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ABSTRACT

The small perturbation analysié of interconnected systems
using eigenvalue methods and multi-state feedback controllers design
in order to stabilize the generators has been calculated without
simplifying assumptions. A method of general multi-machine analysis

considering the effect of load characteristics has been devised.

It is shown here in a number of studies of single-machine

infinite busbar and multi-machine systems that the effect of load

characteristics is considerable.. b&namic stability of a multi-
machine system when the effect of load characteristics is included
bas been analysed. A new approach for obtaining the stateispacg
formulation of the linearized system equations is given. This is
convenient for the evaluation of the open loop system performance
and aiso,epables the design of a closed loop multi-input controller,
The analysis is realiged by checking the eigepyalpes of the free

response system in order to determine the asympfotic stability of the

system when different load characteristics are incldded.

Modal control theory is used to improve the steady-state
performance of the generators by the addition of multiple feedback
paths,- The critical eigenvalues are moved towards the left in the
complex plane, sequentially in grbups using the dominant input for
each group. It is shown that the nature of the load can change the
design of the controllers. The effect of network representation has

also heen explored.

In a multi-machine system a local wmodal controller is
derived for each machine from fthe glohal control design, where feed-

back to each machine comes from its individual state variables.
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NOTATIONS
direct and duadrature axis voltages and currents
of a synchronous machine '
busbar voltage
rotor circuit currents of a synchronous machine
active and reactive powers
conductance and susceptance
stator and rotor circuit resistances of a

synchronous machine

coupling and self reactances of a synchronous
machine

rated angular frequency, electrical radians per
second

instantaneous angular frequency of bus voltage,
electrical radians per second

instantaneous angular frequency of machine rotor,
electrical radians per second

per unit instantaneous angular frequency

rotor angle of synchronous wachine, with respect
to infinite busbar, or reference machine

machine inertia cohstant, kW.sec/kVA

. . 2 .
mouent of inertia, sec /elec.radlan
inertia time constant, seconds
differential operatof

direct and quadrature stator circuit voltages
and currents of an induction machine )

rotor circuit currents of an induction machine
stator circuit resistance of an induction motor
rotor circuit resistance of an induction machine

coupling and self reactances of an induction
machine
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X9,y Xgo . stator and rotor leakage reactances of induction
machine
ws—w ‘
S = ) induction motor slip
3
Scr induction motor critical slip (corresponding to
maximumvtorque)
T air gap torque of a synchronous or an induction
€ machine . '
Tmech mechanical torque
A
T pull-out torque or maximum torque
max
K, voltage regulator gain
Trg excitation system time congtant, seconds
Efd = Xafdvfd/}fd air gap line open circuit voltage; excitation
voltage
At turbine gain
B ' equilibrium real gate position
c input signal to governor servo;vhlve
D turbine damping coefficient
nom
g v' per unit real gate position deviation
h ‘ per unit head deviation
Qg servo-valve gain of governor
Ws ralative derivative gain of governor
TR ' dashpot time constant, seconds
TW water inertia time constant, seconds
6t ’ governor temporary droop
6p ‘ governor permanent droop
g real no-load gate position
D - instantaneous turbine damping coefficient
led field winding leakage reactance
Xza’ szd’ ngq leakage reactances of a synchronous generator
X transmission line reactance
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ry transmisszion line resistance

VB voltage magnitude at infinite bus bar

VqB quadrature axis infinite bus bar voltage
qu direct axis infinite bus bar voltage
de=xafd=xakd direct axis magnetizing reactance of a synchronous
=kad machine

qu=xakq quadrature axis ?agnetizing reactance of a

synchronous machine

,[}{] ' system matrix

[}{] control input mafrix

u(t) " control vector

y(t) state vector

yv(t) time derivative of y(t)

A prefix denoting a linearized variable

ki = &i+jﬁi eigenvalues, i = 1,2,...,n

The remaining variables are defined where they are usecd.
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CHAPTER 1

INTRODUCTION

l.1 GENERAL

Since the industrial revolution man's consunption of
energy has increased steadily. A major proportion of the power

requirements of modern sociefy is supplied in the form of

electrical energy. Industrially developed societies need an ever-
iﬁéregsing supply of electriéal power., Very complex power systems
have been built to satisfy this increasing demand. The trend in
“electric power production is toward an interconnected network of
transmission lines linking genergtors énd loads into large
integrated systems, This vast enterprise for supplying electrical
energy préseﬁts many engineering problems that provide the engineér
with a varieﬁy of challenges. The planning, construction and
operation of such systems is exceedingly complex. To be able to
predict the performance of such systems, the engineer is forced to
seek the most powerful tools of analysis and synfheéis. Successful
operation of a power system depends 1arge1y on the engineer's
ability to provide reliable and uninterrupted service to the loads.,
- The reliability of the power supply implies much more than merely
pover ‘being avail#ble.-rldeally, the loads ﬁust be fed at constant
voltage and frequency at all times, 1In practiéal terms this means
that both voltage and frequenc& must be held within close tolerances
so that the.consumer's equipment may operate satisfactofily, and
‘whilé:it is frequently convenient to talk about the é0wer system in

the steady state, such a state never exists in the true sense.
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Random changes in loads are taking place at all times, with
subsequent adjustments of generation. Furthermore, major changes

do take place, e.g. a fault on the network, failure of a piece of
equipment, sudden application of a major load, or loss of a line

or generating unit., It might be tempting to say that successful
operation requires only that the new state be a stable state.
Unfortunately, synchronisﬁ isvfrequently lost in the transition
‘period from one equilibrium state to another, or growing oscillations

may occur over a transmission line, eventually leading to its overload

and tripping. These problems must be studied by the power system

engineer and fall in the area of power system stability.

1.2 ) POWER SYSTEM STABILITY

Power system stability is normally considered in two forms,
dynamic and transient stability. Dynamic stability implies that if
the system is distqrbed in a minor way, .such as a slight mismatch of
load and'generation, it immediately returns to.a sfeady operating
point near to the original, restoring "forces" existing to maintain
a steady éperating conditi;n. Dynamic instability implies that any
operating condition is not maintained, any slight disturbance céusing

mounting oscillation, or a steady drift occurring, each of which

results eventually in pole‘slipping.

A system.may be dynamically stable but unatle to withstand
a méjor disturbance, and is then considered to be transiently
unstable. Transient stability is a relative quality (unlike dynamic

stability, which is absolute), for all synchronous machines will lose
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synchronism if subjected to a long enough fault. The ability to
withstand a fault of given duration is expressed as the critical
fault Elearance time (c.f.c.t.). If a fault longer than the c.f.c.t.
occurs, the generator will slip poles and is then normally lost to
the system, being tripped to prevent the associated large swings of

voltage, current and power,

Any system operating conditibn must be dynamically stable

and have an adequate transient stability margin., For many years

attention was directed at the latter but with the growth of powar
systems and some unfortunate occurrences (islanding) it has been

realised that both require careful consideration.

The number -of power system compbnents included in aﬁy study
andvtbe complexity of the matbematical descripfion is variable, but
invgeneral.differential equations are used to describe the various
éompohents; Study of the d&namic behaviour of‘the system depends upon
the nature of these differential equafions. Tﬁe system equations_for
transient stability are usually nonlinear, Here the system is
described by a large set of coupled nonlinear differential equations.,
In considering the fesponse to a particular fault or disturbance, a
solﬁtipn of the nonlinear differential equations is obtained by
nﬁmerical methods with the aid of digital computers. When the
dynamic sfability of the éystem is investigated it is convenient to
assume that tﬁe disturbances causing the changes disappear and the
motion of the sysfem is then free, Stability is asscred if the
sys£em returns to its original state. If the system equations are

linear or have been linearized,'thé techniques of linear system

analysis may be used to study the dynamic behaviour. The most common
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method is to simulate each component by its function transfer equation,
The system performance may then be analyzed by such methods as root-
locus p}ots, frequency domain analysis, Nyquist criterion and Routh's
criterion, These methods have been frequently used in studies of

small systems. For larger systems the state space model is more
common, stability characteristics'beihg determined by examining the

eigenvalues of the {}{]Inafrik, whére [}:]is defined by the equation:
y(t) = [Cady() + [BJux)

Up to the pregent, %h@ efforts df pbwer system analysts
engaged in the study of the dynamics of power systems have been mainly
devoted to a better understanding of the modelling of generators, and,
in more recent times, to seeking feliable and'bccurafe data for use
in generator models, The performance of fhe loadslin power sy;tems,
which are equal in magnitude to the generation, has received scant
attention, Recently this situation has changed, and much more
attention has been devoted to load behaviour aé a function of both

- voltage and frequency variation. There are several reasons for this:

1. There is a neeﬂ—td improve the quantitative accuracy

of system simulation.

2. » Digital computers are almost universally used and it
has become possible to employ more refined representations of

all the elements..

3. ’ Methods of control are becoming more complicated and
their success depends on a full evaluation of the stability of

the system, including the contribution of the loads,
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There are two aspects to the load problem., One is the
examinétion of system data to determine the most appropriate model
to use in subsequeﬁt studies; +the other, the subject of this thesis,
is the examination of the effect of a range of models on system

stability.

The prlmary aim.of this thesis is to dev1se a method of
.digital computatlon by which the dynamic stablllty of a multlmdchlne

power system including the effect of load characteristics may be

calculated accurately and reliably,

In addition, the effect of load characteristics in the
design of feedback controllers in a single machine and in a multi-

machine systém have been studied.

1.3 REVIEW OF PREVIOUS WORK

The effect of load characteristics is only one aspect of
thé current interest in dynamic stability calculations. Because
developments have:already occurred in the representation and analysis
of generation and transmission systems, attention is now being
fdcusséd on fhe adequacy of load representation and elaborate load

models have been included in analysis programs,

A number of studies have been made of the contribution of
different forms of load to stability (8, 10, 11, 12, i9, 23).
Brereton et al.8 considered that it is of the utmost importance in
transient stability studies to represent the loads not just as shﬁnt

impedances but in a more accurate manner., Particular attention has
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been paid to the load inertia of induction machines. Several wmethods
of simulating the behaviour of induction motors have been presented.
The system studied has usuaily been a single motor connected to an
infinite busbar. Kalsilo’11 gave a method for obtaining the fault
contribution made by induction motors in a system, His‘study included
the transient stability of a composite system including a large
induction motor and a synéhfonous generator. The deep bar effect in

“the squirrel cage motors was simulated by two egquivalent rotor windings,

Alford12 proposed a common method of representation for synchronous and

asynchronous machines; prgctical tests were also carried out on a
model system. The acéurate representation of induction motor loads
located close to the synchronous generator was shown to be important
in a stability study. Dandeno and Kundur19 presented a novel'
simulation technique to échieﬁe a direct or non-iterative solution

of algebraic equations while retaining the ability to represent loads
so that the_?eal and reactive‘power components at each bus bar could
vary as any pbwer of the voltage magnitude. Results of computef
tests on a complex multi-machine system demonstrating the importance

23

of load modelling were presented., Shanckle et al. have presented
a method for\determining the transient stability of a system

including synchronous and induction machines.

The area of small signal stability did not receive much

attention until recently, althbugh CraryQ7

pointed out the importance

- of the load characteristics on the composite system performance as
early as.1934. In his calculations of synchfonising pover coeffic-
ients.he included the effect of composite loads and induction machines.

Heffrdn26 presented a numerical study that shows the effect of shunt

loads on the steady state stability limit. He concluded that shunt
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loads have a stabilizing effect on the system except when the load
is heavy. In the past decade a number of workers have continued

this study.

.Mauricio and Semlyenlh have shbwn that the dynamic stability
limit of a power system is affected significantly by the nature of the
system load. They showed.that the dynamic behaviour of loads can
_have a decisive influence on the stabilify limit of a power system.
Alaen and Zein El—Dinjh showed that the stability calculated for a
test system was dependent on the load model, load being modelled as
several non-linear functions of voltages. Rao and'TripathySSi
concluded that the gain associated with thé speed stabilizing signal
in the excitation system of a generator should be set to match the
power-voltage characteristics of the load to maximise the damping
effect. Subramanian and Berg36 discussed the effects of eiectric
load on qp£imél excitation control in a power system. They concluded
that the state feedback gaiﬁs for optimal excitation coﬁtrol vary
significantly with the type of load present in the system. ‘Several
authors have.represented experiﬁental resulté which have been‘compéred
with calculated values in order to find the most appropriate ioad
137-41

mode . Induction motor representation and behaviour has heen

considered in deJcail!iz_!15 including the equivalence of induction

L6 . . ' Lo
motors ', A summary of work in this area is given in reference 18,



18,

1.4 CONTENTS O THE THESIS

In Chapter 2 the effect of load characteristics on the
assessment of dynamic stability of a single machine system with the
load at an intermediate bus-bar is studied. The load is assumed to
be static with exponential power-voitage dependence, dynamic in
nature or a combined loadAcompésed of a constantviﬁpedance and
. induction motors. The equations for the system are lincarized about

an operating point, the computer being used to reducetthe whole set

of differential and algebraic equations to the state space form -

y(t) = [a] y(v) {md the eigenvalues of [ A ] are obtained. The
stability limit is obtained as the eigenvalues becomé positive. |
Results are compared for each load repre;entation. Wheh-there are many
" eigenvalues, the résults are not easy to interpret. A method of
finding the rates of change or sensitivities of the critical eigen-
values is applied and this analysis can lead to the identification

of some of the sources of osciilation. 'State-variable feduction

techniques to identify states or loops associated with each

oscillatory mode have also been studied.

In Chapter 3 a digital simula%ion of the small signal
dynamics model of an grbitrary number of interconnected power generating
units including the effect of load characteristics is presented in
statevspace form, Load is represented in two ways: as a static
non-linear form, being dependent §n voltage, and as a combined load,
Sparsity ﬁechniques'were ﬁsed fo minimize the computcr sforage
requirements. Thé machine model is 11th order, a.v.r. and speed
governor gquations being included. The analysis is based on
calculating the eigenvélues of the characteristic matrix in order to

to aetermine the asymptotic stability of the system.
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In Chapter 4, wmodal control theory has been applied to the
design of a controller with linear feedback for a single machine-
infinite bus-bar system which represenits a pumped storage plant.

The effect of different load characteristics on the design of the
feedback cqntroller has been studied, load being added at the machine
bus-bar in a non-linear passive form and as a combined load., The
effect of representing the network of this system in different waysv

on the design of the feedback controller has also been explored. The

eigenvalues of the system are relocated to satisfactory positions during
the design process. It is well known that it is possible to achieve

any closed loop eigenvalue if the 6§én loop is controllable. Here

it has only been found neééssary to re-locate the critical eigen-

“ values.,.

Lastly, in Chapter 5 a study of the effect of load
characteristics in the design of feedback controllers for a multi-
machine system is presented. Global and'local modal controllers were
designed And their performance was compared; Local control is
derived from the global contrbller by disconnecting the feedback -
paths into a machine from the state variables that come from other

machines,
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1.5 THE CONTRIBUTION OF THE THESIS

It is thought that the original contributions of the

thesis are:

(i) Comparison between two methods for assessing the
dynamic stability limits and identification of all the eigenvalues
of a power system by systematically isolating the state variables.,

Thus the modes of oscillation are fully understood.

(i1) A systematic formulation for the dynamic stability of
multi-machine power systems in order to study the interaction
between machines, including the effect of different load
repgesentation, which 'is developed and implemented in a digital

simulation.

(iii) An assessment of the importance of load characteristics
and the transient network terms in the design of feedback

controllers in power systems,

(iv) A method for the design of a local controller for use
in multi-machine models, The local controller is obtained by
removiﬁg inter-machine feedbaék paths.‘ Where this caused
!instability it was found that one path between machines could

.

be used to give satisfactory performance.
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CHAPTER 2

THE_EFFECT OF LOAD CHARACTERISTICS IN SINGLE MACHINE
SYSTEM ANALYSTS

2,1 INTRODUCTION

Several papers contain the analysis of dynamic stability

of a power system including the effect of load characteristicslh’26’27’

32*’35’36. Here a single-machine infinite busbar system has been

considered with an intermediate load bus-bar, as shown in Figure

2.1. The method is largely that of Mauricio and Semlyenlh.

The conditions for each operating point are determined by
a load flow analysis in polar form using the method of Arriolals.

The equations of the sysfem are linearised about the operating point

and obtained in the form:

Fo= [Alyw

2 _ 3
Infinite
busbar
Synchronous 1.0
machine :

foad

Figure 2.1 Single~machine infinite busbar system.
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The dynamic stability is assessed by considering the
eigenvalues of [}{] , stability being lost when any eigenvalue has é
positive real-part. The boundaries to stable operation of the system
are found by considering a sucéession of operating points, The

14,38,39

effect of load in different representations has been explored,
Two generator AVRs have been cohsidered, the generator being a

hydroélectrié machine,

Sensitivity analysis of the eigenvalues with respect to

system parameters and a state variable reduction technique to identify
the states and paths associated_with each oscillating mode have been

used, .

2.2 ° METHOD OF ANALYSIS

1

Every stability study requires a load flow calculation in
order to’detefmine the equilibrium pbinf about‘which stébility is_to
+ be investigated.' The Newton-Raphson method may be used to obtain load
flow very efficiently. In the iterative solution the method uses the
linearized power flow equations (2.1) which may also represent the

network in a small-signal stability:study:

rQAP I Iy Aé—l. .
(2.1)
]

0Q Iz I, Av,t

The synchronous machine representation., described in detail
in Section 2,2.1, is referred to a d.q. frame fixed to the machine

rotor and for which the terminal quantities are'vd, Vq, id’ iq.
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Hovever, the network is represented on the basis of a steady state
representation and this assumption implies that the transient
components in the network are ignored. Attention is concenfrated on
the steady state behaviour of the network in a polar frame of
reference, rather than the rectangular DQ frame adoptea in several

355,29

works « In this polar frame the terminal (bus) quantities are
P; Q, 6, V. This also eases the representation of many types of

. loads whose behaviour is defined by relations of active and reactive

power as functions of voltage.

In order to investigate how the load characteristics affect
the system stability, several types of loads have been considered in
the computations, and the Stability limit has been determined for

each,

2.2,1 Déscription of Synchronous Machine

A cOmpléte description of the dynamic behaviour of the
synchronous machine requires consideration of its electrical and
mechanical characteristics'as well as the associated control systems.
Park's model describing the dynamic characteristics of a synchronous

t3;5947j63

machine in per-uni , with the sign convention for currents
adopted by the IEEE Rotating MachineryCommitteel3, is given by the
following equations. In the per-unit system, each voltage, flux,

current and impedance i: expressed as the ratio of its actual

value to a selected hase value. The equations are:
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for the direct axis flux linkages:

Yia = Xiralea * Xagata * Foxatea (2.2)
Ya = ZXaratra * Xata * akalka (2.3)

N . . . ,
Pra = Fsxatra * Xakala * Xkkatkd (2.4)

. for the quadrature axis flux linkages:

o= X i X i 2,
Y q'q * “akq'kg (2.5)
qu - Xa,kqiq * kaqlkq (2'6)

and the direct axis voltages:

v . x4 Py (2.7)

fd fatrd ¥ W P Yra | .

The exciter voltage referred to the armature circuit is

defined® by:

Xafd

E,, = ——v . - (2.8)
fd Teq fd .

Then the field circuit equation can be written as:

r

£d ) 1
X .o Bra = Tratra * w0 P Yid (2.9)
afd 0
V, = = 1 p - n(P -7 i : | (2 10)
d w, (Pd q s~ d *
0 = Lo 1, Ai (2.11)
T W, PYpq + ‘K kd .
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The quadrature axis voltages ares -

vq = - —(*-)—0 p(pq + n(Pd - rslq (2.12)
1 , .
0 = y p(gkq * Trodig . | (2.13)

Thése equaticns have been derived neglectiné the effects of
saturation and assuming that all p.u. mutual inductances between
rotor and stétor circuits in each axis are equal to one another,

On this basis, the following relations between self-mutual and

leakage reactances pertain:

Xepa = Xog *+ Xogg | (2.14)
Xy = X g+X (é.15)
Xad = Xug * ¥y (é.16)
X=Xyt X, (2.17)
kaq = 'xﬁq + ngq (2.18)

In order to complete the description of the synchronous

machine, the following equations of motion are necessary:
Tpn = T -7 ' (2.19)
pod = wn (2.20)

The air gap torque is given by:

T, = @dg!- @qid '. (2.21)
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]
A widely used model for the automatic voltage regulatorl’g’j’ll

is given by the single delay equation:

N vt) (2.22)

The conventional dashpot hydrospeed governor is represented

in the following equations for the turbine, the governor, the gate

servomotor and the water column: .
2
woen = OB Ag-m (1w onp  (22))
pC = - pn - 6tpg - TI.lI;:(C - n) (2.211)
pg = QC- Sp g - W_pn) (2.25)
2 .
ph = - 2pg - b . (2.26)
W -

These equations are similar to those used in other
. ] )
papersh’5’14. Any other models for the voltage regulator and speed

governor could be easily introduced.

2.2.2 Transformation Equations

A set of transformation equations is necessary in order to
establish the interconnection between the machine dq frame and the

network polar frame. The active and reactive powers at the machine

terminals are referred to the dq frame fixed to the machine rotor.

In order to relate Vi Vq, i to the polar network frame the

d’ iq
angles in the phasor diagram shown in Figure 2.2 have to be taken

into account.,.



Figure 2,2

then:

From the phasor diagram in Figure 2,2:

vq + vy

1q + Jig

+ Vv i

(2.27)

(2.28)

(2.29)
(2.30)

(2.31)

27.

Relation between the dq and network reference frames.

(2.32);

(2.33)
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2.92.3 Linear Power Swvstem Model

If the power system is perturbed, it will acquire a new
operating state. If the perturbation is small, the new operating
state will not be appreciably different from the initial one. In
other words, the state variables or the system paraméters will
usually not change appreciably. Thus the operation is in the
neighbourhood of a certain quiescent state Yoo In this limited range

of operation a non-linear system can be described mathematically by

linearized equations. The method of analysis used to linearize the
differential equations describing the sfstem behaviour is to assume
small changes in system quantities such as A(Sr’ Av, AP, change in
rotor angle, voltage, and power reépectively. Equations for these
variables are found by'making a Taylor series expansioh about Yo

and neglecting higher order termsl’s’lhu

If the state space vector y bas an initial state Y, at
time t = ﬁo’ on the occurrence of a small disturbance, i.e. after
t = to+’ the state_ﬁill change slightly from their previous positions

or values., .Thus:

y‘ = y, + Oy (2.34)
If the state space model is in the form:

¥ = £y, t) o . (2.35)
thé A matrix may be computed by finding the total differential dy

at Yo with respect to all variables, i.e. with dy = Ay:

y = y,+ By N (2.36)
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. ot . of A
Ay = ay] oy, ay2 Ay2 ¥ oeee + ayn Ayn (2.37)
Yo Y, ’ Y,
Ay - |28 O At = aAdy | (2.38)
: 9y, 9y, Iy, .

0.

