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Abstract

In this thesis, we develop a deeper and much more extensive theory of
synchronisation of trajectories of random dynamical systems (RDS) than
currently exists. In particular, focusing on random dynamical systems with
memoryless noise, we achieve two main goals: Firstly, we demonstrate that
the notion of “statistical equilibria” is purely a property of the measurable
dynamics of a RDS on a standard Borel space; and yet, within such statistical
equilibria is “encoded” the phenomenon of noise-induced synchronisation
(which may then be observed in any compatible metric on the phase space).
Secondly, we provide new, widely applicable criteria for synchronisation
in RDS, considerably improving upon some of the existing criteria for
synchronisation.
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A notice concerning other concurrent research

While carrying out the research on circle RDS documented in Section 5.2
of this thesis, the author was unaware that other research was being carried
out on the same topic (seemingly at more-or-less the same time), the results
of which were documented in a preprint in December 2014.1 Although
working specifically in discrete time, this preprint contains several remarkable
results, including conditions for stable synchronisation in invertible RDS on
the circle that are weaker than our conditions presented in Theorem 5.19 of
this thesis: specifically, if there are no deterministic fixed points then stable
synchronisation is equivalent to contractibility.2 Moreover, remarkably, in
this case we are guaranteed to have exponential-rate stable synchronisation.
Results are also obtained for RDS on a bounded interval (again involving
exponential-rate stability), with partial overlap with Theorem 3.18 of this
thesis.

1Dominique Malicet. “Random walks on Homeo(S1)”. arXiv:1412.8618v1 [math.DS]. 2014. (See, in
particular, Theorems A and E.)

2Here, contractibility is formulated in terms of the possibility for two points to come arbitrarily close
together; but as we prove in Proposition 4.68 this thesis, it is sufficient just to show that two distinct
points are able to come strictly closer than their initial separation.
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Notations and terminology

We write N for the strictly positive integers, and N0 ∶= N∪{0} for the nonnegative integers.

For a finite set P , ∣P ∣ denotes the number of elements of P .

A partial order ⪯ on a set X is a binary relation that is transitive and has the property
that for all x, y ∈X,

x = y ⇔ (x ⪯ y and y ⪯ x).
A linear order (or total order) ⪯ on a set X is a partial order on X with the additional
property that for all x, y ∈X, either x ⪯ y or y ⪯ x.

Given a smooth map f ∶M → N between smooth manifolds M and N , we write
df ∶TM → TN for the derivative of f , and (df)x ∶TxM → Tf(x)N for the restriction
of df as mapping between TxM and Tf(x)N .

Given a topological space X, B(X) denotes the Borel σ-algebra of X. Given a measurable
space (X,Σ), we interchangeably use the phrases “probability measure on X” and
“probability measure on (X,Σ)”; given a topological space X, a “probability measure
on X” always means a Borel probability measure on X (i.e. a probability measure on
(X,B(X))).

Given a metric space (X,d), a point x ∈ X, and a number δ > 0, we write Bδ(x) ∶=
{y ∈ X ∶ d(x, y) < δ} and B̄δ(x) ∶= {y ∈ X ∶ d(x, y) ≤ δ}; this notation obviously makes
implicit reference to the underlying metric space (X,d) from which the point x is taken.

We always use the term “neighbourhood” to refer to an open neighbourhood.
(Nonetheless, we will sometimes use the phrase “open neighbourhood” to emphasise this.)

Given a measure space (Ω,F ,m), a measurable space (X,Σ), and a measurable map
f ∶Ω → X, we write f∗m for the image measure of m under f (that is, f∗m(A) ∶=
m(f−1(A)) for all A ∈ Σ). Given an m-integrable function g ∶Ω → R, we sometimes
write m(g) to mean ∫Ω g dm. (So m(E) =m(1E) for any E ∈ F .)

Given a collection C of subsets of some set Ω, we write σ(C) for the σ-algebra on Ω
generated by C. Note that this notation makes implicit reference to the underlying set Ω;
still, when using this notation, it will always be clear what the underlying set is. Given a
family (Fα)α∈I of σ-algebras Fα on Ω, we write σ(Fα ∶ α ∈ I) for the smallest σ-algebra on
Ω containing the σ-algebra Fα for every α. Given a family ((Xα,Σα))α∈I of measurable
spaces (Xα,Σα) and a family (fα)α∈I of functions fα ∶Ω → Xα, we write σ(fα ∶ α ∈ I) for
the smallest σ-algebra on Ω with respect to which the function fα is measurable for every
α ∈ I.
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Notations and terminology

We write E(ρ)[⋅] to denote expectation with respect to a probability measure ρ; in cases
where the underlying probability measure happens to be denoted P, we will sometimes
omit the subscript (P) and just write E[⋅]. Given a probability space (Ω,F ,P), a P-
integrable function g ∶Ω → R and a sub-σ-algebra G of F , we write E[g∣G] ∶Ω → R to
denote an (arbitrary) version of the conditional expectation given G of g with respect to
P. Given a probability space (Ω,F ,P), a set E ∈ F , and a sub-σ-algebra G of F , we write
P(E∣G) ∶Ω→ [0,1] to denote an (arbitrary) version of the conditional probability given G
of E according to P; that is to say, P(E∣G) is a G-measurable function satisfying

P(E ∩G) = ∫
G
P(E∣G)(ω)P(dω) ∀G ∈ G.

Note that P(E∣G) P-a.s.= E[1E ∣G].

For any statement P , we define

χP ∶= {
1 if P is true
0 if P is false.

Given a measurable space (X,Σ) and a point x ∈ X, we write δx for the Dirac mass at
x, namely the probability measure on (X,Σ) defined by δx(A) = 1A(x) for all A ∈ Σ.
Obviously, if the singletons in X are Σ-measurable, then Dirac masses at distinct points
are distinct measures.

As will be introduced in the body of the thesis, when considering stochastic processes
and random dynamical systems, the symbol T is used to refer to Z in discrete time and
R in continuous time; and T+ will denote T ∩ [0,∞). Given a topological space X, a
T+-indexed family (xt)t∈T+ of elements of X, a point x ∈ X, and a set S ⊂ T that is
unbounded above, we say that xt → x as t tends to ∞ in S if for every neighbourhood U
of x there exists T ∈ T+ such that for all t ∈ S with t ≥ T , xt ∈ U .
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Chapter 1. Introduction

In this introduction, we will first give a summary of our main results and an overview
of the thesis; we will then give a general introduction to the topic of synchronisation in
random dynamical systems (RDS) and an overview of some existing results (including
how they relate to our results); finally, we will present a (non-rigorous) exposition of
one of the key results in the theory of RDS that is tied to much of the work in this
thesis, namely the correspondence between two-sided-time and one-sided-time invariant
measures. (Still, all of the theory of RDS that is needed for this thesis will be introduced
rigorously in subsequent chapters.)

1.1 Summary of main results

In this thesis, we study synchronisation of trajectories of memoryless time-homogeneous
random dynamical systems. The vast majority of studies on synchronisation in RDS
have either been particular case studies, or slightly more general results giving sufficient
conditions for synchronisation, in either RDS taking a particular form or RDS satisfying
some special property. By contrast, the aim of this thesis is to develop much more general
results on synchronisation in RDS. In particular, we will provide:

(A) deep insights concerning asymptotic statistics and synchronising behaviour in
measurable RDS;

(B) new, broadly applicable criteria for synchronisation (in topological RDS) that
are weaker and easier to verify than criteria given in previous literature.

We will consider several different modes of synchronisation of trajectories; and
in contrast to virtually all previously existing results, each of our new tests for
synchronisation provides conditions that are either necessary and sufficient for the mode
of synchronisation in question, or at least become necessary and sufficient when a mild
additional assumption is made.

We now give a summary of our main results. Here, ϕ is a memoryless-noise RDS on
a phase space X, and ρ is a stationary probability measure for the associated Markov
transition probabilities of the one-point motion. A “right-continuous RDS” is a RDS that
is jointly continuous in space and right-continuous in time.

Our main general results concerning measurable RDS are:

• Theorem 3.6: Taking X to be a standard measurable space, we show that there
is a probability measure Qρ on the space of probability measures on X with the
property that under any metrisation of the measurable structure of X, the limiting
distribution of the measure-valued Markov process obtained by letting ρ evolve
under the flow of ϕ is precisely Qρ. (We also prove some important further
properties of Qρ.) Qρ is called the statistical equilibrium associated to ρ. In

12



1.1 Summary of main results

previous literature, it is only when working with a topology in which ϕ is (spatially)
continuous that a limiting distribution Qρ has been obtained; by contrast, we
remove all continuity requirements, and show that the limiting distribution Qρ is a
measurable invariant.1 Foundational to the proof of Theorem 3.6 is Theorem 3.49,
where we prove the one-to-one correspondence between stationary probability
measures and Markov invariant measures without any continuity requirements.

• Corollary 3.9: Taking X to be a standard measurable space and taking ρ to be
ergodic, we show that there is a (deterministic) number n ∈ N ∪ {∞} such that
under any metrisation of the measurable structure of X, when one observes how all
the trajectories evolve simultaneously under the same realisation of the noise, one
finds that either:

(a) [the case that n < ∞] after a long time, the trajectories of a very large
proportion (according to ρ) of the initial conditions have separated out (in
equal proportions) into n “clusters” of very small diameter; or

(b) [the case that n = ∞] there is no significant synchronisation phenomenon in
the asymptotic dynamics.

(This is formalised rigorously, using notions based on convergence in probability.)
We refer to n as the ρ-clustering number of ϕ. In the case that n = 1 (meaning
that a very large proportion of the trajectories of ϕ concentrate into a very small
region), we say that ϕ is statistically synchronising with respect to ρ. Once again,
results akin to Corollary 3.9 have been obtained when restricting to a topology in
which ϕ is continuous (see [LeJ87]); but we remove all continuity requirements and
show that the ρ-clustering number of ϕ is a measurable invariant.

Our main general tests for synchronisation in right-continuous RDS are:

• Theorem 6.1: Taking X to be a compact metric space and taking ϕ to be right-
continuous, we have almost sure synchronisation of the trajectories of any given
pair of initial conditions, together with almost sure local asymptotic stability of
any given initial condition, if and only if the following statements hold:

(i) there is a unique (deterministic) minimal set K ⊂X;

(ii) for any two distinct initial conditions in K, there is a positive probability that
the subsequent trajectories will at some time be closer together than their
initial separation;

(iii) with positive probability there exist locally asymptotically stable initial
conditions in K.

(For RDS on a manifold, condition (iii) is typically verified by showing that
the maximal Lyapunov exponent associated to some ergodic probability measure
supported by K is negative.)

1This fact is discussed in the introduction of [New15b] and also mentioned in the author’s open
problem in [GGTQ15]; but the author has not published a full statement and proof before now.
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1.1 Summary of main results

• Theorem 6.6: We essentially answer the question, “When do we have n = 1 in
Propositions 2 and 3 of [LeJ87]?” More precisely, taking X to be a Borel subset
of a Polish space, taking ϕ to be right-continuous, and taking ρ to be ergodic,
we provide necessary and sufficient conditions for the phenomenon that there is
almost surely a ρ-full-measure open set of initial conditions whose trajectories are
asymptotically stable and synchronise with each other. Our conditions for this
phenomenon involve (i) the support of ρ admitting locally asymptotically stable
trajectories, and (ii) a condition concerning the ability of pairs of trajectories to
simultaneously come close to at least one “typical” point within the support of ρ.

Our main results regarding synchronisation in monotone RDS on linearly ordered spaces2

are:

• Theorem 3.13: Taking X to be a standard measurable space, equipped with a Borel
linear order that is preserved by ϕ, and taking ρ to be ergodic, we show that ϕ is
always statistically synchronising with respect to ρ.

• Theorem 3.18: Taking X to be a Borel subset of R̄ and taking ϕ to be monotone,
we show that if ρ is ergodic then there is an “attracting random fixed point” whose
law is ρ. (As a consequence, we obtain easily verifiable necessary and sufficient
conditions for a stationary measure ρ to be ergodic.)

• Proposition 4.59: We take X to be a Borel subset of R̄ and take ϕ to be monotone,
and we suppose that there exists an ergodic probability measure ρ such that the only
ρ-full-measure interval in X is the whole of X. Under this assumption, we show that
all trajectories synchronise almost surely if and only if there exist (with positive, or
equivalently, with full probability) locally asymptotically stable trajectories in X.

Our main result regarding synchronisation in orientation-preserving invertible RDS on
the circle is:

• Theorem 5.19: Taking X to be the circle S1, and taking ϕ to be a right-continuous
RDS with ϕ(t, ω) being an orientation-preserving homeomorphism for all t and ω,
we show that if

(i) there are no deterministic fixed points; and

(ii) for any ordered pair of distinct initial conditions in S1, there is a positive
probability that the anticlockwise separation of their subsequent trajectories
will, at some point in time, be less than their original anticlockwise separation;

then almost sure synchronisation of the trajectories of any given pair of initial
conditions occurs, together with almost sure local asymptotic stability of any given
initial condition. These sufficient conditions are also necessary in the case that
there are no deterministic non-empty open proper subsets of S1 that are almost
surely forward-invariant under ϕ. (If such an open invariant set does exist, it may
be possible to reduce the question of synchronisation to the question of whether
synchronisation occurs on this set; see [New15c, Proposition 2.16].)

2The topic of synchronisation in monotone RDS on partially ordered spaces is an important one; for
a deep study on this topic, see [FGS15]. Nonetheless, we do not consider this topic here.
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1.1 Summary of main results

Intuitively, Theorem 5.19 guarantees that for any orientation-preserving invertible RDS
on S1 with “enough noisiness”, synchronisation is guaranteed to occur. Our main
application of Theorem 5.19 is:

• Theorem 5.25: We consider the RDS ϕ on S1 formed by projecting onto S1 the
solutions of the SDE

dXt = b(Xt)dt + σdWt

on R, where b ∶R → R is a 1-periodic Lipschitz function and (Wt) is a Wiener
process. We show that if σ ≠ 0 and 1 is the least period of b, then ϕ is guaranteed
to exhibit the “stable synchronisation” phenomenon described in Theorem 5.19
(and in Theorem 6.1).

(A simple example is discussed where it is found that additive noise destroys a saddle-node
bifurcation.)

Structure of the thesis

In the remainder of Chapter 1, we will first present an introduction to the topic of
synchronisation in RDS, and an overview of the existing results and how they relate to our
results. We will then give an exposition of the well-known correspondence between one-
sided-time and two-sided-time invariant measures (of which the correspondence between
Markov invariant measures and stationary measures is a particular case), including an
explanation of the new contribution to this topic made by Theorem 3.49. This exposition
is worth providing, because (i) the correspondence between one-sided-time and two-sided-
time invariant measures is one of the most fundamental results in the theory of random
dynamical systems, and (ii) this correspondence (or rather, the particular case of it for
Markov invariant measures) forms the basis of our results on statistical equilibria, and
consequently also of our test for ρ-almost stable synchronisation (Theorem 6.6).

In Chapter 2, we introduce random dynamical systems formally. (We specifically
consider memoryless3 RDS.) We provide some basic examples, and extensively develop
the foundational material that will be needed later on in the thesis. There does not
currently exist a general in-depth exposition of RDS with the memoryless property.
Therefore, while all the non-trivial concepts and results presented in Chapter 2 have
already appeared in some form in previous literature (except perhaps some of the results
in Section 2.9, as well as some of the peripheral results in Section 2.7), several of these
concepts and results have not been formulated as rigorously and in as much generality
as we will do here.

In Chapter 3, we develop the theory of statistical equilibria, clustering numbers, and
statistical synchronisation, and also apply this to monotone RDS. The concept of
statistical equilibria has already been established within the setting of continuous RDS
on a pre-defined topological space. (Likewise, therefore, the notions of “clustering
numbers” and “statistical synchronisation” have also been studied within this framework,
although not under these names. Nonetheless, a precise mathematical description of the

3Our formalism of the “memorylessness” property is similar to that in [FGS14].
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1.1 Summary of main results

“clustering” phenomenon, as provided by Corollary 3.9, does not appear to have been
provided before now.) Our key new contribution is to show that these concepts are
not topology-specific but concern the dynamical behaviour of measurable RDS. Also,
while fairly general results regarding synchronisation in monotone RDS already exist,
we provide the most general existing results for the presence of attractive random fixed
points in monotone RDS on linearly ordered spaces.

In Chapter 4, we introduce some further notions of synchronisation and local stability: We
say that a RDS is synchronising (without further qualification) to mean the trajectories
of any given pair of initial conditions synchronise almost surely. Given a probability
measure ρ on the phase space, we say that a RDS is ρ-almost everywhere synchronising
to mean that there is a ρ-full set A such that the trajectories of any given pair of
initial conditions in A synchronise almost surely. We also introduce the notions of
Lyapunov and asymptotic stability. (Our definition of asymptotic stability is different
from the conventional definition, but is “very nearly” equivalent4 and much easier to
work with.) Using the notion of asymptotic stability, we define what it means for
a RDS to be stable with respect to ρ (where ρ is an ergodic measure of the Markov
transition probabilities), and we define what it means for a RDS to be pointwise-stably
synchronising, (uniformly) stably synchronising, and ρ-almost stably synchronising. (For
a RDS on Rd or a more general manifold, stability with respect to ρ is typically verified
by showing that the maximal Lyapunov exponent associated to ρ is negative.) The
notions of stable synchronisation and pointwise-stable synchronisation are important
“improvements” on the more general notion of a synchronising RDS, since (i) they
overcome potential problems related to instability of trajectories, and (ii) they appear to
be the more “mathematically natural” notions to consider (as suggested by Theorem 5.19
and Theorem 6.1—there do not appear to exist similarly simple characterisations of when
a RDS is merely “synchronising”). Likewise, the notion of ρ-almost stable synchronisation
is an important improvement on the notion of ρ-almost everywhere synchronisation. We
also present the most general existing result on forward-time synchronisation in monotone
RDS on subsets of R̄. Finally, we briefly consider “synchronisation at a deterministic
rate”, and explain that although noise can create synchronisation, there will never be an
almost sure upper bound on how long one has to wait for such synchronisation to occur.
As in Chapter 2, most of the non-trivial results in this chapter are already understood
conceptually; however, our set of definitions for the different modes of forward-time
synchronisation is new, and most of the results here have not been formulated in the
level of generality that we do. (The result on synchronisation in monotone RDS, namely
Proposition 4.59, is also new, although it is conceptually only a slight extension of already
understood facts.)

In Chapter 5, we carry out an in-depth study of stable synchronisation in orientation-
preserving RDS on the circle. We first provide a geometrical characterisation of stable
synchronisation (Theorem 5.6) in terms of “crack points” (a notion adapted from [Kai93]).
We then provide our main test for stable synchronisation, which is essentially the
“generalised form” of results in [DKN07, Section 5.1]. As an application, we give the

4Indeed, by [New15b, Theorem A11, Remarks A9 and A13], it is precisely equivalent in the case of a
fixed point of a continuous (deterministic) dynamical system on a locally compact metric space.
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1.2 An overview of synchronisation in random dynamical systems

first complete description of synchronisation in Wiener-driven additive-noise SDE on the
circle with Lipschitz drift.

In Chapter 6, we present our test for stable synchronisation on compact spaces, and
our test for ρ-almost stable synchronisation on general Polish spaces (or Borel subsets
thereof). Once again, these tests are new, and provide considerable improvement on
existing tests for almost sure forward-time synchronisation.

In Appendix A, we present various concepts and facts from measure theory and
probability theory that will be used throughout the thesis. (In particular, we provide
an exposition of the narrow topology.) In Appendix B, we present fundamental results
concerning the “topology of uniform convergence on compact sets”. In Appendix C, we
introduce some foundational ergodic theory for both dynamical systems and Markov
transition probabilities. In none of these appendices do we intend to provide full
expositions of the subjects in question; the main aim is simply to present some of the key
facts that will be needed in the thesis.

1.2 An overview of synchronisation in random

dynamical systems

Noise-induced synchronisation

Let us motivate the whole study of synchronisation in random dynamical systems with
an examplary scenario.

Suppose we have an array of identical non-interacting self-oscillators,5 where the time-
evolution of each oscillator is governed by the differential equation

ẋ = b(x) (1.1)

for some vector field b on Rd (where Rd represents the space of possible “states” of one
oscillator). Suppose these oscillators start at different states from each other. Assuming
that the oscillators are not purely dissipative, since there is no interaction between the
oscillators, there is obviously no reason for the oscillators to ever synchronise with each
other.

But now suppose we subject all the oscillators simultaneously to some external forcing
(which acts equally on all the oscillators); for example, we can suppose that the time-
evolution of each oscillator is now governed by the equation

x(t) − x(0) = ∫
t

0
b(x(s))ds + F (t) (1.2)

5The term “self-oscillator” refers generally to any oscillatory physical system for which, even in the
absence of external driving forces, the total energy does not have to be a monotonically decreasing
function of time. Oscillators whose energy is constrained to decrease over time will normally settle
towards an equilibrium state, but self-oscillators need not do so.
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1.2 An overview of synchronisation in random dynamical systems

for some function F ∶ [0,∞) → Rd with F (0) = 0. A natural question to ask is whether
F (t) can be chosen in such a manner that the oscillators will eventually synchronise with
each other. To be more precise: can F (t) can be chosen in such a manner that the
difference in state between any two of these oscillators tends to 0 as time tends to ∞?
Not surprisingly, in many cases the answer to this question is yes.

But now suppose that the external forcing is not deterministic, but random. Indeed,
let us suppose that this external forcing is a completely memoryless random process, and
that its statistical properties do not change over time. (For example, the external forcing
could consist of a sequence of “i.i.d. random kicks”, where the time-separations between
consecutive kicks are i.i.d. exponentially distributed random variables.) We now regard
the time-evolution of the oscillators as being governed by an equation of the form

x(t) − x(0) = ∫
t

0
b(x(s))ds + Fω(t) (1.3)

where the function Fω depends on a sample point ω drawn randomly from some
probability space (Ω,F ,P). (The “random kicks” example is precisely the situation
that the stochastic process (Fω(t))t≥0 is a compound Poisson process.) The question now
becomes: is it possible that with strictly positive probability, or even with full probability,
the processes will synchronise with each other? Remarkably, the answer is often yes.

The phenomenon that processes can be caused to synchronise with each other due to being
subjected to the same external random forcing is known as noise-induced synchronisation.
In mathematical models, this phenomenon will typically appear as the phenomenon that
as time tends to infinity, the difference in state between any two of the processes converges
to 0, either in probability or under a positive-measure (often full-measure) set of sample
paths of the external random forcing.

Noise-induced synchronisation was first described in the 1980s (see [Pik84], which
considers synchronisation of non-interacting self-oscillators subjected to a sequence of
random kicks,6 or [Ant84], which considers synchronisation of cyclic phenomena). And
since then, there have been numerous case studies of the phenomenon (see e.g. [Tor+01]
and the references therein), as well as some general rigorous theoretical results, which
will be described later.

Random dynamical systems

Just as equation (1.1) generates a flow on Rd, and equation (1.2) generates a non-
autonomous flow on Rd, so equation (1.3) generates a random dynamical system (RDS)
on Rd. A random dynamical system is a dynamical system that is not deterministic but
influenced by a random process (which we refer to as the “noise”).

The natural mathematical framework within which to study the phenomenon of noise-
induced synchronisation is precisely the framework of random dynamical systems. In this
framework, the question of noise-induced synchronisation becomes the question of when

6For later work on the same topic, see e.g. [Nak+05].
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different trajectories of a RDS converge towards each other (under the same realisation
of the noise).

Memoryless RDS and Markov processes

When the term “random dynamical system” is used, it is normally assumed that the RDS
in question is “time-homogeneous” in the sense that it can be defined without reference to
any kind of “external clock”. For a deterministic dynamical system, “time-homogeneity”
would mean that the dynamical system is an autonomous dynamical system; for a random
dynamical system, “time-homogeneity” means that the following two statements hold:

(a) the precise rule specifying how the behaviour of the system is determined by the
behaviour of the noise does not change over time: in other words, writing ϕ(t, ω)x
to denote the position at time t of the trajectory whose position at time 0 is x
when the realised behaviour of the noise is given by ω, and writing θsω to denote
the time-shifted version of ω forward through time s, we have that ϕ(t, θsω)x is
the position at time s+ t of the trajectory whose position at time s is x when the
realised behaviour of the noise is given by ω;

(b) the probability distribution for the precise behaviour of the noise is invariant
under any time-shift.

(A noise process satisfying property (b) is said to be (strictly) stationary. A RDS
satisfying property (a) is sometimes said to be an “autonomous RDS”. When (a) and (b)
are both satisfied, we will continue to use the “ϕ(t, ω)x” notation, with noise realisations
ω being taken from some probability space (Ω,F ,P).)

When considering RDS satisfying the above two properties, it is also natural (for
mathematical purposes) to treat the noise as having no specified “starting time”, i.e. as
being a two-sided-time random process. Hence we can consider trajectories starting at
any time on the two-sided timeline. (Under a noise realisation ω, the trajectory starting
at position x at time τ is given by (ϕ(t, θτω)x)t≥0. If τ < 0, then θτω denotes the time-
shifted version of ω backward through time ∣τ ∣.)

Of course, properties (a) and (b) above can be formulated rigorously; an in-depth study
of random dynamical systems based on these two properties can be found in [Arn98].
But for now, let us illustrate these two properties with an example: suppose we have a
stochastic differential equation of the form

dXt = b(t,Xt)dt + σ(t,Xt)dLt (1.4)

for some semimartingale (Lt)t∈R,7 and suppose that this equation generates a well-defined
random dynamical system (where a “noise realisation ω” corresponds to a sample path of
the stochastic process (Lt)t∈R). Here, we regard the “noise process” as being represented

7We regard (Lt)t∈R as being a semimartingale if for every τ ∈ R, the forward-time stochastic process
(Lτ+t)t≥0 is a semimartingale (with respect to its natural filtration).
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by the increments of the stochastic process (Lt).8 If the functions b(t, x) and σ(t, x) do
not depend on t but only depend on x, then property (a) is satisfied; if the stochastic
process (Lt) has strictly stationary increments, then property (b) is satisfied.

In most studies of random dynamical systems, the systems involved are not only “time-
homogeneous” but also “memoryless”; specifically, this means the following:

(c) the probability distribution for how the noise behaves from a given time t onwards
is statistically independent of how the noise behaves up until time t;

(d) how the system behaves over any given time interval is not affected by how the
noise behaves outside of this time interval.

Once again, illustrating this with equation (1.4): if the stochastic process (Lt) has
independent increments, then property (c) is satisfied; in every case, property (d) is
satisfied.

Throughout this thesis, we study RDS satisfying properties (a)–(d) above. For any such
RDS, we have associated Markov transition probabilities ; that is to say, we can define a
Markov transition function P by

P (t, x,A) ∶= P(ω ∶ ϕ(t, ω)x ∈ A),

and given any initial condition in the phase space, the subsequent trajectory is a Markov
process for which the associated transition probabilities are given by P . (This is proved
rigorously in Section 2.5; there, and throughout this thesis, the notation “ϕtx(A)” is
preferred over the slightly more conventional “P (t, x,A)” notation.)

As we will see, much of the study of random dynamical systems revolves around
the stationary distributions of the associated Markov transition probabilities. (See
Appendix C for an introduction to Markov transition probabilities and their stationary
probability distributions.) Conversely, in many situations where one encounters a
homogeneous Markov process, this process can naturally be seen as a trajectory of some
RDS.

From now on, when we use the term “random dynamical system”, we will always mean
a random dynamical system satisfying properties (a)–(d) above except where stated
otherwise; and we will also assume for the rest of Section 1.2 that every random dynamical
system has the property of continuous dependence on initial conditions.

Investigating synchronisation in RDS

When one wishes to investigate mathematically the occurrence or otherwise of noise-
induced synchronisation, typically one of the key concepts involved is that of “Lyapunov
exponents” (which, heuristically, are a measure of the “infinitesimal-scale repulsivity” of

8In other words, the noise process is not a classical stochastic process, but is a kind of “generalised
stochastic process”, where the behaviour of the noise over a time interval [t1, t2] is identified with
(Lt −Lt1)t1≤t≤t2 .
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trajectories). Specifically, the maximal Lyapunov exponent9 associated to a trajectory
(ϕ(t, ω)x)t≥0 of a spatially differentiable RDS ϕ on a Riemannian manifold (or a suitable
subset thereof) is defined as the limit

λ(ω,x) ∶= lim
t→∞

1
t log ∣∣(dϕ(t, ω))x∣∣

if this limit exists. (When the phase space is a compact manifold, this is independent of
the choice of Riemannian structure.10) If this limit is negative, it typically follows that
the trajectories (evolving under the noise realisation ω) which start sufficiently close to x
exhibit some degree of mutual synchronisation.11 Given an ergodic probability measure
ρ for the Markov transition probabilities associated to the RDS ϕ, under fairly weak
conditions on the spatial derivatives of ϕ, λ(ω,x) exists and is constant across (P ⊗ ρ)-
almost all (ω,x);12 let us denote this constant by λρ.

The negativity of λρ will often imply that ρ-almost every initial condition is P-almost
surely locally asymptotically stable. But in and of itself, this does not say anything
about whether two trajectories starting at distant initial conditions will synchronise.
From a practical point of view: negativity of Lyapunov exponents will not automatically
guarantee that an array of processes evolving according to ϕ under the influence of the
same noise realisation will synchronise.

A typical “test” for synchronising behaviour in random dynamical systems takes roughly
the following form:

(A) If the range of possible behaviours that the system can undergo on a finite
time-scale is “sufficiently broad”, and if the system exhibits some local-scale
synchronising behaviour (as suggested by negativity of Lyapunov exponents),
then the RDS will exhibit some “large-scale” synchronising behaviour (in the
sense that many initially distant trajectories will approach each other in the long
run).

The basic principle behind this is that, given enough opportunity (i.e. after a sufficiently
long time), the trajectories of distant initial conditions will eventually be brought within

9The word “maximal” is used because, in more than one dimension, there is typically a “spectrum” of
Lyapunov exponents representing the growth rates of the different possible tangent vectors at the initial
condition x.

10This is an immediate consequence of the fact that the norms induced by two different Riemannian
metrics on a compact smooth manifold X are Lipschitz equivalent on TxX uniformly across all x ∈ X;
see [MO10].

11Rigorous results to this effect include [LeJ87, Lemme 3] (where we warn that the characters ∣∣2 are
missing from the end of the denominator in the formula for δ2(T )), [Car85, Proposition 2.2.3], [MS99,
Theorem 3.1, Remark (iii)], [Rue79, Theorem 5.1] and [Arn98, Theorem 7.5.15]. Nonetheless, a useful
task for future research would be to provide (especially in continuous time) a more general result than
those given in these references.

12See e.g. the start of Section 2 of [LeJ87] for discrete time; or for continuous time, see [Arn98,
Theorem 4.2.6] (which deals with the entire Lyapunov spectrum), restricted to one-sided time and applied
to the measure µ = P⊗ρ. As in [New15b, Remark 2.2.12], it is not hard to show that λρ < 0 if and only if
there exists t > 0 such that the “average finite-time Lyapunov exponent” ∫ log ∣∣(dϕ(t, ω))x∣∣P⊗ρ(d(ω,x))
is negative.
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some very small region, where synchronisation then occurs. The “sufficiently broad
behaviour” condition typically consists of two parts:

• a “transitivity” condition—i.e. a condition to the effect that individual trajectories,
or small-diameter clusters of trajectories, can be transferred from anywhere in the
phase space (or some relevant subset thereof) to anywhere else in the phase space
(or some relevant subset thereof);

• a “contractibility” condition—i.e. a condition to the effect that distant trajectories
can be brought (to some sufficient degree) closer together.

Now as it happens, there is a second important category of tests for synchronising
behaviour, where the requirement of local-scale synchronisation is replaced by some
“structure-preserving” property of the RDS; in other words, tests of this type take roughly
the following form:

(B) If the phase space of the RDS has some special structure that is respected by
the RDS, and (where necessary) if the range of possible behaviours that the
system can undergo on a finite time-scale is “sufficiently broad”, then the RDS
will exhibit some “large-scale” synchronising behaviour.

We now give a brief overview of some results from each category, as well as a further
result that does not really come under either category:

Tests of “category (A)”

[Bax91] considers random dynamical systems on compact connected smooth manifolds
generated by stochastic differential equations of the form

dXt = b(Xt)dt +
k

∑
i=1
σi(Xt) ○ dW i

t (1.5)

where b and σ1, . . . , σk are smooth vector fields and (W 1
t )t∈R, . . . , (W k

t )t∈R are independent
Wiener processes. It is assumed that the set of vector fields {b, σ1, . . . , σk} satisfies certain
“non-degeneracy” conditions (playing the role of the “transitivity” part of the “sufficienly
broad behaviour” requirement). As in [BS88], these conditions imply that there exists
a unique stationary probability measure ρ for the Markov transition probabilities of
the SDE (1.5), and moreover ρ is equivalent to the Riemannian measure (under any
Riemannian metric on the manifold). One of the results proved in [Bax91] is that if
λρ < 0 and the trajectories of any two distinct initial conditions are capable of being
brought closer together than their initial separation, then the RDS is “synchronising” in
the sense that for any two initial conditions in the phase space, with full probability the
distance between their subsequent trajectories will tend to 0 as time tends to ∞. (See
[Bax91, Theorem 4.10(i)].)

In Theorem 6.1 of this thesis, we provide general criteria for synchronisation on a
compact phase space. [Bax91, Theorem 4.10(i)] is a particular case of this more general
result; moreover, as a consequence of this result, the conditions on the vector fields in
[Bax91, Theorem 4.10(i)] can be replaced with the weaker condition that there is a unique
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stationary probability measure for the Markov transition probabilities.13

[FGS14] considers general RDS on separable complete metric spaces, and finds sufficient
conditions for certain notions of synchronisation to hold, that are based on convergence
in probability (rather than almost sure convergence). As an application, very broad
classes of ordinary differential equations on Rn are shown to exhibit synchronisation
when perturbed by n-dimensional additive Gaussian white noise. (See also Example 6.7
of this thesis.)

In [Hom13], discrete-time diffeomorphic RDS on a compact manifold are considered.
Theorems 1.114 and 1.2 of [Hom13] provide sufficient conditions for synchronisation to
occur (on either the whole manifold or a suitable open subset thereof). Once again,
Theorems 1.1 and 1.2 of [Hom13] are particular cases of Theorem 6.1 of this thesis
(although Proposition 4.70 of this thesis is needed in order to derive [Hom13, Theorem 1.1]
as a special case of Theorem 6.1 of this thesis). Nonetheless, the basic idea of the proof
of [Hom13, Theorem 1.1] can be generalised well beyond the context of diffeomorphic
RDS on a compact manifold. Specifically, the basic idea of the proof is that, given any
set S of initial conditions, if the subsequent trajectories are able to simultaneously reach
an arbitrarily small neighbourhood of some point p, and if the trajectory starting at p is
itself able to reach an open region U such that it is possible for all trajectories starting
in U to synchronise with each other, then it is possible for all the trajectories starting
in S to eventually synchronise with each other. It is precisely by combining this idea
with [LeJ87, Proposition 2] (which concerns the “statistical equilibrium” associated to
an ergodic probability measure of the Markov transition probabilities) that Theorem 6.6
of this thesis has been obtained.

Tests of “category (B)”

In [CF98], it is shown that for a monotone (i.e. order-preserving) continuous RDS on R (or
a subinterval thereof) whose Markov transition probabilities admit a unique stationary
probability measure, if there exists a “strictly invariant compact absorbing random set”
that is determined by the past of the noise, then the RDS admits a globally attracting
random fixed point (in the “pullback” sense); this implies, in particular, that the distance
between the trajectories of any two given initial conditions converges in probability to 0
as time tends to ∞. In Theorem 3.18 of this thesis, we give a similar result, in which
the unique ergodicity and “absorbing set” conditions are not needed, but rather for each
stationary probability measure ρ, we conclude that there is a random fixed point that is
attracting within the support of ρ. [CF98] demonstrates, as its main application, that
adding Gaussian white noise to the right-hand side of the differential equation

ẋ = αx − x3 (1.6)

13In particular, consideration of the “lifted” vector fields onto the unit sphere bundle is not needed.
14In Theorem 1.1, it seems that the required additional assumption that m is the only stationary

probability measure is missing.
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causes the pitchfork bifurcation exhibited by (1.6) to be destroyed, creating instead the
scenario that a globally attracting random fixed point persists across all values of α;15

see also Example 3.21 of this thesis, where the same result is obtained as a consequence
of Theorem 3.18.

Synchronisation in monotone RDS on partially ordered phase spaces has been considered
in [CS04] (with an application being found in [CCK06, Proposition 5.6]) and further
developed in [FGS15] (which is not specific to memoryless RDS, but also considers non-
memoryless time-homogeneous RDS).

The first major result to the effect that “sufficiently noisy” invertible RDS on the circle
are synchronising (and in fact, perhaps the first rigorous theoretical study concerning
the phenomenon of noise-induced synchronisation) is due to Antonov in 1984 ([Ant84]).
[Ant84] considers discrete-time RDS on the circle S1 generated by a finite family of
orientation-preserving homeomorphisms {f1, . . . , fk}, where at each stage one of these
maps is selected at random (independently of all previous stages) according to some fixed
probability distribution. It is shown that if the whole circle is a minimal invariant closed
set under both the original RDS ϕ and its time-reversal, then either

(i) the maps f1, . . . , fk are simultaneously conjugate to rotations (in other words, after
a continuous coordinate change on S1, the RDS ϕ just consists of random rotations);
or

(ii) there exists an orientation-preserving homeomorphism g ∶S1 → S1 such that

• gn = idS1 for some n ∈ N (so all orbits are n-periodic);

• g commutes with fi for all 1 ≤ i ≤ k; so letting Sg denote the set of orbits of

g, we can define the maps f̂1, . . . , f̂k ∶Sg → Sg as the projections of f1, . . . , fk
(respectively) onto Sg;

• equipping Sg with the obvious topology (making it a topological circle), the

RDS ϕ̂ on Sg generated by the maps {f̂1, . . . , f̂k} is synchronising (in that
the trajectories of two given initial conditions will almost surely mutually
converge).

Of course, the case that n = 1 (i.e. g is the identity function) is the case that the original
RDS ϕ is synchronising. Note that both scenario (i) and the “n ≥ 2” case of scenario (ii)
are “atypical” situations, and so the “typical” scenario for iterated function systems that

15Nonetheless (as discussed in [Cal+13]), after the addition of noise, synchronisation of trajectories
continues to occur faster than some deterministic rate when α < 0, while for α > 0 there is no almost
sure upper bound on how long one has to wait in order to observe synchronisation of two trajectories.
(Indeed, wherever synchronisation does not occur in the absence of noise, one can never expect the
addition of noise to create an almost sure deterministic rate of synchronisation.) Viewing this from
another perspective: as pointed out to the author by Maxim Arnold, for α < 0 we have synchronisation
of all trajectories under every sample path of the noise, while for α > 0 there is a non-empty Wiener-null
set on which some trajectories will never synchronise. This is a highly relevant observation, because the
space of sample paths is naturally equipped with a topology in which trajectories of the RDS depend
continuously on the sample path. (See Remark 2.7.) We will discuss this further in Section 4.7 and in
Example 6.7.
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are minimal in both forward time and reverse time is global-scale synchronisation.

In Section 5.1 of [DKN07], discrete-time invertible orientation-preserving RDS on the
circle are considered.16 It is shown ([DKN07, Proposition 5.2]) that if the whole circle
is a minimal invariant closed set and any arc is able to contract to an arbitrarily small
length under the action of the RDS, then there is a pullback-attracting random fixed point
which attracts almost the whole circle. Consequently, by reversing time, it is obtained
([DKN07, Proposition 5.3, Remarque 5.4]) that if the whole circle is a minimal invariant
closed set under the time-reversal of the RDS17 and any arc is able to contract to an
arbitrarily small length under the action of the RDS, then the RDS is synchronising (in
that there is a global random repeller whose law is atomless). This generalises a previous
result ([KN04, Theorem 1]) on synchronisation in iterated function systems on the circle.

In Section 5.2 of this thesis, we improve this result by showing that, given each of the two
conditions in [DKN07, Proposition 5.3], the other condition can be replaced with a weaker
condition. Moreover, our version of the contractibility of arcs condition is simply that
every arc is able to contract to a length less than its original length; as in Proposition 5.18
of this thesis, this implies that every arc is able to contract to an arbitrarily small length.
We formulate our results in such a way as to cover both discrete and continuous time.

[Kai93] considers the RDS generated by iterations of an orientation-preserving analytic
diffeomorphism f on the circle subject to a sequence of independent (but not necessarily
identically distributed)18 random perturbations, and finds conditions under which the
RDS is synchronising. (Specifically, these conditions are that f has an irrational
rotation number and has no subperiodicity, together with an additional condition on
the probability distributions of the random perturbations.)

There are also several results to the effect that a “generic” order- or orientation-preserving
RDS on a one-dimensional phase space exhibits negative Lyapunov exponents, when
Lyapunov exponents exist. See, for example: [LeJ87, Proposition 1(b)] with d = 1 (which
applies not only to invertible RDS on S1 but also to strictly monotone RDS on R);
[CF98, Remark 3.7] (which concerns SDE on R); [Cra02a, Corollary 4.4] (which concerns
continuous RDS on S1 in continuous time); and [Kai93, Theorem 2.1(c)].

Vanishing maximal Lyapunov exponents

We have mentioned that when investigating noise-induced synchronisation, Lyapunov
exponents are often considered. Now in general, a maximal Lyapunov exponent of exactly
0 indicates nothing about local-scale attractivity or repulsivity of trajectories.19

16Some rather restrictive additional assumptions are made, but these assumptions are not needed for
the proofs of the synchronisation results.

17Due to the additional assumptions made in [DKN07, Section 5.1], no distinction is made between
minimality under the forward action of the RDS and minimality under the time-reversal of the RDS

18Of the four properties (a)–(d) given further above, this RDS satisfies (a), (c) and (d), but not
necessarily (b).

19There is no reason to expect that in general, maximal Lyapunov exponents being exactly 0 is a
“degenerate” situation; see e.g. [BBD14].
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Nonetheless, there is one synchronisation result that is worth mentioning, where
synchronising behaviour can be deduced from a non-positive (i.e. negative or zero)
maximal Lyapunov exponent. This result is provided by [Bax91, Corollary 5.12] (together
with [Bax91, Theorem 4.10] mentioned further above): Once again, random dynamical
systems on a compact connected smooth manifold M generated by a SDE of the form
(1.5) are considered. A stronger “non-degeneracy” condition on the vector fields is
assumed than those required for [Bax91, Theorem 4.10].20 Let ρ be the unique stationary
probability measure of the Markov transition probabilities associated to equation (1.5).
In [Bax91, Corollary 5.12] it is shown that if λρ = 0 and the trajectories of any two
distinct initial conditions are capable of being brought closer together than their initial
separation, then the RDS is statistically synchronising with respect to ρ (in the sense
of Chapter 3 of this thesis); heuristically, this implies that after a sufficiently long time,
with extremely high probability the trajectories of all but an extremely small proportion
(according to the Riemannian measure) of the initial conditions in the phase space will
lie within some region of extremely small diameter. (The same conclusion, and indeed a
much stronger conclusion, holds when λρ is strictly negative rather than 0, as given by
[Bax91, Theorem 4.10].)

1.3 On the one-to-one correspondence Iϕ↔ I+ϕ
Foundational to the proof of Theorem 3.6 is the well-known one-to-one correspondence
between Markov invariant measures and stationary measures, which is itself a special case
of the more general one-to-one correspondence between two-sided-time invariant measures
and one-sided-time invariant measures. We will first explain the former special case (as
studied in this thesis), and then explain the general case.

This section will assume basic familiarity with random dynamical systems.

Stationary measures and Markov invariant measures

Let ϕ be a RDS on a phase space X over a measure-preserving dynamical system
(Ω,F ,P, (θt)t∈T). We write πΩ ∶ (ω,x) ↦ ω and πX ∶ (ω,x) ↦ x for the projections from
Ω ×X onto Ω and X respectively.

An invariant measure of ϕ is a probability measure µ on Ω × X with πΩ∗µ = P that
is invariant under the dynamical system (Θt)t∈T+ given by

Θt(ω,x) = (θtω,ϕ(t, ω)x).

20Specifically: Let T≠0M be the set of non-zero tangent vectors on M ; and for any vector field σ on M ,
let σ̂ be the vector field on the manifold T≠0M given in local coordinates by σ̂(x, v) = (x, v, f(x), f ′(x)v)
where σ(x) = (x, f(x)). (In other words, σ̂ is the restriction to T≠0M of κ ○ dσ, where κ denotes
the canonical flip on TTM and dσ ∶TM → TTM is the derivative of σ; see also [Ver14] and [Arn98,
Theorem 2.3.42(ii)].) For [Bax91, Corollary 5.12], it is assumed that the vector fields {σ̂1, . . . , σ̂k} satisfy
Hörmander’s condition—that is to say, the union of the images of the vector fields contained in the Lie
algebra generated by {σ̂1, . . . , σ̂k} is equal to the whole of T (T≠0M).
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Provided the measurable structure of X is that of a standard measurable space (i.e. it
can be regarded as a Borel subset of a Polish space, equipped with the Borel σ-algebra),
any probability measure µ on Ω ×X with πΩ∗µ = P admits a disintegration—that is, a
random probability measure µω such that µ can be expressed as

µ(A) = ∫
Ω
µω(Aω)P(dω)

where Aω denotes the ω-section of a measurable set A ⊂ Ω × X. Moreover, such a
disintegration µω is unique up to P-almost everywhere equality. With this, one can
show that µ is an invariant measure if and only if

ϕ(t, ω)∗µω = µθtω P-a.s.

for each t ∈ T+.

Now suppose we place a two-sided filtration (F s+ts )s∈T,t∈T+ on the underlying probability
space, such that the dynamical system (θt) becomes a filtered dynamical system and ϕ is
adapted to this same filtration (see Section 2.2 for precise details).21 With this, we can
say that ϕ is a memoryless RDS if the σ-algebras F0

−∞ and F∞0 (defined in the natural
way) are independent σ-algebras under P. (This then implies that for all t ∈ T, F t−∞ and
F∞t are independent.)

Assume ϕ is memoryless. We say that an invariant measure µ is a Markov invariant
measure if µ admits a disintegration µω that depends F0

−∞-measurably on ω. Now we
will say that a probability meausre ρ on X is stationary if

ρ = ∫
Ω
ϕ(t, ω)∗ρ(⋅)P(dω).

This is the same as saying that ρ is stationary under the Markov transition probabilities
associated to ϕ.

Now then, it is well-known that for a spatially continuous memoryless RDS ϕ on a Polish
space X, the map

µ ↦ ∫
Ω
µω(⋅)P(dω) = πX∗µ

serves as a bijection from the set IM of Markov invariant measures to the set S of
stationary probability measures. Moreover, if we restrict F to being the smallest σ-
algebra containing every member of the two-sided filtration (F s+ts ), then the same map
serves as a bijection between the set of ergodic Markov invariant measures and the set of
ergodic stationary probability measures. (This can be obtained as a consequence of the
more general one-to-one correspondence between invariant measures and forward-time
invariant measures, which we will soon describe; see also Section 1.7 of [Arn98].)

As in [KS12, Theorem 4.2.9], the inverse of the above bijective map is constructed as

21If X is a separable metric space and ϕ is spatially continuous, then we can just take the “natural
filtration” Fs+ts ∶= σ(ω ↦ ϕ(θuω, v)x ∶ x ∈ X,s ≤ u ≤ u + v ≤ t), as is done in some expositions of the
topic.
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follows: given ρ ∈ S, if we take an arbitrary unbounded increasing sequence (tn) in T+,
the limit

µω ∶= lim
n→∞

ϕ(tn, θ−tnω)∗ρ (1.7)

exists in the narrow topology for P-almost all ω ∈ Ω; moreover, this limiting random
measure µω stays the same (up to almost sure equality) when the sequence (tn) is
changed. This map ρ ↦ µ (where µω is a disintegration of µ) serves as the inverse of
the map µ ↦ πX∗µ. As in [LeJ87, Lemme 1(b)], the measure-valued stochastic process
(ϕ(t, ⋅)∗ρ)t∈T+ is convergent in distribution, with the limiting distribution Qρ (called the
“statistical equilibrium” associated to ρ) being precisely equal to the law of the random
measure µω.22

Now let us outline the proof presented in [KS12] that the above construction for the
inverse map is well-defined. Fix ρ ∈ S. Let (tn) be an unbounded increasing sequence
in T+, and let µn,ω ∶= ϕ(tn, θ−tnω)∗ρ for each n and ω. It is not hard to show that
for any bounded continuous g ∶X → R, the stochastic process µn,ω(g) is a martingale,
and therefore converges almost surely. Now it has been proved in [BPR06] that for any
sequence of random probability measures µn,ω on a Polish space X, if for every bounded
continuous g ∶X → R the stochastic process µn,ω(g) is almost surely convergent, then the
measure-valued stochastic process µn,ω is itself almost surely convergent in the narrow
topology. Hence the limit (1.7) exists in the narrow topology almost surely. It is clear
that if we took a different sequence (t′n) then we would obtain the same limit (almost
everywhere), since the two sequences (tn) and (t′n) can be expressed as subsequences of
one “larger” increasing sequence (sn) on which the above construction can be applied.
Thus the construction of the measure µ is well-defined. Moreover, this construction does
not make any use of continuity properties of ϕ. Of course, once the measure µ has
been obtained, the next stage in the proof of the one-to-one correspondence between IM
and S is to show that the constructed measure µ is an invariant measure. This is a
straightforward task, assuming the spatial continuity of ϕ.

Now it is worth mentioning that the result in [BPR06] is much easier to prove in
the particular case that X is compact. (Indeed, it can be obtained as an immediate
consequence of Corollary A.18.) As a consequence of the result holding when X is
compact, one can easily deduce that the result holds whenever X is a Borel subset of a
Polish space and the sequence of random probability measures µn,ω has the property that

∫
Ω
µn,ω(⋅)P(dω) = ∫

Ω
µm,ω(⋅)P(dω)

for all m,n ∈ N. (This consequence is obtained simply by embedding X into the Hilbert
cube [0,1]N and regarding µn,ω as a probability measure on [0,1]N with µn,ω(X) = 1.
Letting µω be the limiting random measure on [0,1]N, the dominated convergence theorem
gives that ∫Ω µω(⋅)P(dω) = ∫Ω µn,ω(⋅)P(dω) for any n, and so µω(X) = 1 almost surely.)

In the case of the above construction for the inverse of the map µ ↦ πX∗µ, we have

22In some references, such as in [LeJ87] itself, the term “statistical equilibrium” is used to refer to the
Markov invariant measure µ rather than to Qρ.
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that

∫
Ω
µn,ω(⋅)P(dω) = ρ

for all n. Consequently, [KS12, Theorem 4.2.9] is not specific to the case that X is Polish,
but holds whenever X is a Borel subset of a Polish space.23

Our new approach

The notion of a Markov invariant measure is not a topological notion but purely a
measurable notion. Consequently, for any stationary probability measure ρ ∈ S, the
associated statistical equilibrium Qρ remains the same under any change of metric that
preserves both the measurable structure of X and the spatial continuity of ϕ. Of course,
most changes of metric that merely preserve the measurable structure ofX do not preserve
the spatial continuity of ϕ.

However, if we can remove the requirement that ϕ is spatially continuous24 and still
obtain that the measure µ as constructed in (1.7) is an invariant measure, then the whole
picture changes. The one-to-one correspondence between IM and S no longer relies on
any continuity assumptions. As a consequence, the statistical equilibrium Qρ becomes
meaningful without reference to a topology, i.e. it becomes a measurable invariant. Now
as in [Bax91], the statistical equilibrium Qρ encodes the statistical asymptotic behaviour
of the n-point motions of ϕ. Hence, key properties of the asymptotic n-point dynamics
also become measurable invariants—not least, synchronisation of trajectories. (The
precise sense in which synchronisation is preserved under measurable changes of metric
is described in Chapter 3.)

As in Chapter 3, the requirement of spatial continuity to prove the invariance of µ can
indeed be removed. This can be achieved as follows: Since µω is F0

−∞-measurable, we
may assume without loss of generality that F is the smallest σ-algebra containing every
member of the two-sided filtration (F s+ts ). For each t ∈ T+, letting µt,ω ∶= ϕ(t, θ−tω)∗ρ for
all ω, we may regard the random measure µt,ω as a disintegration of a probability measure
µt on the measurable space (Ω ×X,F∞−t ⊗ B(X)). One can show that the measure µ as
constructed in (1.7) agrees with µt on F∞−t⊗B(X) for all t. One can also show that for each
t, µt is invariant under the dynamical system (Θs)s∈T+ acting on F∞−t⊗B(X). Hence, by the
uniqueness of extensions of premeasures to measures, µ is invariant under the dynamical
system (Θs)s∈T+ acting on F ⊗ B(X). So µ is an invariant measure. (Moreover, again
using uniqueness of extensions, it is not hard to show that if ρ is ergodic then µ is ergodic.)

The above approach makes no reference to the continuity or otherwise of ϕ. In other
words, the one-to-one correspondence between IM and S described above holds for any
measurable memoryless RDS on a Borel subset of a Polish space.

23I am grateful to Gerhard Keller and Hans Crauel for the discussions that led to these observations.
24We warn, however, that if we remove the spatial continuity of ϕ, then we can no longer necessarily

just work with the filtration Fs+ts ∶= σ(ω ↦ ϕ(θuω, v)x ∶ x ∈ X,s ≤ u ≤ u + v ≤ t), as ϕ may no longer
be adapted to this filtration. In practice, this will rarely if ever be a problem: a natural choice for the
underlying filtration (Fs+ts ) will usually come from the structure of the noise itself, independently of the
RDS that is defined over the noise.
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Now the martingale convergence arguments used in [KS12, Theorem 4.2.9], when
combined with the consideration of a random measure on X as being a disintegration
of a measure on Ω × X, actually yield a kind of “extension theorem”. Specifically:
one can prove (Theorem 3.35) that for any one-parameter filtered probability space
(Ω,F , (Gt)t∈T+ ,P) and any standard measurable space (X,Σ), given a consistent family
{µt}t∈T+ of probability measures µt on Gt ⊗ Σ whose Ω-projection coincides with P∣Gt ,
there exists a unique probability measure µ on σ(Gt ∶ t ∈ T+) ⊗ Σ whose restriction to
Gt ⊗Σ agrees with µt for all t. In Chapter 3 of this thesis, the way in which we present
the theory of Markov invariant measures is to first develop this extension theorem as a
general result, and then employ it in the proof of the one-to-one correspondence between
IM and S (Theorem 3.49). (So the martingale convergence theorem does not directly
appear within our proof of the correspondence.)

It is also worth adding that in continuous time, by Lévy’s upward theorem together
with the fact that the narrow topology is determined by a countable family of bounded
continuous functions, one can obtain that for any unbounded countable S ⊂ [0,∞), in
the narrow topology we have the convergence

ϕ(t, θ−tω)∗ρ → µω as t tends to ∞ in S (1.8)

P-almost surely. (See also Theorem 3.33.) Again, this statement does not rely on any
continuity properties of ϕ. Nonetheless, if we are working with a topology in which the
map t↦ ϕ(t, θ−tω)x is left-continuous for every ω and x (or right-continuous for every ω
and x),25 then it follows that

ϕ(t, θ−tω)∗ρ → µω as t→∞ (1.9)

P-almost surely, where t is not restricted to a countable set but ranges throughout
[0,∞). (In general, (1.9) does not follow from the fact that (1.8) holds almost surely for
each unbounded countable S,26 since there are uncountably many unbounded countable
subsets of [0,∞).)

For fuller details, see Sections 3.3–3.5 of this thesis (and in particular, Theorem 3.49).

25More generally, the requirement is that for every bounded continuous function g ∶X → R, the
stochastic process ϕ(t, θ−tω)∗ρ(g) is a separable stochastic process.

26This is perhaps most easily demonstrated by the (rather pathological) example of a RDS describing
“random kicks that immediately undo themselves”: Let Ω be the set of surjective increasing right-
continuous functions ω ∶R→ Z with ω(0) = 0 (equipped with the σ-algebra F generated by the projections
ω ↦ ω(t)); let (θt)t∈R be the shift system θtω(s) = ω(s+t)−ω(t); and let P be the probability measure on
Ω such that the stochastic processes (ω(t))t≥0 and (−ω(−t))t≥0 are independent Poisson processes with
the same parameter λ. Let F ts ∶= ⋂δ>0 F̃ ts−δ where F̃vu ∶= σ(ω ↦ ω(r) − ω(u) ∶ u ≤ r ≤ v). [Alternatively,
one can just take the natural filtration of the RDS ϕ that we will introduce.] Let X = {−1,1}. For any
t ≥ 0, ω ∈ Ω and x ∈X, let ϕ(t, ω)x = x if the map τ ↦ θτω(t) is left-continuous at 0 and let ϕ(t, ω)x = −x
otherwise. Then we can take ρ = µω = δ1 for all ω; in this case, (1.8) will hold almost surely for any given
unbounded countable S, but (1.9) will not hold for any ω ∈ Ω.
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One-sided-time invariant measures

Our new approach described above can easily be extended to the more general one-to-
one correspondence between two-sided-time and one-sided-time invariant measures, again
yielding a statement that requires no continuity assumptions.

We still equip the noise with a two-sided filtration (F s+ts ) as described above, and assume
moreover that F is the smallest σ-algebra containing all members of this filtration. We
still assume that the RDS ϕ is adapted to this filtration, but we do not need to assume
that ϕ is memoryless. We write Iϕ for the set of invariant measures of ϕ. Again, X is a
Borel subset of a Polish space.

A one-sided-time invariant measure is a probability measure µ+ on the measurable space
(Ω ×X,F∞0 ⊗ B(X)) such that πΩ∗µ+ = P∣F∞0 and µ+ is invariant under (Θt)t∈T+ . Let us
write I+ϕ for the set of one-sided-time invariant measures.

By much the same arguments as in Section 3.5 of this thesis, one can show that without
any continuity requirements, the map

µ ↦ µ∣F∞0 ⊗B(X)

serves as a bijection from Iϕ to I+ϕ, and the inverse map is constructed as follows:
given any µ+ ∈ I+ϕ, taking µ+ω to be a disintegration of µ+ (over the probability space
(Ω,F∞0 ,P∣F∞0 )), for any unbounded countable S ⊂ T+ we have that the limit

µω ∶= lim
t→∞
in S

ϕ(t, θ−tω)∗µ+θ−tω (1.10)

exists in the narrow topology for P-almost all ω ∈ Ω; moreover, this limiting random
measure µω stays the same (up to almost sure equality) when the set S is changed. This
map µ+ ↦ µ (where µω is a disintegration of µ) serves as the inverse of the above map
µ↦ µ∣F∞0 ⊗B(X).

Now in continuous time, even if we are working in a topology in which the map
(t, x) ↦ ϕ(t, θ−tω)x is jointly continuous, it is not the case that for every version of
the disintegration µ+ω of µ the limit

lim
t→∞

ϕ(t, θ−tω)∗µ+θ−tω

exists almost surely: indeed, if we have one version in which the limit does exist almost
surely, it will generally be possible to modify this version on a null set in such a manner
that the limit no longer almost surely exists. The natural question is then whether there
exist some “reasonable” conditions under which there is guaranteed to exist at least one
version of the disintegration such that this limit does exist almost surely. This question
remains open.
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Chapter 2. Foundations

We will develop the foundational theory of random dynamical systems that will be needed
for results later on in the thesis.

2.1 Standard measurable spaces

Before introducing random dynamical systems, we first introduce the kind of space on
which they will always be assumed to act throughout this thesis.

Recall that a topology or a topological space is said to be Polish if it is separable and
completely metrisable. Note that the completion of any separable metric space is a Polish
space.

Definition 2.1. A measurable space (X,Σ) is said to be standard if there exists a Polish
topology on X whose Borel σ-algebra is Σ.

The term standard Borel space is also often used for a measurable space that is standard.
The Borel isomorphism theorem (e.g. [Sri98, Theorem 3.3.13]) states that for a measurable
space (X,Σ), the following are equivalent:

(i) (X,Σ) is standard;

(ii) (X,Σ) is measurably isomorphic to either a finite discrete space, a countable
discrete space, or ([0,1],B([0,1])).

(Obviously it follows, in particular, that (X,Σ) is standard if and only if there exists a
compact metrisable topology on X whose Borel σ-algebra is Σ.)

For a full proof of the above theorem, see e.g. [Sri98, Theorem 3.3.13] or [KL14,
Theorem A.17]. We now present a sketch of the proof:

Sketch-proof of the Borel isomorphism theorem. The statement is clear if X is finite or
countable. Suppose X is uncountable. First observe that via binary expansions, [0,1)
is measurably isomorphic to a cocountable subset of the set C ∶= {0,1}N; and therefore
[0,1] is measurably isomorphic to C (since any uncountable measurable space in which
all singletons are measurable is clearly isomorphic to any of its cocountable subsets).
Moreover, since N and N × N are isomorphic as sets, it follows that C is measurably
isomorphic to [0,1]N. Now it is known that for two measurable spaces to be isomorphic,
it is sufficient that each can be measurably embedded as a measurable subset of the
other; so, to prove the desired result, we show that (I) [0,1]N contains a copy of X as
a measurable subset, and (II) X contains a copy of C as a measurable subset. (I) Fix
a complete metrisation d of the topology of X in which diamX ≤ 1. Given a countable
dense subset {xn}n∈N of X, the map x↦ (d(x,xn))n∈N serves as a topological embedding
of X into [0,1]N. If we let Un be the union of all open subsets V of [0,1]N satisfying
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diam(X ∩ V ) ≤ 1
n under the metric d, one can use the completeness of d to show that

X = X̄ ∩ ⋂∞n=1Un (where X̄ is the closure of X in [0,1]N). (II) If X is a perfect space,1

then (as in the “Cantor middle thirds” construction) one can obtain a copy of C as the
intersection of a nested sequence of unions of closed balls (under a complete metrisation of
the topology of X). If X is not perfect, then letting N ⊂X be the set of points admitting
a neighbourhood that is at most countable, one can show (using the separability of X)
that N is itself countable, from which it follows that X ∖N is a perfect space.

It can also be shown ([Sri98, Proposition 3.3.7]) that for any separable metric space
(X,d), the following are equivalent:

• B(X) is standard;

• X is homeomorphic to a Borel subset of a Polish space;2

• (X,d) is isometric to a Borel subset of a separable complete metric space;

• X is a Borel subset of the d-completion of X;

• for every metric d′ on X that is topologically equivalent to d, X is a Borel subset
of the d′-completion of X.

Remark 2.2. It is known that, assuming the axiom of choice, every metrisable topology
whose Borel σ-algebra is standard is separable ([Sri98, Remark 3.3.8, Theorem 4.3.8]).
Now there are several results in this thesis (particularly in Chapter 3) where, working with
a standard measurable space (X,Σ), we prove that in every separable metrisable topology
on X with B(X) = Σ some particular phenomenon occurs. Since every metrisable
topology whose Borel σ-algebra is standard is separable, we can in fact say that in every
metrisable topology on X with B(X) = Σ, the desired phenomenon occurs. (Nonetheless,
we do still choose to keep the word “separable” in the statements of these results.)

Recall that a sequence of probability measures (µn) on a measurable space (X,Σ) is said
to converge strongly to a probability measure µ if for every A ∈ Σ, µn(A) → µ(A) as
n→∞.

Lemma 2.3. Let (X,Σ) be a standard measurable space, let (µn) be a sequence of
probability measures on X, and let µ be a probability measure on X. Then µn converges
strongly to µ as n → ∞ if and only if for every Polish topology on X generating Σ, µn
converges weakly to µ.

Proof. It is clear that strong convergence always implies weak convergence. Conversely,
suppose that for every Polish topology on X generating Σ, µn converges weakly to µ. Fix
any A ∈ Σ. By [KL14, Theorem A.11], there exists a Polish topology on X generating Σ
in which A is both open and closed; since µn converges weakly to µ in this topology, we
have that µn(A)→ µ(A).

