27 ± j 4.7 -2.0 - j5.0 -0.8 - j5.0 	- -0.95 ± j 5.0 

-2.15 ± j 2.2 -4.0 - j3.0  -3.0  - j.30 -3.0 - j3.0  

Table 4.6: 	Critical eigenvalues during pumping. 

Gain P.I. = 2176 P.I. = 68 P.I. = 93 

F1  -0.087 -0,025., -0.029 

F.2  -1.854 -0.900 -0.945 
F3  -0.117 -0.037 -0.041 

F4  -1.861 -0.896 -o.941 

F5  -2.365 -1.152 -1.208 

F6  -46.460 -7.920 -9.371 
F7  0.933 0.372 0.430 
F8  0.009 0.016 0.0139 

F9  -0.024 -0.012 -0.013 

F10  -1.857 -1.324 -1.294 

Table 4.7: 	Optimal gains of the controller when pumping. 
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Figure  4.9: System variable responses following a change of Ai I'd = 0.01 
as in Figure 4.8, with edge"values in poaition 2. 
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Figure 4.10: System variable responses following a change of AiId =  0.01 
as in Figure 4.9 with eigenvalues in position 3. 
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and change the optimal design of the feedback controllers: 

(i) Line and transformer reactances coupled with the 

machine reactance in the classical way following Baker and 

Krause47  which includes the stator transients. 

(ii) Steady—state algebraic node equations of the form 

I = YV following Alden and Zein El—Din29. 

(iii) Steady—state algebraic representation by Newton-

Raphson power equations, explained and used in Chapters 2 and 

3 of this thesis. 

Table 4.8 shows the eigenvalues of the power system for 

these three network representations. Table 4.9 shows the values of 

the gains required to move the six critical eigenvalues to 

position 3, Table 4.6, column 4. In Appendix C.1 the equations 

and the methods by which the state space representation was built up 

for the three different network representations are shown in detail. 

Figures 4.11 and 4.12 show the field current response following an 

impulsive change of Aifd  = 0.01 p.u. when transient network terms 

are included and excluded respectively. 

The mode of oscillation which was troublesome at Ludington 

(the mechanical one) is clearly revealed whether or not the network 

transient terms are included in the calculation. When the network 

transient terms are omitted, the natural frequency of the modes 

associated with the stator windings is very high and is highly 

damped, but the unstable oscillating mode damping appears more 

damped. If network transient network terms are included, the natural 



Location of 
Oscillation 

Classical network 
representation 

including transient 
network terms 

Classical network 
representation 

excluding transient 
network terms 

Algebraic node 
equation 

of 	the form 
. 	I = YV 

Algebraic 
Ne~algebrphson 
power equations 

Stator
windings 

} _1.04 ± j 377 ± . -11.76 - j 1304 + -11.78 - j1304 + -11.78 - j 1304 

d-axis 
damping 
winding 

-17.83 -17.81 -17.83 

. 

-17.83 

q-axis 
damping ' 
winding 

-15.90 -16.00 -16.00 -16.00 

Excitation 
system 
stabilizer 

-5.42 ± j7.32 -5.43 - j 7.30 
• 

-5.40 ± j 	7.36 -5.40 ± j7.36 

AVR and 
field 
winding 

-2..15...± 	j 	202 -2.14 ± j2.2 -2.14 ± j2.2 -2.14 * j 2.2 

Mechanical 	.. +0.273 - j 4.74 ' 	+0.258 - j2.75 +0.262 ± j2.75 +0.262 ± j 4.75 	• 

Table 4.8:. ' Eigenvalues of the power system during pumping mode with different network 
representations. 
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Gains 

Classical network 
representation 
with transient 
network 	terms 

Classical network 
representation 
without transient 
network terms 

Algebraic 
mode 

equations 
I = YV 

Algebraic 
Newton—Itaphson 

power 
equations 

F1  —0.029 —0.033 —1.29 —1.29 

F9  —0.945 —0.942 0.0048 0.0048 

F3  —0.041 —0.04 0.0094 0.0093 

F1}  —0.941 —0.93 0.0084 0.0089 

F5  —1.200 —1.20 —0.098 —0.098 

F6  —9.370 —9.05 —0.013 —0.013 

F7  0.43 —0.42 0.013 0.013 

F8  0.013 0.014 —1.28 —1.28 

1 
F9  0.013 —0.013 0.43 0.43 

F10  —1.290 —1.30 —9.26 —9.27 

Table 4.9: 	Optimal gains of the controller during pumping 
mode, for different network representations. 
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frequency of the modes associated with the stator windings becomes 

that of the supply and the damping of these modes and the unstable 

one is decreased. Thus the use of more approximate models can 

give rise also to error in the design of the feedback controller. 

4.4.2 	Generating mode operation  

In the second part of the analysis, the generator mode of 

operation was studied for the same power station with the a.v.r. and 

governor acting, giving a system of order 13. In addition two levels 

of load were added at the machine bus-bar. Load was taken in 

non-linear passive forip as described by equations (2.49) and 2.50) 

for which several values of K and K were considered. Secondly, 

the combined load proposed by Shackshaft et a139, also described in 

Chapter 2 by equations (2.55) and (2.56), was used. System equations 

are similar to those given in Appendix C.1,.when steady-state 

Newton-Itaphson power equations for the network representation were 

used with the addition of speed governor equations. Multi-input 

modal control technique given in Section 4.3 was used to obtain the 

feedback loops to the reference levels of the voltage regulator and 

the speed governor from all the system states. As for the pumping 

mode, it Was assumed that all the state variables were available to 

be fed-back either being measurable or available from an observer. 

The state variables for the synchronous machine when generating were: 

y(t) = C Ayfd, AY d' ' 4 rd' A4)q' Ay rq' AVR, AEfd, AVES, 

Abr, L~n, Lg, Q gf, LbJT 	 (4.32) 
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Operating conditions are given in Table 4.10 when machines 

were considered to be at full load. Tables 4.11 and 4.12 give the 

natural positions of the critical eigenvalues and their new positions 

obtained by modal control designed feedback loops, for both 

conditions of load. Tables 4.13 and 4.14 give the gains for the 

state variables of equation (4.32) required to bring about this 

re—location, and it will be seen that the magnitudes vary noticeably 

with the magnitude and type of load. The combined •load appears to 

contribute appreciable damping during heavy load conditions (compared 

to local generation) and therefore the optimal feedback gains required 

are lower than with the other load characteristics considered. The 

contrary occurs when light local• load was considered. Also, it will 

• be noted that the optimal control gains are more sensitive to 

changes in K than to changes in K. 

4.5 	CONCLUSION 

Modal control methods may be used to determine feedback 

gains necessary to reposition critical eigenvalues and improve the 

stability of power systems. The optimal feedback gains required for 

particular positions of the eigenvalues depend upon the magnitude and 

characteristics of the load. Also, the network representation seems 

to be important in the controller design, approximate models can give 

rise to error in the design of these controllers. In view of the 

variation of load characteristics with the time of day, it seems 

unlikely that any single controller .can be continuously optimal. •A 

process in which feedback gains are adapted as conditions change might 

be useful. 
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Symbol Description Light load 
p.u. values 

Heavy load 
p.u. 	values 

6r rotor angle respect to infinite bus 44 (deg.) 10 	(deg.) 

P.F. power factor under-excited 0.95 0.95 

V
2 

 terminal voltage 1.03 1.0 

Vb  infinite bus-bar voltage 1.0 1.0 

P active power 1.0 1.0 

PL  load active power 0.19 1.5 

QL  load reactive power 0.06 0.4 

id  d-axis current -0.62 -0.78 . 

iq  q-axis current 0.79 0.84 

vd  d-axis voltage -0.37 -0.40 

vq  q-axis voltage 0.96 0.81 

Yd d-axis flux 0.96 0.81 

Yq q-axis flux 0.38 0.40 

Table 4.10: 	Operating point for generating mode. 



K. 2 
P 

K. 2 
q 

1 

1 
I 

0 

0 

2 

0 

0 

2 

1 

0 

0 

1 

3 

0 

• 0 

3 

Combined 
Load 

25% 
Induction 
Motor 

Relocation 

--5'.30±j7.3  -5.30±j7.3 -5.30±j7.3 -5.3±j7.3 -5.40±j7.3 -5.30±i7.3 -5.30±j7.3 -5.30±j7.29 -5.40±j7.36 -4.1±j6.22 -7.5±j9.4 

+0.171j4.8 +0.151-j4.8 +0.12±j4.9 +0.2±j4.8 +0.11±j4.9 +0.16±j4.8 +0.12±j4.9 +0.22±j4.78 +0.10±j4.91 +0.45±j3.8 -1.O±j5.0 

+~ -2.10-'2.2 ±j -2.00-'2.2 +~ -2.00-'2.2 +~ -2.1-'2.2 
+~ -2.00-'2.2 ±j -2.10-'2.2 +~ -2.00-'2.2 +~ -2.20-'2.24 +~ -1.90-'2.23 +~ 	

9 -3.8~-'1. 	2 
+ -4.5-j3.o 

-•1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.5 -2.5 

-.42 -.42 -.42 -.42 -.42 -.42 -.42 -.42 -.42 -.40 	• -1.5 

Table 4.11: 	Critical oigenvalues with conventional control when 
generating and as relocated. Light local load.;conditions. 



K= 2 p 

K= 2 
q 

1 

1 

0 

0 

2 

0 

0 

2 

1 

0 

0 

1 

3 

0 

0 

3 

Combined 
Load 
~5% 

Induction 
Motor 

Relocation 

-5.6±j7.3 -5.4±j6.9 -4.9±j6.2 -5.3±j6.8 -5.4±j6.9 -5.2±j6.6 -5.2±j6.7 -5.5±j7.0 -5.6±j7.2 -5.3±j6.8 -7:5±j9.4 

-.29±j4.9 -.25±j4.9 -.19±j4.9 -.33±j4.9 -.18±j4.9 -.27}j4.9 -.19±j4.9 -.34±j5.0 -.18±j4.9 
-.18±j5.3 -1.O±j5.0 

-1.4±j2.1 -1.7±j2.4 -2.3±j2.7 -1.7±j2.4 -1.7±j2.3 -1.9}j2.3 -1.9±j2.5 -1.5±j2.3 -1.5±j2.2 -1.7±j2.4 -4.5±j3.0 

-1.4 -1.4 -1.1k -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -2.5 

-.42 -.42 -.42 -.42 -.42 -.42 -.42 -.42 -.42 -.42 -1.5 

Table 4.12: 	Critical eigenvalues with conventional control when generating 
and as relocated. Heavy load condition. 