The elements of the A matrix depend upbon the initial value
of the state vector Yor For a specific dynamic study the A matrix is
considered constant. The dynamic properties of the system described
l_)y equation (2.38) are determined from the nature of‘the eigenvalues
of the A matrix. The pgeneral form of the above equations has been

used to linearize the power system equations,

The linearized machine model is given below in a compact

fofm, detéiled derivations being given irn Appendix A.1l:
Cag] - XICA:] | (2.39)
CAv] - CeJ0as T+ {& 00+ oI} 0ay, 1Ly, don

S (2.40)
T, pAn = ATmech - ATg . (2.41)
pAg = W Arn : , (2.42)
Cor 0 . , :
For the automatic voltage regulator:
. Kr ’
Ay = T35 OV (2.45)
: rg .
The speed governor and associated equations are:
- - : - 4h)
ATmech = le BDnomAn + 1.5 B4, Ab (2 lu).

pAC = -pAn - 3tpAg - ﬁ(AC‘ + A n) - (2.85)
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pAe = Q(AC- 8 Ag-vphn) - (2.46)
pAbh = - 2pAg - ',1,2-* An (2.47)
W

As mentioned earlier, the short-lived transients in the
transmission system are neglected and the network equations (2.1)
can be used, which are directly in linear form. In Chapter 4,
Section 4.4,1, the significance of these transient negwork terms is

examined.,

Equations (2.29)—(2.33) can be rearranged in a matrix

+

form as:
- h [ ar =
APQ i 1q \ vq 0 é&vd
AQ2 i -iy -V va 0 Vq
= |3 va q Aig | (2.48)
Av, '\z Vg 0 0 0 Aiq
v v
ABQ —‘21 -;2— 0 0 1 Aér_J
— ] | i g K
V2 2
2.2.4 Nonsynchronous Loads Répresentation

Several types of loads were considered in the present
analysis; a non-linear passive load recommended by the IEEE groupjs,
an induction motor represented by Mauricio and Semlyenlll and a

a1.39

combined load recommended by Shackshaft et that includes a
~constant impedance load in parallel with an equivalent induction

motor,

Neglecting the frequency -dependence of the non-linear

load and representing it by a static model of exponential form,
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the load-voltage dependence can be expressed in linearised form as

follows, details of derivation being given in Appendix A.l:

PL o
AP = K v Av | (2.49)

QL
Do, = X 4V - | (2.50)

The representation of an.-induction motor is desirable in a

stability study, when appreciable éystem load is known to be

induction motors and representational accuracy is of great importance.

Basically the same set of equatlions that describes a
synchronous machine can be used. However, several simplifications

can be made, as shown in Appendix A,1l. Thus:
[-—-'A.(’Pmot] = Exmot] Eiﬁxét] : _ ' (2.51)
CAvD= Cr JC Bigeed + {5 T+ 057} A9, [y 100

(2.52)
_TmpAn = AT, - AT, » (2.53)
The transformation equation is:
o T o I A
APL i . i \ Va Avd
R i — A
AQL _ 1q 1d Vq Vd Vq . (2'54)

AVL vd/V vq/V 0 0 Aid
2 .
LA& | :’_(I/V —vd/YQ 0 . 0 Alq

139

The equivalent combined load mode consists of an
induction motor taking powers Pm and Qm’ a constant impedance

static load model Ps and Qs, and a saturation characteristic Qsat to

represent the magnetic saturation of transformer and motor steel.
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The active and reactive power of the group in a linearized
form responds to small changes in both the magnitude and phase angle

of the supply voltage and the following equations apply:

[2v(6_+6_)-V Y cos(6 _+8)JAVHVV Y sin(0 +6)]AS

APL =
(2.55)
AQL = EQV(B@'*'BS ) —VmYms in (ém+6 ):l AV—[VVmYmc os( 0m+6 )]A 5

(2.56)

Derivation of these equations is given in Appendix A.l.

2.2.5 Basic State Space Formulation Approach

When the load flow has been obtained for the system and the
equations have been linearised as explained before, the equations are
transformed into a form in which small signal analysis can be

implemented in a digital computer prograum,

The small signal form of equation (2.1) wmay be used to

represent the network, if:

(o, T C ap AQ A O] (2.57)
Equation (2.1) may be rew;itteh as:

k1o = o | (2.58)
[-1

J] (2.59)

where:? "[}&@]
[1]
and: [7]

unit matrix

. Jacobian matrix as defined by equation (2.1).
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The terminal quantities of the network can then be matched

with the small-signal variables of the generators or loads:

DodCod = D1 (2.60)

Equations (2.58) and (2.60) completely describe the small

signal behaviour of the system:

[K100,7 = Lo} * (.61)

or rearranged as:

[x, T sen [, ] yeon [sz' 7 - (o] | (2.62)
and: [, J yor EKi] 2 = [0] _ (2.63)

where ydjare the state variables and z are the algebraic-variables.
Equations (2.62) and (2.63) are developed in Appendix A.2. The

state equations of the system are obtained in the normal form:
Ty = '[3{] Yy ' ' . (2.64)
- 11 -1
vhere:  [a] = [T {0 10] EKZ*]—EKQJ} (2.65)

EA] is asymwmetric and ill-conditioned. The eigenvalues are obtained
using a standard subroutine and the system is stable so long as none

has a positive real part.-

¥ Eqn (2.61) defined as in reference 14

K| Ko | X e
a : _ oy (0
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2.3 APPLICATION OF THE TECHNIQUE

In this chapter the effect of load characteristics is
studied in a single-machine system, as shown in Figure 2.1, In this
section the technique presented in the previous section is applied.

1

Several types of load representation were considered:

i; Non-linear passive load,
2, Induction motor load,
3.‘ Combinéd load.

In Appepdix A.2 the system equations are given for each
case. They havé been arranged in such a way that the [}{]xnatrix in
equation (2.61) can be formed e;sily by the coﬁputer program, Thié
sectiqn‘shows how the linear equatiohs that represent the system
are arranged in a matrix form for each load‘reﬁ}esentation. The
flow chart of the program is shown in Figure 2,2. For the non-
linear passive load any type or combination of exponentiél forms of
load equations (2.49) and (2.50) can be represented very easily by
merely changing the value of the constants K_ and Kq. For example,

P

for constant impedance representation, Kﬁ = Kq = 2. The [}{] matrix

does not chénge its structure when the values of the Ks change.
The states of the system are:

yiy= [ A(ng AEfds A‘grs An, Aga_ AC’ Ah]t (2°66)

where:

Ay, = L 09eqr B9y Qg Y Ag, 1 (2.67).

and the algebraic variables:



KEAD DATA

FORM Y BUS OF THE
3 BUSES SYSTEM

ASSESS THE LOAD FLOW BY

\
CHOOSE K AND K_
OF P, = C.V'P,

L 1Vkq

THE NEWTON RAPHSON METHOD

ASSESS GENERATOR OPERATING
POINT PARAMETERS

I8 INDUCTION
MOTOR OR COMBINED
LOAD TO ANALYSE

Yes

AN

ASSESS INDUCTION
MOTOR PARAMETERS

s,

FORM THE [ K | MATRIX OF THE

STATE SPACE EQUATIONS IN -
LINEARIZED FORM '

'REDUCE [ K | MATRIX TO OBTAIN
THE [ A ] CHARACTERISTIC MATRTX

ASSESS THE EIGENVALUES OF [A]
TO DETERMINE THE STABILITY

LIMIT, AND PRINT THEM

TAKE A NEY
OPERATING POINT

Is
- SYSTEM
STABLE

Figure 2,2 Tlow diagram for the dynamic
stability program.

Id
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STOP



36.

2 = [ APy, A0y, B8, AV,, Avys By, Ai, AP, A0, ASS, AVT

(2.68)
wheres
Aig = Eifd, Big, Dy, [_\,iq, Aikqj | (2.69)
The [}{] matrix for this case is shown in Figure 2.3;
For an induction motor load, the state vector [&] has the
form: |
' t
yit) = [ A(Pg, AEfd’ ASI" An, Ag’ AC! Ah! A‘-pm’ An:] (
| (2.70)
ﬁhere:
A(pm = E A(psq’ A({)rd' A(I)sq’ A(l)r‘q:l (2.71)
The algebraic variables are:
2 “EAP AQs, DS,y AN Aiyy APy, AQs, Ay OV b A"’]t
== 2’ 2" ¢ 2’ 2', V%IqS 1g’ 3! 3! 3’ -‘é) W} 3 b
' (2.72)
wheres

iy = L Aig A?rd, Bi s Bi 1 (2.73)

rq
The numerical subscripts are related to the respective

nodes of the system in Figure 2.}. The [}i]]natrix for this case is

shown in Figure 2.4.

For a combined load the structure of the [}{] matrix is
similar to fhat in the non-linear passive load representation.
Only the load equations are changed, equations (2.55) and (2.56)
being substituted for equations (2.49) and (2.50) in the system
equations, These are shown in Appendix A.2 and identified in the

computer program as:
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Ap

L

(PARTB) AV + (PART,) Ad (2.74)

8Q; = (Qarrs) AV + (eart,) A (2.75)
These terms appear in the [}{]lnatfix at the last two columns and the

235" and 24" rows of Figure 2.3.

2.4 THE DYNAMIC STABILITY LIMIT CONSIDERING THE
EFFECT OF LOAD CHARACTERISTICS

Results are presented in this section for the power system
shown in Figure 2.1. The generator data is given in Table 2.1 and a
variety of loads are applied at the intermediate bus-bar. Two

methods are used for dgtermining the stability limits

1. A succession of load flows were &ade for ever-
increasing generated power, as did Mauricio and Semlyenlh,
keeping the lecad power constant. The eigenvalues were
obtained for each operating poiﬁt indicating the asymptotic

stability.

2. . : Instead of increasing generated power, the power

factor of generation was varied keeping within the feasible

machine operating region,

It ié shown bélow that the first method gives rise to
operating conditions that are not feasible and that therefore the
stability limits devised with it are of 1itf1e consequence; The
second method is wore realistic as it represents actual operating

conditions,



Xffd = 1.1 Dnom = 1.0 .
X ¢q = L0 St = 0.33
Xg = 140 sp = 0,03
Xd = 1.2 | Qg = 1.0
kad = 1.1 ) Ws = 0.5
qu = 0.8 ' gl = 0.16
X.kk = 0-8 T = 100 sec,
q W
= e = 1 .
Kr 20,0 TR 1.0 sec
"—": 0:5 sec.,
re X X, = 0.3
H = 3 kWS/kVA 1 "2
Table 2.1: Typichl parameters of'a hydro generating set,

A.V.T., dashpot'hydrospeed governor and network.,

All values are in per unit.
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Operating conditions for the computed results with

method 1 are stown in Tables 2.3 and 2.4, Load is taken to consist

of:

(i) Non-linear passive load with KP and Kq in the ranges
053 and 290 and also as 0.and 6, Critical eigehvalues are
shown in Figure 2,5.

(i) An induction motor with the parameters shown in

Table 2.2, The eigenvalues of the system when the induction

motor is at full load are shown in Table 2.5 and critical
eigénvalues are also indicated in Figure 2,5. The inertia
constant (H) was varied and the mechanical load torque (Tme;h)

of the induction machine was considered in three different ways,
in order to investigate the effect in the power system stability.
The eigenvalues associated with transient rotor terms, and that
with the mechanical oscillation of the inducticn machine were

the most affected. Results are summarized in Table 2.6,

- Speed R R X | X X
rev/% s T S l r m
1800 0.032 0.034 0.443‘ 0.388 20,15
V |

kW - s
H - 2 - b oo
T 6<»velocity2
mech

X velocivy
= constant

Slip at full load S = 0.016.

Table 2.2: Induction motor parameters p.u. for a 40 MW machine,



P.F.

§

Lagging| ° - | Vo o | Vi ]y |5 13 | 3g V4 e Ya | Y9l % | %%
0.981 | 11.058 |1.00 | 9,961 | 1.00 |0.0-]36.530 | -0.435 | 0.568 | -0.447 | 0.895| 0.900 | 0.452} 0.700| 0.137
0,964 | 15.390 [1.00 24,676 | 1,00 | 0.0 | 66.306 [ -1.305 0.846 | -0.664 | 0.748| 0,756 | 0.677 | 1.500| 0.413
10.9110 19,806 | 1.00 |34.830 | 1.00 | 0.0 | 79.770 | -1.922 | 0.907 | =0.706 | 0.708 | 0,717 | 0.726| 2.000| 0.720
0.920 | 22,950 { 1,00 [41.586| 1,00 | 0.0 87.043 | -2.322 | 0.920 | ~0.713 | 0.701 | 0.711 | 0.736 | 2.300| 0,973
“0.900 | 24,060 | 1.00 [43.996| 1.00 | 0,0 | 89,414 | -2,462 0.921| -0.712 | 0.702 | 0,711 | 0.737 | 2,400 1,072
0.900 | 25.265]| 1.00 | 46.580} 1.00] 0.0 | 91.877 | -2.608 | 0.920| -0.710{ 0.712 0.712 0,736 | 2.500| 1.179
Table 2.3: . Machine variables for variéus armature power factors. Angles are in-degfees and all

other variables are in per unit, using method 1.

’

la{z



L 9, Vs 55 1 loq ' rd rq
-0.395 ~0,201 -~ 0.983 1.778 0.193 -0.409 ~0.147 0.416
-0.395 -0.201 0.965 6.573 0.161 -0.431 -0.11% 0.435
~0.395 -0.201 . 0.945 9.781 0.139 ~0. 450 ~0.091 0.450
~0,395 ~0.201 . 0.927 11.853 0.125 0. 462 ~0.076 0,461
-0,395 -0.201 0.920 12.579 10,120 ~0. 467 ~0.071 0.466

Vsd Vsq LPsd (Psq q’rd q)rq PROT Pmech

0.030 0.982 0.970 -0.036 0.832 0.294 0.378 0.371
0.110 - 0.959 0.946 ~0.115 0.838 0.219 0. 36k 0.358
0.160 0.931 |- .0.918 -0.164% 0.831 0.169 0.349 0.343
0.190 0.908 0.89% '-0.194: 0.821 0.136 £ 0.336 0.331
0.200 0.898 £ 0.886 ~0.203 0.817 0.125 © 0.331 0.326

Table 2.4:

Induction motor variables for different operating poi»nﬁs..‘

.gﬁ



I I T S I TR B LS Ag A9 Mo Ml MeMNs| M Ms M6
36.530 :33(8’{)?34 t}igé’f% 1712;(1)1 -1 | 5152 | - 8.02 tgoé?gg £ b2 | -0.59% | -0.012 | -2.000
66.306 t;i'gfﬁs t;zl*g;;? :gi‘i;f}m ~44,00 | -32.12 | - 7.88 t}oél,&gg. +5 é:g; -0.596 | -0.012 | =-2.000
79.770 ig%gf24 ig};gé?gs 512;(1)7'" 44,00 | =32.29 | - 7.71 igo%?gz; t}ofz; =0.596 | -0.012 ~2.000
87.043 iﬁg-;gj i}}j(’fés f3123%§6 44,00 | -32.34 | = 7.55 tgoé?gg t}oz}lfgz_ ~0.596 | -0.012 | -2.000
89.414| 47205006 i}ﬁé%; 131(1‘;36 w00 | 3235 | - 7.48 | £715200 S0 ~0.596 | -0.012 | =2.000
Table 2.5:  The eigenvalues of the [A] matrix at various operating angles.

Load considered as induction wmotor.

S = 0.01642. H = 2 seconds, T

ech

= constant,

Method 1.

“hq




Induction Tmech = constant H 2 Rotor
Motor 5 Angle
Oscillation H=2 H=73 H=14 T X vel T K vel §r
mnech mech
A5 Ag 210.11 ¥ j 13.0 [ -11.00 * j 20.61| -11.69 ¥ j 9,44 | -9.17 ¥ j 12.57 | -10.05 ¥ j 12.94 36.53
M g ~10.11 ¥ j 13.0 | -10.97 ¥ j 10.70| -11.65 * j 9.65 | -9.82 £ j 12.62{-10.06 ¥ j 12.99 66.30
A5 A ~10.11 * j 13.0 | -10.97 £ j 10.70| -11.61 % j 9.56 | -9.83 ¥ j 12.63 | <10.06 ¥ j 12.99 79.77
A N ~10.11 * j 13.0 { -10.96 ¥ j 10.76| -11.59 ¥ j 9.60 | -9.83 £ j 12.63 | -10.06 ¥ j 12.99'|  87.04
A A »' ~10.11 ¥ j 15.0 | -10.96 ¥ j 10.76| -11.58 £ j 9.60 | -9.83 £ j 12.63|-10.06 £ j 12,99 89,41
N -8.02 - =6.23 4,85 =740 -7.91
g ~7.88 -6.14 -4, 80 ~7.27 -7.77
7 729
N ~7.71 -6.0%4 ~4.75 -7.11 -7.61
Mg ~7.55. -5.90 ~4.,69 ~-6.95 ~7.45
Ag -7.48 -5.88 ~4,66° -6.88 ~7.38

Table 2.6

Eigenvalués associated with the induction motor for different operating
points and different motor characteristics.
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Figure 2.5: Locus of real part of the critical eigenvalues
’ with changing rotor angle, for different types
of load. using Method 1 (medium load).
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Method 2 was used in order to improve the system
representation, different generator power factors being considered,

as shown in Table 2.8.

Three different types of load representation were analysed,
- the first two being, as with Method 1. Tor non-linear passive load
with several values of Kp and‘Kq ’ c?i#ical eigenvalués are shown in
Figure 9.6. Induction motor loadbwas censidered as an equivalent

motor with the parameters of the largest motor shown in Table 2.7.

Eigenvalues when full load 0perétion is considered ére shown in
Table 2.9, TFigure 2.6 shows the critical eigenvalue variations for
both full load and overload induction motor operation, i.e. operating
near maximum torque (fmax); Aﬁ»alternatiVe approach suggested by
Hacking and Berg46 in which the load is a number of induction

machines of different sizes is shown in Appendix A.3, but has not

been used here,

Shackshaft?'s c0mbin¢d‘10ad model (described in Section
2.2.4) was.used with the same bdwér load as in previous analyses.
60% of the load was indﬁgtion motor load with the psrameters used
earlier, The remainder was considered as constant impedance load.

The eigenvalues for this type of load are shown in Table 2.10.

The significance of fhese results appears to be that for
a medium load compared with the generated pcwer the non-linear
passive load may be either stabiliziﬁg or unstabilizing, depending
on the vglues of Kp and Kq. Induction motor load reduces the
stability limit only when it is operating near the ma ximum torque.

Different induction motor inertias and mechanical loads were
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wo | v | m R ow
r.p,m _Q .Q H i kg.m
3 000 | 1710 | 0.435| o0.816| 0.0713 [ 0.0693 ' 0.089
25 %60 | 1695 | 0.289 | 0.536 | 0.0602 [ 0.0587 0.554
50 560 | 1705 | 0.087] 0.228 | 0.0355 | 0.0347 1.662
100 560 | 1700 | 0.031| 0.13% | 0.0193 | 0.0189 ., 449
250 2300 1760 | 0.681 | 0.101 0.2342 0.2277 6.918
500 { 2300 | 1773 | 0.262 | 0.187 0.1465 | 0.1433 | 11.062
800 | 2300 | 1778 | 0.131| 0.09% 0.0976 | 0.0957 | 21.262
1000 | 2300 | 1778 | o0.112| o.o7% | o0.1452 | 0.1436 | 29.871
1500 | 2300 | 1783 | 0.056 | 0.057 | 0.0532 | 0.0527 | uh.5u2
2250 2300 | 1786 | 0.020 | 0,022 | 0.,0352 | 0.0346 | 63.971 “
6000 | s160 | 1787 | 0.022 | o0.022 | 0.0597 | 0.0589 | 67%.971
Table 2.7: Parameters of i:ypical induction motorslili’lis.
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considered for the induction motor representation. The stability
limit of the power system was not affected, but the damping of the
oscillations introduced by the induction machine (eigenvalues )5, A,
19 of Table 2.6) were affected, with the possibility of instability
due to the induction motorfs undamped oscillations. Table 2.10 shows
the results when a combined load model was used. These results are
similar to those of the non-linear passive load and the induction
motor load (at full load). However, this combined load can be
considered aé a static load representation because no dynamic
equations_aré included. The combined load is sufficiently general to
be a good representation in any System. It has been used in the

multi-machine stability studies in the following chapters,

Mauricio and.Semlyenlh have suégested that the non-linear
‘passive load can have a significant effect on the stability of a
power system, indicating high po&er stability limits (Pmaﬁ)' They
tried to.show that the dynamic behaviour of loads can have a decisive

influence on the stability limit of a power systém. Their results

are in contrast with the results shown in this thesis, because:

1. ©  Different magnitudes of loads have been used in the

present analysis.

2. . A different appfoach to obtaining the operating

conditions was taken.
B - Differeanc induction motor parameters were used.

However, when the load at.the intermediate bus bar was

considered to be of high magnitude, i.e. PL = 2.0 p.u. and QL =



all other variables are in per unit. Method 2; PL = 0.382 p.u., QL = 0,127 p.u.

- Lagging P.F.
+ Leading P.F.

N

P.F, o | v 8, Yy 5, 8, 1 1 V4 Vg Ya| Wyl Pc | %
-0.899| 26.0 | 1.06 9.279 | 1.00 | 0.00 | 30.7 {-0.5377| 0.4945{ -0.390 ! 0.991 | 0.996 0.395} 0.70 | 0.340
-0.899| 25.8 | 1.07 | 12.410 | 1.00 | 0.00 | 37.6 |-0.720 | 0.582 | -0.582| 0.976{ 0.825| 0.466{ 0.90 | 0,436

1.000 0.¢ | 0.9% | 16.510 | 1.00 | 0.00 | 58.5 | -0.714 | 0.792 | -0.627 | 0.696 0.704 0.634{ 1,00 [ 0.000
+0.940 519.0 0.77 { 20.500 | 1.00 | 0.00 | 88,0 —1.010 0.909 | -0.717 | 0.296 | 0,305] 0.727 | 1.00 | -0.350
+0.920 '—2i.0 0.74 21.600 1.06' 0.00 | 95.0 | ~1.130 | 0.902 | -0.710 0.211 0.220] 0.721] 1.00 | -0.400
+0.920| -22,0 | 0.72 | 22,100 } 1.00 | 0.00 98.% -1.190 | 0.89% } -0.703 0,175 0.18%] 0.715( 1.00 | -0.%20
+0,910 | -2%,0 | 0.71 92.640 | 1.00 0.00 1@0.8 -1.250 | 0.886 —0.696 C.145{ 0.153] 0,709 1.00 | -0,430

Table.2.8; Machine variables for various armature power factors; angles are in dégrees and

05



5, M 2y Az Ny Ass Mg A Ay Ag Mor M Mor M3 Ay Ms | Mg
30,7 | =20.9%3802 | ~16,0% 437 | -5.3553108 | -4u.1| =31.4 | -11.34| -0.615%j9.23 -1.319%52,6 | -0.596| -0.012| -2.00
37.6 | -20.9%5801 | -16,0%j436 | -5.35%1108 | =44.1 | =31.5 | -11.36 | -0.583%j9.5% | -1.288%j2.6 | -0.596 | -0.012 | -2.00
58.5 | —20.9%806 | —16.1%j442 | ~5.33%3107 | -44.0 | 31,77 -11.25| -0.561%38.57 | ~1.1197j2.54| -0.596 | -0.012| -2.00
88.0 | —21.0%3815 | ~16.3% 544G | -5.26%j106 | ~44.0 | -31,98] -11.09 | -0.755%16.59 -0.78%52,97.| -0.596| -0.012| -2.00
95,0 | -21.0%3815 | ~16.3% 3451 | -5.23%j105 | -44,0 | =32.0 | -11.04 -1.030%35.55 | -0.50%§3.51 | -0.596 | -0.012} -2.00
98,0 | -21.0%3816 | -16.3 3452 | -5.22%3105 | -4%.0 | =32.0 { -11.02 | -1.500%j4.97 | -0.01%j3.85 | -0.596 | -0.012| -2,00

100,8' -21,0%816 | -16.4% 3453 | -5.20%j105 | ~44.0 | =32.0 { =11.00 ~24000%j54.75 | +0.48%53.80 | -0.596 | -0.012] -2,00

The eigenvalues of the [A:] matrix at various operatlng angles.
Load considered as induction-equivalent motor,
S = 0.0057, H = 5 seconds, Method 2.