1A topological space X is said to be a perfect space if every point in X is an accumulation point of
X.

2The term “Lusin space” is sometimes used to mean a topological space that is a Borel subset of a
Polish space; however, we avoid the term here, since it can have other meanings also.
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2.2 The formal setup

We introduce the notion of a “memoryless random dynamical system”. This consists of
two components: a noise space (equipped with a “memoryless” filtration); and an action
of this noise space (“filtered” with respect to the same filtration) on some phase space.

The noise space

Let T be either Z or R, and let T+ ∶= T∩[0,∞). (The set T represents the “time set” of the
noise, which we regard as being two-sided.) Let T̄ ∶= T∪{−∞,∞}, and let T̄+ ∶= T+∪{∞}.

Let (Ω,F) be a measurable space. We refer to an element ω ∈ Ω as a sample point
or noise realisation. Let (F s+ts )s∈T, t∈T+ be a family of sub-σ-algebras of F such that

(i) F t2t1 ⊂ F
t3
t0

for all t0 ≤ t1 ≤ t2 ≤ t3 in T;

(ii) σ(F s+ts ∶ s ∈ T, t ∈ T+) = F .

We refer to (F s+ts )s∈T, t∈T+ as an exhaustive two-sided filtration of F . Now let (θt)t∈T be a
family of functions θt ∶Ω→ Ω such that

(i) θ0 = idΩ, and θs+t = θt ○ θs for all s, t ∈ T;

(ii) θτF ts = F t−τs−τ for all s, t, τ ∈ T with s ≤ t.

We refer to (Ω,F , (F s+ts )s∈T, t∈T+ , (θt)t∈T) as an exhaustively filtered dynamical system. We
sometimes refer to the group of maps (θt)t∈T as the time-shift system. We will use the
following notations:

F∞s ∶= σ(F s+ts ∶ t ∈ T+) for any s ∈ T
F∞∞ ∶= ⋂

s∈T
F∞s

F t−∞ ∶= σ(F tt−s ∶ s ∈ T+) for any t ∈ T
F−∞−∞ ∶= ⋂

t∈T
F t−∞

(The σ-algebras F−∞−∞ and F∞∞ are referred to as the tail σ-algebras.) It will also be useful
to have the convention that F∞−∞ ∶= F .

It is easy to show that (given any s, t, τ ∈ T) the following hold:

θτF = F
θτF∞s = F∞s−τ
θτF∞∞ = F∞∞
θτF t−∞ = F t−τ−∞
θτF−∞−∞ = F−∞−∞

So in particular, θt serves as a measurable transformation of the measurable space (Ω,F)
for all t ∈ T. Let P be a probability measure on (Ω,F) with the following properties:
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(i) θt∗P = P for all t ∈ T (i.e. P is an invariant measure of the time-shift system (θt));

(ii) for each t ∈ T, F t−∞ and F∞t are independent σ-algebras under P.

To verify condition (i), it is sufficient just to consider t ∈ T+. Property (i) implies that
for any measurable space (X,Σ) and any (F ,Σ)-measurable function q ∶Ω → X, the
stochastic process (q○θt)t∈T is strictly stationary. Note that given property (i), a sufficient
condition for property (ii) is that there exists t ∈ T such that F t−∞ and F∞t are independent
σ-algebras under P.

Property (ii) implies in particular that for any t0 ≤ t1 ≤ t2 ≤ t3 in T̄, F t1t0 and F t3t2
are independent under P. This statement is obvious, except perhaps in the case that
either t0 = t1 = t2 = −∞ or t1 = t2 = t3 =∞. Indeed, for this case, the statement reduces to
being a statement of Kolmogorov’s 0-1 law, which asserts the following:

Lemma 2.4. The tail σ-algebras F−∞−∞ and F∞∞ consist of only P-null sets and P-full sets.

Proof. For any t ∈ T, F∞∞ is clearly independent of F t−∞. Hence, by Corollary A.9, F∞∞
independent of the whole of F . In particular, F∞∞ is independent of itself, i.e. F∞∞ consists
of only P-null sets and P-full sets. One can argue similarly for F−∞−∞ .

We will refer to (Ω,F , (F s+ts )s∈T, t∈T+ , (θt)t∈T,P) as a (memoryless, stationary) noise space.3

Basic examples and results

Let us mention a couple of important typical examples of what the noise space
(Ω,F , (F s+ts ), (θt),P) could be.

Example 2.5. Let T = Z. Given a probability space (I,I, ν), define

Ω ∶= IZ

F ∶= I⊗Z

P ∶= ν⊗Z

θn((αr)r∈Z) ∶= (αn+r)r∈Z for each n ∈ Z
Fnm ∶= σ( (αr)r∈Z ↦ αk ∶ m + 1 ≤ k ≤ n ) for each m,n ∈ Z with m ≤ n.

(In particular, Fmm is the trivial σ-algebra {∅,Ω} for each m ∈ Z.)

It is not hard to show that (Ω,F , (Fm+rm )m∈Z, r∈N0 , (θn)n∈Z,P) is a noise space (in
accordance with our formalism). Note that if I is equipped with a second-countable
topology generating I, then the product topology on Ω generates F ; in this case, if ν has
full support in I then P has full support in Ω.

3In general, a “(stationary) noise space” may be defined as an exhaustively filtered dynamical system
together with a probability measure P satisfying property (i) (but not necessarily property (ii)). However,
throughout this thesis, we will always require a “noise space” to be memoryless, meaning that P also
satisfies property (ii).
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Example 2.6 (Gaussian white noise). As in Sections A.2 and A.3 of [Arn98], a d-
dimensional Gaussian white noise process may be described within our framework as
follows: Let T = R. Let Ω ∶= {ω ∈ C(R,Rd) ∶ ω(0) = 0}. Let F be the smallest σ-algebra
on Ω with respect to which the projection Wr ∶ω ↦ ω(r) is measurable for every r ∈ R. For
each s, t ∈ R with s ≤ t, let F ts be the smallest σ-algebra on Ω with respect to which Wr−Ws

is measurable for every r ∈ [s, t]. Let P be the Wiener measure on (Ω,F)—that is, P is the
unique probability measure under which the stochastic processes (Wt)t≥0 and (W−t)t≥0 are
independent d-dimensional Wiener processes. For each s, t ∈ R, set θtω(s) ∶= ω(s+t)−ω(t).
Once again, it is not hard to show that (Ω,F , (F s+ts )s∈R, t≥0, (θt)t∈R,P) is a noise space (in
accordance with our formalism).

Remark 2.7. As in Lemma B.9, on the set C(R,Rd), the evaluation σ-algebra σ(ω ↦
ω(t) ∶ t ∈ R) is precisely the Borel σ-algebra of the topology of uniform convergence
on compact sets. So in Example 2.6, equipping Ω with the topology inherited from
C(R,Rd), we have that F is the Borel σ-algebra of Ω. As in [Fre13, Proposition 477F],
the Wiener measure P has full support. It is easy to show (using Lemma B.6) that the
map (t, ω)↦ θtω is jointly continuous.

We will now show that “memoryless stationary noise is always ergodic”:

Lemma 2.8 (cf. [New15c, Lemma 5.1]). For any t ∈ T ∖ {0}, θt is an ergodic
transformation of (Ω,F ,P).

Proof. Since the inverse of an invertible ergodic transformation is ergodic, it is sufficient
just to consider positive t. Fix t ∈ T+ ∖ {0}. Let E ∈ F be a set with θ−t(E) = E, and let
h ∶Ω→ [0,1] be a version of P(E∣F∞0 ). By Lemma A.14, for every n ∈ Z, h○θnt is a version
of P(E∣F∞nt); and by Lemma 2.4, the constant map ω ↦ P(E) is a version of P(E∣F∞∞ ).
Therefore, by Lévy’s downward theorem ([Wil91, Theorem 14.4]), h ○ θnt(ω) → P(E) as
n → ∞ for P-almost all ω ∈ Ω. But since θt is itself P-preserving, it follows that for
each n ∈ Z, h ○ θnt(ω) = P(E) for P-almost all ω ∈ Ω. In other words, the constant map
ω ↦ P(E) is a version of P(E∣F∞nt) for each n, i.e. E is independent of F∞nt for each n. It
follows by Corollary A.9 that E is independent of F . In particular, E is independent of
itself, i.e. P(E) ∈ {0,1}.

Action of the noise

Let (X,Σ) be a standard measurable space. We write M(X,Σ) for the set of probability
measures on (X,Σ), and we equipM(X,Σ) with its “evaluation σ-algebra” K(X,Σ), namely
the smallest σ-algebra with respect to which the map ρ ↦ ρ(A) is measurable for all
A ∈ Σ. We say that a probability measure ρ on X is atomless if ρ({x}) = 0 for all
x ∈X. We define the projections πΩ ∶Ω×X → Ω and πX ∶Ω×X →X by πΩ(ω,x) = ω and
πX(ω,x) = x. We write ∆X ∶= {(x,x) ∶ x ∈ X} ⊂ X ×X, and for any A ⊂ X, we write
∆A ∶= {(x,x) ∶ x ∈ A}. It is not hard to show that for any A ∈ Σ, ∆A ∈ Σ⊗Σ.

Let ϕ = (ϕ(t, ω))t∈T+, ω∈Ω be a (T+× Ω)-indexed family of functions ϕ(t, ω) ∶X → X such
that:

(i) ϕ(0, ω) = idX for all ω ∈ Ω;
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(ii) ϕ(s + t, ω) = ϕ(t, θsω) ○ϕ(s,ω) for all s, t ∈ T+ and ω ∈ Ω;

(iii) for each t ∈ T+, the map (ω,x) ↦ ϕ(t, ω)x from Ω ×X to X is (F t0 ⊗ Σ,Σ)-
measurable.

Properties (i) and (ii) are summarised by saying that ϕ is a (forward) cocycle over (θt)t∈T.
Property (iii) is summarised by saying that ϕ is adapted to (or filtered with respect to) the
filtration (F s+ts )s∈T, t∈T+ . Note that for each s ∈ T and t ∈ T+, the map (ω, y) ↦ ϕ(t, θsω)y
from Ω ×X to X is (F s+ts ⊗Σ,Σ)-measurable.

We refer to ϕ as a (filtered) random dynamical system on the phase space (X,Σ) over the
noise space (Ω,F , (F s+ts ), (θt),P). We will sometimes refer to the family of time-shifts
(θt)t∈T as the base system of the RDS.

In the case that the map (t, ω, x) ↦ ϕ(t, ω)x is (B(T+) ⊗F ⊗Σ,Σ)-measurable, we will
say that ϕ is (forward-)measurable.4 In the case that the map (s, t, ω, x) ↦ ϕ(t, θsω)x
is (B(T) ⊗ B(T+) ⊗ F ⊗ Σ,Σ)-measurable, we will say that ϕ is two-way measurable.
(Obviously if T = Z then ϕ is automatically two-way measurable.) Note that if ϕ is
measurable and the map (t, ω)↦ θtω is jointly measurable, then ϕ is two-way measurable.

A path in X taking the form (ϕ(t, ω)x)t∈T+ for some ω ∈ Ω and x ∈ X will sometimes
be called a (forward) trajectory of ϕ. A path in X taking the form (ϕ(t, θ−tω)x)t∈T+ for
some ω ∈ Ω and x ∈X will sometimes be called a pullback trajectory of ϕ.

Note that in the “deterministic case” where Ω is a singleton {ω}, (ϕ(t, ω))t∈T+ is an
autonomous dynamical system on (X,Σ). (See Section C.2.)

Physical interpretation of the formalism

The formalism that we have just presented (involving both the noise space and its “action”
on the state space) is intended to be a precise mathematical way of representing the notion
of a non-deterministic dynamical system whose non-determinism is specifically due to
the moment-by-moment influence of the behaviour of some time-homogeneous random
noise process which dictates the evolution of the the system in a time-homogeneous
manner. (Our formalism also incorporates the additional notion that the noise process is
statistically memoryless.)

The term “time-homogeneous” is not inherently a mathematically rigorous term, but
can be understood physically as meaning “making no reference to any kind of external
clock”. Let us first illustrate the concept in terms of deterministic systems.

A “general deterministic dynamical system” (that is not necessarily time-homogeneous)
can be represented mathematically as a two-parameter family (f ts)s,t∈T, t≥s of functions
f ts ∶X → X, where T represents some “set of times”. The physical interpretation is that

4Here, we are using the word in a stricter sense than in Chapter 1, where the term “measurable RDS”
was used (in contrast to the term “topological RDS”) simply to mean an RDS acting on a standard
measurable space with no pre-defined topological structure.
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if a process governed by this dynamical system is at state x ∈ X at time s, then it will
be at state f ts(x) at time t. Of course, for this to make physical sense, we require the
consistency relations that (I) f ss is the identity for all s ∈ T , and (II) fus = fut ○ f ts for all
s, t, u ∈ T with s ≤ t ≤ u.

By contrast, a deterministic dynamical system that is time-homogeneous can be
represented mathematically in a slightly more succinct manner, namely as a one-
parameter family (f t)t∈T+ of functions f t ∶X →X, with the physical interpretation being
as follows: if a process governed by this dynamical system is at state x at time s, then
(regardless of what the time s is) it will be at state f t(x) at time s + t. For this to
make physical sense, we require the consistency relations that (I) f 0 is the identity, and
(II) f s+t = f t ○ f s for all s, t ∈ T+. These relations form the definition (in the purely
set-theoretic setting) of an “autonomous dynamical system on X”.

Let us now provide a heuristic interpreration for our formalism of a “random dynamical
system”.

We imagine that we have some “time-homogeneous” noise process, which (for
mathematical purposes) we regard as being “eternal”, i.e. having no start and no end.
(Indeed, it is not surprising that we should view a “time-homogeneous” noise process in
this way, since there should be no “clock” to specify when the noise process starts or ends.)

Suppose we fix an arbitrary time to be our “reference time t = 0”, and imagine that we
have some mechanism for “plotting” precisely how the noise behaves over time. (Here,
we imagine that the plot is able to display how the noise behaves over the whole timeline,
both the future {t ≥ 0} and the past {t ≤ 0}.) Since the noise is random, there are
(uncountably) many possibilities for how the plot will turn out. The set of all physical
possibilities for how the plot will turn out is denoted by Ω; since the noise is “time-
homogeneous”, the set Ω does not depend on which time was chosen as our reference
time.

Now suppose the plot turns out to be ω (which is some element of the set Ω); and
suppose that someone else observing the same noise process chooses their reference time
to be τ later than our chosen reference time (where τ ∈ T). Then the plot that this person
will obtain (assuming the same plotting mechanism as ours) is denoted by θτω. Of course,
for this to make physical sense we require the consistency relations that (I) θ0ω = ω for
all ω ∈ Ω, and (II) θs+tω = θtθsω for all s, t ∈ T and ω ∈ Ω.

Now we assume that for each s, t ∈ T with s ≤ t, there is some natural σ-algebra F ts
on Ω, representing all the information concerning how the noise behaves over the time
interval T∩ [s, t] according to our plot; time-homogeneity will then give that θτF ts = F t−τs−τ
for all τ ∈ T. Naturally, the σ-algebra F is taken to be the smallest σ-algebra containing
F ts for all s, t ∈ T with s ≤ t.

Since the noise is random, we assume that we have a probability measure P on (Ω,F)
representing the probability distribution for how our plot will turn out; again, time-
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homogeneity will mean that the probability measure P does not depend on which time
was chosen as our reference time. Of course, for consistency, this demands that P is
θt-invariant for all t ∈ T.

Now imagine that we have some process that is affected by the noise process, in the
following manner: if the process is at state x ∈X at our reference time 0, and if our plot
of the noise is given by ω, then the process will be at state ϕ(t, ω)x at time t ∈ T+, where
ϕ(t, ω) is some function from X to X. (Of course, for consistency, we must have that
ϕ(0, ω) is the identity for all ω.) Let us also assume that the precise manner in which the
behaviour of the noise dictates the evolution of the process is itself time-homogeneous.
This implies that the function ϕ(t, ω) does not depend on our chosen reference time.
Hence in particular, if the process is at state y ∈ X at time s ∈ T (relative to our chosen
reference time), and if our plot of the noise is given by ω, then (for any t ∈ T+) the
process will be at state ϕ(t, θsω)y at time s + t. Hence, for consistency, we require that
ϕ(s + t, ω) = ϕ(t, θsω) ○ϕ(s,ω) for all s, t ∈ T+ and ω ∈ Ω.

Not surprisingly, we also wish to assume that the behaviour of our process during a
given time interval is not affected by the behaviour of the noise outside of that same
time interval. This is represented mathematically by the assumption that the map
(ω,x) ↦ ϕ(t, θsω)x is (F s+ts ⊗ Σ)-measurable for each s ∈ T and t ∈ T+. (For this, it
is sufficient just to consider s = 0.)

Finally, we also assume that the noise is statistically “memoryless”, which is represented
by the assumption that F∞0 and F0

−∞ are independent under P.

2.3 Examples of random dynamical systems

“Standard form” of a discrete-time RDS

Let (I,I, ν) be a probability space, and let (Ω,F , (Fm+rm ), (θn),P) be as is Example 2.5.
Let (fα)α∈I be a family of functions fα ∶X → X such that the map (α,x) ↦ fα(x) is
measurable. Then we can define the family ϕ=(ϕ(n,ω))n∈N0, ω∈Ω of functions ϕ(n,ω) ∶X →
X by

ϕ(n, (αr)r∈Z) = fαn ○ . . . ○ fα1 .

It is not hard to show that ϕ is a RDS (in accordance with our above formalism). We
refer to ϕ as the RDS generated by the random map (I,I, ν, (fα)α∈I).

Stochastic differential equations

Just as the prototypical continuous-time deterministic dynamical systems are those
generated by differential equations, so likewise the prototypical continuous-time random
dynamical systems are those generated by stochastic differential equations (SDE). If X
is a Euclidean space Rd or a more general smooth manifold,5 such equations will often

5Processes whose state space is infinite-dimensional (e.g. heat distribution in a room) are often
described by stochastic partial differential equations. (See e.g. [KS12], which considers RDS generated
by stochastically perturbed Navier-Stokes equations.)
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take the form

dxt = b(xt)dt +
k

∑
i=1
σi(xt) ○ dW i

t (2.1)

where b, σ1, . . . , σk are vector fields on X, and (W 1
t ), . . . , (W k

t ) are independent one-
dimensional Wiener processes (although more general Lévy processes can certainly be
considered). We refer to b as the drift vector field (or drift coefficient), and we refer to
σ1, . . . , σk as the diffusion vector fields (or diffusion coefficients). The circle ○ indicates
that this equation is to be interpreted as a Stratonovich integral equation. (If X is a
manifold, this is done locally, via charts.) In the case that k = 1, an alternative sample-
pathwise interpretation (making no reference to the underlying probability measure)
exists, namely, to regard (2.1) as the result of a kind of “linear superposition” of the drift
vector field b over the non-autonomous flow on X whose time-t mappings are the time-Wt

mappings of the flow generated by the diffusion vector field σ; this interpretation can be
formulated rigorously, and the equivalence (modulo null sets) of the two interpretations
is provided by the Doss-Sussmann theorem (e.g. [Sus78]).

If X = Rd, one can alternatively work with equations of the form

dxt = b(xt)dt +
k

∑
i=1
σi(xt)dW i

t (2.2)

where the lack of the circle indicates that the equation is to be interpreted as an Itō
integral equation. The equation is said to be an additive noise SDE if the diffusion
coefficients σ1, . . . , σk are all constant. In this case, there is no difference between
the Itō and the Stratonovich formulation: both reduce to the natural sample-pathwise
interpretation, namely as a Volterra integral equation

xt = x0 +∫
t

0
b(xs)ds +

k

∑
i=1
σiW

i
t . (2.3)

Now (2.3) can be re-expressed as a (classical) differential equation

ẏ = b(y +
k

∑
i=1
σiW

i
t) (2.4)

where y(t) = xt −∑ki=1 σiW i
t . If b is locally Lipschitz then solutions are unique (over any

time interval), and exist for as long as they do not blow up in magnitude to ∞. (See
[Bur83, Theorems 3.1.3 and 3.3.1].) If, in addition, there exists λ ∈ R such that

(b(y) − b(x)) ⋅ (y − x) ≤ λ∣y − x∣2 ∀x, y ∈ Rd (2.5)

then (among other useful properties) solutions never blow up in forward time. A function
b with this property is said to be one-sided Lipschitz, and such a value λ ∈ R is called a
one-sided Lipschitz constant of b. If b is C1, then it is easy to show that (2.5) is equivalent
to

h ⋅Db(x)h ≤ λ ∀x,h ∈ Rd with ∣h∣ = 1. (2.6)

The one-sided Lipschitz property provides an upper bound on how quickly different
trajectories can separate under the same realisation of the noise: if (x1

t )t≥0 and (x2
t )t≥0
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are forward-time solutions of (2.3) under the same sample paths of the Wiener processes
(W i

t ), and if b is locally Lipschitz and satisfies (2.5), then Grönwall’s inequality (applied
to ∣x1 − x2∣2) gives that

∣x1
s+t − x2

s+t∣ ≤ eλt∣x1
s − x2

s ∣ ∀ s, t ≥ 0. (2.7)

A detailed study of synchronisation in additive noise SDE with locally Lipschitz and
one-sided Lipshitz drift can be found in [FGS14]. A stochastic differential equation whose
diffusion coefficients are not all constant is sometimes called a multiplicative noise SDE.

The question of exactly when and how a SDE generates a RDS is quite a complicated issue.
(See [Arn98, Section 2.3] for some details.) Therefore, in this thesis, when we consider
examples involving SDE, we will deal with them in a relatively informal manner—except
in the particularly “simple” case of SDE on the circle with rigidly rotating noise, which
we shall present in detail below.

Gaussian-white-noise perturbation of a vector field on the circle

We identify the circle S1 with R/Z in the obvious manner, with π ∶R → S1 denoting the
associated projection mapping. Given a continuous function h ∶ [0,∞)→ S1, it is not hard
to show that there exists a continuous function ĥ ∶ [0,∞)→ R such that π○ ĥ = h, and that
this function is unique up to addition by a constant integer; we refer to such a function
ĥ as a lift of h.

Given a Lipschitz 1-periodic function b ∶R → R and a value σ ∈ R, we may formally
define the RDS on S1 generated by the SDE dφt = b(φt)dt + σdWt to be the RDS
described by the following result:

Proposition 2.9. Let (Ω,F , (F s+ts ), (θt),P) be as in Example 2.6 with d = 1, and
equip Ω with the topology of uniform convergence on compact sets. Let b ∶R → R be
a Lipschitz 1-periodic function, and fix any σ ∈ R. There exists a RDS ϕ on S1 over
(Ω,F , (F s+ts ), (θt),P) with the following properties:

(i) the map (t, ω, x)↦ ϕ(t, ω)x from [0,∞) ×Ω × S1 to S1 is continuous;

(ii) given any y ∈ R and ω ∈ Ω, letting r ∶ [0,∞) → R denote the unique lift of the
function t↦ ϕ(t, ω)π(y) satisfying r(0) = y, r has the property that for all T > 0,
the only function u ∶ [0, T ]→ R satisfying b ○ u ∈ L1([0, T ]) and

u(t) = y +∫
t

0
b(u(s))ds + σω(t) ∀ t ∈ [0, T ]

is precisely the function u ∶= r∣[0,T ].

(Note that if σ = 0 then ϕ(t, ω) is independent of ω, and is simply the solution flow for
the ODE φ̇ = b(φ) on S1.)

Proof of Proposition 2.9. We will first show that the SDE dXt = b(Xt)dt + σdWt on R
naturally generates an RDS on R with the desired continuity properties. We will then
show that the solution of this SDE depends 1-periodically on its initial condition, enabling
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us to project the RDS onto S1.

Since b is globally Lipschitz, by standard results regarding existence and uniqueness
of solutions of integral equations (see e.g. Section 3.2 of [Bur83]), we have that for every
y ∈ R and ω ∈ Ω there exists a continuous function ry,ω ∶ [0,∞) → R with the property
that for all T > 0, the only function u ∶ [0, T ]→ R satisying b ○ u ∈ L1([0, T ]) and

u(t) = y +∫
t

0
b(u(s))ds + σω(t) ∀ t ∈ [0, T ]

is the function u ∶= ry,ω ∣[0,T ]. We now show that the map (t, ω, y)↦ ry,ω(t) is continuous.

Fix any convergent sequence (tn) in [0,∞) with limit t, any sequence (ωn) in Ω which
converges uniformly on compact sets to a sample point ω, any convergent sequence (yn)
in R with limit y. Fix any ε > 0. Let δ > 0 be such that for all s ∈ [0,∞) with ∣s − t∣ < δ,
∣ry,ω(s)− ry,ω(t)∣ < ε

2 . Let L > 0 be a Lipschitz constant of b, and let N ∈ N be sufficiently
large that for all n ≥ N , the following statements hold:

(i) ∣tn − t∣ < δ;

(ii) ∣yn − y∣ +maxs∈[0,t+δ] ∣ωn(s) − ω(s)∣ < ε
2eL(t+δ)

.

By [Bur83, Theorem 3.4.1], for all n ≥ N and s ∈ [0, t + δ] we have that

∣ryn,ωn(s) − ry,ω(s)∣ < (
ε

2eL(t+δ)
) eLs ≤ ε

2
.

Therefore, for all n ≥ N ,

∣ryn,ωn(tn) − ry,ω(t)∣ ≤ ∣ryn,ωn(tn) − ry,ω(tn)∣ + ∣ry,ω(tn) − ry,ω(t)∣
< ε

2
+ ε

2
= ε

as required.

Note in particular that for each t, since the map (y,ω∣[0,t])↦ ry,ω(t) from R×C0([0, t],R)
to R is continuous (where C0([0, t],R) is the set of all f ∈ C([0, t],R) with f(0) = 0,
equipped with the topology of uniform convergence), it follows by Lemma B.10 that the
map (y,ω)↦ ry,ω(t) is (B(R)⊗F t0,B(R))-measurable.

Now obviously ry,ω(0) = y for all y and ω. Moreover, fixing any τ ≥ 0, ω ∈ Ω and
y ∈ R, setting u(t) ∶= ry,ω(τ + t) for all t ≥ 0, we have that

u(t) = y +∫
τ+t

0
b(ry,ω(s))ds + σω(τ + t)

= y +∫
τ

0
b(ry,ω(s))ds + ∫

t

0
b(ry,ω(τ + s))ds + σω(τ + t)

= y +∫
τ

0
b(ry,ω(s))ds + ∫

t

0
b(ry,ω(τ + s))ds + σω(τ) + σθτω(t)

= ry,ω(τ) +∫
t

0
b(u(s))ds + σθτω(t).
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So, for all t ≥ 0, we have that ry,ω(τ + t) = rry,ω(τ),θτω(t).

So then, defining the map ϕ̂(t, ω) ∶ y ↦ ry,ω(t) for all t ≥ 0 and ω ∈ Ω, we have shown
that (ϕ̂(t, ω))t≥0, ω∈Ω is a RDS on R over the noise space (Ω,F , (F s+ts ), (θt),P), with the
additional property that the map (t, ω, y)↦ ϕ̂(t, ω)y is continuous.

Now fixing any y ∈ R, ω ∈ Ω and k ∈ Z, setting u(t) ∶= ry,ω(t) + k for all t ≥ 0, we
have that

u(t) = y +∫
t

0
b(ry,ω(s))ds + σω(t) + k

= y + k + ∫
t

0
b(u(s) − k)ds + σω(t)

= y + k + ∫
t

0
b(u(s))ds + σω(t).

So, for all t ≥ 0, we have that ry,ω(t)+k = ry+k,ω(t), and therefore π(ry,ω(t)) = π(ry+k,ω(t)).

So then, for each t ≥ 0 and ω ∈ Ω we can define the map ϕ(t, ω)∶S1 → S1 by

ϕ(t, ω)π(y) = π(ϕ̂(t, ω)y) ∀y ∈ R.
It is easy to show that (ϕ(t, ω))t≥0, ω∈Ω is itself an RDS, with the desired properties.

Time-discretisation

Let (Ω,F , (F s+ts )s∈R, t≥0 , (θt)t∈R,P) be a noise space, and let ϕ be a RDS over this noise

space. Fix any τ > 0. Then over the noise space (Ω,F , (F (m+r)τmτ )m∈Z,r∈N0 , (θnτ)n∈Z,P) we
may define the RDS ϕ̊τ by ϕ̊τ(n,ω) = ϕ(nτ,ω) for all n ∈ N0 and ω ∈ Ω. We refer to ϕ̊τ
as the time-τ discretisation of ϕ.

2.4 Other formalisms of random dynamical systems

(See also Chapter 1 of [Arn98].)

Throughout the rest of this thesis (except this section), when we refer to a “random
dynamical system”, we will specifically mean a “memoryless random dynamical system”
as defined in accordance with our formalism in Section 2.2. However, it is worth
mentioning some alternative (mostly, more general) notions of a RDS.

(For convenience we will still, throughout this section, regard the state space of any kind of
“random dynamical system” as having the measurable structure of a standard measurable
space; although some references do not specifically include this in the definition, it is
crucial for the most basic tools of the theory of RDS to be applied.)

RDS without a filtration

Central to our formalism is the underlying two-sided filtration (F s+ts )s∈T, t∈T+ on the sample
space Ω. However, in general, the term “random dynamical system” does not necessarily
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imply the presence or relevance of any pre-defined filtration on Ω; a “random dynamical
system” merely consists of:

• a group θ ∶= (θt)t∈T of measure-preserving transformations of a probability space
(Ω,F ,P);6

• a standard measurable space (X,Σ), and a family ϕ=(ϕ(t, ω))t∈T+, ω∈Ω of functions
ϕ(t, ω) ∶X → X, satisfying the “forward cocycle” property (i.e. properties (i) and
(ii) in our formalism) and

(iii)’ for each t ∈ T+, the map (ω,x)↦ ϕ(t, ω)x is (F ⊗Σ,Σ)-measurable.

By identifying (θ,ϕ) with the “product system” Θt ∶ (ω,x)↦ (θtω,ϕ(t, ω)x), we have an
equivalent, slightly more succint formulation: A “random dynamical system” is a skew-
product dynamical system on Ω ×X (with X standard) whose base system is invertible
and is equipped with an invariant probability measure.7

The above definition of a “general” random dynamical system still captures the notion of
a time-homogeneous noise process determining the evolution of some system in a time-
homogeneous manner; but it does not incorporate a notion of “how the noise behaves
over a given finite time interval”.

Filtered RDS that are not necessarily memoryless

One can also consider a “random dynamical system” as defined in accordance with our
formalism, except without having to satisfy that F t−∞ and F∞t are independent under P
for each t.

Examples of non-memoryless filtered RDS include: (a) RDS generated by SDE (with
time-independent vector fields) that are driven by processes with strictly stationary but
not independent incrememts; and (b) RDS generated by random differential equations
(RDE) of the form

ẋ(t) = f(ω(t) , x(t))
where the sample points ω are functions from R to some suitable space W , P is invariant
under the shift θtω(s) = ω(s + t), and f(y, ⋅) is a vector field on X for each y ∈W .8

“Semifiltered” RDS

The term “filtered RDS” has been used elsewhere to describe what we will call a
“semifiltered” RDS, where the system may be able to “remember” the past behaviour of

6Sometimes one also assumes that P is an ergodic probability measure of the family of transformations
(θt), in which case the RDS is sometimes referred to as an ergodic RDS.

7A skew-product dynamical system on a product space (Ω ×X,F ⊗Σ) is an autonomous dynamical
system (Θt)t∈T+ on (Ω ×X,F ⊗Σ) such that the Ω-component of Θt(ω,x) does not depend on x. The
base system of a skew-product dynamical system (Θt) on Ω×X is the dynamical system on Ω obtained
by projecting the dynamics of Θt onto Ω. See also Section 2.6.

8A more general time-homogeneous RDE takes the form ẋ(t) = f( θtω , x(t)) where (θt)t∈R is a
measure-preserving group of transformations of (Ω,F ,P), and f(ω, ⋅) is a vector field on X for each ω.
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the noise, but cannot predict the future behaviour of the noise. In its simplest formulation,
a semifiltered RDS consists of:

• a measurable space (Ω,F), and a T-indexed family (Ft)t∈T of sub-σ-algebras of F
such that Fs ⊂ Ft for s ≤ t and F = σ(Ft ∶ t ∈ T);

• a group (θt)t∈T of functions θt ∶Ω→ Ω such that θτFt = Ft−τ for all t, τ ∈ T;

• a (θt)-invariant probability measure P on (Ω,F);

• a standard measurable space (X,Σ), and a RDS ϕ on X over (Ω,F ,P, (θt)t∈T) such
that the map (ω,x)↦ ϕ(t, ω)x is (Ft ⊗Σ,Σ)-measurable for each t ∈ T+.

Note that any filtered RDS can be regarded as a semifiltered RDS, by setting Ft ∶= F t−∞;
and semifiltered RDS can be regarded as a special case of filtered RDS, by setting F ts ∶= Ft.
For examples of semifiltered RDS, see e.g. [CSS05], or the random differential equations
in [IL02] constructed to aid the study of Wiener-driven SDE.

RDS with non-invertible base

For mathematical reasons, we always consider RDS whose base system is a group (θt)t∈T
of P-preserving transformations. However, one can certainly also consider RDS whose
base system is a P-preserving dynamical system (θt)t∈T+ that is not necessarily invertible.
(Indeed, this plays a key role in the proof of the correpondence between one-sided-time
and two-sided-time invariant measures described in Section 1.3.)

In this case (following [New15a, Section 7]), if we wish the RDS to be a “filtered RDS”,
we equip Ω with a one-sided filtration (Ft)t∈T+ of sub-σ-algebras of F such that for all
s, t ∈ T+, θt is (Fs+t,Fs)-measurable; the RDS ϕ is filtered with respect to this filtration
if for each t ∈ T+, the map (ω,x) ↦ ϕ(t, ω)x is (Ft ⊗Σ,Σ)-measurable. The noise space
(Ω,F , (Ft)t∈T+ , (θt)t∈T+ ,P) is memoryless if P(E ∩ θ−t(F )) = P(E)P(F ) for all t ∈ T+,
E ∈ Ft and F ∈ σ(Fs ∶ s ∈ T+). Note that a “memoryless noise space” in the sense of
Section 2.2 can be regarded as a memoryless noise space in this sense, by setting Ft ∶= F t0.

Local RDS

Now it is, of course, entirely possible to have a stochastic differential equation whose
forward-time solutions blow up in finite time. This naturally motivates the study of local
RDS. Specifically (roughly following [FGS14]), we can define a “local RDS on X” to be
a RDS ϕ on an “extended phase space” X ∪ {∂} (equipped with the obvious σ-algebra),
such that ϕ(t, ω)∂ = ∂ for all t and ω.

Bundle RDS

Another generalisation of the notion of a RDS is the notion of a bundle RDS, where the
set of possible states of the system evolves over time in accordance with the noise. We
present two possible definitions of a bundle RDS over an invertible measure-preserving
dynamical system (Ω,F ,P, (θt)t∈T).9

9The author has not seen explicitly the first of the two definitions elsewhere; however, it is useful for
motivating the definition of cohomology of random dynamical systems.
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2.4 Other formalisms of random dynamical systems

● In the first case: We have a measurable space (Y,Y) and a surjective (Y ,F)-measurable
function π ∶Y → Ω such that for each ω ∈ Ω, the set Yω ∶= π−1(Ω) equipped with the
induced σ-algebra Yω from Y is a standard measurable space. And we have a family
ϕ=(ϕ(t, ω))t∈T+, ω∈Ω of functions ϕ(t, ω) ∶Yω → Yθtω such that

(i) ϕ(0, ω) = idYω for all ω ∈ Ω;

(ii) ϕ(s + t, ω) = ϕ(t, θsω) ○ϕ(s,ω) for all s, t ∈ T+ and ω ∈ Ω;

(iii) for each t ∈ T+, the map y ↦ ϕ(t, π(y))y is (Y ,Y)-measurable.

It follows that ϕ(t, ω) is (Yω,Yθtω)-measurable for all t and ω.

● In the second case (cf. [Arn98, Definition 1.9.1]): We have a standard measurable
space (Z,Z) and a set Y ∈ F ⊗ Z, such that for each ω ∈ Ω, the ω-section Yω ∶= {x ∈
Z ∶ (ω,x) ∈ Y } of Y is nonempty. And we have a family ϕ=(ϕ(t, ω))t∈T+, ω∈Ω of functions
ϕ(t, ω) ∶Yω → Yθtω satisfying (i) and (ii) above, as well as

(iii)’ for each t ∈ T+, the map (ω,x)↦ ϕ(t, ω)x is (Y ,Z)-measurable,

where Y denotes the set of all (F ⊗Z)-measurable subsets of Y . Note that a RDS ϕ on a
phase space X may be regarded as the “trivial case” of a bundle RDS, simply by taking
Z =X and Y = Ω ×X.

Now a bundle RDS ϕ according to the second definition may be regarded as having the
structure of a bundle RDS under the first definition, by the identification ϕ(t, ω) ∶ (ω,x)↦
(θtω,ϕ(t, ω)x). However, a bundle RDS under the second definition has additional
structure which a bundle RDS under the first definition does not have: namely, under
the second definition, one can consider intersections of the form ⋂ω∈E Yω where E ⊂ Ω.
(For bundle RDS according to the first definition, if E has more than one element then
this intersection is always empty.)

An important motivation for the notion of a bundle RDS (under the second definition) is
the following: Given a deterministic dynamical system (f t)t∈T+ on (X,Σ) with a forward-
invariant set Y ∈ Σ, we can restrict (f t) to Y , to obtain a dynamical system on Y .
However, the RDS-analogue of the notion of an “invariant set” is a “random invariant
set”, which is an ω-dependent subset of X. The restriction of a RDS ϕ on X to a “random
forward-invariant set” (Yω)ω∈Ω will be a bundle RDS.

(Now we warn that the term “bundle RDS” is sometimes also used to refer to a RDS
on a fixed phase space, whose mappings ϕ(t, ω) take the form of a skew-product map.
[Arn98] uses the term “bundle RDS” in both senses.)

Backward cocycles

Now as we will see, pullback trajectories often play a very significant role in the theory
of RDS. Pullback trajectories of a RDS ϕ can simply be regarded as trajectories of
the system ψ ∶= (ϕ(t, θ−tω))t∈T+, ω∈Ω, which forms a “backward cocycle” over the group
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θ̄ ∶=(θ−t)t∈T. In general, a backward cocycle on X over a group of maps (θ̄t)t∈T on Ω is a
family ψ=(ψ(t, ω))t∈T+, ω∈Ω of functions ψ(t, ω) ∶X →X such that

(i) ψ(0, ω) = idX for all ω ∈ Ω;

(ii) ψ(s + t, ω) = ψ(s,ω) ○ ψ(t, θ̄sω) for all s, t ∈ T+ and ω ∈ Ω.

Given a backward cocycle (θ̄, ψ), one can obtain a forward cocycle (θ,ϕ) by θt ∶= θ̄−t and
ϕ(t, ω) ∶= ψ(t, θ̄−tω). This procedure actually inverts the above procedure for obtaining a
backward cocycle from a forward cocycle. Thus forward cocycles and backward cocycles
are in one-to-one correspondence.

Additional structure on the phase space

So far, we have not discussed RDS that respect some additional structure on the state
space beyond measurable structure (e.g. topological structure, vector space structure,
differentiable structure, Riemannian structure, partial or linear ordering). Later in this
chapter, we will consider “monotone” RDS on ordered spaces, and “(right)-continuous”
RDS on metrisable topological spaces.

In the case that X is equipped with the structure of a measurable vector space, a RDS ϕ
on X is said to be linear if ϕ(t, ω) is a linear map for all t and ω. In the case that X is
equipped with the structure of a Ck-smooth manifold, a RDS ϕ is said to be a Ck-smooth
RDS if for every partial differential operator ∂α of order less than or equal to k, ∂αϕ(t, ω)
exists for all t and ω and the map (t, x)↦ (∂αϕ(t, ω))(x) is jointly continuous for all ω.

Central to the study of linear RDS and smooth RDS is the multiplicative ergodic theorem,
which provides the existence of “exponential separation rates” called Lyapunov exponents.
See Part II (especially, Chapters 3 and 4) of [Arn98] for a detailed exposition of the
multiplicative ergodic theorem and its major corollaries.

Isomorphism and cohomology of RDS

Of course, different generalisations of our notion of a random dynamical system give
rise to different notions of isomorphism of random dynamical systems. We now mention
some possible notions of “isomorphism”. (These notions do not make reference to any
filtrations on the underlying probability space.)

• Two random dynamical systems

(Ω1,F1,P1, (θt1)t∈T,X1,Σ1, ϕ1) and (Ω2,F2,P2, (θt2)t∈T,X2,Σ2, ϕ2)

are isomorphic as RDS if there exists an (F1,F2)-measurably invertible function
g ∶Ω1 → Ω2 and a (Σ1,Σ2)-measurably invertible function h ∶X1 →X2 such that

(i) g∗P1 = P2 ;

(ii) θt1 = g−1 ○ θt2 ○ g for all t ∈ T;

(iii) ϕ1(t, ω) = h−1 ○ ϕ2(t, g(ω)) ○ h for all t ∈ T+ and ω ∈ Ω1.
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In this case, we refer to (g, h) as a RDS isomorphism from ϕ1 to ϕ2.

• Two random dynamical systems

(Ω1,F1,P1, (θt1)t∈T,X1,Σ1, ϕ1) and (Ω2,F2,P2, (θt2)t∈T,X2,Σ2, ϕ2)

are isomorphic as bundle RDS if there exists an (F1 ⊗ Σ1,F2 ⊗ Σ2)-measurably
invertible function H ∶Ω1 ×X1 → Ω2 ×X2 such that

(i) the Ω2-component of H(ω,x) does not depend on x, but only on ω; so we can
define the functions gH ∶Ω1 → Ω2 and hH ∶Ω1 ×X1 → X2 such that H(ω,x) =
(gH(ω), hH(ω,x));

(ii) gH∗P1 = P2 ;

(iii) (θt1ω , ϕ1(t, ω)x) = H−1( θt2(gH(ω)) , ϕ2(t, gH(ω))hH(ω,x) ) for all t ∈ T+,
ω ∈ Ω1 and x ∈X1.

In this case, we refer to H as a bundle RDS isomorphism from ϕ1 to ϕ2. (Note that
this terminology is making reference to the first of our two definitions of a bundle
RDS.)

• Two RDS over the same base system θ are called cohomologous if they are
“isomorphic as bundle RDS over θ”. To be precise: Two random dynamical
systems (X1,Σ1, ϕ1) and (X2,Σ2, ϕ2) defined over a measure-preserving group
(Ω,F ,P, (θt)t∈T) are said to be cohomologous if there exists a bundle RDS
isomorphism H from ϕ1 to ϕ2 such that gH is the identity function on Ω. In
this case, we refer to hH as a random measurable conjugacy or a cohomology from
ϕ1 to ϕ2. It is easy to show that a function h ∶Ω×X1 →X2 is a random measurable
conjugacy from ϕ1 to ϕ2 if and only if the following hold:

(i) for each ω ∈ Ω, h(ω, ⋅) serves as a bijection between X1 and X2; so we can
define h−1 ∶Ω×X2 →X1 such that for every ω, h−1(ω, ⋅) is the inverse function
of h(ω, ⋅);

(ii) h is (F ⊗Σ1,Σ2)-measurable, and h−1 is (F ⊗Σ2,Σ1)-measurable;

(iii) ϕ1(t, ω) = h−1(θtω, ⋅) ○ ϕ2(t, ω) ○ h(ω, ⋅) for all t ∈ T+ and ω ∈ Ω.

• Alternatively (for practical purposes), one may choose to regard two RDS over
(Ω,F ,P, (θt)t∈T) as being “cohomologous” if there is a strictly (θt)t∈T-invariant P-
full set Ω′ ∈ F such that the restrictions of the two RDS to Ω′ (defined in the obvious
manner) are cohomologous under the above definition.

Cohomology can be used to define a “bifurcation” in a parametrised family of actions of
the noise space (Ω,F ,P, (θt)t∈T) on a topological space X. (Of course, in this context
we would specifically consider cohomologies that “respect topological structure” in some
suitable sense.)

Remark 2.10. Cohomology can also be characterised in terms of “pullback operators”.
Let h ∶Ω × X1 → X2 be a function satisfying properties (i) and (ii) above. Let
L0(Ω,F ;X1) and L0(Ω,F ;X2) denote respectively the set of measurable functions from

48



2.5 Markovian dynamics

Ω to X1 and the set of measurable functions from Ω to X2. Define the function
H ∶L0(Ω,F ;X1) → L0(Ω,F ;X2) by (Ha)(ω) = h(ω, a(ω)); it is clear that H is bijective,
with inverse H−1 given by (H−1b)(ω) = h−1(ω, b(ω)). For each t ∈ T+, define the “pullback
operator” P tϕ1

∶L0(Ω,F ;X1) → L0(Ω,F ;X1) by (P tϕ1
a)(ω) = ϕ1(t, θ−tω)a(θ−tω); and

define P tϕ2
∶L0(Ω,F ;X2) → L0(Ω,F ;X2) similarly. It is easy to show that h is a random

measurable conjugacy if and only if

P tϕ1
= H−1 ○P tϕ2

○H (2.8)

for all t ∈ T+. For each t, to verify (2.8), it is sufficient just to show that (2.8) holds on a
subset A ⊂ L0(Ω,F ;X1) such that {a(ω) ∶ a ∈ A} = X1 for all ω ∈ Ω. (Pullback operators
will be discussed further in Section 2.7.)

Non-homogeneous RDS

Just as, in the deterministic context, a major area of study is the theory of non-
autonomous dynamical systems, so also a growing area of research within the setting
of systems affected by noise is the theory of RDS that are not time-homogeneous. The
inhomogeneity is often due to some external deterministic forcing that is not constant
over time, leading to the study of non-autonomous RDS, where ϕ has two time-indeces.
(See e.g. [Che+15], or Section 3 of [FZ15].) One can also consider systems where the noise
itself is not statistically stationary. (See e.g. [Kai93] or [SH02].10)

2.5 Markovian dynamics

Throughout the rest of this thesis, T, Ω, F , F s+ts , θt, P, X, Σ and ϕ will be as in
Section 2.2 (although, for much of the thesis, we will consider additional structure on the
phase space X).

For each x ∈X and t ∈ T+, define the probability measure ϕtx on X by

ϕtx(A) ∶= P(ω ∈ Ω ∶ ϕ(t, ω)x ∈ A)
= P(ω ∈ Ω ∶ ϕ(t, θsω)x ∈ A) (for any s ∈ T).

In heuristic terms, for each t, (ϕtx)x∈X represents the transition probabilities associated
with the time-t mapping of the RDS ϕ.

We will now see that, due to the noise being memoryless, “the statistical dynamics of ϕ
are Markovian”.

Lemma 2.11. Fix an arbitrary probability measure ρ on X. Over the probability space
(Ω × X,F ⊗ Σ,P ⊗ ρ), define the X-valued stochastic process (Mt)t∈T+ by Mt(ω,x) =
ϕ(t, ω)x. Then (Mt) is a homogeneous Markov process with respect to the filtration
(F t0 ⊗Σ)t∈T+, with transition probabilities (ϕtx)x∈X, t∈T+.

10Most of the content of [SH02] really concerns “RDS” without a probability measure on the base;
but this is so that the theory can be applied to systems influenced (in a time-homogeneous manner) by
non-stationary noise.
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Proof. We start by verifying that the family of probability measures (ϕtx)x∈X, t∈T+ does
indeed satisfy the Chapman-Kolmogorov relations: for any x ∈X, s, t ∈ T+ and A ∈ Σ, we
have

ϕs+tx (A) = ∫
Ω
1A(ϕ(t, θsω)ϕ(s,ω)x)P(dω)

= ∫
Ω×Ω

1A(ϕ(t, θsω̃)ϕ(s,ω)x)P⊗ P(d(ω, ω̃))

(by Lemma A.10, since F s0 and F s+ts are independent)

= ∫
Ω
∫

Ω
1A(ϕ(t, θsω̃)ϕ(s,ω)x)P(dω̃)P(dω)

= ∫
Ω
ϕtϕ(s,ω)x(A)P(dω)

= ∫
X
ϕty(A)ϕsx(dy)

(since ϕsx is precisely the image measure of P under ω ↦ ϕ(s,ω)x)

as required. Now we know that Mt is (F t0 ⊗Σ,Σ)-measurable for each t ∈ T+. Given any
s, t ∈ T+ and A ∈ Σ, we have that for (P⊗ ρ)-almost all (ω,x),
P⊗ρ (Ms+t ∈ A ∣F s0 ⊗Σ)(ω,x)

= E(P⊗ρ)[ (ω̃, x̃)↦ 1A(Ms+t(ω̃, x̃)) ∣F s0 ⊗Σ ](ω,x)
= E(P⊗ρ)[ (ω̃, x̃)↦ 1A(ϕ(t, θsω̃)Ms(ω̃, x̃)) ∣F s0 ⊗Σ ](ω,x)
= E(P⊗ρ)[ (ω̃, x̃)↦ 1A(ϕ(t, θsω̃)Ms(ω,x)) ]

(by Corollary A.11, since F s0 ⊗Σ and F s+ts ⊗ {∅,X} are (P⊗ ρ)-independent)

= E(P)[ ω̃ ↦ 1A(ϕ(t, θsω̃)Ms(ω,x)) ]
= ϕtMs(ω,x)(A)

as required.

Hence in particular:

Corollary 2.12. Fix any x0 ∈X. Over (Ω,F ,P), define the X-valued stochastic process
(Mt)t∈T+ by Mt(ω) = ϕ(t, ω)x0. Then (Mt)t∈T+ is a homogeneous Markov process with
respect to (F t0)t∈T+, with transition probabilities (ϕtx)x∈X, t∈T+
It is easy to prove Corollary 2.12 simply by going through the same proof as for
Lemma 2.11; alternatively, one can derive Corollary 2.12 as a special case of Lemma 2.11
using Lemma A.14, with Y (ω) ∶= (ω,x0).

Now for any t ∈ T+ and any probability measure ρ on X, define the probability measure
ϕt∗ρ on X by

ϕt∗ρ(A) ∶= ∫
X
ϕtx(A)ρ(dx).

Using Fubini’s theorem, we have

ϕt∗ρ(A) def= ∫
X
P(ω ∶ ϕ(t, ω)x ∈ A)ρ(dx)

= P⊗ ρ( (ω,x) ∶ ϕ(t, ω)x ∈ A )

= ∫
Ω
ϕ(t, ω)∗ρ(A)P(dω).
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Obviously then, we also have that for any s ∈ T, ϕt∗ρ is the image measure of P⊗ρ under
(ω,x)↦ ϕ(t, θsω)x and

ϕt∗ρ(A) = ∫
Ω
ϕ(t, θsω)∗ρ(A)P(dω)

for all A ∈ Σ.

Since the family of probability measures (ϕtx)x∈X, t∈T+ satisfies the Chapman-Kolmogorov
relations, it is not hard to show that ϕs+t∗ρ = ϕt∗(ϕs∗ρ) for all s, t ∈ T+ and ρ ∈M(X,Σ).

Note that (by definition) a probability measure ρ on X is stationary under the Markov
transition probabilities (ϕtx)x∈X, t∈T+ if and only if ϕt∗ρ = ρ for all t ∈ T+.

Remark 2.13. (I) Let ρ be a probability measure on X, and let (Mt)t∈T+ be as in
Lemma 2.11. Then for each t ∈ T+, the law Mt∗(P ⊗ ρ) of the random variable Mt is
precisely ϕt∗ρ. (II) Fix any x0 ∈ X, and let (Mt)t∈T+ be as in Corollary 2.12. Then for
each t ∈ T+, the law (Mt)∗P of the random variable Mt is precisely ϕtx0

.

Remark 2.14. In the deterministic case that Ω is a singleton {ω}, writing f t ∶= ϕ(t, ω),
we have that ϕtx = δf t(x) for all x and t, and therefore ϕt∗ρ = f t∗ρ for any probability
measure ρ onX and any t; so then, a probability measure ρ is stationary under the Markov
transition probabilities (ϕtx)x∈X, t∈T+ if and only if ρ is invariant under the dynamical
system (f t)t∈T+ .

Lemma 2.15. Suppose ϕ is measurable, and let ρ be a probability measure on X that
is ergodic with respect to the Markov transition probabilities (ϕtx)x∈X, t∈T+. Then for each
A ∈ Σ, for (P⊗ ρ)-almost all (ω,x) ∈ Ω ×X, we have

1

n

n−1

∑
i=0

1A(ϕ(i, ω)x) → ρ(A) as n→∞ if T = Z,

1

T ∫
T

0
1A(ϕ(t, ω)x)dt → ρ(A) as T →∞ if T = R.

Proof. Follows immediately from Lemma 2.11 and the ergodic theorem for Markov
processes.11 (See Sections C.5 and C.6.)

Definition 2.16. We say that a probability measure ρ on X is incompressible (under ϕ)
if P-almost every ω ∈ Ω has the property that for all t ∈ T+, ϕ(t, ω)∗ρ = ρ. We say that ρ
is crudely incompressible (under ϕ) if for each t ∈ T+, P(ω ∶ ϕ(t, ω)∗ρ = ρ) = 1.

Obviously if ρ is crudely incompressible then ρ is stationary under the Markov transition
probabilities (ϕtx)x∈X, t∈T+ .

11If, in addition to the hypotheses of Lemma 2.15, the map (t, ω) ↦ θtω is jointly measurable,
then the conclusion of Lemma 2.15 can be obtained by an alternative means: namely, it follows from
Lemma 2.21(ii), together with Birkhoff’s ergodic theorem for the dynamical system (Θt)t∈T+ applied to
the function 1Ω×A.
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Definition 2.17. We say that a set A ⊂ X is invariant (under ϕ) if P-almost every
ω ∈ Ω has the property that for all t ∈ T+, ϕ(t, ω)A ⊂ A. We say that A ⊂ X is crudely
invariant (under ϕ) if for each t ∈ T+, there is a P-full set Ωt ⊂ Ω such that for all ω ∈ Ωt,
ϕ(t, ω)A ⊂ A. We say that A ∈ Σ is very crudely invariant (under ϕ) if ϕtx(A) = 1 for
all x ∈ A and t ∈ T+ (i.e. if A is forward-invariant according to the Markov transition
probabilities (ϕtx)x∈X, t∈T+).
Obviously a finite or countable set is crudely invariant if and only if it is very crudely
invariant.

Definition 2.18. We will say that a point p ∈ X is a deterministic fixed point if {p} is
invariant; and we will say that p ∈X is a crude deterministic fixed point if {p} is crudely
invariant.

2.6 Skew-product dynamics

One important tool for analysing the behaviour of a RDS is its representation as a “skew-
product” flow on the product space Ω ×X; while fully encoding the dynamics of ϕ, this
is a deterministic dynamical system (thus giving a crucial role to deterministic ergodic
theory for the study of the dynamics of a RDS).

For any τ ∈ T and t ∈ T+, define the map

Θt
τ ∶ Ω ×X → Ω ×X

Θt
τ(ω,x) = (θtω,ϕ(t, θτω)x).

Lemma 2.19. For each τ ∈ T, the family (Θt
τ)t∈T+ satisfies the (autonomous) flow

equations

Θ0
τ = idΩ×X

Θs+t
τ = Θt

τ ○Θs
τ for all s, t ∈ T+.

Proof. We have
Θ0
τ(ω,x) = (θ0ω , ϕ(0, θτω)x) = (ω,x)

and

Θt
τΘ

s
τ(ω,x) = Θt

τ( θsω , ϕ(s, θτω)x )
= ( θtθsω , ϕ(t, θτθsω)ϕ(s, θτω)x )
= ( θs+tω , ϕ(t, θsθτω)ϕ(s, θτω)x )
= ( θs+tω , ϕ(s + t, θτω)x )
= Θs+t

τ (ω,x)
as required.

For each τ ∈ T, we will refer to (Θt
τ)t∈T+ as the skew-product dynamical system (associated

to ϕ) started at time τ .

Now just as (θt)t∈T represents time-shifts on Ω, so we can (trivially) define a “time-shift
system” (θ̃t)t∈T on the product space Ω ×X by θ̃t(ω,x) ∶= (θtω,x).
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Lemma 2.20. For any τ1, τ2 ∈ T, (Θt
τ1)t∈T+ and (Θt

τ2)t∈T+ are conjugated by

Θt
τ2 = θ̃τ1−τ2 ○ Θt

τ1 ○ θ̃τ2−τ1 ∀ t ∈ T+.

Proof. We have

θ̃τ1−τ2 ○ Θt
τ1 ○ θ̃τ2−τ1(ω,x) = θ̃τ1−τ2 ○ Θt

τ1( θτ2−τ1ω , x )
= θ̃τ1−τ2( θt+τ2−τ1ω , ϕ(t, θτ2ω)x )
= ( θtω , ϕ(t, θτ2ω)x )
= Θt

τ2(ω,x)

as required.

So then, since the dynamical systems {(Θt
τ)t∈T+ ∶ τ ∈ T} are all conjugate to each other

via time-shifts, it will suffice for all purposes just to consider the skew-product dynamical
system (Θt

0)t∈T+ started at 0. We will therefore drop the subscript 0 and just write

Θt(ω,x) ∶= (θtω,ϕ(t, ω)x).

For any t ∈ T+ and A ⊂ Ω ×X, we write Θ−t(A) ∶= (Θt)−1(A).

Now it is clear that for each t ∈ T+, Θt is (F ⊗Σ,F ⊗Σ)-measurable; in other words, we
can regard (Θt)t∈T+ as a dynamical system on the measurable space (Ω×X,F ⊗Σ). But
moreover: for any r, t ∈ T+, since θt is (F∞−r,F∞−(r+t))-measurable and (ω,x) ↦ ϕ(t, ω)x is

(F∞0 ⊗Σ,Σ)-measurable, it follows that Θt is (F∞−r⊗Σ,F∞−(r+t)⊗Σ)-measurable; obviously,

this implies in particular that Θt is (F∞−r ⊗Σ,F∞−r ⊗Σ)-measurable. So in summary: for
any r ∈ T̄+, (Θt)t∈T+ can be regarded as a dynamical system on the measurable space
(Ω ×X,F∞−r ⊗Σ).

The following lemma serves as an important “link” between the Markovian properties of
ϕ and the dynamics of the skew-product system (Θt):

Lemma 2.21. For any probability measure ρ on X,

(i) (Ω×X, F∞0 ⊗Σ , P∣F∞0 ⊗ρ , (Θt)t∈T+) is a measure-preserving dynamical system if
and only if ρ is stationary under the Markov transition probabilities (ϕtx)x∈X, t∈T+;

(ii) (Ω×X, F∞0 ⊗Σ , P∣F∞0 ⊗ρ , (Θt)t∈T+) is an ergodic measure-preserving dynamical
system if and only if ρ is ergodic with respect to the Markov transition
probabilities (ϕtx)x∈X, t∈T+.

Proof. Apply [New15a, Theorem 143]12 with Ft ∶= F t0.

Remark 2.22. In Lemma 2.21, it is important that we restrict the underlying probability
space to the σ-algebra F∞0 . (In fact, we will see in Section 3.4 that for any probability
measure ρ on X, for any r ∈ T̄+ ∖ {0}, (Ω×X, F∞−r ⊗Σ , P∣F∞−r ⊗ ρ , (Θt)t∈T+) is a measure-
preserving dynamical system if and only if ρ is crudely incompressible.)

12This is, in turn, based on [Kif86, Lemma I.2.3 and Theorem I.2.1].
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2.7 Pullback operations and random fixed points

The most basic object in the geometric study of autonomous dynamical systems is the
notion of a “fixed point”. If we wish to generalise this notion to random dynamical
systems, one possible way to do this is to regard a deterministic fixed point (see
Definition 2.18) as being the RDS-analogue of a fixed point of a deterministic dynamical
system. However, this is a very restrictive notion. An alternative, much broader notion
is that of a random fixed point : although the RDS ϕ is defined as acting on the state
space X, there is a natural way to regard ϕ as acting on the space L0(P;X) of X-valued
random variables identified up to P-almost sure equality, via the pullback construction; a
“random fixed point” is a fixed point of this action.

In this section, we will introduce some theory of pullback operations and random fixed
points. Several of the results presented here are not actually needed explicitly later on,
but help build an intuition for the mathematical “role” of random fixed points.

There are various possible ways of motivating the “pullback” construction and the
definition of a random fixed point, of which we now present one:

Motivation

Suppose we have a transitive13 group action of T on a set T, denoted by (t, s) ↦ s + t
(where t ∈ T and s ∈ T). Heuristically, T represents a “timeline without a defined origin”.

An element (xt)t∈T of XT will be referred to as an (X-valued) T-path. A T-path (xt)
will be said to be stationary if there exists c ∈X such that xt = c for all t ∈ T.

Let (f t)t∈T+ be an autonomous dynamical system on (X,Σ). A T-solution of (f t) is
a T-path (xt) such that for all s ∈ T and t ∈ T+, f t(xs) = xs+t. It is clear that a stationary
T-path (p)t∈T is a T-solution of (f t) if and only if p is a fixed point of (f t). Let us now
consider the random case.

Suppose we have a probability space (Ω,F,P) and a T-indexed family π = (πt)t∈T of
(F,F)-measurable functions πt ∶Ω→ Ω such that

(i) πs+t = θt ○ πs for all s ∈ T and t ∈ T;

(ii) πt∗P = P for all t ∈ T.

[Heuristically: (Ω,F,P) is a probability space that incorporates the behaviour of some
noise process over the timeline T, and (following the heuristic description in Section 2.2)
πt constructs a “plot” of the noise with respect to t as the reference time.]

An (X-valued) (Ω,T)-process is a T-indexed family (Yt)t∈T of (F,Σ)-measurable
functions Yt ∶Ω → X. We will say that an (Ω,T)-process (Yt) is π-stationary if there

13A group action of a group G on a set S is said to be transitive if the whole of S is a single orbit of
the action, i.e. if for all x, y ∈ S there exists g ∈ G such that gx = y.
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exists an (F ,Σ)-measurable function a ∶Ω→X such that for each t ∈ T, Yt
P-a.s.= a ○ πt.

We will say that an (Ω,T)-process (Yt) is an (Ω,T)-solution of ϕ if there is a P-full set
Ω′ ∈ F such that for all s ∈ T, t ∈ T+ and ω ∈Ω′, ϕ(t, πs(ω))Ys(ω) = Ys+t(ω).

Lemma 2.23. Suppose we have an (Ω,T)-solution (Yt) of ϕ, a time s ∈ T and a
measurable function a ∶Ω→X such that

Ys
P-a.s.= a ○ πs .

Then for any t ∈ T+, we will have that

Ys+t
P-a.s.= (P tϕa) ○ πs+t

where P tϕa ∶Ω→X is given by P tϕa(ω) ∶= ϕ(t, θ−tω)a(θ−tω).

Proof. Fix t ∈ T+; let Ω′ ∈ F be a P-full set such that ϕ(t, πs(ω))Ys(ω) = Ys+t(ω) for all
ω ∈ Ω′; and let Ω′′ ∈ F be a P-full set such that Ys(ω) = a(πs(ω)) for all ω ∈ Ω′′. Then
for all ω ∈Ω′ ∩Ω′′,

(P tϕa) ○ πs+t(ω) = (P tϕa) ○ θt ○ πs(ω) = ϕ(t, πs(ω))a(πs(ω)) = ϕ(t, πs(ω))Ys(ω) = Ys+t(ω)

as required.

Pullback operators

Let L0(Ω,F ;X) be the set of all (F ,Σ)-measurable functions a ∶Ω→X. We say that two
functions a, b ∈ L0(Ω,F ;X) are equivalent if a(ω) = b(ω) for P-almost all ω ∈ Ω. With this
notion of equivalence, let L0(P;X) denote the set of equivalence classes of L0(Ω,F ;X).
For any a ∈ L0(Ω,F ;X), we write [a] ∈ L0(P;X) for the equivalence class represented by
a.

Now for any t ∈ T+, define the “pullback operator” P tϕ ∶L0(Ω,F ;X) → L0(Ω,F ;X) by
P tϕa(ω) ∶= ϕ(t, θ−tω)a(θ−tω). We show that (P tϕ)t∈T+ forms a “dynamical system” on
L0(Ω,F ;X).