Note: 	Induction motor load parameters are equal to those of the largest 
motor given in Table 2.7 , Chapter 2. 



Gains 
liil.2 

Kll 
.. 	2 

1 

1 
0 

0 

r 

2 

0 
0 

2 

- 

1 

• 0 
d 

1 

--. 

3 

0 

0 

3 

.- - ---• 

Combined 
Load 

Fr 	- -3.47 -3.'14 -3.'.0 -33.'16 -3.42 -3.4 3 -3.41 	'. -3.48 -3.42 -4.47 
'1 

1v 
-0.01 -0.01 -0.01 -0.01 -11.01 -0.01 -0.01 -0.01 -0.01 -0.02 

F̀  -0.03 -0.03 -0.02 -0.03 -0.02 -0.03 -0.02 -0.03 -0.02 -0.19 

3 -  

F, 
4 

-0.02 0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 

Fv 0.21 -9.22 0.23 0.21 0.23 0.22 0.23 0,20 0.23 0.17 

5 

F̀  -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 

Fv 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 ,0.06 0.13 

Fvl -4.11 -4.05 -3.99 -4.10 -4.01 -4.04 -4.00 -4.15 -4.02 -6.60 

8 

`6 -0.78 -0.25 -0.92 -0.77 -0.93 -0.81t -0.93 -0.71 -0.93 0.41 

9 

r 
v10 

34.17 33.44 32.52 34.19 32.49 33.45 32.51 34.79 34.47 112.39 

Fv 1.57 1.63 1.70 1.55 1.72 1.62 1.71 1.48 1.73 -0.37 
11 

Fv 0.31 0.32 0.33 0.31 0.33 0.32 0.33 0.30 0.33 0.29 

12 

F, 
~ 13 

2.35 2.41 2.50 2.33 2.51 2.~41, 2.50. 2.26 2.52 1.36 

F 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 

1 

FG -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 

2 

FG -0.006 -0.006 -0.005 -0.006 -0.005 -0.006 -0.005 -0.007 -0.005 -0.009 
3 

FG 
tl 

-0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 

FG 0.011 0.011 0.011 0.011 -0.011 0.011 0.011 0.011 0.011 0.007 

5 

F -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 

6 

FG -0.004 -0.004 -0.00'i -0.004 -0.004 -0.001 -0.004 -0.005 -0.003 -0.008 

7 

F 0.14 0.73 0.12 0.14 0.12 0.13 0.12- 0.15 0.12 0.27 
G
8 

F~ 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.56 

9 

FG 3.j6 3.54 3.51 3.56 3.51 3.54 3.51 3.59 3.51 5.07 

10 

F 
G 
 23.32 23.33 23.34 23.32 23.34 23.33 23.34 23.31 23.31, 21.96 
11 

F -2.17 -2.17 -2.17 -2.17 -2.17 -2.17 -2.17 -2.17 -2.17 -2.08 

FG 
13 

0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.59 

Table 4.13: 	Optimal gains from state variables (1-13 defined in 
equation (4.32)) to the voltage regulator F , and governor FG 
reference settings. Light local load condition. 
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Cnins 
K 	a2 
P 
K 	Y 2 

__1_ 

I 

1 

(1 

0 

2 

1) 

f 
I 	o 

2 

.1 

0 

0 

1 

3 
U 

0 

3 
Combined 
Lund 

F̀, -3.55 -3,47 -3.32  -5."- -5.51 -3.38 -3.43 -3.'13 -3.58  -2.98 
1 

F V  -0.01 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.00  

F, -0.04 -0.04 -0.04 -0.03 -0.0h -0.03 -0.0h •-0.03 -0.05 -0.0h 

3  

FV 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
4  

F̀ , 0.14 0.18 0.35 0.13 0.35 0.18 0.35 0.11 0.35 0.09 

5  

F. -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 
6 

0.06 0.06 0.05 o.o6 o.o6 0.05 0.05 0.06 0.06 0.04 

7 

1. -4.22 -4.07 -3.85 -4.04 -4.11 -3.96 -4.00 -4.10 -4.20 -3.34 
8 

Fv 
-0.36 -0.51 -1.14 -0.32 -1.14 -0.48 -1.11k -0.25 -1.13 -0.52 

9  

F 27.58 37.02 70.07 24.43 71.24 34.98  70.81 19.38 71.50 3.55 
V10  

F 0.14 0.32 1.06 0.13 1.01 0.31 1.03 0.04 0.99 0.41 
V11  

F 0.11 0.14 0.30 0.09 0.31 0.13 0.31 0.07 0.32 0.09 
V
12 

0.65 0.91 2.09 0.54 2.10 0.84 2.10 0.41 2.11 0.69 
V13  

FG  0.03 0,02 0.01 0.03 0.01 0.02 0.01 0.03 0.01 • 0.01 
l 

F6 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 
0  

16  -0.01 -0,00 -0.00 -0.01 -0.00 -0.00 -0.00 -0.01 -0.00 -,0.00 
3 .  

FG  -0.00 -0,00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 

FG  0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
5 

F  -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0,00 
G 

FG  -0.01 -0.00. -0.00 -0.01 -0.00 -0.00 -0,00 -0.01 -o.00 -0.00 

7 _ . 

FG 0.23 0.16 0.08 0,24 0.08 0.17 0.08 0.31 0.08 0.18 
8  

FG 0.57 0.5.7 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.7/ 
9 

F• 3.60 3.60 3.70 3.60 3.70 3.60 3.70 3.50 3.70 3.20 
U10 

F 
G 
 23.13 23.10 23.04 23.13 23.04 23.10 23.04 23.18 23.05 23.43 
11 

F 
G 
 -2.16 -2.15 -2.15 -2.16 -2.15 -2.15 -2.15 -2.16 -2.15 12.18 
12 - 

F 0.80 0.80 0.80 0.81 0.80 0.80 0.80 0.81 0.80 0.25 

'13  

Table 4.14: 	Optimal gains from state variables (1-13 defined in 
equation (4.32)) to the voltage regulator Fv, and 
governor FG, reference settings. Heavy local load 
condition. 
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CHAPTER 5  

MODAL CONTROL OI'' MULTI—MACHINE POWER SYSTEMS 
INCLUDING THE EFFECT OF LOAD CHARACTERISTICS  

5.1 	INTRODUCTION 

A number of modern control techniques have been developed 

in order to control the generators in a multi—machine system, using 

multistate feedback signals to the avr and speed governor setting 

reference points59'61,62. However, all of them have considered the 

loads as constant impedances, which are included in the matrix 

network equation (Davison et al59  and Pai et al l). 

In this chapter the effect of load characteristics on the 

design of feedback modal controllers of a multi—machine system has 

been investigated. Non—linear passive load with characteristics of 

the type proposed by the IEEE Working Group38  and also a combined 

load proposed by the CEGB Group39  which have been discussed in 

previous chapters, were applied in the system. The results 

indicate that a global modal controller that requires feedback from 

all the state variables in the multi—machine system will act in a 

manner far from optimal if the nature of the load is not taken into 

account. 

Since it is not practicable to feedback all the state 

variables in a multi—machine system, a local modal controller was 

designed, where feedback to each machine cornes from its individual 

state variables. This is of importance because of the costs and 

other problems involved in telemetering of feedback signals between 
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various machines in the system which could be spread over a wide 

geographical area. The method of designing this controller was 

similar to that proposed by Pai et al~,lin which local control is 

derived from the global controller, disconnecting the feedback paths 

from the state variables that do not belong to a particular machine. 

This technique was applied to a three—machine system. 

5.2 	METHOD OF ANALYSIS  

The modal control theory of Chapter 4 applied there to a 

single—machine infinite bus bar system is applied here to the design 

of global and local controllers for a multi—machine power system. 

5.2.1 	Global Modal Control  

The multi—machine system, including terminal relations, is 

expressed in the state space form by using the method described in 

Section 3.3.2: 

Y(t) = fA]y(t) +{B]u(t) (5.1) 

The eigenvalues of theWmatrix are determined and also the impulse 

response of the open loop system is obtained. 

The addition of feedback loops, as explained earlier in 

Section 4.2.4, gives: 

Y(t) _ Aa + [B ') y(t) 	 (5.2) 

or 	y(t) = G y(t) (5.3) 
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the eigenvalues of which can be controlled by the choice of F, using 

• the dominant input and sector criterion defined in Sections 4.3.1 

and 4.3.2, respectively, for the relocation of the eigenvalues. 

In a global design for a large multi-variable system using 

the criterion of Section 4.3.1 some inputs might not be used. This 

would make the global control scheme unsuitable for adaptation to 

.local control, for some of the inputs would be absent. 

Here, each input has assigned to it for control at least one 

eigenvalue (or complex pair). The eigenvalues given for control to a 

particular input are found by examining the magnitudes of the 

elements in the column of the controllability matrix, P, corresponding 

with the input, and selecting the largest absolute value. The row 

number corresponds with the eigenvalue. In choosing to exert 

control through the largest input-eigenvalue links, the gains K. 

required in the proportional feedback loops are minimised. 

r 

TT (41. - X .) 3  
K = i=1  

j 	
p TT( A i- X.) 
j i=1 	j 

j,'i 

(5.4) 

In order to compare the gains of the feedback matrices 

obtained for various load characteristics in the system, a 

performance index (P.I.) defined in Chapter and repeated here, is 

defined as follows: 

	 Flj 
1=1 j=1 

(5.5) 
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5.2.2 	Local Modal Control 

Since it is not practicable to feedback all the state 

variables in a multi-machine system, a local modal controller was 

designed. This was achieved by first obtaining the global controller 

feedback matrix using complete state feedback from all machines and 

then making the elements of this feedback matrix corresponding to 

state variables from other machines equal to zero as was proposed 

by Pai et a161. However, it was found that using this method the 

dynamic stability of the system deteriorated. Much better results 

were obtained when one signal (defined as the dominant signal) from 

each of the other machines was fed to each of those that otherwise 

lacked stability. This method avoided the use of feedback between 

machines that were closely tied electrically, or the need to obtain 

a suboptimal controller as Pai et a.l61 required. The signal chosen 

for feedback was that with the highest feedback gain in the global 

controller. The structure of the global and local control feedback 

matrices is indicated in Figure 5.1. 