Table 2.9:

‘16



Load considered as combined load CEGB model 60% induction motor

load and the rest as constant impedance.

Method 2.

8. N Mol A N Ao Ag g Mo Al
30.77 | -20.9%j745 | -u4.1 | -31.3 | -0.56%j9.31 | -1.32%j2.58 | -0.596 | -0.012 | -2.0
37.6 - | =21.0%j745 | k4.0 | -31.5 | -0.52%j9.6 -1.29%j2.59 | -0.596 | =0.012 | -2.0
58.55 | -21.2%5743 | -44.0 | Z31.9 | -0.51%j8.6 ~1.12%j2.50 | -0.596 | -0.012 | =2.0
88.00 | -21.2%j741 | -43.9 | -32.2 | -0.717%j6.8 -0.80%j2.85 | -0.596 | -0.012 | -2.0
95.00 | ‘-21.2%j741 | -43.9 | -32.2 | -0.94%j5.85 | -0.59%j3.31 |* —0.596 | -0.012 | -2.0

98,16 | -21.2%j740 | -43.9 | -32.2 | -1.25%j5.25 | -0.2833.60 | -0.596 | -0.012 | -2.0
100.88 '}21.Iij740 ~43.9 | -32.2 | -1.70%54.88 | +0.23%33.80 =0.596 | -0.012 | -2.0
Table-2.10: Eigenvalues of'the-E}:}matrix for the different operating points.

uag
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1.0 p.u., and the operating conditions assessed by Method 1, as
shown in Figure 2.7, the stability limits are very near to those

presented in Reference 1lk.

2.5 OSCILLATING MODES IDENTIFICATION

In the simulation of .complex systems, eigenvalue analysis
is difficult to interpret, i.e. the-location of the principal causes
‘of the oscillating modes is not easy to find. Magricio and Semlyenlh
comment that it is not very easy to direcily asséciate an eigenvalue
to one particular loop, unless the respective eigenvector indicates
" this, Here, two methods of locating the source of oscillations have

"been tried,

Firstly, the scnsitivity of eigenvalues to system para-
meters can indicate "the cause”" of oscillations; secondly, a state

variable reduction method can indicate their source.

The variation of the eigenvalues of the [A ] matrix with
‘system parameters is indicative of the effect that changes in the

f

system will have on stability. Each time a system parameter or
operating point changes, the‘[}:]matrix and corresponding eigenvalue

change.

The basic method for éalculating eigenvalue sensitivities

50

was taken from Van Ness et al.” :

o [a]
37\ - (aD( i i (2.76)
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where Xi are the eigenvectors ofl:é] ’

Vi are the eigenvectors of [}E].t ( [}:]transposed);

In the program written here, any parameter variation was

assumed to be a linear function of a variable,c(.

Using equation (2.65) for the formulation of the [ A ] matrix,
it is clear that all the main parameters of the a.v.r. and speed
governor are 'lecated in matrices [Kl:l-’ [K2] and [K:,’] only, If
“equation (2.76) is applied to equatioﬁ (2:65), hence; |

[]

.i fﬁg?g - _ E3::r1

O, TH{0e, 1 T, - )

| +£K111{—£ 0T, - DT T o T [,

? [:Kl;l a[xzjg » *

(2.77)

+ LK3:| [:Ksj'

For the particular case of the a.V.T, parameters, equation (2.77) can

be simplified to:

d [A:[

Ex]*l{%?gtxj* [k D‘Qj} (2.78)

In a similar way for £hebspeed governor parameters, the

simplified form is obtained as:

T T T e T 2 D]

_ [K j -1 9 EK2-_—|} o : . (2.?9)

Once the eigenvectors of[:&] and [b:r and their eigenvalues

are obtainaed, the eigenvalue sensit tivities can be assessed by applying
’ g

equations {2.76)-(2.79) as indicated above.
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The flow diagram for this process is given in Figure 2.8.

Results are presented for this analysis in Table 2.12,
showing that changes in a.v.r, (using a.v.r recommended by the IEEE
Committee16, Figure 2.9 and Table 2.11) parameters are related with
the variations of the critical eigenvalues X3, )ﬂ’ 27, AS’ Rg, 110,

associated with the a.v.r., loops, and the mechanical oscillations.

>The state variable reduction technique has been used by
Alden and Noian28 to obtain reduced synchronous machine models on
the basis of physical assumptions, A similar technique was used in
this study.to identify sources of osciilations. Oncé the
characteristic matrix [h:]is obtained, rows and columns can be
eliminated systematically corresponding with each state variable no
longer wanted. For éxample, applying this process to equatioﬁ (2.86)
and eliminating the last row and colpmn, putting in = 0 gives

‘equation (2.81) and the reduced set is given by equation (2.82).

-7 | . Looqr T
yl ‘ all 312 o o o & o o o o: aln yl
y2 321 322 LI I o: 32n y2
. . i .
. = | ' . (2.80)
] L] ‘ »
L[] ] ' [ )
* L] ' »
B R [P B DR
. }
LYn_ _énl e y ': annd __.yn_A
if }.’n = 0¢
p— p— p— 1 — ’ —
¥ | [
n-1 A I A v
11 | 12 [(7n-1 (2.81)
I e
—— ] ] s - - - --=H---
0 A | Ao || Yo |
| | L "1 ! 22 || “n
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) -1 —
S R IV W S o o | A (2.82)

In this study the element by element elimination algorithm
given by Kimbark32 was used in order to avoid matrix inversions.

This algorithm is indicated below, where the nth element is to be

eliminated:
2 in®nk | )
1 - A LSS S
%k T kT Ta (2.83)
nn :
~ where: a;k = nev element of [}i],
Ay = old element of [A ], -

i=1,200e,n-1 k =1,2,..,,n-1

The columns of Table 2.13 show the full matrix (column 2)
eigenvalues, and in thé following columns the remaining eigenvalues
as rows and columns of the A matrix are removed. Identification is
achieved by observing which eigenvalues disappear with which state
variable.. For instance, in the third column a state variable in the
speed'govefnor has been removed (h) and the eigenvalue -2.0 has been.

L LI

lost.

State variable elimination was carried out in the following

orders

1. states related with the speed governor h, C and g;
2. state related with rotor speed nj;

3. s£€te related with the a.v.r. 106p;

4, state related with damper winding in q axis;

5. state related with transient stator term in g axis;
6. - state related with damper winding in d axis;

T state related with transient stator term in d axis;

8. state related with field winding.



MAIN PROGRAM ASSESSES THE
EIGENVALUES A; AND EIGENVECTORS
Xi, Vi OF THE [A_] AND [ A ]J* MATRICES

@

SENS
or SENS

nu
<o

AN
o

A 4

READ PARAMETER VARIATIONS &,
OF GAINS AND TIME CONSTANTS

DS

CALL SENSI AND ASSESS oA }/o%
AND FINALLY THE
fa) -
o U R
i” o X.V,
.1 1

Y
PRINT RESULTS . .

Figure 2.8: Flowv dizeram for sensitivity analysis of the
eigenvalue )\i using "SENSI" subroutine.
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1+ pr

Type 1 excitation system representation
IEEE Model.

KA = 50 amplifier gain
- = 0,01 exciter gain
Kf = 0,057 Regulator stabilizér feedback gain
TA = 0,02 sec. regulator time constant
Ty = 0,146 sec. exciter ﬁimg constaqt"
T, = 0.45 Feedback time conmstant
VR = l.Olp.u, Maximum value of regulator ﬁpltage
Vhé?x = -1.0 p.u. Minimum value of‘regulator voltage
min ) )

Table 2.11:

Parameters of the excita{ion.system
IEEE Type 1 Model., '



Figenvalues
:ij?:::ogzrameter K, T, K, T, K, T,
Ahg=-20. 95% 745 -20.95=3745 -20.95%3745 -20.95%j745 -20. 95 §745 ~20.95%§745 -20,95%1745
A3?u=—25.66i39.35 ~05.66% 46,04 | —32.0%542.34 | -25.63%339.32 | -25.61%346.22 | -25.7%j43-38 | -26.0%j46.55
A= -i3.43 ~43. 43 4343 4343 ~13,43 43,47 43,43
N = ~31.37 ~31.37 -31.37 ~31.37 ~31.37 -31.37 -31.37
A, g==0.534%§9.316 -0.533%39.318 | -0.554%§9.317 | -0.533%39.517 | -0.532%j9.312 | -0.54%j9.32 | -0.541%j9.52
A9’10=-1.27ij1.34; J1.98%31.301 | -1.27%31.345 | -1.34%51.32 -1.35%51.315 | -1.1 £ j1.0 -1.0 £ j1.5
A = =0.59 ~0.596 -0.596 -0.596 -0.596 ©=0.596 -0.596
Ay, = =0.0125 -0,0125 -0.0125 -0.0125 —0.0125 ~ -0.0125 -0.0125
Ay = -2:00 ~2.00 -2.00 -2.00 ~2.00 -2.00 -2.00
Table 2.12: : Eigenvalue sensitivitiés ofvpower system, with respect to,fhe;a}v,f. type no, 116 parameters,

(25% change).

«
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Matrix Order

Rigenvalues 11 10 9 8 ) 7 6 5 4 3 2 1
Stat . . . . . '
T:;nz§ent 20,9+ 3745 (-20.9+3745 |-20.9+745 |-20.9+j745| -29.60+ 74k | ~30.8+3745 | =17.1+3645) o050 i 15 54107
Torns —20.9-3745 |-20,9-j745 |-20.9-j745 |-20,9-j745| -29,60-374k | =30.8+j746 | ~17,1-645 o[=18.0%
Daumper ~uk,11 ~44,11 44,0 ~44,1 ~4k,8 —uh, 1 —uh,1 -43,0 E
Windings -31.38 -31.27 -30.7 -32.33 -38.0 ~36.9
Mechanical | =0.5+j9.31 |=0,64+j9.9 |=-1.28+312.5|-0.14+j1.57 ' -
| 0seillations| =0,5-39.31 [-0.64-39.9 |-1.28-j12.5}-0.1-j1.57 -10.2 '10‘3 , -11.88 | -11.7 -11.8 |-11.9 ’121?_
A.V.R. . . - } : -
iy —1.32+j2.58]-1.32+¢j2.58]-1.32¢j2.57 [-1.4+j2.6 | ~1.3+j2.5
and Field | ;%35 %5 5g|.1.32-32.58]|-1.32-32.57 |-1.4-j2.6, | =1.3-j2.5 he23 .30 ) B 38} k5T =3
Winding : -
R —0-596 '0-596
gp“ed ~0.0125 .| -0.0125 ~0.0129
overnor " _.2'00

bsci,_llating mode ideniification by state variable reduction

technique.

089
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The first two columns show the identification obtained in

this way.

2,6 CONCLUSION

The effect of load characteristics has significant effect
.on the system stability and in some circumstances the effect is
substantial.. However, this effect depends on the magnitude of the
load and the way in which each operating point is considered. Non-
linear passive load may be either stabilizing or unstabilizing

(6r = 70—980, Figures 2.5-2.7), depending on the values of Kp and Kq'
In the case of a big isoiated load considered by an induction motor
load representation, it was shown that the effect of inertia constant
variation and the mechanical load representation do not affect the
stability iimit. A cfitical case was found when the induction motor
load operated at near the pull out torque (Tﬁax)’ which is rather
unusual.. A combined load seems to give a good approach for a better
representation'of the load. Howevef, with this type of load the

dynamic behaviour of the induction machines cannot be considered as

it is essentially a static representation,

- The two methods of oscillating mode identification by
sensitivity analysis and state variable reduction technique, have
been tried. The former method does not identify all the oscillating
modes exactly and the state with which they are related. The latter
is a simple process requiring comparati;gly little computer memory
and is able to identify all the oscillating modes, by systeméticéily

isolating each state variable.
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CHAPTER 3

DYNAMIC STAB1LITY IN MULTI-MACHINE SYSTEMS
INCLUDING THE EFFECT OF LOAD CHARACTERISTICS

)

3.1 INTRODUCTION

Many works have been devoted to the analysis of the dynamic
-stability of multi-machine systems using the state space formulation

and assessing the eigenvalues of the characteristic matrix of the

lsystem, in order to study the interaction between machines. A
review of these investigations is given. All of this work has been

[
direéted towards the mathematical problems of system formulation,
brought about by computer limitations and the difficulties of working
with ill—conditionéd matrices which are difficult to invert. No
method has previously been devised to include the effect of the.load

!
characteristics,

In fhis chapter a smali—signal dynamic model of an
arbitrary number of interconnected power generating units including
the effect of several load representations is developed in state
space férm. This form is convenient for the evaluation of system
dynamic performance when conventional forms of control are utilized,
and it élso enables new forms of controllers to he developed using
concepts of modern control theory. The analysis of large systems is

limited by the memory capacity of the Eomputer used, The use of
spar;ity techniques reduces the amount of memory required and has
enabled the full machine representation including a.v.r, and speed
governor eéuations for a system with a mixture of thérmal and

hydroelectric plants, With this model matrix inversion is not
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necessary. However, the response of the system to a small disturbance
can be checked by numerical integration, The computational arrange-

ments of the method are described, where examples of its use are shown,

3.2 PAST WORK

The small perturbation analysis of intérconnected systeus
using the eigenvalues method has received a great deal of attention
during the past decade, An important éSpect of these studies is the
development of a suitable system_ﬂynamic model, For certain items
of power system equipment in connection with the dynamic modelling
of synchronous machines,vthis model may be exceedingly complex and a
systematic method of handling the system equations using a digital
computer becomes essential, A.number of authors have acknowledged
bthis by devotiﬁg entire papers to the problem1’5’25’24’29’§0.

Howe&er, none of them have included the effect of load characteristics
in the system dynamic model, Reference 14 proposed a dynamic model
including this effect but only forfa singie generator connected to

an infinite bus-bar.

Laughton1 proposed a method for dealing with the multi-
machine case using matrix elimination to obtain the [}i]lnatrix from the
set of diffe;ential and algebraic equations,_a submatrix of order n
having_té be inverted, Also the machine model used was very simple,

. Undrill5 placed commendable emphasis on building the [}{]lnatrix
from submatriées representing system segments and this avoided large
blocks of null elements. Nevertheless this procedure involves the

inversion of an 1ln x 1ln matrix, where n is the number of units
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3]
included in the system. Alden and Zein“9 obtain the [}:]matrix
using the formulation based on the PQR Technique, i.e. the form

of equation:

B ] - W6 MR

which giveé the efficiency of subm;trix build up. This method requires
the inversion of an n, order matrix, where n_ is the number of
algebraic variables. Anderson et al.60 used the PQR wmethod, but

the state equations and output equations for each unit are formed
separately and are subsequently interconnected to the network,

This procedure requires fhe inversion of 15th order matrices n

times, where n is the number of machines included in the system, In
all of these works nonsynchronous loads were represented by constant

admittances incorporated in the admittance network matrix.

Other methods have ﬁeen used to model single generators
connected to an infinite bus bar. Andersdn25 considered a single
machine system, both linear and non-linear models bhzing consiéered
using the PQR methpd. Mauricio and Semlyenlg presented a ne&
formulation of the dynamic model of a single generator connected to
an infinite bus bar, as explained in Chapter 2. With this method a
submatrix,l:Kéj, of order n_ has to be inverted where n_ is the
number, of algebraic equations. TFor big systems this submatrix
~can become very ill-cui.ditioned, Mauricio and Semlyen14 indicated
éhat the same problem occurs for a system of two generators and an

induction motor load.
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TATE SPACE FORMULATION
Y STEMS

3.3 DERIVATION OF THE 3
POR MULTI-MACHINE S

The method described in this section is an adaétation 6fﬁ
that proposed by Mauricio and SemlyenlA, described in Chapter 2. The
system model may be open or closed-loop. In the latter case, set
points such as desired terminal voltages or speed changer settings
are explicitly available. This form enables novel schemes of control
to be derived directly using various methods of multi-variable control
system desigﬁ. The procedure presented here avoids the need to
directly invert any submatrix iﬁ obtaining the [}:]characteristic
matrix. A matrix inversion—multiplication is obtained instead, which
copes with the ill—conditiqn and sparsity of a submatrix, Neither of
these advantages were directly available using the procedure

recommended by Mauricio and Semlyenlh.

The method requires that the state of the system be described
in terms of a set of first order differential equations in terms of

the perturbed values in the form:

Jw = [A] yo+r[B] up | G

The [}:]matrix may then be examined for stability using

eigenvalue analysis,

3.3.1 System Representation

Any power system has the configuration shown in Figure 3.1,
in which three types of components are identified, namely synchronous

machines, linear passive networks and non-synchronous loads. Each
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synchrohous machine is described by the set of Park's equationslB’lh

as given in Appendix B,1. The network is described by the power load
flow equations of Newton-Raphson polar form given in Chapter 2 for

a simple power system and developed for a wulti-machine system in
Appendix B.1., In order to investigate how the load characteristics
affect the system stability several types of load have been considered,

These are:

1. Non-linear passive loads, which are a function of

38

voltage” , the function being variable.

2. Shackshaft'Vs load mode139, having a constant impedance

passive load in parallel with induction motors. Power

consumption is related to voltage and phase variations,

These “two types of load are incorporated in the network equations,

as shown in Appendix B.1,

Thejexcitation systems are assumed té Lkave a single time
constanflh. Each primemover is controlled by an appropriate speed
governor., A typical hydrospeed governor similar to that used in
Reference 55 was used for the hydraulié plants and for the thermal
plants the afrangement was based on the Kingsnorth and Didcot |

63

installations -, Block diagrams and equations for both types are

given in Appendix B.2.
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3e3.2 Derivation oi the State Iquations

The complete system of differential and algebraic equations

has, after linearization, the general form:

y(t)

0| y(0) | = [3.Ju() (5.2)

which can be rewritten in a deVEloped form as:

[, lu(t)  (3.3)

(o] (3.4)

Dﬁ] y(8) + K, Jy(v) + [K;I z

[:Kl;l y(t) + [:K5:| z

These equations give the state space equation (3.5), which may be

used to assess the dynamic stability of the system: |
0 = OOv) +00u (5.5)
were: [0 O T {Ix] 0T O] - T} (.6)
03- 0T O] | )

Numerical difficulties were to be expected in the inversion
of the-submatrix [k5] for multi—machine.systems as this matrix was
found to be very ill-conditioned even for small systemslh; In
order to avoid this difficﬁlty, the new formulation described in
this section reduced some of the algebraic equations in equation (3.4);
minimizing the order of Ekgj , thus reducing computer storage and
processing time. Also, instead of inverting [Ké] in equation (3:6)

by a direct method, it was solved as a set of real linear equations

[
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Figure 3,1: Configuration of typical power system for dynamic stability studies.

E-excitation system, M-primemover system, G-synchronous machines.
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with multiple right-band sides, [ 1{5] [xSOL] = [X, ], by Crout's
methodBl, which gives directly the product [kB:rl [K;] required in

equation (3.6).

As the [K] matrix in equation (3;2) is extremely sparse,
sparse matrix techniques are applied for the storage of the submatrices
in equations (3.3) and (3.%). This technique is applied mainly when
“the Eﬁi:rl elements were obtained directly without the inversion of
that matrix, and stored as the submatrices [K2:1 5 [K}j and EBo:l in

equations (3.6) and (3.7). This gives a simpler form of[l&]lnatrix which

is easier to use,

The state variables for the description of n machines is

selected as:

t |
y()" =L A(Pfdl A(Pdl .A('Pkdl 89, A%ql AEfdi Bbr; Any
Awnb; Awh, Awi, .... A%dn Aq)dn Aq,lkdn Aqun

-Aq)kqn AEfdn A\f)rn Ann,Agfn Agn Ahn:] .
| (3.8)

The algebraic variables for an n machine and m mnode system are

selected and ordéred as follows:
zf =[AS) Avy AS AV Ap, Ae ... AP AQ AV, ...
Avdn Avq ces Avqn Aifdl Aidl AikdlAiql Aikql oo
Aifdn Aidn AikdnAian il‘%] (3.9)

1

Non-linear passive loads with only voltage dependence have

been taken into the. analysis. The linearized form can be expressed
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as in Chapter 2 by:

Li
Ap . = Ko v, Av, (3.10)
Mo, - K. S py (3.11)
Li T Tqi V, i .
. o '
1 = ]., 2, L] n of ].08,d.

A combined load was also taken into the analysisj; the

linearized form of the equations is obtained in Chapter 2 and they

are repeated in this section as follows:

APy = [2V, (6,46 )V, Yoy c0s(0,:+8,) 1AV,

+[vivmiYmisin(omi+6i)]Abi | - (3.12)

Aog; = [ov (6 46 )~V .Y sin(Olni+6i )JAv,
- EViVmiYmicos(Qmi-q-f)i)] Asi (5.13)

i = 1, 2, ...y no, of load.

The detailed linearized system equations for a two—machihe
system and three nodes are given in Appenﬂix B.1l. These equations are
arranged in orderlto obtain the equations (3.3) aud (3.4). This
sample system is given as an example, but the-méthod and the program
afe geﬁeral for n machines and m nodes, only being limited by the °
. computer storage capacity. The program Qas written in Fortran IV
for CDC 6400 and Cyber 174.computers, available at the Imperial College,
and is able to hold a system of nine machines with full representétion
(7 states), a.v.r. (1 state) and speed governor (3 states), and

thirteen nodes with a variety of load characteristics,
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3.5.3 Selection of the Angular Reference

An important point in the stability studies of wmulti-machine
systems is the selection of the angular refereﬁce. For the present
anaiysis the method presented by Undrill5 was used. He considered
that the network frequency is identical to that of one a}bitrarily
chosen machine so that the network.reference rotates in synchronism
with the axés (dj’ qj) of that machine, This implies that the rotor
angle deviation ASr of the jth machine is always zero and that
rotor angle changes may conveniently be expressed relative to thg

rotor angle of this machine in the system model, so that in general:
Abrij = Aﬁri'- .Aérj“ : (3.1%)

This expresses the rotor displacement of the ith machine relative to
the jth, as defined in Figure 3.2. It follows direétly from

equation (3.1%) by differentiafion, that:
- Aarij = w,(ln, - ’Anj) (3.15)

The procedure to implement these changes in equation (3.5)

when the jtb machine is the selected reference is:

(i) delete the Abr, and erJ. from the vectors

y(t) and y(t);

(ii) delete the row corresponding to plﬁbrj and the column
corresponding to (ﬁérj in thel:K] matrix of equation {(3.2)

before the [}i] matrix is built up;

(iii) : delete the row corresponding tO];Aégj in matrix

[?0] of equation (3.2);



The

(iv) . subtract @) from the elements of [ﬁ:]matrix whose

column corresponds to An‘T and whose row corresponds to pASrJ..