Lemma 2.24. P0
ϕ is the identity function on L0(Ω,F ;X), and for any s, t ∈ T+ we have

that Ps+tϕ = P tϕ ○Psϕ.

Proof. Since θ0 = idΩ and ϕ(0, ω) = idX for all ω, it follows that P0
ϕa = a for all a ∈

L0(Ω,F ;X). Now for any s, t ∈ T+, any a ∈ L0(Ω,F ;X) and any ω ∈ Ω, we have

((P tϕ ○Psϕ)(a))(ω) = ϕ(t, θ−tω)(Psϕa)(θ−tω)
= ϕ(t, θ−tω)ϕ(s, θ−sθ−tω)a(θ−sθ−tω)
= ϕ(t, θ−tω)ϕ(s, θ−(s+t)ω)a(θ−(s+t)ω)
= ϕ(s + t, θ−(s+t)ω)a(θ−(s+t)ω)
= Ps+tϕ a(ω)

as required.
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Lemma 2.25. Suppose we have two functions a, b ∈ L0(Ω,F ;X) that are equivalent.
Then for any t ∈ T+, P tϕa and P tϕb are equivalent.

Proof. Fix t ∈ T+. Let Ω′ ∈ F be a P-full set such that a(ω) = b(ω) for all ω ∈ Ω. Then
for all ω ∈ θt(Ω), we have that a(θ−tω) = b(θ−tω) and so P tϕa(ω) = P tϕb(ω).

In view of Lemma 2.25, for each t ∈ T+ we can define the function P t
ϕ ∶L0(P;X)→ L0(P;X)

by P t
ϕ[a] = [P tϕa]. Obviously, we have that P 0

ϕ is the identity function on L0(P;X) and
P s+t
ϕ = P t

ϕ ○ P s
ϕ for all s, t ∈ T+.

Remark 2.26. Suppose we have a separable metrisable topology on X generating Σ,
in which the map ϕ(t, ω) is continuous for all t and ω. Suppose we have a sequence
(an) in L0(Ω,F ;X) converging P-almost surely to a ∈ L0(Ω,F ;X); then for any t ∈ T+,
an ○ θ−t converges P-almost surely to a ○ θ−t, and therefore (by continuity of ϕ(t, ω))
P tϕan converges P-almost surely to P tϕa. It follows14 that if we have a sequence (an)
in L0(Ω,F ;X) converging in probability to a ∈ L0(Ω,F ;X), then for any t ∈ T+, P tϕan
converges in probability to P tϕa. (So for each t ∈ T+, P t

ϕ is continuous in the topology of
convergence in probability.)

We also mention that there is a strong link between the dynamics of (P t
ϕ)t∈T+ and the

dynamics of the skew-product system (Θt)t∈T+ , as exemplified by Lemma 3.36.

Random fixed points

Definition 2.27. A random fixed point or equilibrium of ϕ is a measurable function
q ∶Ω→X such that P t

ϕ[q] = [q] for all t ∈ T+, i.e. such that

P(ω ∶ ϕ(t, θ−tω)q(θ−tω) = q(ω) ) = 1

for all t ∈ T+.

(Obviously, in the case that T = Z, it is sufficient just to check that P 1
ϕ[q] = [q].)

Let q ∶Ω→X be a measurable function. For any t ∈ T+ and s ∈ T, the following statements
are clearly equivalent:

• P t
ϕ[q] = [q];

• ϕ(t, θsω)q(θsω) = q(θs+tω) for P-almost all ω ∈ Ω;

• ϕ(t, ω)q(ω) = q(θtω) for P-almost all ω ∈ Ω;

• for P-almost all ω ∈ Ω, Θt(ω, q(ω)) ∈ graph(q).

(Intuitively, the last of these says that the graph of q is “almost invariant” under Θt. The
penultimate of these is often easiest to work with practically.)

14Since almost sure convergence implies convergence in probability, and convergence in probability
implies the existence of an almost surely convergent subsequence, one obtains the following
characterisation of convergence in probability: a sequence of random variables (an) converges in
probability to a random variable a if and only if every subsequence of (an) admits a further subsequence
that converges almost surely to a. (Cf. [Din13, Proposition 12.2].)

56



2.7 Pullback operations and random fixed points

Proposition 2.28. Let q1, q2 ∶Ω → X be random fixed points of ϕ with [q1] ≠ [q2]. Then
P(ω ∶ q1(ω) = q2(ω)) = 0.

Proof. Let E ∶= {ω ∶ q1(ω) = q2(ω)}. Given any t ∈ T+, letting Ωt ⊂ Ω be a P-full set
such that ϕ(t, ω)q1(ω) = q1(θtω) and ϕ(t, ω)q2(ω) = q2(θtω) for all ω ∈ Ωt, we have that
θt(E∩Ωt) ⊂ E. Hence, by Lemma 2.8, P(E) ∈ {0,1}; and since we assume that [q1] ≠ [q2],
it follows that P(E) = 0.

Proposition 2.29 (Relation between random fixed points and stationary solutions). Let
T, Ω, F, P and (πt) be as in the “Motivation” part of this section, and let q ∶Ω → X be
a measurable function. The following are equivalent:

(i) q is a random fixed point of ϕ;

(ii) there is an (Ω,T)-solution (Yt) of ϕ such that for each t ∈ T, Yt
P-a.s.= q ○ πt.

Proof. (ii)⇒(i): Suppose (Yt) is an (Ω,T)-solution with Yt
P-a.s.= q ○ πt for each t ∈ T.

Then for any t ∈ T+, fixing any s ∈ T, we have that for P-almost all ω ∈Ω,

ϕ(t, πs(ω))q(πs(ω)) = ϕ(t, πs(ω))Ys(ω) = Ys+t(ω) = q(πs+t(ω)) = q(θtπs(ω)).

Since πs∗P = P, it follows that

P(ω ∶ ϕ(t, ω)q(ω) = q(θtω)) = 1.

Since t was arbitrary, q is a random fixed point.

(i)⇒(ii): Suppose q is a random fixed point. Let Ω̃ ∈ F be a P-full set such that for
all m ∈ Z, n ∈ N and ω ∈ Ω̃, ϕ(n, θmω)q(θmω) = q(θm+nω). Fix an arbitrary s ∈ T. For
each t ∈ T, let Ys+t ∶Ω→X be a measurable function with

Ys+t(ω) ∶= ϕ(t − ⌊t⌋, πs+⌊t⌋(ω))q(πs+⌊t⌋ω)

for all ω ∈ π−1
s (Ω̃). We will show that (Yt)t∈T is an (Ω,T)-solution with Yt

P-a.s.= q ○πt for
each t ∈ T. For each t ∈ T, let

Ωt ∶= {ω ∈ Ω ∶ ϕ(t − ⌊t⌋, θ⌊t⌋ω)q(θ⌊t⌋ω) = q(θtω) }.

Since q is a random fixed point, Ωt is a P-full set. For each t ∈ T, for each ω ∈ π−1
s (Ω̃∩Ωt),

writing ω ∶= πs(ω), we have that

Ys+t(ω) = ϕ(t − ⌊t⌋, θ⌊t⌋ω)q(θ⌊t⌋ω) = q(θtω) = q(πs+t(ω)).

So it remains to show that (Yt) is an (Ω,T)-solution of ϕ. For each ω ∈ π−1
s (Ω̃), s ∈ T

and t ∈ T+, writing ω ∶= πs(ω), we have that

ϕ(t, πs+s(ω))Ys+s(ω) = ϕ(t, θsω)ϕ(s − ⌊s⌋, θ⌊s⌋ω)q(θ⌊s⌋ω)
= ϕ(s + t − ⌊s⌋, θ⌊s⌋ω)q(θ⌊s⌋ω)
= ϕ(s + t − ⌊s + t⌋, θ⌊s+t⌋ω)ϕ(⌊s + t⌋ − ⌊s⌋, θ⌊s⌋ω)q(θ⌊s⌋ω)
= ϕ(s + t − ⌊s + t⌋, θ⌊s+t⌋ω)q(θ⌊s+t⌋ω)
= Ys+s+t(ω).

So we are done.
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Now it is clear that for an autonomous dynamical system (f t)t∈T+ on a metric space (Y, d)
with f t being continuous for all t, if there exists an initial condition x0 ∈ Y such that
f t(x0) converges as t→∞, then the limit is itself a fixed point of (f t). We now consider
a couple of ways that this generalises to the random case, first looking at “pullback
convergence” and then looking at “forward-time convergence”.

Proposition 2.30. Suppose we have a separable metrisable topology on X generating Σ,
such that the map ϕ(t, ω) is continuous for all t and ω. And suppose we have functions
a, q ∈ L0(Ω,F ;X) such that P tϕa converges in probability to q as t → ∞. Then q is a
random fixed point of ϕ.

Proof. As we have established, (P t
ϕ)t∈T+ is an autonomous dynamical system on L0(P;X)

with P t
ϕ being continuous (with respect to convergence in probability) for all t. Hence

[q] = limt→∞P t
ϕ[a] is a fixed point of (P t

ϕ)t∈T+ .

Proposition 2.31. Suppose we have a separable metrisable topology on X generating Σ,
such that the map ϕ(t, ω) is continuous for all t and ω.

(A) If ϕ is two-way measurable, then P-almost every ω ∈ Ω has the following property:
for any x ∈ X, if ϕ(t, ω)x converges as t → ∞ to a point p ∈ X, then p is a crude
deterministic fixed point of ϕ.

(B) Suppose we have functions a, q ∈ L0(Ω,F ;X) and a probability measure P′ on
(Ω,F) that is absolutely continuous with respect to P, such that the stochastic process
(ϕ(t, ⋅)a(⋅))t∈T+ defined over (Ω,F ,P′) converges in probability to q. Then for P′-almost
every ω ∈ Ω, q(ω) is a crude deterministic fixed point of ϕ.

Remark 2.32. Proposition 2.31 suggests that in random dynamical systems, one should
expect to see convergence of pullback trajectories more often than convergence of
forward trajectories, since forward trajectories can only converge where there are (crude)
deterministic fixed points. (As we will often see, convergence of pullback trajectories can
easily occur without the presence of crude deterministic fixed points.)

Proof of Proposition 2.31. (A) Suppose ϕ is two-way measurable. Let U be a countable
base for the topology of X. For each U ∈ U and n ∈ N0, let

AU,n ∶= { (τ, ω) ∈ T+ ×Ω ∶ U ∩ϕ(τ, θnτω)U ≠ ∅}.

Note that AU,n is (B(T+) ⊗ F)-measurable, since, letting S be a countable subset of U
that is dense in U , we have that

AU,n = ⋃
x∈S
{ (τ, ω) ∈ T+ ×Ω ∶ ϕ(τ, θnτω)x ∈ U }.

Now for each U ∈ U , let

TU ∶= {τ ∈ T+ ∶ P(ω ∶ (τ, ω) ∈ AU,0) < 1} = {τ ∈ T+ ∶ P(ω ∶ (τ, ω) ∈ AU,0) < 1} (for any n)

and let

N (U) ∶= (TU ×Ω) ∩
∞
⋃
n=0

∞
⋂
m=n

AU,m .

In other words, N (U) is the set of all (τ, ω) ∈ TU × Ω with the property that for all m
sufficiently large, U ∩ ϕ(τ, θmτω)U ≠ ∅. It is clear that for any τ ∈ T+, the τ -section of
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N (U) (that is, the set {ω ∈ Ω ∶ (τ, ω) ∈ N (U)}) is a P-null set.

Now let N ∶= ⋃U∈U N (U). Let λ be the counting measure on N0 if T+ = N0, and let
λ be the Lebesgue measure on [0,∞) if T = [0,∞). For every τ ∈ T+, the τ -section of N
is P-null; so by Fubini’s theorem, there is a P-full set Ω′ ∈ F such that for every ω ∈ Ω′,
the ω-section of N is a λ-null set.

Now fix any ω ∈ Ω′ and x ∈ X, and suppose that ϕ(t, ω)x converges as t → ∞ to a
point p ∈ X. Fixing a metrisation d of the topology of X, let (Ur)r∈N be a sequence in
U such that p ∈ Ur for all r and diam(Ur) → 0 as r → ∞. For any τ ∈ T+ and r ∈ N, we
clearly have that (τ, ω) ∈ ⋃∞n=0⋂∞m=nAUr,m. So, letting Nω be the ω-section of N , we have
that for all τ ∈ T+ ∖Nω and r ∈ N, τ does not belong to TUr . Hence, for each τ ∈ T+ ∖Nω,
we have that

P(ω̃ ∈ Ω ∶ for all r ∈ N, U ∩ϕ(τ, ω̃)U ≠ ∅) = 1.

It clearly follows that
P(ω̃ ∈ Ω ∶ ϕ(τ, ω̃)p = p) = 1.

So the Dirac mass δp is a fixed point of the map ρ ↦ ϕτ∗ρ for λ-almost all τ ∈ T+. But
since ϕs+t∗ρ = ϕt∗ϕs∗ρ for all s, t ∈ T+ and ρ ∈M(X,Σ), it follows that δp is a fixed point of
the map ρ↦ ϕτ∗ρ for all τ ∈ T+. So p is a crude deterministic fixed point of ϕ.

(B) Suppose for a contradiction that the desired statement is false. Let p be a point
in the support of q∗P′ that is not a crude deterministic fixed point of ϕ, and let τ ∈ T+
be such that ϕτp({p}) < 1. Fixing a metrisation d of the topology of X, let δ > 0 be such
that

P(ω ∈ Ω ∶ Bδ(p) ∩ϕ(τ, ω)Bδ(p) ≠ ∅) < 1

and let
E ∶= {ω ∈ Ω ∶ Bδ(p) ∩ϕ(τ, ω)Bδ(p) ≠ ∅}.

Let c ∶= q∗P′(B δ
2
(p)) > 0. Let η > 0 be such that for all A ∈ F with P(A) < η, P′(A) is less

than c
2 .15 It is clear that

P(
∞
⋂
n=0

θ−nτ(E)) = 0,

so let m ∈ N be such that

P(
m−1

⋂
n=0

θ−nτ(E)) < η.

For each t ∈ T+, let

Bt ∶= {ω ∈ Ω ∶ d(ϕ(t, ω)a(ω), q(ω)) < δ
2 }.

Let T ∈ T+ be such that for all t ≥ T , P′(Bt) ≥ 1 − c
2(m+1) . Let

F ∶=
m−1

⋂
n=0

θ−(T+nτ)(E) = θ−T (
m−1

⋂
n=0

θ−nτ(E)) .

15The absolute continuity of P′ with respect to P implies that this is possible; see [Doo94, Section IX.4].
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Since θT is P-invariant, P(F ) < η and so P′(F ) < c
2 . Note that

q−1(B δ
2
(p)) ∩

m

⋂
n=0
BT+nτ ⊂ F.

Hence

P′(F ) ≥ P′ (q−1(B δ
2
(p)) ∩

m

⋂
n=0
BT+nτ)

≥ −(m + 1) + P′ (q−1(B δ
2
(p))) +

m

∑
n=0

P′(BT+nτ)

≥ −(m + 1) + c + (m + 1 − c
2)

= c
2 ,

contradicting the fact that P′(F ) < c
2 .

Remark 2.33. A further obvious fact about fixed points of dynamical systems is the
following: if an autonomous dynamical system (f t) on a metric space (Y, d) admits a
globally attracting fixed point p, then δp is the only invariant measure of (f t) (and so in
particular, p is the only fixed point of (f t)). This also generalises to the random case:16

A random invariant measure of ϕ is a measurable function µ ∶Ω→M(X,Σ) such that

P(ω ∶ ϕ(t, ω)∗µ(ω) = µ(θtω) ) = 1

for all t ∈ T+.17 Given a separable metric d on X generating Σ, a random fixed point q of
ϕ is said to be globally weakly attracting if for every bounded set B ⊂ X, the stochastic
process ω ↦ supx∈B d(ϕ(t, ω)x, q(θtω)) converges in probability to 0 as t→∞. It is easy
to show that if q is a globally weakly attracting random fixed point then the only random
invariant measure (up to P-almost sure equality) is ω ↦ δq(ω).

Examples and basic facts

Example 2.34. Let X = [0,1] (with Σ being the Borel σ-algebra). Let I = {0,1}
(equipped with the discrete σ-algebra I), let ν be any probability measure on I, and
define the functions f0, f1 ∶ [0,1]→ [0,1] by

f0(x) = 1
2x

f1(x) = 1
2(x + 1).

As in Section 2.3, let ϕ be the RDS on [0,1] generated by the random map (I,I, ν, (fi)i∈I).
Then it is easy to check that the random variable q ∶Ω→ [0,1] given by

q((ir)r∈Z) = 0 ⋅ i0i−1i−2i−3 . . .

16I am grateful to Martin Rasmussen and Doan Thai Son for showing me that a globally pullback
attracting random fixed point must be the only random fixed point. Remark 2.33 is a slight generalisation
of this fact.

17Invariant measures of random dynamical systems will be discussed in much greater detail in
Chapter 3.
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(where the right-hand side is to be interpreted in binary) is a random fixed point of
ϕ. If ν = δ0 then q is obviously a modification of the constant function ω ↦ 0; for P-
almost every ω ∈ Ω, all forward trajectories and all pullback trajectories starting in [0,1)
converge to 0, and therefore one can show that the only other random fixed point of
ϕ (up to modification) is the constant function ω ↦ 1. Similarly, if ν = δ1 then q is a
modification of the constant function ω ↦ 1, and the only other random fixed point (up
to modification) is the constant function ω ↦ 0. If ν = λδ0 + (1 − λ)δ1 for some λ ∈ (0,1),
then q is almost surely in the open interval (0,1); for P-almost every ω ∈ Ω, all pullback
trajectories starting in (0,1) converge to q(ω), and therefore one can show that the only
other random fixed points of ϕ (up to modification) are ω ↦ 0 and ω ↦ 1.

Example 2.35. Let X, Σ, I and I be as in Example 2.34, let ν be any probability
measure on I, and define the functions f0, f1 ∶ [0,1]→ [0,1] by

f0(x) = min(2x,1) = { 2x x ∈ [0, 1
2]

1 x ∈ [12 ,1]

f1(x) = max(0,2x − 1) = { 0 x ∈ [0, 1
2]

2x − 1 x ∈ [12 ,1].

As in Section 2.3, let ϕ be the RDS on [0,1] generated by the random map (I,I, ν, (fi)i∈I).
Then it is easy to check that the random variable q ∶Ω→ [0,1] given by

q((ir)r∈Z) = 0 ⋅ i1i2i3i4 . . .

(where the right-hand side is to be interpreted in binary) is a random fixed point of
ϕ. If ν = δ0 then q is obviously a modification of the constant function ω ↦ 0; for P-
almost every ω ∈ Ω, all forward trajectories and all pullback trajectories starting in (0,1]
converge to 1, and therefore one can show that the only other random fixed point of
ϕ (up to modification) is the constant function ω ↦ 1. Similarly, if ν = δ1 then q is a
modification of the constant function ω ↦ 1, and the only other random fixed point (up
to modification) is ω ↦ 0. If ν = λδ0 + (1−λ)δ1 for some λ ∈ (0,1), then q is almost surely
in the open interval (0,1); for P-almost every ω ∈ Ω, all forward trajectories starting in
[0,1] ∖ {q(ω)} converge to either 0 or 1, and therefore one can show that the only other
random fixed points of ϕ (up to modification) are ω ↦ 0 and ω ↦ 1.

Remark 2.36. In Example 2.34, q is monotone with respect to the lexicographical
order on I−N0 (and continuous with respect to the product topology on Ω). Similarly,
in Example 2.35, q is monotone with respect to the lexicographical order on IN (and
again continuous). Obviously, in both of these examples, if ν = 1

2(δ0 + δ1) then the law
of q is the Lebesgue measure. For a simple example of a situation where (once again)
X = [0,1], I = {0,1}, ν = 1

2(δ0 + δ1), and ϕ is a continuous monotone RDS admitting an
F0
−∞-measurable random fixed point q whose law is the Lebesgue measure, but where q

is severely non-monotone with respect to the lexicographical order on I−N0 (and severely
discontinuous), see Example 3.19 [with X extended to [0,1]] and Remark 3.20.

Example 2.37 (adapted from [CKS04, Lemma 4.1]18). Let (Ω,F , (F s+ts )s∈R, t≥0, (θt)t∈R,P)
18I am grateful to Thomas Cass for pointing out to me that the strong solution of the Orstein-Uhlenbeck

equation, which is typically expressed using integration against Brownian motion, can be re-expressed
(through integration by parts) just using integration against e−αt.
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2.7 Pullback operations and random fixed points

be as in Example 2.6, with d = 1. Let X = R. We consider the equation

dxt = αxtdt + dω(t) (2.9)

where α ∈ R. (For α < 0, a solution of this equation is called an Ornstein-Uhlenbeck
process.) Setting yt ∶= xt − ω(t), we have that (2.9) takes the form of a linear differential
equation ẏ = αy + αω(t). The solution is given by

yt = eαt (y0 + α∫
t

0
e−αsω(s)ds) .

Hence, the RDS ϕ generated by (2.9) is given by

ϕ(t, ω)x = ω(t) + eαt (x + α∫
t

0
e−αsω(s)ds)

for all ω ∈ Ω, t ≥ 0 and x ∈ R. Using integration by parts ([Apo74, Theorem 7.6]), this
can be expressed slightly more succinctly as

ϕ(t, ω)x = eαt (x +∫
t

0
e−αs dω(s))

where the integral on the right-hand side is a Riemann-Stieltjes integral. We now consider
random fixed points.
● For α < 0: Let Ω− be the set of sample points ω ∈ Ω for which the map s↦ e−αsω(s)

is integrable on (−∞,0]. Obviously θt(Ω−) = Ω− for all t ∈ R. It is also not hard to
show that P(Ω−) = 1: one can show (using the strong law of large numbers) that for

P-almost every ω ∈ Ω, ω(−t)
t → 0 as t → ∞; for any such sample point ω, we have that

∣e−αsω(s)∣ ≤ e− 1
2
αs∣ω(s)s ∣ for s < 0 with ∣s∣ sufficiently large, and therefore ω ∈ Ω−. Now

define the function q ∶Ω→ R by

q(ω) = { α ∫
0

−∞ e
−αsω(s)ds ω ∈ Ω−
0 otherwise.

Integration by parts yiels that for P-almost every ω ∈ Ω−, q(ω) can be re-expressed as the
improper Riemann-Stieltjes integral ∫

0

−∞ e
−αs dω(s). We show that q is a random fixed

point as follows: for all ω ∈ Ω− and t ≥ 0,

ϕ(t, ω)q(ω) = ω(t) + eαt (α∫
0

−∞
e−αsω(s)ds + α∫

t

0
e−αsω(s)ds)

= ω(t) + α∫
t

−∞
e−α(s−t)ω(s)ds

= ω(t) + α∫
0

−∞
e−αsω(s + t)ds

= ω(t) + α∫
0

−∞
e−αs(θtω(s) + ω(t))ds

= ω(t) + α∫
0

−∞
e−αsθtω(s)ds + αω(t)∫

0

−∞
e−αs dt

= ω(t) + q(θtω) − ω(t)
= q(θtω).
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2.7 Pullback operations and random fixed points

For any ω for which the improper integral ∫
0

−∞ e
−αs dω(s) exists, it is easy to see that every

pullback trajectory converges to this integral (which, as a function of ω, is a modification
of q); so q is “globally attracting”, and therefore one can show that it is the only random
fixed point (up to almost-everywhere equality).
● For α = 0: Obviously we just have that ϕ(t, ω)x = x + ω(t) for all t ≥ 0, ω ∈ Ω and

x ∈ R. We will show that ϕ has no random fixed points. Let q ∶Ω→ R be any measurable
function, and let A ∈ B(R) be a bounded set with q∗P(A) > 0. Since A is bounded, one can
show (e.g. using the central limit theorem applied to the sequence (ω(n) − ω(n − 1))n∈N)
that P(ω ∶ ϕ(n,ω)q(ω) ∈ A)→ 0 as n→∞ in the integers. So, since θ1 is P-preserving, it
cannot be the case that q(θ1ω) = ϕ(1, ω)q(ω) for P-almost all ω.
● For α > 0: Let Ω+ be the set of sample points ω ∈ Ω for which the map s↦ e−αsω(s)

is integrable on [0,∞). Again, θt(Ω+) = Ω+ for all t ∈ R, and P(Ω+) = 1. Define the
function

q(ω) = { −α ∫
∞

0 e−αsω(s)ds ω ∈ Ω+
0 otherwise.

Integration by parts yiels that for P-almost every ω ∈ Ω+, q(ω) can be re-expressed as the
improper Riemann-Stieltjes integral − ∫

∞
0 e−αs dω(s). We show that q is a random fixed

point as follows: for all ω ∈ Ω+ and t ≥ 0,

ϕ(t, ω)q(ω) = ω(t) + eαt (−α∫
∞

0
e−αsω(s)ds + α∫

t

0
e−αsω(s)ds)

= ω(t) − α∫
∞

t
e−α(s−t)ω(s)ds

= ω(t) − α∫
∞

0
e−αsω(s + t)ds

= ω(t) − α∫
∞

0
e−αs(θtω(s) + ω(t))ds

= ω(t) − α∫
∞

0
e−αsθtω(s)ds − αω(t)∫

∞

0
e−αs dt

= ω(t) + q(θtω) − ω(t)
= q(θtω).

By considering the time-reversal of ϕ (see Definition 2.54), one obtains—as in the case
that α < 0—that q is the only random fixed point (up to almost-everywhere equality).

Remark 2.38. Suppose we have a random fixed point q ∶Ω → X that is (F r−∞,Σ)-
measurable for some r ∈ T+. Then q has a modification q̃ that is (F0

−∞,Σ)-measurable:
observe that q○θ−r is (F0

−∞,Σ)-measurable, and so we can take q̃(ω) ∶= ϕ(r, θ−rω)q(θ−rω).
(By Remark 3.50, if q is an F−r−∞-measurable random fixed point for some r ∈ T+ ∖ {0},
then q is a modification of a constant function ω ↦ p where p is a crude deterministic
fixed point.)

Lemma 2.39. Let q ∶Ω → X be a random fixed point that is (F r−∞,Σ)-measurable for
some r ∈ T. Then q∗P is ergodic with respect to the Markov kernel (ϕtx)x∈X for every
t ∈ T+ ∖ {0} (and is therefore ergodic with respect to the family of Markov transition
probabilities (ϕtx)x∈X, t∈T+).
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2.7 Pullback operations and random fixed points

Proof of Lemma 2.39.19 Due to Remark 2.38, we can assume without loss of generality
that q is (F0

−∞,Σ)-measurable. We first show that q∗P is stationary under the Markov
transition probabilities (ϕtx). Note that q ○ θ−t is F−t−∞-measurable for any t. For each
t ∈ T+ and A ∈ Σ, we have

ϕt∗(q∗P)(A) = ∫
Ω
ϕ(t, θ−tω)∗q∗P(A)P(dω)

= ∫
Ω
ϕ(t, θ−tω)∗q∗θ∗−tP(A)P(dω)

= ∫
Ω
P(ω̃ ∶ ϕ(t, θ−tω)q(θ−tω̃) ∈ A)P(dω)

= P(ω ∶ ϕ(t, θ−tω)q(θ−tω) ∈ A)
(by Lemma A.10, since F−t−∞ and F0

−t are independent)

= P(ω ∶ q(ω) ∈ A)
(since q is a random fixed point)

= q∗P(A)

as required. Now to prove ergodicity: fix t ∈ T+∖{0}, and let A ∈ Σ be such that for (q∗P)-
almost every x ∈ A, ϕtx(A) = 1; we need to show that q∗P(A) ∈ {0,1}. Let E ∶= q−1(A),
and let

Ẽt ∶= {ω ∈ Ω ∶ ϕ(t, θ−tω)q(θ−tω) ∈ A}.
Obviously, since q is a random fixed point, P(E △ Ẽt) = 0. Note that θt(E) ∈ F−t−∞. So
then,

P(E ∩ θt(E) ) = ∫
θt(E)

P(E∣F−t−∞)(ω)P(dω)

= ∫
θt(E)

P(Ẽt∣F−t−∞)(ω)P(dω)

= ∫
θt(E)

P(ω̃ ∶ ϕ(t, θ−tω̃)q(θ−tω) ∈ A)P(dω)

(by Corollary A.11, since F−t−∞ and F0
−t are independent)

= ∫
θt(E)

ϕtq(θ−tω)(A)P(dω)

= ∫
A
ϕtx(A) q∗P(dx)

= ∫
A

1 q∗P(dx)

= q∗P(A)
= P(E).

Hence P(E ∖ θt(E)) = 0. It follows by Lemma 2.8 that P(E) ∈ {0,1}. So q∗P(A) ∈
{0,1}.

Remark 2.40. It turns out that for any F r−∞-measurable random fixed point q ∶Ω → X
(with r finite), under any separable metric on X whose Borel σ-algebra is Σ, the dynamics

19Lemma 2.39 can in fact be obtained as a corollary of Theorem 3.49. However, we present here a
much more direct proof.
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of ϕ will be “contracting on average” within the support of q∗P. The precise sense in
which this is the case will be expounded in Chapter 3.

2.8 Monotone RDS

In this thesis, we consider monotone RDS only on linearly ordered spaces. Monotone
RDS on partially ordered spaces have been studied in e.g. [Chu02] and [FGS15].

We first give some preliminaries on linearly ordered spaces.

Given two linearly (or partially) ordered spaces (Y,⪯Y ) and (Z,⪯Z), we say that a function
f ∶Y → Z is (⪯Y ,⪯Z)-monotone if for all x, y ∈ Y ,

x ⪯Y y ⇒ f(x) ⪯Z f(y).

Given a linearly (or partially) ordered space (Y,⪯Y ), a set A ⊂ Y is said to be convex
if for every x, z ∈ A and y ∈ Y with x ⪯ y ⪯ z, we have that y ∈ A. Note that for a
function f ∶Y → Z between linearly (or partially) ordered spaces (Y,⪯Y ) and (Z,⪯Z), if
f is (⪯Y ,⪯Z)-monotone then for every convex A ⊂ Z, f−1(A) is convex in Y .

Given a linearly ordered space (Y,⪯Y ), we will say that a set A ⊂ Y is downward-inclusive
if for every x ∈ Y and y ∈ A with x ⪯ y, we have that x ∈ A; and we will say that a set
A ⊂ Y is upward-inclusive if for every x ∈ A and y ∈ Y with x ⪯ y, we have that y ∈ A. It
is easy to prove the following (very intuitive) statements:

• every downward-inclusive set and every upward-inclusive set is convex;

• for any downward-inclusive A ⊂ Y , the complement Y ∖A is upward-inclusive; and
for any upward-inclusive A ⊂ Y , the complement Y ∖A is downward-inclusive;

• the intersection of two convex sets is convex;

• given two convex sets A,B ⊂ Y , if B /⊂ A then A ∖B is convex;

• given a convex set A ⊂ Y and a set B ⊂ Y that is either downward-inclusive or
upward-inclusive, A ∖B is convex;

• for any A ⊂ Y , the smallest downward-inclusive set containing A exists and is given
by

A− ∶= ⋃
x∈A
{y ∈X ∶ y ⪯ x} ;

and the smallest upward-inclusive set containing A exists and is given by

A+ ∶= ⋃
x∈A
{y ∈X ∶ x ⪯ y} ;

• for any A ⊂ Y , the smallest convex set containing A exists and is precisely A− ∩A+.
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2.8 Monotone RDS

We will soon introduce the notion of a “monotone RDS” on a linearly ordered phase
space. Since the study of RDS fundamentally relies on the measurable structures involved
(namely, the filtration (F s+ts ) on the sample space and the σ-algebra Σ on the phase
space), we specifically consider linear orders that “respect” the measurable structure of
the phase space. This may be formalised as follows:

Definition 2.41. A Borel linear order on (X,Σ) is a linear order ⪯ on the set X with
the property that {(x, y) ∈X ×X ∶ x ⪯ y} ∈ Σ⊗Σ.

As an obvious example, the usual linear order ≤ on R̄ is a Borel linear order (assuming
that R̄ is equipped with its usual Borel σ-algebra). A very different example is the
lexicographical order on [0,1] × [0,1] (equipped with the usual Borel σ-algebra), that is

(x1, x2) ⪯lex (y1, y2)
def⇐⇒ (x1 < y1 or (x1 = y1 and x2 ≤ y2) ).

Standing Assumption. For the rest of Section 2.8, we work with a fixed Borel linear
order ⪯ on (X,Σ).

Note that, given any measurable set A ∈ Σ, the restriction of ⪯ to A is itself a Borel linear
order on A (equipped with the induced σ-algebra from Σ). Also note that the map

(ρ, x) ↦ ρ(y ∈X ∶ y ⪯ x) =∫
X
1{(u,v)∶u⪯v}(y, x)ρ(dy)

from M ×X to [0,1] is measurable.

Definition 2.42. We say that the RDS ϕ is monotone (with respect to ⪯) if for all t ∈ T+
and ω ∈ Ω, ϕ(t, ω) ∶X →X is (⪯,⪯)-monotone.

Remark 2.43. Note that if T = R and X is a subset of R, equipped with the usual order
≤, then (by the intermediate value theorem) any RDS on X with continuous trajectories
must be monotone.

Definition 2.44. Suppose ϕ is monotone with respect to ⪯. We say that a point p ∈X is
(⪯-)subinvariant if P-almost every ω ∈ Ω has the property that for all t ∈ T+, ϕ(t, ω)p ⪯ p;
we say that p is crudely (⪯-)subinvariant if for each t ∈ T+, P(ω ∶ ϕ(t, ω)p ⪯ p) = 1. We
say that a point p ∈X is (⪯-)superinvariant if P-almost every ω ∈ Ω has the property that
for all t ∈ T+, p ⪯ ϕ(t, ω)p; we say that p is crudely (⪯-)superinvariant if for each t ∈ T+,
P(ω ∶ p ⪯ ϕ(t, ω)p) = 1.

Obviously if T = Z then the crudely subinvariant (resp. crudely superinvariant) points
are subinvariant (resp. superinvariant).

Remark 2.45. Let A ⊂ X be a crudely invariant set. If maxA exists then maxA is
crudely subinvariant; and if minA exists then minA is crudely superinvariant.

Lemma 2.46. Let X be a Borel-measurable subset of R̄, equipped with the induced
topology from R̄, and with Σ being the Borel σ-algebra (which coincides with the induced
σ-algebra from B(R̄)). Take ⪯ to be the usual order ≤ on X, and suppose that ϕ is
monotone. Suppose moreover that the map t↦ ϕ(t, ω)x is right-continuous for all ω and
x. Then any crudely subinvariant point is subinvariant, and any crudely superinvariant
point is superinvariant.
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2.8 Monotone RDS

Proof. LetD be a countable dense subset of T+. Let p ∈X be a crudely subinvariant point.
Fix any ω with the property that for all t ∈D, ϕ(t, ω)p ≤ p. Since the map t↦ ϕ(t, ω)p is
right-continuous, we have that ϕ(t, ω)p ≤ p for all t ∈ T+. So p is subinvariant. Likewise
any crudely superinvariant point is superinvariant.

As an immediate corollary, we have:

Corollary 2.47. Assume the hypotheses of Lemma 2.46, and let A ⊂ X be a crudely
invariant set. If maxA exists then maxA is subinvariant, and if minA exists then minA
is superinvariant. Hence in particular, if any of the following statements hold:

(a) A is downward-inclusive and maxA exists;

(b) A is upward-inclusive and minA exists;

(c) A is convex and both maxA and minA exist;

then A is invariant.

We now go on to consider stationary probability measures for monotone RDS. We first
introduce the “convex core” of a probability measure.20

Lemma 2.48. For any probability measure ρ on X, the set of all convex ρ-full subsets
of X has a least element Xρ (with respect to inclusion), and Xρ is Σ-measurable.21

Proof. For each x ∈ X, let I−x ∶= {y ∈ X ∶ y ⪯ x} and let I+x ∶= {y ∈ X ∶ x ⪯ y}. Let
J− ∶= {x ∈ X ∶ ρ(I−x ) = 0}, and let J+ ∶= {x ∈ X ∶ ρ(I+x ) = 0}. Note that J− and J+ are
Σ-measurable. We will show that

(a) ρ(J−) = ρ(J+) = 0;

(b) the set Xρ ∶=X ∖ (J− ∪ J+) is convex;

(c) every ρ-full convex set contains Xρ.

The proof will then be complete. (a) For any x ∈ J−, it is clear that I−x ⊂ J−. With this,
and Fubini’s theorem, we have

ρ(J−)2 = ρ⊗ ρ(J− × J−)
≤ ρ⊗ ρ( (x, y) ∈ J− × J− ∶ x ⪯ y ) + ρ⊗ ρ( (x, y) ∈ J− × J− ∶ y ⪯ x )
= 2ρ⊗ ρ( (x, y) ∈ J− × J− ∶ x ⪯ y )

= 2∫
J−
∫
J−
χx⪯y ρ(dx)ρ(dy)

= 2∫
J−
ρ(I−y )ρ(dy)

= 0.

20The term “convex core” has been used in convex geometry for finite measures on Euclidean space,
in [CM01].

21It is actually the case that every convex set is Σ-measurable; see [MO15b]. However, we will not
need this fact, except in the case that (X,Σ) is a measurable subspace of (R̄,B(R̄)) with ⪯ ∶=≤, in which
case the fact is clear.
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So ρ(J−) = 0. Similarly, we have that ρ(J+) = 0. (b) Since the intersection of two convex
sets is convex, it is sufficient to show that X ∖ J− and X ∖ J+ are convex. But it is clear
that J− is downward-inclusive and J+ is upward-inclusive, so the result is immediate.
(c) Let C ⊂X be a convex set that does not contain Xρ, and let x be a point in Xρ ∖C.
Since C is convex, we either have that x ⪯ y for all y ∈ C, or that y ⪯ x for all y ∈ C. In
the former case, I−x and C are disjoint, and so since ρ(I−x ) > 0, it follows that C is not a
ρ-full set. Likewise in the latter case, C is not a ρ-full set.

Definition 2.49. For any probability measure ρ on X, we refer to the smallest convex
ρ-full subset of X as the convex core of ρ (with respect to ⪯), and denote it by Xρ.

Remark 2.50. Let X be a Borel-measurable subset of R̄ (with Σ being the induced
σ-algebra from B(R̄)), and take ⪯ to be the usual order ≤ on X. Let ρ be any probability
measure on X. Let a ∶= inf suppρ and b ∶= sup suppρ (where suppρ is taken with respect
to the usual topology). Then we have

Xρ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(a, b) ∩X if ρ({a, b} ∩X) = 0
[a,b) ∩X if a ∈X and ρ({a}) > 0, but ρ({b} ∩X) = 0
(a,b] ∩X if b ∈X and ρ({b}) > 0, but ρ({a} ∩X) = 0
[a,b] ∩X if a, b ∈X and ρ({a}), ρ({b}) > 0.

Lemma 2.51. For any probability measure ρ on X, for any ρ-null convex set A ⊂X, we
have that either A and Xρ are disjoint or A ⊂Xρ.

Proof. Suppose we have a probability measure ρ on X and a ρ-null convex set A ⊂ X,
such that A and Xρ are not disjoint. Since A is ρ-null, Xρ ∖ A is ρ-full; and therefore,
since Xρ ∖A is a proper subset of Xρ, it follows that Xρ ∖A is not convex. But since Xρ

and A are themselves convex, it follows that A ⊂Xρ.

Lemma 2.52. Suppose ϕ is monotone. Let ρ be a stationary probability measure of the
Markov transition probabilities (ϕtx)x∈X, t∈T+. Then Xρ is crudely invariant.

Proof. Fix any t ∈ T+. We have that

1 = ρ(Xρ) = ∫
Ω
ρ(ϕ(t, ω)−1(Xρ))P(dω)

and therefore ρ(ϕ(t, ω)−1(Xρ)) = 1 for P-almost all ω ∈ Ω. But since ϕ is monotone,
ϕ(t, ω)−1(Xρ) is convex for all ω, and therefore Xρ ⊂ ϕ(t, ω)−1(Xρ) for P-almost all ω ∈ Ω,
as required.

2.9 Invertible RDS

(Several of the results in this section are adapted from Section 4 of [New15c].)

We will say that the RDS ϕ is invertible if ϕ(t, ω) is bijective for all t ∈ T+ and ω ∈ Ω,
with the map (ω,x)↦ ϕ(t, ω)−1(x) being (F t0 ⊗Σ,Σ)-measurable for all t ∈ T+.

We will now show that if ϕ is invertible, then one can obtain a random dynamical system
ϕ̄ simply by “running ϕ in backward time”.
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Proposition 2.53. Suppose ϕ is invertible. Then the family ϕ̄ = (ϕ̄(t, ω))t∈T+, ω∈Ω of
functions ϕ̄(t, ω) ∶X → X given by ϕ̄(t, ω)x ∶= ϕ(t, θ−tω)−1(x) is a random dynamical
system over the noise space (Ω,F , (F−s−(s+t))s∈T, t∈T+ , (θ−t)t∈T,P).

Proof. Firstly, it is clear that (Ω,F , (F−s−(s+t))s∈T, t∈T+ , (θ−t)t∈T,P) is indeed a memoryless

stationary noise space (as defined according to our formalism in Section 2.2). Obviously,
ϕ̄(0, ω) = idX for all ω ∈ Ω. For any s, t ∈ T+ and ω ∈ Ω, we have

ϕ̄(s + t, ω) = ϕ(s + t, θ−(s+t)ω)−1

= (ϕ(s, θ−sω) ○ϕ(t, θ−(s+t)ω))−1

= ϕ(t, θ−tθ−sω)−1 ○ϕ(s, θ−sω)−1

= ϕ̄(t, θ−sω) ○ ϕ̄(s,ω)−1.

Finally, for any t ∈ T+, since the map (ω,x) ↦ ϕ(t, ω)−1(x) is (F t0 ⊗ Σ,Σ)-measurable,
we have that the map (ω,x) ↦ ϕ(t, θ−tω)−1(x) is (F0

−t ⊗ Σ,Σ)-measurable. So we are
done.

Definition 2.54. If ϕ is invertible, then we refer to ϕ̄ in Proposition 2.53 as the inverse
of ϕ, or the time-reversed version of ϕ.

Remark 2.55. Note that if ϕ is invertible, then ϕ̄ is invertible as an RDS over
(Ω,F , (F−s−(s+t))s∈T, t∈T+ , (θ−t)t∈T,P), with ¯̄ϕ = ϕ.

Remark 2.56. If ϕ is invertible, then we can “extend its domain of definition” by allowing
negative times as well as positive times: specifically, set ϕ(−t, ω) ∶= ϕ̄(t, ω) for all t ∈ T+.
One can easily check that the “two-sided cocycle equation”

ϕ(s + t, ω) = ϕ(t, θsω) ○ϕ(s,ω) ∀ s, t ∈ T

is satisfied for all ω. We should warn, however, that a stationary probability measure ρ
of the Markov transition probabilities (ϕtx)x∈X, t∈T+ generally does not satisfy the equation
ρ = ∫Ωϕ(t, ω)∗ρ(⋅)P(dω) for negative t ∈ T.22

Example 2.57. For any Lipschitz 1-periodic b ∶R → R and any σ ∈ R, the RDS on S1

generated by the SDE dφt = b(φt)dt + σdWt (as defined in Section 2.3) is invertible.
(For the proof, see Proposition 2.87.) The inverse of this RDS can be regarded as “the
RDS on S1 generated by the SDE dφt = −b(φt)dt + σdW−t”.

Now if ϕ is invertible, then for any x ∈ X and t ∈ T+ we may define the probability
measure ϕ̄tx on X by

ϕ̄tx(A) ∶= P(ω ∈ Ω ∶ x ∈ ϕ(t, ω)A).
Note that (ϕ̄tx)x∈X, t∈T+ is precisely the family of Markov transition probabilities associated
with the time-reversed version ϕ̄ of ϕ, and that a probability measure ρ on X is stationary

22One interesting exception is the case that X is finite. Here, one can show that if ϕ is invertible then
every stationary probability measure is crudely incompressible, and thus for each t ∈ T+ we have that
ϕ(t, ω)∗ρ = ϕ(−t, ω)∗ρ = ρ almost surely.

69



2.9 Invertible RDS

under the Markov transition probabilities (ϕ̄tx)x∈X, t∈T+ if and only if for all t ∈ T+ and
A ∈ Σ,

ρ(A) = ∫
Ω
ρ(ϕ(t, ω)A)P(dω). (2.10)

As in Remark 2.56, the set of stationary probability measures under (ϕtx)x∈X, t∈T+ generally
does not coincide with the set of stationary probability measures under (ϕ̄tx)x∈X, t∈T+ .

Now observe that if ϕ is invertible, then a finite set P ⊂ X is crudely invariant under ϕ
if and only if P is crudely invariant under ϕ̄.

Lemma 2.58. Suppose ϕ is invertible, and let ρ be a probability measure that is ergodic
with respect to either the Markov transition probabilities (ϕtx)x∈X, t∈T+ or the Markov
transition probabilities (ϕ̄tx)x∈X, t∈T+. Then either ρ is atomless, or ρ = 1

∣P ∣ ∑x∈P δx for
some finite crudely invariant set P ⊂X.

Proof. Suppose ρ is not atomless. Let m ∶=maxx∈X ρ({x}), and let P ∶= {x ∶ ρ({x}) =m}.
For any t ∈ T+ and ω ∈ Ω, since ϕ(t, ω) is bijective, we have that either

(i) ϕ(t, ω)P = ϕ(t, ω)−1(P ) = P ; or

(ii) ϕ(t, ω)P ≠ P , and ρ(ϕ(t, ω)P ) and ρ(ϕ(t, ω)−1(P )) are both less than P .

So then, since ρ is stationary under either (ϕtx) or (ϕ̄tx), we have that for each t ∈ T+,
scenario (i) occurs for P-almost all ω ∈ Ω (i.e. P is crudely invariant). Hence in particular,
ϕtx(P ) = ϕ̄tx(P ) = 1 for all x ∈ P and t ∈ T+. Since ρ is ergodic under either (ϕtx) or (ϕ̄tx),
it follows that ρ(P ) = 1.

Lemma 2.59. Suppose ϕ is invertible and q ∶Ω → F is a random fixed point of ϕ.
Then q is also a random fixed point of ϕ̄ (regarded as a RDS over the noise space
(Ω,F , (F−s−(s+t))s∈T, t∈T+ , (θ−t)t∈T,P)).

Proof. Fix t ∈ T+. For P-almost all ω ∈ Ω, we have that

ϕ(t, θ−tω)q(θ−tω) = q(ω)

and therefore
q(θ−tω) = ϕ̄(t, ω)q(ω)

as required.

So then, applying Lemma 2.39 to ϕ̄, we obtain the following:

Corollary 2.60. Suppose ϕ is invertible, and let q ∶Ω → X be a random fixed point of
ϕ that is (F∞r ,Σ)-measurable for some r ∈ T. Then q∗P is ergodic with respect to the
Markov kernel (ϕ̄tx)x∈X for each t ∈ T+ ∖ {0} (and is therefore ergodic with respect to the
family of Markov transition probabilites (ϕ̄tx)x∈X, t∈T+).

We finish this section on invertible RDS with the following:

Lemma 2.61. Suppose ϕ is invertible, and let q ∶Ω → X be a random fixed point of ϕ
that is either (F r−∞,Σ)-measurable or (F∞r ,Σ)-measurable for some r ∈ T. Then q∗P is
either atomless or a Dirac mass on a crude deterministic fixed point.
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2.10 Two “derived” RDS

Proof. It suffices just to consider the case that q is F r−∞-measurable, since we can then
just take the inverse of ϕ to give the case that q is F∞r -measurable for some r ∈ T. Due
to Remark 2.38, we can assume without loss of generality that q is F0

−∞-measurable.

Suppose that q∗P is not atomless. Then by Lemmas 2.39 and 2.58, there is a finite
crudely invariant set P ⊂ S1 such that q∗P = 1

∣P ∣ ∑x∈P δx. Fix an arbitrary x ∈ P . Let

E ∶= q−1({x}), and for each n ∈ N let

Ẽn ∶= {ω ∈ Ω ∶ ϕ(n, θ−nω)q(θ−nω) = x}.

Obviously, since q is a random fixed point, P(E△ Ẽn) = 0 for each n. For each n ∈ N, for
any F ∈ F∞−n, we have that

P(E ∩ F ) = ∫
F
P(E∣F∞−n)(ω)P(dω)

= ∫
F
P(Ẽn∣F∞−n)(ω)P(dω)

= ∫
F
P(ω̃ ∶ ϕ(n, θ−nω)q(θ−nω̃) = x)P(dω)

(by Corollary A.11, since F−n−∞ and F∞−n are independent)

= ∫
F
P(ω̃ ∶ ϕ(n, θ−nω)q(ω̃) = x)P(dω)

= ∫
F
q∗P({ϕ̄(n,ω)x})P(dω)

= ∫
F

1
∣P ∣ P(dω)

(since ϕ̄(n,ω)x ∈ P for P-almost all ω)

= 1
∣P ∣P(F )

= P(E)P(F ).

So E is independent of F∞−n for each n ∈ N, and therefore E is independent of F . In
particular, E is independent of itself, and so P(E) = 1. Hence ∣P ∣ = 1, i.e. q∗P is a Dirac
mass at a crude deterministic fixed point.

2.10 Two “derived” RDS

The n-point motion

Since we assume that (X,Σ) is standard, the measurable space (Xn,Σ⊗n) is also standard
for any n ∈ N (as it is the Borel space associated to the n-fold product of any compact
metrisable topology on X generating Σ). We define the family ϕ×n=(ϕ×n(t, ω))t∈T+, ω∈Ω of
functions ϕ×n(t, ω) ∶Xn →Xn by

ϕ×n(t, ω)(x1, . . . , xn) = (ϕ(t, ω)x1 , . . . , ϕ(t, ω)xn ).

It is clear that ϕ×n is a RDS on Xn (over the same noise space over which the RDS ϕ is
defined). We refer to ϕ×n as the n-point motion of ϕ. We denote the associated Markov
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2.10 Two “derived” RDS

transition probabilities by (ϕtx)x∈Xn, t∈T+ . Given any probability measure ρ on Xn, we
define the probability measure ϕt∗(n)ρ on Xn by

ϕt∗
(n)ρ(A) ∶= ∫

Xn
ϕtx(A)ρ(dx)

for all A ∈ Σ⊗n. Note, as before, that this can be re-expressed as

ϕt∗
(n)ρ(A) = ∫

Ω
ϕ×n(t, ω)∗ρ(A)P(dω)

for all A ∈ Σ⊗n.

Proposition 2.62 (cf. [Kun90, Theorem 4.3.2]). For any integer n ≥ 2, for any probability
measure ρ on X, ρ⊗n is stationary under the Markov transition probabilities (ϕtx)x∈Xn, t∈T+

if and only if ρ is crudely incompressible under ϕ.

Proof. If ρ is crudely incompressible then for any t ∈ T+ and E1, . . . ,En ∈ Σ,

ϕt∗
(n)(ρ⊗n)(E1 × . . . ×En) = ∫

Ω
ϕ×n(t, ω)∗(ρ⊗n)(E1 × . . . ×En)P(dω)

= ∫
Ω

n

∏
i=1
ϕ(t, ω)∗ρ(Ei)P(dω)

= ∫
Ω

n

∏
i=1
ρ(Ei)P(dω)

= ρ⊗n(E1 × . . . ×En).

So ρ⊗n is stationary under (ϕtx)x∈Xn, t∈T+ . Now, conversely, suppose that ρ⊗n is stationary
under (ϕtx)x∈Xn, t∈T+ . Fix t ∈ T+. For any A ∈ Σ, we have that

E(P)[ω ↦ ϕ(t, ω)∗ρ(A)]
= E(P)[ω ↦ ϕ×n(t, ω)∗(ρ⊗n)(A ×Xn−1)]
= ρ⊗n(A ×Xn−1)
= ρ(A)

and (writing Var(P)[⋅] for the variance of a random variable)

Var(P)[ω ↦ ϕ(t, ω)∗ρ(A)]
= E(P)[ω ↦ (ϕ(t, ω)∗ρ(A))2] − E(P)[ω ↦ ϕ(t, ω)∗ρ(A)]2

= E(P)[ω ↦ ϕ×n(t, ω)∗(ρ⊗n)(A2 ×Xn−2)] − ρ(A)2

= ρ⊗n(A2 ×Xn−2) − ρ(A)2

= 0.

Hence ϕ(t, ω)∗ρ(A) = ρ(A) for P-almost all ω ∈ Ω. Since (X,Σ) is standard, there
exists a countable π-system C generating Σ (by Remark A.1). P-almost every ω ∈ Ω
has the property that for all A ∈ C, ϕ(t, ω)∗ρ(A) = ρ(A). Therefore, by Corollary A.6,
ϕ(t, ω)∗ρ = ρ for P-almost all ω ∈ Ω. Hence ρ is crudely incompressible.
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The image-measure RDS

Since we assume that (X,Σ) is standard, the measurable space (M(X,Σ),K(X,Σ)) is also
standard (as it is the Borel space associated to the narrow topology corresponding to
any Polish topology on X generating Σ). Now writing ϕ(t, ω)∗ ∶M(X,Σ) → M(X,Σ) for
the function sending a probability measure ρ on X to the image measure ϕ(t, ω)∗ρ, let
ϕ∗ ∶= (ϕ(t, ω)∗)t∈T+, ω∈Ω.

It is not hard to show that ϕ∗ is a RDS onM(X,Σ) (over the same noise space over which
the RDS ϕ is defined). The “non-trivial” part is to show that the map (ω, ρ)↦ ϕ(t, ω)∗ρ
is (F t0 ⊗K(X,Σ),K(X,Σ))-measurable, which we justify as follows: for any A ∈ Σ, we have

ϕ(t, ω)∗ρ(A) = ∫
X
1A(ϕ(t, ω)x)ρ(dx),

so by Lemma A.12, the map (ω, ρ)↦ ϕ(t, ω)∗ρ(A) is (F t0 ⊗K(X,Σ),B([0,1]))-measurable,
as required.

We refer to ϕ∗ as the image-measure RDS associated to ϕ. We denote the associated
Markov transition probabilities by (ϕtρ)ρ∈M(X,Σ), t∈T+ . Given any probability measure Q on
M(X,Σ), we define the probability measure ϕt∗∗ Q on M(X,Σ) by

ϕt∗∗ Q(A) ∶= ∫
M(X,Σ)

ϕtρ(A)Q(dρ)

for all A ∈ K(X,Σ). Once again, this can be re-expressed as

ϕt∗∗ Q(A) = ∫
Ω
ϕ(t, ω)∗∗Q(A)P(dω)

for all A ∈ K(X,Σ). (Here, ϕ(t, ω)∗∗Q(A) = Q({ρ ∈M(X,Σ) ∶ ϕ(t, ω)∗ρ ∈ A}).)

Remark 2.63. One useful intuitive way of visualising a trajectory (ϕ(t, ω)∗ρ)t≥0 of the
image-measure RDS ϕ∗ is as follows: Imagine we endow the phase space X with some
initial distribution of mass ρ; we then run the RDS according to some noise realisation
ω, and see how the distribution of mass evolves over time. At time t, the distribution of
mass is given by ϕ(t, ω)∗ρ.

2.11 RDS in a topological setting

Fix a separable metrisable topology on X generating Σ.

We will define certain continuity properties for a RDS, and from then on, we will study
properties of “right-continuous” RDS.

(We work with the convention that for any subset E of R and any function f ∶E →X, we
say that f is right-continuous at t ∈ E if the restriction of f to E ∩ [t,∞) is continuous at
t, and we likewise say that f is left-continuous at t if the restriction of f to E ∩ (−∞, t]
is continuous at t.)
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2.11 RDS in a topological setting

Definition 2.64. We will say that ϕ is spatially continuous if the map ϕ(t, ω) ∶X → X
is a continuous function for all t ∈ T+ and ω ∈ Ω.

Definition 2.65. We will say that ϕ is continuous if the map (t, x) ↦ ϕ(t, ω)x is
continuous for all ω ∈ Ω.

Definition 2.66. We will say that ϕ is right-continuous if for any decreasing23 sequence
(tn) in T+ converging to a value t and any sequence (xn) in X converging to a point x,
ϕ(tn, ω)xn → ϕ(t, ω)x as n→∞ for all ω ∈ Ω.

Obviously, right-continuity of ϕ implies in particular that (a) ϕ is spatially continuous;
and (b) for each x and ω the trajectory t ↦ ϕ(t, ω)x is right-continuous. Note also that
if ϕ is right-continuous then ϕ is measurable.24

Remark 2.67. By Lemma A.20, if ϕ is right-continuous then for any decreasing sequence
(tn) in T+ converging to a value t and any sequence (xn) in X converging to a point x, ϕtnxn
converges in the narrow topology to ϕtx. (In particular, the Markov transition probabilities
(ϕtx)x∈X, t∈T+ are Feller-continuous.)

Definition 2.68. We will say that ϕ is càdlàg if ϕ is right-continuous and for each
t ∈ T+ ∖ {0} and ω ∈ Ω there exists a continuous function ϕ−(t, ω) ∶X → X such that for
any strictly increasing sequence (tn) in T+ converging to t and any sequence (xn) in X
converging to a point x, ϕ(tn, ω)xn → ϕ−(t, ω)x as n→∞.

Definition 2.69. We will say that ϕ has left-continuous pullback trajectories if for every
x ∈X and ω ∈ Ω the map t↦ ϕ(t, θ−tω)x is left-continuous.

Note that if T = Z then continuity, spatial continuity, right-continuity and càdlàg are all
equivalent, and ϕ necessarily has left-continuous pullback trajectories.

Definition 2.70. We will say that ϕ is an open-mapping RDS if ϕ is right-continuous
and for every t ∈ T+, ω ∈ Ω and open U ⊂X, ϕ(t, ω)U is open.

Definition 2.71. Suppose ϕ is right-continuous. Moreover, let Y be a separable
metrisable topological space (with B(Y ) standard), and let ϕ′ be a right-continuous
RDS on Y over (Ω,F , (F s+ts ), (θt),P). A function h ∶X → Y is called a deterministic
semiconjugacy from ϕ to ϕ′ if h is continuous and surjective and for all t ∈ T+, ω ∈ Ω and
x ∈X, h(ϕ(t, ω)x) = ϕ′(t, ω)h(x).

Standing Assumption. For the rest of Section 2.11, we assume that ϕ is right-
continuous.

Lemma 2.72. For any x ∈X and open U ⊂X, the set

Ex,U ∶= {ω ∈ Ω ∶ ∃ t ∈ T+ s.t. ϕ(t, ω)x ∈ U }

is F∞0 -measurable. Given any dense D ⊂ T+, P(Ex,U) > 0 if and only if there exists t ∈D
such that ϕtx(U) > 0.

23Here, a “decreasing sequence” need not be strictly decreasing.
24See e.g. [New15a, Lemma 16(B)].
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If P(Ex,U) > 0, then we say that U is accessible from x (under ϕ). Note that for any open
U ⊂X, the set of points in X from which U is accessible is itself open.

Proof of Lemma 2.72. Let D̃ be any countable dense subset of T+. For each ω ∈ Ω, since
the map t↦ ϕ(t, ω)x is right-continuous, it is clear that

∃ t ∈ T+ s.t. ϕ(t, ω)x ∈ U ⇐⇒ ∃ t ∈D s.t. ϕ(t, ω)x ∈ U.

In other words,
Ex,U = ⋃

t∈D̃
{ω ∈ Ω ∶ ϕ(t, ω)x ∈ U }, (2.11)

and so Ex,U ∈ F∞0 . Now given any dense D ⊂ T+, we can take the countable dense set D̃
to be a subset of D. Obviously if there exists t ∈D such that ϕtx(U) > 0 then P(Ex,U) > 0;
and conversely, if P(Ex,U) > 0 then by equation (2.11) there exists t ∈ D̃ ⊂ D such that
ϕtx(U) > 0.

Remark 2.73. We have defined “accessibility” in terms of there being a positive
probability of reaching a given set from a given point. Nonetheless, it is useful to note
the following: Suppose that (as is usually the case in practice for continuous RDS) there
exists a separable metrisable topology on Ω whose Borel σ-algebra coincides with F , such
that P has full support and the map ω ↦ ϕ(t, ω)x is continuous for each t and x. Then,
to show that an open set U is accessible from a point x, it is sufficient just to find one
sample point ω ∈ Ω and a time t ∈ T+ such that ϕ(t, ω)x ∈ U . Note in particular that,
to show that a given point p ∈ X is not a deterministic fixed point (i.e. that X ∖ {p}
is accessible from p), it is sufficient to find one sample point ω and a time t such that
ϕ(t, ω)p ≠ p.

Lemma 2.74. For any closed G ⊂ X and t ∈ T+, the set {ω ∈ Ω ∶ ϕ(t, ω)G ⊂ G} is
F t0-measurable. This set is a P-full set if and only if ϕtx(G) = 1 for all x ∈ G.

Proof. Let S ⊂ G be a countable set that is dense in G. For each ω ∈ Ω, since ϕ(t, ω) is
continuous, we have that ϕ(t, ω)G ⊂ G if and only if ϕ(t, ω)S ⊂ G; in other words

{ω ∈ Ω ∶ ϕ(t, ω)G ⊂ G} = ⋂
x∈S
{ω ∈ Ω ∶ ϕ(t, ω)x ∈ G} ∈ F t0 (2.12)

as required. As in the proof of Lemma 2.72, the rest is clear by equation (2.12).

Recall that a set A ⊂ X is said to be invariant (under ϕ) if P-almost every ω ∈ Ω has
the property that for all t ∈ T+, ϕ(t, ω)A ⊂ A; and a set A ∈ Σ is said to be very crudely
invariant (under ϕ) if for each x ∈ A and t ∈ T+, ϕtx(A) = 1. (In other words, A is said
to be very crudely invariant under ϕ if A is forward-invariant according to the Markov
transition probabilities (ϕtx)x∈X, t∈T+ .)

Lemma 2.75. For any closed G ⊂ X, the set {ω ∈ Ω ∶ ϕ(t, ω)G ⊂ G ∀t ∈ T+ } is F∞0 -
measurable. This set is a P-full set if and only if ϕtx(G) = 1 for all x ∈ G and t ∈ T+. (In
other words: a closed set is invariant if and only if it is very crudely invariant).

Obviously, as a special case of this, any crude deterministic fixed point is in fact a
deterministic fixed point.
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Proof of Lemma 2.75. For each ω ∈ Ω and x ∈ G, since the map t ↦ ϕ(t, ω)x is right-
continuous, we have that

ϕ(t, ω)x ∈ G ∀ t ∈ T+ ⇐⇒ ϕ(t, ω)x ∈ G ∀ t ∈D.

In other words,

{ω ∈ Ω ∶ ϕ(t, ω)G ⊂ G ∀t ∈ T+ } = ⋂
t∈D
{ω ∈ Ω ∶ ϕ(t, ω)G ⊂ G}, (2.13)

which is F∞0 -measurable due to Lemma 2.74. The rest is clear by Lemma 2.74 and
equation (2.13).

Note in particular that for any probability measure ρ that is stationary under the Markov
transition probabilities (ϕtx)x∈X, t∈T+ , suppρ is invariant. As in Section C.4, for any non-
empty compact invariant G ⊂ X there exists at least one ergodic probability measure ρ
with ρ(G) = 1.

We will now see that for an ergodic probability measure ρ, almost all trajectories starting
in suppρ are almost surely dense in suppρ.

Lemma 2.76. Let ρ be a probability measure that is ergodic with respect to the Markov
transition probabilities (ϕtx)x∈X, t∈T+. Then (P ⊗ ρ)-almost every (ω,x) ∈ Ω ×X has the

property that for all T ∈ T+, {ϕ(t, ω)x ∶ t ≥ T} = suppρ.