5.3 	THE COMPUTER PROGRAM  

The method of multi-input modal control applied to a single-

machine infinite bus-bar system described in previous sections was 

implemented in a digital computer program. This program is able 

to handle up to four interconnected synchronous machines represented 

by 11th  order equations, including the a.v.r. and speed governor 

control systems. The global and local control of a power system 

consisting of three interconnected synchronous machines was designed 

with this computer program. 
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ul(t) 

u2(t) = 

u3(t)r  

F11 	F12 	F13  

F21 	F22 	F23  

Fil 	F32 	F33 

(a) Global control. 

ul (t) F11  0 0 Y1(t) 

u2(t) 0 F22  y2(t) 

u3(0_ 0 o F33_  Y3(0 

(b) Local control. 

ul(t) F11  0 0 

u2(t) 0 F22  0 

u3(t) 0 F3  

(c) 
	

Local control with compensation (*) 
one dominant signal from machine 2 
to machine 3. 

Figure 5.1: 	Structure of feedback law for a three—machine 
system. 
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A general flow chart of the program is given in Figure 5.2. 

The state space formulation, the open loop eigenvalues and eigen-

vectors of the [A] and Ed matrices are not included in the main 
program, but they are read from a magnetic tape, already provided 

by a separate dynamic stability program, described in Chapter 3, 

Section 3.4. After the design of the feedback controller is 

completed, the program can also use another magnetic tape to sage 

the closed loop G matrix. Thus, equation (5.3) can be integrated 

numerically to give the response to a small disturbance. 

5.4 	THE SYSTEM, STUDIES AND RESULTS  

The modal control method explained in previous sections is 

applied to a sample power system consisting of three interconnected 

synchronous machines shown in Figure 5.3. All three machines are 

assumed to have the same capacity, viz. 1.0 per unit with similar 

parameters to those given in Chapter 3, Table 3.1. Machine no. 3 

is a hydraulic machine, while machines nos. 1 and 2 are thermal 

machines. The values of power, voltage and angle obtained by 

standard load flow analysis are indicated in Figure 5.3. The 

excitation and turbine—governor control systems were those used in 

Chapter 3. The constants of the system chosen and the formulation 

of the [Al and EBI matrices were also the same as those given and 

explained in Sections 3.3.1 and 3.3.2. 

The machines were represented by 7th  order two-axis 

equations. The excitation systems were similar to those used in 

Chapter 3 with a single time constant (1st  order) and the speed 



READ: 

1. Order of IA]  matrix: N 

2. Number of critical eigenvalues to 
control inputs, first critical 
eigenvalue. 

3. Input matrix [Bj. 

4. Relocated eigenvalues & . 

Read from magnetic tape: 

[A] matrix, eigenvalues and eigen-

vectors of [A]  

	9 

NR = 0 

The eigenvalues in complex form are 
ordered from the largest absolute real 
value to the smallest and print them. 
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Yes 

Calculate the mode controllability 
matrix P = Vo [B] 

. 	
• 

W 

The dominant input and eigenvalues 
to control are obtained 

W 

Assess the proportional feedback gains 

associated with each group: 	KCi)  

Calculate the gain vectors: 

gp  = 	K3V3  

W 
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1 Nit 

	6 	 Yes 

Local 
control 
esign9 

a No 

Fill the rows of F matrix 
with each g vector 

Assess the eigenvalues and 
eigenvector of DA matrices 

Yes 

Yes 

Print F matrix 

Assess the performance index 

and print it 

Print the a] matrix on a 
magnetic tape 

1 
Make zero the 
required number 
of gp vectors 

Form each characteristic matrix 

as EA~ = LAA bl0- +...+ bpgT 

STOP 

Figure 5.2: 	A general flow chart of the program for the 
design of a multi—input modal controller. 
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—'.active power flow 

-H.reactive power flow 

1 02.V-0.09° 

Figure 5.3: 	Multi-machine system. 
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governors were represented by a aid order model similar to those in 

Chapter 3, giving a total of eleven state variables per machine. 

It was assumed that all the state variables were available to be 

fed-back, etc. as before. The state variables for the system are 

in general: 

Y(t) = C 0{)fd 
AVd1 d4kdl AYgl A(Pigl JEfdl LārlAnl 

1 

Awhl tWh2 A4?i2 ... A Pfdn L~y+dn A4 kdn A4)gn 

li AE1 A6rn Ann Agf n dgn Ahn] T 	(5.6) 
qn 	n 

The control vector u(t) for each type of machine is: 

Thermoelectric: 

u(t) = T 
ref L 01 (5.7) 

Hydroelectric: 

u(t) 	C AI''ref ~ugov~ (5.8) 

For the multi-machine system consisting of three machines, 

the state and control vectors are: 

Y1(t) 
Y(t) = Y2(t) 

Y-(t)- 

and u(t) 

ul(t) 
u2(t) 
u3(t) 

where the subscripts 1, 2 and 3 refer to machines 1, 2 and 3, 

respectively. Machine no. 3 is picked as the reference machine and 

the rotor angles of the other machines are expressed relative to 

e 
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that of the third machine. Ilence Acf)r_ is eliminated from the state 

vector and the corresponding changes in the Da matrix are made as 

given in Section 3.3.3. The order of the al matrix in this 
particular case is 32. All the considerations described in Section 

3.5 with respect to the synchronous machines were also taken into 

account in this analysis. 

In the network, the values of the line impedances are such 

that machine no. 3 can be considered to be remote from machines nos. 

1 and 2, which are local machines to each other. Non—linear passive 

load with only voltage dependence was first considered, and secondly 

combined loads were used. Both are described in Section 2.2.4. 

Global and local feedback controllers for the system shown 

in Figure 5.3 were obtained with different load characteristics. 

The conditions under which a local controller can function well are 

discussed. 

The eigenvalues of the uncontrolled system with constant 

impedance loads (K = q = 2) are shown in Table 5.1. The response-

to an impulse of Lq)fd  = 0.1 p.u. in machine no. 1 is shown in 

Figure 5.4. This indicates inadequate damping and the critical 

engenvalues which also include the complex conjugate pairs 

corresponding to mechanical oscillations were moved with a global 

controller to the positions shown in columns 2 and 3 of Table 5.1. 

Figure 5.5 gives the transient response for the improved system. 

The performance index (equation 4.30) is shown for both cases. 

Table 5.2 shows the gains of the global controller 1 for 

constant impedance load. Table 5.3 shows the gains for a controller 

to produce similar eigenvalues when all the loads are combined loads 



AWL and speed 
governor only 

Global modal 
control 1 

Global 	modal 
control 2 

-4.17 -5.0 All are equal 

-1.93 -7.0 as modal control 1 

-1.61 + j6.9 -2.3 + j7.0 except the last 

-1.61 - j6.9 -2.3 - j7.0 pair of conjugates 

-1.41 + j0.97 -4.0 + j3.0 of critical 

-1.41 - j0.97 -4.0 - j3.0 eigenvalues, in 

-1.23 + j5.84 -2.1 t j6.0 which the damping 

-1.23 - j5.84 -2.1 - j6.0 was increased as 

-1.00 -3.0 it is indicated. 

-0.99 -2.7 
-0.99 + j2.88 -2.6 + j5.0 
-0.99 - j2.88 -2.6 - j5.0  

-0.75 -2.0 
-0.182659 ' -1.8 
-0.182659 -1.5 
-0.16 + j.05 -1.0 + j2.0 -9.0 + j2.0 

-0.16 - j.05 -1.0 - j2.0 -9.0 - 'j2.0 
Performance P.I. r. 7098 •= 71247 
Index 

Table 5.1: 	Natural position of critical eigenvalues 
and as relocated. 
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a ) Rotor angle machine no. 1. 	h) Rotor angle machine no. 2. 

4. 
0 

m 
10 

N 
	TIMES 

c) Frequency machine no. 1. 

Figure 5.4: Rotor angles and frequency response to a small 
disturbance ( A(i)fd 

= 0.1 p.u.) open loop system. 
1 



a) Rotor angle machine no. 1. b) Rotor angle machine no. 2. 

0 

c) Frequency machine no. 1. 

Figure 5.5: 	Rotor angles and frequency responses after a 
small disturbance (A 4)fd = 0.1 p.u.) closed 
loop with global model colntrol 1. 



Input Elements of the feedback gain matrix, F 

-0.034 -0.000 -0.001 0.000 0.004 -0.126 -0.003 0.626 -0.012 0.001 -0.019 

LVref 
0.034 0.000 0.001 -0.000 -0.004 0.128 0.003 -0.613 0.012 -0.001 0.018 

-0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.005 -0.000 0.000 -0.000 

u1(t) 
-0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 -3.078 -0.331 -17.820 

QY~ -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 4.980 0.330 17.820 

1 0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 

0.466 -0.000 0.040 -0.000 -0.110 0.027 0.092 -18.110 -0.025 -0.004 2.048 

AVref 
-3.400 -0.004 -0.267 0.006 0.079 -0.111 -0.051 13.340 0.293 -0.011 -2.270 

uo(t) 
2 

- -2.260 -0.002 -0.162 0.006 0.023 -0.038 0.951 -0.018 0.281 0.050  

-0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.003 -0.000 -0.000 -0.003 

L~Yo 0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.002 -3.610 -0.455 -24.500 
2 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.003 -0.000 0.000 0.000 

-4.590 -0.007 -0.270 0.017 0.422 -0.196 -0.054 34.850 -0.160 -0.057 -6.910 

'aVre1 
5.160 0.005 0.470 -0.001 -0.050 0.042 0.061 -44.590 -0.002 0.040 7.180 

3 -1.560 -0.003 0.007 0.017 0.165 -0.129 -0.580 0.081 -0.885 -0.036 
u(t) 

-0.281 0.000 -0.005 0.002 -0.112 -0.009 0.074 0.600 0.026 0.000 -0.167 

Au gov 
-0.400 -0.005 -0.152 -0.010 0.117 0.013 -0.111 40.120 0.083 0.067 -0.024 

1 
-0.638 0.005 -0.012 0.004 -0.196 -0.023 -17.790 -0.056 0.615 0.025 

Table 5.2: 
	

Feedback matrix for global control, case 1, when loads are considered as non-linear 
passive load, K = K = 2. 



Input Elements of the feedback gain matrix, F 

-0.034 -0.000 -0.001 0.000 0.004 -0.126 -0.003 0.657 -0.013 0.001 -0.020 

AVref 
0.034 0.000 0.001 -0.000 -0.004 0.127 0.003 -0.578 0.011 -0.001 0.017 

1  -0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.045 -0.000 0.003 -0.001 
ul(t) - 	. 