This change leaves (3.5) of order 1ln-1 with all rotor
angles referred to the jth machine. It should be remembered that
'the jth or reference machine does not represent an infinite bus bar.
If it is desired to simulate an infinite bus bar as. .the reference,
all that is required is to delete its speed variable from y(t) and

y(t) and to delete the éorresponding rov and column from the [K]

matrix, equation (3.2)

v\
\\‘
N
~
N
~
~
"
~
Gy
NETWORK REFERENCE
Figure 3.2: Angular relationships between network

reference frame and synchronous machine
reference axes, '
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3.4 DIGITAL COMPUTER PROGRAM

A computer program based on the above formulation has been
written which makes a dynamic stability analysis of a multi-wachine
power system in which the effect of load characteristics is considered.

The main features of the program are described below. .

For this sort of analysis a very large number of matrices
is required. . The dimensions of these matrices are in general different
and if each matrix is represented and stored in a separate two-
dimensional array, the storage capacity required becomes excessive
even for a‘very small power system. <In this program only four
matrices in two-dimensional array have been used for storing and
assessing ali the matrices required by the wethod, This was based on
the logic of the computing approach; once thé informafion in’an array
has been used, the array may easily be used for étoring the
information of other matrices with different diwmensions. TFurthermore,
because of the structure of the matrices explained in Section 3.3.2,
-sparsity techniques have been used, and substantial cémputer

wmemory saving has beeu wmade.

A general block diagram of the program is given in Figure
3'.3, and tlx;e basic steps given below. "In any dynamic stability
analysis, load flow'calculatiéns‘aré required to determine the
operating point of the syctem. These calculations are not included
in the main program but the variableé at each operating point éré-
calculated from the wagnitude and phase angle of the voltages ané

the active and reactive powers at each node, already provided in a

magnetic tape by a separate load flow program. After that the
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! 7

1L 1 2 3
READ DATA: READ DATA: TAPE 3
Machines, Loads, Number of Lines ;Zzioﬁiow Print: Load
AVR, Speed Gov, Number of Buses Raphson Flow Results
Parameters Impedances, Power pis and Jacobian

10

Update Main
Program
for dynamic stability

Compute eigenvalues
and print them.

Figure 3.3:

Integrate 7(t) = [}{]y(t)
Runge-Kutta-Merson

!

Block diagram of the multi-machine
dynamic stability computer program.

5
7
Sub. opoint Sub K matrix
---- 3 assess operating build up the
point K] matrix
8
Sub Chara. 9
Assess the ﬁ%pe'h
(A ] Matrix Print | A | Matrix
4
Oscill, 11
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submatrices of- the [ﬂ:’matrix are built up systematically in order to
assess the [}{] characteristic matrix of the system. Once this matrix

31

is obtained a standard subroutine is used to compute the
eigenvalﬁes of [}{] . The eigenvalues of a linear dynamical system
correspond to its natural modes of pscillation, with each real part
giving the reciprocal decay time constant or damping coefficient of.
a mode and each pair of imaginary parts giving a natural angular
frequency. The necessary and sufficient condition for dynamic
stability is that all the eigenvalues have negative real parts, vhile
the forcing frequencies which could lead to hunting problems may be
determined by examination of the imaginary parts of the eigenvalues.
Thus the program provides.a direct check on dynamic stability simply
by checking the eigenvalues for positive real parts. This prﬁgram
can also determine the eigenvectorsof the system if it is required.
Furthermore, the program can use another magnetic tape in order to
save the [}:]métrix,'which may be used to check the results by
infegrating a system ;f linear equations y(t) = [A]y(t), giving the
- the free response of the system for a small disturbance, using an
integration Kutta-Merson subroutinejl. This method uses five inter-
»'mediate stages in an interval to get the Last-Value, The Kutta—

Merson process uses tie equations:

A 1 .
Y1 =¥, + 5 bf (x5 ¥,)
= -+ L ht (x ) + l’hf (x_ + Ly )

Y9 =Y * % 0Yo 6 o T3 7y
1 o 1,

Y5=Y,+3 hf (xo,yo) + % hf (xo + Sh’ yg)'
1 1 1

Yy = Y, + 5 hf (x,sv,) + % hf (x  + 3hs y2) + 2hf(x0 + S, y3)
1 9 1 1 ‘

Y5 = Yo + § 0E (x55¥,) + 5 bf (x, + 5hyys5) + 5 bE (x40, v,)



The value ¢f v accepted at the end of the step h is:
]
y = 50, - 5)

The results of the integration are plotted by Library subroutine

and kept in wicrofilm,

3.5 APPLICATIONS AND RESULTS

In this section results of dynaﬁic stability studies for
two multi—machine systens, one.of two machines ana three 5us-bars,
and the other of four machines and five bus-bars, are presented.
The systems are shown in Figuresij.é and 3.5. A variety of load
representations was tried in both systéms. Finally, a system of

nine machines and thirteen bus-bars shown in Figure 3.10 was tested.

In all the cases analysed in thié éection, the parameters
of the units were those given by Davison et a159. All the machines
.were assumed to be of the sawme capacity, i.e. 1.0 p.u. Data are
given in Table 3.1, The values of'power, &61tage and phase angle
obtained by a standard load flow ahgiysis are indicated on each
system diagram, These systems were speéified quite‘afbitrarily, but
they are intended to be representative‘of typicai real systems, In
all cases the aetion of the speed governors is represented by the

models given in Appendix B.2 and the .a.v.r. are considered in a

classic single time constant representationlé.

In this analysis it was found that the eigenvalues

~associated with the wachine transient stator terws have very high

W T T YRy e T
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Figure 3.A4: Four-machine system, all values are in p.u..

referred to g common base,
1,2 Thermoelectric muchines,.
5,4 Hydroelectric machines,

s Active power tlow .
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I
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Figure 3.5: Two-machine system, all values are in p.u.
referred to a common base,
1, Thermoelectric machine.
.9, . ilydroelectric mackine.



f1d

afd

b B4 b4 b

fkd

Xakd

kad

akq
X3

Xt

' X

= 2,018 ' xa = 0.175
= 1.89 Thq = 0.0261
- ‘ " _ =z

= 1.908 T, = 0.031
— 1] —_

= 2.04 TY, = 4,3

—_ . " =

= 1.89 qu = 0,0167
= 0,15 H = 6,75
= 0.27 K, = -20

Table 3.1:

Note:

Representative parameters of a 500 MW
thermal wachine, and a.v.r. constants,
Machine parameters are in p.u. at
rated power bhase,

The only change made in the constants of the
hydraulic machine (apart from the speed governor
representation) is in the constant X, which’ was
assumed equal_%o Xq = 1.29 p.u, following
Davison et al’”,

80.
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damping and a very high natural frequency when a steady state
netvork representation is used, and loads are represented as constant

impedances, i.e. Kp = Kq = 2 for the non-linear passive form.

When loads are non-linear and passive with coefficients
Kpi’ in approaching constant current or constant power-or when a
combined load is considered and the induction motor load is

dominant, this eigenvalue can become highly undamped, indicating an

oscillatory system. Table 3.2 shows the eigenvalues for the two-,

machine system of Figure 3.5 with non-linear passive loads, Kp =_Kq = 2,

K, =K, =1, and K, = K, = 0. A variety of load configurations in
both systems Figure 3.4 and Figure 3.5 were considered at each hus-

bar., Tables 3.3 and 3.4 indicate when this eigenvalue is negative

or positive,

It appears that when an infinité bus bar is considered as
the reference machine, this mode of oscillétion is absent. A test.
was performed with a four-machine system, Figure 3.4, but considering .
"all the.units as hydroelgcfric plaﬁts with similar data to those used

for the sysitem in Chapter 2. Results are shown in Table 3.3.

Figures 3.6-3.9 show the'fesults when the integration
gubroutine,is applied in order to check the eigenvalue results without
.5n infihite bus bar beihg present and load is conétant impedance.

A small disturbance in the field flux of 0.05 p;u. was appiied to
machine no; 1 of the twe-machine system in Figure 3¢5, The maéhine
is well damped, confirming the eigenvalueé of Table 3.2, column 1.
The multi-machine system shown in Figure 3%.10 was used in order to
cﬁeék-the computer program capacity. A typical output of the program
for this system is shown in Tables 3.6 and 3.7. The [}{]tnatrix was

of the order 58 and the c.p. time was 101.8 seconds.
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-0.153x10"=j0.135x10
-0.116 + j0,91%

~0.153x10"-3j0.,135x10

-0.114 + j0,917

~0.112 + j0.92

K, = K, =1 K, =0
.= K =1 K =0
-1.52x10° + §5.70x107 | ~5.980 x 10° (D1.59 x 10*
~1.52x10° ~ §5.70x107 | -1.72 x 10" ~ - 1.61 x-10°
~1.76x10% &+ j6.02x102 -1.76x10" + j6.02x102 ~1.76x10% + j6.02x101
~1.76x10" - 36.02x102 | ~1.76x10% - j6.02x10% | -1.76x10% - j6.02x10!
-5.13 x 10" ~5.13 x 10" -5.13 x 101
-3.90 x 10 -3.88 x 10 -3.86 x 10!
~3.63 x 101 -3.62 x 10% -3.62 x 101
~0,34x10" + j0.77x10% | ~0.34x101 4 j0.77x10% | —0.33x101 & jo.77x101
~0.34x10% — jo.77x10" | —0.3tx10t = jo.77x10%| <0.33x101 - j0.77x101
-1.0 x 10° ~1.0 x 10} | -1.0 x 10}
-0.697 x 10! ~0.715 x 101 ~0.733 x 10%
~0.333 x 10! ~0.530 x 10% ~0.430 x 10t
~0.101x10%450,283x10" | ~0.101x10%+j0.280x10 | -0.100x10%+j0.277x10
~0.101x101-j0.283x10" | -0.101x10 0. 280x101| ~0.100x101=j0.277x101
=0.153x10%+30.135x107 | ~0.153x104j0.135x101 | ~0.153x104j0.135x10"
1 1 1 1 1 1

-0.153%x10"-3j0.135x10

-0.182 ~0,182 ~0,182
~ ~0.999 ~0.999 ~0.999
' )
1.0 x 107 -1.0 x 102 ~1.0 x 107
Table 3.2: Typical output showing the eigenvalues of a

two~machine system,

linear passive load.

Load represented as non-




Table 3.3:

Case Load Coefficient <0
a K K A0
P q
1 1 1 -
2 1.5 1.5 . -
3 2.0 0 -
b 3 0 -
5 3 2 -
6 0 0. +
7 1 .0 +
8 0 1 +
9 0 6 4
10 0 o T +
Combined load including 60%
11, .\ ., , 4+
induction motor load,
‘%t
Sign of an eigenvalue for different load

configurations of a two-machine and three-
node system, ‘ 2

83.
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Bus No 2 Bus No 3 Bus No & Bus No 5 N <0
Case 1 ¢ Ik |x !x | x ! x | k |k A0
p q P ] p q P q
1 0 0 2 | 2 0.0 2 2 -
2 o | o o] of 2| 2| 2 2 -
1 1 1 1 1 1 2 2 -

4 0 0 2 2 2 2 0 0 ~-

5 1 1 1 1 2 2 2 2 -

6 2 2 ' 2 2 1 1 1 1 -

7 2 2 2 2 2 2 2 2 -

8 0 2 0 2 2 2 2 2 -
9 0.5] .2 2 0 0.1 1,5 2 | 0 -
10 | 1.1} .1.5]| 0.1] 1.5{ 2 2 | 2 ) -
11 2 0 2 0 2| o 2 0 -
12 1 1 1 1.1 1| 1 1 +
13 0 0 0 0} o 0 0 0 +
{1 1| 2| 2 0 0 0 0 N

. 15 0.5 2 0.5 2 1. 0.5 2 0.5 2 +

16 oo 2 o 21| o 2 o | 2 *
7 o | of o o| of of 2| 2 *

_ Combined ; Combined

- Load: 6% o | “Load: 6%
18 2 - 2 induction| 2 - Induction -
Motor Load 1 Motor Load
Combined . Combined
Load: 47% 5 Load% 47%
19> 2. 2 Induction 2 “ .| Induction *
Motor Load Motor Load
Table 3.4: =~ Sign of an eigenvalue for different load configurations

of a four-machine system and five nodes,
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Non-linear passive load I =K =0

Machine no. 1 as a reference,

Non-linear passive load Kp:Kq=O

Infinite bus-bar as reference,

Matrix of order 42

Matrix .of order33

~1.98 x 107

+1.74 x 107 A '3
-0.30x102%50.573x10
-0.24x102%50,478x103
—0.19x102t§0.44x103
-0.46 x 105

-0.45 x 107

-0.45 x 102

~0.40 x 10

-0.38 x 103

-0.36 x 102

-0.34 x 102

-0.22 x 10 E 0
-0.138x101%50,131x10
—0.109x101ij0.115x103
-0.125x10 tiO.llelO
-0.121x10-1Zj0,282
-0,185 x 101

-0.180 x 10}

-0,171 x 101

~0.628 x 107

-0.114 x 101 .
-0,121 x 101 .
~0,130 x 10,

-0.13% x 10

-0.7326

-0,42

~0.,42

-0.42 0

~0.89 x 107

-0.89 x 10‘2

~-0.89 x 10~

-2,00

-2,00

-2.00

-2,00

~0.732x10°50.706x10°
~0.27x102*j0.511x107
—0.19x1021g0.45x10 .
-0.46 x 10

~0.45 x 10
0,44 10
~0.37 x 10
~0.35 x 10
-0.32 x 10

L
0O NN N

~0.129x10*50.126x102

—0.80x101%30.10x102

—0.126x101%j0.114x10

L
1
1

2

-0.113 x 10
-0.151 x 10
-0,122 x 1?
-0.17 x 101

-0,.,13 x 10

_0042
-0.42
"0042

-0,388
-0.88 x 10 ©

]
e
o0

-2,00
-2.00
-2.00

Table 5.5:

Four-machine system dynamic stability results

when non-linear passive load representation and
different reference machine representation are

considered,
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0.co3 +30.5 0.002 +] 0.2

8

©.601 +}0.05 0-02+30.2

Figuré'3.10: Nine-machine and thirteen-node' system. .
Values are in p,u. referred to a common
v base.
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Bus Volt?ge AY Delta P Q P Q
Number Magnitude (degrees) G G L L
1 1.150 0 0.105 0.068
P 1.151 -0.169 0.400 0.200
3 1.155 -1.367 0.300 0.300 ~0,400 ~0.100
Lk 1.150 -0.753 0.200 0.100 -0.200
5. 1.227 8.184 0.600 0.300
6 1.263 10,599 06.700 0.400 - -0.200
7 1.280 - 11,827 0.500 0.300
8 1.300 13.260 0.600 0.200
9 1.293 10.788 0.700 0.500 -0.500 ~0.100
10 1.135 =1.580 -0.800 -0.500
11 1.1%3 ~-0.240 -0,500 ~0.400
12 1,229 - 8,056 -0.700 -0.400
13 1.170 2.285‘ —0'800, ~0.400
fable 3.0 Operating Pqint for a nine-machine and thirteen-node syétém.
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3.6 CONCLUSION

The signal dynamic model of an arbitrary number of inter-
connected power generating units including fhe effect of load
characteristics has been developed and implemented in a digital
simulation in normal state space form. The results have been
checked by integrating the system equations for a small.disturbance.

In particular:

(i) _ Different load representations have been included in
a multi-machine dynamic stability program, machines being
represented in full with a.v.r, and speed governor control
equations.. The program is able to represent loads as non-

linear static loads which are functions of voltage and also as

+

combined loads composed of constant impedance and an equivalent
induction motor load. The problem of getting ill-conditioned
matricgs during the construction of the [}:]matrix has been
sorted out by making a small rearrangement in the way the
algebraic equations are built up,‘and avoiding matrix inversion. .
An additional feature of the present model is that an open or -
closed loop‘model may be obtained and the system inputs appear

explicitly in the state space form.

(i) ' It was found that transient stafor terms produced very
highl& damped modes of oscillation when loads were represented
as constant impedance, but when the load was represented as non-
linear and passive, with coefficients K K Kq. approaching
constant power, this mode of oscillationlhad ;egative damping,
When the reference machine was considered as an infinite bus bar,

this undamped oscillation was not présent even for a constant

power load characteristic,
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CHAPTER &

THE EFFECT OF LOAD CHARACTERISTICS ON THE DESIGN
-OF FEEDBACK CONTROLLERS OF GENERATORS

4.1 INTRODUCTION

The steady-state stability of power systems becomes doubtful
when transmission distances are large and special precautions may

become necessary, In recent years the optimal linear regulator

theory of linear time;invariant systemé with quadratic performance
indices haé been applied to design controllers for power systems

52,53,55

for obtaining improved dynamic behaviour of these systems

Andersoggand-Yu et a155 have suggested multiple feedback
controllers, considering a power system consisting of a hydro-
generator with exciter, AVR and governor connected to an infinite bus
bar thfough a transmission line, The non-linear ma{hematical model
describing this system.was linearized around an operating point o
obtain a linear time-invariant state model of the system, valid for
small disturbances. Closed form solutions to the minimum integral ‘
control problem can be readily obtained if the system is represented

in the standard notation by the equation:

[}

5(6) = [lv(v) +O5Jule) - (h.1)

wvhere [}:]aqdlzﬁj are, respectively, nxn and nxp matrices, y(t) is

an nxl vector and u(t) is a pxl vector.

Defining a quadratic performance index:

J = f’(y!Qy';u'Ru)dt ' : N (4.2)
0 : ' o B
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where Q@ and R are constant positive-definite symmetric matrices

55

and, as usual, the primes denote transposition; Yu et al derived
a feedback law in the form:
u(t) = R 'BrEy(t) (1.3)

where K is the constant nxn positive-definite symmetric gain matrix

which is the solution of the algebraic equation:
KBR 'BIK - Q - A'K = KA = 0 - . (4.4)

The resulting closed loop system defined by the equation:

7(t) = Gy(t) (4.5)
where: '

G = A - BR—IB'K

is asymptotically stable, that is, the eigenvalues of the wmatrix G
all bhave negative real parts, with better dynamic r;sponse than
the uncontrolled system given by equation (4.1). In this method
the weighting matrices Q and R, specified in the performance index,
are arbitrary and a systematic search is necessary to obtain valugs

which give a suitable response.-

In this chapter an alternative approach using modal

57,58

control theory is used which directly yields the feedback law
while shifting the closed loop eigenvalues to the desired locations.:
It is-well known that any eigenvalues ére obtainable forbg closed-
loop system if the Open'100p system is controllable. However, in
many practical situation; only the critical eigenvalues require

re-location, and so long as the part of the system with which

they are principally associated is controllable, they may be moved
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by the addition of feedback loops. This method is used in this
chapter to stabilise the performance of the pumped storage station
at Ludington (U.S.A.) which was found to be unstable when pumping
in extreme conditions54. TFeedback controllers are designed for
several operating conditions, including the effect of local load
on the station h.v, bus bar., It is shown'that the nature of the

load can change the design of the controller.

4,2 METHOD OF ANALYSIS

For this study the power system equations are expressed in
the state space form, equation (4.1), by linearizing the differential
and algebraic equations around the operating point using the methods

7

' !
explained in Chapters 2 and 3 and that given by Baker et al'! shown

in Appendix C.1.

In order to improve the transient response of the systen
for small perturbations, the eigenvalues of the [}:]matrix are
assessed, The impulse response of the system without additional
control was ‘also obtained.‘ If the response is unsatisfactory, the
system behéviour can beé improved by shifting the 'r! critical
eigenvalues %1, k2, ...; Xr using modal control tecbnique57, to

the corvesponding new locations Ql, Q?, caey fT, leaving the other

eigenvalues undisturbed in the closed loop system.
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5,2,1 Theoretical Approach

57

Modal control theory, given by Porter and Crossley”', is
merely that of generating the input vector of a system by linear
feedback of the state vector in such a way thatvprescribed eigen-~
;alues are associated with the dynamical modes of the resulting
closed-loop system. The critical eigenvalues are shifted to the
left-hand side of thé complex plane such that in the closed-loop
system all the eigenvalues are situated within a prescribed region

which ensures adequate stability.

L,2.2 Single Input Modal Control Systems

In the case of a state-controllable linear system whose
state can be influenced by only one inputr(or control) variable,

u(t), equation (4.1) has the forms:
(6) = D y(t) + bu() o (4.6)
where b is an nxl vecfor and u(t)'is a scalar,

The proportional-controller gains necessary to alter 'r?
s&stem eigenvalues from 11, KQ,..., Ar’ to any desired new positions
Q’l’ Q2,ooo, ei‘ are given by:

r -
KJ. = — T (407)
4]

1=.a

which indicates that Kj is calculable if:

p, # 0 . (.] = 1’ 2y seey I‘),‘
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that is, the 'r'! modes of the system are controllable and defined

by the equation:
p. = vs. b (4.8)

where VJ is the eigenvector corresponding to the jth eigenvalue of
the transposed matrix [&] of the uncontrolled system. The feedback

gain vector g is given byf

Iy

¢ - ZKJ vy (1.9)

=

yielding an input variable u(t) given below. If all the elements of
the state vector y(t) can be measured by appropriate transducers or

estimated by means of an observers
u(t) = F y(t) (4.10)
where: F = gt,

The control law obtained by substituting from equations

: !
(2.7) and (4.9) into equation (4.10) has the form:

B x N
. r W (e, - xj)vg
i=1
u(t) = - y(t) (4.11)
g=1 P; U(ki— )\J-) i

— i=]
ifj

This control law will alter the eigenvalues 'hl, AQ, ceesy A

of the uncontrolled system to prescribed new values Ql, Q’, ...,‘Q,,

T

leaving the remaining (n-r) eigenvalues unaltered. It follows by

substituting the expression for u(t) given in equation (4.11) into

Tr -
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equation (%.6) that the governing equation of the resulting closed-
loop system is:

y(t) = [aly(t) + b Fy(t) - | (4.12)
which may be compressed to:
y(t) = G y() | | (4.13)

The eigenvalues and eigenvectors depend upon the feedback

loops,

4,2.3 Illustrative Example

The theory of single-input modal contrel presented in the
preceding section can be illustrated by designing a feedback
controller for a sample third order system for which the state

equation (4.6) has the form:

_;2‘ -1 ‘ lm1 ' | rij '
() = | 1 0o  1{y(t)+]1]ut) (4.14)
| -1 0 1 ' I.J

The eigenstructure of this system is given by the following

matrices:

1 2 0
NAN=1]0 -1+ o (&.15a)
0 0 -1-j
— -
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0 5 5
U = |1 <3-ju  =34ju (4.15b)
1 24j o-j
L -
-2 14§ 1-j
1 . . '
V=14 2 J -3 (4.15¢)
8  -j J
L. o

A= nxn eigenvalue matrix of EA] and EA] 1.
U= [u vy eer u ] nxm wodal matrix of (4] .
u, (i=1, 2,‘.;., n) eigenvectors of [}{] .
V= [v; v, «e. v ]} nxn modal matrix of [A] 1,
v. (= 1; 2, .v., n) eigenvectors of [ A | l.
n =35 for this particular example.

The corrésponding mode-controllability matrix is:
P = Vtb = =— [1+j] . ‘ (4.16)

In the absence of control (open loop) the system (4.1k)
has the eigenvalues A, = 1, A, = -1+j, )\3 = -1-j. It is unstable
because of 7\1, but controllable by the input u(t) since Py ;! 0.

The second and the third modes are asymptotically stable and are also

both controllable by u{t) since Py #£°0 and P £ 0,
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The eigenvalues can be changed to 4% = -1, QQ = ~2+j2,
and €3 = ~2-)2 by the proportional controller gains (K5) associated
with the appropriate vectors,vi, vé and v%.