Lemma 2.76 can be obtained as an immediately corollary of Lemma 2.15 (using the fact
that there is a countable base for the topology of X). However, we give the following
more elementary proof:

Proof. For any open U ⊂X, let

AU ∶= { (ω,x) ∈ Ω ×X ∶ ∃ t ∈ T+ s.t. ϕ(t, ω)x ∈ U }
= { (ω,x) ∈ Ω ×X ∶ ∃ t ∈ T+ s.t. Θt(ω,x) ∈ Ω ×U } .

It is clear that for any (ω,x) ∈ Ω ×X and τ ∈ T+, if Θτ(ω,x) ∈ AU then (ω,x) ∈ AU .
Moreover, AU is (F∞0 ⊗Σ)-measurable, since (due to the right-contintuity of ϕ) it can be
expressed as

AU = ⋃
t∈D
{ (ω,x) ∈ Ω ×X ∶ ϕ(t, ω)x ∈ U }

where D may be any countable dense subset of T+. Consequently, by Lemma 2.21(ii),
P ⊗ ρ(AU) is equal to either 0 or 1. Note that Ω × U ⊂ AU , so if ρ(U) > 0 then
P⊗ ρ(Ω ×U) = ρ(U) > 0 and therefore P⊗ ρ(AU) = 1.

Let U be a countable base for the topology of X, and let V ∶= {U ∈ U ∶ U ∩ suppρ ≠ ∅}.
Observe that the set A(0) ⊂ Ω×X of points (ω,x) whose trajectory {ϕ(t, ω)x}t∈T+ densely
covers suppρ is given by

A(0) ∶= {(ω,x) ∈ Ω ×X ∶ suppρ ⊂ {ϕ(t, ω)x ∶ t ∈ T+} }

= {(ω,x) ∈ Ω ×X ∶ suppρ ⊂ {πX(Θt(ω,x)) ∶ t ∈ T+ } }
= ⋂

U∈V
AU .
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Consequently, for any T ∈ T+, the set A(T ) ⊂ Ω × X of points (ω,x) whose trajectory
subsequent to time T densely covers suppρ is given by

A(T ) ∶= {(ω,x) ∈ Ω ×X ∶ suppρ ⊂ {ϕ(t, ω)x ∶ t ≥ T} }

= {(ω,x) ∈ Ω ×X ∶ suppρ ⊂ {πX(ΘT+t(ω,x)) ∶ t ∈ T+ } }

= Θ−T (⋂
U∈V

AU) .

So then, the set A ⊂ Ω × X of points (ω,x) with the property that for all T ∈ T+,
suppρ ⊂ {ϕ(t, ω)x ∶ t ≥ T} is given by

A = ⋂
T ∈N

Θ−T (⋂
U∈V

AU) .

Now for any U ∈ V , ρ(U) > 0 and therefore P⊗ ρ(AU) = 1. Hence P⊗ ρ(A) = 1.

In other words, (P ⊗ ρ)-almost every (ω,x) ∈ Ω × X has the property that for all

T ∈ T+, suppρ ⊂ {ϕ(t, ω)x ∶ t ≥ T}. But also, since suppρ is an invariant closed ρ-full
measure set, it is clear that (P ⊗ ρ)-almost every (ω,x) ∈ Ω ×X has the property that

{ϕ(t, ω)x ∶ t ∈ T+} ⊂ suppρ. So we are done.

Now for any x ∈X, let Gx ⊂X be the smallest invariant set containing x; as in Section C.4,
this can be written explicitly as

Gx = ⋃
t∈T+

suppϕtx.

Note in particular that for any open U ⊂ X, U ∩ Gx is non-empty if and only if U is
accessible from x. In other words, Gx is precisely the set of points y ∈X such that every
neighbourhood of y is accessible from x. Obviously (by definition), for any x ∈X, for any
y ∈ Gx, we have that Gy ⊂ Gx.

Lemma 2.77. Fix a metrisation d of the topology of X. The map (x, y)↦ d(x,Gy) from
X ×X to [0,∞) is upper semicontinuous.

Proof. Let (xn) and (yn) be convergent sequences in X, with limits x and y respectively,
such that the sequence rn ∶= d(xn,Gyn) converges to a value c as n → ∞. And suppose
for a contradiction that c > d(x,Gy) =∶ r. Then on the one hand, B 1

2
(r+c)(x) is accessible

from y; but on the other hand, since for every n we have that Brn(xn) is not accessible
from yn, we therefore have that for all n sufficiently large, B 1

2
(r+c)(x) is not accessible

from yn. So the set of points from which B 1
2
(r+c)(x) is accessible includes y but excludes

yn for sufficiently large n; this contradicts the fact that the set of points from which an
open set is accessible is itself open.

Now we will say that a set G ⊂X is minimal (with respect to ϕ) if the following equivalent
statements hold:

(i) G is closed and invariant, and the only closed invariant proper subset of G is ∅;
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(ii) G is a non-empty closed invariant set, and for all x ∈ G, Gx = G;

(iii) G is a non-empty closed invariant set, and for all x ∈ G and open U ⊂ X with
U ∩G ≠ ∅, U is accessible from x.

(So G is minimal with respect to ϕ if and ony if G is minimal according to the Markov
transition probabilities (ϕtx)x∈X, t∈T+ .) If the whole phase space X is minimal (i.e. if the
only closed invariant sets are X and ∅), we say that ϕ has minimal dynamics (on X).
Obviously, if ϕ has minimal dynamics then every stationary probability measure of the
Markov transition probabilities (ϕtx)x∈X, t∈T+ has full support.

Remark 2.78. As in Appendix C, every non-empty compact invariant set contains a
minimal set. Hence in particular, if X is compact then there exists at least one minimal
set. Also note that for any non-empty compact invariant set C, if C contains only one
minimal set K, then every non-empty closed invariant subset of C must contain K.

The following fairly intuitive lemma (which is not really specific to RDS but can be
generalised to homogeneous Markov processes with sufficient continuity properties) will
play a crucial role in the proofs of some of our results:

Lemma 2.79. Suppose K ⊂X is a compact set possessing no non-empty closed invariant
subsets. Then given any x ∈X, for P-almost every ω ∈ Ω there exist arbitrarily large times
t ∈ T+ ∩Q such that ϕ(t, ω)x ∉K.

The proof of Lemma 2.79 is essentially the same as the proof of [BS88, Proposition 4.1].

We will use the following general fact:

Lemma 2.80. Let (Ω,F , (Ft)t∈T+ ,P) be a filtered probability space, and let (Mt)t∈T+
be an X-valued homogeneous Markov process with respect to (Ft)t∈T+, with transition
probabilities (µtx)x∈X, t∈T+. Fix s ∈ T+, let D be a countable subset of T+, and let T ∶ Ω→D
be an Fs-measurable function. Then for any A ∈ B(X),

P(Ms+T ∈ A∣Fs) P-a.s.= µTMs
(A).

Proof of Lemma 2.80. First observe that ω ↦ µ
T (ω)
Ms(ω)(A) is indeed Fs-measurable: for

any I ∈ B([0,1]), we have

{ω ∶ µT (ω)
Ms(ω)(A) ∈ I} = ⋃

t∈D
({ω ∶ T (ω) = t} ∩ {ω ∶ µtMs(ω)(A) ∈ I}) ∈ Fs.

Now for any E ∈ Fs, we have

∫
E
1A(Ms+T (ω)(ω))P(dω) = ∑

t∈D
∫
E∩T−1({t})

1A(Ms+t(ω))P(dω)

= ∑
t∈D
∫
E∩T−1({t})

µtMs(ω)(A)P(dω)

= ∫
E
µ
T (ω)
Ms(ω)(A)P(dω)

as required.
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Proof of Lemma 2.79. Let D ∶= T+ ∩Q. Fix x ∈X and let Mt(ω) ∶= ϕ(t, ω)x for all t and
ω. By Corollary 2.12, (Mt) is a Markov process with transition probabilities (ϕtx)x∈X, t∈T+ .
For each y ∈ K, Gy /⊂ K (since K admits no non-empty closed invariant subsets), and so
X ∖K is accessible from y; hence, as in the proof of Lemma 2.72, there exists τ ∈D such
that ϕτy(K) < 1.25 So, defining the function l ∶K → [0,1] by

l(y) ∶= inf
t∈D

ϕty(K),

we have that l is strictly less than 1 on the whole of K. Note that for each t ∈ D, the
map y ↦ ϕty(K) is upper semicontinuous; therefore, l is upper semicontinuous. So then,
since K is compact, l has a maximum value c′, which is strictly less than 1. Fix a value
c ∈ (c′,1). Obviously, for all y ∈K there exists τ ∈D such that ϕτy(K) ≤ c ; but moreover,

one can easily construct a measurable function τ ∶ K → D such that ϕ
τ(y)
y (K) ≤ c for all

y ∈K.26 We extend τ to the whole of X by setting τ(y) = 0 for all y ∈X∖K.

Now to obtain the desired result, it is sufficient just to show that for each N ∈ N, for
P-almost every ω ∈ Ω there exists t ∈D with t ≥ N such that ϕ(t, ω)x ∉K. Fix any N ∈ N,
and define an increasing sequence (Tn)n∈N0 of functions Tn ∶ Ω→D by

T0(ω) = N

Tn(ω) = Tn−1(ω) + τ(MTn−1(ω)(ω)) (n ≥ 1)

for all ω ∈ Ω. Note that for each ω, the sequence Tn(ω) is strictly increasing in n until the
first point n∗ at which MTn∗(ω)(ω) ∉K, beyond which the sequence remains constant.

For each n ∈ N0, let En ∶= {ω ∈ Ω ∶ MTn(ω)(ω) ∈ K }. Obviously if ⋂∞n=0En is P-null
set, then in particular we have that P-almost every ω ∈ Ω there exists t ≥ N such that
ϕ(t, ω)x ∉ K, as is required. So we will show that ⋂∞n=0En is P-null set; to do this, we
will prove by induction that for each n ∈ N0, P(En) ≤ cn.

The n = 0 case is trivial. Now fix any m ∈ N0 such that P(Em) ≤ cm. First observe
that for each s ∈ D, the set Em ∩ T −1

m ({s}) ∈ Fs-measurable. One way to see this is as
follows: provided m ≥ 1 and s > N , we can express Em ∩ T −1

m ({s}) as

⎛
⎜⎜
⎝

⋃
t0,...,tm∈D

N=t0<...<tm=s

{ω ∈ Ω ∶ τ(Mtr(ω)) = tr+1 − tr for all 0 ≤ r ≤m − 1}
⎞
⎟⎟
⎠
∩ {ω ∈ Ω ∶Ms(ω) ∈K} ;

otherwise we have

Em ∩ T −1
m ({s}) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅ s < N
∅ m ≥ 1 and s = N
∅ m = 0 and s > N

M−1
s (K) m = 0 and s = N.

25Using the compactness of K, one can show that τ can be taken from a bounded interval [0, T ] (where
T is independent of y). Consequently (as in [BS88, Proposition 4.1]) in addition to proving Lemma 2.79,
one can make a statistical statement about the length of time taken to escape from K; however, we will
not need this for our purposes.

26e.g. if (sn)n∈N is an enumeration of D, set τ(y) ∶= sN(y) where N(y) ∶=min{n ∈ N ∶ ϕsny (K) < 1}.
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So then,

P(Em+1) = ∫
Em

1Em+1(ω)P(dω) (since Em+1 ⊂ Em)

= ∫
Em

1K(MTm+1(ω)(ω))P(dω)

= ∫
Em

1K(MTm(ω)+τ(MTm(ω)(ω))(ω))P(dω)

= ∑
s∈D
∫
Em∩T−1

m ({s})
1K(Ms+τ(Ms(ω))(ω))P(dω)

= ∑
s∈D
∫
Em∩T−1

m ({s})
ϕ
τ(Ms(ω))
Ms(ω) (K)P(dω)

(by Lemma 2.80 with T ∶= τ(Ms))

≤ ∑
s∈D
∫
Em∩T−1

m ({s})
c P(dω)

= cP(Em)
≤ cm+1.

So we are done.

We have the following important corollary:

Corollary 2.81. Let C ⊂ X be a compact invariant set, and suppose that C contains
only one minimal set K. Let U ⊂ X be an open set with U ∩K ≠ ∅. Then for each
x ∈ C, for P-almost every ω ∈ Ω there exist (arbitrarily large) times t ∈ T+ ∩Q such that
ϕ(t, ω)x ∈ U .

(Note that one particular case of this is the case that C is itself minimal.)

Proof. By Remark 2.78, C ∖ U cannot possess any non-empty closed invariant subsets.
Hence Lemma 2.79 combined with the invariance of C gives the result.

Now since we assume that the RDS ϕ is right-continuous, it is easy to check that the n-
point motion ϕ×n is a right-continuous RDS on Xn (equipped with the product topology).
For any (x, y) ∈X ×X we will write G(x,y) ⊂X ×X to denote the smallest closed invariant
set under ϕ×2 containing (x, y).

Let us denote the standard projections from X × X to X by π1 ∶ (x, y) ↦ x and
π2 ∶ (x, y)↦ y.

Lemma 2.82. For any x, y ∈X, π1(G(x,y)) = Gx and π2(G(x,y)) = Gy.

Hence in particular, if G(x,y) is compact then π1(G(x,y)) = Gx and π2(G(x,y)) = Gy.

Proof of Lemma 2.82. Let A ∶= π1(G(x,y)); so we need to show that Ā = Gx. We first
show that Ā is invariant; for this, it is sufficient to show that for every u ∈ A, X ∖ Ā is
not accessible from u. Fix u ∈ A, and let v ∈ X be such that (u, v) ∈ G(x,y). Obviously
(by definition) the sets (X ∖A)×X and G(x,y) are mutually disjoint; and so, since G(x,y)
is invariant, (X∖Ā)×X is not accessible from (u, v). Hence X∖Ā is not accessible from u.
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2.12 Invertible RDS in a topological setting

It remains to show that Ā admits no closed invariant proper subsets containing x. Let C
be a closed proper subset of Ā containing x; we will show that C is not invariant. Since C
is closed and Ā /⊂ C, it follows that A /⊂ C, and thus the sets (X ∖C)×X and G(x,y) have
non-empty intersection. Therefore (X ∖C)×X is accessible from (x, y), and so X ∖C is
accessible from x. Thus C is not invariant.

Hence we have shown that π1(G(x,y)) = Gx. Likewise, π2(G(x,y)) = Gy.

2.12 Invertible RDS in a topological setting

As in Section 2.11, fix a separable metrisable topology on X generating Σ.

Lemma 2.83. If ϕ(t, ω) ∶X →X is a homeomorphism for all t and ω, then ϕ is invertible
(in the sense of Section 2.9).

Proof. Fix t ∈ T+; we need to show that the map (ω,x) ↦ ϕ(t, ω)−1(x) is (F t0 ⊗ Σ,Σ)-
measurable. Since X is separable and the map x↦ ϕ(t, ω)−1(x) is continuous for each ω,
it is sufficient27 to show that the map ω ↦ ϕ(t, ω)−1(x) is (F t0,Σ)-measurable for each x.
Fix x ∈X and a closed set G ⊂X. Let S ⊂ G be a countable set that is dense in G. Note
that for every ω ∈ Ω, ϕ(t, ω)G is closed and ϕ(t, ω)S is dense in ϕ(t, ω)G; hence we have
that x ∈ ϕ(t, ω)G if and only if every neighbourhood of x intersects ϕ(t, ω)S. In other
words, fixing a metrisation of the topology of X, we have

{ω ∈ Ω ∶ ϕ(t, ω)−1(x) ∈ G} =
∞
⋂
n=1
⋃
y∈S
{ω ∈ Ω ∶ ϕ(t, ω)y ∈ B 1

n
(x)}.

Clearly the RHS is F t0-measurable. So we are done.

Definition 2.84. We will say that ϕ is right-continuously invertible if ϕ is right-
continuous, invertible, and has the property that for any decreasing28 sequence (tn)
in T+ converging to a value t and any sequence (xn) in X converging to a point x,
ϕ(tn, ω)−1(xn)→ ϕ(t, ω)−1(x) as n→∞ for all ω ∈ Ω.

Definition 2.85. We will say that ϕ is continuously invertible if ϕ is continuous,
invertible, and has the property that the map (t, x) ↦ ϕ(t, ω)−1(x) is continuous for
all ω ∈ Ω.

Now we will say that a σ-locally compact metrisable space Y respects inverses if for
any sequence of homeomorphisms fn ∶Y → Y converging uniformly on compact sets to a
homeomorphism f ∶Y → Y , we have that f−1

n converges uniformly on compact sets to f−1.
As in Appendix B, if either Y is compact or every point in Y has a neighbourhood that
is contained in a compact connected set, then Y respects inverses.

Lemma 2.86. Suppose X is σ-locally compact and respects inverses. (A) If ϕ is right-
continuous and ϕ(t, ω) is a homeomorphism for all t and ω, then ϕ is right-continuously
invertible. (B) If ϕ is continuous and ϕ(t, ω) is a homeomorphism for all t and ω, then
ϕ is continuously invertible.

27See [Cra02b, Lemma 1.1] or [New15a, Lemma 16(A)]
28Once again, here a “decreasing sequence” need not be strictly decreasing.
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2.12 Invertible RDS in a topological setting

Proof. (A) Fix a decreasing sequence (tn) in T+ converging to a value t ∈ T+. By
Lemma B.7, the right-continuity of ϕ means precisely that for every ω ∈ Ω, ϕ(tn, ω)
converges uniformly on compact sets to ϕ(t, ω). Hence, since X respects inverses,
ϕ(tn, ω)−1 converges unifomly on compact sets to ϕ(t, ω)−1; so by Lemma B.7, for any
sequence (xn) in X converging to a point x, ϕ(tn, ω)−1(xn) converges to ϕ(t, ω)−1(x).
(B) is similar, replacing a “decreasing sequence (tn)” with any convergent sequence
(tn).

With this, we can now prove Example 2.57:

Proposition 2.87. For any Lipschitz 1-periodic b ∶R→ R and any σ ∈ R, the RDS on S1

generated by the SDE dφt = b(φt)dt + σdWt is continuously invertible.

Proof. Let ϕ be the RDS on S1 generated by the SDE dφt = b(φt)dt + σdWt. By
Lemma 2.86, it is sufficient just to show that ϕ(t, ω) is a homeomorphism for all t ≥ 0
and ω ∈ Ω; but since any continuous injective self-map of S1 is a homeomorphism, it
is sufficient to show that ϕ(t, ω) is injective for all t and ω. Fix t ≥ 0, ω ∈ Ω and
x0 ∈ S1, and let x1 = ϕ(t, ω)x0. Let u ∶ [0, t] → R be a continuous function such that
π(u(s)) = ϕ(t−s,ω)x0 for all s ∈ [0, t]. Define ω̄ ∈ Ω by ω̄(s) = ω(t−s)−ω(t) for all s ∈ R.
Then we have that for all τ ∈ [0, t],

u(τ) = u(t) +∫
t−τ

0
b(u(t − s))ds + σω(t − τ)

= u(t) +∫
t

τ
b(u(s))ds + σω(t − τ)

= u(0) +∫
t

τ
b(u(s))ds + σω(t − τ) + u(t) − u(0)

= u(0) +∫
t

τ
b(u(s))ds + σω(t − τ) − (∫

t

0
b(u(s))ds + σω(t))

= u(0) +∫
τ

0
−b(u(s))ds + σω̄(τ).

So, letting ϕ′ denote the RDS on S1 generated by the SDE dφt = −b(φt)dt + σdWt , we
have that

x0 = π(u(t)) = ϕ′(t, ω̄)π(u(0)) = ϕ′(t, ω̄)x1.

Recall that the point x0 ∈ S1 was arbitrary; hence ϕ(t, ω) is injective.

Now recall that if ϕ is invertible, then for each x ∈ X and t ∈ T+ we may define a
probability measure ϕ̄tx on X by ϕ̄tx(A) = P(ω ∶ ϕ(t, ω)−1(x) ∈ A).

Lemma 2.88. Suppose ϕ is right-continuously invertible. Then for any open set U ⊂ X
the following are equivalent:

(i) U is invariant;

(ii) U is crudely invariant (i.e. for each t ∈ T+, for P-almost all ω ∈ Ω, ϕ(t, ω)U ⊂ U);

(iii) ϕ̄tx(U) = 0 for all x ∈X ∖U and t ∈ T+.

(Observe that (iii) is the same as saying that X ∖ U is very crudely invariant under the
inverse RDS ϕ̄.)
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2.12 Invertible RDS in a topological setting

Proof. Let U be an open set, and let G ∶=X ∖U . Note that for any t and ω, ϕ(t, ω)U ⊂ U
if and only if ϕ(t, ω)−1(G) ⊂ G. Hence the statement is proved by going through the
proofs of Lemmas 2.74 and 2.75, replacing ϕ(t, ω) with ϕ(t, ω)−1 and ϕtx with ϕ̄tx.

Remark 2.89. Even when ϕ is right-continuously invertible, a very crudely invariant
open set U ⊂ X need not be invariant. Indeed, if ϕ(t, ω) is bijective for all t and ω and
the probability measure ϕtx is atomless for all x and t, then it is easy to show that the
complement of every finite set is very crudely invariant but not invariant.

Recall that we say that ϕ has minimal dynamics if the only closed invariant sets are
X and ∅. In this case, every stationary probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ has full support.

Definition 2.90. Suppose ϕ is right-continuously invertible. We will say that ϕ has
reverse-minimal dynamics (on X) if the only open invariant sets are X and ∅.

Note that (by characterisation (iii) in Lemma 2.88) this is the same as saying that X is
minimal according to the Markov transition probabilities (ϕ̄tx)x∈X, t∈T+ .

Obviously if ϕ is right-continuously invertible and has reverse-minimal dynamics, then
every stationary probability measure of the Markov transition probabilities (ϕ̄tx)x∈X, t∈T+
has full support. But moreover, we have the following:

Lemma 2.91. Suppose that X is infinite, that ϕ is right-continuously invertible, and that
ϕ either has minimal dynamics or has reverse-minimal dynamics. Let ρ be a probability
measure that is stationary under either the Markov transition probabilities (ϕtx)x∈X, t∈T+ or
the Markov transition probabilities (ϕ̄tx)x∈X, t∈T+. Then ρ is atomless.

Proof. Suppose for a contradiction that ρ is not atomless. As in the proof of Lemma 2.58,
let P be the set of points of maximal mass according to ρ. Recall that P is crudely
invariant; and therefore (since ϕ is a right-continuous RDS) P is invariant. So if ϕ has
minimal dynamics then P = X; but this cannot be the case, since P is finite. On the
other hand, since P is a finite invariant set, S1 ∖P is clearly also invariant, and therefore
if ϕ has reverse-minimal dynamics then S1 ∖ P = X; but P is not empty, so this cannot
be the case.
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Chapter 3. Measurable Dynamics, and
Clusters of Trajectories

Overview

When we speak of “synchronising behaviour” in random dynamical systems, we refer
broadly to the phenomenon that under a typical noise realisation, many trajectories of
the RDS become very close to each other after a long time. Now if we wish to somehow
“quantify” such synchronising behaviour, we can either consider rates of mutual approach
of different trajectories, or we can consider the scale of the synchronising behaviour—that
is, how much of the phase space will contract into a small region after a long time. In
this section (and indeed, throughout this thesis), we focus on the latter consideration.

Suppose we have a RDS ϕ on a phase space X (which, for the moment, we assume
to be equipped with some separable metric, so that we can measure the distance between
trajectories). As in Remark 2.63, suppose we endow X with some initial distribution of
mass ρ; in this case, let us take ρ to be an ergodic probability measure of the Markov
transition probabilities associated to ϕ. We then simulate the forward-time running of the
RDS, and see how the distribution of mass evolves over time. “Synchronising behaviour”
corresponds to significant proportions of the mass becoming clustered into very small
regions of space after a long time. Now if we wait a very long time, and then look to see
how the mass has become distributed, we will observe one of the following scenarios:

(i) there is no obvious indication of any real synchronising behaviour;

(ii) virtually all of the mass has separated out into n tiny clusters (for some n ∈ N),
each of mass approximately equal to 1

n .

If we start the process again, keeping the same initial mass distribution ρ but allowing
the noise realisation to be different, we will observe the same scenario (with the same n
if scenario (ii) occurs).

The above has essentially been demonstrated by Le Jan1 in the context of a composition
of random diffeomorphisms on a compact smooth manifold. It is known (e.g. [FGS14])
that the arguments can be extended well beyond this context. In fact, one of the goals
of this chapter is to prove that the same phenomenon holds true for any RDS (even
if discontinuous) on a Borel subset of a complete separable metric space satisfying the
measurability requirements in Section 2.2.

When scenario (ii) occurs, we will refer to the number of clusters n as the ρ-clustering
number of ϕ; and when scenario (i) occurs, we will say that the ρ-clustering number of ϕ

1See Lemme 1 and part (a) of the proof of Proposition 2 in [LeJ87]. Proposition 3 of [LeJ87] describes
a stronger form of clustering that occurs when there is local asymptotic stability; see also Theorem 4.52
of this thesis.
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is ∞. In the case that the ρ-clustering number of ϕ is 1, we will say that ϕ is statistically
synchronising with respect to ρ.

Remark 3.1. Our above description of the phenomenon is, of course, very crude: the
“scenarios” described above are actually statements about the asymptotic behaviour (with
the clusters having “infinitesimal diameter” asymptotically), and may be formalised as
in Corollary 3.9. It is well-known that there exist dynamical systems where it takes a
remarkably long time for the “asymptotic picture” to start to develop within finite-time
simulations; and it seems that this is particularly likely to arise with random dynamical
systems, for the following reason: Due to the strong law of large numbers, if a model of
noise allows for “freak events” with positive probability, then with full probability such
“freak events” will happen infinitely often. It may well happen that such events, when
they occur, have a “freak effect” on the phase space dynamics, while the overall effect of
the more “normal” behaviour of the noise does nothing to counteract this. Accordingly,
these “freak events” may be what determine the asymptotic behaviour of the RDS; and
yet in such cases, since these events are so rare, one can expect it to take a very long
time for the dynamics to begin to resemble the asymptotic dynamics. Such a scenario
is particularly likely to occur for systems affected by Gaussian white noise, since the
tails of the Gaussian distribution decay extraordinarily fast. Accordingly, there is a place
for studying “intermediate time-scale dynamics” (as opposed to asymptotic dynamics) of
RDS. In some cases, one possible way to do this is to study the asymptotic behaviour of
the (not necessarily memoryless) RDS obtained when a very small perturbation is made
to either the probability distribution P of the underlying noise or the action ϕ of the
noise, in such a manner that sufficiently “extreme” behaviour of the noise now either has
zero probability or no longer has an “extreme” effect on the dynamics. (In particular,
this can serve as one motivation for the study of “bounded noise” RDS.) Nonetheless, it
is out of the scope of this particular thesis to study “intermediate time-scale dynamics”.

The major goal of this chapter of the thesis is to prove the following remarkable fact:
The clustering number of a RDS is purely a “measurable dynamics” property; that is to
say, given a RDS on a standard measurable space (X,Σ), the clustering number exists
and is the same under all separable metrics2 whose Borel σ-algebra coincides with Σ.

A further goal of this section is to prove that for a monotone RDS admitting an ergodic
distribution, the associated clustering number is always equal to 1; in fact, provided
the phase space is the real line (equipped with its usual ordering), and the RDS has
appropriate continuity properties, the RDS will admit a “pullback-attracting random
fixed point”.

3.1 Statistical equilibria and clustering numbers

Let (Ω,F , (F s+ts )s∈T, t∈T+ , (θt)t∈T,P) be a noise space (in accordance with our formalism in
Section 2.2), let (X,Σ) be a standard measurable space, and let ϕ be a RDS on (X,Σ)
over (Ω,F , (F s+ts )s∈T, t∈T+ , (θt)t∈T,P) (in accordance with our formalism in Section 2.2).

2As in Remark 2.2, assuming the axiom of choice, every metric whose Borel σ-algebra coincides with
Σ is separable.
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For any measurable space (E,E), we denote the set of probability measures on (E,E) by
M(E,E), which we equip with the evaluation σ-algebra K(E,E). For convenience, we will
drop the subscripts when considering the space of probability measures on (X,Σ); that
is to say, we will just write M to denote the set of probability measures on (X,Σ), and
we will just write K for the evaluation σ-algebra on M.

Hence, for example, an element Q ∈ M(M,K) is a probability measure on the space of
probability measures on (X,Σ).

Given any separable metrisable topological space (E,T ), we write NT for the associated
topology of weak convergence on M(E,σ(T )). Recall that the Borel σ-algebra of NT is
precisely K(E,σ(T )).

Recall that for any A ⊂X, ∆A ∶= {(x,x) ∶ x ∈ A}. We will use the notations introduced in
Section 2.10 for the n-point motions and the image-measure RDS, and their associated
Markov transition probabilities.

Definition 3.2. For any n ∈ N, let Kn ⊂M denote the set of probability measures ρ of
the form ρ = 1

n ∑
n
i=1 δxi for distinct points x1, . . . , xn ∈ X. (In particular, K1 denotes the

set of Dirac masses on X.) Let K∞ ⊂M denote the set of atomless probability measures
on X.

Lemma 3.3. For all n ∈ N ∪ {∞}, Kn is K-measurable.

Proof. Fix a separable metrisable topology on X generating Σ, and let U be a countable
base for this topology. For any open V ⊂ X, let UV be the set of members of U that are
contained in V . It is easy to show that for any finite n, a probability measure ρ on X
belongs to Kn if and only if there exist mutually disjoint sets V1, . . . , Vn ∈ U such that for
each i ∈ {1, . . . , n},

• ρ(Vi) = 1
n , and

• for all U ∈ UVi , ρ(U) is equal to either 0 or 1
n .

So then, writing Un to denote the collection of all mutually disjoint subcollections of U
of size n—that is,

Un ∶= {V ⊂ U ∶ ∣V ∣ = n, V ∩ Ṽ = ∅ for all distinct V, Ṽ ∈ V}

—we can express Kn as

Kn = ⋃
V ∈Un

⋂
V ∈V
({ρ ∈M ∶ ρ(V ) = 1

n} ∩ ⋂
U∈UV
{ρ ∈M ∶ ρ(U) ∈ {0, 1

n}}) .

Hence Kn ∈ K.
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It remains to show that K∞ ∈ K. It is not hard to show that a probability measure
ρ belongs to K∞ if and only if ρ⊗ ρ(∆X) = 0; one way to show this is as follows:

ρ ∈ K∞
def⇐⇒ ρ({x}) = 0 ∀x ∈X
⇐⇒ ρ({x}) = 0 for ρ-almost all x ∈X

⇐⇒ ∫
X
1∆X
(x, y)ρ(dy) = 0 for ρ-almost all x ∈X

⇐⇒ ∫
X
∫
X
1∆X
(x, y)ρ(dy)ρ(dx) = 0

⇐⇒ ρ⊗ ρ(∆X) = 0.

So then, since the map ρ↦ ρ⊗ ρ(∆X) is measurable (Lemma A.15), K∞ ∈ K.

Now for any Q ∈M(M,K) and any n ∈ N, we define the probability measure En(Q) on Xn

by

En(Q)(A) ∶= ∫
M
ρ⊗n(A)Q(dρ)

for all A ∈ Σ⊗n. (This is well-defined by Lemma A.15, and the monotone convergence
theorem gives that this is a probability measure.)

Observe that for any m,n ∈ N with m ≤ n, the image measure of En(Q) under the
projection (x1, . . . , xn)↦ (x1, . . . , xm) is precisely Em(Q).

Lemma 3.4. Suppose we have Q ∈M(M,K) and n ∈ N ∪ {∞} such that Q(Kn) = 1. Then
for any A ∈ Σ,

E2(Q)(∆A) = {
1
nE1(Q)(A) n <∞

0 n =∞.

Proof. First suppose that n <∞. For any ρ ∈ Kn, writing ρ = 1
n ∑x∈P δx where ∣P ∣ = n, we

have that

ρ⊗ ρ(∆A) = ∫
A
ρ({x})ρ(dx)

= ∣A ∩ P ∣ ⋅ 1
n2

= nρ(A) ⋅ 1
n2

= ρ(A)
n

;

so

E2(Q)(∆A) = ∫
M

ρ(A)
n

Q(dρ) = 1
nE1(Q)(A).

Now we have seen in the proof of Lemma 3.3 that for every ρ ∈ K∞, ρ⊗ρ(∆X) = 0. Hence,
if n =∞ then E2(Q)(∆X) = 0, and therefore E2(Q)(∆A) = 0 for any A ∈ Σ.

The following lemma is a useful link between the image-measure RDS and the n-point
motions.

Lemma 3.5. For any n ∈ N and any probability measure Q on (M,K) that is stationary
under the Markov transition probabilities (ϕtρ)ρ∈M, t∈T+, En(Q) is stationary under the
Markov transition probabilities (ϕtx)x∈Xn, t∈T+.
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Proof. We need to show that for each t ∈ T+, ϕt∗(n)En(Q) = En(Q). For any t ∈ T+ and
A ∈ Σ⊗n, we have

(ϕt∗
(n)En(Q)) (A) = ∫

Ω
En(Q)(ϕ×n(t, ω)−1(A) ) P(dω)

= ∫
Ω
∫
M
ρ⊗n (ϕ×n(t, ω)−1(A) ) Q(dρ)P(dω)

= ∫
Ω
∫
M
(ϕ(t, ω)∗ρ)⊗n(A)Q(dρ)P(dω)

= ∫
Ω
∫
M
ρ⊗n(A) ϕ(t, ω)∗∗Q(dρ) P(dω)

= ∫
M
ρ⊗n(A) ϕt∗∗ Q(dρ)

= ∫
M
ρ⊗n(A)Q(dρ)

(since Q is stationary under (ϕtρ)ρ∈M, t∈T+)

= En(Q)(A).

So we are done.

We will use the notation (En,T ⊗n) to denote the n-fold product of a topological space
(E,T ). We now state the central theorem of Chapter 3.3

Theorem 3.6. Let ρ be a probability measure on X that is stationary under the Markov
transition probabilities (ϕtx)x∈X, t∈T+. Then there exists a probability measure Qρ on (M,K)
that is ergodic with respect to the Markov kernel (ϕtρ̃)ρ̃∈M for every t ∈ T+ ∖{0}, such that
E1(Qρ) = ρ and for any separable metrisable topology T on X generating Σ, the following
statements hold:

(a) ϕtρ converges in NNT to Qρ as t→∞;

(b) for all r ∈ N, ϕt∗(r)(ρ⊗r) converges in NT ⊗r to Er(Qρ) as t→∞.

Moreover, if ρ is ergodic with respect to the Markov transition probabilities (ϕtx)x∈X, t∈T+,
then there exists n ∈ N ∪ {∞} such that Qρ(Kn) = 1.

(Note that by Lemma 3.5, for each r ∈ N, Er(Qρ) is stationary under the Markov
transition probabilities (ϕtx)x∈Xr, t∈T+ .)

Now observe that (as in Remark 2.13(II), but applied to the image-measure RDS) for any
t ∈ T+, ϕtρ is precisely the law of the measure-valued random variable ω ↦ ϕ(t, ω)∗ρ. So
then, given any separable metrisable topology T on X generating Σ, we may regard Qρ

as the limiting distribution of the Markov process (ω ↦ ϕ(t, ω)∗ρ)t∈T+ whose state space
is the topological space (M,NT).

Definition 3.7. Let ρ be a stationary probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ . We refer to the measure Qρ described in Theorem 3.6 as the
statistical equilibrium associated to ρ.

3In Theorem 3.6, property (a) generalises [LeJ87, Lemme 1(b)], while property (b) generalises [Bax91,
Proposition 2.6]; the final statement about the case that ρ is ergodic generalises part (a) of the proof of
[LeJ87, Proposition 2].
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Definition 3.8. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ , and let n ∈ N ∪ {∞} be such that Qρ(Kn) = 1. Then we
refer to n as the ρ-clustering number of ϕ. In the case that n = 1, we will say that ϕ is
statistically synchronising with respect to ρ.

(We will in fact see that ϕ is statistically synchronising with respect to ρ if and only
if there exists an F0

−∞-measurable random fixed point of ϕ whose law is ρ, formalising
Remark 2.40.)

We now provide a more “geometric” interpretation of the clustering number (formalising
the crude description given in the overview).

Let d be a separable metric on X whose Borel σ-algebra coincides with Σ. For any
integer n ≥ 2, any δ > 0 and any 0 < γ < δ, we will say that a probability measure ρ
on X is (n, γ, δ)-clustered (according to d) if there exist points x1, . . . , xn ∈ X such that
min{d(xi, xj) ∶ i ≠ j} > δ and for each 1 ≤ i ≤ n, ρ(Bγ(xi)) > 1−γ

n .

Corollary 3.9. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+, and let n be the ρ-clustering number of ϕ. For any separable
metric d on X whose Borel σ-algebra coincides with Σ, we have:

(A) If n =∞, then for all ε > 0 there exists δ > 0 and T ∈ T+ such that for all t ≥ T ,

P(ω ∈ Ω ∶ for all x ∈X, ϕ(t, ω)∗ρ(Bδ(x)) ≤ ε ) > 1 − ε.

(B) If n = 1, then for all ε > 0 there exists T ∈ T+ such that for all t ≥ T ,

P(ω ∈ Ω ∶ there exists x ∈X s.t. ϕ(t, ω)∗ρ(Bε(x)) > 1 − ε ) > 1 − ε.

(C) If 2 ≤ n <∞, then for all ε > 0 there exists δ > 0 such that for all 0 < γ < δ there
exists T ∈ T+ such that for all t ≥ T ,

P(ω ∈ Ω ∶ ϕ(t, ω)∗ρ is (n, γ, δ)-clustered ) > 1 − (ε + γ).

Proof. Fix a separable metric d on X whose Borel σ-algebra coincides with Σ, and let T
be the induced topology. For any r ∈ (0,1], let Jr ⊂M be the set of probability measures
ρ̃ on X with the property that there exists x ∈ X such that ρ̃({x}) ≥ r. We start by
proving the following claim:

Claim 1. For any r ∈ (0,1], if Jr is a Qρ-null set then the following holds: for all
ε > 0 there exists δ > 0 and T ∈ T+ such that for all t ≥ T ,

P(ω ∈ Ω ∶ for all x ∈X, ϕ(t, ω)∗ρ(Bδ(x)) ≤ r ) > 1 − ε.

Proof of Claim 1: Let S be a countable dense subset of X. For each k ∈ N, let J k
r ⊂M

be the set of probability measures ρ̃ on X with the property that there exists x ∈ S such
that ρ̃(B 1

4k
(x)) ≥ r. (Obviously, J k

r is decreasing in k.) We first show that

(I) ⋂∞k=1J k
r = Jr , and
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(II) for each k, the NT -closure of J k+1
r is contained in J k

r .

To see that (I) holds: It is clear that Jr ⊂ J k
r for each k; in the other direction, suppose

we have a probability measure ρ̃ belonging to ⋂∞k=1J k
r . Let (xk)k∈N be a sequence in S

such that for each k, ρ̃(B 1

4k
(xk)) ≥ r. We now consider N equipped with the structure of

a simple graph4 where the set of edges E is as follows: for all distinct k1, k2 ∈ N,

{k1, k2} ∈ E ⇐⇒ B 1

4k1

(xk1) ∩ B 1

4k2

(xk2) ≠ ∅.

Since ρ̃(X) is finite, it is clear that every induced subgraph of N must have finitely many
connected components; hence in particular, every infinite induced subgraph of N must
contain a connected infinite induced subgraph. So let (Gj)j∈N be a sequence of connected
infinite induced subgraphs of N such that for each j ∈ N, Gj+1 ⊂ Gj ∩ [j,∞). For each
j ∈ N, let Uj ∶= ⋃k∈Gj B 1

4k
(xk). Since Gj+1 ⊂ Gj for each j, we have that Uj+1 ⊂ Uj for each

j; and since ρ̃(Uj) ≥ r for all j, it follows that ρ̃ (⋂∞j=1Uj) ≥ r. Now since Gj is connected
and minGj ≥ j for every j ∈ N, it follows that diamUj → 0 as j → ∞. (This is due to
the convergence of the series ∑k 1

4k
.) Hence ⋂∞j=1Uj is a singleton. So ρ̃ belongs to Jr.

To see that (II) holds: Fix k ∈ N, and let (ρ̃j)j∈N be a sequence in J k+1
r converging in NT to

a measure ρ̃ ∈M. Let (xj)j∈N be a sequence in S such that for each j, ρ̃j(B 1

4k+1
(xj)) ≥ r.

Let Uj ∶= ⋃∞i=j B 1

4k+1
(xi) for each j. (Obviously Uj is decreasing in j.) First suppose

for a contradiction that ⋂∞j=1Uj is empty. Then we may cover X by open sets V with
the property that for sufficiently large j ∈ N, V ∩ Uj = ∅. Since X is separable, this
cover admits a countable subcover {Vi}i∈N. For each m ∈ N, let Wm ∶= ⋃mi=1 Vi. For each
m, we have that for sufficiently large j, Wm ∩ Uj = ∅ and therefore ρ̃j(Wm) ≤ 1 − r.
Consequently, ρ̃(Wm) ≤ 1 − r for each m; but since Wm increases to X as m → ∞, this
then implies ρ̃(X) ≤ 1 − r, giving a contradiction. So then, ⋂∞j=1Uj is non-empty; so fix a

point x ∈ ⋂∞j=1Uj. It is clear that for infinitely many j, B 3

4k+1
(x) contains B 1

4k+1
(xj) and

therefore ρ̃j(B 3

4k+1
(x)) ≥ r. It follows that ρ̃(B 3

4k+1
(x)) ≥ r. Hence in particular, there

obviously exists x̃ ∈ S such that ρ̃(B 1

4k
(x̃)) ≥ r. So ρ̃ ∈ J k

r , as required.

Now then, since (I) holds, we have that Qρ(J k
r ) → 0 as k → ∞. Since (II) holds, we

have that for each k,

lim sup
t→∞

ϕtρ(J k+1
r ) ≤ lim sup

t→∞
ϕtρ (J k+1

r ) ≤ Qρ (J k+1
r ) ≤ Qρ(J k

r ).

Combining these, we have that

lim
k→∞

lim sup
t→∞

ϕtρ(J k+1
r ) = 0.

4A simple graph is a set G equipped with a set E of 2-element subsets of G (called the set of edges).
Given x, y ∈ G, it is said that x is connected to y if either x = y or there exists n ∈ N and a list
(x0, . . . , xn) ∈ Xn+1 such that x0 = x, xn = y and {xi−1, xi} ∈ E for all 1 ≤ i ≤ n. This defines an
equivalence relation on G; the equivalence classes are called connected components. When there is only
one connected component (namely, the whole of G), we say that G is connected. An induced subgraph of
G is a set H ⊂ G equipped with the set of edges EH ∶= {P ⊂H ∶ P ∈ E}.
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So then, for every ε > 0 there exists k ∈ N and T ∈ T+ such that for all t ≥ T , ϕtρ(J k+1
r ) < ε;

the statement that ϕtρ(J k+1
r ) < ε is precisely the statement that

P(ω ∈ Ω ∶ there exists x ∈ S s.t. ϕ(t, ω)∗ρ(Bδ(x)) ≥ r ) < ε

where δ ∶= 1
4k+1 , which implies that

P(ω ∈ Ω ∶ for all x ∈ S, ϕ(t, ω)∗ρ(Bδ(x)) ≤ r ) > 1 − ε,

which (due to Lemma A.13) is precisely the same as saying that

P(ω ∈ Ω ∶ for all x ∈X, ϕ(t, ω)∗ρ(Bδ(x)) ≤ r ) > 1 − ε.

This completes the proof of Claim 1.

We now prove part (A): If n =∞ then (by definition) Qρ(K∞) = 1 and thereforeQρ(Jr) = 0
for every r ∈ (0,1]. So then, for every ε ∈ (0,1], applying Claim 1 with r ∶= ε gives that
there exists δ > 0 and T ∈ T+ such that for all t ≥ T ,

P(ω ∈ Ω ∶ for all x ∈X, ϕ(t, ω)∗ρ(Bδ(x)) ≤ ε ) > 1 − ε

as required. (The case that ε > 1 is obviously an automatic tautology.)

Now assuming n < ∞, let K̄n ⊂M be the set of probability measures ρ̃ taking the form
ρ̃ = 1

n ∑
n
i=1 δxi for some (x1, . . . , xn) ∈ Xn (where the points x1, . . . , xn are not necessarily

distinct). Moreover, for any γ > 0, let Iγn ⊂ M be the set of probability measures ρ̃
for which there exist points x1, . . . , xn ∈ X with the following property: for any distinct
i1, . . . , im ∈ {1, . . . , n},

ρ̃(
m

⋃
k=1
Bγ(xik)) >

m(1 − γ)
n

.

(Due to Lemma A.13, for any countable dense S ⊂X, it is always possible to choose the
points x1, . . . , xn to belong to S.) Obviously, if n ≥ 2 and there exists δ > γ such that ρ̃ is
(n, γ, δ)-clustered, then ρ̃ ∈ Iγn .

Since Qρ(Kn) = 1, we obviously have in particular that Qρ(K̄n) = 1, and therefore:

Claim 2. For every γ > 0 there exists T ∈ T+ such that for all t ≥ T , ϕtρ(Iγn) > 1 − γ.

Proof of Claim 2: Fix γ > 0. We first show that Iγn contains an NT -open set U containing
K̄n. Let (ρ̃j)j∈N be an NT -convergent sequence whose limit ρ̃ belongs to K̄n; we need
to show that for all j sufficiently large, ρ̃j belongs to Iγn . But this is clear: writing
ρ̃ = 1

n ∑
n
i=1 δxi , we have that for any distinct i1, . . . , im ∈ {1, . . . , n},

ρ̃(
m

⋃
k=1

Bγ(xik)) ≥
m

n

and therefore, for all j sufficiently large

ρ̃j (
m

⋃
k=1
Bγ(xik)) >

m(1 − γ)
n
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as required.

So then, letting U be an open set with K̄n ⊂ U ⊂ Iγn , we have

lim inf
t→∞

ϕtρ(Iγn) ≥ lim inf
t→∞

ϕtρ(U) ≥ Qρ(U) ≥ Qρ(K̄n) = 1,

and therefore, for all t sufficiently large, ϕtρ(Iγn) > 1 − γ. This completes the proof of
Claim 2.

We now prove part (B): Suppose n = 1, and fix ε > 0. By Claim 2, there exists T ∈ T+
such that for all t ≥ T , ϕtρ(Iε1) > 1 − ε, i.e.

P(ω ∈ Ω ∶ there exists x ∈X s.t. ϕ(t, ω)∗ρ(Bε(x)) > 1 − ε ) > 1 − ε

as required.

We now prove part (C): Suppose 2 ≤ n <∞. Given any δ > 0 and any 0 < γ < min(δ, 1
3),

if a probability measure ρ̃ ∈ Iγn is not (n, γ, δ)-clustered then there exist x1, x2 ∈ X such

that d(x1, x2) ≤ δ and ρ̃(Bγ(x1) ∪ Bγ(x2)) > 2(1−γ)
n > 4

3n , from which it folllows that
ρ̃(B2δ(x1)) > 4

3n . Hence a sufficient condition for a probability measure ρ̃ to be (n, γ, δ)-
clustered is that ρ̃ ∈ Iγn and for all x ∈X, ρ̃(B2δ(x)) ≤ 4

3n .

Now fix ε > 0. Obviously Qρ(J 4
3n
) = 0, and so on the basis of Claim 1, let δ ∈ (0, 1

3)
and T ′ ∈ T+ be such that for all t ≥ T ′,

P(ω ∈ Ω ∶ for all x ∈X, ϕ(t, ω)∗ρ(B2δ(x)) ≤ 4
3n ) > 1 − ε.

For 0 < γ < δ, by Claim 2 there exists T ′′ ∈ T+ such that for all t ≥ T ′′,

P(ω ∈ Ω ∶ ϕ(t, ω)∗ρ ∈ Iγn ) > 1 − γ,

and so for all t ≥ T ∶=max(T ′, T ′′),

P(ω ∈ Ω ∶ ϕ(t, ω)∗ρ ∈ Iγn and for all x ∈X, ϕ(t, ω)∗ρ(B2δ(x)) ≤ 4
3n ) > 1 − (ε + γ)

which implies

P(ω ∈ Ω ∶ ϕ(t, ω)∗ρ is (n, γ, δ)-clustered ) > 1 − (ε + γ).

So we are done.

We also have a further way in which to understand statistical synchronisation:

Corollary 3.10. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+. Fix a separable metric d on X whose Borel σ-algebra coincides
with Σ, and for each t ∈ T+, define the function

rt ∶ Ω ×X ×X → [0,∞)
(ω,x, y) ↦ d(ϕ(t, ω)x , ϕ(t, ω)y ).

The following statements are equivalent:

92



3.1 Statistical equilibria and clustering numbers

(i) ϕ is statistically synchronising with respect to ρ;

(ii) as a stochastic process over the probability space (Ω×X ×X,F⊗Σ⊗Σ,P⊗ρ⊗ρ),
rt converges in probability to 0 as t→∞.

Proof. First suppose that ϕ is statistically synchronising with respect to ρ. So
E2(Qρ)(∆X) = 1. Fix ε > 0. Let

Uε ∶= {(u, v) ∈X ×X ∶ d(u, v) < ε}.

Since Uε is a neighbourhood of ∆X , we have that ϕt∗(2)(ρ ⊗ ρ)(Uε) → 1 as t → ∞ (by
statement (ii) in Theorem 3.6). But ϕt∗(2)(ρ⊗ ρ)(Uε) is precisely equal to

P⊗ ρ⊗ ρ( (ω,x, y) ∶ rt(ω,x, y) < ε ).

So rt converges in probability to 0 as t→∞.

Now suppose that ϕ is not statistically synchronising with respect to ρ. So E2(Qρ)(∆X) <
1. For each ε > 0, let

Gε ∶= {(u, v) ∈X ×X ∶ d(u, v) ≤ ε}.
It is clear that Gε decreases as ε decreases, with the intersection ⋂ε>0Gε being ∆X . Hence
there must exist ε > 0 such that c ∶=E2(Qρ)(Gε) < 1. Since Gε is closed, we have (by
statement (ii) in Theorem 3.6) that for all t sufficiently large, ϕt∗(2)(ρ ⊗ ρ)(Gε) ≤ c. But
ϕt∗(2)(ρ⊗ ρ)(Gε) is precisely

P⊗ ρ⊗ ρ( (ω,x, y) ∶ rt(ω,x, y) ≤ ε ).

So it follows in particular that rt does not converge in probability to 0 as t→∞.

Let us now mention the “deterministic” case of Theorem 3.6. Suppose Ω is a singleton
{ω}; then writing f t ∶= ϕ(t, ω), we have that for any probability measure ρ on X, ϕtρ is
precisely equal to δf t∗ρ. Hence, for any (f t)-invariant probability measure ρ, Qρ is simply
equal to δρ. So then, the final statement in Theorem 3.6 reduces to a simple statement
about the atoms of an ergodic measure of an autonomous dynamical system, which we
can easily prove directly.

Proposition 3.11. Let (f t)t∈T+ be an autonomous dynamical system on (X,Σ), and let
ρ be an (f t)-ergodic probability measure. Then either:

(i) ρ is atomless; or

(ii) ρ can be expressed in the form ρ = 1
n ∑

n
i=1 δxi for distinct points x1, . . . , xn ∈ X

forming the locus of a periodic orbit of (f t).

In the case that T+ = [0,∞), ρ must be either atomless or a Dirac mass at a fixed point
of (f t).5

5The proof that we present for this last statement is adapted from the answer to the MathOverflow
question [MO15c] provided by Arnaud Chéritat.
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Remark 3.12. The last statement of Proposition 3.11 does not extend to statistical
equilibria of RDS in general: it is perfectly possible to have (under some metric d)
a continuous RDS in continuous time admitting an ergodic distribution for which the
associated clustering number is finite and strictly more than 1. For example, for any
n ∈ N, if b ∶R→ R is a Lipschitz periodic function with least period 1

n then (for any σ ≠ 0)
the RDS on S1 generated by the SDE dφt = b(φt)dt + σdWt has a ρ-clustering number
of exactly n (where ρ is the unique stationary probability measure). See Corollary 5.27
for the proof.

Proof of Proposition 3.11. Suppose ρ is not atomless. Let m ∶=max{ρ({x}) ∶ x ∈X}, and
let P ∶= {x ∈X ∶ ρ({x}) =m}. Since ρ is invariant under (f t), we have that for all t ∈ T+,

ρ(f t(P )) = ρ(f−t(f t(P ))) ≥ ρ(P )

(where f−t(⋅) denotes the preimage under f t), and therefore (due to the definition of P ),
f t(P ) = P . Hence, due to the ergodicity of ρ, we have that ρ(P ) = 1; in other words,
writing P =∶ {x1, . . . , xn}, we have that ρ = 1

n ∑
n
i=1 δxi . Once again, due to the ergodicity of

ρ, the only invariant proper subset of P is ∅. Hence, fixing x ∈ P , the set {f t(x) ∶ t ≥ T}
must be equal to P for every T ∈ T+; in other words, x is a periodic point of (f t) whose
trajectory is equal to P .

Now suppose that T+ = [0,∞). Suppose once again that ρ is not atomless; so ρ is a
uniform distribution on set P of size n, forming the locus of a periodic trajectory of (f t).
To show that n = 1, it is sufficient to show that for every t > 0, the elements of P are
t-periodic. Fix t > 0, and let g ∶= f t

n! . Obviously there exist r ∈ {1, . . . , n} and x ∈ P such
that gr(x) = x. But since r divides n!, it follows that f t(x) = x, and so the points of P
are t-periodic.

So Theorem 3.6 is not a particularly “deep” statement in the deterministic case; it
particular, it says nothing about synchronisation. However, in the more general non-
deterministic case, it is very common for an atomless ergodic probability measure of
the Markov transition probabilities to have a finite clustering number (implying real
synchronising behaviour).

3.2 Synchronisation and pullback-attracting random

fixed points in monotone RDS

We now mention an important case where statistical synchronisation is guaranteed.

Theorem 3.13. Suppose there exists a Borel linear order ⪯ on (X,Σ) with respect to
which ϕ is monotone. Then ϕ is statistically synchronising with respect to every ergodic
probability measure of the Markov transition probabilities (ϕtx)x∈X, t∈T+.

In the case that ⪯ is just the standard ordering on R̄ or a Borel subset thereof, we actually
find that there is a “(crudely) pullback-attracting” random fixed point. Although this
is very much a “topology-specific” concept, for the sake of completeness we will now
describe it here.
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Standing Assumption. For the rest of Section 3.2 (except the Open Question 3.22),
let X be a Borel-measurable subset of R̄, equipped with the induced topology from R̄, and
let Σ be the Borel σ-algebra. We equip X with the usual order ≤, and assume that ϕ is
monotone with respect to ≤. Given any A ⊂ X, we write infA and supA to denote the
infimum and supremum of A as a subset of R̄.

(So infA and supA always exist, but might not be elements of X.)

Given a set A ⊂X, a left-accumulation point of A is a point x ∈X that can be expressed
as the limit of a strictly increasing sequence in A, and a right-accumulation point of A
is a point x ∈ X that can be expressed as the limit of a strictly decreasing sequence
in A. An isolated point of X is a point x ∈ X such that the singleton {x} is open in
X; this is equivalent to saying that x is neither a left-accumulation point of X nor a
right-accumulation point of X.

Definition 3.14. Let A ⊂ X be a convex set, and let q ∶Ω → X be a random fixed point
of ϕ. We say that q is pullback-attracting over A if P-almost every ω ∈ Ω has the property
that for all x ∈ A, ϕ(t, θ−tω)x → q(ω) as t → ∞. We say that q is crudely pullback-
attracting over A if for every unbounded countable set S ⊂ T+ there is a P-full set ΩS ⊂ Ω
such that for every ω ∈ ΩS and x ∈ A, ϕ(t, θ−tω)x→ q(ω) as t tends to ∞ in S.

Obviously, if T = Z (or, more generally, if ϕ has left-continuous pullback trajectories),
then any random fixed point that is crudely pullback-attracting over a convex set A is,
in fact, pullback-attracting over A. We also have the following:

Lemma 3.15. Suppose that ϕ is a right-continuous RDS. Let q ∶Ω→X be a random fixed
point that is crudely pullback-attracting over a convex set A ⊂ X. Suppose the following
statements both hold:

(a) if maxA exists and is a right-accumulation point of X, then maxA is also a
left-accumulation point of A;

(b) if minA exists and is a left-accumulation point of X, then minA is also a right-
accumulation point of A.

Then q is pullback-attracting over A.

(Note that statements (a) and (b) cover the case that A is open in X and the case that
A is connected and not a singleton.)

Proof. Since the case that T = Z is immediate, assume that T = R. Let us work with
the metric d(x, y) = arc tan ∣x − y∣. Fix any ω ∈ Ω with the property that for all x ∈ Xρ,
ϕ(t, θ−tω)x → q(ω) in Q. Fix any x ∈ Xρ and ε > 0, and let G ∶= B̄ε(q(ω)); we will show
that for all t ∈ R sufficiently large, ϕ(t, θ−tω)x ∈ G. We consider separately the following
cases:

(I) x is in the interior (relative to X) of A;

(II) x = maxA, and x is a right-accumulation point of X and a left-accumulation
point of A;
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(III) x = minA, and x is a left-accumulation point of X and a right-accumulation
point of A.

First consider case (I). Let U be a neighbourhood of x such that Ū ⊂ A and min Ū =∶ a
and max Ū =∶ b both exist. Let T > 0 be such that for all t ∈ Q with t ≥ T , ϕ(t, θ−tω)a
and ϕ(t, θ−tω)b both belong to G. Since ϕ is monotone and G is convex, we have that
for all t ∈ Q with t ≥ T , Ū ⊂ ϕ(t, θ−tω)−1(G). Now fix any t ∈ R with t > T . Since the map
τ ↦ ϕ(τ, θ−tω)x is right-continuous, we can choose δ ∈ (0, t − T ) such that t − δ ∈ Q and
ϕ(δ, θ−tω)x ∈ U . So then,

ϕ(t, θ−tω)x = ϕ(t − δ, θδ−tω)ϕ(δ, θ−tω)x
∈ ϕ(t − δ, θδ−tω)U
⊂ G (since t − δ ∈ Q and t − δ > T ).

Now consider case (II). Take any a ∈ A that is not an extreme point of A, and let
U ∶= X ∩ (a, x). Let T > 0 be such that (i) for all t ∈ Q with t ≥ T , ϕ(t, θ−tω)x ∈ G, and
(ii) for all t ∈ R with t ≥ T , ϕ(t, θ−tω)a ∈ G. (Such a time T exists, by case (I).) Note that
for all t ∈ Q with t ≥ T , U ⊂ ϕ(t, θ−tω)−1(G). Now fix any t ∈ R with t > T . Suppose for
a contradiction that x ∉ ϕ(t, θ−tω)−1(G). Since a ∈ ϕ(t, θ−tω)−1(G) and ϕ(t, θ−tω)−1(G)
is convex, it follows that supϕ(t, θ−tω)−1(G) ≤ x. But moreover, since ϕ is continuous in
space, we have that ϕ(t, θ−tω)−1(G) is closed in X and therefore supϕ(t, θ−tω)−1(G) < x.
So fix any y ∈ A with supϕ(t, θ−tω)−1(G) < y < x. Now U is a neighbourhood of y, and
therefore, just as in case (I), we have that ϕ(t, θ−tω)y ∈ G; but this contradicts the fact
that supϕ(t, θ−tω)−1(G) < y.

Case (III) is similar to case (II).

Remark 3.16. Note that if a random fixed point q ∶Ω → X is crudely pullback-
attracting over some non-empty convex set A ⊂ X, then q has a modification q̃ that
is F0

−∞-measurable: fixing any y ∈ A, let q̃(ω) be equal to the limit of the sequence
ϕ(n, θ−nω)y if this limit exists, and some arbitrary constant otherwise. Hence in
particular, by Lemma 2.39, q∗P is ergodic with respect to Markov transition probabilities
(ϕtx)x∈X, t∈T+ . Using the dominated convergence theorem, it is not hard to show that for
every probability measure m on X with A being an m-full set, ϕt∗m converges weakly to
q∗P as t→∞.

Remark 3.17. Suppose ϕ is a right-continuous RDS, and suppose we have a function
q ∶Ω →X such that for P-almost every ω ∈ Ω, for all x ∈ X, ϕ(t, θ−tω)x → q(ω) as t →∞.
Let q̃ ∶Ω → X be as in Remark 3.16 (where we may take any y ∈ X). It is easy to show
that q̃ is a random fixed point agreeing with q outside a null set, and that q̃ is pullback-
attracting over X. Moreover, one can show that q̃ is a “strong” random fixed point, in
the following sense: if we let

Ω̂ ∶= {ω ∈ Ω ∶ for all n ∈ N0 and x ∈X, ϕ(t, θ−(n+t)ω)x→ q̃(θ−nω) as t→∞},

then Ω̂ is a P-full set with the properties that

(i) θt(Ω̂) = Ω̂ for all t ∈ T, and
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(ii) ϕ(t, ω)q̃(ω) = q̃(θtω) for all t ∈ T+ and ω ∈ Ω̂.

(Moreover, Ω̂ ∈ F−∞−∞ .)

Now recall that for any probability measure ρ on X, Xρ denotes the smallest ρ-full-
measure convex set (referred to as the “convex core of ρ”).

Theorem 3.18. Let ρ be a stationary probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+.

(A) If ρ is (ϕtx)-ergodic then there is a random fixed point q ∶Ω→X with law q∗P = ρ
which is crudely pullback-attracting over Xρ.

[The remaining statements simply concern conditions for ergodicity and unique ergodicity;
they can be derived as a consequence of part (A).]

(B) If ρ is (ϕtx)-ergodic then the only (ϕtx)-stationary probability measure ρ̃ with
ρ̃(Xρ) = 1 is ρ.

(C) Hence, for any two distinct (ϕtx)-ergodic probability measures ρ1 and ρ2, the sets
Xρ1 and Xρ2 are disjoint.

(D) The following statements are equivalent:

(i) ρ is (ϕtx)-ergodic;

(ii) every downward-inclusive crudely invariant set is either ρ-null or ρ-full;

(iii) every upwards-inclusive crudely invariant set is either ρ-null or ρ-full;

(iv) there are no non-empty convex crudely invariant proper subsets of Xρ.

(E) Suppose that ϕ is a right-continuous RDS, and that ρ is not a Dirac mass and
Xρ is connected. Then ρ is (ϕtx)-ergodic if and only if there are no deterministic
fixed points in Xρ. (In this case, the random fixed point q in part (A) is pullback-
attracting over Xρ.)

Example 3.19. (This example is the same as that studied in [AM14]). Let X = (0,1),
with Σ being the Borel σ-algebra. Fix any c ∈ (0, 1

2). Let I = {0,1} (with I being the
discrete σ-algebra), let ν = 1

2(δ0 + δ1), and define the functions f0, f1 ∶ (0,1)→ (0,1) by

f0(x) = {
1

2(1−c) x x ∈ (0,1 − c]
1 − 1

2c(1 − x) x ∈ [1 − c,1)

f1(x) = {
1
2c x x ∈ (0, c]
1 − 1

2(1−c)(1 − x) x ∈ [c,1).