0.000 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -3.010 -0.331 -17.820 

AYo -0.000 -0.000 -0.000 0.000 0.000 -0.000) 0.000 0.000 5.010 0.329 17.720 

1  -0.000 -0.000 '-0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 0.000 

0.580 0.000 0.044 -0.001 -0.026 0.022 0.008 -4.240 0.008 0.003 0.688 

brref 
-0.625 -0.000 -0.048 0.001 0.028 -0:031 -0.009 4.690 0.064 -0.003 -0.725 

2  
0.034 0.000 0.052 -0.000 -0.000 0.006 -0.118 -0.003 0.032 -0.002 

u2(t) = L. 	 
-0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.001 -0.000 0.000 -0.000 

LY 0.000 -0.000 0.00o 0.000 0.000 -0.000 -0.000 0.001 -3.617 -0.456 -24.50O 
°2 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.003 -0.000 0.000 0.000 

-0.243 -0.001 -0.001 0.002 -0.016 -0.005 0.112 -7.690 -0.055 -0.008 0.862 

bVref -1.920 -0.003 -0.130 0.004 0.065 -0.078 0.010 5.570 0.126 -0.031 -2.210 

-2.190 -0.001 -0.121 0.010 0.039 -0.085 -1.070 -0.020 0.546 0.125 
u2() = 

3.390 0.000 0.361 0.007 0.022 0.120 -0.014 11.820 0.487 0.180 8.350 

ugov -5.840 -0.019 -0.414 0.015 0.492 -0.522 0.662 92.530 0.27,4 0.048 -4.670 

1  0.543 -0.000 0.120 0.011 0.179 -0.008 38.080 -0.108 2.840 0.850 

Table 5.3: 	Feadback matrix for global control, Case 1, when load is considered as combined load. 
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described in Chapter 3 by equations (3.12) and (3.13). Table 5.4 

shows a summary of the performance indices for several non—linear 

passive loads and combined loads. The index varies 1:1.6, 

depending on the character of the loads. 

The local controller obtained by disconnecting. feedback 

signals from other machines is shown in Figure 5.1b. The eigenvalues 

of the system when controlled in this way are shown in Table 5.5, 

column 1. Some of them are underdamped. 

Reference61  showed that if the global controller is chosen 

in such a way that all the closed loop eigenvalues are preassigned to 

a region further to the left of the line EF, Figure 5.6, in the 

complex plane, the local control derived from it gives satisfactory 

performance, but as a result of this a suboptimal control can be 

possible. Another method suggested by those auihors61  was to design 

a global controller for those machines which can be considered to be 

closely tied electrically, i.e. global control for machines nos. 1 

and 2etogether (feedback paths from machine no. 3 disconnected, and 

a local control for machine no. 3 separately (without any feedback 

from machines nos. 1 and 2). However, in the present analysis it 

was discovered that the coupling between machines was not only 

dependent oh the system network structure but also on the way that 

the dominant inputs select the group of eigenvalues, as was 

mentioned earlier in Section 5.2.1. 

Improvement was obtained in two ways: 
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Load Characteristics 

Performance 
Index Bus No. 2 Bus No. 3 

K 
P 

K 
q 

K 
q 

K 
q 

2 2 2 2 7099 

1 2 1 2 7103 

2 1 2 1 . 7070 

1.5 1.5 0.5 0.5 7034 

2 1.8 0.8 1.3 7024 

Combined Load 
12% Induction Motor 

Combined Load 
8% Induction Motor 11730 

Table 5.4: 	Performance index for different load 
characteristics. Global modal control 1. 
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Method 1:  

Only those critical eigenvalues which deteriorated when 

the local control was derived from the global control structure 

by disconnecting the feedback paths from other machines, were moved 

far away from the line EF of Figure 5.6. 

Method 2:  

Once the structure of the global modal controller was 

known and how the groups of eigenvalues were relocated by the 

dominant inputs, the local controller was obtained by disconnecting 

the feedback paths from the other machines. If the system dynamic 

stability deteriorated, then it was possible to introduce a 

compensation of that undesirable oscillation by introducing some 

signals from other machines to those which require extra compensation.. 

These extra signals have been selected as those which were 

associated with the largest feedback gains of the global control 

matrix. These signals were defined as dominant signals. 

When the first method was applied, starting from the second 

global modal control design (relocation given in Table 5.1, column 3) 

the system was stable, as is shown by the eigenvalues given in 

Table 5.5, column 2 where only the last pair of conjugate 

eigenvalues were moved further away from the line EF of Figure 5.6 

and not all of them as was proposed in Reference 61. 

Finally, Method 2 was applied to the same power system, but 

it was found that only one dominant signal (speed n) was required to 



Local Control 
eigenvalues 

Local Control 	Local Control 
Method 	1 	Method 	2 
eigenvalues 	ei_genvalues 

-5.5 + j1.19 - II .6 + j5.3 -6.2 + j0.4 

-5.5 - j1.19 -II-6- j6.3 -6.2 - j0.4 

-3.4 + j5.36 -3.27 + j5.4 -3.3 + j5.4 

-3.4 - j5.36 -3.27 - j5.4 -3.3 - j5.1[ 
-3.0 + j5.31 -3.55 + j3.1 -3.1 + j2.4 

-3.0  - j5.31 -3.55 - j3.1 -3.1 - j2,4 
-1.86 + j5.07 -2.04 + j7.44 -1.82 + j6.25 

-1.86 - j5.07 -2.04 - j7.44 -1.82 - j6.25 

-2.99 -2.99 -2.99 
-2.69 -2.69 -2.7 
-1.79 + j6.77 -1.8 + j6.51 -2.9 + j6.73 

-1.79 - j6.77 -1.8 - j6.51 -2.9 -- j6.73 
-1.09 -1.79 -0.94 
-1.8 -1.8 -1.8 

-1.5 -1.5 -1.5 

-6.37 	. -6.36 -0.9 + j2.94 

+0.578 -0.70 -0.9 - j2.94 

PerformanceP.I. = 31792 = 5054 
Index 

Table 5.5: 	Closed loop eigenvalues of the local 
controller design. 
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Region for the 
relocation, of closed 
loop eigenvalues Real axis 

Complex plane 

cos+l,S 

Figure 5.6: 	Criterion for the selection of new locations 
for the closed loop eigenvalues. 
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Load Characteristics 

Performance 
Index Bus no. 2 Bus. no. 3 

K 
p 

K 
q 

K 
p 

K 
q 

2 2 2 2 5055 

1 2 1 2 5120 

2 1 2 1 5012 

1.5 1.5 0.5 0.5 5014 

2 
• 

1.8 0.8 1.3 4996 

combined load 
12% induction motor 

combined load 
8% induction motor 10993 

Table 5.6: 	Performance index for different load 
characteristics: Local control, 
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stabilize the system sending it from machine no. 2 to machine no. 3 
excitation and speed governor setting reference points. The 

dominant signal was found to be the rotor speed of machine no. 2, 

which is an observable state variable. This gave the system a good 

transient response, as indicated by the eigenvalues in the last 

column of Table 5.5. 

Figure 5.7  shows the response of the system when a small 

disturbance is applied for a local controller, designed by Method 2. 

In this case, different load characteristics were also 

considered. Table 5.6 gives the performance index for different 
types of load representation at each bus bar. 

5.5 	CONCLUSION 

Modal control techniques have been applied in order to design 

a global modal controller for a multi—machine system. A local 

modal controller at each machine without any feedback of state 

variables from other machines has been synthesized. In both cases 

the effect of load characteristics was investigated. Results 

indicate that the optimal feedback gains are very sensitive to load 

characteristics. Thus any global or local modal controller is far 

from optimal if these effects are not considered in the analysis. 

Combined load in this particular case appears to decrease the damping 

of the system and therefore the feedback gains required are higher 

than with the non—linear passive load representation. Global control 

control design for suitable eigenvalues relocation gives good 



transient response, with low feedback gains, and a local control 

can be derived from it using the Method 2, whereas a local control 

with Method 1 can be suboptimal. However, both can improve the 

dynamic response of the system. 

158. 
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CHAPTER 6  

CONCLUSIONS  

6.1 	MULTI—MACHINE DYNAMIC STABILITY MODEL AND 
SYNTHESIS OF FEEDBACK CONTROLLERS, INCLUDING  
THE EFFECT OF LOAD CHARACTERISTICS  

The development of a mathematical model of the small signal 

dynamic performance of a multi—machine electric power system has been 

presented. For multi—input systems the algebraic manipulations 

required to derive a model would normally be difficult and would 

in any case be excessively time—consuming. Careful consideration 

of the system structure allows an efficient formulation that reduces 

significantly the time to compute the[A] and [B] matrices. 

The recommended procedure of earlier systematic methods 

requires the inversion of ill—conditioned matrices1,5,14'29. The 

present procedure does not need the inversion of Any matrix. An 

additional feature of the present model is that an open or closed 

loop model may be obtained and the system control inputs appear 

explicitly in the state space form for either situation. This is 

an essential requirement if modern control techniques are to be 

utilised to.drive novel types of control systems. The structure of 

the model also gives the facility to apply eigenvalue sensitivities 

and state variable reduction techniques in order to identify how 

modes of oscillation are associated with each state variable. 

It is shown that the application of modal control theory 

provides a direct non—iterative technique to design the feedback 

control law for a system. Its application to a power system problem 
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has shown that the system performance can be improved considerably 

without the trial and error involved in selecting the weighting 

matrices in the performance index for optimal control. Global 

control for suitable location of eigenvalues gives good performance 

with low feedback gains, whereas the local control derived from it 

can be suboptimal. Improvement was obtained when some machines 

drew additional signals from others. 

In the dynamic stability studies of multi—machine systems 

reported previously5,29159161772 the system loads have been presented 

by rather crude models. In this mathematical model the effect of 

different load characteristics has been represented in the analysis 

of the dynamic stability and the synthesis of feedback controllers. 