(€,- A)(€,- A )(E - A))

RN ¢ v 0 [ v (4.17a)

] (€1- A)(8,- A)) (s X)) |

K2 = | p2(7\1— 7\2)(7\.3_ }\2) = 7+] (&.17b)
(- A (€A 5 A) |

TR s W w1 ey w e (517¢)

Equations (4.7) and (4.11) indicate that the required

feedback control law is given by the expression:
| u(t) = Klv{y(t) + K2v§y(t) + Kjv%y(t) (4.18)
which, in this case, assumes the form:
u(t) = 2.5y (t) - 1.5 y,(t) - 5 y5(t) (4.19)

The G matrix of the closed loop system defined by equations (4.14)

and (%.19) is:

0.5 "2. "‘lf
G = |35 =~1.5 -~k
1.5 ~-1.5 -4

and the.éigenvalues of this matrix are:

e, =-1, 92 = -2+4j2 and 27’ = -2-j2

‘as required.
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b3 MULTI-INPUT MODAL CONTROL SYSTEMS

The theory for single input systems presented in Section
4,2,2 can be used sequentiaily to design feedback loops for multi-
input systems governed by state equations of the form (4.1). Thus,

if the input matrix [}{] has the partitioned form:

] - Dby, b (5.19)

then equation (4.1) can be expressed as3

y(t) = [ady(z) + i b, u.(t) (4.20)

i=1
Hence Porter's57moda1 control method applicable to single
input systems can be applied éequentially to the system described by
equation (4.1) using a multi-stage design procedure, by dividing the
iyl dominant eigenvalues into p? groups and shifting in fp? stages.
"Only one input defined by Pai et al61 as the dominant input is used

at each stage. Each ui(t) in equation (%4.20) will therefore have

the form:

r
(1)
u.lt = K. i)t
i (4) Z J VJ() y(t) = g y(t) (4.21)
_ J=1
(i =1,2,..0p)

where Kj(l) are the proportional controller gains associated with
the ith stage of the design procedure, The resulting closed-loop
system has the form shown in Figure 4.1, If 'rl' eigenvalues are
shifted in the first stage by using the input ul(t), the modal
controller gains aésociated with the first groups are determined

by:
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1
£ -
i=1 i N
K. = = (4.22)
j T | .
SRR A= A
J.?!i ' (J = 1,2,..., r")
where: Py = v5 b1 . ‘ (4.23)
Then the feedback ‘gain vector g is given by:
1
= k. v, ' - b2k
6 =) (o)
j=1

After shifting the first group of eigenvalues, the system

matrix for the controlled system becomes:

[ad, = [ad+ vl | (4.25)

The matrix [}i] 1 is used for shifting the second grcup of
€igenvalues and the method is applied sequentially for all the groups,

only the dominant input being used for esch group.

[, = Ddevpg +opgg v e gl (026)

Hence the feedback law is expressed as:

a(t) = Fy(t) (£.27)
where the pth row of the modal controller matrix is given by:

F = pi k.28
o g} | (4.28)
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4.3.1 Criterion for the Selection of the Dominant Input

If additional inputs are used for feedback control, these
provide means of optimizing the feedback structure. The criterion
used here is that of dividing the total number of eigenvalues»to be
shifted into groups, each group controlled by dne particular input -
called by Pai et al61 the dominant input for that group. In
applying the multi-stage design ﬁroceduré, the modes.to be controlled

at the ith stage are chosen on the basis of the magnitudes of the

elements of the appropriate mode-controllability matrix:

SR (i=1,2,...,p) (4.29)

It is evident from equation (4.22) that the gain K, will be
minimum when the Pj element of the contfdllabi;ity matrix is maximum,
Hence the optimal modal controller feedback matrix F is obtained if
the control input up(t) for shifting the jth gigenvalue is so chosen
that tﬁe absolute value of pj is maximum. Such an input is known as
the dominant input. All eigenvalues for which up(t) is the dominant

input form the pth group.

4,3.,2 Sector Criterion

To preassign the new locations for the critical eigenvalues
of the uncontrolled system so as to improve its dynamic behaviour, a

58

sector criterion given by Pai et al is ﬁsed, which is based on the
fundamental concept of damping ratio § and undamped natural frequency

W as‘explained in Figure 4.2,

The new locations for the first critical pair of complex

. . . o, o+
conjugate eigenvalues of the unconirolled system (x = J[3) are
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assigned with a desired degree of damping ratio and undamped natural
frequency. The remaining critical complex eigenvalues § and (k% are
specified to lie within the sector shown in.Figure 5,2 to the left

df the first pair. The new location for tﬁe critical real eigenvaluéﬁ
is arbitrarily chosen such that its value is sufficiently large and
negative, However, this choice of new locations for thé critical
~eigenvalues has to be modified when the control law results in high
feedback gains which are not practicable, The gains of the feedback
matrices obtained for various cases are compared by using a

pefformance index (P.I.) defined by Pai et a161:

. n B} . :
j Z 0.
PcIo = . Fij . . (11.30)
' i=1 j=1

.k APPLICATION AND RESULTS

A schematic diagram of the power station studiéd in this
‘section is given by Figure 4.3.» Using the published datash shown in
Table 4.1, the system at Ludington was represented as a single-machine
infinite bus-bar system. The electrical machines are studied at
full load in both pumping and generating modes. The power station
contains si; units of 325 MVA each. The machiﬁe terminal power was

- taken as 1.04 p.u. during pumping and 1.0 p.u. during generation,

These figures are referred to a base of 1950 MVA,

The AVRs keep the machine terminal voltage constant at
about 1.02 p,u, and the infinite bus bar voltage was taken to be
1.00 p.u. During pumping, the gate controls being fixed in one

positien, transient response was improved by using modal control
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/_Infinite
bus-bar

V=1.0 p.u,
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Symbol Description iXai?ii
Xd d-axis armature reactapce 0.85_
Xq .g~axis armature reactance 0.48
X4 d-axis magnetizing reactance 0,73
'qu q-axis magnetizing reactance 0.36
»de: field reactance 0.935
Xkd d-axis damper reactance 0.89
.qu g-axis damper reactance 0.46
r armature resistance 0.0016
4 d-axis damper resistance 0.01%
kq q-axis damper resistance - 0.01%
rfdr field resistance 0.00041
H Iinertia constant ’ 7.5 sec
X, transmission line + transformer. 0.49
‘reactance
T, ‘transmission line + transformer 0.00

resistance ;

Table 4.1: Power system parameters,
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at the excitation reference voltage, and the effect of different
network representation was analysed, During generation, similar
‘control was applied to the excitatiocn refefence and the speed

reference point, and the effect of various types of load coupled

‘at the machine terminals was considered.

The synchronous machine in both caseé was represented by
.Park‘s equation of 7th order in p.u. explained in Chapter 2. The
excitation system was the IEEE Type No. 1 model (Brd orde:),
similar to that given in Section 2.5, and in generating mode the
speed governor was represented by a 3rd order model similar to that
used in Chaptef 3, Figure B.2.3. Data for both systems are given
in Tables 4.2 and 4.3, féspectively. In Appendix C.1 the non-

linear and linear dynamic system equations are given in detail.

hou,1 Pumping Mode Operation

’ The following cases were studied during pumping with the

speed governor out ol service throughout:
Case 1: The AVR was connected to the system (conventional control).

Case 2: No control loops were considered. in the system, i.e. the

AVR was out of service (manual control).
Case j:' The AVR was in service, together with modal control.

The non-lincar system equations were lincarized about the

operating point shown in Table 4.4. The linear equations in this

part of the analysis were considered in the manner of Baker and
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Symbol Description Value
K, Regulator gain 38.6
TA ’ Regulator amplifier time constant 0.1 sec
KE Exciter gain " 0,182
TE Exciter tiume cpnstant 0.133 sec
Regulator stabilizing loop gain 0.015
TF Regulator stabilizing time constant| 0.5 sec
'SE | v 0.247
X,max Exciter saturation functionm
S75EX o 0.038
VR,max(p'u') Maximﬂp value of Vo 1.64
VR,min(p'u') Minimum value of VR  -1,08
Table 4,2: AVR and Excitation System Parameters.
‘Symbol Description Value
op Permanent droop 0.045
Tg Gate time constant .0,1 secs,
Ta Governor actuator time ccnstant 0,01 sec,
M, Governor actunator gain 1.0
™™ Water column time constant 1.6 secs,

Table 4.73:

Speed Governor Parameters,
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Symbol Description .iXai?E.
Sr rotor angle respect to infinite bus -52.8 (deg)
P.F. power factor (over-excited) 0.96
vy terminal voltage B | 1.02
Vb infinite bus bar voltage | 1.00
P active power - _ ~1,04
3 d-axis currentl - -0,668
iq q-axis current - ] -0.825
éd . d-axis voltage ' 0.397
vq q-axis voltage . 0.940
Eeq éxcitation voltage 1.506
ifd field current ' | 2f063

Table 4,4: Operating point for pumping mode.
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Krausel*7 using the sign convention explained in Chapter 2. 1In this
representation;the transient network terms are included directly.
Later in this chapter an alternative network representation is

discussed. The state variables for the synchronous machine when

pumping mode are:

y(t) = [ My Dig Biy o Biyy Bigy An Bor Awy,, AV, AVES]T
(4.31)

_Table 5.5 shcwslthe eigénvalues gf the system for Case 1
and Case 2. From these eigenvalue 1oc5tions it can be seen that
the system can be stabilized, but the transient response is highly
unsatisfactory. The plot of the eigenvalues for Case 1, given in
Figure 4.4, shows that all but.the conjﬁgate paif associated with
the naturai mechanical oscillation appear in the stable left-hand
half-plane. Figure 4,5 shows that the transient response of the
system with COnventionai control (AVR loop only) is quite oscill-
atory and unstable, When manual control of the terminal voltage
is applied the response is as in Figure 4.6, The éystem is stable
but is poorly damped.

The single input modal control methcd explained in Section
4.2.2 was uséd to 6btain fhe gain of feedback loop; to move the
critical eigenvalueﬁifirstly to the positions shown in column 2 of
Table 4.6, and then tc those in columns 3 and 4. The basic control
structure is illustrated in Figure 4.7. The transient response,
Figures 4.8 to 4,10, i< very much better. The resulting feedback

gainé needed t¢ bring about this relocation are shown in Table 4.7.

Three network representations were then used in order to

show how transient network terms affect the dynamics of the system
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Location of osecillation

AVR Control only

No Control Loops

Stator winding

-1.039 + j 377

-1.039 + j 377

-2.15

j2.238

-1.039 - j 377 . ~1.039 - j 377
d-axis démping winding -17.83 -17.82
q-axis damping winding -15.99 -15.93
Excitation system =542 + § 7.32
stabilizer -5.42 - j 7.32
AVR and .field winding -2.15 + j2.238 ~18.5

Mechanical

+0.273 + jhaTh

+0,273 ~ jh.7h

-0.223% + j4.04
-0.223 - jh.04

‘Table 4.5% Eigenvalues of the equiﬁalent machine
irfinite bus~bar Ludington system.
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Eigenvalues for the one-machine infinite bus bar
equivalent of Ludington when conventional control
is used during pumping mode.
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Table 4.7:

Cptimal gains of the controller when pumping,

AVR Control Modal Control 1 Modal Control 2 Modal Control 3
only P.I, = 2176 P.I. = 68 P.I. = 93
-5.4 X 7.3 -6.0 £ j8,0 .- ~6.0 % 38,0 -6.0 £ j8.0
+0.27 ¥ j u.7 -2.0 ¥ j5.0 -0.8 % j5.0 -0.95 * 5 5.0
-2.15 X j 2.2 4.0 T j3.0 -3.0 % j.30 ~3.0 = j3.0
Table 4.6: Critical eigenvalues during pﬁmping.
Gain P._Ic = 2176 P.I' = 68 PcIt = 93
F ~0.087 -0,025 ~0.029
T, -1.854 -0.900 -0.945
Fy -0.117 -0.037 ~0.041
F, -1.861 ~0.896 -0.941
Fy ~2.7365 -1,152 -1.208
Fe ~46,460 -7.920 ~9.371
R, 0.933 0.372 0.%30
Fy 0,009 0,016 0.0139
' F, -0,024 -0.012 -0.013
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and change  the optimal design of the feedback controllers:

(i) Line and transformer reactances coupled with the
machine reactance in the classical way following Baker and

47

Krause which includes the stator transients.

(ii) } Steady-state algebraic node equations of the form

I = YV following Alden and Zein El-Din29.

(iii) Steady-state algebraic representation by Newton-
Raphson power equations, explained and used in Chapters 2 and

3 of this thesis,

Table 4.8 sﬂows'the eigenvalues of the power system for
these three network representations, Table 4.9 shows the values of
the gaiﬁs-required to'move the six critical eigenvalues to
position'j, Table 4.6; coiumn k, 1In Appendix C.,1 the equations
and tﬁe methods by wbich.the state space representation was built up
for the three different network representations are shown in detail. -
‘Figures 4.11 and 4,12 show the field current response following an
impulsive chénge of Aifd ;\Q.Ol pP.u. whpn transient network terms

are included and excluded respectively.

Thé mode éf osciliation which was troublesome at Ludington
(the mechanicai one) is'clearlyvrevealed.whether or not the network
transient tefms are included in the calculatién. When the network
transient férms are omitted, the natural frequency of the modeé
associated with the stator windings'is very high and ié'highly
damped, bﬁt the unstable osciilating mode damping appears more

damped. If netvork transient network terms are included, the natural

!



Classical network

Classical network

Algebraic mnode

Algebraic

Location of representation representation equation Newt on-Ranh

Oscillation including transient | excluding transient of the form ewton p+§0n
network terms network terms I =YV power equations

izﬁggﬁgs ~1.04 * 5 377 ;‘-;1.76vi j 1304 -11.78 £ j1304 -11.78 £ j 1304

d-axis ' .

damping -17.83 -17.81 -17.83 ~17.83

winding .

q-axis

damping -15.90 -16.00 -16.00 ~16.00

winding :

Excitation : '

system -5.452 ¥ j7.32 -5.43 £ j 7.30 5.0 X 5 7.36 -5.40 ¥ j7.36

stabilizer : »

AVR and _ ' . L

field -2,15.% j 2.2 -2.14 ¥ jo,0 -2.14 ¥ jo,2 —2.14 ¥ 5 2,2

winding

Mechanical I ka7 +0.258 ¥ j2.75 +0.262 X j2,75 +0.262 X j 4,75

40,273 £

Table 4.8:

Eigenvalues of the power system during pumping

representations,

mode with different network

‘il
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Classical network | Classical network | Algebraic Algebraic
Gai representation representation mode Newton-Raphson
a1081 yith transient without transient | equations power
network terms network terms I1=YV equations
F1 -0.029 -0.033 -1.29 -1.29
F, -0.945 -0.942 0.0048 0.0048
Py ' ~0.041 ~0.0% 0.0094 0.0093
F4 -0.941 -0.93 0.008% 0.0089
F, -1.200 ] -1.20 -0.098 -0.098
F6 ~-9.370 -9.05 -0.013 -0.013
F7 0.43 -0.42 0,013 0.013
Fg 0.013 0,014 -1.28 -1.28
F9 0,013 -0,013 0.43 0.43

Table 4.9:

Optimal gains of the controller during pumping

mode, for different network representations.
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frequency of the modes associated with the stator windings becomes
that of the supply and the damping of these modes and the unstable
one is decreased. Thus the use of morevappfoximate models can

give rise also to error in the design of the feedback controller.

44,2 Generating mode operation

In the second part of the analysis, the generator mode of
operation wés studied for the same power station with the a.v.r. and
governor acting,'giving a system of order 153. In addition two levels
of load were added at the machine bus-bar. Load was taken in
non-iiﬁear péssive form éé described by equations (2.49) and (2.50)'
for“ﬁhich several valges of Kp and Kq were considered. Secondly,

the combined load proposed by Shackshaft et a139

, also described in
Chapter 2 by equations (2,55) and (2.56), was used. System-equations
are similar to those given in Aﬁpendix C.1, when steady-state
Newton-Rapbson power equations for the network representation were
-used with the addition of speed governbr equations, Multi-input
modal control tecbnique given in Section 4.3 was used to obtain the
feedback loops to the reference levels of the voltage regulator and
the speed governor from all the system states., As for the‘pumping
modé, it was assumed that all the state‘vafiables were available to

be fed-back either being mcasurable or available from an observer,

The state variables for the synchronous machine when generating>were:

y(6) = LAY BY g A yar BYgr BY rgs vy ABggr AV
Asr, An, Ag,Agt, Av]" - (.32)
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Operating conditions are given in Table k.10 when machines
were considered to be at full load. Tables 4.11 and 4.12 give the
natural positions of the critical eigenvalues and their new positions
obtained by modal control designed feedback loops, for both
conditions of load. Tables 4.13 and 4.14 give the gains for the
state variables of eguation (4.32) required to bring about this
re-location, and it will be seen that the magnitudes vary noticeably
with the magnitude and type of load. The combined load appears to
contribute aPpreciable damping during heavy load conditions (compared
to local generation) and therefore the optimal feedback gains required
are lower than with the other load characteristics considered. The
contrary occurs when light'loéal'load was considered. Also, it wiil
be noted that the optimal control gains are more sensitive to

changes in Kp than to changes in Kﬁ.

4.5 CONCLUSION

Modal control methods may_ﬁe used to détermine feedbaék
gains necessary {0 reposition critical eigenvalues‘and improve the
staﬁility of.power systems, The optimal feedback gains required for
particular positions of the eigenQalﬁes aepend upon the magnitude and
characteristics of the load. Also, the network representation seems
to be important in the controlier design, apﬁroximate models can give
rise to.error in the design of these controllers. In View.of the
variation of load characteristics with the time of day, it seems
unlikely that any single controller can be continuously optimal. A
process in which feedback gains aré ddapted as conditions change might

be useful, i
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Syabol Description pets values | poms values
or rotor angle respect to infinite bus| 44 tdeg;) 10 (deg.)
P.F. powver factor under-excited 0.95 0.95
V2. terminal voltage 1.03 1.0
V, | infinite bus-bar voltage 1.0 1.0
P active power | 1.0 1.0
PL load active power 0.19 1.5
QL load reactive perr 0.06 0.4
i d-axis curreﬂt -0.62 -0.78.
iq gq—axis current 0.79 0.84
Y3 ~d-axis voltage -0.37 ~0,40
\ q-axis voltage 0.96 0.81
Qﬁ _ d-axis'flﬁx' 0,96 0.81
) .q—axis‘flgx 0.38 0.40

Table 4,10:

Operating point for generating mode.




Combined
K =2 1 0 2 0 1 0 3 0 Toag
25% Relocation
K =2 1 0 0 2 0 1 0 3 " Induction
" 4 Motor
-5.30%37.3(~5.30557.3 {-5.302§7.3|-5.3%37.3 |-5. 40%§7. 3| -5.30%37. 5| -5. 301 7. 3| -5, 30257, 29 -5. 402 j7. 36| ~4.12 §6.22|~7.57§9. 4
$0.17%5%.8(+0.15% 4.8 +0.12%j4.9(+0.2%54.8(+0.11%54.9{+0.16F j4. 8] +0.12%ju. 9| +0, 228 j4, 78 +0.10%j4. 91| +0.45% 3.8 |-1. 02 j5.0
—2.10%j2.2|-2,00%j2.2|-2.00%j2.2|-2.1%j2.2|-2.00% j2. 2| -2.10%j2.2|-2.00% j2.2|-2.20% j 2, 24 | -1. 90 j2. 23| -3.8% 51,92 |-4. 52 3.0
~10k -1.4 -1.4 -l.4 -1.4 -l.4 -1.4 -l.4 -1.4 -1.5 -2.5
- 42 -.42 -~ 42 . —.42 -~ k2 -4 —. 42 ~ 42 ~50 | -1.5

Table 4,11:

Critical eigenvalues with conventional control when
generating and as relocated.

Light local load.conditions,

*0CT



Combined

P Load

, 25% Relocation
K =2 1 0 0 2 0 1 0 3 Induction

a Motor
=5.6%37.51-5.4%36.9|-4.9%36.2|-5.3%6.8] -5.4%36.9 |-5.2% 6.6 |-5.2%§6.7 |-5.5%§7.0|-5. 6% 37.2|-5. 3 j6.8|-7.52j9.4
-.29%54,9 0=, 058 4.9]-.19%j4,9-.33% 4, 9| -, 187 j4. 9 |-, 272 j4. 9|~ 192 ju. 9 |-, 36 5.0] -. 18% ju. 9 |-, 1835, 3] -1. 0 35.0
~1.6tjo01 (-1 7 0. 0038 52,7 -1 7E 52,4 -1, 78 2.5 (-1, 9% j2. 3 {-1. 9% 32,5 {-1.5% j2. 3 | -1 . 5Ej2. 2 {-1. 78 2. 4 {~4. 55 §3.0

-1.4 ~1l.k% -1.4 -1,4 -1k ~1.4 -1.4 -1.4 -1.k% ~1.4 -2.5

—. 42 ~.42 ~.42 - k2 - 42 - 42 - b2 ~.42 - 42 - 42 -1.5

" Pable 4.12:

and as relocated.

Critical eigenvalues with conventional control when generating
Heavy load condition.

Induction motor load parameters are equal to those of the largest
motor given in Table 2.7 , Chapter 2.

‘161
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Bains hl‘ ! ° B ¢ 1 ¢ 3 v Combined

ins ,q - 9 1 0N 0 2 0 1 0 5 Load

F. - =3.47 =30k =340 3.0 ~3,h% =343 =5.01 -3.48 ~3.4h8 N
1

F, -0.01 -0.01 -0,01 -0,01 -1,01 ~{1,01 -0,01 ~0,01 -0,01 -0.02
n

Fy -0.03 -0.03 ~0,02 -0,03 -0.02 -0.03 -0.02 -0,0% -0,02 -0,19
3 .

F, ~0,02 0,02 ~0,02 ~0,02 ~0,02 -0,02 -0,02 -0.02 -0,02 -0,02
4

Fy 0.21 ~0,02 0.23 0.21 0.23 0.22 0.2 0,20 0.23 0.17
5 :

F, -0,03 -0,03 -0.03 ~0,03 -0,03 -0,0% -0.03 ~0.03 -0,03 ~0.03
6

Fy 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 , 0,00 0.13
ke
[] .

F, -h,11 ~1,05 -3.99 ~4,10 ~h.01 -4.04 ~4,00 -4.15 -h,02 -6,60
8

F, 0.78 | -0.25 | -0.92 | -0.77 | -0.95 | -o.8n | -0.93 | 0.7 | -0.93 0.41
9

R, 34,17 33,44 32,52 34,19 32,49 33.45 32. 51 34,79 3h.47 112.39
10 »

¥y 1.57 1,63 1.70 1.55 1.72 1.62 1.71 1,48 1.73 ~0.37
11

Fy 0.31 0.32 0.33 0,32 0.33 0.32 0.33 0.30 0.33 0.29
12 . -

F, 2.35 2,41 2,50 2,33 2,51 2,41, 2,50 2,26 2,52 1.36
13

Fe 0.01 0,01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05
1

Fg -0.00 -0,00 ~0.00 ~0.00 -0.00 -0.00 ~0.00 -0,00 -0.00 -0.00
o .

Fg ~0.006 ~-0,006 -0.005 -0.006 -0.005 -0.006 ~0,005 -0,007 ~0.005 -0.009
3 .

Fq -0.00 | =~0.00 -0.00 ~0.00 ~0,00 -0.00 ~0,00 <0.00 -0,00 -0.00
I
4 .