In other words, f0 and f1 are piecewise-affine order-preserving homeomorphisms, with
the point (1 − c, 1

2) being the only corner point of the graph of f0, and the point (c, 1
2)

being the only corner point of the graph of f1. Let ϕ be the RDS generated by the
random map (I,I, ν, (fi)i∈I). It is easy to show that the Lebesgue measure l on (0,1) is
stationary under the Markov transition probabilities (ϕnx)x∈(0,1), n∈N0

. It is also clear that
ϕ has no deterministic fixed points. Hence, by Theorem 3.18 (parts (A), (B) and (E)), l

97



3.2 Synchronisation and pullback-attracting random fixed points in monotone RDS

is the unique (ϕnx)-ergodic probability measure and ϕ admits a random fixed point with
law l which is pullback-attracting over the whole of (0,1).6

Remark 3.20 (cf. [AM14, Theorem 6.3]). Let q be any version of the random fixed point
in Example 3.19. Then for any n ∈ N, for any non-empty E ∈ F0

−n and any E′ ⊂ E with
E ∖ E′ being P-null, the image q(E′) is a Lebesgue-full subset of (0,1). To see this:
Without loss of generality, assume E′ ∈ F . Let α−n+1, α−n+2, . . . , α0 ∈ I be such that the
cylinder set C ∶= IZ≤−n × {(α−n+1, α−n+2, . . . , α0)} × IN is contained in E. Let Ω̃ ∈ F be
a P-full set such that ϕ(n, θ−nω)q(θ−nω) = q(ω) for all ω ∈ Ω̃, and let C ′ = C ∩ Ω̃ ∩ E′.
So q(E′) ⊃ q(C ′) ⊃ fα0 ○ . . . ○ fα−n+1(q(θ−n(C ′))). Since q has a modification that is
F0
−∞-measurable and F0

−∞ is independent of Fn0 , we must have that for every Lebesgue-
positive measure set S ∈ B((0,1)), q−1(S) has a positive-measure intersection with θ−n(C)
and therefore with θ−n(C ′). But since (by the “measurable image theorem”, [New15a,
Exercise 104(B)]) the set q(θ−n(C ′)) is universally measurable with respect to B((0,1)), it
follows that q(θ−n(C ′)) is a Lebesgue-full set. Since the maps fα−n+1 , . . . , f0 are surjective
and piecewise linear, they map Lebesgue-full sets onto Lebesgue-full sets,7 and so q(E′)
is a Lebesgue-full set.

Example 3.21 (adapted from [CF98]). Let (Ω,F , (F s+ts )s∈R, t≥0, (θt)t∈R,P) be as in
Example 2.6, with d = 1. Let X = R. Consider a RDS ϕ generated by an equation
of the form

dxt = f(xt)dt + σdω(t)
where σ ≠ 0 and f ∈ C1(R,R), satisfying the integrability condition that for an
antiderivative F of f ,

∫
∞

−∞
e
F (x)

σ2 dx < ∞.

As in [CF98, Remark 3.7], there exists a unique stationary probability measure of the
Markov transition probabilities (ϕtx). By Theorem 3.18(A) (together with the last
statement in part (E) of Theorem 3.18), there exists a random fixed point q ∶Ω → R
that is pullback-attracting over R. To illustrate: the deterministic ODE

dxt = (αx − x3)dt (3.1)

exhibits a supercritical pitchfork bifurcation as α crosses from negative to positive, but
the Wiener-driven SDE

dxt = (αx − x3)dt + σdWt (3.2)

(where σ ≠ 0) has a globally pullback-attracting random fixed point for all values of α.
Hence, in this scenario, noise destroys the pitchfork bifurcation. (See also Example 6.7.)

Open Question 3.22. Is Theorem 3.18(B) specific to the case that X is a Borel-ordered
subspace of R̄, or does it hold for monotone RDS on any standard measurable space (X,Σ)
equipped with a Borel linear order ⪯?

6The same result is obtained in [AM14], by a different method. As one of the steps within this method,
it is proved that ϕ is synchronising in forward time (i.e. synchronising in the sense of Definition 4.6).

7More generally, a function f ∶ I → J (where I and J are intervals) is said to have the Luzin N property
if the image of any Lebesgue-null set is Lebesgue-null; if f is surjective and has the Luzin N property,
then the image of any Lebesgue-full set is Lebesgue-full.
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(If the answer is that Theorem 3.18(B) holds in the general case, then parts (C) and (D)
of Theorem 3.18 also extend to the general case, since they follow from part (B) without
any reference to the special structure of R̄.)

Remark 3.23. The notion of pullback-attracting random fixed points (and more general
pullback-attracting “random invariant sets”) is not specific to monotone systems on
subsets of R̄. In particular, for a general RDS ϕ on a metric space (X,d) (with B(X)
being standard), a random fixed point q ∶Ω → X is said to be globally pullback-attracting
if P-almost every ω ∈ Ω has the property that for every non-empty bounded B ⊂ X,
supx∈B d(ϕ(t, θ−tω)x, q(ω)) → 0 as t→∞.

Now let us make some comments about the physical significance of pullback-attraction.
Pullback-attraction does not directly represent “synchronisation”, since synchronisation
concerns the mutual approach of forward-time trajectories, while pullback-attraction
just concerns dynamics in the past. Nonetheless, it is true that “almost sure pullback-
attraction towards a singleton implies (forward-time) synchronisation in probability”. To
be precise: suppose we have a random fixed point q ∶Ω → X and a set A ∈ B(X) such
that for P-almost all ω ∈ Ω, supx∈A d(ϕ(t, θ−tω)x, q(ω)) → 0 as t→∞; then the stochastic
process8 diam(ϕ(t, ⋅)A) converges in probability to 0 as t →∞. (This is due to the fact
that almost sure convergence implies convergence in probability, combined with the (θt)-
invariance of P.)

The rest of Chapter 3 is now devoted to proving Theorems 3.6, 3.13 and 3.18.

3.3 Random measures and measure-valued stochastic

processes

Convergence of stochastic processes

Let (E,E) be any measurable space; although an “E-valued random variable” is normally
written as an (F ,E)-measurable function Y ∶Ω→ E, one can alternatively write it as an Ω-
indexed family (xω)ω∈Ω of elements of E such that the map ω ↦ xω is (F ,E)-measurable.
Likewise, we have two possible notational conventions for a “stochastic process” taking
values in E: one is to regard an “E-valued stochastic process” as being a T+-indexed
family (Yt)t∈T+ of (F ,E)-measurable functions Yt ∶Ω → E, while the other is to regard an
“E-valued stochastic process” as being a (T+×Ω)-indexed family (xt,ω)t∈T+, ω∈Ω of elements
of E such that the map ω ↦ xt,ω is (F ,E)-measurable for each t ∈ T+.

Although, for random variables and for stochastic processes, the former convention is
the more standard, we will often use the latter convention in this section.

Now let E be a separable metrisable topological space. Let (xω)ω∈Ω be an E-valued
random variable, and let (xt,ω)t∈T+, ω∈Ω be an E-valued stochastic process.

8It is clear that the map ω ↦ diam(ϕ(t, ω)A) is measurable for each t if ϕ is spatially continuous; in
general, the map ω ↦ diam(ϕ(t, ω)A) is universally measurable for each t. (This is a fairly straightforward
consequence of the measurable projection theorem.)
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Definition 3.24. We say that the stochastic process (xt,ω) converges almost surely to
the random variable (xω) if P-almost every ω ∈ Ω has the property that xt,ω → xω as
t→∞.

Definition 3.25. We say that the stochastic process (xt,ω) converges via countable
subnets to the random variable (xω) if for every unbounded countable set S ⊂ T+ there
is a P-full set ΩS ⊂ Ω such that for every ω ∈ ΩS, xt,ω → xω as t tends to ∞ in S.

Obviously if T+ = N0 then almost sure convergence and convergence via countable subnets
are the same. If T+ = [0,∞), then the notion of almost sure convergence is strictly
stronger than the notion of convergence via countable subnets; note that convergence via
countable subnets is preserved under modification (whereas almost sure convergence is
only preserved under indistinguishability).

Random probability measures

We use the notation that for any probability measure ρ onX and any ρ-integrable function
g ∶X → R, ρ(g) ∶= ∫X g(x)ρ(dx). So for any A ∈ Σ, ρ(A) = ρ(1A).

Recall that we write πΩ ∶Ω × X → Ω and πX ∶Ω × X → X to denote, respectively, the
projections (ω,x)↦ ω and (ω,x)↦ x.

A “random probability measure on X” simply means an (M,K)-valued random variable,
that is, an Ω-indexed family (µω)ω∈Ω of probability measures µω on (X,Σ) such that the
map ω ↦ µω(A) is measurable for all A ∈ Σ.

Given a sub-σ-algebra G of F , we say that a random probability measure (µω) is G-
measurable if the map ω ↦ µω is (G,K)-measurable (i.e. if the map ω ↦ µω(A) is G-
measurable for all A ∈ Σ).

We say that two random probability measures (µω) and (µ̃ω) on X are equivalent if
P(ω ∈ Ω ∶ µω = µ̃ω) = 1.

We now introduce some notations: We write L0(Ω,F ;M) for the set of all random
probability measures on X. Given any sub-σ-algebra G of F , we write L0(Ω,G;M)
for the set of all random probability measures on (X,Σ) that are G-measurable. We
write L0(P;M) for the set of all equivalence classes of random probability measures on
X. Likewise, given any sub-σ-algebra G of F , we write L0(P∣G;M) for the set of all
equivalence classes of G-measurable random probability measures on X.

Given a random probability measure (µω) on X, we define the “mean probability
measure” Eωµω on X by

(Eωµω)(A) ∶= ∫
Ω
µω(A)P(dω)

for all A ∈ Σ. Note that for any bounded measurable g ∶X → R,

(Eωµω)(g) = ∫
Ω
µω(g)P(dω).

100



3.3 Random measures and measure-valued stochastic processes

Also note that for any random variable q ∶Ω→X, Eωδq(ω) is precisely the law q∗P of q.

We have a “dominated convergence theorem for random probability measures”:

Lemma 3.26. Fix a separable metrisable topology T on X generating Σ. Let (µω)ω∈Ω
be a random probability measure, and let (µnω)n∈N, ω∈Ω be an M-valued stochastic process
converging almost surely to (µω)ω∈Ω in NT . Then Eωµnω → Eωµω in NT .

Proof. Given any bounded continuous function g ∶X → R, we have that µωn(g) → µω(g)
for P-almost all ω ∈ Ω, and so by the dominated convergence theorem

(Eωµnω)(g) = ∫
Ω
µnω(g)P(dω) → ∫

Ω
µω(g)P(dω) = (Eωµω)(g)

as required.

Now we say that a probability measure µ on (Ω ×X,F ⊗Σ) is P-compatible if πΩ∗µ = P,
that is, µ(E × X) = P(E) for all E ∈ F . We write MP for the set of P-compatible
probability measures on (Ω ×X,F ⊗Σ).

Likewise, given any sub-σ-algebra G of F , we say that a probability measure µ on
(Ω × X,G ⊗ Σ) is P∣G-compatible if µ(E × X) = P(E) for all E ∈ G. We write MP∣G

for the set of P∣G-compatible probability measures on (Ω ×X,G ⊗Σ).

We will soon see that “random probability measures (up to equivalence) are in one-to-one
correspondence with compatible probability measures”.

Disintegrations

Given any random probability measure (µω) on X, we may define a P-compatible
probability measure µ on Ω ×X by

µ(A) ∶= ∫
Ω
µω(Aω)P(dω)

where, for any A ∈ F ⊗Σ and any ω ∈ Ω, Aω denotes the ω-section of A, that is

Aω ∶= {x ∈X ∶ (ω,x) ∈ A}.

(Using the monotone convergence theorem, it is easy to check that µ is indeed a
probability measure.)

It is easy to show (using Corollary A.7) that for any bounded measurable g ∶Ω ×X → R,

∫
Ω×X

g(ω,x)µ(d(ω,x)) = ∫
Ω
∫
X
g(ω,x)µω(dx)P(dω).

We refer to µ as the integrated form of (µω). Note that πX∗µ = Eωµω.

By Corollary A.6, to show that a probability measure µ on Ω × X is the integrated
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form of a random probability measure (µω), it is sufficient to show that for every E ∈ F
and A ∈ Σ,

µ(E ×A) = ∫
E
µω(A)P(dω).

Now given a P-compatible probability measure µ on Ω × X, we refer to any random
probability measure (µω) whose integrated form is equal to µ as a (version of the)
disintegration of µ (with respect to P). And more generally: let G be any sub-σ-algebra
of F ; then, given a P∣G-compatible probability measure ν on (Ω×X,G⊗Σ), a (version of
the) disintegration of ν with respect to P∣G is a G-measurable random probability measure
(µω) whose integrated form agrees with ν on G ⊗Σ.

It is clear that if two random probability measures (µω) and (µ̃ω) are equivalent then
they share the same integrated form. We now give the “disintegration theorem”, which
essentially states that every P-compatible probability measure admits a disintegration, and
this disintegration is unique up to equivalence (and more generally: every P∣G-compatible
probability measure admits a disintegration with respect to P∣G, and this disintegration
is unique up to equivalence).

Lemma 3.27 (Disintegration Theorem). Fix any sub-σ-algebra G of F . For any
(µω)ω∈Ω ∈ L0(Ω,G;M), let [(µω)ω∈Ω] ∈ L0(P∣G;M) denote the equivalence class of G-
measurable random probability measures represented by (µω)ω∈Ω, and let µ denote the
integrated form of (µω)ω∈Ω. Then the map

L0(P∣G;M) → MP∣G

[(µω)ω∈Ω] ↦ µ∣G⊗Σ

serves as a bijection between L0(P∣G;M) and MP∣G .

Remark 3.28. Really, it suffices just to state the case that G = F , namely, to state that
the map

L0(P;M) → MP

[(µω)ω∈Ω] ↦ µ

serves as a bijection between L0(P;M) andMP; the case of a more general sub-σ-algebra
G then follows by redefining the probability space (Ω,F ,P) to be (Ω,G,P∣G).
We now give a proof of Lemma 3.27, adapted from [Bil95, Theorem 33.3] (which
specifically considers conditional distributions of random variables).

Proof of Lemma 3.27. As in Remark 3.28, we assume without loss of generality that
G = F .

Surjectivity: Fix µ ∈MP. First suppose that X is finite or countable. For each x ∈ X,
let px be the finite measure on Ω given by px(E) = µ(E × {x}) for all E ∈ F ; since µ is
P-compatible, we have that for every P-null set E ∈ F , px(E) ≤ µ(E × {x}) = 0. So px is
absolutely continuous with respect to P for all x ∈X. So for each x ∈X, let hx ∶Ω→ [0,1]
be a version of the density of px with respect to P. Now it is clear that

∑
x∈X

px = P,
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and therefore

∑
x∈X

hx
P-a.s.= 1.

So let let Ω̃ ∈ F be a P-full set such that for all ω ∈ Ω̃, ∑x∈X hx(ω) = 1. For each ω ∈ Ω̃, let
µω be the probability measure on X given by µω({x}) = hx(ω) for all x ∈ X; and fixing
an arbitrary probability measure c on X, let µω ∶= c for all ω ∈ Ω ∖ Ω̃. It is clear that for
every A ∈ Σ, the map ω ↦ µω(A) is measurable; so (µω)ω∈Ω ∈ L0(Ω,F ;M). Now for each
E ∈ F and A ⊂X, we have

∫
E
µω(A)P(dω) = ∑

x∈A
∫
E
hω(x)P(dω) = ∑

x∈A
px(E) = µ(E ×A).

So µ is the integrated form of (µω), as required.

Now suppose that X is uncountable. By the Borel isomorphism theorem, we may assume
without loss of generality that (X,Σ) = ([0,1],B([0,1])). For each a ∈ [0,1] ∩Q, let Pa
be the finite measure on Ω given by Pa(E) = µ(E × [0, a]) for all E ∈ F ; once again, it is
clear that Pa is absolutely continuous with respect to P for all a. So for each a ∈ [0,1)∩Q,
let Ha ∶Ω → [0,1] be a version of the density of Pa with respect to P; and set H1(ω) ∶= 1
for all ω ∈ Ω. For each a, b ∈ [0,1] ∩Q with a ≤ b, there exists a P-full set Ωa,b ∈ F such
that Ha(ω) ≤Hb(ω) for all ω ∈ Ωa,b. So let

Ω′ ∶= ⋂
a,b ∈ [0,1]∩Q

a≤b

Ωa,b.

By construction, for all ω ∈ Ω′ the map a ↦ Ha(ω) from [0,1] ∩Q to [0,1] is increasing.
Now for each a ∈ [0,1)∩Q and ω ∈ Ω′, let Ha+(ω) ∶= inf{Hb(ω) ∶ b ∈ (a,1]∩Q}; obviously
Pb(Ω′) decreases to Pa(Ω′) as b decreases to a, and so by the monotone convergence
theorem we have that

∫
Ω′
Ha+(ω)P(dω) = Pa(Ω′) = ∫

Ω′
Ha(ω)P(dω),

implying in particular that there is a P-full subset Ω′a ∈ F of Ω′ such that Ha+ = Ha on
Ω′a. So let

Ω̃ ∶= ⋂
a∈[0,1)∩Q

Ω′a.

For each ω ∈ Ω̃ and x ∈ [0,1] ∖ Q, let Hx(ω) ∶= inf{Ha(ω) ∶ a ∈ (x,1] ∩ Q}. It is
clear that the map x ↦ Hx(ω) from [0,1] to [0,1] is increasing and right-continuous
for all ω ∈ Ω̃. So for each ω ∈ Ω̃, let µω be the probability measure on [0,1] given by
µω([0, x]) = Hx(ω) for all x ∈ [0,1]; and fixing an arbitrary probability measure c on
[0,1], let µω ∶= c for all ω ∈ Ω ∖ Ω̃. For each E ∈ F , let DE be the collection of all
Borel subsets A of [0,1] with the properties that the map ω ↦ µω(A) is measurable and

∫E µω(A)P(dω) = µ(E ×A). By construction, DE contains [0, a] for every a ∈ [0,1] ∩Q;
moreover, by the monotone convergence theorem, DE is a λ-system on [0,1]. Hence, by
the π-λ theorem (Lemma A.5), DE is equal to the whole of B([0,1]). This is true for
every E ∈ F , and therefore µ is the integrated form of (µω).
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Injectivity: Let (µω) and (µ′ω) be random probability measures sharing the same
integrated form µ. For each A ∈ Σ, we have that

∫
E
µω(A)P(dω) = ∫

E
µ′ω(A)P(dω) ∀E ∈ F

and therefore µω(A) = µ′ω(A) for P-almost all ω ∈ Ω. Now let C be a countable π-
system generating Σ. Then P-almost every ω ∈ Ω has the property that for all A ∈ C,
µω(A) = µ′ω(A); and hence, by Corollary A.6, µω = µ′ω for P-almost all ω ∈ Ω.

We have mentioned that taking the “expectation” of a random probability measure can
be achieved by taking the X-projection of the integrated form of the random probability
measure. We will now see that (as in [Arn98, p23]) taking the “conditional expectation
given G” of a random probability measure can be achieved by taking a P∣G-disintegration
of the (G ⊗Σ)-restriction of the integrated form of the random probability measure:

Lemma 3.29. Let G be a sub-σ-algebra of F . Let (µω) and (µ′ω) be random probability
measures on X, with (µ′ω) being G-measurable. Suppose that the integrated forms of (µω)
and (µ′ω) agree on G ⊗Σ; then for any bounded measurable g ∶X → R,

E[ ω̃ ↦ µω̃(g) ∣G ](ω) P-a.s.= µ′ω(g).

Proof. Fix any E ∈ G. Writing µ and µ′ for the integrated forms of (µω) and (µ′ω)
respectively, we have that

∫
E
µω(g)P(dω) = ∫

Ω×E
g(x)µ(d(ω,x)) = ∫

Ω×E
g(x)µ′(d(ω,x)) = ∫

E
µ′ω(g)P(dω)

as required.

We now show that the converse of Lemma 3.29 holds; in fact, we will prove a slightly
stronger version of the converse. Let us say that a collection {gα}α∈I of bounded
measurable functions gα ∶X → R is measure-determining if for any probability measures
ρ1 and ρ2 on X,

ρ1(gα) = ρ2(gα) ∀α ∈ I Ô⇒ ρ1 = ρ2.

Note that a countable measure-determining set does exist: take {1A}A∈C for some
countable π-system C generating Σ.

Lemma 3.30. Let {gi}i∈N be a countable measure-determining set of bounded measurable
functions gi ∶X → R, and let G be a sub-σ-algebra of F . Let (µω) and (µ′ω) be random
probability measures on X, and suppose that for each i ∈ N,

E[ ω̃ ↦ µω̃(gi) ∣G ](ω) P-a.s.= µ′ω(gi).

Then the integrated forms of (µω) and (µ′ω) agree on G ⊗Σ.

Proof. On the basis of Lemma 3.27, let (µ̂ω) be a G-measurable random probability
measure whose integrated form agrees with the integrated form of (µω) on G ⊗ Σ. By
Lemma 3.29, we have that for each i ∈ N, for P-almost all ω ∈ Ω,

µ̂ω(gi) = E[ ω̃ ↦ µω̃(gi) ∣G ](ω) = µ′ω(gi).
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3.3 Random measures and measure-valued stochastic processes

So let Ω̃ ⊂ Ω be a P-full set such that µ̂ω(gi) = µ′ω(gi) for all ω ∈ Ω̃ and i ∈ N. Then, since
{gi}i∈N is measure-determining, µ̂ω = µ′ω for all ω ∈ Ω̃. Thus (µ̂ω) and (µ′ω) have the same
integrated form, and therefore in particular, the integrated form of (µ′ω) agrees with the
integrated form of (µω) on G ⊗Σ.

Definition 3.31. Let G be a sub-σ-algebra of F . We will say that a P-compatible
probability measure µ on (Ω ×X,F ⊗Σ) is G-measurable if there exists a disintegration
of µ with respect to P which is G-measurable.9

Lemma 3.32. Let G1 and G2 be independent sub-σ-algebras of F , and let µ be a P-
compatible probability measure that is G1-measurable. Then

µ∣G2⊗Σ = P∣G2 ⊗ πX∗µ .

Proof. Let (µω) be a G1-measurable disintegration of µ. For any E ∈ G2 and A ∈ Σ, we
have

µ(E ×A) = ∫
Ω
1E(ω)µω(A)P(dω)

= ∫
Ω
1E(ω̃)P(dω̃)∫

Ω
µω(A)P(dω) (by Lemma A.10)

= P(E)πX∗µ(A)

as required.

Measure-valued martingales

As in Remark A.19, given a separable metrisable topology T on X generating Σ, a
countable set {gi}i∈N of bounded continuous functions gi ∶X → R is said to be convergence-
determining (according to T ) if for any sequence (ρn) in M and any ρ ∈M,

ρn(gi)→ ρ(gi) as n→∞ for every i ∈ N Ô⇒ ρn → ρ in NT as n→∞.

As in Theorem A.16, such a set of functions {gi}i∈N does exist. Obviously any convergence-
determining set of functions is also measure-determining.

The following result can be regarded as “Lévy’s upward theorem for measures”.

Theorem 3.33. Let (Gt)t∈T+ be a filtration on (Ω,F), and write G∞ ∶= σ(Gt ∶ t ∈ T+). Let
(µω)ω∈Ω be a G∞-measurable random probability measure on X, and let (µtω)t∈T+, ω∈Ω be an
M-valued stochastic process such that for each t ∈ T+, the random probability measure
(µtω)ω∈Ω is Gt-measurable and the integrated form of (µtω)ω∈Ω agrees with the integrated
form of (µω)ω∈Ω on Gt⊗Σ. Then for every separable metrisable topology T on X generating
Σ, (µtω)t∈T+, ω∈Ω converges via countable subnets to (µω)ω∈Ω in the narrow topology NT .

Remark 3.34. We emphasise that for each unbounded countable S ⊂ T+, the exceptional
P-null set on which the convergence fails will generally depend on the topology T .
(Indeed, for any unbounded countable S ⊂ T+, if the exceptional null set can be chosen
independently of T , then outside this exceptional null set we will have strong convergence
as t→∞ in S, by Lemma 2.3.)

9If (Ω,F ,P) is a complete probability space and G contains all P-null sets, then this is equivalent to
saying that every disintegration of µ with respect to P is G-measurable.
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3.3 Random measures and measure-valued stochastic processes

Proof of Theorem 3.33. Fix a separable metrisable topology T on X generating Σ. Let
{gi}i∈N be a convergence-determining set of bounded continuous functions gi ∶X → R. For
each i ∈ N and t ∈ T+, Lemma 3.29 gives that

E[ ω̃ ↦ µω̃(gi) ∣Gt ](ω) P-a.s.= µtω(gi).

So then, Lévy’s upward theorem10 gives that for each i, the stochastic process
(µtω(gi))t∈T+, ω∈Ω is a modification of a stochastic process converging almost surely to
the random variable (µω(gi))ω∈Ω . Hence in particular, (µtω(gi))t∈T+, ω∈Ω converges via
countable subnets to (µω(gi))ω∈Ω. So for each i ∈ N and each unbounded countable

S ⊂ T+, let Ω
(i)
S ⊂ Ω be a P-full set such that for each ω ∈ Ω

(i)
S , µtω(gi) → µω(gi) as t →∞

in S. Then, defining ΩS ∶= ⋂∞i=1 Ω
(i)
S for any unbounded countable S ⊂ T+, we have that

for each ω ∈ ΩS, µtω → µω in NT as t→∞ in S.

The following “extension theorem” is based on the martingale convergence theorem.

Theorem 3.35. Let (Gt)t∈T+ be a filtration on (Ω,F), and write G∞ ∶= σ(Gt ∶ t ∈ T+). Let

µ̇ ∶ ⋃
t∈T+
(Gt ⊗Σ) → [0,1]

be a function with the property that for each t ∈ T+, µ̇∣Gt⊗Σ is a P∣Gt-compatible probability
measure. Then there exists a unique probability measure µ on (Ω ×X,G∞ ⊗Σ) agreeing
with µ̇ on ⋃t∈T+(Gt ⊗Σ); the measure µ is itself P∣G∞-compatible.

Proof. Existence: For each n ∈ N, let (µnω)ω∈Ω be a disintegration of µ̇∣Gn⊗Σ with respect
to P∣Gn . Fix a compact metrisable topology T on X generating Σ, and let {gi}i∈N be
a convergence-determining set of continuous functions gi ∶X → [0,1]. For each i, n ∈ N,
Lemma 3.29 gives that

E[ ω̃ ↦ µn+1
ω̃ (gi) ∣Gn+1 ](ω) P-a.s.= µnω(gi).

Thus, for each i, the stochastic process (µnω(gi))n∈N, ω∈Ω is a (uniformly bounded)
martingale, and therefore converges almost surely. So let Ω̃ ∈ F be a P-full set such that
for every ω ∈ Ω̃ and i ∈ N, the sequence (µnω(gi))n∈N is convergent. By Corollary A.18,
for each ω ∈ Ω̃, µnω converges in the narrow topology some probability measure µω as
n→∞; fixing an arbitrary probability measure c on X, we can then define µω ∶= c for all
ω ∈ Ω∖ Ω̃. Let µ̄ be the integrated form of the random probability measure (µω)ω∈Ω. Fix
any n ∈ N; for each i ∈ N, the conditional dominated convergence theorem gives that

E[ ω̃ ↦ µω̃(gi) ∣Gn ](ω) P-a.s.= lim
m→∞

E[ ω̃ ↦ µmω̃ (gi) ∣Gn ](ω)
P-a.s.= lim

m→∞
µnω(gi) (by Lemma 3.29)

= µnω(gi).

10[Nev65, Proposition IV.5.6] gives a combined statement of the martingale convergence theorem and
Lévy’s upward theorem for separable stochastic processes; by [Nev65, Proposition III.4.3], every R̄-valued
stochastic process has a separable modification.
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3.4 Invariant measures

Hence, by Lemma 3.30, µ̇∣Gn⊗Σ = µ̄∣Gn⊗Σ. This is true for every n, so the measure
µ ∶= µ̄∣G∞⊗Σ fulfils the properties described in the statement of the theorem.

Uniqueness : It is easy to see that G∞⊗Σ is precisely the σ-algebra on Ω×X generated by

⋃t∈T+(Gt ⊗Σ) (which is itself a π-system, as in Remark A.3). Hence Corollary A.6 gives
the uniqueness of the measure µ.

3.4 Invariant measures

Recall that for each t ∈ T+, we define the map Θt ∶Ω × X → Ω × X by Θt(ω,x) =
(θtω,ϕ(t, ω)x).

Lemma 3.36 ([Arn98, Lemma 1.4.4]). Let µ be a P-compatible probability measure on
Ω × X, with disintegration (µω)ω∈Ω. Then for any t ∈ T+, Θt

∗µ is P-compatible, with
disintegration (ϕ(t, θ−tω)∗µθ−tω)ω∈Ω.

Proof. Fix t ∈ T+. Let ν be the integrated form of (ϕ(t, θ−tω)∗µθ−tω)ω∈Ω. For any E ∈ F
and A ∈ Σ, we have

Θt
∗µ(E ×A) = ∫

Ω
∫
X
1E×A(θtω,ϕ(t, ω)x)µ(d(ω,x))

= ∫
Ω
∫
X
1E(θtω) 1A(ϕ(t, ω)x) µω(dx) P(dω)

= ∫
Ω
∫
X
1E(ω) 1A(ϕ(t, θ−tω)x) µθ−tω(dx) P(dω)

= ∫
E
ϕ(t, θ−tω)∗µθ−tω(A) P(dω)

= ν(E ×A).

Hence Θt
∗µ = ν.

As a particular case of this, we will now prove Remark 2.22.

Corollary 3.37. Let ρ be a probability measure on X. The following are equivalent:

(i) (Ω ×X, F ⊗Σ , P⊗ ρ , (Θt)t∈T+) is a measure-preserving dynamical system;

(ii) there exists r ∈ T+ ∖ {0} such that (Ω × X, F∞−r ⊗ Σ , P∣F∞−r ⊗ ρ , (Θt)t∈T+) is a
measure-preserving dynamical system;

(iii) ρ is crudely incompressible.

Proof. It is clear that (i)⇒(ii). Now suppose that (ii) holds. Fix any t ∈ T+ with 0 ≤ t ≤ r.
Given any A ∈ Σ, Lemma 3.36 gives that for all E ∈ F∞−t ,

∫
E
ϕ(t, θ−tω)∗ρ(A)P(dω) = Θt

∗(P⊗ ρ)(E ×A) = P⊗ ρ(E ×A) = P(E)ρ(A) ;

since this is true for every E ∈ F∞−t and the map ω ↦ ϕ(t, θ−tω)∗ρ(A) is itself F∞−t -
measurable, it follows that ϕ(t, θ−tω)∗ρ(A) = ρ(A) for P-almost all ω ∈ Ω. This is true
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3.4 Invariant measures

for each A ∈ Σ; so let C be a countable π-system generating Σ, and let Ω̃ ⊂ Ω be a P-full
set such that for every ω ∈ Ω̃ and A ∈ C, ϕ(t, θ−tω)∗ρ(A) = ρ(A). Then (by Lemma A.6)
ϕ(t, θ−tω)∗ρ = ρ for every ω ∈ Ω̃. Thus we have shown that for every t ∈ T+ with 0 ≤ t ≤ r,
ϕ(t, θ−tω)∗ρ is P-almost surely equal to ρ. Now consider t ∈ T+ with t > r, and let
n ∶= ⌊ tr ⌋. For each i ∈ {1, . . . , n}, we have that ϕ(r, θ−irω)∗ρ = ρ for P-almost all ω ∈ Ω;
hence ϕ(nr, θ−nrω)∗ρ = ρ for P-almost all ω ∈ Ω. But we also have that ϕ(t−nr, θ−tω)∗ρ = ρ
for P-almost all ω ∈ Ω. So then, ϕ(t, θ−tω)∗ρ = ϕ(nr, θ−nrω)∗ϕ(t − nr, θ−tω)∗ρ = ρ for P-
almost all ω ∈ Ω. Thus ϕ is crudely incompressible.

Finally, the fact that (iii)⇒(i) follows immediately from Lemma 3.36, with µ ∶= P⊗ρ.

Definition 3.38. A probability measure µ on (Ω ×X,F ⊗Σ) is said to be ϕ-invariant
if µ is both P-compatible and invariant under the dynamical system (Θt)t∈T+ ; and µ is
said to be ϕ-ergodic if µ is both P-compatible and ergodic with respect to the dynamical
system (Θt)t∈T+ .

Remark 3.39. Recall that an invariant probability measure of a dynamical system is
ergodic if and only if it is an extreme point of the convex set of invariant measures of
that dynamical system. Now observe that for any (Θt)t∈T+-invariant measure µ, πΩ∗µ is
(θt)-invariant. Consequently, since P is (θt)-ergodic, it is not hard to show (as in [Cra02b,
Lemma 6.19(i)]) that a ϕ-invariant probability measure is ϕ-ergodic if and only if it is an
extreme point of the convex set of ϕ-invariant probability measures.

Definition 3.40. A random probability measure (µω) is said to be ϕ-invariant (resp. ϕ-
ergodic) if its integrated form is ϕ-invariant (resp. ϕ-ergodic).

Using Lemma 3.36, we can now characterise ϕ-invariant probability measures in terms of
their disintegrations.

Lemma 3.41. For any random probability measure (µω) on X, the following are
equivalent:

(i) (µω) is ϕ-invariant;

(ii) for each t ∈ T+, for P-almost all ω ∈ Ω, µω = ϕ(t, θ−tω)∗µθ−tω;

(iii) for each t ∈ T+, for P-almost all ω ∈ Ω, µθtω = ϕ(t, ω)∗µω;

(iv) the map ω ↦ µω is a random fixed point of the image-measure RDS ϕ∗ .

Proof. The equivalence of (i) and (ii) follows immediately from Lemma 3.36. The
equivalence of (ii) and (iii) is due to the (θt)-invariance of P. The equivalence of (iii)
and (iv) is automatic from the definitions.

Remark 3.42. Observe that for any measurable function q ∶Ω → X, the random
probability measure (δq(ω)) is ϕ-invariant if and only if q is a random fixed point of
ϕ. (In fact, it is not hard to show that if q is a random fixed point then (δq(ω)) is
ϕ-ergodic.)

The following is adapted from part (a) of the proof of [LeJ87, Proposition 2].
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Lemma 3.43. Let (µω) be a ϕ-ergodic random probability measure. Then there exists
n ∈ N ∪ {∞} such that for P-almost all ω ∈ Ω, µω ∈ Kn.

To prove Lemma 3.43, we use the following simple observation:

Lemma 3.44. Suppose we have a value c ∈ [0,1] and a probability measure ρ on X, such
that for ρ-almost every x ∈ X, ρ({x}) = c. Then either c = 0 and ρ ∈ K∞, or c = 1

n and
ρ ∈ Kn for some n ∈ N.

Proof of Lemma 3.44. If c = 0 then there clearly cannot exist a singleton of strictly
positive measure under ρ; so ρ ∈ K∞. If c > 0, then the finite set P of points x satisfying
ρ({x}) = c is a ρ-full measure set; so letting n ∶= ∣P ∣, it is clear that c = 1

n and ρ ∈ Kn.

Proof of Lemma 3.43. Define the function h ∶Ω ×X → [0,1] by h(ω,x) = µω({x}). Note
that h is measurable, since it can be expressed as

h(ω,x) = ∫
X
1∆X
(x, y)µω(dy).

Now for each t ∈ T+, let Ωt ⊂ Ω be a P-full set such that for each ω ∈ Ωt, ϕ(t, ω)∗µω = µθtω.
Then for all (ω,x) ∈ Ωt ×X, we have

h(Θt(ω,x)) = µθt(ω)( {ϕ(t, ω)x} )
= µω (ϕ(t, ω)−1( {ϕ(t, ω)x} ) )
≥ µω({x})
= h(ω,x).

So then, letting µ be the integrated form of (µω), we have that h ○Θt
µ-a.s.
≥ h for each

t ∈ T+. Hence, since µ is Θ-ergodic, there exists c ∈ [0,1] such that h−1({c}) is a µ-full
set. So for P-almost every ω ∈ Ω, µω has the property that µω({x}) = c for µω-almost all
x ∈X. The result then follows by Lemma 3.44.

The following is an extension of [Arn98, Theorem 1.8.4(iv)].

Lemma 3.45. Suppose there exists a Borel linear order ⪯ on (X,Σ) with respect to which
ϕ is monotone. Let (µω) be ϕ-ergodic random probability measure. Then for P-almost all
ω ∈ Ω, µω is a Dirac mass.

We first prove the following:

Lemma 3.46. Let ⪯ be a Borel linear order on (X,Σ). Suppose we have a value c ∈ [0,1]
and a probability measure ρ on X, such that for ρ-almost every x ∈X, ρ(v ∈X ∶ v ⪯ x) = c.
Then ρ is a Dirac mass (and c = 1).

Lemma 3.46 is fairly clear in the case (X,Σ,⪯) = (R,B(R),≤); nonetheless, we can prove
it for more general Borel linear orders:

Proof of Lemma 3.46. We write “x ≺ y” to mean “x ⪯ y and x ≠ y”. For any x ∈ X, let
Ix ∶= {v ∈X ∶ v ⪯ x} and let I ′x ∶= Ix∖{x} = {v ∈X ∶ v ≺ x}. For any x ∈X with ρ({x}) > 0,
we have that ρ(I ′x) = 0 (since for all v ∈ I ′x, ρ(Iv) is strictly less than ρ(Ix)). So then, we
have that either
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(a) ρ is atomless; or

(b) there exists a unique x∗ ∈ X with ρ({x∗}) > 0, in which case ρ(I ′x∗) = 0 and
ρ({x∗}) = c.

Now suppose for a contradiction that ρ is not a Dirac mass (in which case, in case (b),
c ≠ 1). Define a probability measure ρ̃ on X and a value c̃ ∈ [0,1] by

ρ̃(A) ∶= { ρ(A) in case (a)
ρ(A∖{x∗})

1−c in case (b)
and c̃ = { c in case (a)

0 in case (b).

We first show that ρ̃ is atomless and for ρ̃-almost all x ∈X, ρ̃(I ′x) = c̃. In case (a), this is
clear. In case (b), it is clear that ρ̃ is atomless. Also, in case (b), for any x ∈X with the
property that ρ(Ix) = c, we have that ρ̃(I ′x) = ρ̃(Ix) = 0; by assumption, the set of points
x that do not have this property is a ρ-null set, and is therefore clearly also a ρ̃-null set.

Now then, since ρ̃ is atomless, we have that ρ̃⊗ ρ̃(∆X) = 0, and therefore

1 = ρ̃⊗ ρ̃( (x, y) ∶ x ≺ y ) + ρ̃⊗ ρ̃( (x, y) ∶ y ≺ x )
= 2ρ̃⊗ ρ̃( (x, y) ∶ x ≺ y )

= 2∫
X
∫
X
χx≺y ρ̃(dx) ρ̃(dy)

= 2∫
X
ρ̃(I ′y) ρ̃(dy)

= 2c̃.

Hence c̃ = 1
2 .

(Of course, this rules out case (b); but we shall soon rule out every situation.)

Now define the following 6 subsets of X ×X ×X:

J1 ∶= { (x, y, z) ∶ x ≺ y ≺ z }
J2 ∶= { (x, y, z) ∶ x ≺ z ≺ y }
J3 ∶= { (x, y, z) ∶ y ≺ x ≺ z }
J4 ∶= { (x, y, z) ∶ y ≺ z ≺ x}
J5 ∶= { (x, y, z) ∶ z ≺ x ≺ y }
J6 ∶= { (x, y, z) ∶ z ≺ y ≺ x}.

Note that the sets J1, . . . , J6 are mutually disjoint. Now J1 is (Σ ⊗ Σ ⊗ Σ)-measurable,
since, writing I ′ ∶= { (x, y) ∶ x ≺ y } ⊂X ×X, we can express J1 as

J1 = (I ′ ×X) ∩ (X × I ′).
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Likewise the sets J2, . . . , J6 are also (Σ⊗Σ⊗Σ)-measurable. So then,

ρ̃⊗ ρ̃⊗ ρ̃(
6

⋃
i=1
Ji) = 6 ρ̃⊗ ρ̃⊗ ρ̃(J1)

= 6∫
X
∫
X
∫
X
χx≺y≺z ρ̃(dx) ρ̃(dy) ρ̃(dz)

= 6∫
X
∫
X
(χy≺z ∫

X
χx≺y ρ̃(dx)) ρ̃(dy) ρ̃(dz)

= 6∫
X
∫
X
χy≺z ρ̃(I ′y) ρ̃(dy) ρ̃(dz)

= 6∫
X
∫
I′z

1
2 ρ̃(dy) ρ̃(dz)

= 6∫
X

1
2 ρ̃(I ′z) ρ̃(dz)

= 6∫
X

1
4 ρ̃(dz)

= 3
2 ,

which is absurd. Hence ρ is a Dirac mass (and therefore it is also clear that c = 1).

Proof of Lemma 3.45. Let I ∶= {(v, x) ∈ X × X ∶ v ⪯ x}, and for each x ∈ X, let
Ix ∶= {v ∈ X ∶ v ⪯ x}. Since ϕ is monotone, we have that for all t, ω and x,
ϕ(t, ω)Ix ⊂ Iϕ(t,ω)x.

Now define the function h ∶Ω×X → [0,1] by h(ω,x) = µω(Ix). Note that h is measurable,
since it can be expressed as

h(ω,x) = ∫
X
1I(v, x)µω(dv).

For each t ∈ T+, let Ωt ⊂ Ω be a P-full set such that for each ω ∈ Ωt, ϕ(t, ω)∗µω = µθtω.
Then for all (ω,x) ∈ Ωt ×X, we have

h(Θt(ω,x)) = µθt(ω)(Iϕ(t,ω)x)
= µω(ϕ(t, ω)−1(Iϕ(t,ω)x))
≥ µω(Ix)
= h(ω,x).

So then, letting µ be the integrated form of (µω), we have that h ○Θt
µ-a.s.
≥ h for each

t ∈ T+. Hence, since µ is Θ-ergodic, there exists c ∈ [0,1] such that h−1({c}) is a µ-full
set. So for P-almost every ω ∈ Ω, µω has the property that µω(Ix) = c for µω-almost all
x ∈X. The result then follows by Lemma 3.46.

3.5 Markov invariant measures and the proofs of the

main results

Definition 3.47. A Markov invariant measure of ϕ is a ϕ-invariant probability measure
µ on (Ω ×X,F ⊗Σ) that is F0

−∞-measurable.
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Remark 3.48. As in Remark 2.38, any ϕ-invariant measure that is F r−∞-measurable
for some r ∈ T is in fact a Markov invariant measure: if, for some r ∈ T+, (µω) is an
F r−∞-measurable disintegration of a ϕ-invariant measure µ, then (ϕ(r, θ−rω)∗µθ−rω) is an
F0
−∞-measurable disintegration of the same probability measure µ.

Now let IM denote the set of Markov invariant measures of ϕ, and let S denote the set of
probability measures on X that are stationary under the Markov transition probabilities
(ϕtx)x∈X, t∈T+ .

The following theorem is a generalisation of [KS12, Theorem 4.2.9].11

Theorem 3.49. The map µ ↦ πX∗µ serves as a bijection between IM and S. The
inverse map can be constructed as follows: for any µ ∈ IM , letting ρ ∶= πX∗µ and letting
(µω) be any disintegration of µ, we have that for any separable metrisable topology T
on X generating Σ the M-valued stochastic process (ϕ(t, θ−tω)∗ρ)t∈T+, ω∈Ω converges via
countable subnets to (µω) in the narrow topology NT . If the topology T is such that ϕ has
left-continuous pullback trajectories, then this convergence can be strengthened to almost
sure convergence.

For any µ ∈ IM , µ is the only (Θt)-invariant probability measure on (Ω ×X,F ⊗ Σ)
whose restriction to F∞0 ⊗Σ coincides with P∣F∞0 ⊗πX∗µ. Hence µ is ϕ-ergodic if and only
if πX∗µ is ergodic with respect to the Markov transition probabilities (ϕtx)x∈X, t∈T+.

So then, for any stationary probability measure ρ of the Markov transition probabilities
(ϕtx)x∈X, t∈T+ there exists a unique Markov invariant measure µ whose X-projection
coincides with ρ. Via disintegration, we can re-express this fact as follows: for any
stationary probability measure ρ of the Markov transition probabilities (ϕtx)x∈X, t∈T+
there exists an F0

−∞-measurable ϕ-invariant random probability measure (µω) such that
Eωµω = ρ; and such a random probability measure is unique up to equivalence.

Note that by Corollary 3.37, for any crudely incompressible probability measure ρ, the
unique Markov invariant measure whose X-projection coincides with ρ is P⊗ ρ.

Proof of Theorem 3.49. For any µ ∈ IM , we have (by Lemma 3.32 and Remark 3.48) that
µ∣F∞0 ⊗Σ = P∣F∞0 ⊗ πX∗µ; hence, by Lemma 2.21(i), πX∗µ ∈ S.

We next establish that the map µ ↦ πX∗µ from IM to S is surjective, by constructing
explicitly a (right-)inverse. Fix any ρ ∈ S. For each t ∈ T+, define the probability measure
µt on (Ω ×X,F∞−t ⊗Σ) by

µt(A) = P⊗ ρ(Θ−t(A)) ∀ A ∈ F∞−t ⊗Σ.

Since P is (θt)-invariant, it is clear that µt is P∣F∞−t -compatible for each t. Now recall from
Section 2.6 that for each s ∈ T+, Θt is (F∞0 ⊗Σ,F∞−s ⊗Σ)-measurable; so then, given any

11Working only in the context of a spatially continuous RDS on a Polish space, Theorem 4.2.9 of
[KS12] asserts that the map µ ↦ πX∗µ from IM to S is bijective, with the inverse being as in (1.7) for
any unbounded increasing (tn).
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s, t ∈ T+ with s ≤ t, we have that for all A ∈ F∞−s ⊗Σ,

µt(A) = P⊗ ρ(Θ−t(A))
= P⊗ ρ(Θs−t(Θ−s(A)))
= P⊗ ρ((Θ−s(A))

(since, by Lemma 2.21(i), P∣F∞0 ⊗ ρ is Θt−s-invariant)

= µs(A).

Hence, by Theorem 3.35 (with Gt = F∞−t and G∞ = F), there exists a unique probability
measure µ on (Ω ×X,F ⊗Σ) which agrees with µt on F∞−t ⊗Σ for every t ∈ T+; and µ is
itself P-compatible. Fixing any τ ∈ T+: for all t ∈ T+, as in Section 2.6 we have that Θτ is
(F∞−t ⊗Σ,F∞−(t+τ)⊗Σ)-measurable; and so for any A ∈ F∞−t ⊗Σ, noting that A is obviously
also in F∞−(t+τ) ⊗Σ, we have that

Θτ
∗µ(A) = µt(Θ−τ(A))

= P⊗ ρ(Θ−(t+τ)(A))
= P⊗ ρ(Θ−t(A))

(since, by Lemma 2.21(i), P∣F∞0 ⊗ ρ is Θτ -invariant)

= µt(A).

Hence Θτ
∗µ is equal to µ. This is true for any τ ∈ T+, and therefore µ is ϕ-invariant. Now

by Lemma 3.36, for each t ∈ T+ the integrated form of (ϕ(t, θ−tω)∗ρ)ω∈Ω agrees with µt

on F∞−t ⊗ Σ. Hence, by Theorem 3.33, letting (µω) be any disintegration of µ, we have
that for any separable metrisable topology T on X generating Σ theM-valued stochastic
process (ϕ(t, θ−tω)∗ρ)t∈T+, ω∈Ω converges via countable subnets to (µω) in NT ; in the case
that ϕ has left-continuous pullback trajectories under T , we have that for any bounded
continuous g ∶X → R the map t ↦ g(ϕ(t, θ−tω)x) is left-continuous for all x and ω, and
therefore (by the dominated convergence theorem) the map t ↦ ∫X g(ϕ(t, θ−tω)x)ρ(dx)
is left-continuous for all ω; hence, in this case, the map t↦ ϕ(t, θ−tω)∗ρ is left-continuous
in NT for all ω, and so (ϕ(t, θ−tω)∗ρ)t∈T+, ω∈Ω converges almost surely to (µω) in NT .

In any case, the measure µ is F0
−∞-measurable, since, fixing any Polish topology T on

X generating Σ and an arbitrary probability measure c on X, the random probability
measure

µω = {
NT -lim

n→∞
ϕ(n, θ−nω)∗ρ if this limit exists

c otherwise

is a disintegration of µ. Hence µ ∈ IM . By construction, µ∣F∞0 ⊗Σ = P∣F∞0 ⊗ρ, and therefore
(by Lemma 3.32) πX∗µ = ρ. This completes the proof of the surjectivity of the map
µ↦ πX∗µ from IM to S.

We next show that for any µ̃ ∈ IM , µ̃ is the only (Θt)-invariant probability measure on
(Ω×X,F ⊗Σ) whose restriction to F∞0 ⊗Σ coincides with P∣F∞0 ⊗πX∗µ̃; by Lemma 3.32,
this implies the injectivity of the map µ ↦ πX∗µ from IM to S. Fix any µ̃ ∈ IM ; let
ρ ∶= πX∗µ̃ ∈ S, and let µt (for each t) and µ be as constructed above. Let µ′ be any
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(Θt)-invariant probability measure with the property that µ′∣F∞0 ⊗Σ = P∣F∞0 ⊗ ρ. Then for
any t ∈ T+, for all A ∈ F∞−t ⊗Σ,

µ′(A) = µ′(Θ−t(A)) = P⊗ ρ(Θ−t(A)) = µt(A),

and therefore µ′ = µ; but since µ̃ itself has the property that µ̃∣F∞0 ⊗Σ = P∣F∞0 ⊗ ρ, we can
conclude that µ′ = µ̃, as required.

Now for any µ ∈ IM that is ϕ-ergodic, it is clear that P∣F∞0 ⊗πX∗µ is ergodic with respect
to (Θt), and therefore by Lemma 2.21(ii), πX∗µ is ergodic with respect to the Markov
transition probabilities (ϕtx)x∈X, t∈T+ . Conversely, for any µ ∈ IM that is not ϕ-ergodic, µ
can be expressed as a non-trivial convex combination of two (Θt)-invariant probability
measures ν1 and ν2 that are distinct from µ; since µ is the only (Θt)-invariant probability
measure on (Ω ×X,F ⊗Σ) whose restriction to F∞0 ⊗Σ coincides with P∣F∞0 ⊗ πX∗µ, we
have that ν1∣F∞0 ⊗Σ and ν2∣F∞0 ⊗Σ are distinct from P∣F∞0 ⊗ πX∗µ. Thus P∣F∞0 ⊗ πX∗µ is not
ergodic with respect to (Θt), and therefore, by Lemma 2.21(ii), πX∗µ is not ergodic with
respect to the Markov transition probabilities (ϕtx)x∈X, t∈T+ .

Remark 3.50. For any P-compatible probability measure µ, we can define the initial
observation time of µ to be the infimum of the set of values r ∈ T̄ such that µ is F r−∞-
measurable. We have established (in Remark 3.48) that for any ϕ-invariant measure
µ, the initial observation time of µ cannot be a strictly positive finite value. Now
suppose we have a Markov invariant measure µ for which the initial observation time
is strictly negative; then there exists r ∈ T+ ∖ {0} such that µ is F−r−∞-measurable, and so
by Lemma 3.32, the restriction of µ to F∞−r ⊗ Σ coincides with P ∣F∞−r ⊗ πX∗µ; hence, by
Corollary 3.37, πX∗µ is crudely incompressible, and therefore µ = P⊗ πX∗µ. So then, we
have the following simple classification of Markov invariant measures: for any Markov
invariant measure µ, either

(a) µ = P ⊗ ρ for some crudely incompressible probability measure ρ (in which case
the initial observation time of µ is obviously −∞); or

(b) πX∗µ is not crudely incompressible, and the initial observation time of µ is 0.

In view of Theorem 3.49, we are now in a position to prove Theorem 3.6:

Theorem 3.51. Let ρ be a stationary probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+. Let (µω) be a disintegration of the unique Markov invariant
measure µ satisfying πX∗µ = ρ, and let Qρ ∈M(M,K) be the image measure of P under
the map ω ↦ µω. (This does not depend on which version (µω) of the disintegration is
chosen.) Then Qρ fulfils the properties described in Theorem 3.6.

Proof. Since ω ↦ µω is a random fixed point of ϕ∗ and has a modification that is F0
−∞-

measurable, Lemma 2.39 gives that Qρ is ergodic with respect to the Markov kernel
(ϕtρ̃)ρ̃∈M for every t ∈ T+ ∖ {0}. Now fix a separable metrisable topology T on X
generating Σ. For each t ∈ T+, ϕtρ is the law of the random variable ω ↦ ϕ(t, θ−tω)∗ρ; so
then, for any unbounded increasing sequence (tn)n∈N in T+, since (ϕ(tn, θ−tnω)∗ρ)n∈N, ω∈Ω
converges almost surely to (µω)ω∈Ω in NT , Lemma A.20 gives that ϕtnρ converges to Qρ

in NNT . Fixing any r ∈ N, we have that (ϕ(t, θ−tω)∗ρ)⊗r = ϕ×r(t, θ−tω)∗(ρ⊗r) for all
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t and ω; and so, for any unbounded increasing (tn)n∈N in T+, Lemma A.21 gives that
(ϕ×r(tn, θ−tnω)∗(ρ⊗r))n∈N, ω∈Ω converges almost surely to (µ⊗rω )ω∈Ω in NT ⊗r , and therefore

ϕtn∗(r) (ρ⊗r) = Eω(ϕ×r(tn, θ−tnω)∗(ρ⊗r))
n→∞→ Eω(µ⊗rω ) (by Lemma 3.26)

= Er(Q).

Now if ρ is ergodic with respect to the Markov transition probabilities (ϕtx)x∈X, t∈T+ , then
(µω) is ϕ-ergodic (by Theorem 3.49), and so by Lemma 3.43, there exists n ∈ N ∪ {∞}
such that µω ∈ Kn for P-almost all ω ∈ Ω, and therefore Qρ(Kn) = 1.

Theorem 3.13 then follows from Lemma 3.45 and Theorem 3.51.

Remark 3.52. For any probability measure ρ that is ergodic with respect to the Markov
transition probabilities (ϕtx)x∈X, t∈T+ , ϕ is statistically synchronising with respect to ρ if and
only if the unique (up to equivalence) F0

−∞-measurable ϕ-invariant random probability
measure (µω) satisfying Eωµω = ρ is P-almost everywhere a Dirac mass. In other words, ϕ
is statistically synchronising if and only if there exists an F0

−∞-measurable random fixed
point q ∶Ω→X such that q∗P = ρ.

We now prove Theorem 3.18.

Proof of Theorem 3.18. (A) Let us work with the metric d(x, y) = arc tan ∣x−y∣. Suppose
ρ is (ϕtx)-ergodic. On the basis of Theorem 3.13 and Remark 3.52, let q ∶Ω → X be
an F0

−∞-measurable random fixed point of ϕ such that q∗P = ρ. We will show that
q is crudely pullback-attracting over Xρ. Fix any unbounded countable S ⊂ T+. By
Theorem 3.49, for P-almost every ω ∈ Ω, ϕ(t, θ−tω)∗ρ converges weakly to δq(ω) as t
tends to ∞ in S; so fix any sample point ω for which this is the case. Fix x ∈ Xρ and
ε > 0, and let V ∶= Bε(q(ω)). Obviously ϕ(t, θ−tω)∗ρ(V ) → 1 as t tends to ∞ in S. Let
A− ∶= {y ∈ Xρ ∶ y ≤ x} and A+ ∶= {y ∈ Xρ ∶ y ≥ x}. It is clear that ρ(A−) and ρ(A+) are
both positive. Let γ ∶=min(ρ(A−), ρ(A+)). Let T ∈ S be such that for all t ∈ S with t ≥ T ,
ϕ(t, θ−tω)∗ρ(V ) > 1 − γ. Fix any t ∈ S with t ≥ T . Since ρ(ϕ(t, θ−tω)−1(V )) > 1 − γ, we
have that ϕ(t, θ−tω)−1(V ) intersects both A− and A+; but since ϕ is monotone, we also
have that ϕ(t, θ−tω)−1(V ) is convex. Therefore, x ∈ ϕ(t, θ−tω)−1(V ).

(B) Suppose ρ is (ϕtx)-ergodic. Let ρ̃ be a probability measure on X with ρ̃(Xρ) = 1. For
any bounded continuous g ∶X → R, the dominated convergence theorem gives that

∫
X
g(y)ϕn∗ρ̃(dy) = ∫

Ω×X
g(ϕ(n, θ−nω)x)P⊗ ρ̃(d(ω,x))

→ ∫
Ω×X

g(q(ω))P⊗ ρ̃(d(ω,x)) as n→∞ in N

= ∫
Ω
g(q(ω))P(dω)

= ∫
X
g(y)ρ(dy).

Thus ϕn∗ρ̃ converges weakly to ρ as n → ∞ in N. Hence in particular, if ρ̃ is (ϕtx)-
stationary then ρ̃ = ρ.
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(C) Take any two distinct (ϕtx)-ergodic probability measures ρ1 and ρ2. Since Xρ1 is
crudely invariant (by Lemma 2.52), ρ2(Xρ1) must be equal to either 0 or 1; but ρ2(Xρ1)
cannot be equal to 1, otherwise (by part (B)) we would have that ρ2 = ρ1. So ρ2(Xρ1) = 0;
and likewise, ρ1(Xρ2) = 0. Hence, by Lemma 2.51, we have that either Xρ1 and Xρ2 are
disjoint or Xρ1 = Xρ2 . But it is clear that Xρ1 ≠ Xρ2 , since ρ1(Xρ1) = 1 but ρ1(Xρ2) = 0.
So Xρ1 and Xρ2 are disjoint.

(D) It is clear that (i)⇒(ii) and (i)⇒(iii). We next show that (ii) and (iii) together imply
(iv). Suppose (iv) does not hold, and let A be a non-empty convex crudely invariant
proper subset of Xρ. Let A− be the smallest downward-inclusive set containing A, and
let A+ be the smallest upward-inclusive set containing A. Since ϕ is monotone and
A is crudely invariant, it clearly follows that A− and A+ are crudely invariant. Since
A = A− ∩ A+ and A is a proper subset of Xρ, we have that at least one of the sets A−

and A+ does not contain the whole of Xρ. First suppose that Xρ /⊂ A−. Then Xρ ∩ A−
is a convex proper subset of Xρ, and so ρ(A−) = ρ(Xρ ∩A−) < 1. But also, Xρ ∖A− is a
convex proper subset of Xρ, and so ρ(Xρ ∖A−) < 1, and so ρ(A−) > 0. So then, A− is a
downward-inclusive crudely invariant set that is neither ρ-null nor ρ-full, and so (ii) does
not hold. Likewise, if we suppose that Xρ /⊂ A+, then A+ is an upward-inclusive crudely
invariant set that is neither ρ-null nor ρ-full, and so (iii) does not hold.

It remains to show that (iv)⇒(i). Suppose that (i) does not hold, i.e. that ρ is not
ergodic. Let ρ0 be a (ϕtx)-ergodic probability measure such that ρ0(Xρ) = 1. Obviously
Xρ0 ⊂ Xρ. By part (B), it follows that Xρ0 is a proper subset of Xρ (since ρ0 is the only
(ϕtx)-stationary probability measure assigning full probability to Xρ0). Hence (iv) does
not hold.

(E) Suppose there is a deterministic fixed point p in Xρ. If we assume that p is not
the maximum of Xρ, we have that the set X ∩ [−∞, p] is a measurable invariant set that
is neither ρ-null nor ρ-full, and therefore ρ is not (ϕtx)-ergodic. Likewise, if we assume
that p is not the minimum of Xρ, we have that the set X∩[p,∞] is a measurable invariant
set that is neither ρ-null nor ρ-full, and therefore ρ is not (ϕtx)-ergodic. Since ρ is not
a Dirac mass, p cannot be both the maximum and the minimum of Xρ; so we conclude
that ρ is not (ϕtx)-ergodic.

Conversely, suppose ρ is not (ϕtx)-ergodic. Let ρ0 be a (ϕtx)-ergodic probability measure
such that ρ0(Xρ) = 1. As in part (D), we have that Xρ0 is a proper subset of Xρ. Let A
be a connected component of Xρ ∖Xρ0 . First suppose that the elements of A are greater
than the elements of Xρ0 , and let p = supXρ0 = infA. Since Xρ0 is crudely invariant and
ϕ is continuous in space, it is clear that p is crudely subinvariant; and therefore, since ϕ
has right-continuous trajectories, p is subinvariant (by Lemma 2.46). Now for each n ∈ N,
it is clear that ρ([p, p+ 1

n]∩A) > 0 ; so let ρn be a (ϕtx)-ergodic probability measure such
that ρn([p, p + 1

n] ∩A) > 0, and let pn ∶= infXρn . By part (C), Xρn and Xρ0 are disjoint,
and therefore pn ≥ p. Hence in particular, pn ∈ [p, p + 1

n]. For the same reason that p is

subinvariant, we have that pn is superinvariant for each n. Let Ω̃ be a P-full set such that
for all ω ∈ Ω̃, n ∈ N and t ∈ T+, ϕ(t, ω)pn ≥ pn. Since ϕ is continuous in space and pn → p
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as n→∞, we have that for all ω ∈ Ω̃ and t ∈ T+, ϕ(t, ω)p ≥ p. So p is superinvariant. But
p is also subinvariant. Hence p is a deterministic fixed point. Now if we suppose instead
that the elements of A are less than the elements of Xρ0 , then we can similarly show that
infXρ0 is a deterministic fixed point.

If ρ is (ϕtx)-ergodic, Lemma 3.15 gives that the random fixed point q in part (A) is
pullback-attracting over Xρ.
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Chapter 4. Sample-Pathwise Concepts of
Synchronisation and Stability

In Chapter 3, we considered a notion of synchronising behaviour which, philosophically,
is based around convergence in probability. (See, in particular, Corollary 3.9.) We will
now consider notions of synchronisation that are based around the notion of mutual
convergence of distinct trajectories under individual realisations ω of the noise. Unlike
in Chapter 3, the notions that we are consider are not measurable invariants, and in
many cases, are not even topological invariants, but depend on a given metric (or at
least, a given uniform structure). Nonetheless, in the case that the phase space X is
equipped with a compact metrisable topology, all the notions of synchronisation that we
shall consider are topological invariants, due to the following lemma:

Lemma 4.1. Fix a compact metrisable topology on X, and suppose we have a T+-indexed
family (At)t∈T+ of sets At ⊂ X. Suppose there exists a metrisation of the topology on X
in which diam(At)→ 0 as t→∞. Then it holds that in every metrisation of the topology
on X, diam(At)→ 0 as t→∞.

Proof. Fix any metrisation d of the topology on X; we will show that the following
statements are equivalent:

(i) diam(At)→ 0 as t→∞;

(ii) for every neighbourhood U of ∆X in X ×X, there exists T ∈ T+ such that for all
t ≥ T , At ×At ⊂ U .

(Since (ii) makes no reference to the metric d, this will complete the proof.) Let us equip
X×X with the metric d1( (x1, x2) , (y1, y2) ) = d(x1, y1) + d(x2, y2). Since ∆X is compact,
every neighbourhood U of ∆X contains some ε-neighbourhood of ∆X . But it is easy to
check that for every ε > 0, the ε-neighbourhood Uε of ∆X is precisely

Uε = {(x1, x2) ∈X ×X ∶ d(x1, x2) < ε}

and therefore, for any A ⊂X,

diam(A) < ε ⇐⇒ A ×A ⊂ Uε.

Hence it is clear that (i) and (ii) are equivalent.

Standing Assumption. Throughout the rest of Chapter 4, we fix a separable metric d
on X whose Borel σ-algebra coincides with Σ, and we assume that ϕ is a right-continuous
RDS on the metric space (X,d).

Since we work with a fixed metric d, we will usually write B(X) instead of Σ; nonetheless,
we are still assuming that B(X) is standard (which is equivalent to saying that X is a
Borel-measurable subset of the d-completion of X). We still writeM for the set of Borel
probability measures on X. Recall that ϕ is called an open-mapping RDS if ϕ(t, ω)U is
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open for every t, ω and open U ⊂X.

Before discussing synchronising behaviour, it will be useful first to briefly discuss “random
equivalence relations”. (Specifically, this will become relevant when considering pairs of
initial conditions whose subsequent trajectories synchronise.)

4.1 Borel and random equivalence relations

A Borel equivalence relation on (X,B(X)) is an equivalence relation ∼ on X such that the
set {(x, y) ∈X ×X ∶ x ∼ y} is B(X ×X)-measurable. Note that if ∼ is a Borel equivalence
relation then every equivalence class of ∼ is B(X)-measurable.

Lemma 4.2. Let ∼ be a Borel equivalence relation on (X,B(X)). Given any probability
measure ρ on X, the following statements are equivalent:

(i) one of the equivalence classes of ∼ is a ρ-full measure set;

(ii) ρ⊗ ρ( (x, y) ∶ x ∼ y ) = 1.