6.2 	THE EFFECT OF LOAD CHARACTERISTICS  
ON DYNAMIC STABILITY CALCULATIONS  

It is shown how state space theory can be applied to both 

multi—machine or single—machine systems including the effect of 

load characteristics in small—sized stability studies. In both 

cases it is shown that a crude load representation in the system 

model can lead to wrong results. In a single—machine system 

connected to an infinite bus—bar it is shown that the effect of 

the load characteristics upon the stability limit is dependent on 

the magnitude of the load and also the operating point. A non—linear 

passive load may be either stabilizing or unstabilizing, depending 

on the values of Kp  and Kq. In the particular case of a big 

isolated load considered as an equivalent induction motor, it has 
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been shown that the critical condition is obtained only when the 

motor is considered to operate near pull out torque 
(Tmax).  This is 

one of the cases where an approximate load representation becomes 

necessary. A combined load representation gives a better load 

simulation for small disturbances, but it does not represent the 

dynamics of the induction motor. 

In a multi-machine system the effect of load characteristics 

becomes difficult to evaluate in some circumstances. The IEEE Working 

Group38  has mentioned some of these problems in discussing transient 

stability. Here it was found that the effect of load characteristics 

is on the oscillating modes associated with the transient stator 

and network terms that are usually neglected in multi-machine - 

system models. When load is represented as non-linear and passive 

with IXp  ti 0 (approaching constant power), these modes of oscillation 

become highly undamped. However, if the reference machine is 

considered as an infinite bus-bar these oscillations are not present 

in the system even for a constant power load. Similarly with a 

combined load, in the absence of an infinite bus-bar, when the 

induction motor load is dominant a real mode a > 0 can arise; this 

does not occur when the constant impedance load is dominant. 

In Chapter 3 an eigenvalue was found associated with stator 

transient terms which varied dramatically with load conditions. 

As Kp  and K -- q  > 0 the high frequency fell to zero and cx > 0. 

Both in this study and in one of the studies of Ludington (Chapter 4) 

system transient terms were ignored. When they were included 

(Chapter 4), this eigenvalue assumed supply frequency. 
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It is doubtful whether this eigenvalue represents the 

real performance of the system. The absence of network transient 

terms clearly distorts its frequency and damping. 

The significance of such terms and the reason for their 

dependence on load characteristics is not clear. There must be a 

suspicion that the eigenvalue is spurious. 

6.3 	THE EFFECT OF LOAD CHARACTERISTICS ON THE  
DESIGN OF FEEDBACK CONTROLLERS OF GENERATORS  

The effects of load representation on modal excitation and 

speed governor control, both in a single—machine system and a"multi-

machine power system, have been investigated. Non—linear passive 

load of different active and reactive power—voltage characteristics, 

as well as the combined load composed of constant impedance in 

parallel with the load of a group of induction motors, has been 

considered. 

The effect of load characteristics on the design of the 

feedback controllers has been investigated using first a single 

infinite bus—bar system similar to that at Ludington (U.S.A.) which 

had steady—state stability problems. It has been found that the 

optimal feedback gains required for particular position of the 

eigenvalue depend upon the magnitude and characteristics of the 

load. An accurate network representation is import:.nt in the 

controller design. 

A study of the effect of load characteristics in the design 

of feedback controllers for a multi—machine system was made. Modal 
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control technique was used to design such a controller. Many recent 

papers on optimal control
59,61,62 

 have used similar methods of modal 

design but none have taken the load characteristics into account. 

Here it has been shown that different load characteristics required 

different feedback gains to give the best response. 

The results indicate that any global or local modal controller 

.are far from optimal if load effects are not considered in the analysis\  

6.4 	SUGGESTIONS FOR FURTHFRt WORK 

Load characteristics should be regarded as equally 

important as the other system parameters, and every effort should be 

made to determine them in a realistic way. Representative tests 

for every particular power system are required to guide in the 

formulation of a complete dynamic or a combined load, and ultimately 

to provide data for every stability study. 

All the publications about small disturbance analyses 

have considered loads with static non—linear characteristics as 

dependent on voltage14,34,35,38,56  Moreover, load variation due to 

frequency changes is difficult to separate from that caused by 

accompanying voltage changes. The formulation presented in this 

thesis should be modified to introduce the variation of load with 

frequency at each load bus. Model reduction techniques can lead 

to the inclusion of better induction motor representations in a 

multi—machine system. The network representation has to be 

investigated for a multi—machine dynamic stability analysis 

including different load characteristics. 
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If the state vector of the system concerned is not accessible 

to direct measurement for the design of a modal controller, it is 

nevertheless possible to implement modal control by using an 

additional dynamic system known as an observer or state estimator. 

It would then be necessary to compare the designs for different 

load characteristics and select an appropriate one. Also, the 

feedback controller has to be tested in the non—linear system for 

large disturbances. This, and the use of decoupling control techniques, 

are large areas for future investigation. 
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APPENDIX A.1  

LINEAR S NCNHONOUS MACHINE EQUATIONS  

Using the sample procedure of considering only the first 

terms of a Taylor series expansion of the equations, about any 

operating point, suitable for linear analysis as shown below. 

Direct-axis flux linkage: 

d Pfd 	Xffd 
Aifd 

+ Xafd 
did + Xfkd Aikd 

d`Yd - Xafd fd 
+ 
Xd Aid 

+ X
akd Aikd 

d(Pkd = Xfkd Aifd + Xakd Aid + Xkkd Aikd 

Quadrature-axis flux linkage: 

44 = Xq csiq +xakq Aikq 

A4)kq = X
akq A iq + Xkkq d ~ ka 

In a matrix compact form: 

[64,1 = CX~ C oigJ 
61(1)g = col( d 

4)fd' AYd' ()kd' AYq' A(Pkq) 
dig = col( Aird, Aid, Aikd, Aiq , d ikq ) 

Direct-axis voltages: 

rfd  
Wo p nYfd 	X

afd 
dUfd rfd Aifd 

ō p0~id = - dvd - rs Aid - d4'q - (y!q d n 

1 
W pdTkd- = - rid dikd 
0 
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Quadrature-axis voltages: 

Wo 	T 
pu(~q = — Avg — rs Aiq + A(I d + 9d An 	(A.1.12) 

to p(~(P kq = - rkq L~ikq 	 (A.1.13) 
0 

In a matrix compact form: 

~V = 	E ig] + 	CI= _ CI *A(~)g] + [(}~g] n 
L o 	T 	i 

(A.1.14) 

[I] = unit matrix 

E LV] = co1(Xf d AE fd , - L1vd , 0, - Alice 0) 
afd 

= diagrfd, rs, rkd, rs, rkq) 

0 	0 0 0 0 
0 	0 0 1 0 
0 	0 0 0 0 
0 -1 0 0 0 
0 	0 0 0 0 

EiNy 	
= col (0, yq, 0, —9d, 0) 

Torque at the air gap: 

AT = (~ LIi + iA(0 g d q g d - d - ld© i q 
(A.1.15) 

Mechanical equations: 

Tm p An = ATmech 
- ATg 

p ASr = (An 

Voltage regulator: 

K 

AE. = 	T 1+ 	 Av 
rgp 

(A.1.18) 
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Turbine: 

mech At Ag - DnomBAn + 1.5 AtBich (A.1.19) 

Governor: 

rode = -pAn- tpL~g-~( A C+~n) 
R 

Gate servomotor: 

PAg = Qg(AC — Sp Ag - Wsp in) 

Water column: 

p 0 h = 	2p L\ g- T dh 
W 

(A.1.20) 

(A.1.21) 

(A.1.22) 

Transformation equations: 

QP2 _ id ilvd + iq Lvq + vd A id + vq jtiq 
	

(A.1.23) 

AQ2 - ig Av d - id Avq + vd Aiq — vq Aid 	(A.1.24) 

	

vd 	v Av2 = V L\vd + L Av q 	 (A.1.25) 

	

2 	2 

	

1.--T-q- 

	v 

A bm 	
8vd - 

V2 
Ovq 	 (A.1.26) 

	

2 	2 

L\ r = LA2 — L1 bm (A.1.27) 
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NON—SYNCHRONOUS LOAD REPRESENTATION 

Induction Motor: 

The equations below are obtained directly from the 

synchronous machine equations with the following simplifications: 

(i) 	 The terms and equations related to the field circuit 

can be eliminated. 

The induction motor has round and symmetrical 

rotor windings. 

xd  = xq  = = xgi  + Lm  

_ lckd = 'lcicq = X
r  = x.a

2  + Xvn 

xakd — xakq 

rd  = r 
q 

R 
s  

rkd  — rkq  = Rr  

In the induction motor the magnetic fields rotate 
• 

at different speeds from the rotor. Therefore the reference 

frame•for.the induction motor should not be connected to the 

rotor. The most convenient reference frame in this case is 

the network frame which rotates at synchronous speed (i)o. 
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Flux linkage: 

(iPsd = xsisd + mird 

4 rd = xmisd + xrird 

`Psq = xsisq 
+ xmirq 

i 
(iPrq = X

m sq 	
r + xrrq 

Voltages: 

1 
—vd 	Hsisd + -P Tsd 

0 

0 = R 
r r 

1 + - (Pr + S ( rq 

1 	{', 	(f, 
-vq = ītsisq + ō ~"sq -- Ysq 

1 = Rsirq + 
(

p 4rq 	S(rd 
U 

Electrical. torque: 

Tg = ~sdlsq 
- 
 sglsd 

Mechanical equation: 

Tmpn = Tmech 
— Tg 

(A.1.28) 

(A.1.29) 

(A.1.30) 

(A.1.31) 

(A.1.32) 

(A.1.33) 

(A.1.34) 

(A.1.35) 

(A.1.36) 

(A.1.37) 

• 
In the same way as the the synchronous machine, the above 

equations can be linearized for small perturbance analysis. 
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FI ux 1 inlmge: 

(A. I. 38) 

(A.I.39) 

co1( 6i d' 6i d' 6i ,fji d) s r sq r 

Xs XM 

[X] Xm Xyo 

= (A.I.lfI) 
Xs ~ 

X'((\ X 
r 

Vo1tages: 

= [RJ [6iMJ + { -&- [rJ + [sJ}[.~~(VHJ + [CP;;J 6n 
o 

co1(- 6v d' 0, - 6.v ,0)· s sq 

[ lliMJ = col ( 6. id' 6i d' 6.i ,6 i ) s r sq rq. 

[R] = diag(R, R , R , R ) 
s r s r 

o 0 

[s] o 0 
= -1 0 

o -s 

1 
o 
o 
o 

o 
s 
o 
o 

(A. I. 42) 

(A. I. 43) 

(A. I. 44) 

(A.1.45) 

(A.I.46) 

(A. I. 47) 
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Transformation equations: 

For the induction motor only the transformation from 

the rectangular to polar form is necessary. Here the reference 

frame is the network reference, which rotated at o. 