Fo 0.011 0,011 0.011 0,011 -0.011 0.011 0.011 0.011 0,011 | . 0.007
5 .

Fe ~0.00 -0,00 -0.00 -0.00 ~0,00 ~0.00 -0.00 ~0.00 ~0.00 ~0.00
6

Fe 20,004°| -6,004 | -0.004 ~0.004 -0.004 -0.00% ~0,004 | ~0.005 -0.003 | -0.008
7

Fe 0.14 0.73 0.12 0.14 0.12 0.13 0.12- 0.15 0.12 0.27
8

F, 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 - 0.57 0.56
'9

Fg 3.56 3,54 3.51 3.56 3.51 3.54 3.51 3.59 3.51 5.07
10

Fo 23,32 23,33 23,34 23.32 23,34 23,33 23,34 23.31 23.34 21.96
1

¥, ~2,17 -2,17 92,17 ~-2,17 -2.17 -2.17 2,17 2,17 -2.17 ~2.08
12 .

F. 0.82 0.82 0.82 0.82 0.82 0.82 0,82 0,82 0.82 0.59
13

Table 4.13: " Optimal gains from state variables (1-13 defined
equation (4.32)) to the voltage regulator F, and governor FG
Light local load condition.

reference settings.

in
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a 1 0 4 0 1 0 0 L

Goins p Combined
nfe K, =2 1 0 0 2 0 1 3 lLoad

F, =3.35 =347 -3.32 s WAL -3.51 ~3.38 =343 ~3.45 ~3.58 -2.98
1 .

Fy -0.01 -0,01 0,02 -0,01 ~0.02 ~0,01 -0.02 0,01 ~0,02 -0,00
o

Fy ~0.0h =0.0h ~0.0h -0.03 ~0.04% -0,03 -0.04% ~0.03 -0.05 0,04
3

Fy 0.02 0,02 0.02 0.02 0,09 2,02 0,02 0.02 0.02 0,02
\

F, " 0.14 0.18 0.35 0.13 0,35 0,18 0.35 0,11 0.35 0,09
5 ] -

F, ~0,03 -0.03 -0.03 -0,03 -0.0% ~0.03 -0.03 -0.03 -0,03 -0,03
p :

F, 0,06 0.06 0.05 0.06 0.06 0,05 0.05 0,06 0.06 0.04

. 7

l"v ~h,22 -h,07 -3.85 =h,0h ~h,11 -~3.96 -h,00 =k, 10 -h,20 =3.34
; _ /

Fy -0,36 -0.51 -1.14 -0,32 1.1 | =048 ~1.1h -0.95 -1.13 -0.59
9 .

Ky 27.58 37.02 70,07 26,43 71.24 34,98 70.81 19,38 71.50 3.55
10

F, 0.14 0.32 1.06 0.13 1.01 0.31 1.03 0.04 0.99 0.41
11 .

Ry 0,11 0.1% 0.30 0.09 0.31 0.13 0.31 0.07 0.32 0.09
'12

?v 0.65 0.91 2,09 0.54 2.10 0.84 2,10 0.1 2.11 0,69
13

Fo 0.03 0,02 0.01 0,03 0,01 0.02 0.01 0.03 0.01 - 0.01
1 | )

Fg -0,00 -0,00 | -0.00 ~0.00 -0.00 -0.00 ~0.00 -0.00 -0,00 -0,00
2 N

F, -0,01 -0,c0 | -0.00 ~0,01 ~0,00 -0,00 -0.00 -0.01 -0,00 -+0.00
3. . :

F, - 0,00 -9,00 | -0.00 | -0.00 -0.00 ~0.00 ~0.00 ~0,00 -0,00 -0,00
I ' ’

Fg 0.01 0.01 0.01 0.01 0,01 0,01 0,01 0,01 0.01 0,01

]

Fg -0.00 -0.00 { -0.00 -0,00 ~0,00 ~0,00 -0,00 ~0,00 ~0.,00 -0,00
6 )

FG -0.01 ~0,00.1 -0,00 -0,01 ~0,00 -0,00 -0,00 -0,01 -0,00 -0,00
7 .

Fo 0,23 0.16 0.08 0,24 0.08 0.17 " 0.08 0.31 9,08 0,18
5 .

FG 0.57 0,57 0.57 0.57 , 0.57 0.57 0.57 0.57 0.57 0.5¢
9

F, 3.60 3.60 3,70 3,60 3.70 3.60 3,70 3,50 3.70 3,20
10

Fq 23,13 23,10 | 23.0% 23,13 23,04 23,10 25,00 23,18 23,05 23,43
11

F, ~2,16 -2.15 | -2.15 -2,16 -2,195 -2,15 -2,15 -2.16 -0.15 12,18
; .
12

Fe 0.80 0,80 0.80 0,81 0,50 0.80 0,80 0,81 0,80 0.95
1]3 .

l

Table 4.1k

Optimal gains from state variables (1-13 defined in
equation (%,32)) to the voltage regulator F,, and

governor F_, reference settings,
condition.

Heavy local load

133,
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CHAPTER 5

MODAL CONTROL OF MULTI-MACHINE POWER SYSTEMS
INCLUDING THE EFFECT OF LOAD CHARACTERISTICS

5.1 INTRODUCTION

A number of modern control techniques have been developed
*in order to control the generators in a multi-machine system, using

multistate feedback signals to the avr and speed governor setting

59,61,62

reference points . However, all of them have considered the

loads as constant impedances, which are included in the matrix

159

network equation (Davison et a and Pai et a161).

In this chapter the effect of load characteristics on the
design of feedback modal controllers of a multi-machine system has

been investigated. Non-linear passive load with characteristics of

-the type proposed by the IEEE Working Group38

39

and also a combined
load proposed by the CEGB Group”~ which have been discussed in
previous chapters,.were applied in the system. The results
indicate that a global modal controller that requires feedback from
all the state variables in the multi-machine system will act in a

manner- far from optimal if the nature of the load is not taken into

account,

Since it is not ﬁracticable to feedback all the state
variables in a multi-machine systeﬁ, a local modal controller waé
designed, where feedback to ecach machine comes from its individual
state variables., This is'of importance because of the costs andz"

other problems involved in telemetering of feedback signals between



various machines in the system which could be sPread over a wide
geographical area. The method of designing this controller was
similar to that proposed by Pai et al?lin which local comntrol is
derived from the giobal controller, disconnecting the feedback paths
from the state variables that do not belong to a particular machine.

This technique was applied to a three-machine system.

5.2 METHOD OF ANALYSIS

The modal control theory of Chapter 4 applied there to a
single~machine infinite bus bar system is applied here to the design

of global and local confrollers for a multi-machine power system,

5.2.1 Global Modal Control

The multi-machine system, including terminal relations, is
expressed in the state space form'by using the method described in

Section 3.3.2:
7(t) = [aly(t) +[8]u(t) (5.1)

The eigenvalues of the{Almatrix are determined and also the impulse

response of the open loop system is obtained.

The addition of feedback loops, as explained earlier in

Section 4,2.%4, gives:

(1 + 1) y(t) O Ga)

¥ (t)

G y(t) o (5.3)

or | 7(t)



136,

the eigenvalues of which can be controlled by the choice of F, using
the dominant input and sector criterion defined in Sections 4.3.1

and 4,3.2, respectively, for the relocation of the eigenvalues.

In a global design for a large multi-variable system using
the criterion of Section 4.3.1 some inputs might not be used. This
would make the global control scheme unsuitable for adaptation to

.local control, for some of the inputs would be absent.

Here, each input has assigned-to it for control at least one
eigenvalue (or complex pair). The eigenyalues given for control to a
particular input are found by examining the magnitudes of the
elements in the column of the controllability matrix, P, corrgsPonding
with the input, and selecting the largest absolute value. The row
number corresponds with the eigenvalue. In choosing to exert
control through the largest input-eigenvalue links, the gains Kj

required in the proportional feedback loops are minimised.

I

TTe -2
K = =1 (5.4)
p; TTia -
A

In order to compare the gains of the feedback matrices
obtained for various load characteristies in the system, a
performance index (P.I.) defined in Chapter and repeated here, is

defined as follows:

n R
2 .
P.I. = g g FY S (5.5)
i1 j=1
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5¢2.2 Local Modal Control

Since it is not practicable to feedback all the state
variables in a multi-machine system, a local modal controller was
designed. This was achieved by first obtaining the global controller
feedback matrix using complete state feedback from all machines and
then making the elements pf this feedback matrix corresponding to

state variables from other machines equal to zero as was proposed

"by Pai et a161. However, it was found that using this method the

dynamié stabili'ty of the system deteriorated. Much better results
were obtained when one signal (defined as the dominant signal) from
each of the other machines was fed to each of those that otherwise
lacked stability. This method avoided the use of feedback between
machines that were closely tied electrically, -or the need to obtain
a subeptimal controller as Pai et a161 required. The signal chosen
for feedbaék was that with the highest feedback gain in the global
controller, The structure of the global and local control feedback

matrices 1s indicated in Figure 5.1,

5.3 " THE COMPUTER PROGRAM

The method of multi-input modal control applied to a single-~
machine infinite bus-bar systeﬁ‘described in previous sections was
implemented in a digital computer program, This program is able
to handle up to four interconnected synchronous machiues represented
by 11th order equations, including the a.v.r, and speed governor
control systems. The global and local control of a power system-.
consisting of three interconnected synchronous machines was designed

with this computer program,
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[~ 1 T, |
u, (1) Pl Flo Fys |3y (8)
u2(t) = F21 F22 F23 y2(t)

_uj(t)_ _Fjl F32 ij _y3(t)_

(a) Global control.

— -1 ~ r =
u, (t) F1q 0 0 ||y, (%)
u2(t) 0 Foo 0 yz(t)

L113(1;)J i 0 0 F33~ Lyj(t)_

(v) Local control,

r— - = o O ol -
u, (t) Fiq 0 0 yl(t)
u2(t) 0 L 0 y2(t)
(¢) " Local control with compensation (%)

one dominant signal from machine 2
to machine 3.

Figure 5.1 Structure of feedback law for a three-machine
system. :
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A general flow chart of the program is given in Figure 5.2.

The state space formulation, the open loop eigenvalues and eigen-
vectors of the [A] and[:A:Ii matrices are not included in the main
program, but they are read from a magnetic tape, already provided

by a separate dynamic stability program, described in Chapter 3,
Section 3.4, After the design of the feedback controller is
completed, the program can also use another magnetic tape to s?ue
the closed loop G matrix. Thus, equation (5.3) éan be integrated

numerically to give the response to a small disturbance.

5.k THE SYSTEM, STUDIES AND RESULTS

The modal control method explained in previous sections is
applied to a sample power system consisting of three interconnected
synchronous machines shown in Figure 5.3. All three machines are
assumed to have the same capacity, viz. 1.0 per unit with similar
parameters to those given in Chapfer 3, Table 3.1. Machine no, 3
is a hydraulic machine, while machines nos, 1 and 2 are thermal
machines. The values of power, voltage and angle obtained by
éténdard 16ad flow analysis are indicated in Figure 5.3. The
excitation and turbine-governor control systems were those used in
Cﬁapter 3. The constants of tﬁe system chosen and the formulation
of the [}:]and [ﬁ] matrices were also the same as those given and

explained in Sections 3.3.1 and 3.3.2. -

The machines were represented by 7th order two-axis
equations, The excitation systems were similar to those used in

Chapter 3 with a single time constant (1St order) and the speed



/ READ:

1. Order of [Almatrix: N

2, Number of critical eigenvalues to
control inputs, first critical
eigenvalue,

3. Input matrix([B}

4, Relocated eigenvalﬁes>-eﬁ.

Read from magnetic tape:

[A:] matrix, ei%envalues and eigen=-
vectors of [A

|
NR = 0
¥

The eigenvalues in complex form are
ordered from the largest absolute real
value to the smallest and print them.

Yes

NR >0

No

Calculate the mode controllability
' matrix P = Vi [}i]

The dominant input and eigenvalues
to control are obtained

N

Assess the proportional feedback gains

associated with each group: Kgl)

Calculate the gain vectors:

= KV,
6= ) Y,

|
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L)

4

Form each characteristic matrix
T T
as: [;‘-.]p = [j\]-:— ‘.)1g1 Fueok bpg

B

A
Local
s Yes control
ion?
Make zero the gs1en
required number No
of g, vectors
v ‘ Fill the rows of F matrix

with each gp vector

A\

Assess the eigenvalues and
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eigenvector of [A matrices

Yes Number

N

N

- of inputs
>07?

Yes

Figure 5.2:

Lad= [al

+[B]P |

Local

Yes

" control
design?

vrNo

Print F matrix <

Assess the performance index
and print it

4

Print the [}{]xnatrix on a

magnetic tape

STOP

A general flow chart of the program for the

design of a multi-input modal controller.



Figure 5.3:

0.05 %+ Jo0.2

Multi-machine systeh.

1.01\-1.08°

—sactive power flow

—t»>reactive power f{low

1.02\-0.09°
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governors were represented by a f)'rd order model similar to those in
Chapter 3, giving a total of eleven state variables per machine.

It was assumed that all the state variableé were available to be
fed-back, etc, as before., The state variables for the system are

in general:
Y(t) = E Aq)fdl A(pdl A(Pkdl ALP q1 A(qul AEf'd1 A.érlAnl
Amhl Awhg Awig Aq)fdn ALPdn ALPkdn Aq)qn
Aq’kq AEfd ASrn Ann Agfn Agn Ahn] T (5.6)

The control vector u(t) for each type of machine is:

Thermoelectric:

1

u(t) EAvref AY(;] T (5.7)

Hydroelectrics

u(t) = I:Avx'ef Augovj? : ' (5.8) -

For the multi-machine system consisting of three machines,

the state and control vectors are:

y, () u, (t)
y(t) =1 y,(8) | and  u(t) =] u,(t)
y5(t) . u5(t)

wvhere the subscripts 1, 2 and 3 refer to machines 1, 2 and 3,
respectively, Machine no, 3 is picked as the reference machine and

the rotor angles of the other machines are expressed relative to
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that of the third machine. [ence Z§6r3 is eliminated from the state
vector and the corresponding changes in the [gijlnatrix are wade as
given in Section 3,3.3. The order of the [A | matrix in this
particulqr case is 32, All the considerations described in Section
3.5 with respect to the synchronous machines were also taken into

account in this analysis,

In the network, the values of the line impedances are such

that machine no, 3 can be considered to be remote from machines nos,

1 and 2, which are local machines to each other. Non-linear passive
load with only voltage dependence was first considered, and>second1y

combined loads ﬁere used, Both are described in Section 2.2.4,

Global and local feedback controllers for the system shown
in Figure 5,3 were obtained with different load characteristics.
The conditions under which a local controller can function well are

discussed,

The eigenvalues of the uncontrolled system with constant
impedance 1oads (Kﬁ = Kﬁ = 2) are shown in Table 5.1. The response
to an impulse of Aq)fd = 0.1 p.u. in machine no. 1 is showﬁ in
Figure 5.4, This indicates inadequate damping and the critiéal
engenvalues which also include the complex conjugate pairs
corresponding to mechanical oscillations Qere moved with a global
controller io the positions shown in columns 2 and 3 of Table 5.1.

Figure 5.5 gives the transient response for the improved system.

The performance index {equation 4.30) is shown for both cases.

Table 5.2 shows the gains of the global controllier 1 for
constant impedance load. Table 5.3 shows the gains for a controller

to produce similar eigenvalues when all the lecads are combined loads



AVR and speed Global modal Global modal
governor only control 1 control 2
-4,17 ~5.0 All are equal
~1.93 ~7.0 as modal control 1
—1.61 + j6.9 -2,3 + j7.0 except the last
-1.61 - j6.9 -2.3 - j?;O | péir of conjugates
=1.41 + j0.97 -4,0 + j3.0A of critical

-1.41 - j0.97 ~4.0 ~‘33.0 eigenvalues, in
-1.23 ; j5.8% | -2.1 4+ j6.0 which the damping
~1.23 - j5.84 2,1 - j6.0 was increased as
-1.,00 -3.0 it is indicated.
-0.99 -2.7

-0.99 + j2.88 -2.6 + j5.0

~0.99 - j2.88 -2.6 - j5.0

~0.75 -2.0

~0,182659 - -1.8

~0,182659 -1.5

'-0.16 + j.05 -1.0 + j2.0 ~9.0 + j2.0

-0.16 - .05 -1.0 - j2.0 -9.0 - j2.0
oxformance p 1| = 7098 = 71247

Table 5,1:

Natural position of critical eigenvalues

and as relocated.
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Input Elements of the feedback gain matrix, F
-0,03% -0.,000 -0,001 0,000 0.004 -0,126 -0.003 0.626 -0.012 0,001 -0.019
Ayref 0.034 0.000 0,001 -0,000 -0,004% 0,128 (0.003 -0.613 0.012 -0.001 0.018
1 -0.000 -0,000 -0,000 0.000 0,000 -0.000 -0,005 -0,000 0,000 -0,000
u(t):- ————————————————————————————————————————————
1 -0.000 -0.000 -0,000 0.000 0,000 0.000 -0.000 0.000 =3.,078 -=0.331 -17.820
‘AYG -0.000 -0,000 -0,000 0,000 0,000 -0.000 0,000 0.000 4,980 0,330 17.820
1 0,000 -0.000 -0,006 0,000 0.000 -0,000 0,000 0.000 -0.000 0,000
_________ e e e e e e ——————— -
0.466 -0,000 0,040 -0.000 -0.110 0,027 0.092 -18,110 -0,025 -0,004 2.048
Ayief -3.400 -0.00% -0,267 1 0.006 0.079 ~0.111 -0.051 13,320 0,293 -0.011 -2,270
(‘ 2 -2,260 -0,002 -0,162 0,006 0,023 -0.,038 0.951 -0.,018 0.281 0.050
u(t) = 0 0 bemm el e e _————
2 -0.000 -0.,000 -0,000 0.000 0,000 -0,000 -0,000 0.003 -0.000 -0.000 -0,003
AYO 0.000 -0.000 - 0,000 -0,000 -0,000 -0,000 -0.000 0.002 -3.610 =-0.455 -24,500
2 -0.000 -0,000 -0,000 0.000 -0.00C .-~0.000 0,003 -0.000 0,000 0,000
-%,590 -0,007 -0,270 0,017 0.422 -0,196 -0.054% 734,850 -0.160 -0.057 <6.910
Ayref 5,160 0,005 0,470 -0.001 -0.050 - 0.042 0,061 -44,590 -0.002 0,040 7.180
( 5 -1.560 -0,003 0,007 0.0617 0.165 -0.129 -0.580 0.081 -0.885 -0.036
wft)= = - e e e e e e e - e
5t i -0,281 0.000 -0.005 0,002 -0.112 -0.009 0.074 0.600 0.026 0,000 -0.167
Augov -0.400 -0,005 -0,152 =-0.010 0.117 0.013 -0.111 40.120 0.683 0.067 -0.024
1 -0.638 0,005 -0.012 0.004% =0.196 -0.023 -17.760 -0.056 0.615 0.025
Table 5.2: Feedback matrix for global control, case 1, when loads are considered as non-linear

passive leoad, K =K = 2,
p q

QN1



Input Elements of the feedback gain matrix, F

-0.034 -0.000 -0,001 0.000 0,00% -0.126 -0.003 0.657 -0.013 0.001 -0.020
AN}ef 0,034 0,000 0,001 -0,000 -0.004 0.127 0.003 -0.578 0.011 -~0.001 0.017

1 -0,000 0.000 -=0.000 -0.000 -0.000 -0.000 -0,045 -0,000 0.003 -0,001
u, (t) = e L
1 0.000 -0,000 0,000 0.000 0.000 0.000 -0.000 0.000 -=-3,010 -0.331 -17.820
AYO -0.000 -0,000 -0.000 0.000 0.000 -0.000) 0.000 0.000 5,010 0,329 17.720

1 -0,000 -0,000 -0.,000 0,000 0,000 -0.000 0,000 0,000 -0.000 0,000
e e — o —— L e o e e e e L e e e e e e e e e e = - ——— —— - = ——— —
0.580 0,000 0.044 -0.001 -0.026 0.022 0.008 =-4.,240 0.008 0.003 0.688
Avref -0.625 -0,000 -0.048 0,001 0.028 -0.031 -0,009  4.690 0,064 -0.003 -0.725

2 0.0%4 0.000 0.052 -0.000 -0.000 0,006 -0,118 -0.003 0,032 -0,002
u,(t) = - =
2 -0.,000 -0,000 -0,000 0,000 0,000 -0D.000 -0.000 0.001 -0.000 0,000 -0,000
AYO 0.000 -0,000 0,000 ©0.000 0,000 -0.000 =-0.000 0.001 =3,617 =0,456 -24,500

2 -0.000 -0.000 -0.000 0,000 0.000 -0.000 0.003 -0.000 0,000 0,000
i -0.243 -0.001 -0.001 0,002 -0.016 -0.005 0.112 =7.690 -0,055 -0.008 0.862
Ayfef -1,920 -0.003 -0.130 0.004 0.065 =0.078 0,010 5.570 0,126 -0.031 -2,210

_ 3 -2,190 -0.001 -0.,121 0.010 ©.039 -0.085 -1,070 =0.020 0.546 0.125
u,(t) = o T e T e e e e e e e e e e e e
2 3.390  0.000 0.%61 0.007 0.022 0.120 -0.01% 11.820 -0.487 0.180 8.359
Augov -5.840 -0.019 -0.414% 0,015 0.492 -0.522 0.662 92.530 0.274 0.048 -4,670

1 0.543% -~0,000 0,120 0,011 ¢.179 -0.008 38.080 -0.108 2.840 0.850

Table 5.3: Fezdback matrix for global control, Case 1, when load is considered as combined load.

*6hI
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described in Chapter 3 by equations (3.12) and (3.13). Table 5.4
shows a summary of the performance inrdices for several non-linear
passive loads and combined loads. The index varies 1:1.6,

depending on the character of the loads,

The local controlier obtained by disconnecting feedback
signals from other machines is shown in Figure 5.1b. The eigenvalues
of the system when controlled in this way are shown in Table 5.5,

column 1, Some of them are underdamped.

Reference61 showed that if tge global controllervis chosen
in such a way that all the closed loop eigenvalues are preassigned to
a region further to the left of the line EF, Figure 5.6, in the
complex plané, tbe local control derived from it gives satisfactory
performance, but as a result of this a suboptimal control can be
possible, Another method suggested by those authors61'was to design
a global controiler for those‘machines which can be considered to be
closely tied‘electrically, i.e. global control for machines nos, 1
and 2.together (feedback paths from machine no. 3 disconnected, and
a local control for machine no., 3 separately (without any feedback ‘
from machines nos. 1 and 2). However, in the present analysis it
wﬁs discovered that the coupling between machines was not only
dependent on the system nétwork structure but also on the way that
the dominant inputs seléct the group of eigenvalues, as was

mentioned earlier in Section 5.2.1,

Improvement was obtained in two ways:



1

Load Characteristics

) Performance

Bus No, 2 Bus No. 3 Index
K K K "X

p q q q

2 2 2 2 7099

1 2 1 2 7103

2 1 2 1 7070
1.5 1.5 0.5 0.5 7034

2 1.8 0.8 1.3 7024
Combined Load Combined Load 11730

12% Induction Motor | 8% Induction Motor

Table 5,4:

Performance index for different load
characteristics, Global modal control 1.