Proof. Suppose (i) holds, and let X̃ be a ρ-full equivalence class of ∼. Then

ρ⊗ ρ( (x, y) ∶ x ∼ y ) = ∫
X
ρ(y ∶ x ∼ y)ρ(dx)

= ∫
X̃
ρ(y ∶ x ∼ y)ρ(dx)

= ∫
X̃
ρ(X̃)ρ(dx)

= 1.

Now suppose (i) does not hold. Then for every x ∈X, ρ(y ∶ x ∼ y) < 1 and therefore

ρ⊗ ρ( (x, y) ∶ x ∼ y ) = ∫
X
ρ(y ∶ x ∼ y)ρ(dx) < 1.

Now we define a random equivalence relation on (X,B(X)) to be an Ω-indexed family
(∼ω)ω∈Ω of equivalence relations ∼ω on X such that the set {(ω,x, y) ∈ Ω×X ×X ∶ x ∼ω y}
is (F ⊗ B(X ×X))-measurable.

Note that in this case, ∼ω is a Borel equivalence relation for every ω ∈ Ω.

Given a sub-σ-algebra G of F , we will say that a random equivalence relation (∼ω) is
G-measurable if the set {(ω,x, y) ∈ Ω ×X ×X ∶ x ∼ω y} is (G ⊗ B(X ×X))-measurable.

Definition 4.3. Given a random equivalence relation (∼ω) on (X,B(X)), we define the
P-almost-sure projection of (∼ω) to be the equivalence relation ∼ on X given by

x ∼ y ⇐⇒ P(ω ∶ x ∼ω y) = 1.

Note that this is indeed an equivalence relation on X, and moreover, that it is a Borel
equivalence relation on (X,B(X)).
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Lemma 4.4. Let (∼ω) be a random equivalence relation on (X,B(X)), with ∼ being the
P-almost-sure projection of (∼ω). Given any probability measure ρ on X, the following
statements are equivalent:

(i) one of the equivalence classes of ∼ is a ρ-full measure set;

(ii) for P-almost every ω ∈ Ω, one of the equivalence classes of ∼ω is a ρ-full set.

Proof. By Lemma 4.2, (i) is equivalent to saying that ρ⊗ ρ( (x, y) ∶ x ∼ y ) = 1, i.e. that
(ρ⊗ρ)-every (x, y) ∈X×X has the property that for P-almost all ω ∈ Ω, x ∼ω y; by Fubini’s
theorem, this is equivalent to saying that for P-almost all ω ∈ Ω, ρ⊗ρ( (x, y) ∶ x ∼ω y ) = 1,
which (by Lemma 4.2 again) is equivalent to (ii).

4.2 Synchronisation

Given any sample point ω ∈ Ω and any points x, y ∈X, we will say that x and y synchronise
under ω, and write x ∼ω y , if d(ϕ(t, ω)x,ϕ(t, ω)y)→ 0 as t→∞.

It is clear that for each ω ∈ Ω, ∼ω is an equivalence relation on X. By Lemma 4.1
(applied to the set At ∶= ϕ(t, ω){x, y}), if X is compact then for every ω the equivalence
relation ∼ω is preserved under any topology-preserving change of metric.

Lemma 4.5. (∼ω)ω∈Ω is an F∞0 -measurable random equivalence relation on (X,B(X)).

Proof. Let D be a countable dense subset of T+. Since ϕ has right-continuous trajectories,
it is clear that x ∼ω y if and only if d(ϕ(t, ω)x,ϕ(t, ω)y)→ 0 as t tends to ∞ in D; hence
we can write

R =
∞
⋂
i=1

∞
⋃
j=1
⋂
t∈D
t≥j

{(ω,x, y) ∶ d(ϕ(t, ω)x,ϕ(t, ω)y) ≤ 1
i }.

Hence the set {(ω,x, y) ∶ x ∼ω y} is (F∞0 ⊗ B(X ×X))-measurable.

Now let ∼ be the P-almost-sure projection of (∼ω), that is

x ∼ y ⇐⇒ P(ω ∶ d(ϕ(t, ω)x,ϕ(t, ω)y)→ 0 as t→∞ ) = 1.

Given x, y ∈X, we will say that x and y synchronise almost surely if x ∼ y.

Definition 4.6. We say that ϕ is synchronising if the whole of X is one equivalence
class of ∼. Given a probability measure ρ on X, we will say that ϕ is ρ-almost everywhere
synchronising if ∼ admits a ρ-full measure equivalence class.

For example: It is easy to show that the RDS in Example 2.34 is synchronising, and that
the RDS is Example 2.37 is synchronising for α < 0. The RDS generated by (3.2) in
Example 3.21 is also synchronising, as will be explained in Example 6.7.

Lemma 4.7. Let ρ be an ergodic probability measure of the Markov transition probabilities
(ϕtx)x∈X, t∈T+ such that ϕ is ρ-almost everywhere synchronising. Then ϕ is statistically
synchronising with respect to ρ.
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4.2 Synchronisation

Proof. Since ϕ is ρ-almost everywhere synchronising, the stochastic process (rt)t∈T+ in
Corollary 3.10 converges almost surely to 0. Hence (rt) converges in probability to 0, and
so ϕ is statistically synchronising with respect to ρ.

The following is adapted from [New15b, Proposition 2.1.4].

Lemma 4.8. If ϕ is synchronising then there is at most one stationary probability
measure of the Markov transition probabilities (ϕtx)x∈X, t∈T+; and if such a stationary
probability measure ρ exists, we have that for every probability measure m on X, ϕt∗m→ ρ
weakly as t→∞.1

Proof. Suppose ϕ is synchronising, and suppose we have a stationary probability measure
ρ of (ϕtx). Fix an arbitrary point p ∈ X; we will show that ϕtp converges weakly to ρ as
t → ∞. Let g ∶ X → R be any bounded Lipschitz function. Since ϕ is synchronising, we
have that for (P⊗ρ)-almost all (ω,x) ∈ Ω×X, x ∼ω p and so g(ϕ(t, ω)x)−g(ϕ(t, ω)p)→ 0
as t→∞. Hence the dominated convergence theorem gives that

∫
Ω×X

g(ϕ(t, ω)x) (P⊗ ρ)(d(ω,x))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a○

−∫
Ω
g(ϕ(t, ω)p)P(dω)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b○

→ 0 as t→∞.

Observe, however, that

a○ = ∫
X
g(z)ρ(dz)

since P∣F∞0 ⊗ ρ is (Θt)-invariant, and that

b○ = ∫
X
g(z)ϕtp(dz).

Thus we have shown that ϕtp → ρ weakly as t → ∞ for every p ∈ X. It follows, by the
dominated convergence theorem, that ϕt∗m → ρ weakly as t → ∞ for every probability
measure m on X.

Recall that, given a probability measure ρ on X, a continuity set of ρ is a set A ⊂X with
the property that ρ(A○) = ρ(Ā) (i.e. ρ(∂A) = 0). (As in Appendix A, weak convergence
of probability measures can be characterised by convergence on measurable continuity
sets.) The following is a generalisation of [New15c, Theorem 4.5(II)].

Proposition 4.9. Let ρ be a probability measure on X that is ergodic with respect to
the Markov transition probabilities (ϕtx)x∈X, t∈T+, and let A ⊂ X be a continuity set of ρ.
Then P-almost every ω ∈ Ω has the property that for any equivalence class C of ∼ω with
ρ(C) > 0, for any x ∈ C,

1

n

n−1

∑
i=0

1A(ϕ(i, ω)x) → ρ̄(A) as n→∞ if T = Z,

1

T ∫
T

0
1A(ϕ(t, ω)x)dt → ρ̄(A) as T →∞ if T = R

(where ρ̄ denotes the completion of ρ).

1When a Feller-continuous family of Markov transition probabilities (µtx) on a separable metric space
X admits a probability measure ρ with the property that µt∗m→ ρ weakly as t→∞ for every probability
measure m on X, it is sometimes said that ρ is strongly mixing with respect to (µtx).
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4.2 Synchronisation

Two immediate corollaries are:

Corollary 4.10. Suppose that ϕ is synchronising, and that there exists a probability
measure ρ on X that is stationary under the Markov transition probabilities (ϕtx)x∈X, t∈T+.
Given any x ∈X and any continuity set A ⊂X of ρ, for P-almost all ω ∈ Ω we have

1

n

n−1

∑
i=0

1A(ϕ(i, ω)x) → ρ̄(A) as n→∞ if T = Z,

1

T ∫
T

0
1A(ϕ(t, ω)x)dt → ρ̄(A) as T →∞ if T = R.

Corollary 4.11. Let ρ1 and ρ2 be distinct ergodic probability measures of the Markov
transition probabilities (ϕtx)x∈X, t∈T+. Then P-almost every ω ∈ Ω has the property that for
any equivalence class C of ∼ω, if ρ1(C) > 0 then ρ2(C) = 0.

(Corollary 4.11 follows from Prpoosition 4.9 by considering a continuity set A ∈ B(X) of
ρ1 such that ρ2(A) ≠ ρ1(A).)

Proof of Proposition 4.9. For convenience, write λ for the counting measure on Z if T = Z,
or the Lebesgue measure on R if T = R; and for any B ⊂ R, we write TB ∶= T ∩B. Given
any S ⊂X and δ > 0, Bδ(S) denotes the δ-neighbourhood of S. Note that ρ̄(A) = ρ(Ā).

For each δ > 0, let
Dδ ∶= (Bδ(A) ∖ Ā ) ∪ (Bδ(X ∖A) ∩ Ā ) .

Note that the set Dδ decreases as δ decreases. Also note that for any x ∈ Dδ,
max(d(x,A), d(x,X ∖ A)) < δ; hence ⋂δ>0Dδ ⊂ ∂A. So then, since ρ(∂A) = 0, we
have that ρ(Dδ)→ 0 as δ → 0.

On the basis of Lemma 2.15, let Ω̃ ⊂ Ω be a P-full set with the property that for every
ω ∈ Ω̃, for ρ-almost all y ∈X the following two statements hold:

(i) 1
T ∫T[0,T )1Ā(ϕ(t, ω)y)λ(dt) → ρ̄(A) as T → ∞ ;

(ii) for each n ∈ N, 1
T ∫T[0,T )1D 1

n

(ϕ(t, ω)y)λ(dt) → ρ(D 1
n
) as T → ∞.

Fix any ω ∈ Ω̃ for which ∼ω admits an equivalence class C with ρ(C) > 0. Fix such an
equivalence class C, and fix any x ∈ C. Since ρ(C) > 0, we may fix a point y ∈ C such
that statements (i) and (ii) hold. Now we need to show that

1

T ∫T[0,T )
1A(ϕ(t, ω)x)λ(dt) → ρ̄(A) as T → ∞.

Fix ε > 0, and let N ∈ N be such that ρ(D 1
N
) < ε. Let T0 ∈ T+ be such that for all
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4.2 Synchronisation

t ∈ T[T0,∞), d(ϕ(t, ω)x,ϕ(t, ω)y) < 1
N . For each T > T0, we have that

∣ 1
T ∫T[T0,T )

1A(ϕ(t, ω)x)λ(dt) − ρ̄(A)∣

= ∣ 1
T ∫T[T0,T )

1Ā(ϕ(t, ω)y)λ(dt) − ρ̄(A) + 1

T ∫T[T0,T )

1A(ϕ(t, ω)x) − 1Ā(ϕ(t, ω)y)λ(dt)∣

≤ ∣ 1
T ∫T[T0,T )

1Ā(ϕ(t, ω)y)λ(dt) − ρ̄(A)∣ + 1

T ∫T[T0,T )

∣1A(ϕ(t, ω)x) − 1Ā(ϕ(t, ω)y)∣λ(dt)

≤ ∣ 1
T ∫T[T0,T )

1Ā(ϕ(t, ω)y)λ(dt) − ρ̄(A)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→0 as T→∞

+ 1

T ∫T[T0,T )

1D 1
N

(ϕ(t, ω)y)λ(dt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→ρ(D 1
N
) as T→∞

.

So, since ρ(D 1
N
) < ε, we have that for all T sufficiently large,

∣ 1
T ∫T[0,T )

1A(ϕ(t, ω)x)λ(dt) − ρ̄(A)∣ < ε

as required.

The following is a slight generalisation of part (b) of the proof of [LeJ87, Proposition 2].

Lemma 4.12. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+, and suppose there exists a P-positive measure set E ∈ F such
that for each ω ∈ E, ∼ω admits an equivalence class of strictly positive measure according
to ρ. Then the ρ-clustering number of ϕ is finite.

Proof. Let R ∶= {(ω,x, y) ∶ x ∼ω y}, and let δ ∶= P⊗ ρ⊗ ρ(R). We have

δ = ∫
Ω
∫
X
ρ(y ∈X ∶ y ∼ω x)ρ(dx)P(dω)

≥ ∫
E
∫
X
ρ(y ∈X ∶ y ∼ω x)ρ(dx)P(dω)

> 0.

Fix any ε > 0, and let Gε ∶= {(x, y) ∶ d(x, y) ≤ ε}. For each (ω,x, y) ∈ R we have
that 1Gε(ϕ(t, ω)x,ϕ(t, ω)y)→ 1 as t →∞, and therefore (by the dominated convergence
theorem),

lim
t→∞ ∫R 1Gε(ϕ(t, ω)x,ϕ(t, ω)y)P⊗ ρ⊗ ρ(d(ω,x, y)) = δ.

Hence in particular,

lim sup
t→∞

ϕt∗
(2)(ρ⊗ ρ)(Gε) = lim sup

t→∞
∫

Ω×X×X
1Gε(ϕ×2(t, ω)(x, y))P⊗ ρ⊗ ρ(d(ω,x, y)) ≥ δ,

and so, letting Qρ be the statistical equilibrium associated to ρ, E2(Qρ)(Gε) ≥ δ. Since
ε was arbitrary, it follows that E2(Qρ)(∆X) ≥ δ. So E2(Qρ)(∆X) > 0, and therefore the
ρ-clustering number of ϕ is finite.
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4.3 Concepts of local stability

Remark 4.13. One can also obtain Lemma 4.12 as a fairly direct consequence of
Corollary 3.9(A).

Lemma 4.14. Suppose that ϕ is invertible, and that ϕ is synchronising. Let ρ be a
probability measure that is ergodic with respect to either the Markov transition probabilities
(ϕtx)x∈X, t∈T+ or the Markov transition probabilities (ϕ̄tx)x∈X, t∈T+. Then ρ is either atomless
or a Dirac mass at a deterministic fixed point.

Proof. If ϕ is synchronising then any finite invariant subset of X must be a singleton.
Hence the result follows immediately from Lemma 2.58.

4.3 Concepts of local stability

Overview

Suppose we have a physical process whose time-evolution is “theoretically” governed
by some mathematical model. In practice, the process will always be subject to small
perturbations from various sources not accounted for in the model; and moreover, if the
model includes an assumption on what the initial state of the process is, in practice the
initial state will most likely not be exactly as is assumed in the model. Heuristically,
we regard the process as being “stable” (with respect to the model) if, in spite of these
practical considerations, the time-evolution of the physical process will still not “deviate
too seriously” away from the time-evolution predicted by the model.

In the context of synchronisation of different processes, stability is a highly relevant
issue. If, under some (deterministic or stochastic) mathematical model, two physical
processes are predicted to synchronise with each other, this synchronisation will never
actually be achieved in practice if the processes are easily “knocked off course” by small
unaccounted-for perturbations.

Perhaps the simplest approach to examining “stability” is the following: assume that
the model for the evolution of the process really is accurate, but imagine that at some
time, we perturb the process within an instant from its current state x to a new state
x+δ that is close to x; what effect will this perturbation have on the subsequent trajectory?

From this point of view, we now mention two basic notions of stability for processes
governed by deterministic models:

• Lyapunov stability. Heuristically, this is the notion that if a process is subjected
to a small perturbation at some given moment in time, provided we know that the
perturbation is small enough, the subsequent evolution of the process will never
deviate too far away from how the process would have evolved if the perturbation
had not occurred.

• Asymptotic stability. In the sense that we shall use the term,2 heuristically,
this is the notion that if a process is subjected to a small perturbation at some

2Asymptotic stability is often defined as the combination of both Lyapunov stability and local
pointwise attractivity; the definition that we shall use (which is similar in principle to that used in
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4.3 Concepts of local stability

given moment in time, there is a definite time-scale within which—provided the
perturbation was sufficiently small—the subsequent evolution of the process will
return to being “practically the same” as if the perturbation had not occurred.

To illustrate: Imagine we have a fixed metal dome that is modelled as rigid and
frictionless, and we have a “point particle” placed on the surface of this dome. Imagine
that the particle is “intended” to start with zero velocity at the very top of the dome,
and is modelled as being subject only to gravity and the contact force from the dome.
Provided the curvature at the top of the dome is finite, the classical laws of mechanics
dictate that the particle will forever remain at the top of the dome. However, if the initial
position of the particle is not quite perfectly at the top of the dome, then the particle
will slide down the dome, and will eventually be in a completely different location from
if it had started perfectly at the top of the dome. So a stationary particle at the top of
the dome is not Lyapunov stable.

By contrast, imagine we have a fixed upright metal cup that is modelled as rigid and
frictionless, and we have a “point particle” placed on the inside of this cup. Imagine that
the particle is “intended” to start with zero velocity at the very bottom of the cup, and
is modelled as being subject only to gravity and the contact force from the cup. Once
again, the classical laws of mechanics dictate that the particle will forever remain at the
bottom of the cup. Now if the initial position of the particle is not quite perfectly at the
bottom of the cup but is very close, and the initial speed of the particle is not exactly zero
but is very small, then the particle will still forever move around very close to the bottom
of the cup. Thus, a stationary particle at the bottom of the cup is Lyapunov stable; but
since there are no dissipative forces present, a stationary particle at the bottom of the
cup is not asymptotically stable. However, if we now imagine that the cup is filled with
air and our model incorporates air resistance, then any particle which does not escape
the cup will eventually settle towards being stationary at the bottom of the cup. Hence
a stationary particle at the bottom of the cup is now asymptotically stable.

We will soon show that, provided basic continuity requirements are satisfied, asymptotic
stability always implies Lyapunov stability.

So far, our description of stability has been within a deterministic setting, and we will
soon go on to formalise the above notions within the deterministic setting. In the case
of a noise-influenced process, each possible realisation ω of the noise gives rise to a law
specifying the time-evolution of the process;3 and hence, for each ω, we can consider the
notions of Lyapunov and asymptotic stability.

[FGS14]) is slightly different from this, but “very nearly coincides” with this; see the Appendix of
[New15b] for details.

3In reality, many stochastic models for the evolution of a system do not actually assign to each noise-
realisation ω a law for the evolution of a system; instead, they provide an equivalence class of such
assignments, where two such assignments are “equivalent” if they agree on almost every noise-realisation
ω. (For example, this is the case for a typical multiplicative-noise SDE with more than one diffusion
term.) In such a situation, every representative of the equivalence class serves as an equally valid model;
so one can just fix an arbitrary representative of the equivalence class.
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We now formalise the notions of Lyapunov and asymptotic stability, and show that (under
mild conditions) asymptotic stability implies Lyapunov stability. This is an important
fact to prove, since, when we go on to consider stability in random dynamical systems,
we will only work with asymptotic stability.

Stability in non-autonomous dynamical systems

(In the following discussion of stability in non-autonomous dynamical systems, the
separability of the metric d and the standardness of B(X) is not relevant.)

A non-autonomous dynamical system on the metric space (X,d) is a family (f s+ts )s∈T, t∈T+
of continuous functions f s+ts ∶X →X such that

(i) f ss = idX for all s ∈ T;

(ii) f t2t0 = f
t2
t1
○ f t1t0 for all t0 ≤ t1 ≤ t2 in T.

Definition 4.15. We will say that a non-autonomous dynamical system (f s+ts ) is right-
continuous if for any decreasing4 sequence (tn) in T+ converging to a value t and any
sequence (xn) in X converging to a point x, f s+tns (xn)→ f s+ts (x) as n→∞ for all s ∈ T+.

Note that if ϕ is a right-continuous RDS, then (ϕ(t, θsω))s∈T, t∈T+ is a right-continuous
non-autonomous dynamical system for every ω ∈ Ω.

Definition 4.16. We will say that a non-autonomous dynamical system (f s+ts ) is càdlàg
if (f s+ts ) is right-continuous and for each s ∈ T and t ∈ T+ ∖ {0} there exists a function5

gs+ts ∶X →X such that for any strictly increasing sequence (tn) in T+ converging to t and
any sequence (xn) in X converging to a point x, f s+tns (xn)→ gs+ts (x) as n→∞.

Note that if ϕ is a càdlàg RDS, then (ϕ(t, θsω))s∈T, t∈T+ is a càdlàg non-autonomous
dynamical system for every ω ∈ Ω.

Now recall that a family (fα)α∈I of functions fα ∶X → X is said to be equicontinuous
at a point x ∈ X if for every ε > 0 there exists δ > 0 such that for all α ∈ I,
fα(Bδ(x)) ⊂ Bε(fα(x)).

Definition 4.17. We will say that a non-autonomous dynamical system (f s+ts )s∈T, t∈T+
is finite-time stable if for every s ∈ T and T ∈ T+, the family of functions (f s+ts )0≤t≤T is
equicontinuous at every point in X.

The following is [New15b, Lemma A1].

Lemma 4.18. Every càdlàg non-autonomous dynamical system is finite-time stable.

Proof. Let (f s+ts )s∈T, t∈T+ be a càdlàg non-autonomous dynamical system, and suppose for
a contradiction that we have s ∈ T, T ∈ T+ and x ∈ X such that the family (f s+ts )0≤t≤T
is not equicontinuous at x. Then there exist ε > 0, a sequence (xn) in X converging
to x, and a sequence (tn) in T+ ∩ [0, T ], such that d(f s+tns (xn), f s+tns (x)) > ε for all

4Here, a “decreasing sequence” need not be strictly decreasing.
5For our purposes here, we will not need the function gs+ts to be continuous.
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n. Let (ni)i∈N be an unbounded increasing sequence in N such that either (tni)i∈N is
a decreasing sequence (with t∗ ∶= infi tni) or (tni)i∈N is a strictly increasing sequence

(with t∗ ∶= supi tni). If (tni) is decreasing then f
s+tni
s (xni) → f s+t

∗

s (x) and f
s+tni
s (x) →

f s+t
∗

s (x) as i → ∞, so d(f s+tnis (xni), f
s+tni
s (x)) → 0 as i → ∞, contradicting the fact that

d(f s+tns (xn), f s+tns (x)) > ε for all n. If (tni) is strictly increasing then f
s+tni
s (xni)→ gs+t

∗

s (x)
and f

s+tni
s (x) → gs+t

∗

s (x) as i →∞, so once again, d(f s+tnis (xni), f
s+tni
s (x)) → 0 as i →∞,

contradicting the fact that d(f s+tns (xn), f s+tns (x)) > ε for all n. So in either case, we have
a contradiction.

Definition 4.19. Given a point x ∈ X and a value s0 ∈ T, we will say that a non-
autonomous dynamical system (f s+ts )s∈T, t∈T+ is Lyapunov stable at x at time s0 if the
family of functions (f s0+ts0 )t∈T+ is equicontinuous at x.

Definition 4.20. Given a point x ∈ X and a value s0 ∈ T, we will say that a non-
autonomous dynamical system (f s+ts )s∈T, t∈T+ is asymptotically stable at x at time s0 if
there exists a neighbourhood U of x such that diam(f s0+ts0 (U))→ 0 as t→∞.

Example 4.21. Let X = R and let T = R. (A) Suppose f s+ts (x) = xe−t. Then for every
x ∈ R and s0 ∈ R, (f s+ts ) is asymptotically stable at x at time s0. (B) Suppose f s+ts (x) = x.
Then for every x ∈ R and s0 ∈ R, (f s+ts ) is Lyapunov stable at x at time s0, but not
asymptotically stable at x at time s0. (C) Suppose f s+ts (x) = xesgn(x)t. Then for every
x < 0 and s0 ∈ R, (f s+ts ) is asymptotically stable at x at time s0; but for every x ≥ 0 and
s0 ∈ R, (f s+ts ) is not Lyapunov stable at x at time s0.

The following is essentially [New15b, Theorem A11(II)].

Lemma 4.22. Let (f s+ts )s∈T, t∈T+ be a non-autonomous dynamical system that is finite-
time stable. For any x ∈ X and s0 ∈ T, if (f s+ts )s∈T, t∈T+ is asymptotically stable at x at
time s0, then (f s+ts )s∈T, t∈T+ is Lyapunov stable at x at time s0.

Proof. Let x ∈X and s0 ∈ T be such that (f s+ts )s∈T, t∈T+ is asymptotically stable at x at time
s0, and fix ε > 0. Let r > 0 be such that diam(f s0+ts0 (Br(x))) → 0 as t → ∞. Let T ∈ T+
be such that for all t > T , f s0+ts0 (Br(x)) ⊂ Bε(f s0+ts0 (x)). On the basis of the fact that
(f s+ts )s∈T, t∈T+ is finite-time stable, let r̃ > 0 be such that for all 0 ≤ t ≤ T , f s0+ts0 (Br̃(x)) ⊂
Bε(f s0+ts0 (x)). Then setting δ ∶= min(r, r̃), we have that f s0+ts0 (Bδ(x)) ⊂ Bε(f s0+ts0 (x)) for
all t ∈ T+. So we are done.

4.4 Asymptotic stability in RDS

(Most of the content of this section is taken from Section 2.2 of [New15b].)

Typically, local stability of trajectories of RDS is investigated by considering Lyapunov
exponents. Specifically, given a differentiable RDS6 on a Riemannian manifold and an
ergodic probability measure ρ for the associated Markov transition probabilities, provided
the partial derivatives of the RDS are “reasonably well controlled”, there exists a value

6This means that the RDS is differentiable in space, with the derivatives depending continuously (or
right-continuously) on time.
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λ ∈ [−∞,∞) (called the maximal Lyapunov exponent) which, loosely speaking, is a
measure of infinitesimal-scale repulsivity common to the trajectories of ρ-almost all initial
conditions almost surely. If λ = 0, one cannot normally make any conclusions about
either Lyapunov or asymptotic stability. However, if λ < 0 then one can usually conclude
that (at any one given time) the trajectories of ρ-almost all initial conditions are almost
surely asymptotically stable. (See [New15b, Remark 2.2.12] and the references mentioned
therein for further details.)

Naturally then, when considering stability in RDS, we will specifically consider asymptotic
stability; for càdlàg RDS, this automatically implies Lyapunov stability (by Lemmas 4.22
and 4.18).

Definition 4.23. Given a sample point ω ∈ Ω and a set A ⊂ X, we will say that A
contracts under ω if diam(ϕ(t, ω)A)→ 0 as t→∞.

(By Lemma 4.1, if X is compact then this notion is not specific to our choice d of
metrisation of the topology of X.)

Note that for any sample point ω, if A1,A2 ⊂ X are sets which contract under ω and
A1 ∩ A2 ≠ ∅, then A1 ∪ A2 contracts under ω. (More generally, if A1,A2 ⊂ X are sets
which contract under ω, and A1 and A2 belong to the same equivalence class of the
synchronisation equivalence relation ∼ω, then A1 ∪A2 contracts under ω.)

Definition 4.24. Given a sample point ω ∈ Ω and a point x ∈ X, we will say that x
is asymptotically stable under ω, or that the pair (ω,x) is asymptotically stable, if there
exists a neighbourhood U of x such that U contracts under ω.

In other words, x is asymptotically stable under ω if and only if the non-autonomous
dynamical system (ϕ(t, θsω))s∈T, t∈T+ is asymptotically stable at x at time 0. More
generally: given any r ∈ T, the statement that the non-autonomous dynamical system
(ϕ(t, θsω))s∈T, t∈T+ is asymptotically stable at x at time r is precisely the statement that
x is asymptotically stable under θrω.

Now let O ⊂ Ω × X denote the set of all asymptotically stable pairs (ω,x). For each
x ∈X, let Ox ∶= {ω ∈ Ω ∶ (ω,x) ∈ O}, that is Ox is the set of sample points ω under which
x is asymptotically stable.

For any A ⊂ X, let EA ⊂ Ω denote the set of sample points under which A contracts.
Obviously, for any sets A1 ⊂ A2 ⊂X, we have that EA2 ⊂ EA1 . Note that for any x ∈X,

Ox =
∞
⋃
n=1

EB 1
n
(x).

Lemma 4.25. (A) For every open U ⊂ X, EU ∈ F∞0 . (B) O ∈ F∞0 ⊗ B(X). (C) For all
t ∈ T+, Θ−t(O) ⊂ O. If ϕ is an open-mapping RDS, then for all t ∈ T+, Θ−t(O) = O.

Proof. (A) Fix a non-empty open set U ⊂ X. Let S ⊂ U be a countable set that is
dense in U . Then (by the spatial continuity of ϕ) EU is precisely the set of sample
points ω for which supx,y∈S d(ϕ(t, ω)x,ϕ(t, ω)y) → 0 as t → ∞. But now letting D
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4.4 Asymptotic stability in RDS

be a countable dense subset of T+, since a pointwise supremum of right-continuous
functions is right lower semicontinuous, EU is precisely the set of sample points ω for
which supx,y∈S d(ϕ(t, ω)x,ϕ(t, ω)y) → 0 as t tends to ∞ in D; that is,

EU =
∞
⋂
i=1

∞
⋃
j=1

⋂
t∈D∩[j,∞)

⋂
x,y∈S
{ω ∶ d(ϕ(t, ω)x,ϕ(t, ω)y) < 1

i }.

So EU ∈ F∞0 .

(B) Now let U be a countable base for the topology on X. It is clear that, given any V ∈ U ,
every pair (ω,x) ∈ EV × V is asymptotically stable; conversely, given any asymptotically
stable pair (ω,x), there exists a neighbourhood V ∈ U of x such that V contracts under
ω, i.e. such that (ω,x) ∈ EV × V . Thus, we have that O = ⋃V ∈U EV × V , and therefore
O ∈ F∞0 ⊗ B(X).

(C) Given any t ∈ T+ and (ω,x) ∈ Θ−t(O), there exists a neighbourhood U of ϕ(t, ω)x
such that U contracts under θtω, and therefore ϕ(t, ω)−1(U) contracts under ω; since
ϕ(t, ω) is continuous, ϕ(t, ω)−1(U) is a neighbourhood of x, and so x is asymptotically
stable under ω. Hence Θ−t(O) ⊂ O. One can similarly show that if ϕ is an open-mapping
RDS then for t ∈ T+, Θt(O) ⊂ O (i.e. O ⊂ Θ−t(O)); and of course, combining this with
the fact that Θ−t(O) ⊂ O for all t ∈ T+ gives that Θ−t(O) = O for all t ∈ T+.

Now then, for each x ∈X, let

P0(x) ∶= P(Ox) = P(θ−s(Ox)) (for any s ∈ T)

and let Pr(x) = P(EBr(x)) for all r > 0. It is clear that Pr(x) increases as r decreases,
with P0(x) = supr>0Pr(x) = limr→0Pr(x).

Definition 4.26. We will say that a point x ∈X is almost surely stable if P0(x) = 1. We
will say that x is potentially stable if P0(x) > 0.

Definition 4.27. Let A ⊂ X be a set that is invariant under ϕ. We will say that ϕ
is everywhere stable in A if every x ∈ A is almost surely stable. We will say that ϕ is
uniformly stable in A if Pr(⋅)→ 1 uniformly on A as r → 0.

In the case that the invariant set A is compact, there is no difference between everywhere
stability and uniform stability:

Lemma 4.28. Let K ⊂ X be a compact set. If P0(x) = 1 for all x ∈ K, then Pr(⋅) → 1
uniformly on K as r → 0.

Proof. Fix ε > 0. Every x ∈K has a neighbourhood U such that P(EU) > 1 − ε. So let U
be a collection of open sets covering K, such that for each U ∈ U , P(EU) > 1 − ε. Since
K is compact, there exists δ > 0 such that for every x ∈ K there exists Ux ∈ U such that
Bδ(x) ⊂ Ux. So then, for all r ∈ (0, δ) and x ∈K, Pr(x) = P(EBδ(x)) > 1 − ε.

Lemma 4.29. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+. Then P⊗ ρ(O) is equal to either 0 or 1.
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4.4 Asymptotic stability in RDS

Proof. Follows immediately from Lemma 4.25 (parts (B) and (C)) and the fact that
P∣F∞0 ⊗ ρ is (Θt)-ergodic (Lemma 2.21).

Now let Ups ⊂ X be the set of potentially stable points, and let As be the set of almost
surely stable points.

Proposition 4.30. (A) Ups ⊂ X is open, and X ∖ Ups is invariant under ϕ. If ϕ is an
open-mapping RDS then As is very crudely invariant under ϕ (that is, ϕtx(As) = 1 for all
x ∈ As and t ∈ T+). (B) For any stationary probability measure ρ of the Markov transition
probabilities (ϕtx)x∈X, t∈T+, ρ(Ups ∖As) = 0.

Lemma 4.31. For any x ∈ X and t ∈ T+, P0(x) ≥ ∫X P0(y)ϕtx(dy). If ϕ is an open-
mapping RDS then the inequality becomes equality.

Proof of Lemma 4.31. Note that P0(y) = P(θ−t(Oy)) for all y and t. Now fix any x ∈ X
and t ∈ T+.

∫
X
P0(y)ϕtx(dy) = ∫

Ω
P0(ϕ(t, ω)x)P(dω)

= ∫
Ω
P(θ−t(Oϕ(t,ω)x))P(dω)

= ∫
Ω
∫

Ω
1O(θtω̃, ϕ(t, ω)x)P(dω̃)P(dω)

= ∫
Ω
1O(θtω,ϕ(t, ω)x)P(dω)

(using Lemma A.10, since the map (ω, y)↦ 1O(θtω, y)
is (F∞t ⊗ B(X))-measurable, due to Lemma 4.25(B))

= ∫
Ω
1Θ−t(O)(ω,x)P(dω)

≤ ∫
Ω
1O(ω,x)P(dω) (by Lemma 4.25(C))

= P0(x).

If ϕ is an open-mapping RDS then the “≤” in the penultimate line becomes “=”.

Proof of Proposition 4.30. (A) For any x ∈ Ups and r > 0 with Pr(x) > 0, we clearly have
that Br(x) ⊂ Ups . So Ups is open. Now fix any x ∈ X ∖ Ups and t ∈ T+. Since P0(x) = 0,
Lemma 4.31 gives that P0(y) = 0 for ϕtx-almost all y ∈X, i.e. ϕtx(X ∖Ups) = 1. So X ∖Ups
is very crudely invariant under ϕ; and therefore, since X ∖ Ups is closed, Lemma 2.75
gives that X ∖ Ups is invariant. Now suppose that ϕ is an open-mapping RDS, and fix
any x ∈ As and t ∈ T+. Since P0(x) = 1, Lemma 4.31 gives that P0(y) = 1 for ϕtx-almost
all y ∈X, i.e. ϕtx(As) = 1. So As is very crudely invariant.

(B) For any ergodic probability measure ρ′ of the Markov transition probabilities
(ϕtx)x∈X, t∈T+ , Lemma 4.29 gives that either P⊗ρ′(O) = 0 or P⊗ρ′(O) = 1. In the former case
we have that ρ′(Ups) = ρ′(As) = 0, and in the latter case we have that ρ′(Ups) = ρ′(As) = 1;
so in either case, ρ′(Ups ∖ As) = 0. Now for any stationary probability measure ρ of
the Markov transition probabilities (ϕtx)x∈X, t∈T+ , ρ admits an integral representation via
ergodic probability measures (as in Appendix C), and therefore ρ(Ups ∖As) = 0.
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4.4 Asymptotic stability in RDS

Definition 4.32. Let ρ be a stationary probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ . We will say that ϕ is stable with respect to ρ if P⊗ ρ(O) = 1.

Note that, by Fubini’s theorem, the following statements are equivalent:

(i) ϕ is stable with respect to ρ;

(ii) ρ-almost every x ∈X is almost surely stable;

(iii) P-almost every sample point ω ∈ Ω has the property that ρ-almost every x ∈ X
is asymptotically stable under ω.

For any s ∈ T, since θs is P-preserving, we have that these are equivalent to:

(iv) P-almost every sample point ω ∈ Ω has the property that ρ-almost every x ∈ X
is asymptotically stable under θsω.

The following proposition can be interpreted, crudely, as saying that if ϕ is stable with
respect to ρ, then ϕ is “ρ-almost uniformly stable in X”.

Proposition 4.33. Let ρ be a stationary probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ such that ϕ is stable with respect to ρ. For every ε > 0 there
exists δ > 0 such that for all t ∈ T+, the set

{ (ω,x) ∶ Bδ(ϕ(t, ω)x) contracts under θtω }

contains a set of measure greater than 1 − ε according to P⊗ ρ.

Proof. Let S ⊂X be a countable dense set, and let

Õ ∶=
∞
⋃
n=1
⋃
y∈S

EB 2
n
(y) ×B 1

n
(y).

Note that the collection U ∶= {B 1
n
(y) ∶ n ∈ N, y ∈ S} is a base for the topology on X, and

therefore (as in the proof of Lemma 4.25(B)),

O = ⋃
V ∈U

EV × V

=
∞
⋃
n=1
⋃
y∈S

EB 1
n
(y) ×B 1

n
(y)

⊂
∞
⋃
n=1
⋃
y∈S

EB 2
n
(y) ×B 1

n
(y) = Õ.

So P⊗ ρ(Õ) = 1.

Now fix ε > 0, let N ∈ N be such that

P⊗ ρ(
N

⋃
n=1
⋃
y∈S

EB 2
n
(y) ×B 1

n
(y)) > 1 − ε,
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and let δ = 1
N . Fix any t ∈ T+. Since P∣F∞0 ⊗ ρ is Θt-invariant, we have that

P⊗ ρ(
N

⋃
n=1
⋃
y∈S

Θ−t (EB 2
n
(y) ×B 1

n
(y)))

= P⊗ ρ(Θ−t (
N

⋃
n=1
⋃
y∈S

EB 2
n
(y) ×B 1

n
(y)))

> 1 − ε.

So it remains to show that for any n ∈ {1, . . . ,N} and y ∈ S, for any (ω,x) ∈
Θ−t (EB 2

n
(y) ×B 1

n
(y)), Bδ(ϕ(t, ω)x) contracts under θtω. Fix such n, y and (ω,x).

We know that d(y,ϕ(t, ω)x) < 1
n , and that B 2

n
(y) contracts under θtω. For any

z ∈ Bδ(ϕ(t, ω)x), we have that

d(y, z) ≤ d(y,ϕ(t, ω)x) + d(ϕ(t, ω)x, z) < 1
n + δ ≤ 2

n .

So Bδ(ϕ(t, ω)x) ⊂ B 2
n
(y), and therefore Bδ(ϕ(t, ω)x) contracts under θtω.

Now recall that two distinct ergodic probability measures are mutually singular. A further
statement can be made in the case that ϕ is stable with respect to one of the two measures.

Lemma 4.34. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ such that ϕ is stable with respect to ρ. For any ergodic probability
measure ρ′ of (ϕtx)x∈X, t∈T+ distinct from ρ, (suppρ)∩(suppρ′) has empty interior relative
to suppρ.

Proof. Let ρ′ be an ergodic probability measure of (ϕtx) such that (suppρ) ∩ (suppρ′)
has non-empty interior relative to suppρ. So (suppρ)∩(suppρ′) has ρ-positive measure.
Since ϕ is stable with respect to ρ, ρ-almost every x ∈X is almost surely stable. So pick a
point x ∈ (suppρ) ∩ (suppρ′) that is almost surely stable. For P-almost every ω ∈ Ω, the
∼ω-equivalence class of x contains a neighbourhood of x, and therefore has both ρ-positive
measure and ρ′-positive measure. By Corollary 4.11, it follows that ρ = ρ′.

We go on to consider “sets admitting stable trajectories”. For any A ⊂X, define the set

OA ∶= {ω ∈ Ω ∶ at least one point x ∈ A is asymptotically stable under ω}
= ⋃

x∈A
Ox.

It is easy to see that OA = OĀ.

Lemma 4.35. For any A ⊂X, OA is F∞0 -measurable.

Proof. Let U be a countable base for the topology on X, and let

UA ∶= {U ∈ U ∶ U ∩A ≠ ∅}.

It is clear that for any ω ∈ Ω, the existence of a point x ∈ A that is asymptotically stable
under ω is equivalent to the existence of an open set U ∈ UA that contracts under ω. In
other words,

OA = ⋃
U∈UA

EU ,

and so Lemma 4.25(A) gives the result.
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4.4 Asymptotic stability in RDS

Definition 4.36. We will say that a set A ⊂X admits stable trajectories if P(OA) > 0.

Proposition 4.37. (A) A set A ⊂X admits stable trajectories if and only if there exists
x ∈ A that is potentially stable. (B) Suppose ϕ is an open-mapping RDS. Then a closed
invariant set G ⊂X admits stable trajectories if and only if P(OG) = 1.

The proof of part (A) uses the following fact:

Lemma 4.38. P-almost every ω ∈ Ω has the property that for any x ∈ X, if (ω,x) is
asymptotically stable then x is potentially stable.

Proof of Lemma 4.38. Let U be a countable base for the topology on X, and let

U0 ∶= {U ∈ U ∶ P(EU) = 0}.

Let
Ω̃ ∶= Ω ∖ ⋃

U∈U0

EU .

Now fix any ω ∈ Ω̃ and x ∈ X. If (ω,x) is asymptotically stable then there exists U ∈ U
with x ∈ U such that ω ∈ EU , and hence U ∉ U0; so P(EU) > 0 and therefore x is potentially
stable.

Proof of Proposition 4.37. (A) For every x ∈ A, since Ox ⊂ OA, it is clear that if x is
potentially stable (i.e. P(Ox) > 0) then A admits stable trajectories. Conversely: Let Ω̃
be a P-full set with the property described in Lemma 4.38. If P(OA) > 0 then OA ∩ Ω̃ is
non-empty. So take any ω ∈ OA∩ Ω̃, and let x ∈ A be a point that is asymptotically stable
under ω; then, since ω ∈ Ω̃, x is potentially stable.

(B) Let Ω̂ be a P-full set such that ϕ(t, ω)G ⊂ G for all t ∈ T+ and ω ∈ Ω. For any
ω ∈ Ω̂ ∩OG and t ∈ T+, if we let x ∈ G be a point that is asymptotically stable under ω,
then ϕ(t, ω)x is a point in G that is asymptotically stable under θtω, and so θtω ∈ OG. So
θt(Ω̂ ∩OG) ⊂ OG for all t ∈ T+; hence, by Lemma 2.8, P(OG) ∈ {0,1}. So then, G admits
stable trajectories if and only if P(OG) = 1.

Lemma 4.39. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+. Then ϕ is stable with respect to ρ if and only if suppρ admits
stable trajectories.

Proof. It is clear that if ϕ is stable with respect to ρ then suppρ admits stable trajectories.
Now suppose suppρ admits stable trajectories. So P(Osuppρ) > 0; and obviously, for each
ω ∈ Osuppρ there is a ρ-positive measure set of points that are asymptotically stable under
ω. Hence P⊗ ρ(O) > 0, and so by Lemma 4.29, P⊗ ρ(O) = 1.

The following result will play a key role when we come to study “stable synchronisation”
on compact spaces.

Proposition 4.40. Let C ⊂ X be a compact invariant set, and suppose that C contains
only one minimal set K. Then ϕ is uniformly stable in C if and only if K admits stable
trajectories; and in this case, for every x ∈ C,

P(ω ∶ d(ϕ(t, ω)x,K)→ 0 as t→∞) = 1.

133



4.4 Asymptotic stability in RDS

In the proof of Proposition 4.40 (and also later on), we will use the following elementary
lemma (which, heuristically, will play the role of a “strong Markov” property) in
conjunction with Corollary 2.81 (which, heuristically, will generate a “random time at
which to apply the strong Markov property”):

Lemma 4.41. Let D be a countable set, and let ≤ be a linear order on D. Suppose we
have, for each s ∈D and n ∈ N, events Rn,s , Sn,s ∈ F with the following properties:

• for all n and s, Sn,s is independent of σ(Rn,t ∶ t ≤ s);

• for all n, P(⋃s∈DRn,s) = 1;

• infs∈D P(Sn,s) → 1 as n→∞.

Then

P(
∞
⋃
n=1
⋃
s∈D

Rn,s ∩ Sn,s) = 1.

Proof. We write “s < t” to mean “s ≤ t and s ≠ t”. First fix n ∈ N. Since P(⋃s∈DRn,s) = 1
and D is countable, we must have that for all ε > 0 there exist t1 < . . . < tm in D such
that P(⋃mi=1Rn,ti) > 1 − ε, and so

P(⋃
s∈D

Rn,s ∩ Sn,s) ≥ P(
m

⋃
i=1
Rn,ti ∩ Sn,ti)

≥ P(
m

⋃
i=1
(Rn,ti ∖

i−1

⋃
j=1
Rn,tj) ∩ Sn,ti) (where

0

⋃
j=1
Rn,tj ∶= ∅)

=
m

∑
i=1

P(Rn,ti ∖
i−1

⋃
j=1
Rn,tj)P(Sn,ti)

≥ (
m

∑
i=1

P(Rn,ti ∖
i−1

⋃
j=1
Rn,tj)) inf

s∈D
P(Sn,s)

= P(
m

⋃
i=1
Rn,ti) inf

s∈D
P(Sn,s)

≥ (1 − ε) inf
s∈D

P(Sn,s).

This is true for all ε, and so

P(⋃
s∈D

Rn,s ∩ Sn,s) ≥ inf
s∈D

P(Sn,s).

The desired result then follows from the fact that infs∈D P(Sn,s) → 1 as n→∞.

Proof of Proposition 4.40. Suppose K admits stable trajectories. We first show that
there exists at least one point in K that is almost surely stable. Since K is compact
and is minimal according to the Markov transition probabilities (ϕtx)x∈X, t∈T+ , there is an
ergodic probability measure ρ of the Markov transition probabilities (ϕtx)x∈X, t∈T+ such
that suppρ =K. By Lemma 4.39, ϕ is stable with respect to ρ, i.e. ρ-almost every point
x ∈K is almost surely stable.
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Now let p ∈ K be an almost surely stable point. Fix any x ∈ C, and for each n ∈ N
and s ∈ Q ∩T+ let

Rn,s = {ω ∈ Ω ∶ ϕ(s,ω)x ∈ B 1
n
(p)}

Sn,s = θ−s (EB1
n
(p)) .

Note that for every n and s, σ(Rn,t ∶ t ≤ s) ⊂ F s0 and (by Lemma 4.25(A)) Sn,s ∈ F∞s .
Corollary 2.81 gives that P (⋃sRn,s) = 1 for all n. Obviously P(Sn,s) = P 1

n
(p) for all n

and s, and so P(Sn,s)→ 1 as n→∞ uniformly in s. So then, Lemma 4.41 gives that

P(⋃
n
⋃
s
Rn,s ∩ Sn,s) = 1.

Now it is clear that Rn,s ∩ Sn,s ⊂ Ox for all n and s, and so P(Ox) = 1, i.e. x is almost
surely stable. Since x ∈ C was arbitrary, it follows that ϕ is everywhere stable in C,
and therefore, since C is compact, ϕ is uniformly stable in C. Now let Ω̃ be a P-full set
such that ϕ(t, θsω)K ⊂ K for all ω ∈ Ω̃, t ∈ T+ and s ∈ Q ∩ T+. Fix any x ∈ C, and still
let Rn,s and Sn,s be as above for all n ∈ N and s ∈ Q ∩ T+. For any n and s, for any
ω ∈ Rn,s ∩ Sn,s ∩ Ω̃, we have that

d(ϕ(t, ω)x , ϕ(t − s, θsω)p ) → 0 as t→∞

and therefore
d(ϕ(t, ω)x,K) → 0 as t→∞.

Hence the set {ω ∶ d(ϕ(t, ω)x,K) → 0 as t→∞} is a P-full set, as required.

Remark 4.42. As a consequence of Proposition 4.40, if X is compact and there is only
one stationary probability measure ρ of the Markov transition probabilities (ϕtx)x∈X, t∈T+ ,
then ϕ is uniformly stable in X if and only if ϕ is stable with respect to ρ.

4.5 Stable synchronisation

Recall that for each ω ∈ Ω, we define the equivalence relation ∼ω on X by

x ∼ω y ⇐⇒ d(ϕ(t, ω)x , ϕ(t, ω)y ) → 0 as t→∞.

Definition 4.43. We will say that ϕ is pointwise-stably synchronising if ϕ is both
synchronising and everywhere stable in X.

Definition 4.44. We will say that ϕ is (uniformly) stably synchronising if ϕ is both
synchronising and uniformly stable in X.

Recall that due to Lemma 4.28, if X is compact, then ϕ is uniformly stable in X if and
only if ϕ is everywhere stable in X. Hence in particular, if X is compact, then ϕ is stably
synchronising if and only if ϕ is pointwise-stably synchronising.
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4.5 Stable synchronisation

Example 4.45. Suppose Ω is a singleton {ω}, T = Z and X = S1. Let f ∶S1 → S1 be
an orientation-preserving homeomorphism possessing exactly one fixed point, and define
ϕ by ϕ(n,ω) = fn. Then ϕ is synchronising, since every trajectory converges to the
fixed point of f ; but ϕ is not (pointwise-)stably synchronsing, since the fixed point of
f does not have a neighbourhood that contracts under ω. Indeed, the fixed point of f
is not even a Lyapunov stable fixed point. From a practical point of view: ironically,
although f is in theory a “synchronising” dynamical system, any (sufficiently accurate)
practical implementation of this dynamical system will appear to be “chaotic”. For,
no matter how close two trajectories start, they will eventually move very close to the
unstable fixed point, from which point what happens next will be entirely dictated by
unaccounted-for sources of perturbation or random inaccuracies.

Lemma 4.46. Given a sample point ω ∈ Ω and an open set U ⊂ X, the following
statements are equivalent:

(i) U can be expressed as a union of open sets that contract under ω and are
contained in the same equivalence class of ∼ω ;

(ii) there exists an increasing sequence (Vk)k∈N of open subsets Vk of U such that

⋃∞k=1 Vk = U and for each k, Vk contracts under ω.

Proof. It is clear that (ii)⇒(i). Now suppose that (i) holds. Since the union of an
arbitrary collection of open sets is equal to the union of some countable subcollection
thereof, we may write U = ⋃∞r=1Wr for some sequence (Wr)r∈N of open sets that contract
under ω. Since all members of the collection {Wr}r∈N belong to the same equivalence
class of ∼ω, it follows that any finite union of members of this collection contracts under
ω; so taking Vk ∶= ⋃kr=1Wr, we have that (ii) holds.

Definition 4.47. When the equivalent statements in Lemma 4.46 hold, we will say that
U is σ-contracting under ω.

Remark 4.48. Note that if U is σ-contracting under ω then any compact G ⊂ U contracts
under ω. If X is σ-locally compact then the converse statement also holds: if every
compact G ⊂ U contracts under ω then (since U can be expressed as the union of the
interiors of countably many compact subsets of U) U is σ-contracting.

Proposition 4.49. ϕ is pointwise-stably synchronising if and only if there is a P-full set
Ω̃ ⊂ Ω and a Ω̃-indexed family (U(ω))ω∈Ω̃ of dense open subsets of X such that

(i) for each ω ∈ Ω̃, U(ω) is σ-contracting under ω, and

(ii) for each x ∈X, the set {ω ∈ Ω̃ ∶ x ∈ U(ω)} is a P-full set.

Proof. First suppose that ϕ is pointwise-stably synchronising. Let S be a countable dense
subset of X. Let Ω̃ be a P-full set such that for all ω ∈ Ω̃,

(a) for all x, y ∈ S, x ∼ω y, and

(b) every x ∈ S has a neighbourhood that contracts under ω.
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For each ω ∈ Ω̃, let U(ω) be the union of all open sets that contract under ω. Since every
non-empty open set intersects S, we have in particular that all open sets contracting under
ω are contained in the same equivalence class that contains S; hence U is σ-contracting.
Obviously, for any x ∈ X, since the set {ω ∈ Ω ∶ x is asymptotically stable under ω} is a
P-full set, it follows that the set {ω ∈ Ω̃ ∶ x ∈ U(ω)} is a P-full set.

Now in the converse direction, suppose we have Ω̃ and (U(ω))ω∈Ω̃ as in the statement
of the proposition. For any two points x, y ∈ X, we have that for P-almost all ω, x and
y both belong to U(ω) and therefore x ∼ω y. So ϕ is synchronising. Moreover, for any
x ∈X, for any ω ∈ Ω̃ with x ∈ U(ω), since U(ω) can be expressed as a union of open sets
that contract under ω, we have in particular that x has a neighbourhood that contracts
under ω. So ϕ is everywhere stable in X.

Definition 4.50. We say that ϕ is globally contractive if for P-almost all ω ∈ Ω, every
non-empty bounded subset of X contracts under ω.

Obviously if ϕ is globally contractive then ϕ is stably synchronising.

Remark 4.51. As a consequence of Remark 2.33, if ϕ is globally contractive then ϕ has
at most one random fixed point q ∶Ω→X (up to P-almost sure equality). Moreover, such
a random fixed point, if it exists, must have a modification which is F0

−∞-measurable.7

Hence, if ϕ is globally contractive, then the existence of a random fixed point is equivalent
to the existence of a stationary probability measure for the Markov transition probabilities
(ϕtx). When ϕ is globally contractive and a random fixed point q ∶Ω → X does exist, q
is sometimes said to be a globally forward-attracting random fixed point. This is in
contrast to the notion of a globally pullback-attracting random fixed point (defined in
Remark 3.23), which concerns dynamics in the past. (Note, however, that both of these
serve as globally weakly attracting random fixed points, as defined in Remark 2.33.)

We now go on to consider “ρ-almost stable synchronisation”. The following important
result is essentially Proposition 3 of [LeJ87]:

Theorem 4.52. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ such that ϕ is stable with respect to ρ. Let n be the ρ-clustering
number of ϕ. Then n <∞, and for P-almost every ω ∈ Ω there exist mutually disjoint sets
open sets U1, . . . , Un ⊂ X such that the following holds: for each i ∈ {1, . . . , n}, ρ(Ui) = 1

n

and Ui is σ-contracting under ω; but for any distinct i, j ∈ {1, . . . , n}, for any x ∈ Ui and
y ∈ Uj, x /∼ω y.

As an immediate corollary of Theorem 4.52 and Lemma 4.7, we have:

Corollary 4.53. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+. Then the following statements are equivalent:

(i) ϕ is both stable with respect to ρ, and ρ-almost everywhere synchronising;

7To see this: Fix any c ∈X. Since d(ϕ(n,ω)c, q(θnω))→ 0 as n→∞ for P-almost all ω ∈ Ω, it follows
that the stochastic process d(ϕ(n, θ−n⋅)c, q(⋅)) converges in probability to 0, and therefore there exists
an increasing sequence (mn) in N such that ϕ(mn, θ

−mnω)c→ q(ω) for P-almost all ω ∈ Ω.
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(ii) ϕ is both stable with respect to ρ, and statistically synchronising with respect to
ρ;

(iii) for P-almost every ω ∈ Ω there is an open ρ-full set that is σ-contracting under
ω.

Obviously, (i) is the same as saying that there exists a ρ-full set A ∈ B(X) such that any
point x ∈ A is almost surely stable and any two points x, y ∈ A synchronise almost surely.

Definition 4.54. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ . We say that ϕ is ρ-almost stably synchronising if the equivalent
statements in Corollary 4.53 hold.

Example 4.55. Let X = S1, which we identify with R/Z (with π ∶R → S1 denoting the
associated projection). Let ϕ be the RDS such that ϕ(t, ω)π(0) = π(0) for all t and ω, and
on S1 ∖ {π(0)}, ϕ agrees with the projection onto S1 of the RDS in Example 3.19. Then
ϕ is not synchronising, but ϕ is l-almost stably synchronising (where l is the Lebesgue
measure on S1).

Let us now give a proof of Theorem 4.52. We start with the following lemma:

Lemma 4.56. Fix any n ∈ N, and let (µω) be a ϕ-invariant random probability measure
such that for P-almost all ω ∈ Ω, µω takes the form

µω = 1
n ∑
y∈A(ω)

δy

for some set A(ω) ⊂ X with ∣A(ω)∣ = n. Then for P-almost every ω ∈ Ω for which µω
takes this form, for any distinct y1, y2 ∈ A(ω), y1 and y2 belong to different equivalence
classes of ∼ω.

Proof. The statement is vacuously true if n = 1, so assume n ≥ 2. Let Ω̃ ∈ F be a P-full
set such that for all ω ∈ Ω̃, µω takes the form described in Lemma 4.56. For each k ∈ N
let

Ek ∶= {ω ∈ Ω ∶ there exists x ∈X s.t. µω(B 1
k
(x)) > 1

n }.
Note that Ek is measurable: for any countable dense set S ⊂ X, due to Lemma A.13 we
have that

Ek = ⋃
x∈S
{ω ∈ Ω ∶ µω(B 1

k
(x)) > 1

n}.

Now for any k, for any ω ∈ Ω̃∩Ek, there must exist disinct points y1, y2 ∈ A(ω) such that
d(y1, y2) < 2

k . Hence it is clear that Ω̃ ∩ ⋂kEk = ∅. So then, P (⋂kEk) = 0, and therefore
P(Ek)→ 0 as k →∞. So letting

E ∶=
∞
⋂
k=1

∞
⋃
i=0

∞
⋂
j=i
θ−j(Ek),

we have that P(E) = 0. Now for any j, k ∈ N, for any ω ∈ θ−j(Ω̃), if there exist disinct
points y1, y2 ∈ A(θjω) such that d(y1, y2) < 1

k , then ω ∈ θ−j(Ek). Accordingly, for any

ω ∈ ⋂∞j=0 θ−j(Ω̃), if

min(d(y1, y2) ∶ distinct y1, y2 ∈ A(θjω) ) → 0 as j →∞
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then ω ∈ E. Since (µω) is ϕ-invariant, we have that for P-almost all ω ∈ ⋂∞j=0 θ−j(Ω̃), for
every j ∈ N0, A(θjω) = ϕ(j, ω)A(ω). So then, since P(E) = 0, we have that for P-almost
every ω ∈ ⋂∞j=0 θ−j(Ω̃),

min(d(y1, y2) ∶ distinct y1, y2 ∈ ϕ(j, ω)A(ω) ) /→ 0 as j →∞

and hence in particular, there do not exist distinct y1, y2 ∈ A(ω) such that
d(ϕ(j, ω)y1, ϕ(j, ω)y2) → 0 as j →∞. Thus we have shown that for P-almost all ω ∈ Ω̃,
any distinct points y1, y2 ∈ A(ω) must belong to different equivalence classes of ∼ω.

Proof of Theorem 4.52. For P-almost every ω ∈ Ω, there exist open sets intersecting
suppρ which contract under ω (and are therefore contained in equivalence classes of
∼ω). Hence, by Lemma 4.12, n <∞.

To prove the rest of the theorem, it is sufficient to find, for each ε > 0, a P-full set
Ωε ∈ F of sample points ω with the property that there exist open sets W1, . . . ,Wn ⊂ X
such that for each i ∈ {1, . . . , n}, ρ(Wi) > 1

n − ε and Wi contracts under ω, and moreover
such that the sets W1, . . . ,Wn are contained in distinct equivalence classes of ∼ω.

(The fact that this is sufficient for the desired result to be true is visually intuitively
clear; still, one way to prove it rigorously is as follows: Let Ω∗ ∶= ⋂∞j=1 Ω 1

j
. Clearly,

P(Ω∗) = 1; now fix any ω ∈ Ω∗. For each integer j ≥ n(n + 1), let W
(j)
1 , . . . ,W

(j)
n ⊂ X be

open sets contracting under ω, each of measure greater than 1
n − 1

j according to ρ, and

belonging to distinct equivalence classes of ∼ω. Note in particular that ρ(W (j)
i ) > 1

n+1 for
each j ≥ n(n+1) and i ∈ {1, . . . , n}. Hence, it is not hard to see that for each j ≥ n(n+1)
and i ∈ {1, . . . , n}, there exists a unique πj(i) ∈ {1, . . . , n} such that W

(n(n+1))
i ∩W (j)

πj(i) ≠ ∅.

So for each i ∈ {1, . . . , n}, define Ui ∶= ⋃∞j=n(n+1)W
(j)
πj(i). Then Ui is σ-contracting under

ω for each i, and the sets U1, . . . , Un are contained in distinct equivalence classes of ∼ω.
Moreover, it is clear that ρ(Ui) ≥ 1

n for each i, and therefore ρ(Ui) = 1
n for each i.)

Let µ be the unique Markov invariant measure whose X-projection coincides with ρ,
and let (µω) be a disintegration of µ. On the basis of Lemma 4.56, let Ω̃ ∈ F be a P-full
set such that for all ω ∈ Ω, µω takes the form

µω = 1
n ∑
y∈A(ω)

δy

for some set A(ω) ⊂X with ∣A(ω)∣ = n such that the elements of A(ω) belong to distinct
equivalence classes of ∼ω. Now let U be a countable base for the topology on X that
is closed under finite unions, and let U denote the collection of all mutually disjoint
subcollections of U of size n. For each ε > 0, let

Uε ∶= {V ∈ U ∶ ∀W ∈ V , ρ(W ) > 1
n − ε},

let
Ω̃ε ∶= ⋃

V ∈Uε
⋂
W ∈V
(EW ∩ {ω ∈ Ω ∶ µω(W ) = 1

n}) ,
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and let Ωε ∶= Ω̃ε∩ Ω̃. Note that every ω ∈ Ωε has the desired property given further above:
since ω ∈ Ω̃ε, there exist mutually disjoint open sets W1, . . . ,Wn contracting under ω, each
of measure greater than 1

n −ε according to ρ and measure equal to 1
n according to µω; and

so, since ω ∈ Ω̃, it follows that the sets W1, . . . ,Wn are contained in distinct equivalence
classes of ∼ω. So then, it only remains to show that P(Ωε) = 1 for every ε > 0.

Since O ∈ F∞0 ⊗ B(X), we have that µ(O) = P ⊗ ρ(O) = 1, and so for P-almost all

ω ∈ Ω, µω(x ∶ (ω,x) ∈ O) = 1. Let Ω̂ ∈ F be a P-full set such that for every ω ∈ Ω̂ the
following statements hold:

(i) for all j ∈ N0, θ−jω ∈ Ω̃ and ϕ(j, θ−jω)∗µθ−jω = µω ;

(ii) ϕ(j, θ−jω)∗ρ converges weakly to µω as j tends to ∞ in N;

(iii) µω(x ∶ (ω,x) ∈ O) = 1.

Note that statement (i) implies that for every j ∈ N, ϕ(j, θ−jω) maps A(θ−jω) bijectively
into A(ω). Also note that statement (iii) is equivalent to saying that every point in A(ω)
is asymptotically stable under O.

Now fix any ε. We will show that

Ω̂ ⊂
∞
⋃
k=1

∞
⋂
j=k

θj(Ωε). (4.1)

Fix any ω ∈ Ω̂. Let us write y1, . . . , yn for the elements of A(ω). Let V1, . . . , Vn be open
neighbourhoods of y1, . . . , yn respectively, that are mutually disjoint and each contract
under ω. Since ϕ(j, θ−jω)∗ρ converges weakly to µω as j tends to ∞ in N, and µω(Vi) = 1

n

for each 1 ≤ i ≤ n, there must exist k ∈ N such that for all j ≥ k, ρ(ϕ(j, θ−jω)−1(Vi)) > 1
n −ε

for each i. Now fix any j ≥ k. For each 1 ≤ i ≤ n, since the base U is closed under finite
unions, ϕ(j, θ−jω)−1(Vi) contains a set Wi ∈ U , itself containing ϕ(j, θ−jω)−1({yi}), such
that ρ(Wi) > 1

n − ε. Moreover, the sets W1, . . . ,Wn are obviously mutually disjoint, and
each contract under θ−jω; and since each Wi contains exactly one element of A(θ−jω),
we have that µθ−jω(Wi) = 1

n for each i. Hence θ−jω ∈ Ω̃ε. And by assumption, θ−jω ∈ Ω̃;
so θ−jω ∈ Ωε. Thus we have proved (4.1).