P
3 — vsd"sd 

+ v
sgisq 

vsdisq - 
vsglsd 

V3 - 
vsd2 

+ vsg2 

b 	
-1 (vsd) 

3 = 
tg Av 

(A.1.48) 

(A.1.49) 

(A.1.50) 

(A.1.51) 

Equations (A.1.48) - (A.1.51) in linearized form are 

obtained in a straightforward manner: 

AP5 	Isd C'vsd + isq Avsq + vsd Aisd + vsq isq (A.1.52) 

AQ3 = isq Avsd - Isd Avsq + vsd Aisq 
- 

vsq ils 

vsd 	vst~ Av 	
v
sd 

 
= V3 	vsd + V3 Av 

V
.~ 	vsd 

~53 = 
V
2 "vsd  

V
2 2 	 Av 

3 	3 

(A.1.53) 

(A.1.54) 

(A.1.55) 

Non-linear passive loads: 

For a non-linear admittance, active and reactive powers 

are: 

PL _ G(V, W )V2 

QL 	B(V, (0)V2 

(A.1.56) 

(A.1.57) 



VA = Vi* 

i = YV 

i* = Y*V* 

Y = G — jB 
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VA = V(G + jB)V* 

VA = (G + jn)V2  

(A.1.58) 

(A.1.59) 

If frequency dependence of G and B is ignored: 

PL 	Gv2 	 (A.1.60) 

QL 	BV2 	 (A.1.61) 

The linearized form of equations (A.1.60) and (A.1.61) is: 

APL = (V2 aV + 2GV) A V 	 (A.1.62) 

2 
APL  = (VCG DG 	VV 

 2G 
V 

 ) AV 	(A.1.63) 

APL 	V = 
PL(2 

	VT) AV 	(A.1.64) G. 

In a similar way: 

AQL  = QV (2 + B BB  TV)  AV  (A.1.65) 

A type of relationship widely used to represent non—linear 

passive loads is: 

PL 	C1  VI  

. Q = c2 vKQ  

The linearized form of equations (A.1.66) and (A.1.67) is: 

APL 	Cl !_y = CKpV(Kp-1)  A v 

APL 	Kp C1 V p V 1AV 

(A.1.66) 

(A.1.67) 



APL = ic PL 

P 

In a similar way: 

Q — A QL - q V Av (A.1.69) 

Combined Load: 

It is assumed that the load group can be simulated by the 

simple equivalent circuit shown in Figure A.1.39 in which a constant 

shunt admittance reoresents the static load and a voltage behind a 

constant admittance represents an equivalent induction motor. 

Figure A.1.2: Model to represent the combined load. 

m—jBm 
1 

V er~; 

Figure A.1.3: 	Simple equivalent circuit. 



t —1 Bs 
g G • = 

s 
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The real and reactive powers taken by the equivalent 

motor are: 

	

Pm = V2Gm — VVnYmcos(Om + ā) 	(A.1.70) 

• V2Bm — VV mYmsin(~m + 6) 	(A.1.71) 

and those taken by the static load are: 

(A.1.72) 

	

P
s 
	V2G 

	

s 	s 

Qs = V
2
B 

giving group demand of: 

PL = V2(Gm+Gs) — WmYmcos(plim+6) 

QL = V2(Bm+Bs) — WmYmsin(f +b) 

1 
Ym = (Gm2 + Bm2)2 

• T 
—1 Bm 
g G 

m 

(Gs 2 + Ba 2Ī2 

(A.1.73) 

(A.1.74) 

(A.1.75) 

(A.1.76) 

(A.1.77) 

(A.1.78) 

(A.1.79) 

These equations above can be linearized in order to have 

the power variations against voltage and phase angle: 

QPL = E2V(Gm+Gs)—VnYmcos(0m+6)] AV+ [WmYmsin(Om+S)]L 6 

(A.1.80) 

AQL = E2V(Bm+Bs)—VmYmsin(O +ct)]QV— EVVmYmcos(Om+b)jM 

(A.1.81) 
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For the sake of facility, equations (A.1.80) and (A.1.81) 

are written in condensed form, to be used in the program as: 

PL 

A QL 

PART_ 	PARTIE  

QART3 	QART4  

pv 

AS 
(A.1.82) 

• 
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APPENDIX A.2  

EQUATION SYSTEM TO FOIIM DK] MATRIX 

The equations (2.62) and (2.63) described in Chapter 2 

are obtained after the linearized equations of each element are 

known. The set of these equations depends on the load representation. 

The matrices JK1,..., K5J can be formed by inspection (Figures 2.3 

and 2.4). According to Figures 2.3 and 2.4 the vector elements 

should first be specified in the following sequence: derivatives 

of state variables, state variables, and algebraic variables, as 

follows: 

1) 	Equations considering the load as an 
induction motor (Tmech c n): 

1 	 _ rfd 
Wo P A~'f d Xafd ADfd + rfd blfd 

0 	(A.2.1) 

W P A4 d + A(~q +04)q An + Avd + rs Aid = 0 	(A.2.2) 

1 
P A(Pkd + rkd Aikd = 0 	(A.2.3) 

1 	fi — ', 
w P A q Ayd 	

c 
'Pd An + Avg + rs Aiq = 0 	(A.2.4) 

0 

1 
Wo P A (p kg  

Trgp AEfd + 1Efd — Kr Av2 = 0 

— p 	Wo An = 0 
• 

(A.2.5) 

(A.2.6) 

(A.2.7) 

—TmP An—igA4)d+idA(q—Dnom An+At Ag+1.5A.tB Ah+ (p Aid— 4)d Aiq: 0 

(A.2.8) 

— P Ag — QgWsP An — Qgbp A g + Qg Ac = o 	(A.2.9) 
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 -pAC -pAn - ~ PA g - +- An - - AC- 0 	(A.2.10) 
R 

(A.2.11) 
w 

1 PAy 	 -  GJ 	sd + 	+ dvsd + 1ts ~lsd - 0 	(A.2.12) 

W P b Yrd + S Yrq - A n. 	rq + Rr A ird = 0 	(A.2.]3) 
0 

ul1 

	

pA ysq — A(~)sd + Avsq + Rs Aisq = 0 	(A.2.14) 
0 

1 
W P A 4)rq — SAYrd + An' Yrd + Rr Ai q = 0 	(A.2.15) 

—TmP An+PROT An—isgA(isd+isd A@sq+ (I) sq Aisd — Īsd Aisq = 0 

8P2 	8P2 	762 op2 

-AP2  • a6252 + aV2 Av2 3 d~3 + av3 6v3 0 (A.2.17) 

aQ2 	a@9 	a@ 	aQ 
- d@ + a62 A62 + av2 "v2 + 363 Q-3 + av3  "v3 = 0 (A.2. 18) 

(A.2.19) 

(A. 2.20) 

(A.2.21) 

(A.2.22) 

(A.2.23) 

(A.2.24) 

(A.2.25) 

— A(p q + Xq Alq + Xakq A ikg = 0 	 (A.2.26) 

— A 1{q + Xakq Aiq + Xkkq A ikq = 0 	 (A.2.27) 

- pAh-2pAg—T Ah = 0 

0 

(A.2.16) 

v ' 	vd 
A62 	Mr 	Avd 	Av - 	+ 	+ -~ 	— 	= 	0 

V2 	V2- 

- Av2 + -- Av 	+ 
	Av 
	= 	0 

V2. 	V2 

— AP2 + id Avd + iq Avq + vd Aid + vq A iq = 0 

— AQ2 + iq Avd — id Avq — vq A id + vd Aiq = 0 

— A (pi d + XffdAifd + Xafd Aid + Xfkd Aikd = 0 

A(Pd + Xafd Aifd + Xd A i.. + Xalcd A ikd = 0 

— A4)kd + Xilcd A lfd + Xal~d A id + Xlsl{d Aikd = 0 



+ XmAir q 
0 

+ X Ai 	= 0 
r rq 

1 
(Jo 

1 

~o 

1 

Wo 

P A9)d + A4)q 
1 
wo 

= 0 

+ rd Aid = 0 

+ rs Aiq = 0 
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ZP 
—Ap3+ ā Qb, 

ap3 3P 

2+ Fi6
3 

aP 
+ ā Qv3 - o (A.2.28) 

• 2 

Q3 + ab A 
2 

aQ.. 	aQ + 
 aV:

Av2 + ao3 Aā3 
 3 

aQ 
+ av Av3 = 0 

3 
(A.2.29) 

— 6143 + 
v
2 Avsd 
3 

scl 	— 	
A 

vsd 

v3 2 vsq 

v 

Avsd V1 AZ 	= 0 	(A.2.31) 
3 	sq 

- AP3 + i
sd Avsd + isq Avsq + vsd Qisd + vsq Aisq .0 (A.2.32) 

0 
	

(A.2.30) 

vsd —Av3+V 
3 

isq Avsd - i Qvsq + v Aisq - vsgA isd= 0 (A.2.33) -AQ3 + 

- AYsd + Xs Aisd + Xm Ai r d  = 0 

— A4'rd + 
Xm 

Aisd + Xr Aird = 0 

— t ()sq + Xs Ai sq 

- A rq + Xi! 6,isq 

(A. 2.34 ) 

(A.2.35) 

(A.2.36) 

(A.2.37) 

2) 
	

Equations considering the non-linear 
passive load representation: 

A ( 	rfd 
CJo P ~fd - Xafd QEf d + 

rid Alf (A.2.38) 

(A.2.39) 

(A.2.40) 

(A.2.41) 

(A.2.42) 

+ (pq An + 

P A't)kd + rkd Aikd = 
0 

P AYq - v4d (P
d An + 

P U(I) kg + rkq A ikq 0 

Avd 

q 
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Trgp AEfd + 	 fd - 1:r v2 = 0 	 A.2.43) 

- pA5r + 0An = 0 (A.2.44) 

-Tmp An - 1gA(Pd + idAq q - DnomB An + At Q g + 1.5AtB 1h + 

+ (Pq 	(1)d Aiq = 0 	 (A.2.45) 

-pAg - QgaspAn -= Qg)pAg + Qg AC = 0 

-PAC-pAn-6tpAg-i-An - i-  

-pdh-2pAg-T Ah = 0 
If 

ZP 	8139 	aP 	DP 
— ©P2 + 662 Aa2 + av2 AV2 + 6S3 A83 + 6V3 

(A.2.46) 