1,
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Method 1:

Only those critical eigenvalues which deteriorated when
the local control was derived from the global control structure
by disconnecting the feedback paths from other machines, were moved

far away from the line EF of Figure 5.0.

Method 2:

Once the structure of the global modal controller was
known and how the groups of eigenvalues were relocated by the
dominant inputs, the local controller was obtained by.disconnecting
the feedback paths from the other machines., If the system dynamic
stability de{eriorated, then it was possible to introduce a
compensation of that undesirable 6scillation by introducing some
signals from other machines to those which require extra compensation.
These extra signals have been selected as those which were
associated with the largest feedback gains of the global control

matrix, These signals were defined as dominant signals,

When the first method was applied, starting from the second
global modal centrol design (relocation given in Table 5,1, column 3)
the system.was stable, as is shown by the eigenvalues given in
Table 5.5, column 2 where only the last pair o% conjugate
eigenvalues were moved further away from the line EF of Figure 5.0

and not all of them as was proposed in Reference 61.

Finally, Method 2 was applied to the same power system, but

it was found that only one dominant signal (speed n) was required to



Local Control

Local Control

Local Control

=34 + j5.36
=3.4 - 35,36
~3.0 + j5.31
-3.0 - j5.31

-—1.86 + 35007

3,55 -

~3.27 + 35.4

_30 55 + ,]3.1

!
Coe
A

.
Rl

~2.04 + j7.4b

. Method 1 Method 2
eigenvalues . .

eigenvalues eigenvalues

-5.5 + jl.19 -{{.6 + j5.3 ~-6.2 + jO.k

-5.5 - jl.19 -ll.6- 353 ~6.2 - jO.h

-3.3 - i5.h
~F.1 + j2.4
-3.1 = j2.4

-1.82 + j6.25

~1.86 - j5.07 2.0k ~ j7.kk -1.82 - j6.25
-2,99 -2.99 -2.99

~2.69 2,69 2.7

-1.79 + 36.77 -1.8 + j6.51 -2.9 + §6.73
-1.79 - §6.77 -1.8 - j6.51 ~2.9 - j6.73
~1.09 -1.79 -0.94

-1.8 -1.8 -1.8

-1.5 -1.5 -1.5

-6.37 -6.36 -0.9 + j2.9%
+0.578 . ~0.70 ~0.9 - j2.94
oxformanceyp, 1. = 31792 - 5054

Table 5.5

controller design,

Closed loop eigenvalues of the local

153.
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Load Characteristics
FPerformance

Bus no, 2 Bus. no, 3 Index
K K K K

D q 9 q

2 2 2 . 2 5055

1 2 1 2 5120

2 1 2 1 5012
1.5 1.5 0.5 0.5 5014

2 1.8 0.8 1.3 4996

combined load combined load 10993

12% induction motor | 8% induction motor

Table 5.6:

Performance index for different load
characteristics, Local control,
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stabilize the system sending it from machine no. 2 to machine no. 3
excitation and speed governor setting reference points. The
dominant signal was found to be the rotor speed of macﬁine no, 2,
which is an observable state variable. This gave the system a good
transient response, as indicated by the eigenvalues in the last

column of Table 5.5.

Figure 5.7 shows the response of the system when a small

disturbance is applied for a local-centroller, designed by Method 2,

In this case, different load characteristics were also
considered, Table 5,6 gives the performance index for different

types of load representation at each bus bar,

5.5 CONCLUSION

Modal control techniques have been applied in order to design
a global modal controller for a multi-machine system. A local
modal controller at each machine without any feedback of state
variables from other machines has been synthesized, In both cases
the effect of load characteristics was investigated. Results
indicate that the optimal feedback gains are véry sensitive to load
characteristics, Thus any global or local modal controller is far
from'optimdl if these effects are not consideréd in the analysis.
Combined load in this particular caée appears to decrease the damping
of the system and therefore the feedback gains required are higher
thﬁn with the non-linear passive load representation. Global control

control design for suitable eigenvalues relocation gives good
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transient responze, witlh low feedback gains, and a local control
can be derived from it using ithe Method 2, whereas a local control
with Method 1 can be suboptimal. However, both can improve the

dynamic response of the system.
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CHAPTER 6

CONCLUSIONS

6.1 MULTI-MACHINE DYNAMIC STABILITY MODEL AND
; YNTHESTS OF FEEDBACK CONTROLLERS, INCLUDING
THE EFFECT OF LOAD CHARACTERISTICS

The development of a mathematical model of the small signal
dynamic performance of a multi-machine electric power system has been
presented. For multi~-input systems the algebraic manipulations
required tb derive a model would normally be difficult and would
in any case be excessively time~consuming, Careful consideration
of the system structure allows an efficient formulation that reduces

significantly the time to compute the[A] and [B] matrices.

The recommended procedure of earlier systematic methods

requires the inversion of ill-conditioned matricesl’5’14’29.

The
present procedure does not need the inversion of any matrix.. An
additional feature of the bresent model is that an open or closed
loop model may be obtained and the system control inputs appear
explicitly in the state space form for either situation. This is
an essentiai requiremeﬁt if modern control techniques are to be
utilised to drive novel types of control systems. The structure of
the model also gives the facility to apply-eigenvalue sensitivities

and state variable reduction techniques in order to identify how

modes of oscillation are associated with each state variable,

It is shown that the application of wodal contrel theory
provides a direct non-iterative technique to design the feedback

control law for a system, Its application to a power system problem
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has shown that the sysiem performance can be improved considerably
without the trial and error involved in selecting the weighting
wmatrices in thc performance index fcr optimal control. Global
control for suitable location of eigenvalues givec good performance
with low feedback gains, whereas the local control derived from it
can be suboptimal, Improvement was obtained when some machines

drew additional signals from others,

In the dynamic stability. studies of multi-machine systems
reported previously5’29’59’61’72 the system loads have been presented
by rather crude models. In this mathematical model the effect of
diffcrent load characteristics has been represented in the analysis

of the dynamic stability and the synthesis of feedback controllers.

6.2 THE EFFECT OF LOAD CHARACTERISTICS
ON_DYNAMIC STABILITY CALCULATIONS

‘It is shown how state space theory can be applied to both
mul ti-machine or‘single—machine systems including the effect of
load characteristics in small-sized stability studies., In both
vcases it is shown that a crude load representation in the system
model can lead to wrong results. In a single-machine system
connected to an infinite bus-bar it is shown that the effect of
the load characteristics upon the stability limit is dependent on
the magnitude of the load and also the operating point., A non-linear
passive load may be either stabilizing or unstabilizing, depending
on the values of Kp and Kq. In the particular case of a big

isolated load considered as an equivalent induction moter, it has
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been shown that the critical condition is ohtained only when the
motor is considered to operate near pull out torque (Tmax)' This is
one of the cases where an approximate load representation becomes
necessary. A combined load representation gives a better load
simulation for small disturbances, but it does not represent the

dynamics of the induction motor,

In a multi-machine system the effect of load characteristics
becomes difficult to evaluate in some circumstances. The IEEE Working
38

Group”” has mentioned some of these problems in discussing transient

stability, Here it was found that the effect of load characteristics
is on the oscillating modes associated with the transient stator

and network terms that ére usually neglected in multi-machine -

system models, When load is represented as non-linear and passive
with Kp4§ﬁ0 (approaching constant power), these modes of oscillation
becomg highly undamped. However, if the reference machine is
considered as an infinite bus-bar these oscillations are not present
in the system even for a constant po@er load. Similarly with a
combined load, in the absence of an infinite bus-bar, when the
induction motor load is dominant a real mode X\ > 0 can afise; this

does not occur when the constant impedance load is dominant.

In Chapter 3 an eigenvalue was found associated with stator
transient terms which varied dramatically with load conditions.
As Kp gnd Ka ~—> 0 the high frequency fell to zero and x > 0. ‘
Both in this study and in one of the studies of Ludirgton (Chapter 4)
system transient terms were ignored. When they were included

(Chapter 4), this eigenvalue assumed supply freqqency.
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It is doubtful whether this eigenvalue represents the
real performance of the system., The absence of network transient

terms clearly distorts its frequency and damping.

The significance of such terms and the reason for their
dependence on load characteristics is not clear. There must be a

suspicion that the eigenvalue is spurious,

6.3 THE EFFECT OF LOAD CHARACTERISTICS ON THE
DESIGN OF FEEDBACK CONTROLLERS OF GENERATORS

The effects of load representation on modal excitation and
speed governor control, both in a single-machine system and a multi-
machine power system, have been investigated. Non-linear passive
load of different active and reactive power-voltage characteristics,
as well as the combined load composed of constant impedance in
parallel with the load of a group of induction motors, has heen

considered,

The effect of load characteristics on the design of the
feedback controllers has been investigated using first a singleA
infinite bus-bar system similar to that at Ludington (U.S.A.) which
had steady-state stability problems. It has been found that the
optimal feedback gains required for particular position of the
eigenvalue depend upon the magnitude and characteristics of the
load. An accurate network representation is importcnt in the

controller design.

A study of the effect of load characteristics in the design

of feedback controllers for a multi-machine system was made, Modal
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control technique was used to design such a controller, Many recent

L‘.
1’9’61’62 have used similar methods of modal

papers on optimal contro
design but none have taken the load characteristies into account.

Here it has been shown that different load characteristies required

different feedback gains to give the best response.

The results indicate that any global or local modal controller

.are far from optimal if load effects are not considered in the analysis\\

6.4 SUGGESTIONS FOR FURTHER WORK

Load characteristics should be regarded as equally
important as the other system parameters, and every effort shauld be
made ?0 determine them in a realistic way. Representative tests
for every particular power system are required fto guide in the
formulation of a complete dynamié or a combined load, and ultimately

to provide data for every stability study.

All the publications about small disturbance analyses

have considered loads with static non-linear characteristics as

] -~ .
dependent on voltagelh’Bi’35’)8’56. Moreover, load variation due to

frequehcy changes is difficult to separate from that caused by
accompanying voltage changes. The formulation presented in this
thesis should be modified to introduce the variation of load with
frequency at each load bus. Model reduction teclniques can lead:
to the inclusion of better induc{ion motor representétions in a
multi—@achine system, The network representation has to be
investigated for a multi-machine dynamic stability aﬁalysis

including different load characteristics,
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If the state vector of the system concerned is not accessible
to direct measurement for the design of a modal controller, it is
nevertheless possible to implement modal control by using an
additional dynamic system known as an observer or state estimator,

It would then be necessary to compare the designs for different

load characteristics and select an appropriate one. Also, the .
feedback controller has to be tested in the non-linear system for
“large disturbances. This, and the use of decoupling control techniques,

are large areas for future investigation.
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APPENDIX A.1

LINFAR SYNCHRONOUS MACHINE EQUATIONS
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Using the sample procedure of considering only the first

terms of a Taylor series expansion of the equations, about any

operating point, suitable for linear analysis as shown below.

Direct-axis flux linkage:

Mg = Xppa Alfd + XafdAld + kadélkd

Mg = % g4 Alfd + XgDig + X g AL
Mg = Xpeq Digg + X Dig + X g Dy

Quadrature-axis flux linkage:

X Ao+ x . Ai
. a9 q akq ~ "kq

A9,
bYy,

Xakq & 1q * kaq Alkq

In a matrix compact form:

Cagpd = XJLAs]
A(pg
Aig

I

[

Direct-axis voltages:

L, ECHpY A

Lo = AR -, Ad

(J.)o ({)fd Xafd fd fd fd

1 .

Ll)o pA(’)d = - Avd - rsAld - A(pq - (i)qAn

1 , :
W, PAP 4 =~ rpg Dy

c0l(A @egr DY g DY g5 UM A(‘qu)
COl(Aifd, Aid, Aikd’ Aiq’ Aikq)

(a.1.1)

(A.1.2)

(A.1.3)

(A.1.4)

(A.1.5)

(a.1.6)
(A.1.7)

(a.1.8)

(A.1.9)
(A.1.10)

(A.1.11)
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Quadrature-axis voltages:
1 3 .
W, PAQ, = - Dvg -7 Alq + APy + Qgqldn (A.1.12)

1 : -
o, pA(pkq = =Ty Alkq | (A.1.13)

In a matrix compact form:

v - [Ces 0+ [3-03- 01+ Lo »
(A.1.14)

[___I] = unit matrix

Av =c01rfd AE, ., -Av, 0, -Av , 0

. a
[Rj = diag(rf;]! rs! rkd, rS, rkq)
0 0 0 0 O
00 0 1 0
[1] = o 0 0 0 O
0-1 0 0 0O
0 0 0 0 O

[Aq); = col1(0, q)q’ 0, _q’)d’ 0)
Torque at the air gap:
ATg = 0, Aiq + iqA(Pd _ (qu‘id -"iqu)q (A.1.15)

Mechanical equations:

T pAn = ATmech - ATg ' | (A.1.16)
pAdr = @ hAn (A.1.17)
Voltage regulator:
_ Kr
AE,, = m_m (A.1.18)



Turbine:

AT

me

Governor:

plec

ch =

Gate servomotor:

plg

Water column:

pAh

Transformation

AP2

AQ,
b,

Abm

Abr

Speed Governor

A
AtAg - DnomBAn + 1.5 A B4h

- pAn - §pAg - {;(Ac + An)

Q (Ac - dpAg - W pAn)

- opAg - ZAn

equations:

1dAvd

+

T

W

i VvV 4V i v i
A dAd+qu

1dAvq - vdAlq - quld
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(A.1.19)

(A.1.20)

(A.1.21)

(a.1.22)

(a.1.23)
(A.1.24)
(A.1.25)

(A.1.26)

(A.1.27)
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~ NON-SYNCHRONOUS LOAD REPRESENTATION

Induction Motor:

The equations below are obtained directly from the

éynchronous machine equations with the following simplifications:

(1) The terms and equations related to the field circuit

can be eliminated,

(ii) The induction motor has round and symmetiical

rotor windings.

d q ]
ka = rkq = Rr
(iii) In the induction motor the magnetic fields rotate

at different speeds from the rotor. Therefore the reference
frame-for the induction motor should not be connected to the
rotor. The most convenient reference frame in this case is

the network frame which rotates at synchronous speed (QO.



Machine Fquations:

Flux linkage:

Poa = Xslsa * Kplra
(prd = Xmlsd +X trd
(P = Xi +Xi
sq s sq m~rq
(p = Xi +Xi
rq | r rq
Voltages:
-v, = Ri 1 O
d = Tstsa T P Vsa Peq
0 = Ri, +~tp 30
- rird ¥ W, LPrd + rq
—-v = R i + "——"p1 -
q s sq wo LPsq (Psq
0 = Ri_ + —l—p(p - sy
s rq (00 rq rd
Electrical torque:
Tg = (Psdlsq - (PsqlsdA
Mechanical equation:
Tmpn = Tmech - Tg

177.

(A.1.28)
(A.1.29)
(A.1.30)

(A.1.731)

(A.1.32)
(A.1.33)
(A.1.34)

(A.1.735)

(A.1.36)

(4.1.37)

In the same way as the the synchronous machine, the above

equations can be linearized for small perturbance analysis.



Flux linkage:

Voltages:

EA (PM] =

[AQ]

[x]

wa

Cav]

LAy ] = col(di_g, Bi Aisq, Ai

]

I

BalWY

°°1(A(Psd’ A(-Prd’ A({)sq’ A(Pl‘q)

col(Big, Bipg, By, Biy)
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(A.1.38)

(a.1.39)

(A.1.40)

(A.1.41)

043+ {00« CsJ0a0, T « il n

col (- Av

sd

sy 0,

- Av

(] = diag(r, R, R, R)

- Lo

[s]

(= = i ]

59

001(09 "'(Prqa 0, (Prd)

nooo

[~ =Ny

cowme

aO)'

rq’ .

)

(A.1.42)

(A.1.43)
(A.1.44)
(A.1.45)

(A.i.46)

(A.1.47)
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Transformation equations:

For the induction motor only +the transformation from
the rectangular to polar form is necessary. Here the reference

frame is the network reference, which rotated at (Lb-

Ps = Viatsa * Vsqlsq (A.1.48)
% - Vedtsqg T Ysglsd ” (A.1.49)
V5 = vsd2 * vsq2 . (A.1.50)
b5 = tg-ll-(;'zi), | (A.1.51)

Equations {(A.1.48) - (A.1.51) in linearized form are

obtained in a straightforward wanner:

.APB =i by + 1sq AVsq * Ysa Aisd ¥ Vsq Alsq (A.1.52)

AQ. =i A_"sd‘ iq Qv +vsdAi - v Aisd (A.1.53)

J 5q q 5q 5q
Vsd Tsq
AVB = 7 Ov g +7 Avsq (A.l'.54)
3 3
Yeq A _ Usd |
A63 = v QAVSd - V_-2'Avsq ) (Aoloss)
3. 3

Non-linear passive loads:

For a non-linear admittance, active and reactive powers ..

ares

G(v, w)v2 N - (a.1.56)

*J
it

BV, )V (a.1.57)

=
e
li
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VA = Vi¥

i = YV Y = G- jB

i% = Y¥Xy¥*

VA = V(G + jB)WV* . (4.1.58)
VA = (G + jB)V? (A.1.59)

If frequency dependence of G and B is ignored:

PL} - Gv? " (A.1.60)
Q, = BY> (A.1.61)

The linearized form of equations (A.1.60) and (A.1.61) is:

. :
AP = (v %% + 26V) Av (A.1.62)
2
APL = (YE;Q %% + 2G VT,V—) AV ' (A.1.63)
. -
V 9G
AP, = M2 + 5 50) AV | (A.1.6%)
In a similar way:
9 V 9B
A = F(2+g539) AV (A.1.65)

A type of relationship widely used to represent non-linear

passive loads is:

P

L cviP : (A.1.66)
0, = ¢, KQ | (A.1.67)

.
.

The linearized form of equations (A.1.66) and (A.1.67) is:

v ey (Kp=1)
APL = € &7 KAV = CKpV Av
AP, = kK ¢, vPvIAy
L p 1



PL
APL - K Ay
In a similar way:
QL
Aq = K, v Av

Combined Load:

181,

(A.1.68)

(A.1.69)

It is assumed that the load group can be simulated by the

simple equivalent circunit shown in Figure A.1.3,

in which a constant

shunt admittance reoresents the static load and a voltage behind a

constant admittance represents an equivalent induction motor.

T,

AR

%

A 2

saturation
characteristic

% R2/S

Figure A,1.2:

B
QL | .-
| S
X5

Model to represent the combined load,

P ,Q P ,Q
. L’ m’ “m -
t > Gm JBm I
i '
: PS’QS '
1 A e
VI8, _rGS—J'BS v op°

Figure A.1.3:

Simple equivalent circuit.,



182,

The real and reactive powers taken by the equivalent

motor are:

P = V2Gm - VW Y cos(f + §) (4.1.70)

0, = V’B_ - W Y sin(g + 6) | (A.1.71)

m

and those taken by the static load are:

)
P = VG (A.1.72)

Q v | (A.1.73)

S S

giving group demand of:

2 .
P = V(646G ) —_VVmYmcos(¢;+6) (A.1.7%)
Qp, = V2(B+B.) - W Y sin(ff +5) (A.1.75)
o _ o}
Yy = (6, 3,0 (.1.76)
: -1 Bm
ﬁ; = Tg E; (A.1.77)
1 ‘
v, = (2 B_®)? | (A.1.78)
B ' X
-1

8
These equations above can be linearized in order to have

the power‘ variations against voltage and phase angle:

i

A P = Egv ( Gm+Gs )-VmYmc os ( ﬁmq-é )] Ava [WmYmsin ( ,dm-t-é )] AS
' . ~ (a.1.80)
AQL - EQV(Bm+BS)—VmYms in (¢m+6)] Av- [vaYmcos(¢m+6)] Aé

(A.1.81)
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For the sake of facility, equations (4.1.80) and (A.1.81)

are written in condensed form, to be used in the program as:

Ap, PART;  PART, || AV

Ad (A.1.82)

AQL QART QART

3 L
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APPENDIX A.2

EQUATION SYSTIM TO ¥ouM [ K ] MATRIX

The equations (2.62) and (2.63) described in Chapter 2
are obtained after the linearized equations of each élement are
known. The set of these-equations depends on the load representation.
The matrices[:Kl,..., Ks:]can be formed by inspection (Figures 2.3
and 2,4). According to Figures 2,3 ‘and 2.4 the vector elements
should first be spécified in the following sequence: derivatives

of state variables, state variablés, and algebraic variables, as

follows:
1) Equations cbnsidering the load as an
induction motor (T . o( n):
1 Tfa
— \ - AT 3 =
o P Aq.gfd X Anfd + Teg Alfd = 0 (a.2.1)
0 afd
1 .
o, PAQ, + AP +A(qun + bvger Aig=0 (a.2.2)
1 : i :
Cw, P DY g * Tq Bigg = O (a.2.3)
A i =
ki Akpq - 8Py - Q00 + AVq + 7 Alq =0 (A.2.4)
1 . ,
o, pA(qu * Tig Alkq = 0 - (A.2.5)
T, oP AE,., + AE;y - K Bv, =0 (A.2.6)

~T p An—iqALP gt dA(Pq-DnomB Ansa ; De+l.5AB Ans q)q Di g~ (p A Aiq;o
' (A.2.8)

- - - = .2,
pAg - pln-0Qb Ag+0Q AC = 0 (a.2.9)
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- pAC - pAn = b pAg - ==fAn - = Ac = 0 (A.2.10)
1 1R Tq

- pAb - 2pAg - T—2~Ah = 0 (A.2.11)
w

1 .

©, pA(Psd + (’)sq + Dy g+ R AL, = 0 (A.2.12)

1 .

UOPA(Prd" s(prq- An (prq +RAL ;=0 (A.2.13)

L oA “ AW+ Av RAi_ = 0 (A.2.14)

W, P q)sq A({)sd * sq ¥ Y sq v

1 _ .