So then, for any η > 0, letting k ∈ N be sufficiently large that P (⋂∞j=k θj(Ωε)) > 1 − η, we
have that

P(Ωε) = P(θk(Ωε)) > 1 − η.
Since η was arbitrary, we are done.

We now mention the case of monotone RDS on a one-dimensional phase space. (We still
assume that ϕ is right-continuous.)

We will say that a set A ⊂ R is endpoint-complete if the following statements both hold:

(i) if A is bounded above then maxA exists;

(ii) if A is bounded below then minA exists.
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In other words, A is endpoint-complete if and only if the convex hull of A (relative to R)
is a closed subset of R.

Lemma 4.57. Suppose X is a Borel-measurable subset of R, with d being the standard
metric. Suppose that ϕ is monotone (with respect to the usual order ≤). Let ρ be any
probability measure on X with Xρ =X. The following statements are equivalent:

(i) P-almost every ω ∈ Ω has the property that for any a, b ∈X with a ≤ b, [a, b]∩X
contracts under ω;

(ii) ϕ is pointwise-stably synchronising;

(iii) ϕ is synchronising;

(iv) ϕ is ρ-almost everywhere synchronising.

If X is endpoint-complete, then these are in turn equivalent to:

(v) ϕ is globally contractive;

(vi) ϕ is stably synchronising.

Proof. It is clear that (i)⇒(ii)⇒(iii)⇒(iv). We now show that (iv)⇒(i). Suppose that (iv)
holds. Fix any ω ∈ Ω with the property that ∼ω has a ρ-full equivalence class. Let X̃ be
the ρ-full equivalence class of ∼ω. Now fix any a, b ∈ X with a ≤ b, and let I ∶= [a, b] ∩X.
Since Xρ is the whole of X, the sets (−∞, a] ∩ X and [b,∞) ∩ X both have positive
measure under ρ; hence these sets both have non-empty intersection with X̃. So there
exist x1 ≤ a and x2 ≥ b such that x1 ∼ω x2. But since ϕ is monotone, we also have that
ϕ(t, ω)I ⊂ [ϕ(t, ω)x1, ϕ(t, ω)x2] for all t ∈ T+. It follows, therefore, that I contracts under
ω, as required.

Obviously (v)⇒(vi)⇒(ii). Finally, if X is endpoint-complete then (i)⇒(v), since it is
clear that every bounded set B ⊂ X is contained in some closed interval [a, b] with
a, b ∈X.

Example 4.58. The RDS in Example 2.34 is globally contractive, as is the RDS in
Example 2.37 for α < 0. The RDS in Example 3.19 (which has been shown to be
synchronising in [AM14]) is pointwise-stably synchronising, but not uniformly stably
synchronising. The RDS generated by (3.2) in Example 3.21 is globally contractive; see
Example 6.7.

Proposition 4.59. Suppose X is a Borel-measurable subset of R, with d being the
standard metric. Suppose that ϕ is monotone (with respect to the usual order ≤). Suppose
moreover that there exists an ergodic probability measure ρ of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ such that Xρ = X. Then ϕ is synchronising if and only if ϕ
is stable with respect to ρ.

Proof. If ϕ is synchronising then, in particular, ϕ is pointwise-stably synchronising (by
Lemma 4.57); so ϕ is everywhere stable in X, and therefore ϕ is stable with respect
to ρ. Conversely: we know by Theorem 3.13 that ϕ is statistically synchronising with
respect to ρ; so if, in addition, ϕ is stable with respect to ρ, then by Corollary 4.53 we
have that ϕ is ρ-almost everywhere synchronising, and therefore (by Lemma 4.57) ϕ is
synchronising.
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4.6 Contractibility

Much of the remainder of this thesis will be devoted to tests for synchronising behaviour.
All of these tests will involve the notion of “contractibility” of pairs of points, and so we
will introduce this notion now.

Note that for any invariant set A ⊂X, A×A is invariant under the two-point motion ϕ×2.

Definition 4.60. Given points x, y, p ∈X, we will say that (x, y) is contractible towards
p if every neighbourhood of (p, p) in X ×X is accessible from (x, y) under the two-point
motion ϕ×2. This is the same as saying that for every ε > 0,

P(ω ∶ ∃ t ∈ T+ s.t. ϕ(t, ω)x,ϕ(t, ω)y ∈ Bε(p) ) > 0.

Proposition 4.61. The set C = { (p, x, y) ∈X ×X ×X ∶ (x, y) is contractible toward p}
is B(X ×X ×X)-measurable.

Proof. Given any metrisation d̃ of the product topology on X ×X, we have that

C = { (p, x, y) ∶ d̃((p, p) , G(x,y)) = 0}.

Hence the result follows from Lemma 2.77 applied to ϕ×2.

Definition 4.62. Given points x, y ∈ X and a set A ⊂ X, we will say that (x, y) is
contractible towards A if every neighbourhood of ∆A in X ×X is accessible from (x, y)
under ϕ×2.

Lemma 4.63. For any x, y ∈ X and A ⊂ X, (x, y) is contractible towards A if and only
if there exists p ∈ A such that (x, y) is contractible towards p.

Proof. (x, y) is contractible towards A if and only if G(x,y) intersects every neighbourhood
of ∆A; but since G(x,y) is closed, this is equivalent to saying that G(x,y) intersects ∆A.
Obviously this is the same as saying that there exists p ∈ A such that (p, p) ∈ G(x,y), which
is equivalent to saying that there exists p ∈ A such that every neighbourhood of (p, p) is
accessible from (x, y) under ϕ×2. So we are done.

Definition 4.64. Given points x, y ∈ X, we say that (x, y) is generally contractible if
(x, y) is contractible towards X (i.e. if there exists p ∈ X such that (x, y) is contractible
towards p).

Note that, given a closed invariant set G ⊂X and any points x, y ∈ G, if (x, y) is generally
contractible then (x, y) is contractible towards G. (The reason is that, since G ×G is a
closed invariant set under ϕ×2, (x, y) cannot be contractible towards any point p ∈X∖G.)

Lemma 4.65. Given a compact invariant set K ⊂ X and points x, y ∈ K, (x, y) is
generally contractible if and only if for every ε > 0,

P(ω ∶ ∃ t ∈ T+ s.t. d(ϕ(t, ω)x,ϕ(t, ω)y) < ε ) > 0. (4.2)

142



4.6 Contractibility

Proof. The “only if” direction is clear (and has nothing to do with the set K). For the
“if” direction: For each ε > 0, let

UK,ε ∶= {(u, v) ∈K ×K ∶ d(u, v) < ε}.

Suppose that (4.2) holds for every ε > 0. Since K ×K is invariant under ϕ×2, it follows
that there is a positive-measure set of sample points ω with the property that at some
time t, ϕ×2(t, ω)(x, y) ∈ UK,ε. Now for every neighbourhood U of ∆K , as in the proof of
Lemma 4.1 there exists ε > 0 such that UK,ε ⊂ U ; and so U is accessible from (x, y).

The following concept has been considered in [BS88] and [Bax91].

Definition 4.66. Let K ⊂ X be a compact invariant set. We will say that ϕ is
contractible8 on K if for all distinct x, y ∈K,

P(ω ∶ ∃ t ∈ T+ s.t. d(ϕ(t, ω)x,ϕ(t, ω)y) < d(x, y) ) > 0.

Remark 4.67. Suppose there exists a separable metrisable topology on Ω whose Borel
σ-algebra coincides with F , such that P has full support and for all t ∈ T+ and x ∈ X,
the map ω ↦ ϕ(t, ω)x is continuous. Then, as in Remark 2.73, in order to show that ϕ
is contractible on a compact invariant set K, it is sufficient to show that for each pair
of distinct points x, y ∈ K there exists a sample point ω ∈ Ω and a time t ∈ T+ such that
d(ϕ(t, ω)x,ϕ(t, ω)y) < d(x, y).
Proposition 4.68 (cf. [BS88, Proposition 4.1]). Let K ⊂ X be a compact invariant set.
The following statements are equivalent:

(i) every pair (x, y) ∈K ×K is generally contractible;

(ii) ϕ is contractible on K;

(iii) (K ×K) ∖∆K contains no non-empty closed9 invariant sets (under ϕ×2);

(iv) given any two points x, y ∈K, for P-almost every ω ∈ Ω there exists an unbounded
increasing sequence (tn) in T+ ∩ Q such that d(ϕ(tn, ω)x,ϕ(tn, ω)y) → 0 as
n→∞.

Proof. (i)⇒(ii) is clear. We next show (ii)⇒(iii). Suppose (iii) does not hold, and let
C ⊂ (K ×K) ∖ ∆K be a non-empty compact invariant set. Let (x, y) ∈ C be a point
which minimises the function (u, v)↦ d(u, v) on C ×C. Then it is clear that (x, y) is not
generally contractible; so (ii) does not hold. Now suppose that (iii) holds. To show that
(iv) holds, it is sufficient to show that for each x, y ∈K and k ∈ N, for P-almost all ω ∈ Ω
there exist arbitrarily large times t at which d(ϕ(t, ω)x,ϕ(t, ω)y) < 1

k . So fix x, y and k,
and let U ∶= {(u, v) ∈X ×X ∶ d(u, v) < 1

k}. Then (K ×K)∖U is a compact set containing
no non-empty closed invariant sets, and so by Lemma 2.79, for P-almost all ω ∈ Ω there
exist arbitrarily large times t at which ϕ×2(t, ω)(x, y) ∉ (K ×K) ∖ U . But since K ×K
is itself invariant, it follows that for P-almost all ω ∈ Ω there exist arbitrarily large times
t at which ϕ×2(t, ω)(x, y) ∈ U , as required. Finally, (iv)⇒(i) follows immediately from
Lemma 4.65.

8In [New15b], the term “two-point contractible” is used.
9that is, closed in X ×X; the statement that (K ×K)∖∆K contains no invariant sets that are closed

relative to (K ×K) ∖∆K would be much stronger.
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Lemma 4.69. If K is a compact invariant set on which ϕ is contractible, then K contains
only one minimal set.

Proof. Let K be a compact invariant set containing two distinct minimal sets M1 and
M2. Note that M1 and M2 are mutually disjoint. Let (x, y) be a point in M1 ×M2 which
minimises the function (u, v) ↦ d(u, v) on M1 ×M2. Then x and y are distinct points,
and (x, y) is not generally contractible.

Now in one of the synchronisation tests that we will present later on (Theorem 6.1), one
of the conditions involved is contractibility on a certain compact minimal set. In some
situations, it may not be easy to verify directly that ϕ is contractible on a given set K;
but it may be easier to verify that ϕ is “contractible on a full measure open subset” of
K—in which case, if K is minimal, ϕ must be contractible on the whole of K. To be
precise:

Proposition 4.70. Let ρ be a stationary probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ such that suppρ is a compact minimal set. Suppose there exists
A ⊂ suppρ such that:

• ρ(A) = 1;

• the interior of A relative to suppρ is non-empty;

• every pair in A ×A is generally contractible.

Then ϕ is contractible on suppρ.

Proposition 4.70 is adapted from [New15b, Proposition 3.1.2].

Proof. Let K ∶= suppρ. Fix any x, y ∈K; we will show that (x, y) is generally contractible.
This is equivalent to showing that G(x,y) ∩ ∆K ≠ ∅. Since G(u,v) ∩ ∆K ≠ ∅ for all
(u, v) ∈ A × A, it is sufficient just to show that G(x,y) contains at least one point in
A ×A.

By Lemma 2.82, since K × K is compact, the image of G(x,y) under the projection
(u, v) ↦ u is precisely Gx; but this is itself equal to K, since K is minimal. Now let
D be a countable dense subset of T+, and let

B ∶= {x ∈K ∶ for all t ∈D, ϕtx(A) = 1}.

Since ρ is stationary and ρ(A) = 1, we have that ρ(B) = 1—and so, in particular, B is
non-empty. So let us fix a point (u, v) ∈ G(x,y) with u ∈ B. Let U ⊂ X be an open set
such that U ∩K is a non-empty subset of A; since K is minimal, U is acessible from v.
Since the map t↦ ϕtv(U) is right lower semicontinuous, there must exist t∗ ∈D such that
ϕt
∗

v (U) > 0. Since K is invariant, it follows that ϕt
∗

v (A) > 0. So then, there exists a P-
positive-measure set of sample points ω such that ϕ(t∗, ω)u and ϕ(t∗, ω)v are both in A.
Hence G(u,v) has non-trivial intersection with A ×A, and therefore G(x,y) has non-trivial
intersection with A ×A.
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4.7 Deterministic-rate synchronisation

In this section, we consider the issue of whether one can give an upper bound on how
long one has to wait in order to observe synchronisation of trajectories of a RDS.

Definition 4.71. Given x, y ∈X, we say that x and y synchronise at a deterministic rate
if there exists a function h ∶T+ → [0,∞], with h(t) → 0 as t →∞, such that for P-almost
every ω ∈ Ω, for all t ∈ T+, d(ϕ(t, ω)x,ϕ(t, ω)y) ≤ h(t). Given such a function h, we say
that x and y synchronise at least as quickly as h.

Now when two deterministic processes do not synchronise in the absence of noise, it is
normal that noise can cause the processes to synchronise, but such synchronisation cannot
be expected to occur at any deterministic rate. This is indicated by the following:

Proposition 4.72. Suppose that (as in Remark 2.73) there exists a separable metrisable
topology on Ω whose Borel σ-algebra coincides with F , such that P has full support and
the map ω ↦ ϕ(t, ω)x is continuous for each t and x. Suppose we have x, y ∈ X and
ω0 ∈ Ω such that x /∼ω0 y. Then x and y do not synchronise at a deterministic rate.

Proof. Fix any function h ∶T+ → [0,∞] such that h(t) → 0 as t → ∞. Let t ∈ T+ be
such that d(ϕ(t, ω0)x,ϕ(t, ω0)y) > h(t). Then by Remark 2.73 applied to the two-point
motion ϕ×2, P(ω ∶ d(ϕ(t, ω)x,ϕ(t, ω)y) > h(t)) > 0.

Now if we wish to be able to say that two physical processes will synchronise faster
than some given deterministic rate, we may need to take into account that the processes
will inevitably be subject to small perturbations not accounted for in the model. This
motivates the following definitions:

Definition 4.73. Given x ∈ X, we say that x is asymptotically stable at a deterministic
rate if there exists a neighbourhood U of x and a function h ∶T+ → [0,∞], with h(t)→ 0
as t→∞, such that for P-almost every ω ∈ Ω, for all t ∈ T+, diam(ϕ(t, ω)U) ≤ h(t).

Definition 4.74. We will say that ϕ is globally contracting at a deterministic rate if for
every bounded B ⊂ X there exists a function h ∶T+ → [0,∞], with h(t) → 0 as t → ∞,
such that for P-almost every ω ∈ Ω, for all t ∈ T+, diam(ϕ(t, ω)B) ≤ h(t).

Note that if X = Rd (with the usual metric) and every x ∈ Rd is asymptotically stable at
a deterministic rate, then ϕ is globally contracting at a deterministic rate.10

Remark 4.75. It is easy to see that if X is compact and ϕ is invertible, then there
must exist at least one point in X that is not asymptotically stable at a deterministic
rate. Consequently, one can show that if ϕ also has reverse-minimal dynamics, then there
cannot exist a point in X that is asymptotically stable at a deterministic rate.

Example 4.76. In Example 2.34, ϕ is globally contracting at a deterministic rate. (For

the deterministic-rate synchronisation of x and y, take h(n) = d(x,y)
2n .) In Example 2.37

with α < 0, ϕ is globally contracting at a deterministic rate. (For the deterministic-rate

10It is not hard to show that this statement generalises to whenever (X,d) has the Heine-Borel property
(namely, that every closed bounded set is compact) and is path-connected.
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synchronisation of x and y, take h(t) = d(x, y)eαt.) In Example 3.19, there do not exist
distinct points x, y ∈ (0,1) that synchronise at a deterministic rate. (This is easy to show
using the fact that sufficiently close to 0, f0 is a linear contraction towards 0 and f1 is a
linear expansion away from 0.) For the RDS generated by (3.2) in Example 3.21, if α ≤ 0
then ϕ is globally contracting at a deterministic rate, but if α > 0 then there do not exist
distinct points x, y ∈ R that synchronise at a deterministic rate. (See Example 6.7.) In
Example 4.45, for every x, y ∈ S1, x and y synchronise at a deterministic rate; but this
is of virtually no practical relevance, since the fixed point towards which all trajectories
converge is not even Lyapunov stable under f .

Remark 4.77. One may be tempted to assume that having synchronisation at a
deterministic rate (in the sense of Definition 4.71) is inherently more practically useful
than having almost sure synchronisation in a model that cannot provide a strict upper
bound on the time taken for the synchronisation to be observed. However, (even assuming
that there are no issues concerning local stability) this is not so. Suppose, for example,
that we have one system in which the distance between the trajectories of two given
initial conditions is predicted to decay almost surely at least as quickly as some function
h. And suppose we have a second system (with the same state space) in which the
distance between the trajectories of the same initial conditions is predicted to decay,
with probability greater than 1 − 2−100, at least as quickly as h. In practice, it is far
more likely for either system to undergo some catastrophe not accounted for in the
model (e.g. theft, or an earthquake) than for someone to toss 100 consecutive heads on
a fair coin! (Nonetheless, it should still be said that for many systems where noise-
induced synchronisation theoretically occurs, the synchronisation will take a long time to
be observed, especially if the noise intensity is small; see Remark 3.1.)
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Chapter 5. Synchronisation in Orientation-
Preserving RDS on the Circle

Before presenting general criteria for synchronising behaviour in RDS (Chapter 6), we
first look specifically at the case of orientation-preserving RDS on S1. Here, we have a
geometrically intuitive characterisation of stable synchronisation, as well as fairly weak
sufficient conditions for stable synchronisation that do not involve local stability. The
content of this chapter is based on [New15c].

Let S1 be the unit circle, which we identify with the quotient of the additive group
(R,+) by the subgroup Z. Let π ∶R → S1 denote the natural projection; a lift of a point
x ∈ S1 is a point x′ ∈ R such that π(x′) = x, and a lift of a set A ⊂ S1 is a set B ⊂ R such
that π(B) = A. Let l denote the (normalised) Lebesgue measure on S1. Define the metric
d on S1 by

d(x, y) = min{∣x′ − y′∣ ∶ x′ is a lift of x, y′ is a lift of y}.
Note that under this metric, for any connected J ⊂ S1,

diamJ = min(l(J), 1
2
).

The following basic fact is sufficiently clear that we do not write out a proof; nonetheless,
it will be useful to state it explicitly.

Lemma 5.1. (A) For any probability measure ρ on S1, the following statements are
equivalent:

• ρ is atomless;

• for any sequence (Jn) of connected subsets of S1, if l(Jn) → 0 as n → ∞ then
ρ(Jn)→ 0 as n→∞;

• for any sequence (Jn) of connected subsets of S1, if l(Jn) → 1 as n → ∞ then
ρ(Jn)→ 1 as n→∞.

(B) For any probability measure ρ on S1, the following statements are equivalent:

• ρ has full support;

• for any sequence (Jn) of connected subsets of S1, if ρ(Jn) → 0 as n → ∞ then
l(Jn)→ 0 as n→∞;

• for any sequence (Jn) of connected subsets of S1, if ρ(Jn) → 1 as n → ∞ then
l(Jn)→ 1 as n→∞.

Define the anticlockwise distance function d+ ∶S1 × S1 → [0,1) by

d+(x, y) = min{r ≥ 0 ∶ π(x′ + r) = y}
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5.1 Stable synchronisation in terms of crack points

where x′ may be any lift of x. Obviously d+ is not symmetric, but rather satisfies the
relation

d+(y, x) = 1 − d+(x, y).
It is clear that for all x, y ∈ S1,

d(x, y) = { d+(x, y) if d+(x, y) ≤ 1
2

d+(y, x) if d+(x, y) ≥ 1
2 .

Note that d+ is continuous on the set {(x, y) ∈ S1 × S1 ∶ x ≠ y}. For any interval I ⊂ R of
positive length less than 1, letting x1 ∶= π(inf I), x2 ∶= π(sup I) and J ∶= π(I), we have
that

l(ϕ(t, ω)J) = d+(ϕ(t, ω)x1, ϕ(t, ω)x2) (5.1)

for all t and ω.

Standing Assumption. Throughout Chapter 5, we assume that X = S1, equipped with
the metric d given above, and that ϕ is a right-continuous RDS. We also assume that
ϕ(t, ω) is an orientation-preserving homeomorphism for all t ∈ T+ and ω ∈ Ω.

By Lemmas 2.83 and 2.86, it follows that ϕ is right-continuously invertible; and if ϕ is
continuous then ϕ is continuously invertible.

Recall that, as in Section 2.9, (ϕ̄tx)x∈X, t∈T+ denotes the family of “time-reversed” Markov
transition probabilities associated to ϕ. As in Chapter 4, for each ω ∈ Ω, ∼ω denotes the
equivalence relation

x ∼ω y ⇐⇒ d(ϕ(t, ω)x , ϕ(t, ω)y ) → 0 as t→∞.

5.1 Stable synchronisation in terms of crack points

Definition 5.2 (c.f. [Kai93]). Given a point r ∈ S1 and a sample point ω ∈ Ω, we will say
that r is a crack point of ω if the following equivalent statements hold:

• for every open U ⊂ S1 with r ∈ U , l(ϕ(t, ω)U)→ 1 as t→∞;

• for every closed G ⊂ S1 with r ∉ G, l(ϕ(t, ω)G)→ 0 as t→∞;

• for every A ⊂ S1 with r ∉ Ā, diam(ϕ(t, ω)A)→ 0 as t→∞.

It is clear that any sample point admits at most one crack point. If a sample point ω
admits a crack point, then we will say that ω is contractive.

Now if a sample point ω admits a crack point r, then it is clear that all points in S1 ∖{r}
are equivalent under ∼ω. Hence, we have that either

(a) the equivalence relation ∼ω has two equivalence classes, namely {r} and S1 ∖ {r};
or

(b) the equivalence relation ∼ω has one equivalence class (the whole of S1).
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5.1 Stable synchronisation in terms of crack points

In case (a), we say that r is a repulsive crack point of ω.

Definition 5.3. Let Ωc ⊂ Ω be the set of contractive sample points, and let r̃ ∶Ωc → S1

denote the function mapping a contractive sample point ω to its crack point r̃(ω).

Lemma 5.4. Ωc is F∞0 -measurable, and r̃ ∶Ωc → S1 is measurable with respect to the
σ-algebra Fc of F∞0 -measurable subsets of Ωc. For all t ∈ T, θt(Ωc) = Ωc; and r̃(θtω) =
ϕ(t, ω)r̃(ω) for all ω ∈ Ωc and t ∈ T+.

Proof. Let R be a countable dense subset of S1. For any connected J ⊂ S1, it is clear (by
considering rational times) that

{ω ∈ Ω ∶ l(ϕ(t, ω)J)→ 0 as t→∞} ∈ F∞0 . (5.2)

So then, in order to show that Ωc ∈ F∞0 , it suffices to prove the following statement: a
sample point ω ∈ Ω is contractive if and only if for every n ∈ N there is a connected open
set Un ⊂ S1 with endpoints in R such that 1− 1

n < l(Un) < 1 and l(ϕ(t, ω)Un)→ 0 as t→∞.
Now the “only if” direction is obvious. For the “if” direction: suppose that for every n ∈ N
there exists a connected open set Un ⊂ S1 with endpoints in R such that 1− 1

n < l(Un) < 1
and l(ϕ(t, ω)Un)→ 0 as t→∞; and let U ∶= ⋃∞n=1Un. Since Un is connected for all n and
l(Un) → 1 as n →∞, we clearly have that either U = S1 or S1 ∖ {U} is a singleton. Now
suppose, for a contradiction, that U = S1. Then, since S1 is compact, there is a finite
subset {n1, . . . , nk} of N such that S1 = ⋃ki=1Uni ; but since l(ϕ(t, ω)Uni)→ 0 as t→∞ for
each i, we then have that l(ϕ(t, ω)S1) → 0 as t →∞, which is absurd. So then, we must
have that S1 ∖ U is equal to a singleton {r}. We now show that r is a crack point. Fix
any closed G ⊂ S1 with r ∉ G. Take n such that l(Un) > 1 − d(r,G); then G ⊂ Un and so
l(ϕ(t, ω)G)→ 0 as t→∞. Hence r is a crack point of ω.

Thus we have shown that Ωc is F∞0 -measurable. Now for any non-empty closed connected
K ⊂ S1, it is clear that a sample point ω ∈ Ωc belongs to r̃−1(K) if and only if for every
closed connected G ⊂ S1 ∖K with boundary in R, l(ϕ(t, ω)G)→ 0 as t→∞. So by (5.2)
and the countability of R, r̃−1(K) ∈ Fc for every closed connected K ⊂ S1. Hence r̃ is
Fc-measurable.

Now for any ω ∈ Ω, r ∈ S1 and t ∈ T+, we obviously have that if U ⊂ S1 is a neighbourhood
of r then ϕ(t, ω)U is a neighbourhood of ϕ(t, ω)r, and that if V ⊂ S1 is a neighbourhood
of ϕ(t, ω)r then ϕ(t, ω)−1(V ) is a neighbourhood of r; so then, it is easy to see that

r is a crack point of ω ⇐⇒ ϕ(t, ω)r is a crack point of θtω.

So then, for any ω ∈ Ω and t ∈ T+, we have that ω ∈ Ωc⇔ θtω ∈ Ωc (so θ−t(Ωc) = Ωc); and
obviously r̃(θtω) = ϕ(t, ω)r̃(ω) for all ω ∈ Ωc.

Corollary 5.5. P(Ωc) is equal to either 0 or 1. In the case that P(Ωc) = 1, either:

(a) for every x ∈ S1, P(ω ∈ Ωc ∶ r̃(ω) = x) = 0; or

(b) there exists a deterministic fixed point p ∈ S1 such that P(ω ∈ Ωc ∶ r̃(ω) = p) = 1.
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5.1 Stable synchronisation in terms of crack points

Proof. The fact that P(Ωc) ∈ {0,1} follows immediately from Lemma 5.4 and the
ergodicity of P under (θt) (Lemma 2.8). In the case that P(Ωc) = 1, define the function
r ∶Ω→ S1 by

r(ω) = { r̃(ω) ω ∈ Ωc

k ω ∈ Ω ∖Ωc

where k is an arbitrary constant. By Lemma 5.4, r is an F∞0 -measurable random fixed
point, and therefore Lemma 2.61 gives that either case (a) or case (b) holds.

We now characterise stable synchronisation in terms of crack points.

Theorem 5.6. ϕ is stably synchronising if and only if P(Ωc) = 1 and case (a) of
Corollary 5.5 holds. In this case, for P-almost every ω ∈ Ωc, r̃(ω) is a repulsive crack
point of ω.

Remark 5.7. If P(Ωc) = 1 and case (b) of Corollary 5.5 holds, then ϕ is synchronising
if and only if for P-almost all ω ∈ Ωc, p is a non-repulsive crack point of ω.

Most of the rest of Section 5.1 is devoted to proving Theorem 5.6.

The following lemma is similar in principle to [LeJ87, Lemme 1(a)].

Lemma 5.8. Let ρ be an atomless1 probability measure that is stationary under the
Markov transition probabilities (ϕ̄tx)x∈X, t∈T+. For any connected J ⊂ S1, for P-almost all
ω ∈ Ω, ρ(ϕ(t, ω)J) is convergent as t→∞.

Proof. Fix a connected J ⊂ S1, and for each t and ω let ht(ω) = ρ(ϕ(t, ω)J). Note that
for each boundary point x of J , the map t↦ ϕ(t, ω)x is right-continuous for all ω. Hence,
since ρ is atomless, the map t ↦ ht(ω) is right-continuous for all ω. So if we can show
that (ht)t∈T+ is a martingale with respect to the filtration (F t0)t∈T+ , then the martingale
convergence theorem will give the desired result. Fix any s, t ∈ T+. We have that

E[hs+t∣F s0](ω) = E[ ω̃ ↦ ρ(ϕ(s + t, ω̃)J) ∣F s0 ](ω)
= E[ ω̃ ↦ ρ(ϕ(t, θsω̃)(ϕ(s, ω̃)J)) ∣F s0 ](ω)
= E[ ω̃ ↦ ρ(ϕ(t, θsω̃)(ϕ(s,ω)J)) ]

(by Lemma A.11, since F s0 and F s+ts are independent)

= ρ(ϕ(s,ω)J)
(by equation (2.10) with θsω in place of ω)

= hs(ω).

So we are done.

Lemma 5.9. Suppose that ϕ is synchronising, and that there exists an atomless
probability measure that is stationary under the Markov transition probabilities
(ϕ̄tx)x∈X, t∈T+. Then P(Ωc) = 1.

1The condition that ρ is atomless can in fact be dropped, although the proof then becomes significantly
longer, as it is harder to justify that the martingale (ht)t∈T+ almost surely has right-continuous sample
paths. In any case, we will not need this for our purposes.
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5.1 Stable synchronisation in terms of crack points

Proof. Let ρ be an atomless stationary probability measure of the Markov transition
probabilities (ϕ̄tx). First, let us fix any connected set J ⊂ S1 with 0 < l(J) < 1, and write
∂J =∶{x, y}. For P-almost every ω ∈ Ω, we have that d(ϕ(t, ω)x,ϕ(t, ω)y) → 0 as t →∞,
and so for any unbounded increasing sequence (tn) in T+ with l(ϕ(tn, ω)J) convergent,
the limit of l(ϕ(tn, ω)J) is equal to either 0 or 1. But also, we know by Lemma 5.8 that
for P-almost every ω ∈ Ω, ρ(ϕ(t, ω)J) is convergent as t → ∞. Combining these facts,
we have (using Lemma 5.1(A)) that for P-almost every ω ∈ Ω, l(ϕ(t, ω)J) converges to
either 0 or 1 as t→∞.

Now then, fix an arbitrary k ∈ R, and for each v ∈ [0,1], let Jv ∶= π([k, k + v]). Let
Ω′ ⊂ Ω be a P-full set such that for each ω ∈ Ω′ and v ∈ [0,1] ∩Q, l(ϕ(t, ω)Jv) converges
to either 0 or 1 as t→∞. For each ω ∈ Ω′, let

c(ω) ∶= sup{v ∈ [0,1] ∶ l(ϕ(t, ω)Jv)→ 0 as t→∞}
= inf{v ∈ [0,1] ∶ l(ϕ(t, ω)Jv)→ 1 as t→∞}.

It is easy to see that for each ω ∈ Ω′, π(k+c(ω)) is a crack point of ω. So we are done.

Lemma 5.10. Suppose ϕ is stably synchronising. Then the Markov transition
probabilities then the Markov transition probabilities (ϕ̄tx)x∈X, t∈T+ admit at least one
stationary probability measure that is atomless.

Proof. First suppose that ϕ does not have a deterministic fixed point. Since S1 is compact,
there exists at least one probability measure ρ that is ergodic with respect to (ϕ̄tx); and
by Lemma 4.14, such a probability measure must be atomless.

Now suppose that ϕ does have a deterministic fixed point p. Let p′ ∈ R be a lift of
p, and for each v ∈ [0,1], let Jv ∶= π([p′, p′ + v]). Define the function h ∶Ω→ [0,1] by

h(ω) = sup{v ∈ [0,1) ∶ l(ϕ(t, ω)Jv)→ 0 as t→∞}.

For any c ∈ [0,1) and ω ∈ Ω, h(ω) > c if and only if there exists v ∈ (c,1) ∩Q such that
l(ϕ(t, ω)Jv)→ 0 as t→∞. Hence h is F∞0 -measurable. Now since ϕ is everywhere stable
in S1, we know that for P-almost every ω ∈ Ω there exists a neighbourhood U of p such
that l(ϕ(t, ω)U)→ 0 as t→∞. Hence h(ω) ∈ (0,1) for P-almost all ω ∈ Ω.

Now define the function q ∶Ω→ S1 by

q(ω) = π(p′ + h(ω)).

Since h is F∞0 -measurable, q is F∞0 -measurable. Given any t ∈ T+ and ω ∈ Ω, we have
that for all v ∈ [0,1),

l(ϕ(s,ω)Jv)→ 0 as s→∞ ⇐⇒ l(ϕ(s, θtω) (ϕ(t, ω)Jv) )→ 0 as s→∞

and therefore q(θtω) = ϕ(t, ω)q(ω). Hence, by Corollary 2.60, q∗P is ergodic with respect
to (ϕ̄tx). Moreover, since h(ω) ∈ (0,1) for P-almost all ω ∈ Ω, q∗P is not equal to δp. Since
ϕ is synchronising, ϕ cannot have more than one deterministic fixed point, and so q∗P
is not a Dirac mass at a deterministic fixed point. Therefore (by either Lemma 4.14 or
Lemma 2.61), q∗P is atomless.
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Combining Lemmas 5.9 and 5.10 gives that if ϕ is stably synchronising then P(Ωc) = 1.

Lemma 5.11. Suppose P(Ωc) = 1. Then ϕ is stably synchronising if and only if case (a)
in the statement of Corollary 5.5 holds.

Proof. For any x, y ∈ S1 and ω ∈ Ωc, if r̃(ω) ≠ x and r̃(ω) ≠ y then x ∼ω y. Hence it is
clear that in case (a) in the statement of Corollary 5.5, ϕ is synchronising. For any x ∈ S1

and ω ∈ Ωc, if r̃(ω) ≠ x then there obviously exists a neighbourhood U of x such that
diam(ϕ(t, ω)U) → 0 as t →∞. Hence, in case (a) in the statement of Corollary 5.5, ϕ is
everywhere stable (and therefore uniformly stable, since S1 is compact). Thus we have
seen that in case (a) in the statement of Corollary 5.5, ϕ is stably synchronising.

Now if there exists p ∈ S1 such that P(ω ∈ Ωc ∶ r̃(ω) = p) > 0, then p is not almost
surely stable, and so ϕ is not stably synchronising.

Combining Lemma 5.11 with the fact that if ϕ is stably synchronising then P(Ωc) = 1
yields all of Theorem 5.6, except the final assertion that if ϕ is stably synchronising then
r̃(ω) is almost surely repulsive.

The following statement is not specific to orientation-preserving RDS on the circle, but
generalises to any right-continuous RDS on a metric space (X,d) with B(X) standard.

Lemma 5.12. Let q ∶Ω → S1 be a F∞0 -measurable random fixed point, and suppose that
q∗P is atomless. Let ρ be any stationary probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+. For P-almost every ω ∈ Ω, ρ(x ∈ S1 ∶ x ∼ω q(ω)) = 0.

Proof. Define the function Θ[2] ∶ Ω × S1 × S1 → Ω × S1 × S1 by

Θ[2](ω,x, y) = (θ1ω,ϕ(1, ω)x,ϕ(1, ω)y).

Define the probability measure p on the measurable space (Ω × S1 × S1 , F∞0 ⊗ B(S1 × S1))
by

p(A) ∶= P⊗ ρ( (ω,x) ∈ Ω × S1 ∶ (ω,x, q(ω)) ∈ A ).
For any A ∈ F∞0 ⊗B(S1 ×S1), since q is F∞0 -measurable, the set {(ω,x) ∶ (ω,x, q(ω)) ∈ A}
is (F∞0 ⊗ B(S1))-measurable. With this, we have

p(Θ−1
[2](A)) = P⊗ ρ( (ω,x) ∈ Ω × S1 ∶ (θ1ω,ϕ(1, ω)x,ϕ(1, ω)q(ω)) ∈ A )

= P⊗ ρ( (ω,x) ∈ Ω × S1 ∶ (θ1ω,ϕ(1, ω)x, q(θ1ω)) ∈ A )
= P⊗ ρ(Θ−1{(ω,x) ∈ Ω × S1 ∶ (ω,x, q(ω)) ∈ A} )
= P⊗ ρ( (ω,x) ∈ Ω × S1 ∶ (ω,x, q(ω)) ∈ A )

(since P∣F∞0 ⊗ ρ is Θ1-invariant)

= p(A).

So p is Θ[2]-invariant. Now since q∗P is atomless, we have that

p(Ω ×∆X) = P⊗ ρ( (ω,x) ∈ Ω × S1 ∶ q(ω) = x )

= ∫
S1
P(ω ∈ Ω ∶ q(ω) = x)ρ(dx)

= 0.
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5.1 Stable synchronisation in terms of crack points

So letting Uε ∶= {(x, y) ∈ S1 × S1 ∶ d(x, y) < ε} for each ε > 0, we have that p(Ω × Uε) → 0
as ε→ 0. Hence the set

K ∶= { (ω,x, y) ∈ Ω × S1 × S1 ∶ d(ϕ(n,ω)x,ϕ(n,ω)y)→ 0 as n→∞}

=
∞
⋂
n=1

∞
⋃
i=1

∞
⋂
j=i

Θ−j[2](Ω ×U 1
n
)

is a p-null set. Therefore (by definition of p), the set

L ∶= { (ω,x) ∈ Ω × S1 ∶ d(ϕ(n,ω)x,ϕ(n,ω)q(ω))→ 0 as n→∞}

is a (P⊗ ρ)-null set. So (with Fubini’s theorem) we are done.

Hence we can complete the proof of Theorem 5.6: since S1 is compact, there must exist a
stationary probability measure ρ of the Markov transition probabilities (ϕtx); so applying
Lemma 5.12 with q being the function r in the proof of Corollary 5.5, we have that for
P-almost every ω ∈ Ωc the equivalence relation ∼ω has more than one equivalence class,
and so r̃(ω) is repulsive.

We mention a further relevant fact, which we will not prove here:

Proposition 5.13. Suppose ϕ is stably synchronising, and let r ∶Ω→ S1 be a measurable
function agreeing with r̃ P-almost everywhere in Ωc. There exists an F0

−∞-measurable
random fixed point a ∶Ω → S1 such that every ϕ-invariant probability measure on (Ω ×
S1,F ⊗ B(S1)) has a disintegration (µω) taking the form

µω = λδa(ω) + (1 − λ)δr(ω)
for some λ ∈ [0,1].
We may regard the pair of random fixed points (a, r) as the attractor-repeller pair of ϕ.
For a proof of Proposition 5.13, see [New15c, Theorems 5.10, 5.13].

For an important example of a stably synchronising RDS on S1, see Section 5.3.

Finally, we introduce briefly the notion of a “crack set”:

Definition 5.14. Fix a sample point ω ∈ Ω and a non-empty finite set R ⊂ S1. We say
that R is a crack set of ω if the following statements hold:

(i) each connected component of S1 ∖R is σ-contracting under ω;

(ii) any two distinct connected components of S1 ∖ R are contained in distinct
equivalence classes of ∼ω.

And we say that a crack set R is repulsive if for any x ∈ S1 ∖R, d(ϕ(t, ω)x,ϕ(t, ω)R) /→ 0
as t→∞.

Observe that a point r ∈ S1 is a crack point of ω if and only if the singleton {r} is a crack
set of ω, and that r is a repulsive crack point if and only if {r} is a repulsive crack set.
Also note that if R is a crack set of ω with at least two elements, then R is precisely the
set of all boundary points of equivalence classes of ∼ω. Hence, any given sample point
possesses at most one crack set.

153
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Proposition 5.15. Let ϕ′ be a right-continuous RDS on S1 over (Ω,F , (F s+ts ), (θt),P)
such that ϕ′(t, ω) is an orientation-preserving homeomorphism for all t and ω; and
suppose we have a deterministic semiconjugacy h ∶S1 → S1 from ϕ to ϕ′, with a strictly
increasing lift H ∶R → R. For any ω ∈ Ω and r ∈ S1, if r is a crack point of ω under ϕ′

then h−1({r}) is a crack set of ω under ϕ. If, in addition, r is repulsive (under ϕ′) then
h−1({r}) is repulsive (under ϕ).

Proof. For any x ∈ S1, the number of elements of h−1({x}) is precisely the degree k of
h,2 and each connected component of S1 ∖ h−1({x}) is mapped homeomorphically into
S1 ∖ {x} by h. It is not hard to show that

inf{d(x, y) ∶ x, y ∈ S1, h(x) = h(y)} > 0. (5.3)

It is also not hard to show that for all ε > 0 there exists δ(ε) ∈ (0, 1
2) such that for any

connected J ⊂ S1 of length less than δ, the length of every connected component of h−1(J)
is less than ε.

Now suppose r is a crack point of ω under ϕ′. Let I be any connected component
of S1 ∖ h−1({r}), and let G be a compact subset of I. Fix any ε > 0. Obviously h(G)
is a compact subset of S1 ∖ {r}, so let J be a compact connected subset of S1 ∖ {r}
containing h(G). Note that G is contained in a connected component K of h−1(J). For
all t ∈ T+, we have that ϕ(t, ω)K ⊂ h−1(ϕ′(t, ω)J). Now let T ∈ T+ be such that for all
t ≥ T , l(ϕ′(t, ω)J) < δ(ε). Then, since ϕ(t, ω)K is connected (for any t), we have that
for all t ≥ T , l(ϕ(t, ω)K) < ε and therefore diam(ϕ(t, ω)G) < ε. Since ε was arbitrary, we
have that G contracts under ω. Hence I is σ-contracting under ω. Now given distinct
connected components I1 and I2 of S1 ∖ h−1({r}), if we take x ∈ I1 and y ∈ I2 such that
h(x) = h(y), then h(ϕ(t, ω)x) = h(ϕ(t, ω)y) for all t, and therefore by (5.3), x /∼ω y.
Hence I1 and I2 belong to distinct equivalence classes of ∼ω. Thus we have shown that
h−1({r}) is a crack set of ω under ϕ.

Suppose that the crack set h−1({r}) is not repulsive, and let x ∈ S1 ∖ h−1({r}) be such
that d(ϕ(t, ω)x,ϕ(t, ω)(h−1({r}))) → 0 as t → ∞. Since h is uniformly continuous, it
follows that d(ϕ′(t, ω)h(x), ϕ′(t, ω)r) → 0 as t → ∞. Since h(x) ≠ r, it follows that r is
not repulsive.

5.2 A test for stable synchronisation

The aim of this section is to present weak and easily verifiable sufficient conditions for
stable synchronisation. Heuristically, the conditions that we shall give demonstrate that
“sufficient flexibility” in how the noise can effect the system is guaranteed to lead to
stable synchronisation. An application shall be presented in detail in Section 5.3.

Some additional results which will not be presented here are included in Section 2 of
[New15c].

When we wish to say that ϕ is contractible on S1, we will just say that “ϕ is contractible”.

2that is, the unique integer k for which the map y ↦H(y) − ky is periodic.
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5.2 A test for stable synchronisation

Definition 5.16. We say that ϕ is two-way contractible3 if for any distinct x, y ∈ S1,

P(ω ∶ ∃ t ∈ T+ s.t. d+(ϕ(t, ω)x,ϕ(t, ω)y) < d+(x, y) ) > 0.

By reversing the order of inputs, this is equivalent to saying that for any distinct x, y ∈ S1,

P(ω ∶ ∃ t ∈ T+ s.t. d+(ϕ(t, ω)x,ϕ(t, ω)y) > d+(x, y) ) > 0.

We can also define two-way contractibility in terms of connected subsets of S1: ϕ is
two-way contractible if and only if for every connected set J ⊂ S1 with 0 < l(J) < 1,

P(ω ∶ ∃ t ∈ T+ s.t. l(ϕ(t, ω)J) < l(J) ) > 0.

Again, this is equivalent to saying that for every connected set J ⊂ S1 with 0 < l(J) < 1,

P(ω ∶ ∃ t ∈ T+ s.t. l(ϕ(t, ω)J) > l(J) ) > 0.

Obviously, if ϕ is two-way contractible then ϕ is contractible.

Remark 5.17. Suppose there exists a separable metrisable topology on Ω whose Borel
σ-algebra coincides with F , such that P has full support and for all t ∈ T+ and x ∈ S1,
the map ω ↦ ϕ(t, ω)x is continuous. Then, as in Remarks 2.73 and 4.67, in order
to show that ϕ is two-way contractible, it is sufficient to show that for each pair of
distinct points x, y ∈ S1 there exists a sample point ω ∈ Ω and a time t ∈ T+ such that
d+(ϕ(t, ω)x,ϕ(t, ω)y) < d+(x, y).

We will not need the following proposition elsewhere, but it is worth stating nonetheless:

Proposition 5.18. If ϕ is two-way contractible then for any x, y ∈ S1 and ε > 0 there
exists t ∈ T+ such that

P(ω ∶ d+(ϕ(t, ω)x,ϕ(t, ω)y) < ε ) > 0.

For the proof, see [New15c, Proposition 2.5].

The following theorem (the main result of this section) generalises results in [DKN07,
Section 5.1].

Theorem 5.19. The following statements are equivalent:

(i) ϕ is two-way contractible and has no deterministic fixed points;

(ii) ϕ is contractible and has reverse-minimal dynamics;

and when these hold, ϕ is stably synchronising.

3In [New15c], the term “compressible” is used; however, since we already use the term
“incompressible” to describe probability measures on the phase space X, we use the term “two-way
contractible” here in order to avoid confusion. (The term “two-point contractible” also reflects the
meaning more clearly.)
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5.2 A test for stable synchronisation

Observe in particular that if ϕ has reverse-minimal dynamics then contractibility, two-
way contractibility, synchronisation and stable synchronisation are all equivalent.

Before proving Theorem 5.19, it is worth mentioning that in continuous time, if ϕ is
continuous then reverse-minimal dynamics and minimal dynamics are the same:

Proposition 5.20. If T = R and ϕ is continuously invertible, then the following are
equivalent:

(i) ϕ has reverse-minimal dynamics on S1;

(ii) ϕ has minimal dynamics on S1.

Proof. We first show that (i)⇒(ii). Suppose we have a closed invariant non-empty proper
subset G of S1; we need to show that there exists an open invariant non-empty proper
subset U of S1. Firstly, if G is a singleton {p} then U ∶= S1 ∖ {p} is clearly invariant.
Now consider the case that G is not a singleton, and let V be a connected component
of S1 ∖ G; we will show that U ∶= S1 ∖ V̄ is invariant. (Note that U is non-empty,
i.e. V̄ ≠ S1, since G is not a singleton.) Fix any ω with the property that ϕ(t, ω)G ⊂ G
for all t ∈ T+. Since ∂V ⊂ G, we have that for all t, ϕ(t, ω)∂V ⊂ G and therefore in
particular ϕ(t, ω)∂V ∩ V = ∅. Now since ϕ is a continuous RDS, we can define continuous
functions a, b ∶ [0,∞) → R with a < b such that [a(t), b(t)] is a lift of ϕ(t, ω)V̄ for all t.
(So {a(t), b(t)} projects onto ϕ(t, ω)∂V for all t.) For all t, since ϕ(t, ω)∂V ∩ V = ∅,
we have that a(t), b(t) ∉ (a(0), b(0)). Therefore (due to the intermediate value theorem),
a(t) ≤ a(0) for all t and b(t) ≥ b(0) for all t. Hence V̄ ⊂ ϕ(t, ω)V̄ for all t. Since ϕ(t, ω)
is bijective for all t, it follows that ϕ(t, ω)U ⊂ U for all t. So U is invariant.

Now, in order to show that (ii)⇒(i), first observe that a set A ⊂ S1 is invariant if and
only if P-almost every ω ∈ Ω has the property that for all t ∈ T+,

ϕ(t, ω)−1(X ∖A) ⊂ X ∖A.

Hence the fact that (ii)⇒(i) follows from the fact that (i)⇒(ii), except with the family of
functions (ϕ(t, ω))t∈T+, ω∈Ω replaced by the family of functions (ϕ(t, ω)−1)t∈T+, ω∈Ω.

Proof of Theorem 5.19

To prove Theorem 5.19, we will first prove that (i)⇒(ii)⇒stable synchronisation, and
then, using material developed along the way, we will prove that (ii)⇒(i).

Proof that (i)⇒(ii). Suppose ϕ is two-way contractible and has no deterministic fixed
points. Suppose for a contradiction that ϕ does not have reverse-minimal dynamics, and
let U be an open invariant non-empty proper subset of S1. Let V be a maximal-length
connected component of U . Since there are no deterministic fixed points, S1 ∖ U is not
a singleton and so l(V ) < 1. Hence, since ϕ is two-way contractible, there is a positive-
measure set of sample points ω ∈ Ω for each of which, for some tω ∈ T+, l(ϕ(tω, ω)V ) >
l(V ). However, ϕ(t, ω)V is connected for all t and ω, and so if l(ϕ(tω, ω)V ) > l(V ) then
ϕ(tω, ω)V cannot be a subset of U . This contradicts the fact that U is invariant.
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5.2 A test for stable synchronisation

We now start working towards the proof that (ii)⇒stable synchronisation.

Lemma 5.21. Suppose that ϕ is contractible, and that there exists a stationary probability
measure ρ of the Markov transition probabilities (ϕ̄tx)x∈X, t∈T+ that is atomless and has full
support. Then ϕ is synchronising.

(We will soon prove that under these same conditions, ϕ is stably synchronising.)

Proof. Fix any distinct x, y ∈ S1. Let J ⊂ S1 be a connected set with ∂J = {x, y}.
By Proposition 4.68 and Lemma 5.8, there is a P-full set of sample points ω with the
properties that

(a) there exists an unbounded increasing sequence (tn) in T+ such that

d(ϕ(tn, ω)x,ϕ(tn, ω)y)→ 0 as n→∞ ;

(b) ρ(ϕ(t, ω)J) is convergent as t→∞.

Fix any ω with both these properties, and let (tn) be as in (a). For any n,
d(ϕ(tn, ω)x,ϕ(tn, ω)y) is precisely the smaller of l(ϕ(tn, ω)J) and 1−l(ϕ(tn, ω)J). Hence
there must exist a subsequence (tmn) of (tn) such that either l(ϕ(tmn , ω)J)→ 0 as n→∞
or l(ϕ(tmn , ω)J) → 1 as n → ∞. Since ρ is atomless, Lemma 5.1(A) then gives that
either ρ(ϕ(tmn , ω)J)→ 0 as n→∞ or ρ(ϕ(tmn , ω)J)→ 1 as n→∞. Since ρ(ϕ(t, ω)J) is
convergent as t →∞, it follows that either ρ(ϕ(t, ω)J) → 0 as t →∞ or ρ(ϕ(t, ω)J) → 1
as t→∞. Since ρ has full support, Lemma 5.1(B) then gives that either l(ϕ(t, ω)J)→ 0
as t→∞ or l(ϕ(t, ω)J)→ 1 as t→∞. Hence d(ϕ(t, ω)x,ϕ(t, ω)y)→ 0 as t→∞.

Lemma 5.22. Under the hypotheses of Lemma 5.21, for any connected J ⊂ S1,

P(ω ∶ l(ϕ(t, ω)J)→ 0 as t→∞ ) = 1 − ρ(J).

Proof. Fix any connected J ⊂ S1. As in the proof of Lemma 5.21, we have that for
P-almost every ω ∈ Ω, either

ρ(ϕ(t, ω)J)→ 0 and l(ϕ(t, ω)J)→ 0 as t→∞.

or
ρ(ϕ(t, ω)J)→ 1 and l(ϕ(t, ω)J)→ 1 as t→∞.

So then, letting E denote the set of sample points ω for which the latter scenario holds,
the dominated convergence theorem gives that as t→∞,

∫
Ω
ρ(ϕ(t, ω)J)P(dω) → ∫

Ω
1E(ω)P(dω) = P(E).

But we also know that for any t,

∫
Ω
ρ(ϕ(t, ω)J)P(dω) = ρ(J).

Hence P(E) = ρ(J), i.e. the probability of the latter scenario is ρ(J) and the probability
of the former scenario is 1 − ρ(J), as required.
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5.3 Example: Additive-noise SDE on S1

Combining Lemmas 5.21 and 5.22, we have:

Corollary 5.23. Under the hypotheses of Lemma 5.21, ϕ is stably synchronising.

Proof. We already know (from Lemma 5.21) that ϕ is synchronising. Now fix any x ∈X.
Let (Un)n∈N be a nested sequence of connected neighbourhoods of x such that ⋂nUn = {x}.
For each n,

P0(x) = P(ω ∶ ∃open U ∋ x s.t. l(ϕ(t, ω)U)→ 0 as t→∞ )
≥ P(ω ∶ l(ϕ(t, ω)Un)→ 0 as t→∞ )
= 1 − ρ(Un).

But since ρ is atomless, ρ(Un)→ 0 as n→∞. Hence P0(x) = 1. So ϕ is everywhere stable
(and therefore uniformly stable).

Now since S1 is compact, there exists at least one stationary probability measure ρ of the
Markov transition probabilities (ϕ̄tx)x∈X, t∈T+ . If ϕ has reverse-minimal dynamics, then it
is clear that ρ has full support, and Lemma 2.91 gives that ρ is atomless. Combining this
with Corollary 5.23 completes the proof that (ii)⇒stable synchronisation.

Finally, to show that (ii)⇒(i), we use the following corollary of Lemma 5.22:

Corollary 5.24. Under the hypotheses of Lemma 5.21, ϕ is two-way contractible.

Proof. For any connected J ⊂ S1 with 0 < l(J) < 1, since ρ has full support, ρ(J) < 1.
Hence, by Lemma 5.22, there is a positive-measure set of sample points ω such that
l(ϕ(t, ω)J)→ 0 as t→∞. So in particular, ϕ is two-way contractible.

Combining Corollary 5.24 with the fact that reverse-minimality implies the existence of
a (ϕ̄tx)-stationary probability measure that is atomless and has full support yields that
(ii)⇒(i).

5.3 Example: Additive-noise SDE on S1

We now demonstrate an application of Theorem 5.19: we will see that for a “generic”
vector field on S1, the system resulting from an additive superposition of Gaussian white
noise over this vector field is stably synchronising. Specifically, stable synchronisation
occurs when the vector field has no subperiodicity. We will also see what happens when
the vector field does have subperiodicity.

Recall that the Wiener measure in Example 2.6 has full support (with respect to the
topology of uniform convergence on compact sets).

Theorem 5.25. Given any Lipschitz periodic function b ∶R→ R with least period 1, and
any σ ∈ R ∖ {0}, the RDS on S1 generated by the SDE dφt = b(φt)dt + σdWt is stably
synchronising.

Lemma 5.26. Let b ∶R → R be a continuous periodic function, and let k > 0 be a value
that is not a period of b. Then there exists a ∈ R such that b(a + k) < b(a).
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5.3 Example: Additive-noise SDE on S1

Proof of Lemma 5.26. Let m > 0 be a period of b. To prove the result, we assume that
there exists a′ ∈ [0,m) such that b(a′+k) > b(a′) and show that this implies the existence
of a point a ∈ [0,m) such that b(a + k) < b(a). Note that since b is m-periodic,

∫
m

0
b(x + k)dx = ∫

m

0
b(x)dx.

But since b is continuous, there exists ε ∈ (0,m − a′) such that

∫
a′+ε

a′
b(x + k)dx > ∫

a′+ε

a′
b(x)dx.

Hence it is clear that there exists a ∈ [0,m) such that b(a + k) < b(a).

Proof of Theorem 5.25. Let ϕ be the RDS generated by the SDE dφt = b(φt)dt + σdWt.
We first show that ϕ has no deterministic fixed points: for any p ∈ S1, if we take ω(t) =
k−b(p)
σ t for some arbitrary k ≠ 0, then the function u ∶ t↦ ϕ(t, ω)p satisfies the differential

equation u̇ = b(u) − b(p) + k (to be interpreted in the obvious way) and so it is not the
case that ϕ(t, ω)p = p for all t; so by Remark 2.73, p is not a deterministic fixed point.
We next show that ϕ is two-way contractible. Assume without loss of generality that
σ > 0. Fix a connected set J ⊂ S1 with 0 < l(J) < 1, and let [c1, c2] ⊂ R be a lift of J̄ (so
c2 − c1 = l(J)). Since b is continuous and periodic but not l(J)-periodic, by Lemma 5.26
there exists a ∈ R such that b(a+l(J)) < b(a); obviously, we can choose a to be larger than
c1. Pick any 0 < k < b(a) − b(a + l(J)), and let ε > 0 be such that for all x1 ∈ (a − ε, a + ε)
and x2 ∈ (a + l(J) − ε, a + l(J) + ε),

b(x1) > b(x2) + k.

Let M ∶=maxx∈R ∣b(x)∣, and pick any δ > 0 with

δ < min( kε
4M

,
ε

2
) .

Let η > 0 be a value sufficiently large sufficiently that

M

ση
< δ

a − c1

.

Let ω ∈ Ω be a sample point such that

ω(t) = { ηt t ∈ [0, a−c1ση ]
a−c1
σ t ∈ [a−c1ση ,∞).

Let u1, u2 ∶ [0,∞) → R be lifts of the functions t ↦ ϕ(t, ω)π(c1) and t ↦ ϕ(t, ω)π(c2)
respectively, such that u1(0) = c1 and u2(0) = c2. For each t ∈ (0, a−c1ση ), we have that

u̇1(t) = b(u1(t)) + ση ∈ (ση(1 − M
ση), ση(1 + M

ση)) ⊂ (ση(1 − δ
a−c1 ), ση(1 +

δ
a−c1 ))

and likewise
u̇2(t) ∈ (ση(1 − δ

a−c1 ), ση(1 +
δ

a−c1 )) .
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5.3 Example: Additive-noise SDE on S1

Hence, we have that
u1(a−c1ση ) ∈ (a − δ, a + δ)

and
u2(a−c1ση ) ∈ (a + l(J) − δ, a + l(J) + δ).

Now for each t ∈ (a−c1ση ,∞), we have that

u̇1(t) = b(u1(t)) and u̇2(t) = b(u2(t)).

Suppose for a contradiction that there exists t ∈ (a−c1ση ,
a−c1
ση + ε

2M ) such that

u1(t) ∉ (a − ε, a + ε).

Let
t1 ∶= min{t ≥ a−c1

ση ∶ u1(t) ∉ (a − ε, a + ε)}.
Obviously u(t1) is equal to either a − ε or a + ε. So (by the mean value theorem), there
exists t2 ∈ (a−c1ση , t1) such that

∣b(u1(t2))∣ = ∣u̇1(t2)∣ >
ε − δ

t2 − a−c1
ση

> ε − δ
( ε

2M
)

>
1
2ε

( ε
2M
)

= M,

contradicting the fact that M =maxx∈R ∣b(x)∣. So then, we have that

u1(t) ∈ (a − ε, a + ε) ∀ t ∈ (a−c1ση ,
a−c1
ση + ε

2M ).

Likewise, we have that

u2(t) ∈ (a + l(J) − ε, a + l(J) + ε) ∀ t ∈ (a−c1ση ,
a−c1
ση + ε

2M ).

So then,
u̇2(t) − u̇1(t) < −k ∀ t ∈ (a−c1ση ,

a−c1
ση + ε

2M )
and therefore

u2(a−c1ση + ε
2M ) − u1(a−c1ση + ε

2M ) < u2(a−c1ση ) − u1(a−c1ση ) −
kε

2M

= (u2(a−c1ση ) − (a + l(J))) + (a − u1(a−c1ση )) + l(J) −
kε

2M

< ∣u2(a−c1ση ) − (a + l(J))∣ + ∣a − u1(a−c1ση )∣ + l(J) −
kε

2M

< 2δ + l(J) − kε

2M
< 2δ + l(J) − 2δ

= l(J).
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5.3 Example: Additive-noise SDE on S1

Hence
l(ϕ(a−c1ση + ε

2M , ω)J) < l(J).
So (by Remark 5.17), ϕ is two-way contractible.

Since ϕ has no deterministic fixed points and is two-way contractible, Theorem 5.19
gives that ϕ is stably synchronising.

As an example, consider the SDE

dφt = (a + ε cos(2πφt))dt + σdWt

where ε ≠ 0. In the deterministic case where σ = 0, we have the following: for ∣a∣ < ∣ε∣,
there is one repelling fixed point and one attracting fixed point, whose basin of attraction
is the whole circle minus the repelling fixed point; for ∣a∣ = ∣ε∣, there is exactly one fixed
point, which attracts every orbit but is not Lyapunov stable; and for ∣a∣ > ∣ε∣, there are no
fixed points, and all orbits move periodically round the circle with the same periodicity.
(So the system exhibits a saddle-node bifurcation as a increases past ∣ε∣ or decreases past
−∣ε∣.) However, when noise is incorporated—i.e. when σ ≠ 0—Theorem 5.25 gives that
the associated RDS is stably synchronising for all values of a. Hence we can say that
for ∣a∣ ≥ ∣ε∣, the addition of noise has the effect of “creating” synchronisation, i.e. the
phenomenon of “noise-induced synchronisation” occurs. In terms of random attractors
and repellers: by Proposition 5.13, when noise is incorporated, we have that for all values
of a there is one repelling random fixed point (namely, the crack point) and one attracting
random fixed point. (So noise destroys the saddle-node bifurcation.)

We now consider the case that the least period of b is not 1. Obviously if b is a constant
function then there cannot be synchronisation, since (under any realisation of the noise)
any two trajectories stay the same distance apart. If the least period of b is 1

n for some
n ≥ 2, then the RDS is not contractible on S1, since any two trajectories starting at
distance 1

n apart will remain at distance 1
n apart; nonetheless, there will still be some

local synchronisation:

Corollary 5.27. Let b ∶R → R be a Lipschitz periodic function with least period 1
n (for

some n ∈ N), and fix any σ ∈ R ∖ {0}. Let ϕ be the RDS on S1 generated by the SDE
dφt = b(φt)dt + σdWt. Then for P-almost every ω ∈ Ω there exists p ∈ S1 such that
the set {p + π( kn)}k=0,...,n−1 is a repulsive crack set of ω. Consequently, there is a unique
stationary probability measure ρ for the Markov transition probabilities (ϕtx)x∈X, t∈T+, and
the ρ-clustering number of ϕ is precisely n.

Lemma 5.28. Let b ∶R → R be a Lipschitz 1
n-periodic function (for some n ∈ N), and fix

any σ ∈ R. Let ϕ be the RDS on S1 generated by the SDE dφt = b(φt)dt + σdWt. Let
ϕ′ be the RDS on S1 generated by the SDE dφt = nb( 1

nφt)dt + nσdWt. Then, for any
ω ∈ Ω, y ∈ S1 and k ∈ Z, letting u ∶ [0,∞) → R be a lift of the map t ↦ ϕ′(t, ω)y, we have
that

ϕ(t, ω)π( 1
nu(0) + k

n) = π( 1
nu(t) + k

n) (5.4)

for all t ≥ 0. Hence the map h ∶x↦ nx is a deterministic semiconjugacy from ϕ to ϕ′.
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Proof of Lemma 5.28. Fix k ∈ Z. Let v(t) ∶= 1
nu(t) + k

n for all t. Then for all t ≥ 0,

v(t) = 1

n
(u(0) + ∫

t

0
nb( 1

nu(s))ds + nσω(t)) +
k

n

= v(0) + ∫
t

0
b(v(s) − k

n)ds + σω(t)

= v(0) + ∫
t

0
b(v(s))ds + σω(t).

This proves (5.4). Now for any x ∈ S1, if we fix a lift x′ ∈ R of x and take

y ∶= h(x), u(0) ∶= nx′, k ∶= 0,

then applying h to both sides of (5.4) gives that h(ϕ(t, ω)x) = ϕ′(t, ω)y. So h is a
deterministic semiconjugacy from ϕ to ϕ′.

Proof of Corollary 5.27. Let ϕ, ϕ′ and h be as in Lemma 5.28. By Theorem 5.25,
ϕ′ is stably synchronising. Hence, by Theorem 5.6, P-almost every ω ∈ Ω admits a
repulsive crack point r(ω) under ϕ′. By Proposition 5.15 and Lemma 5.28, it follows
that h−1({r(ω)}) is a repulsive crack set of ω under ϕ. Obviously, h−1({r(ω)}) takes the
form {p + π( kn)}k=0,...,n−1 for some p ∈ S1.