(A.2.47) 

(A.2.48) 

= 0 	(A.2.49) 

3Q2 	3Q2 	aQ2 	aQ2 — AQ2 + 662 062 + 
av2 aV2 + 66 • 3 + av3 Av3 = 0 	(A.2.50) 

v. 	vd 
—~62 + br+ 	Avd - 	 Avg = 

V2 	V2 
(A.2.51) 

va
V 

— Av2 + V 
Avd + 	Av = 	0 	(A.2.52)V

2 	2 q 

- LP2 + id Avd + iq Avg + vd Aid + vg Aiq = 0 	(A.2.53) 

(A.2.54) 

(A.2.55) 

Yd + Xafd Aifd + Xd Aid + Xakd'A1kd = 0 	(A.2.56) 

- AYkd + Xfkd Aifd + Xakd Aid + Xkkd A11rri = 0 	(A.2.57) 

- A'1'q + Xq Aiq + Xakq Aikq = 0 	 (A.2.58) 

- Aykq + Xakq piq + Xkkq Aikq = 0 	 (A.2.59) 

- AQ2 + iq Avd - d Avq - vq Aid + vd q = 0 

- AYfd + XffdA ifd + XafdAid + XfkdA11{d = 0 



K P„ 
- Ar_ 2-2  -L_2 Av 

i 
= 0 

3 
K Q 

- AQ3 + 	
~

3 Qv3 = 0 
3 
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(A.2.60) 

(A.2.61) 

	

3P, 	8P 	aP 	8P 

	

-AP + aā 	M '} av4 6v2 + aā3 A63 + 	AV 3 = o (A.2.62) 

	

2 	2 	3 	3 

3Q 	aQ 	aQ 	aQ 
- AQ3 + a6 DS2 + āv AV 2 + 35 pb3 + av Av3 = 0 (A.2.63) 

	

2 	2 	3 	3 

3) 
	

Equations considering a combined load: 

In this case, equations (A.2.38)-(A.2.63) are the same, 

except that equations (A.2.60) and (A.2.61) are substituted by: 

- QP3 + PART3 AV3 + PART!, A63 = 0 (A.2.64) 

- OQ3 + QART3 AV3 + QART4 	63 = 0 (A.2.65) 
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APPENDIX A.3 

HAILING AND BERG
1
'6  APPROACH FOR A SINGLE EQUIVALENT-
INDUCTION MOTOR  

The single model representing a group of motors is assumed 

to have an electrical circuit structure identical to the conventional 

approximate circuit of a symmetrical three—phase induction motor. 

The procedure for obtaining the single unit equivalent parameters 

is discussed for a two motor group. Considering that generalization 

to more than two motors can be considered: 

Electrical parameters: 

Consider two motors driving separate loads and supplied from 

the same bus. At standstill the two motors may be represented by: 

Figure A.3.1  

In order to maintain the electrical power invariance, we let: 

XLM 

Figure A.3.2  
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X X 
ml m2 

X + X 
ml 	m2 

(R21 + JXgl)(R22 + J
XE2) 

(R01+JX0 + (R22+jX2.2) 

112 
	 ( 2 	 2Ī121(22 +

Qo2)+22 1121+X21 

(R21 
+ 

R22)2 
+ (X21 

+ X.e2)2 

X911(Xe2
2 
+ R222) + X12(X212 + R21 

_ 	(R21 + 
1122)2 + (Xg1 	+ 

Xg2)2 

Equivalent slip: 

If two motors are running at constant slips, S1 and S2, 

the corresponding slip of the equivalent single motor is SM, by 

equating the real parts of the input impedances of the two equivalent 

circuits: 

RM _ (R21/S1
EX 

I22
+ (n02/s2 

	
+ R0 /S2 

r(R21/S)2 + 
(X21)2J 

Sm 
C(1121/S1 

+ 1122/s2)2 + (X~1 + XL9) J 

Let s
21 

= 1121' S22 = R?
2' the equivalent slip is found to be: 

1 	2 

Equivalent inertia constant: 

In order to find the moment of inertia for the equivalent 

motor, this motor is assumed to retain an amount of kinetic energy 

at synchronous speed equal to the sum of the kinetic energies of the 
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individual motors at synchronous speed. Using the definition of H 

as the amount of kinetic energy at synchronous speed divided by the 

rated voltamperes: 

HM(VAM) = II1(VA1) + I12(VA2) 

VAM  = VA1  + VA2  

II1(VA1) + H2(V2) 

Am — 	VAM  

Composite load torque characteristics: 

The composite mechanical load torque—speed function is 

then expressed as: 

/M 
TR m 

_ 
_ 

ToMW1,1  

Single unit equivalent motor: 

The procedure used for the case of two mollor group can be 

extended to .obtain the parameters of a single—unit equivalent of more 

than two motors supplied from the same bus. 
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APPENDIX B.1  

LINEARIZED DIFFMENTIAL AND ALGEBRAIC EQUATIONS 
FOR A MULTI—MACHINE SYSTEM  

The equations are written for a two—machine and three—node 

system (Figure 3.5) by way of an example, but the extension to n 

machines and m nodes is executed automatically by the computer program. 

The order in which these equations are written is maintained in the 

program; thermoelectric machines first, followed by hydroelectric 

machines. Synchronous machines are represented by Parkas equations 

using the convention given in Reference 13. 

Thermoelectric machine: 

1 	rfdl 

Wo P Yfdl xafd 	~Efdl + rf dlA ifd1 =0 
1 

,1 
,~ pAyd + A(1)q- + 6)q i nl + Av e, + rs A id = 0 

0 	1 	1 	1 	1 	1 	1 

(B.1.1) 

(B.1.2) 

1 
wo 

PAU
kd1 + rkd1 ~ihd1 

	
0 	 (B.1.3) 

pA~ 

Wo ql 1 A n +tv + r Ai = 0 	(B.1.4) 
d1 	q1 81 ql 

/

Icgl + rI{ql Ai 	= 0 
Wiz, 

(B.1.5) 

T p AE +tEfd — K Av = 	r 1 — K AV ref 1 	1 r1 1 
(B.1.6) 

—pA Sr1 — C,)o A nl = 0 	 (B.1.'7) 



(B.1.12) 

(B.1.13) 

(B.1.14) 

(B.1.15) 

(B.1.16) 

g2+1. 5A
t2 

B2 A h2 = 0 

1-'a 

1 
Au. 

gov-1 • Ta 
1 
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-Tm.pAn
l-ig1AY

d~+id Q9g1+(Pq1 Aid -(I) d n i +0•28AWh2 
1 	1. 	q 1 

+0.72LWi2 = 0 

(il.h i + T~ Ari + T nWhl _ T 
Ay 

 PA W11 
	 1 1 

pA(~)h2 L To nwh1 + T9 nWh2 = 0 
2 	2 

pAwi2 — TAWh2 + To L Ci)i2 = 0 
3 	3 

Hydroelectric machine: 

rfd 
GJ0 AYfd2 Xafd AEfd2+rfd2 n i fd2 = 0 

2 

pni'd +L9)q +9)q n n2+ Avd0+rs Aid = 0 
0 2 2 2 	2 2 2 

p
Ara 

lcd 2 
rkd2 A ikd2 = 0 

-4)
d 2 

An2+ Av
q2 

+rs 
2 q2 
ni = 

pn(pkq + rkq nikq = 0 
0 	2 	2 	2 

T pAEfd + AEfd -Kr AV2 = —Kr AVref 
2 2 2 2 	2 o 9 

1 
Wo 

(B.1.17) 

-p A 6r2 - ( nn2 = 0 	 (B.1.18) 

(~ —Tp nn2-iq,ny d 2+i d2n q2+  

+At 
2 
n 

q Ald -`1'd Al —DAn2 
2 2 q2 

(B.1.19) 

(B.1.20) 



-pAg1 - p1 T ngl - ,1,1 an2 - , l ISgfl = 0 

gl 	gl 	gl 
• 

-pAh1 - 2P g1 - T,2 Ehl = 0 

Algebraic equations: 

Network equations: 

ōPl 	aPl 	IP, 	3Pl 	ōPl 	aPl 
ā6 1151 + avl rivl + ab2 Obt + aVR Av2 + ad3 AS 3 + .~y3 Av 3• 

- 'k1 

aQ 	aQ 	aQ 	aQ 	aQ 	aQ 

3Q 
A61 + DV OVl 3b1 ~b2 + avl tv2 + a61 d b3 + avl AV 

1 	1 	2 	2 	3 	3 

- dQ 1 = (B.1.24) 

BP 	c~P ,~ 	DP 	aP2 	11P~ 	3P2 
D6"  ~1+ aV 	nV1+ ō__1A6  2+ ōV ~V2+ ~b 	A b3+ a—~ii3- 8P2_0 (B. 1.25) 

1 	1 	2 	2 	3 

	

3Q2 	aQ2 
	3Q2 	aQ2 	aQo 	aQ2 

a6 L6 l+ bV ~V1+ 08' 2+ DV ~V2+ 36
3'
-b3+ av AW 3- 

	

1 	1 	2 	2 	3 

	

DP, 
	;1L\v1+A1+ 	ab2~2+ av 2+ a Lp3+ ā~~3LT3- 

=0 (B.1.26) 

=0 (B.1.27) 

aQ3 a
Q 

aQ3 a aQ3 
a_Q_ 

36 ~bl+ DV 1~1+ ab Qb2+ BV ~V2+ ab 	Qb3{ 4Lv3—.Q3=o  (B.1.28) 
1 

Power Transformation equations including 
non-linear passive load representation: 

V 'r V &1 + v Ai 
q1 d1 d1 q ql 

(B.1.23) 

(B.1.29) 
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QL 
= 	- ~~Q = i Av -i Av -v Ai +v 11i -K 	1 Av 

1 	G1 	L1 	ql di d1 ql ql d1 d1 ql ql V1 	1 

(B.1.30) 

PL 

	

AP - AP = i Lsv -i Av -v L\ i +v Ai -K 	2 Av 
Gz 	Lz q2 d2 d2 42 qz d2 d2 q2 p2 V2 	2 

(B.1.31) 

QL2 
AQr - LQL = i Av -id Av -v A id +v Li. -K 

V2 
Av2 

r2 
L2 q2 d2 

2 q2 q2 2 2 q2 q2 2 

(B.1.32) 

PL 
AP = AP G - APL = iq Av 	q q

3 
-1 Av -v A.id +vd ~i q p

3 
-K 	Av 3 

3 
L
3 

q
3 

d
3 

d
3 3 3 3 3 3 3 3 

(B.1.33) 

i 
QL 

AQ 	i = Q -tQ = i Av -i /v -v [ji +v 	-K 	3 ©v 3 	G3 	L3 q3 d3 d3 . q3 q3 d3 d 3 q3 q3 v3 	3 

(B.1.34) 

Some of these algebraic equations have been solved analyt-

ically substituting equations (B.1.29)-(B.1.34) into equations (B.1.23) 

-(B.1.28) and a minimum number of algebraic variables are chosen in the 

present formulation. 