W, P4 Wrq ~ SAQrq + An._ Pra * By A11'-q =0 (a.2.15)

o]

_Tmp An+PROTAn—lqu(PsdJ'isdA(Psq"' ('psq Aisd— (Psd Alsq =0

(A.2.16)

op opP op, P

o 2 2 2
—APQ + 55;[362 + _B_V—Q AVQ + 5—6—A63 + WAVB =0 (4-2-17)

3 3

%, G )

— “ 2
_AQ2 + 5% Aa av AV 55 A& + 3y Av3 = 0 (A.2.18)

_ 2 3 3

A A%
: d
_.A62 + Nor + ;]'q-g-Avd - ;—T‘):Avq = 0 (A.2.19)
Yo 2 _
: Vaa. o Ve o
..AVQ +——Avd>+—q-Av = 0 (A.2.20)
Y vs 9

_'APQ +igBvg v i Do s v, Qi +'v.inq -0 (A:2.21)
~ho, + i Avg - idAvq - quid + vdAiq = 0 (A.2.22)
= DQgg + XppMigy + Xagq Dig + Xpeq Biyg = 0 (A.2.23)
" APq + XypqBigg + X Big 4 alchlkd = 0 (A2.24)

- A9, 4 + Xp A1 + X 01 + X DL, =0 (A.2.25)
- APy + Xy Aiq + xakqA g = © (A.2f26)

- A(«}) kq akq Ai l kkq b kq = 0 (a.2.27)



ap opP op apP
- 2 D _3 .}
AP3"a62562“ v, BV + 5o 885 BVBAV
0.  0Q. aQ 3Q
- A b 3 2
AQ3 + 53 L.62 + 3V AV2 + 33 A63 + 57 Av
2 2 3 3
Usq Ysd
_A63+V2Avsd V__?.A sq 0
3 3
Tsd Tsq
- AVS + V_-Avsd +y A‘sq =0
3 3
_APB * 134 AVsd T 1sq AVsq * Vad Alsd * Vaq
—AQ3 * isq AVSd - isdAVsq * Vsa Aisq " Vaq
- ALPsd + Xy Aisd + XmAird = 0
= Dy + K Bigy + X AL = 0
= DPsq * X Aisq + XpBi, = 0
- A(Prq + XP!Aisq + XrAirq =0
Equations considering the non-linear
passive load representation:
1 A, - A AR s e AL =0
w PV ™ X fd ¥ Fra Btea T
o afd ‘
1 ' .
wOPA(Pd+A(Pq+ (qun+ Avd+rdA1d=
LAY, +r Ai = 0 |
W, PAYPq * Tiq Blyg
1 | .
g T AW " 89, - Py bn+ Avg + x Bty =
——p B, + T Di = O
w kq kq = "kq '

(4]
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(A.2.28)
(A.2.é9)
(A.2.30)

(A.2.31)

(A.2.32)

(A.2.33)
(A;2.311)
(A.2.35)
(A.2.36)

(A.2.37)

(A.2.38)
(A.2.39)
(A.2.40)
(A.2.41)

(A.2.12)
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TrgPAEfd + ‘ﬁﬁi‘d - kr sz = 0 (A.Q.lﬁ)
- pAdr + LdOAn = 0 (A.2.40) -
_TmpAn - iqA(Pd + iqu)q - DnomBAn + A Deg + 1.5AtBAh +

+ q)q Aid - 0q Aiq = (A.2.45)
-pAg - Q¥ phAn ~ Q. bplg + Q AC - (A.2.46)
-pAC - pAn - $tpAg - -Tl—An - %—Ac =0 (A.2.47)
R R
-pAn - 2pAg - ?Q-Ah = 0 (A.2.48)
w
op, P, oP, op,
~ AP, 4 - %, Aa * o, AV +5—6—3—A6 + VBAVB— (A.2.49)
o, 30, oQ, 2,
—AQ2 + 66 Aé + v, AV + '663 A6 + sgAV (4.2.50) .

R V. Vd

—A62+ A6r+——q—2-Av -—Av =0 (A.2.51) :
\ \ q
2 2
’ Y4 v )
- Av2 + V—Avd + -\-[-(lAv = 0 (a.2.52)
2 2
—AP2+1dAv iy AVq+vdAid+Vinq=0 (A.2.53)
'—AQ2+iqud—idAvq-quid+vdAiq=o (A.2.54)
= DQgq + XegDipg + X pqDig + XppqBiyg = 0 (8.2.55)
- AWy + X gy Aim + X, Aid + Xadeikd 0 (A.2.56)

=By + Xppg Digg + Xa Big + Xq Allm = (a.2.57)
=AYy * Xq Aiq + xakq Aikq = 0 (Af2.58)
- Atpkq + Xor Aiq + kainkq = 0 (a.2.59)
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K P,
23 -

'APB + v; AV3 = 0 (A.2.60)
K Q

ML+ L3 Ay, - 0 (A.2.61)

] V3 3

oP ap oP ap
2 2 2 -

- AP+ 5, A8, + A AV, + “ﬁA% "o, AV = 0 (a.2.62)
9Q 3Q 3 9Q '
3 —2 A 2 2 -

-AQB + 3%, A62 + W, AV, + 363 A63 + an AV,), = 0 (A.2.63)

Equations considering a combined load:

In this case, equations (A.2.38)-(A.2.63) are the same,

except that equations (A.2.60) and (A.2.61) are substituted by:

--AQ3 + QARL Av3 + QAR1‘4A63

- OP5 + PART_ AV, + PART, Ab,

it
o

(A.2,64)

]
(=}

(A.2.65)
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APPENDIX A.3

A
HAKING AND B‘F.IRG‘6 APPROACH FOR A SINGLE EQUIVALENT:

INDUCTION MOTOR

The single model representing a group of motors is assumed
to have an electrical circuit structure identical to the cbnventional
approximate circuit of a symmetridal three-phase induction motor.

The procedure for obtaining the singlg unit equivalent parameters’

is discussed for a two motor group, Considering that generalization

to more than two motors can be considered:

Electrical parameters:

Consider two motors driving separate loads and supplied from

the same bus, At standstill the two motors may be represented by:

m Figure A,3.1

-
X1 <R

N 22

%’ X
%x 1 %x %Xlz

In order to maintain the electrical power invariance, we let:

XM

v me ‘ ;§>RM Figure A.3.2
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X X
IM = X + X
| )
mM (R.21+jXE1) + (R22+jX22)
) 2 2 2
R - Roy (Byp™ + X o) + Bop(By)™ + Xpy7)
= 2 D)
(1121 + 1122) + (Xgl + x22)
2 2 2 2,
X xh(xeg + Ry ) + sz(xgl + By )
M

2 2
(R21 + R22) + _(xgl + XQQ)

Equivalent slip:

If two motors are running at constant slips, S1 and SQ,
the corresponding slip of the equivalent single motor 1is SM’ by

equating the real parts of the input impedances of the two cquivalent

circuits:

o 9 - 2
Ry (Ry/s e (y/50)"] + Ryo/Sy LRy, /9)° + (x))°]
Sy 2 . (-
SM EXBQI/Sl + R22/c2) + (Kgl + ng)?]

Ry Roo
Let §I~ ='Ré1, §;— = Rég’ the equivalent slip is found to be:
o 2 o 2 9

s, [y (R ™Ky )R (Rey "X, “) ] [(RS, +R3,) +(X91+XP—2)2]

2 2 .2 2 2 2
[y, (Xg, "+RY,)" +RL, (B3 "Xy, *) 0 [(R, +h,,) +(x21+x92)°]

Equivalent inertia constant:

In order to find the moment of inertia for the equivalent
motor, this motor is assumed to retain'an amount of kinetic energy

at synchronous speed equal to the sum of the kinetic energies of the
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individual motors at synchronous speed, Using the definition of H
as the amount of kinetic energy at synchronous speed divided by the

rated voltamperes:

8 (VAI) + IIQ(VAQ)

Hy (Va,)
Vay

VA1 + VA2

H, (VAI) + H, (VQ)

Hy = VA

Composite load torque characteristics:

The composite mechanical load torgque-speed function is

then expressed as:

Single unit equivalent motor:

The procedure used for the case of two moior group can bhe
extended to obtain the parameters of a single-unit equivalent of more

than two motors supplied from the same bus.



192,

APPENDIX B.1

LINFARTZED DIFFERENTIAL, AND ALGEBRAIC FQUATIONS
FOR A MULTI-MACHINE SYSTEM

The equations are written for a two-machine and three-node
system (Figure 3.5) by way of an example, but the extension to n
machines and m nodes is exeéuted automatically by the computer program.
The order in which these equations are written is maintained in the
program; thermoelectric machines first, followed by hydroelectric
machines. Synchronous machines are represented by Park’'s equation314

using the convention given in Reference 13,

Thermoelectric machine:

1 “ra, A

W, (f)fdl xafdl £a) * Tra, " tea,

:' 1 .

._h-TOPA({)dl + A({)qi ""(.quAnl '*'Avdl + TslAldl =0 (B.I.Q)
1 )

wopAdel + rkdlAlkdl = 0 (B.1.3)
1
— —PA -A - An +Av +r Ai = 0 (B.l.l&)
W, %1 (Pdl. (Pdl i 5 9
. R ' _
A _ - -
Trglp AEfc‘nl"""Efdl ;(rlAvl = KFlAVTef (B.1.6)

—pASrl— “)uAnl = 0 ._ (B.1.7)
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) . . i -@. Ai +0.28AWny
Tm_-PAnl 1q1Aq}‘*;_+l“1A%1+(P‘11Aldl (pdl 1q1+ 15

+mw&w% = 0
Gy 1
pAwh! + == An, + 7Awh?
1 TS 1 T
1 1
-1 1
pAuhé - FAwhi + ‘,IWAwhé
2 2
1 1 .
- - 9 —— 1]
pAunQ T%Awh2 + T%Awlz

Hydroelectric machines: -

T
fd2

1 | :
o PAYy - % AEfd'+rfd2A1fd

0 2 afd2 2

1 o .
—-—-pA +A + An +AV +T Al
W, L})dg qu (qu 2 d2 So d
1 .

——pA +r Ai = 0

Wy (Pkdg kd, = Yd,,

1 \
;?A(qu‘é%z“ (szA“:z“‘ Av,

1 . .
——plt + T Ai
L")o pqu kq2 kq2

pAE

Trg2 gq + DE

2 fd2 2

—pASrQ— L,%[\m2 = 0

~T P Anz‘iqu(inz’“idzA({)qQ* (qu Aid

2

+At0A g2+1.5At2B2A112 = 0

1
-pAg; -7Deg;, = -3

1 a 1 a

1

+r
S

2

2

A
q

- q)dzA iqg-p An2

(B.1.8)
(B.1.9)
(B.1.10)

(B.1.11)

(B.1.12) "

(B.1.13)

(B.1.14)

(B.1.15)

(B.1.16)

(B.1.17)

(B.1.18)

(B.1.19)

(B.1.20)
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op
1 1 1
—pAgl - -T——Agl - ,—l,—-An2 T—'Agfl =0 (B.l.21)
&1 &1 £
: ’
2
—pAhl - 2phg, - 5 Ahl = 0 (B.1.22)
W
1
Algebraic equations:
Network equations:
P oP ap ap P
1 1 | | bt} b |
3% Aél + :('W—AVl + 2% ASQ * N AVQ * 3% A63 * Ty AV3
1 1 2 2 : 3 3
-Ap, = 0 (B.1.23)
1 ,
aQ 9Q aQ 9Q aQ
1 1 1 1 1 1
ES—I-A(SI + g\qul + 'a—sgABQ + :(W—Q-AVQ + -0—6-5- 5 * ‘OVB AVB
-hgy =0 (B.1.24)
or, oP, P, 9P, ¥, VDPQ
661A61+ aVIAV1+ 3627562+ BVQAV2+ Efgms* WB—AVS—APfo (B.1.25)
29 Q ?Q G 9Q lt] "
2 2 2 2 2 2
361A61+ aV1Av1+ a621'y)2+ BVQAV2+ 663A<53+ OVBAVB" AQ,=0 (B.1.26)
9P P P P opP.. 3P
3 3 3 3 3 as 3 _
661A61+ blevlJ, 362/362* anAV:z* a63 5+ 3‘-'3AV3' AP3_0 (B.1.27)
9Q aQ 2Q. aQ 09Q Q..
3 3 3 3 —2Ay _ = )
661A61+ aV1AI1+ %2,562», a.V.QAV2+ 75 6+ aV}AV3 AQ3_0 (B.1.28)
Powver Transformation equations including
non-linear passive load trepresentation: )
AP, = AP, -AP. =i, Av,+i Av + v, DN, +v D
1 G Ly 4T dy gy gy dyrdy g Ty
P
- K —LlAV (B.1.29)
Y 1 STt



Ao, = AQ. A0, =1 Av, =i Av v M, +w Al X —L Ay
1 G LT T dy T ey gy Ay d Ty gy V)
(B.1.30)

P,
AP, = AP, AP, =i Av. i, Av —v_ Ai Ai K 2Av

2 GZ LZ 1q2 de ldz qu qu L 2+V 2 1q2 p2 Vz
(B.1.31)

9,
Ao, = Ag. -AQ. =i Av, =i, Av —v Ai, +v. Al -k —2Av
2 Gy "Ly Taydy TdgTdy 4y Tdy dgT g qy V2
| (B.1.32)

| | P,
Ap. = AP, -AP. =i Av, =i Av v Ai Vg Ai -K -—ZAV
3 G5 T Ly Tagmdg TdgTag agTdg dgTdg pg Ve TS
(B.1.33)
Aq, = AQ. -AQ, =i Av, -i, Av -v A1 +Vq Ai K -—:iAV ‘
3 G5 7Ly a5 dg dgidg agTdgdgTag dg Vg T3

(Bo1.34)

- Some of these algebraic equations have bheen solved analyt-
ically substituting equations (B.1.29)-(B.1.34) into equations (B.1.23)
-(B.1.28) and a minimum number of algebraic variables are chosen in the

present formulation.

Phase angle and voltage transformation equations:
: |

In Chapter 2 details for the derivation of these equations
are given in Appendix A.1 for a single-machine system. The equations.

for a multi-machine system are shown below, derived in a similar way.

v .V

9 d; | :
A&l +_A6r] + ——é-Avd -~y = 0 (B.1.35)
oy e %y 9 -
1 S|
v V ’ .
AS & MSr. + —2 A 2 A 0 (B.1.36)
+ Aor, + —= Av -——- v = Jd.5
) 2t 2%, T 2,

2 2
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- AV, + :;_.[\ 4 :—,invq = 0 (B.1.37)
11 1 :
—AV2+;-:'2'AVd2+;§'gAVq2 = 0 (B.1.38)
Flux equations
‘A({)fdl“xffdl A.ift.ll"'xafdl Aidl“xfkdll Aikdl =0 (B.1.59)
_Aq)d1+xafdl Aifdl+xd1 A-id1+xakdlAikdl = 0 (B.1.40)
‘A(i)kdl“‘xfkdl A"Lfdll“‘)_iakdll Aidl+xkkd1Aikdl= 0 (B.1.41)
"A(qu * quiql * XakqlAikql - é (B.1.42)
Mg * K Blg, * Vg By = 0 (Bo13)
.-A(})fd;x 2Aifd2+xafd2Aid;xfkdgmde =0 (B.1.44)
_A_q)d2+xafd2Aifd2+Xd2A id;XadeAide = 0 (B.1.45)
"A?de“‘kadQAifd;Xade Aid2+xkkd2Aikd2 =0 (B.1.46)
-Ap + X A1q2 + XakqQAikqQ = 0 : (B.1.47)
_Aq)kq2 * Xakq2 Aj'c12 + kaq2 Aikq2 =0 (B'l'hS)

When one machine is taken as the reference, simplifications

are made, as explained in Section 3.3.3.

Equations (B.1.1)-{B.1.48) can be arranged in a matrix form
as equation (3.2), and all the [K] submatrices are obtained straight-
forwvardly. The general structure of the mul ti-machine system

equations, is shown in Figure B.1l.1l



K4, | K. K3,

K32

K2,

Kh_{ | W

K2n

[ NS
o

KA

K3w

sh

4

Xz

Xn

General structure of the matrix equation for an
interconnected system, machine no. 1 being the
reference,

Figure B.l.l;
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&Y
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APPENDIX B.2

TURBINE-GOVERNOR MODEL AND DATA

Thermoelectric Machine:

The model of the governor and turbine is similar to that

51,63

used in previous studies In order to maintain the same number
"of state variables as for hydroclectric wmachines, the system was

reduced to a third order by the combination of time constants into a

single equivalent time constant. The interceptor valve is also
excluded, as in Reference 51, This reduction can be seen by compariﬁg
the full and simplified models of Figures B.1l.,1 and B.1l.2, respectively.
In Figure B.1,2 the reheater storage and I.P./L;P. storage tiﬁe
constants T3 and T4 are combined into a single time constant T}.

3

The operational equations defining the turbine-governor and data are

given.

Governor gain ' G1 : 0.00139 sec/heg.
‘Throttle valve opening time T 1.0 seconds
constant i 10 .

Throttle valve closing time T 0.1 seconds
constant : 1C ,

H.P. pipe storage time constant T2_ . 0.1 seconds
Reheater storage time constant T3 . 14,k seconds
IP/LP stovage time constant T, "~ 0.51 seconds

/

Table B.1.1:- Turbine and governor parameters.



199.

Linearized model equations

Turbine power:

APHP = O..2'8A\w'lh.2 | (B.2.1)
APILP = 0.72AWi2 | o (8.2.2)
Ap, = APy, + AP N (8.2.3)

Main governing valve:

. ’ .
AY = GlAcSr = G An (B.2.4)
AYl = AYO - Ay (B.2.5)
Valve'relays:
Gy 1 1
p Awh, + = An + =~ Awnh, = Ay (B.2.6)
i T T 1 T 0
1 1 1
H.P. cylinder:
p Awh,, - Lyn 4 -LAWh = 0 | (B.2.7)
277 1T 2 cSe
2 2
L.P. and I.P. cylinder:
. 1 1 .
pAWi_ - —=AWh_ + == AWif = 0 (B.2.8)
27 41 27,1 2
3 3
v 1
Note: In this study the time constant TB‘, i.e. H.P, exhaust

and J.P. LP exhaust,was taken as 5.475 seconds in total,

as Reference 20,
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Steam
Y input
dr I < 1] _ vy 1 Mo Tup
1 FY | LT, _'O—‘—“ 1+pT, i W
Main
throttle
valve
]. . p'r\
T >
p 3 .
wi1 hrﬂf/if/ﬂ/1 wi,
(I e L
P 75 ILP
Figure B.2,1 Model of turbine and governor system excludlng
interceptor valve,
Steam
Y0 . input
[ ]
§r [ ol "1 1 wby ) why ) P
g} ol 7 1+pT1 I1+pT2 ;
in
wi
- —=-5{0.7
t g PR F e >
1+plg F1Lp
Figure B.2.2 Block diagram of reduced turbine and governor

system model,
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Hvdroelectric machines: .

Each primemover is controlled by a conventional dashpot-type
hydrogovernor whose differential equations and data are given. The

model is similar to that used by Yu et al55

-

1 -
g Twp Tgech
: 1l 4 O.5Twp
u
- gov
Figure B,2.3: Governor hydraulic system,
Parameter ‘ Symbol  Valve
Gate time constant - Tg 0.1 sec,
Governor activator time constant | Ta' 0.01 sec.
Water time constant . : Tw 0.5 sec,
Permanent droop ' 6p 0.045
Gove?nor activator gain ‘ Ph 1.0
i
Table B.2,2: Hydrospeed governor parameters.,

Linearized equations:

Turbine:

AT_mech = -DAn + AtA'gg I.S‘Atl.%[\h | (B.2.9)



Gate opening:

S 1 1
-pAg - SFAg - 5D - 5
g g g
Governor feedback loop:
1 “b
-pAgf - T Agf = = T A

a a

Water head:

LL
gov

—pAh-QpAg-—%LAh = 0

w
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(B.2.10)

(B.2.11)

(B.2.12)

ST S BT YA

72 SOV,
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APPENDIX C.1

FORMULATiON OF SYSTEM EQUATIONS

The equations for the synchronous machine are written in
per unit, using Park's transformationll‘. Three different network

representations were used.

a) Line and transformer reactances coupled with the .
machine reactance, in the classical way:

w
;= _P_ _r 3
Yo = T wo({)q + fpd o, -5l (c.1)
W, .
_ _ b :
vy = . Wy - (I)q o, - i, (c.2)
_ P ;
0 = wo(?kq"' rkqlkq (c.3)
0 W, (Plgd"' S | | | (C.%)
';_f'g Bra = —p_(pvfd + r'fdifd (c.5)
md L")o
qlq = \qu +'X2a1q _ . .(C.6)
(i)kq = q}mq + Xnkqlkq | (c.8)
Yya = Yipa + Foraika | (c.9)
Y g = qu(ikq + iq) (c.10)
WYoq = xmd(ikd #ipg+ id) (c.11)



20,

To = Wi, - Pyl ~ (c.12).
n o= (7 - T) . (c.13)
PR = oH\nech g ‘

po, = (w, - W) (C.14)

Equations describing the transmission line in a frame of
reference fixed to the rotor:

Xt s :
vq = '(:J;‘p 1q - thd -6-; + rth + VqB (C.15)
X wI‘ : ’
Ve = wop 1d+Xt1q_g_3:+rtld+VdB (0.16)
qu = Vg cos Y ’ - (€.17)
Vig = -Vp sin S¢ (c.18)

The small displacement equation system was obtained in the same way

47

as by Baker and Krause ',

v 15(6) = [Rdv(t) + bu(t) (c.19)
u(t) = Voot
(xt+x ) . 1 .
-5 ~Wormg o 0 o0 O
0 - 3 0 —=X o 0 0 0
W W md W "md
Ly 0o 10x 0 0 0 0 0
(,.)0 mq b)o kq 0
1 1 1
0 T)ggxxgd 0 ;hTo‘fkd ;(L"'—oxmd o 0 00
0 hd2 o —maZ  matrd
o Or DT 0 0 0 O
'[VM]: °"fd o fd o fd
0 0 0 0 0 1 0 0 O
0 0 0 0 0 o 1 0 o0
0 0 0 0 0 o 0 1 o0
KVX KVX »
TAvqwt '.PAvdc.)t o 0 0 o .0 0 1
At fAVge
0 0 0 0 0 0 0 0 0
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X ~V_sin§
Kmd X 4 —(;)d0 .B51nn,0 0 0 7

(xq+xt) (rt+r§) g 0 0 q)qo -VBcosé,o 0 0
0 0 -r, O 0 0 0 0 0 o
kq
0 0 0 - 0 0 0. 0 0 o0
0 0 0 0 -r, 0 0 0 0 0
0 0 0 0 . 0 =X 0O 0 0 o
. s o o md
Tl/QH TQ/bH TB/QH T,/2H T5/2H 0 0 0 0 o0
0 0 0 0. 0 W o o0 o0 o0
0 0 0 0 0 0 -0 -EE 0 0 O
, T
: E . K,
P1 P o 0 0 0 P3 P 3 0 ST
KX, K
0 0 0 0 0 o0 0 5 77 7
f'E fe f

Ty

, = (xmq ~X )iy =X i , (c.20)
o = (pg ~ Xpadig - . (c.21)
5 = Xpola . - ' (c.22)
4 = ‘deiq ' | (c.23)
5 = gl , - (c.24)
P, = - EA(ZQT - Zﬂx ) (c.26)
2 T,V TV

5 = —%(%xtiq -%Xtid I CX-1))

¢ v
y = -T—A l:v;g(—VBcos(S,) + _\_/i(—VBSinS')] . (c.28)
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b) Algebraic Node equations of the form I = YV:

Fﬂr this network representation the formulation for
building up the 'A' matrix is similar to that given in Chapter 2,
but with the equations corresponding with the network represéntation.
The transformation matrix to refer individual machine quantities to

the network is:

v lcos & sen &§;|V

1 - D (c.29)
vd -sen 6, cos & (|V
4 Q
‘ _
A.Q o
S

1,

.

Fipure C.1: Machine (d,q) and reference (D.Q) frames.

Applying this transfﬁrmation to the nodal admittance matrix
equation (I = YV) of the network representation as Alden and Zein
El—Din29, the linearized system equations in the matrix form of
equation (C.30) aré obtainéd, ready to form the characteristic

A matrix and the control matrix, b.

c) Algebraic representation by Newton-Raphson:

The power equations are as in Chapter 2 including the input

b matrix as is shown in equation (C.31).
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D{] matrix when network is represented by algebraic

node equations of the form I = YV,

Apd,
Algmt

Al
A\}R
A E'gd
ANes
Ady
AN

.A &&L -

AYid
Awd
Alyed
Ayq
A
ANe
AEL
ANEs
ASe

A'IQ!V\?
AToinf
ANp
ANg,
AV,
AT
JANE
Aisd
Atd
Avd
AvLg

| Alsg ]

)\L&} o

*L0%
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AW
A4,
A
A\{J}
Al
AVR
AEY
Aes
Adv
ANy

Y4,
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DAYy

AQeq
ANgR
NEe
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