Phase angle and voltage transformation equations: 

In Chapter 2 details for the derivation of these equations 

are given in Appendix A.1 for a single-machine system. The equations 

for a multi-machine system are shown below, derived in a similar way. 



	

vd 	v 
(1 +V 

1L\?~d + V 'Av 
	= 0 

	

1 	1 	1 	q1 
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(B.1.37) 

(B.1.38) 

vd 

2 	

vq 

2 - LV2+V Av +v ~v 
2 2 2 q2 

0 

Flux equations:. 

-a(Pfd +Xffd dlfd +Xafd Aid +Xfkd aikd = 0 	(B.1.39) 
1 	I 	1 	1 	1 	1 

-aNd +Xafd aifd +Xd i id +Xakd a 'lsd - 0 	(B.1.40) 
1 1 1 1 1 1 1 

(B.1.41) 

(B.1.42) 

-Qyk + Xalc ai + x 	A ik = 0 	 (B.1.43) 
ql q1 ql ql ql 

Aikd = 0 	(B.1.44) 
2 	2 	2 	2 	2 	2 	2 

-aYd2
+X

afd2 Aifd2+Xd2
A id2+Xakd2~ 

ilcd = 0 
	(B.1.45) 

2 

(B.1.46) 

+ X ai + X 	 (B.1.47) 

+ 	Qi + 	Aile 
0 

- a
((
`t

'' ,, 
kq2 	X

lc ag2 
	q2 	

Xklc q2 	q 
=

2 
(B.1.48) 

When one machine is taken as the reference, simplifications 

are made, as explained in Section 3.3.3. 

Equations (B.1.1)-(B.1.48) can be arranged in a matrix form 

as equation (3.2), and all the [K] submatrices are obtained straight-

forwardly. The general structure of the multi-machine system 

equations, is shown in Figure B.1.1 

-A7 kd +Xfkd Alfd +Xakd Aid +Xkkd L ikd = 0 1 	1 	1 	I 	1 	1 	1 

-No + Xq iq + Xak a ilc 	= 0 
1 	1 1 	ql ql 

-ayfd +Xffd Aifd +Xafd Aid +
X
fkd 

-a(Plcd
2 
+Xfkd2 

alfd
2 
+Xakd

2 
aid 

2 
+Xkkd A ikd 

2 
= 0 

q2 q2 q2 akg2 kq2 



Kl, K2, K31 

K1z 1 wo V22 K3 2 

. 
■ 

• 

, 	\ 

I 

`` 

■ 

IS 

K~h wo 
K2Y, K3 ti, 

.._,.........s '- • —. —...-1 %,,,/,`,' 
-1'• 	,  

_1 
_ -11 

/ \ l 

t' 	y!_,* 12 

-1 _114 
xv 

Figure B.1.1: General structure of the matrix equation for an 
interconnected system, machine no. 1 being the 
reference. 



Governor gain 

Throttle valve opening time 
constant 

Throttle valve closing time 
constant 

H.P. pipe storage time constant 

Reheater storage- time constant 

IP/LP storage time constant 

0.00139 sec/deg. 

1.0 seconds 

0.1 seconds 

0.1 seconds 

14.4 seconds 

0.51 seconds 

1 

T1C  

T2  

T3  

T4  
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APPENDIX B.2  

TURBINE-GOVERNOR MODEī AND DATA 

Thermoelectric Machine: 

The model of the governor and turbine is similar to that 

used in previous studies51'63. In order to maintain the same number 

of state variables as for hydroelectric machines, the system was 

reduced to a third order by the combination of time constants into a 

single equivalent time constant. The interceptor valve is also 

excluded, as in Reference 51. This reduction can be seen by comparing 

the full and simplified models of Figures B.1.1 and B.1.2, respectively. 

In Figure B.1.2 the repeater storage and I.P./L.P. storage time 

constants T3  and T4  are combined into a single time constant T3. 

The operational equations defining the turbine-governor and data are 

given. 

Table B.1.1: 	Turbine and governor parameters. 
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Linearized model equations  

Turbine power: 

	

APHP 	= 	0.28 jWh2 

= 	0.72 L\Wi2 
APILP  

	

Pin 	= 	APHI, + d PILP 

Main governing valve: 

(B.2.1) 

(B.2.2) 

(B.2.3) 

(B.2.4) 

(B.2.5) 

f~Y 	= 	G1 f0 ,r 	= 	Gl A n 

AY]. = 	Ayo — Ay 

Valve relays: 

G1 	 1 
P Whi+

TI 
An

+ 

1 
T1 

%,Wh1='rlo (B.2.6) 

H.P. cylinder: 

P AWh 2 — T ~Th l + T AWh2 = 0 	 (B.2.7) 
2 	2 

L.P. and I.P. cylinder: 

P LWi2 — 11 AWh2 + 11 AWi2 — 
T
3 	T3 

0 	(B.2.8) 

Note: In this study the time constant Tay, i.e. E.P. exhaust 

and I.P. LP exhaust,was taken as 5.475 seconds in total, 

as Reference 20. 

  



Steam 
input 

/ wh1  

Main 
throttle 
valve 

     

     

  

G 

 

   

     

     

     

0. 
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PHP 

1 

1 
1+pT2  

wh 0 

pT5  

	 wi T4  

l+p 

Figure B.2.1 	Model of turbine and governor system excluding 
interceptor valve. 

Steam 
input 

Figure B.2.2 	Block diagram of reduced turbine and governor 
system model. 

0.7" 	 

PILP  

PIn 



g 1— T,p 

1 + 0.5Tvp 
TFech n 

 

1  
dp + Tgp 

}Jg 
1 + Tap 

ugov 
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Hydroelectric machines:, 

Each primemover is controlled by a conventional dashpot—type 

hydrogovernor whose differential equations and data are given. The 

model is similar to that used by Yu et a155. 

Figure B.2.3: 	Governor hydraulic system. 

Parameter Symbol Valve 

Gate time constant 

Governor activator time constant 

Water time constant 

Permanent droop 

Governor activator gain 

T 
g 

T 
a 

Tw  

by 

!1a  

	

0.1 	sec. 

	

0.01 	sec. 

0.5 sec. 

0.045 

1.0 

Table B.2.2: 	Hydrospeed governor parameters. 

Linearized equations: 

Turbine: 

meth — — DLn + At  %,g + 1.5AtBLh (B.2.9) 
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Gate opening: 

_p A g - ~ g - T~n - TA gf 	0 	 (B.2.10) 
g 	g 	g 

Governor feedback loop: 

-pLgf - T—A gf = - Ta 
U' ov a 	 a 	gov (B.2.11) 

 head: 

-p Ab - 2pAg - T Ab = 0 
w 

(B.2.12) 



(c.2)  

(c.3)  

(c.4)  

(c.5) 

(c.6)  

(c.7)  

(c.8)  

rs id 
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APPENDIX C.1  

FORMULATION OF SYSTEM EQUATIONS 

The equations for the synchronous machine are written in 

per unit, using Parks transformation14. Three different network 

representations were used. 

a) 	Line and transformer reactances coupled with the 
machine reactance, in the classical way: 

V = 
q 

W 1.1 	 r 
d 
Wo 

W _ ,, r r 
`i)q (,)o 

0
f 

= {il 4)kq+ rkgikq 
0 

—P--_ t, 
(.0 `~'kd+ rkdlkd 

r
fd 

Xmd Efd 	1,io 4'fd + rfā fd 

0,1 = ymq + xtalq 

Yd = (Pmd + Xt id 

4)
kq 	4)mq + xpkglkq 

4) kd _ Ymd + X. kdikd 

4 mq = Xmq(ikq + iq} 

9)md = Xmd(ikd + ifd + 

Vd = 



w

r 
d + Xtiq (.0 + rtid + VdB 

VqB = VB 	Orr r 

VdB = -VB sin br 

vd = 

Wo mg 
0 Wo md 	0 

0 	0 	0 

0 	0 	0 

0 	0 	0 
KAVgXt KAVdXt 

TAVtWO TAVtc.)o 0 

L 	0 	0 	0 

0 0 

0 0 

0 0 

0 0 

0 0 

DO= 

1 	Wo 	
1 

md 	o 

tura- 0 -X_q 0 	0 

X 	0 0 	• 0 

o 
0 (Xt+Xd) i X 0- Xmd 

X(E {q 

1 

md`• 0 	 0 	 md fd 
cvo.rfd 	Worfd worfd 

Xwo~kd XTTY d 
X nd— 

T6 = W diq - (i1gid 

1 _ 
Pn 	2H(Tmech - TQ) 
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(C.12). 

(C.13)  

(C.14)  

Equations describing the transmission line in a frame of 
reference fixed to the rotor: 

vq = G 
	

q i - X 	
Wo + r

t q i + V 

The small displacement equation system was obtained in the same way 

as by Baker and Krause47. 

DVm] Y(t) y(t) + bu(t) (c.19) 
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b) Algebraic Node equations of the form I = YV: 

For this network representation the formulation for 

building up the 'A9  matrix is similar to that given in Chapter 2, 

but with the equations corresponding with the network representation. 

The transformation matrix to refer individual machine quantities to 

the network is: 

V q 
vd  

	

COS 6, 	sen b r  

	

—Sell (Sr 	COS 	br 

VD 

VQ  
J 

(C.29) 

Figure C.1: 	Machine (d,q) and reference (D.Q) frames. 

Applying this transformation to the nodal admittance matrix 

equation (I = YV) of the network representation as Alden and Zein 

El—Din29, the linearized system equations in the matrix form of 

equation (C.30) are obtained, ready to _form the characteristic 

A matrix and the control matrix, b. 

c)  Algebraic representation by Newton—li,aphson: 

The power equations are as in Chapter 2 including the input 

b matrix as is shown in equation (C.31). 
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