Now recall, from the proof of Theorem 5.25, the construction of a sample point ω taking
the trajectory of c1 into the arc with lift (a − δ, a + δ); this construction demonstrates in
general that every (deterministic) non-empty open set is accessible from every point in
S1. So ϕ has minimal dynamics on S1. Now let ρ be an ergodic probability measure of
(ϕtx). Since S1 is minimal, ρ must have full support. Since P-almost every ω ∈ Ω admits
a crack set, it is clear that ϕ is stable with respect to ρ. But since every stationary
probability measure of (ϕtx) must have full support, it then follows by Lemma 4.34 that
ρ is the only stationary probability measure of (ϕtx).4

Now let k be the ρ-clustering number of ϕ. Since ϕ is stable with respect to ρ,
Theorem 4.52 gives that k < ∞. For P-almost every ω ∈ Ω, letting U1, . . . , Uk be as
described in Theorem 4.52, we have that U1, . . . , Uk are contained in distinct equivalence
classes of ∼ω and (since ρ has full support) ⋃ki=1Ui is dense in S1. Hence (by a simple
“pigeonhole principle” argument) we have that k = n.

As an example, consider the SDE

dφt = (a + ε cos(2πnφt))dt + σdWt

where ε ≠ 0 and n ≥ 2. In the deterministic case where σ = 0, we have the following:
for ∣a∣ < ∣ε∣ there are n repelling fixed points and n attracting fixed points, with the
basin of attraction of each attracting fixed point being the open interval connecting two
consecutive repelling fixed points; for ∣a∣ = ∣ε∣, there are exactly n fixed points, with

4Alternatively: it is not hard to show, using the strong Markov property, that for any continuous
RDS ϕ on S1 with T = R, the interiors of the supports of two distinct (ϕtx)-ergodic probability measures
must be mutually disjoint. Hence in particular, if ϕ has minimal dynamics, then there is only one
(ϕtx)-stationary probability measure.
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5.3 Example: Additive-noise SDE on S1

heteroclinic connections between consecutive fixed points; and for ∣a∣ > ∣ε∣, there are no
fixed points, and all orbits move periodically round the circle with the same periodicity.
However, when noise is incorporated—i.e. when σ ≠ 0—the conclusions of Corollary 5.27
hold: the addition of noise does not have the effect of causing “global” synchronisation,
but synchronisation within intervals of length 1

n does occur. (Thus one can still say that
for ∣a∣ ≥ ∣ε∣, the phenomenon of “noise-induced synchronisation” occurs.) In terms of
random attractors and repellers: when noise is incorporated, for all values of a there
is a “random repeller” consisting of n points (namely, the crack set) and a “random
attractor” consisting of n points (namely, the support of the unique Markov invariant
measure). Dynamically, this scenario is somewhat analogous to the dynamics exhibited
by the discrete-time dynamical system f on S1 given by the lift

F (x) = x + ε cos(2πnx) + 1
n

where ε ≠ 0 is small. (This dynamical system also has an n-point repeller, namely the

periodic orbit {4k+3
4n
}n−1

k=0 , and an n-point attractor, namely the periodic orbit {4k+1
4n
}n−1

k=0 .)
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Chapter 6. General Synchronisation Tests

So far, we have seen criteria for synchronisation in monotone RDS and in orientation-
preserving RDS on the circle. In this chapter, we present two tests for synchronisation
in RDS on more general phase spaces.

Standing Assumption. Throughout Chapter 6, we fix a separable metric d on X whose
Borel σ-algebra coincides with Σ, and we assume that ϕ is a right-continuous RDS on
the metric space (X,d).

(Recall once again that the condition that the Borel σ-algebra of d is standard is equivalent
to the condition that X is a Borel subset of the d-completion of X.)

As in Chapters 4 and 5, for each ω ∈ Ω, ∼ω denotes the equivalence relation

x ∼ω y ⇐⇒ d(ϕ(t, ω)x , ϕ(t, ω)y ) → 0 as t→∞.

6.1 Necessary and sufficient conditions for stable

synchronisation on compact spaces

Recall that if X is compact then ϕ admits at least one minimal set K ⊂ X. Also recall
that every compact minimal set can be expressed as the support of an ergodic probability
measure of the Markov transition probabilities (ϕtx)x∈X, t∈T+ . The following result is the
main result of [New15b].

Theorem 6.1. Suppose X is compact. Then ϕ is stably synchronising if and only if the
following conditions hold:

(i) there is a unique minimal set K ⊂X;

(ii) ϕ is contractible on the unique minimal set K;

(iii) the unique minimal set K admits stable trajectories.

Now if X is compact and ϕ is synchronising then (by Lemma 4.8) there is a unique
stationary probability measure of the Markov transition probabilities (ϕtx)x∈X, t∈T+ . Hence
Theorem 6.1 can be re-expressed as follows:

Corollary 6.2. Suppose X is compact, and let ρ be a stationary probability measure of
the Markov transition probabilities (ϕtx)x∈X, t∈T+. Then ϕ is stably synchronising if and
only if the following conditions hold:

(i) suppρ is the only minimal set;

(ii) ϕ is contractible on suppρ;

(iii) suppρ admits stable trajectories.
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6.1 Necessary and sufficient conditions for stable synchronisation on compact spaces

Note that a sufficient condition for suppρ to be the only minimal set is that ρ is the only
(ϕtx)-stationary probability measure.

Proof of Theorem 6.1. If ϕ is synchronising then obviously ϕ is contractible on X. So
Lemma 4.69 gives that (i) holds; and therefore, obviously, (ii) holds. If ϕ is stably
synchronising then (iii) also holds.

Now suppose that (i), (ii) and (iii) hold. By Proposition 4.40, (i) and (iii) imply that ϕ is
uniformly stable; so we just need to establish that ϕ is synchronising. Let C ⊂X ×X be
any non-empty closed set that is invariant under the two-point motion ϕ×2. By the final
assertion in Proposition 4.40, it is clear that C has non-empty intersection with K ×K.
Now by (ii), Proposition 4.68 gives that any non-empty closed invariant subset of K ×K
has non-empty intersection with ∆K . Hence C has non-empty intersection with ∆K .
Now it is clear that for any closed G ⊂ X, G is invariant if and only if ∆G is invariant
under ϕ×2; so then, since K is minimal, it is clear that ∆K is minimal under ϕ×2. Hence,
since C has non-empty intersection with ∆K , it follows that ∆K ⊂ C. Now recall that C
was an arbitrary non-empty closed invariant set under ϕ×2. So then, we have seen that
∆K is contained in every non-empty closed invariant set under ϕ×2. So ∆K is the only
minimal set under ϕ×2.

Now fix any x, y ∈X. Fix a point p ∈K, and for each n ∈ N and s ∈ Q ∩T+, let

Rn,s = {ω ∈ Ω ∶ (ϕ(s,ω)x,ϕ(s,ω)y) ∈ B 1
n
(p) ×B 1

n
(p)}

Sn,s = θ−s (EB1
n
(p)) .

Note that for every n and s, σ(Rn,t ∶ t ≤ s) ⊂ F s0 and Sn,s ∈ F∞s . Since K is the only
minimal set under ϕ×2, Corollary 2.81 gives that P (⋃sRn,s) = 1 for all n. Obviously
P(Sn,s) = P 1

n
(p) for all n and s, and so P(Sn,s) → 1 as n → ∞ uniformly in s. So then,

Lemma 4.41 gives that

P(⋃
n
⋃
s
Rn,s ∩ Sn,s) = 1. (6.1)

Now for any n and s, for any ω ∈ Rn,s∩Sn,s, we clearly have that x ∼ω y. Hence (6.1) gives
that for P-almost all ω ∈ Ω, x ∼ω y. Since x and y were arbitrary, ϕ is synchronising.

Example 6.3. This example is taken from Section 4 of [New15b] (which is itself an
extension of the “no subperiodicity” case of the example in [LeJ87]). Let X = S1, which
we identify with R/Z in the obvious manner. Recall that for any continuous function
f ∶S1 → S1 there exists k ∈ Z (called the degree of f) such that for any lift F ∶R→ R of f ,
the map y ↦ F (y) − ky is 1-periodic. If f is an orientation-preserving homeomorphism,
the degree of f is 1. Following the terminology of [Kai93], if f has degree 1 then a
subperiod of f is a value α ∈ (0,1) such that the map y ↦ F (y)− y is α-periodic. Now fix
any smooth function f ∶S1 → S1 of degree 1, and let F ∶R→ R be a lift of f . Let I = [0,1),
with I being the Borel σ-algebra of I, and let ν be the Lebesgue measure on I. For each
α ∈ I, define fα ∶S1 → S1 by

fα(π(x)) = π(F (x + α) − α)
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6.2 Necessary and sufficient conditions for ρ-almost stable synchronisation

(where π ∶R → S1 denotes the natural projection). Let ϕ be the RDS generated by the
random map (I,I, ν, (fα)α∈I). It is easy to show that the Lebesgue measure l on S1 is
stationary under the Markov transition probabilities (ϕnx)x∈S1, n∈N0

. Define λ ∈ [−∞,∞)
by

λ ∶= ∫
1

0
log ∣F ′(y)∣dy.

If l is ergodic with respect to the Markov transition probabilities (ϕnx), then λ is precisely
the “Lyapunov exponent” associated to l; by [LeJ87, Lemme 3], if λ < 0 then ϕ is
stable with respect to l. If l is not (ϕnx)-ergodic but λ < 0, then (due to the existence
of an ergodic decomposition of l) there exists a (ϕnx)-ergodic probability measure ρ for
which the associated Lyapunov exponent is negative; and so once again, ϕ is stable with
respect to ρ. Hence, in either case, if λ < 0 then S1 admits stable trajectories. (If f is
a diffeomorphism, then due to the strict form of Jensen’s inequality, we automatically
have that λ < 0.) Now one can show that S1 is minimal if and only if f is not a rational
rotation; and one can show that ϕ is contractible on S1 if and only if f has no subperiods.
(Note that any rational rotation must have a subperiod.) So then, applying Theorem 6.1,
we have the following: if f has no subperiods and λ < 0 then ϕ is stably synchronising.

6.2 Necessary and sufficient conditions for ρ-almost

stable synchronisation

If we have a (ϕtx)x∈X, t∈T+-ergodic probability measure ρ on X such that ϕ is stable with
respect to ρ, a natural question to ask is whether ϕ is ρ-almost stably synchronising. To
phrase the issue another way: In Theorem 4.52, when do we have that n = 1? We will
now answer this question.

As in Chapter 4, define the equivalence relation ∼ on X by

x ∼ y ⇐⇒ P(ω ∶ x ∼ω y) = 1.

Definition 6.4. Let ρ be a probability measure on X. A ρ-full-length rectangle is a
set A ⊂ X ×X taking the form A = A1 × A2 where A1,A2 ∈ B(X) with ρ(A1) > 0 and
ρ(A2) = 1.

Now let ρ be an ergodic probability measure of the Markov transition probabilities
(ϕtx)x∈X, t∈T+ . For any x ∈ suppρ, it is clear that either ρ(Gx) = 0 or Gx = suppρ.

Definition 6.5. Given an ergodic probability measure ρ of the Markov transition
probabilities (ϕtx)x∈X, t∈T+ and a point x ∈ suppρ, we will say that x is ρ-transitive if
Gx = suppρ.

Let Aρ denote the set of ρ-transitive points. By Lemma 2.76, Aρ is a ρ-full set.

For any p ∈ X, we write Cp ⊂ X ×X for the set of pairs that are contractible towards
p. For any A ⊂X, we write CA ⊂X×X for the set of pairs that are contractible towards A.

The following is the main result of [New16].
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6.2 Necessary and sufficient conditions for ρ-almost stable synchronisation

Theorem 6.6. Let ρ be an ergodic probability measure of the Markov transition
probabilities (ϕtx)x∈X, t∈T+, and suppose that ϕ is stable with respect to ρ.1 The following
statements are equivalent:

(i) there is a non-ρ-null set R ⊂ X such that for each p ∈ R, the set Cp contains a
ρ-full-length rectangle;

(ii) the set CAρ contains a ρ-full-length rectangle;

(iii) ϕ is ρ-almost stably synchronising;

(iv) there is a ρ-full set A ⊂ X such that for all x, y ∈ A and p ∈ suppρ, (x, y) is
contractible towards p.

Condition (ii) is likely to be the most useful in practice for testing whether we have ρ-
almost stable synchronisation.

The “non-trivial” part is showing that (ii)⇒(iii). Our proof generalises a technique in
[Hom13, Proof of Theorem 1.1].

Proof. Suppose (i) holds; then since Aρ is a ρ-full set, Aρ ∩ R ≠ ∅, and so there exists
p ∈ Aρ such that Cp contains a ρ-full-length rectangle, implying (ii).

Now suppose that (ii) holds. Let Qρ be the statistical equilibrium associated to ρ. Let
(Θt
[2])t∈T+ be the skew product flow associated to ϕ×2, that is

Θt
[2](ω,x, y) ∶= (θtω,ϕ(t, ω)x,ϕ(t, ω)y).

By Lemma 2.21(A), P∣F∞0 ⊗ E2(Qρ) is (Θt
[2])t∈T+-invariant. For each ε > 0, let Uε ∶=

{(x, y) ∈X ×X ∶ d(u, v) < ε}. Obviously Ω ×∆X = ⋂∞k=1 Ω ×U 1
k

, and so writing

Z ∶= { (ω,x, y) ∶ d(ϕ(j, ω)x,ϕ(j, ω)y)→ 0 as j →∞}

=
∞
⋂
k=1

∞
⋃
i=0

∞
⋂
j=i

Θ−j[2](Ω ×U 1
k
),

we have that P ⊗E2(Qρ)(Z) ≤ E2(Qρ)(∆X). But it is also clear that Ω × ∆X ⊂ Z.
Therefore P⊗E2(Qρ)(Z ∖ (Ω ×∆X)) = 0. Hence, by Fubini’s theorem, the set

Y ∶= { (x, y) ∈ (X ×X) ∖∆X ∶ P(ω ∶ x ∼ω y) > 0}

is an E2(Qρ)-null set. Now let A1,A2 ∈ B(X) be such that ρ(A1) > 0, ρ(A2) = 1 and
A1 × A2 ⊂ CAρ . We will show that for any (x, y) ∈ A1 × A2, P(ω ∶ x ∼ω y) > 0. Fix any
(x, y) ∈ A1×A2, and let p ∈ Aρ be such that (x, y) is contractible towards p. Let U,V ⊂X
be open sets with Ū ⊂ V , ρ(U) > 0 and P(EV ) > 0; and let t1 ∈ T+ be such that ϕt1p (U) > 0.
Since ϕ(t1, ω) is continuous for all ω, let r > 0 be such that

k1 ∶= P(ω ∶ ϕ(t1, ω)Br(p) ⊂ Ū) > 0

1Recall that by Lemma 4.39, this is precisely the same as saying that suppρ admits stable trajectories.
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6.2 Necessary and sufficient conditions for ρ-almost stable synchronisation

and let t0 ∈ T+ be such that

k0 ∶= P(ω ∶ ϕ(t0, ω)x,ϕ(t0, ω)y ∈ Br(p) ) > 0.

Then we have that

P(ω ∶ x ∼ω y)
≥ P(ω ∶ ϕ(t0, ω)x,ϕ(t0, ω)y ∈ Br(p) and ϕ(t1, θt0ω)Br(p) ⊂ Ū and θt0+t1 ∈ EV )
= k0k1P(EV )
> 0

as required. So in particular, (A1 ×A2) ∖∆X ⊂ Y . Now since E1(Qρ) = ρ, we have that
ρ̃(A2) = 1 for Qρ-almost all ρ̃ ∈M, and therefore

E2(Qρ)(A1 ×A2) = ∫
M
ρ̃(A1)ρ̃(A2)Qρ(dρ̃) = ∫

M
ρ̃(A1)Qρ(dρ̃) = ρ(A1).

Let n be the ρ-clustering number of ϕ. (Since ϕ is stable with respect to ρ, n <∞.) We
have that

E2(Qρ)((A1 ×A2) ∩∆X) = E2(Qρ)(∆A1∩A2) = 1
nρ(A1)

by Lemma 3.4, and therefore

E2(Qρ) ((A1 ×A2) ∖∆X) = n−1
n ρ(A1).

But since (A1 ×A2) ∖∆X ⊂ Y , we have that

E2(Qρ) ((A1 ×A2) ∖∆X) = 0.

Since ρ(A1) ≠ 0, it obviously follows that n = 1, i.e. (iii) holds.

Now suppose that (iii) holds; we show that (iv) holds. Let A be the ρ-full-measure
equivalence class of ∼, and (on the basis of Lemma 2.76) let z ∈ A be a point with the
property that for P-almost all ω ∈ Ω, for every T ∈ T+, {ϕ(t, ω)z ∶ t ≥ T} is dense in
suppρ. Fix any x, y ∈ A, and any p ∈ suppρ and ε > 0. Let T ∈ T+ be such that the set

E ∶= {ω ∶ ∀ t ≥ T, ϕ(t, ω)x,ϕ(t, ω)y ∈ B ε
2
(ϕ(t, ω)z) }

has positive measure. For P-almost every ω ∈ E, there exists t ≥ T such that
ϕ(t, ω)z ∈ B ε

2
(p) and therefore ϕ(t, ω)x,ϕ(t, ω)y ∈ Bε(p).

Finally, it is clear that (iv)⇒(i).

Example 6.7 (Single- and double-well potentials, cf. [FGS14], [New16], [Cal+13]). Let
X = Rd (equipped with the Euclidean metric) for some d ∈ N. Let V ∶Rd → R be a radially
symmetric polynomial of order at most 4, that is

V (x) = α2∣x∣4 + α1∣x∣2 + α0

where α0, α1, α2 ∈ R. We say that V is a well potential if either α2 > 0, or α2 = 0 and α1 > 0.
We say that V is a hill potential if either α2 < 0, or α2 = 0 and α1 < 0. If α2 = α1 = 0, then
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6.2 Necessary and sufficient conditions for ρ-almost stable synchronisation

we say that V is a flat potential. We can divide the case that V is a well potential into two
cases: (a) if either α2 > 0 and α1 ≥ 0, or α2 = 0 and α1 > 0, then V has its global minimum
at x = 0, and we refer to V as a single-well potential ; (b) if α2 > 0 and α1 < 0 then V has
a local maximum at x = 0 and its global minimum throughout the ring ∣x∣ =

√
− α1

2α2
, and

we refer to V as a double-well potential. Now let (Ω,F , (F s+ts )s∈R, t≥0, (θt)t∈R,P) be as in
Example 2.6. Let b ∶= −∇V . We consider the equation

dxt = b(xt)dt + dω(t). (6.2)

One can check that

h ⋅Db(x)h = −8α2(x ⋅ h)2 − 4α2∣x∣2 − 2α1.

for all x,h ∈ Rd with ∣h∣ = 1. Hence, if α2 ≥ 0, then b satisfies the one-sided Lipschitz
condition (2.6) and so (6.2) generates a RDS ϕ. (In the case that α2 = 0 and α1 > 0, (6.2)
describes a d-dimensional Ornstein-Uhlenbeck process.) From now on, suppose that V is
a well potential. By the integrability condition in [FGS14, Section 2.2], the probability
measure ρ on Rd with density proportional to e−2V (⋅) has the property that for each t > 0,
ρ is the unique stationary probability measure of the Markov kernel (ϕtx)x∈Rd . Moreover,
by [FGS14, Example 4.8], the “maximal Laypunov exponent” associated to ρ is strictly
negative. As stated in Section 4 of [FGS14], one deduces that the time-1 discretisation ϕ̊1

of ϕ (see Section 2.3) is stable with respect to ρ. By (2.7), it follows that ϕ is stable with
respect to ρ. Now (as with any additive-noise SDE) it is not hard to see that the whole
phase space Rd is a minimal set of ϕ: fix any x ∈ Rd and any non-empty open U ⊂ Rd.
Take any y ∈ U and, selecting a sufficiently large value η0 > 0, take a sample point ω0 ∈ Ω
with

ω0(t) = η0t(y − x) ∀ t ∈ [0, 1
η0
].

Then we will have that ϕ( 1
η0
, ω0) ∈ U . So Rd is a minimal set of ϕ; note that this is

precisely the same as saying that every point in Rd is ρ-transitive under ϕ. Now it is not
hard to see that every (x, y) ∈ Rd ×Rd is contractible towards any of the points k ∈ Rd at
which V is minimal: e.g. taking k of the form (∣k∣,0(d−1)) and fixing any ε > 0, we can
select sufficiently large values η1, η2 > 0 that if we take a sample point ω1 with

ω1(t) = {
(η1η2t,0(d−1)) t ∈ [0, 1

η1
]

(η2,0(d−1)) t ∈ [ 1
η1
,∞),

we will have that ϕ(t, ω1)x, ϕ(t, ω1)y ∈ Bε(k) for all sufficiently large t. So then, ϕ
satisfies hypothesis (ii) of Theorem 6.6 (since Aρ = Rd and CRd ⊃ Ck = Rd × Rd), so ϕ
is ρ-almost stably synchronising. By Hörmander’s theorem ([Hai11, Theorem 1.3]), ϕtx
is equivalent to the Lebesgue measure2—and therefore, equivalent to ρ—for all x ∈ Rd

and t > 0. Hence we conclude that ϕ is actually pointwise-stably synchronising.3 (To

2Direct application of [Hai11, Theorem 1.3] would require b to have bounded derivatives. Although
b does not have bounded derivatives, one can multiply b by test functions ψ which are equal to 1 on
arbitrarily large balls around x in order to conclude that ϕtx is equivalent to the Lebesgue measure.

3In the case that V is a single-well potential, it is easy to show by elementary methods (as we will soon
see) that ϕ is in fact globally contractive. In the case that V is a double-well potential, the author expects
that by combining the facts that ϕ has a globally pullback-attracting random fixed point ([FGS14]) and
ϕ is stable with respect to ρ, it will follow that ϕ is globally contractive.
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6.2 Necessary and sufficient conditions for ρ-almost stable synchronisation

see this, apply Lemma A.10 with h(ω, ω̃) being the characteristic function of the event
that ϕ(1, ω)x and ϕ(1, ω)y synchronise under θ1ω̃ and are each asymptotically stable
under θ1ω̃.) Now if the noise term “+dω(t)” is removed from the right-hand side of
(6.2), the associated (deterministic) flow is globally synchronising in the case that V is
a single-well potential, but not in the case that V is a double-well potential. Thus we
have “noise-induced synchronisation” in the case that V is a double-well potential. Hence
in particular, the bifurcation between the dynamics of the single-well potential and the
dynamics of the double-well potential is “destroyed” by the presence of noise. We now
consider the determinism of the rate of synchronisation. If α2 ≥ 0 and α1 > 0 then the
one-sided Lipschitz constant of b can be taken to be negative, and so by (2.7), ϕ is globally
contracting at an (exponential) deterministic rate. Now if α2 > 0 and α1 = 0, it is easy to
show that for any compact K ⊂ (0,∞) there exists λK < 0 such that

(b(y) − b(x)) ⋅ (y − x) ≤ λK ∀x, y ∈ Rd with ∣y − x∣ ∈K.

Hence, using Grönwall’s inequality, one can again show that ϕ is globally contracting at
a deterministic rate. So then, ϕ is globally contracting at a deterministic rate whenever
V is a single-well potential. On the other hand, if V is a double-well potential, then for
any distinct x, y ∈ Rd, x and y do not synchronise at a deterministic rate: we can select
a sufficiently large value η > 0 that if we take a sample point ω with

ω(t) = {−
1
2ηt(x + y) t ∈ [0, 1

η ]
−1

2(x + y) t ∈ [ 1η ,∞),

then ϕ(t, ω)x and ϕ(t, ω)y converge to different minimum points of V as t → ∞. (Of
course if d > 1 then just taking ω(t) ≡ 0 would also work for a generic pair of points
x, y ∈ Rd.)
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Appendix A. Some Preliminaries from
Measure and Probability Theory

Throughout this thesis, familiarity with some of the most foundational concepts and
results from probability theory and stochastic analysis is assumed. Nonetheless, there are
some topics in measure theory and probability theory that are worth covering explicitly,
which we do here. Specifically, we will cover: infinite product σ-algebras; the π-λ theorem
and some of its important corollaries (such as the monotone class theorem); results
concerning expectations and conditional expectations involving independent σ-algebras;
measurability of operations involving integrals; a result concerning the measure of a ball
about a variable centre point in a metric space; the formula for changing variables in
conditional expectations; and the measurable and topological structure of a space of
probability measures (including a fairly detailed exposition of the narrow topology).

Infinite product σ-algebras

Given a family ((Xα,Σα))α∈I of measurable spaces (Xα,Σα), if the Cartesian product

⨉α∈IXα is non-empty then we define the product σ-algebra ⊗α∈IΣα to be the smallest
σ-algebra on ⨉α∈IXα with respect to which the map

⨉
α∈I
Xα → Xα̃

(xα)α∈I ↦ xα̃

is measurable for every α̃ ∈ I. If we also have a family (µα)α∈I of probability measures
µα on (Xα,Σα), then there exists a unique probability measure ⊗α∈I µα on the product

space (⨉α∈IXα ,⊗α∈IΣα) such that for any α1, . . . , αn ∈ I, for any A1 ∈ Σα1 , . . . ,An ∈ Σαn ,

⊗
α∈I

µα ({ (xα)α∈I ∶ xαi ∈Ai ∀1 ≤ i ≤ n}) =
n

∏
i=1
µαi(Ai).

(See e.g. [Kak43].)

It is easy to show that for a family (Xα)α∈I of second-countable topological spaces Xα

indexed by a countable set I,

B (⨉
α∈I
Xα) = ⊗

α∈I
B(Xα)

where ⨉
α∈I
Xα is equipped with the product topology.

The π-λ theorem

A π-system is a collection of sets that is closed under pairwise intersections. A λ-system
(or Dynkin system) on a set Ω is a collection of subsets of Ω that includes Ω itself and is
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closed under both countable disjoint unions and complements relative to Ω. For example,
given a σ-algebra F on Ω and two probability measures µ1 and µ2 on (Ω,F), it is clear
that {E ∈ F ∶ µ1(E) = µ2(E)} is a λ-system on Ω.

Remark A.1. If (Ω,F) is a measurable space with F being countably generated, then
there exists a countable π-system generating F : for any countable A ⊂ F with σ(A) = F ,
the smallest π-system containing A, namely the set

C ∶= {A1 ∩ . . . ∩An ∶ n ∈ N, A1, . . . ,An ∈ A},

is a countable π-system generating F .1 Note that the Borel σ-algebra of a second-
countable topological space is countably generated (since any countable base for a
topology is also a generator for the Borel σ-algebra thereof), and therefore is generated
by a countable π-system.

Remark A.2. For any family ((Xα,Σα))α∈I of measurable spaces (Xα,Σα), if the
Cartesian product ⨉α∈IXα is non-empty then the product σ-algebra ⊗α∈IΣα is generated
by the π-system

C ∶= {(⨉
α∈J

Aα) × ( ⨉
α∈I∖J

Xα) ∶ J ⊂ I finite, Aα ∈ Σα∀α ∈ J} .

Remark A.3. Let (Ω,F) be a measurable space, and let {Fα ∶ α ∈ I} be a collection of
sub-σ-algebras of F that is totally ordered by inclusion. Then ⋃α∈I Fα is a π-system.

Remark A.4. We mention another important example of a λ-system: Let (Ω,F) and
(X,Σ) be measurable spaces, and let (µω)ω∈Ω be a family of probability measures on
X. Then it is easy to show that the set D ∶= {A ∈ Σ ∶ ω ↦ µω(A) is measurable} is a
λ-system on X.

Lemma A.5 (π-λ theorem). Let D be a λ-system on a set Ω, and let C ⊂ D be a π-system.
Then the σ-algebra on Ω generated by C is contained in D.

For a proof, see [Wil91, Lemma A1.3]. We now give three important immediate corollaries.
(For “generalisations” of the first two of these corollaries, see Exercise 6 and Lemma 7 of
[New15a].)

Corollary A.6. Let (Ω,F) be a measurable space, and let µ1 and µ2 be probability
measures on (Ω,F). If there exists a π-system C ⊂ F generating F such that µ1(E) =
µ2(E) for all E ∈ C, then µ1 = µ2.

Proof. Since {E ∈ F ∶ µ1(E) = µ2(E)} is a λ-system on Ω containing the π-system C, we
have by Lemma A.5 that µ1 and µ2 agree on the whole of F .

Corollary A.7 (Monotone class theorem, [Wil91, Theorem 3.14]). Let (Ω,F) be a
measurable space, and let H be a set of functions from Ω to R such that:

(a) the constant function ω ↦ 1 is in H;

1The author is grateful to Nathaniel Eldredge for first drawing his attention to this very useful fact.
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(b) for any c1, c2 ∈ R and g1, g2 ∈H, c1g1 + c2g2 ∈H;

(c) for any uniformly bounded, increasing sequence of functions gn ∈H, the pointwise
limit g∞ ∶= limn gn is in H;

(d) there exists a π-system C generating F such that for all E ∈ C, 1E ∈H.

Then H includes all bounded measurable functions g ∶Ω→ R.

Proof. Let D ∶= {E ∈ F ∶ 1E ∈ H}. By properties (a), (b) and (c), D is a λ-system;
and property (d) states that C ⊂ D. Hence by Lemma A.5, 1E ∈ H for every E ∈ F .
Property (b) then gives that H includes all bounded simple functions. Property (c) then
gives that H includes all bounded measurable functions.

Corollary A.8. Let (Ω,F ,P) be a probability space, let C ⊂ F be a π-system, and let
G ∈ F be an event that is independent (under P) of every member of C. Then G is
independent of σ(C).

Proof. Let D ∶= {E ∈ F ∶ P(E ∩G) = P(E)P(G)}. We know that C ⊂ D, and it is easy to
see that D is a λ-system. Therefore, by Lemma A.5, σ(C) ⊂ D, i.e. G is independent of
σ(C).

As an important special case of Corollary A.8, we have the following:

Corollary A.9. Let (Ω,F ,P) be a probability space, let {Fα ∶ α ∈ I} be a collection of
sub-σ-algebras of F that is totally ordered by inclusion, and let G ∈ F be an event that is
independent (under P) of Fα for every α ∈ I. Then G is independent of σ(Fα ∶ α ∈ I).

Proof. As in Remark A.3, C ∶= ⋃α∈I Fα is a π-system. Hence Corollary A.8 gives the
desired result.

Results about independent σ-algebras

Lemma A.10. Let (Ω,F ,P) be a probability space, let G1 and G2 be independent sub-σ-
algebras of F (under P), and let h ∶Ω×Ω→ R be a bounded (G1⊗G2)-measurable function.
Then

∫
Ω
h(ω,ω)P(dω) = ∫

Ω×Ω
h(ω, ω̃)P⊗ P(d(ω, ω̃)).

Proof. In the case that h = 1G1×G2 for some G1 ∈ G1 and G2 ∈ G2, we have

∫
Ω
1G1×G2(ω,ω)P(dω) = P(G1 ∩G2)

= P(G1)P(G2)
= P⊗ P(G1 ×G2)

= ∫
Ω×Ω

1G1×G2(ω, ω̃)P⊗ P(d(ω, ω̃))

as required. Now {G1 × G2 ∶ G1 ∈ G1 , G2 ∈ G2} is a π-system generating G1 ⊗ G2, so
Corollary A.7 gives the desired result for general h.
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Corollary A.11. Assume the hypotheses of Lemma A.10. Then

E[ω ↦ h(ω,ω) ∣G1 ] P-a.s.= E[ω ↦ h( ⋅ , ω) ].

The intuition behind Corollary A.11 is quite clear: if a random quantity H is determined
by two statistically independent pieces of information, then the conditional expectation
of H given the knowledge of the first piece of information is simply equal to the mean of
H averaged over the set of possibilities for the second piece of information, with the first
piece of information being taken to be as it was observed.

Proof of Corollary A.11. Fix any G ∈ G1. Defining ĥ ∶Ω × Ω → R by ĥ(ω̃, ω) =
1G(ω̃)h(ω̃, ω), we have

∫
G
h(ω,ω)P(dω) = ∫

Ω
ĥ(ω,ω)P(dω)

= ∫
Ω
∫

Ω
ĥ(ω̃, ω)P(dω)P(dω̃) (by Lemma A.10)

= ∫
G
E[ω ↦ h(ω̃, ω) ]P(dω̃)

as required.

Partial integrals are measurable

The following fundamental result is a particular case of [New15a, Lemma 8].

Lemma A.12. Let (I,I), (Ω,F) and (X,Σ) be measurable spaces, and suppose we have
a family (ρω)ω∈Ω of probability measures ρω on X such that the mapping ω ↦ ρω(A) is
F-measurable for all A ∈ Σ. For any bounded measurable function g ∶Ω × I ×X → R, the
function g ∶Ω × I → R given by

g(ω,α) = ∫
X
g(ω,α, x)ρω(dx)

is measurable.

In most applications, either g will not depend on α or g will not depend on ω, and in
many cases ρω will also not depend on ω (i.e. the integrator will just be a deterministic
measure, rather than a random measure).

Proof of Lemma A.12. In the case that g = 1E×B×A for some E ∈ F , B ∈ I and A ∈ Σ, the
function ḡ is given by ḡ(ω,α) = 1E×B(ω,α)ρω(A), which is clearly a measurable function.
Since {E ×B ×A ∶ E ∈ F ,B ∈ I,A ∈ Σ} is a π-system generating F ⊗ I ⊗ Σ, we apply
Corollary A.7 to give the desired result for general g. (Condition (c) of Corollary A.7 is
satisfied due to the dominated convergence theorem and the fact that a pointwise limit
of real-valued measurable functions is measurable.)
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Measures of balls

Lemma A.13. Let (X,d) be a metric space, and let ρ be a Borel probability measure on
X. Let δ ∶X → (0,∞) be a lower semicontinuous function. Then the map

x ↦ ρ(Bδ(x)(x))

is lower semicontinuous.

(In particular, taking δ to be a constant, we have that the map x ↦ ρ(Bδ(x)) is lower
semicontinuous.)

Proof. Fix an arbitrary convergent sequence (xn) in X and value l ∈ [0,1] with the
property that ρ(Bδ(xn)(xn)) ≤ l for all n; writing x ∶= limn xn, we will show that

ρ(Bδ(x)(x)) ≤ l. Let δ̃ ∶= lim infn→∞ δ(xn); so δ(x) ≤ δ̃. For each integer j > 1
2δ̃

, let

nj ∈ N be such that δ(xnj) > δ̃ − 1
2j and d(x,xnj) < 1

2j ; for any y ∈ Bδ̃− 1
j
(x), we have that

d(y, xnj) ≤ d(y, x) + d(x,xnj) < δ̃ − 1

2j
< δ(xnj),

and so y ∈ Bδ(xnj )(xnj). So then, for each j > 1
2δ̃

, Bδ̃− 1
j
(x) is contained in Bδ(xnj )(xnj),

and therefore ρ(Bδ̃− 1
j
(x)) ≤ l. Consequently, we have that ρ(Bδ̃(x)) ≤ l, and therefore

ρ(Bδ(x)(x)) ≤ l.

Transformation of conditional expectations

The following result is the conditional-expectation version of the “change-of-variables
formula” [ ∫g ○ Y dP = ∫g d(Y∗P)].

Lemma A.14. Let (Ω,F ,P) be a probability space. Let (S,S) be a measurable space, let
g ∶S → R be a measurable function, and let E be a sub-σ-algebra of S. Given a random
variable Y ∶ Ω → S satisfying E(P)[∣g(Y )∣] < ∞ (and therefore E(Y∗P)[∣g∣] < ∞), we have
that

E(P)[g(Y )∣Y −1E] P-a.s.= E(Y∗P)[g∣E](Y ).
(That is to say, for any version h ∶S → R of the conditional expectation E(Y∗P)[g∣E], the
function h ○Y is a version of the conditional expectation E(P)[g(Y )∣Y −1E].)

Proof. Let h ∶S → R be a version of E(Y∗P)[g∣E]. For any A ∈ Y −1E , writing A = Y −1(E)
for some E ∈ E , we have

∫
A
h(Y (ω))P(dω) = ∫

E
h(x)Y∗P(dx) = ∫

E
g(x)Y∗P(dx) = ∫

A
g(Y (ω))P(dω)

as required.
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Spaces of probability measures

For convenience, given a probability space (X,Σ, ρ) and a ρ-integrable function g ∶X → R,
we will sometimes write ρ(g) as a shorthand for ∫X g(x)ρ(dx).

Given a measurable space (X,Σ), we write M(X,Σ) for the set of probability measures
on (X,Σ), which we equip with its “evaluation σ-algebra”

K(X,Σ) ∶= σ(ρ↦ ρ(A) ∶ A ∈ Σ).

So for any measurable space (Ω,F), a function p ∶ Ω→M(X,Σ) is measurable if and only if
the map ω ↦ p(ω)(A) is measurable for all A ∈ Σ. In this case, we also have that for every
bounded measurable function g ∶X → R, the map ω ↦ p(ω)(g) is measurable (since we can
approximate g by simple functions). Moreover, given a probability measure P on (Ω,F),
we can define the “mean probability measure” p̄ on X by p̄(A) ∶= ∫Ω p(ω)(A)P(dω).
(This is indeed a probability measure, by the monotone convergence theorem.) For any
bounded measurable g ∶X → R, we have that p̄(g) = ∫Ω p(ω)(g)P(dω). (To see this,
just approximate g by a uniformly bounded sequence of simple functions, and apply the
dominated convergence theorem.)

Lemma A.15. Given measurable spaces (X1,Σ1) and (X2,Σ2), the map

M(X1,Σ1) ×M(X2,Σ2) → M(X1×X2,Σ1⊗Σ2)

(ρ1, ρ2) ↦ ρ1 ⊗ ρ2

is measurable (with respect to the respective evaluation σ-algebras).

Proof. Let D ∶= {B ∈ Σ1 ⊗ Σ2 ∶ the map (ρ1, ρ2) ↦ ρ1 ⊗ ρ2(B) is measurable}. As in
Remark A.4, D is a λ-system on X1 × X2. It is also clear that for any A1 ∈ Σ1 and
A2 ∈ Σ2, the map (ρ1, ρ2) ↦ ρ1 ⊗ ρ2(A1 × A2) = ρ1(A1)ρ2(A2) is measurable; so D
contains the π-system {A1 × A2 ∶ A1 ∈ Σ1, A2 ∈ Σ2}. Hence, by Lemma A.5, the map
(ρ1, ρ2)↦ ρ1 ⊗ ρ2(B) is measurable for all B ∈ Σ1 ⊗Σ2, as required.

We now go on to consider Borel probability measures on separable metric spaces.

Recall that, given two topological spaces X and Y , a function f ∶X → Y is called
a topological embedding (of X into Y ) if f is continuous and injective, and the map
f−1 ∶f(X) → X is continuous (where f(X) is equipped with the induced topology from
Y ). In the case that X and Y are metrisable, a function f ∶X → Y is a topological
embedding if and only if the following holds: for any sequence (xn) in X and any point
x ∈X,

xn → x ⇔ f(xn)→ f(x).
Given two topological spaces X and Y , a function f ∶X → Y is called a closed embedding
(of X into Y ) if f is a topological embedding and f(X) is a closed subset of Y . This
implies that for every closed G ⊂ X, f(G) is closed in Y . In the case that X and Y are
metrisable, it is easy to check that a function f ∶X → Y is a closed embedding if and
only if the following holds: f is continuous, and for every divergent sequence (xn) in X,
the sequence (f(xn)) is divergent in Y .
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Recall that a topological space (or a topology) is said to be Polish if it is both
separable and completely metrisable.

Theorem A.16. Let X be a separable metrisable topological space (with T denoting the
topology on X). Then there exists a separable metrisable topology NT on M(X,B(X))
characterised as follows: fixing any metrisation d of T , a sequence (ρn) converges in NT
to ρ if and only if the equivalent statements

(i) ρ(U) ≤ lim inf
n→∞

ρn(U) for every open U ⊂X;

(ii) ρ(G) ≥ lim sup
n→∞

ρn(G) for every closed G ⊂X;

(iii) ρn(g)→ ρ(g) for every bounded d-Lipschitz g ∶X → R;

(iv) ρn(g)→ ρ(g) for every bounded continuous g ∶X → R;

(v) ρn(A)→ ρ(A) for every Borel-measurable continuity set A of ρ;2

hold. There exists a countable set {gi}i∈N of continuous functions gi ∶X → [0,1] such that
the map ρ ↦ (ρ(gi))i∈N serves as a topological embedding of M(X,B(X)) (equipped with
the topology NT) into [0,1]N (equipped with the product topology). The topology NT is
compact if and only if T is compact, and NT is Polish if and only if T is Polish. The
Borel σ-algebra of NT is precisely K(X,B(X)).

A proof is given in Section 0.6 of [New15a], except for characterisation (v) of the topology
NT , which can be found in [Par05, Theorem II.6.1].

Definition A.17. The topology NT is called the narrow topology or the topology of weak
convergence. When the topology T on X is implicitly assumed from the context, we will
say that “µn converges weakly to µ” to mean that µn converges to µ in NT .

Note that for any metric space Y and any function p ∶Y →M(X,B(X)) that is continuous
with respect to the narrow topology,

(i) the map y ↦ p(y)(U) is lower semicontinuous for every open U ⊂X;

(ii) the map y ↦ p(y)(G) is upper semicontinuous for every closed G ⊂X;

(iii) the map y ↦ ∫X g(x)p(y)(dx) is continuous for every bounded continuous
function g ∶X → R.

The following corollary of Theorem A.16 is clear:

Corollary A.18. The separable metrisable space (X,T ) is compact if and only if the
topological embedding ρ↦ (ρ(gi))i∈N ofM(X,B(X)) into [0,1]N described in Theorem A.16
is a closed embedding.

2A continuity set of ρ is a set A ⊂X satisfying ρ(∂A) = 0.
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Remark A.19. A set of functions {gi}i∈N with the property described in Theorem A.16
is said to be convergence-determining, since this property is precisely the property that
for any sequence (ρn) of probability measures on X and any probability measure ρ on X,

ρn
NT→ ρ as n→∞ ⇐⇒ ∀ i ∈ N, ρn(gi)→ ρ(gi) as n→∞.

Lemma A.20 (“Almost sure convergence implies convergence in distribution”). Let X be
a separable metrisable topological space. Let (Ω,F ,P) be a probability space, let q ∶Ω→X
be a measurable function, and let (qn) be a sequence of measurable functions qn ∶Ω → X
such that qn(ω) → q(ω) as n → ∞ for P-almost all ω ∈ Ω. Then qn∗P converges in the
narrow topology to q∗P as n→∞.

Proof. Fix any bounded continuous g ∶X → R. For P-almost all ω ∈ Ω, g(qn(ω)) →
g(q(ω)) as n→∞, and so by the dominated convergence theorem, we have

qn∗P(g) = ∫
Ω
g(qn(ω))P(dω)

n→∞→ ∫
Ω
g(q(ω))P(dω) = q∗P(g)

as required.

We now give the “topological version” of Lemma A.15.

Lemma A.21. Given separable metrisable topological spaces X1 and X2, the map

M(X1,B(X1)) ×M(X2,B(X2)) → M(X1×X2,B(X1×X2))

(ρ1, ρ2) ↦ ρ1 ⊗ ρ2

is continuous (with respect to the respective narrow topologies).

For a proof, see [Bil99, Theorem 2.8(ii)].

Lemma A.22. Let (X,T ) be a separable metrisable topological space. The map x ↦ δx
serves as a closed embedding of (X,T ) into (M(X,B(X)),NT).

Proof. Given a sequence (xn) in X converging to x, we clearly have that δxn(g)→ δx(g)
for any continuous g ∶X → R; so in particular, x ↦ δx is an NT -continuous mapping. So
to complete the proof, it remains just to show that if (xn) is a divergent sequence in X
then (δxn) is a divergent sequence in M(X,B(X)). Suppose for a contradiction that (xn)
is a divergent sequence but δxn converges in NT to a probability measure ρ. Since every
point in X is not the limit of the sequence (xn), we can cover X by open sets U for which
{n ∈ N ∶ xn ∉ U} is infinite; note that for every such set U , lim infn→∞ δxn(U) = 0, and
therefore ρ(U) = 0. Now X is second-countable, and therefore we can find a countable
subcover for the open cover of X that we have constructed. Thus we can cover X by
countably many ρ-null sets, giving a contradiction.
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Appendix B. Uniform convergence on
compact sets

The purpose of this Appendix is to present some of the basic facts concerning “uniform
convergence on compact sets” that are assumed in this thesis.

Let Y be a metrisable topological space.

Lemma B.1. Let K be a compact metrisable topological space and let (fn)n∈N∪{∞} be a
family of continuous functions fn ∶K → Y . For any two metrisations d1 and d2 of the
topology on Y , fn converges uniformly to f∞ under d1 as n→∞ if and only if fn converges
uniformly to f∞ under d2 as n→∞.

Proof. Let C ∶= { 1
2n}n∈N ∪ {0}, and define F ∶ C × K → Y by F (0, x) = f∞(x) and

F ( 1
2n , x) = fn(x) for all x ∈K and n ∈ N. Let dK be a metrisation of the topology on K,

and let d be the metrisation of the product topology on C ×K given by

d((t1, x1), (t2, x2)) = max(∣t2 − t1∣, dK(x1, x2)).

Obviously C ×K is compact, and therefore under any given metrisation of the topology
on Y , F is continuous if and only if F is uniformly continuous. Hence, to show the desired
result, it is sufficient to show that under any given metrisation dY of the topology on Y , F
is uniformly continuous if and only if fn converges uniformly to f∞ as n→∞. Fix such a
metrisation dY . It is obvious that if F is uniformly continuous then fn converges uniformly
to f∞ as n →∞. Conversely, suppose that fn converges uniformly to f∞ as n →∞, and
fix any ε > 0. Let N ∈ N be such that for all n ≥ N and x ∈ K, dY (fn(x), f∞(x)) < ε

3 .
Now since K is compact, fn is uniformly continuous for all n ∈ N ∪ {∞}. So let δ1 > 0 be
such that for all x, y ∈K with dK(x, y) < δ1, dY (f∞(x), f∞(y)) < ε

3 ; and let δ2 > 0 be such
that for all x, y ∈ K with dK(x, y) < δ2 and all n ∈ {1, . . . ,N − 1}, dY (fn(x), fn(y)) < ε.
Now set δ ∶= min( 1

2N
, δ1, δ2). Then it is easy to show that for any (t1, x1) and (t2, x2) in

C ×K with d((t1, x1), (t2, x2)) < δ, dY (F (t1, x1), F (t2, x2)) < ε. So we are done.

Given a compact metrisable space K and a metrisation dY of the topology on Y , we
may define a metric dK,dY on the set C(K,Y ) of continuous functions f ∶ K → Y by
dK,dY (f1, f2) = maxx∈K dY (f1(x), f2(x)). It is easy to show that this is indeed a metric,
and that convergence in this metric precisely coincides with uniform convergence. Hence,
by Lemma B.1, the topology induced by dK,dY on C(K,Y ) is independent of the metric
dY . We refer to this topology as the topology of uniform convergence or the uniform
topology.

Lemma B.2. Let K be a compact metrisable space. If Y is separable then C(K,Y ) is
separable. If dY is complete then dK,dY is complete. Hence if Y is Polish then C(K,Y )
is Polish.

For a proof, see [Kec95, Theorem 4.19].
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Lemma B.3. Let K be a compact metrisable space. For any subbase V for the topology
on Y , the collection of sets

U ∶= {{f ∈ C(K,Y ) ∶ f(G) ⊂ U} ∶ U ∈ V , closed G ⊂K }

is a subbase for the uniform topology on C(K,Y ).

Proof. Throughout this proof, we work with a metrisation dY of the topology on Y .
First, fix any open U ⊂ Y and closed G ⊂ K; for any f ∈ C(K,Y ) with f(G) ⊂ U , since
f(G) is compact, we have that U is a uniform neighbourhood of f(G). Hence it is clear
that {f ∈ C(K,Y ) ∶ f(G) ⊂ U} is an open set in the uniform topology.

Now if we fix any subbase V for the topology on Y , letting Ṽ be the π-system
generated by V (that is, the set of all finite intersections of members of V), it is clear
that π-system generated by U contains the set

{{f ∈ C(K,Y ) ∶ f(G) ⊂ U} ∶ U ∈ Ṽ , closed G ⊂K }.

Hence we may assume without loss of generality that V is a base for the topology on Y .
Fix any f0 ∈ C(K,Y ) and ε > 0; we need to find W1, . . . ,Wn ∈ U such that f0 ∈ ⋂ni=1Wi

and for any f ∈ ⋂ni=1Wi, maxx∈K dY (f0(x), f(x)) < ε. Since f0(K) is compact, there exist
U1, . . . , Um ∈ V such that diamUj < ε for each 1 ≤ j ≤ m and f0(K) ⊂ ⋃mj=1Uj. Moreover
(due to the Lebesgue number lemma) there exist V1, . . . , Vn ∈ V such that f0(K) ⊂ ⋃ni=1 Vi
and for each 1 ≤ i ≤ n there exists 1 ≤ ji ≤m such that Vi ⊂ Uji . It is clear that taking

Wi ∶= {f ∈ C(K,Y ) ∶ f (f−1
0 (Vi)) ⊂ Uji}

for each 1 ≤ i ≤ n fulfils our requirement.

Now we say that a topological space is σ-locally compact if it is both locally compact and
σ-compact. It is not hard to show that for a metrisable topological space X the following
are equivalent:

(i) X is σ-locally compact;

(ii) X is both locally compact and separable;

(iii) there exists a sequence (Kn) of compact subsets of X such that ⋃nK○n =X.

It is easy to see that if X is σ-locally compact then every closed subset of X is σ-locally
compact. But also, if X is σ-locally compact then every open subset of X is σ-locally
compact. To see this: Let U ⊂X be an open set, and let (Kn) be an increasing sequence
of compact subsets of X such that ⋃nK○n = X; define the sequence (K̃n) of compact
subsets of U by K̃n ∶= {x ∈Kn ∶ d(x,X ∖U) ≥ 1

n}. Then it is clear that ⋃n K̃○n = U .

Proposition B.4. Let X be a σ-locally compact metrisable space. Then there is a
metrisable topology on C(X,Y ) such that a sequence (fn) in C(X,Y ) converges to a
function f ∈ C(X,Y ) if and only if for every compact K ⊂ X, fn∣K converges uniformly
to f ∣K. Given any sequence (Kn)n∈N of non-empty compact subsets of X with ⋃nK○n =X,
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and any metrisation dprod of the product topology on ⨉n∈NC(Kn, Y ), if we define the
function

H ∶ C(X,Y ) → ⨉
n∈N

C(Kn, Y )

f ↦ (f ∣K1 , f ∣K2 , f ∣K3 , . . .)

then an exemplary metrisation of the above topology on C(X,Y ) is

(f1, f2) ↦ dprod(H(f1),H(f2)).

We refer to the topology described in Proposition B.4 as the topology of uniform
convergence on compact sets. Note that if K is compact then this is simply the topology
of uniform convergence.

Proof of Proposition B.4. It is clear that H is injective, and therefore (f1, f2) ↦
dprod(H(f1),H(f2)) is a metric on C(X,Y ). Hence, to show the desired results, it is
clearly sufficient just to show that if a sequence (fn) in C(X,Y ) converges to f ∈ C(X,Y )
uniformly on Ki for all i ∈ N, then (fn) converges to f uniformly on any compact K ⊂X.
But this is clear, since for any compact K ⊂ X there must exist a finite set S ⊂ N such
that K ⊂ ⋃i∈SK○i . So we are done.

From now on, fix a σ-locally compact metrisable space X. We always assume that
C(X,Y ) is equipped with the topology of uniform convergence on compact sets.

Corollary B.5. If Y is separable (resp. completely metrisable, Polish) then C(X,Y ) is
separable (resp. completely metrisable, Polish). In any case, for any subbase V for the
topology on Y the collection of sets

U ∶= {{f ∈ C(X,Y ) ∶ f(K) ⊂ U} ∶ U ∈ V , compact K ⊂X }

is a subbase for the topology on C(X,Y ).

Proof. It is clear from Proposition B.4 and Lemma B.2 that if Y is separable then C(X,Y )
is separable. Now it is easy to show that the function H in Proposition B.4 clearly
maps C(X,Y ) onto a closed subset of ⨉nC(Kn, Y ) (using the fact that every point in
X has a neighbourhood entirely contained in one of the compact sets Kn). Hence, by
Proposition B.4 and Lemma B.2, if Y is completely metrisable then C(X,Y ) is completely
metrisable. Finally, fix a sequence (Kn)n∈N of non-empty compact sets such that K○i ⊂
K○i+1 for all i ∈ N and ⋃nK○n = X. By Proposition B.4 and Lemma B.3, the collection of
sets

{{f ∈ C(X,Y ) ∶ f(G) ⊂ U} ∶ U ∈ V , closed G ⊂Kn, n ∈ N, }
is a subbase for the topology on C(X,Y ). But this collection is precisely equal to U .

The following lemma in a sense justifies taking the topology of uniform convergence on
compact sets as the “natural” topology on C(X,Y ).

Lemma B.6. Suppose we have a metric space T and a function h ∶T → C(X,Y ). Then
h is continuous if and only if the map (t, x)↦ h(t)(x) is continuous.
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Proof. Fix a metrisation dY of the topology on Y . First we suppose h is continuous.
Fix a sequence (tn, xn)n∈N converging in T ×X to a point (t, x), and fix any ε > 0. Let
K ⊂ X be a compact set containing a neighbourhood of x. Let N1 ∈ N be such that for
all n ≥ N1, xn ∈ K and dY (h(t)(xn), h(t)(x)) < ε

2 . Let N2 be such that for all n ≥ N2,
dK,dY (h(tn)∣K , h(t)∣K) < ε

2 . Then for every n ≥max(N1,N2) we have that

dY (h(tn)(xn), h(t)(x)) ≤ dY (h(tn)(xn), h(t)(xn)) + dY (h(t)(xn), h(t)(x)) < ε.

Now suppose that the map (t, x) ↦ h(t)(x) is continuous. Fix a sequence (tn)n∈N in T
converging to point t∞ and a compact set K ⊂X. We know that the map (t, x)↦ h(t)(x)
is uniformly continuous on {tn}n∈N∪{∞} ×K. It immediately follows that as n→∞, h(tn)
converges to h(t∞) uniformly on K.

Corollary B.7. Let (fn) be a sequence of continuous functions fn ∶X → Y , and let
f ∶X → Y be another continuous function. The following statements are equivalent:

(i) fn converges to f uniformly on compact sets;

(ii) for every convergent sequence (xn) in Y converging to a point x, fn(xn)→ f(x)
as n→∞.

Proof. Follows from Lemma B.6 with T ∶= N ∪ {∞}, h(n) ∶= fn for n < ∞, and h(∞) =
f .

Now let Homeo(X) be the set of homeomorphisms from X to itself, equipped with the
induced topology from C(X,X).

Lemma B.8. If either (a) X is compact or (b) every point in X has a neighbourhood
contained in a compact connected set, then the map

Homeo(X) → Homeo(X)
f ↦ f−1

is continuous.

The case that X is compact is quite elementary, and we will soon present it. The other
case has been proved in [Dij05].

Proof of Lemma B.8 for X compact.1 Let (fn) be a sequence of homeomorphisms
fn ∶X → X converging uniformly to a homeomorphism f ∶X → X. Since X is compact,
we have that f−1 is uniformly continuous and therefore f−1 ○ fn converges uniformly
to the identity function. By the symmetry of d(⋅, ⋅), it follows that f−1

n ○ f converges
uniformly to the identity function; and therefore (by right-composing with f−1) f−1

n

converges uniformly to f−1.

Lemma B.9. Suppose Y is separable. Then the Borel σ-algebra of C(X,Y ) is precisely
the “evaluation σ-algebra” σ(f ↦ f(x) ∶ x ∈X).

1Our proof will actually give the following more general fact: If (X,d) is a metric space and (fn) is
a sequence of bijective functions fn ∶X →X converging uniformly to a bijective function f ∶X →X with
f−1 being uniformly continuous, then f−1

n converges uniformly to f−1.
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Proof. It is clear that for each x ∈ X the evaluation map f ↦ f(x) from C(X,Y ) to Y
is continuous and therefore Borel-measurable. So the evaluation σ-algebra is contained
in B(C(X,Y )).

Now let (Kn)n∈N be a sequence of compact subsets of X such that ⋃nK○n = X
and let {Un}n∈N be a countable subbase for the topology on Y . We have that

B(C(X,Y )) = σ( {f ∈ C(X,Y ) ∶ f(Kn) ⊂ Um} ∶ m,n ∈ N ).

Fix m,n ∈ N, and let dY be a metrisation of the topology on Y . For each i ∈ N, let
Gi ∶= {x ∈ Um ∶ dY (x,Y ∖ Um) ≥ 1

i }. For any f ∈ C(X,Y ), since f(Kn) is compact, we
have that f(Kn) ⊂ Um if and only if Um is a uniform neighbourhood of f(Kn), which is
the same as saying that there exists i ∈ N such that f(Kn) ⊂ Gi. So if we let E be a
countable dense subset of Kn then we have that

{f ∈ C(X,Y ) ∶ f(Kn) ⊂ Um} =
∞
⋃
i=1
⋂
x∈E
{f ∈ C(X,Y ) ∶ f(x) ∈ Gi}.

Hence {f ∈ C(X,Y ) ∶ f(Kn) ⊂ Um} is a member of the evaluation σ-algebra on C(X,Y ).
It follows that B(C(X,Y )) is contained in the evaluation σ-algebra.

Note in particular that if Y is Polish then the evaluation σ-algebra on C(X,Y ) is
standard.

Corollary B.10. Suppose Y is separable. For any compact K ⊂X, the σ-algebra σ(f ↦
f(x) ∶ x ∈ K) is the Borel σ-algebra of the smallest topology with respect to which the
restriction map f ↦ f ∣K is continuous, where f ∣K is regarded as a member of C(K,Y )
equipped with the uniform topology.
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Appendix C. Ergodic Theory and Markov
Processes

The proofs of most of the results in this appendix can be found in [New15a].

We will state results first for dynamical systems (in discrete and continuous time), and
then for Markov transition probabilities (in discrete and continuous time). However, a
dynamical system is really just the “deterministic case” of a family of Markov transition
probabilities.

(Hence many of the results given here for dynamical systems are not proved separately
for dynamical systems in [New15a], but are special cases of results for Markov transition
probabilities that are proved explicitly in [New15a].)

As in the main body of the thesis, T+ denotes either N0 or [0,∞). Given a measurable
space (X,Σ), M(X,Σ) denotes the set of probability measures on X. As throughout the
rest of the thesis, M(X,Σ) is equipped with the σ-algebra characterised by the following
property: for any measurable space (Ω,F), a map p ∶Ω →M(X,Σ) is measurable if and
only if the map ω ↦ p(ω)(A) is measurable for all A ∈ Σ.

C.1 Ergodic theory for measurable maps

Invariant and ergodic measures

Let (X,Σ) be a measurable space, and let f ∶X →X be a measurable map.

We say that a probability measure ρ on X is f -invariant (or invariant under f)
if f∗ρ = ρ (i.e. ρ(f−1(A)) = ρ(A) for all A ∈ Σ). In this case, we also say that f is
ρ-preserving, or that f is a measure-preserving transformation of (X,Σ, ρ), or that
(X,Σ, ρ, f) is a measure-preserving dynamical system.

Note that any convex combination of f -invariant probability measures is f -invariant.

Given an f -invariant probability measure ρ, we will say that a set A ∈ Σ is ρ-almost
invariant (under f) if the following equivalent statements hold:

(i) ρ(A ∖ f−1(A)) = 0 (i.e. for ρ-almost all x ∈ A, f(x) ∈ A);

(ii) ρ(f−1(A) ∖A) = 0 (i.e. for ρ-almost all x ∈X ∖A, f(x) ∈X ∖A);

(iii) ρ(A△ f−1(A)) = 0 (i.e. for ρ-almost all x ∈X, x ∈ A⇔f(x) ∈ A).

It is not hard to show that the set Ifρ of all ρ-almost invariant sets A ∈ Σ forms a
sub-σ-algebra of Σ.
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We will say that a set A ∈ Σ is strictly invariant (under f) if f−1(A) = A. Again, it is
not hard to show that the set If of strictly invariant sets A ∈ Σ forms a sub-σ-algebra of Σ.

Given an f -invariant probability measure ρ, we will say that a measurable function
g ∶X → R is ρ-almost invariant (under f) if the following equivalent statements hold:

(i) g(f(x)) = g(x) for ρ-almost all x ∈X;

(ii) g(f(x)) ≥ g(x) for ρ-almost all x ∈X;

(iii) g(f(x)) ≤ g(x) for ρ-almost all x ∈X;

(iv) g is measurable with respect to Ifρ .

We will say that a probability measure ρ on X is ergodic with respect to f (or f -ergodic)
if the following equivalent statements hold:

(i) ρ is f -invariant, and ρ(A) ∈ {0,1} for every ρ-almost invariant set A ∈ Σ;

(ii) ρ is f -invariant, and ρ(A) ∈ {0,1} for every strictly invariant set A ∈ Σ;

(iii) ρ is f -invariant, and for every measurable ρ-almost invariant g ∶ X → R there
exists c ∈ R such that g(x) = c for ρ-almost all x ∈X;

(iv) ρ is f -invariant, and the only f -invariant probability measure that is absolutely
continuous with respect to ρ is ρ itself;

(v) ρ is an extreme point of the convex set of f -invariant probability measures
(that is to say, ρ is f -invariant and cannot be expressed as a non-trivial convex
combination of two distinct f -invariant probability measures).

In this case, we will also say that f is an ergodic (measure-preserving) transformation
of (X,Σ, ρ), or that (X,Σ, ρ, f) is an ergodic (measure-preserving) dynamical system.

It is known that any two distinct ergodic probability measures are mutually singular.

Birkhoff’s ergodic theorem

Let f be a measure-preserving transformation of a probability space (X,Σ, ρ), and let
g ∶X → R be a ρ-integrable function. Then

1

n

n−1

∑
i=0
g(f i(x)) → E(ρ)[g∣If ](x) as n→∞

for ρ-almost all x ∈ X.1 (This statement also holds with If replaced by Ifρ , as it can be
shown that If and Ifρ agree modulo ρ-null sets.)

1Obviously here we fix, independently of x, a version E(ρ)[g∣If ] ∶X → R of the conditional expectation

of g given If .
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In particular, if ρ is ergodic then

1

n

n−1

∑
i=0
g(f i(x)) → ∫

X
g dρ as n→∞

for ρ-almost all x ∈X.

Ergodic decomposition

Let (X,Σ) be a standard measurable space (meaning, as in Section 2.2, that Σ can be
expressed as the Borel σ-algebra of a Polish topology on X).

Let ρ be a probability measure on X, and let I be a sub-σ-algebra of Σ. As a
special case of the disintegration theorem (Lemma 3.27), one can show the following:
There exists (unique up to ρ-almost everywhere equality) a measurable function
ρ(∣I) ∶X →M(X,Σ) with the property that for every A ∈ Σ, the map x ↦ ρ(∣I)(x)(A) is
a version of the conditional probability ρ(A∣I). The function ρ(∣I) is referred to as (a
version of ) the conditional distribution of ρ given I.

Now let f ∶X → X be a measurable map, and let ρ be an f -invariant probability
measure. Fix a version ρ(∣If) of the conditional distribution of ρ given If . As an
equation to be evaluated at each set A ∈ Σ, we have (trivially, from the definition of a
conditional distribution) the following integral representation of ρ:

ρ = ∫
X
ρ(∣If)(x) ρ(dx). (C.1)

It is not hard to show that for ρ-almost all x ∈ X, the probability measure ρ(∣If)(x) is
f -invariant; moreover, using Birkhoff’s ergodic theorem, one can show that for ρ-almost
all x ∈ X, ρ(∣If)(x) is ergodic with respect to f .2 Hence equation (C.1) is referred to as
an ergodic decomposition of ρ.

(Once again, in all the above we can replace the σ-algebra If with Ifρ .)

Note, in particular, that as a consequence we have the following: if a measurable
map on a standard measurable space admits an invariant probability measure, then it
admits an ergodic probability measure; moreover, if it admits an invariant probability
measure assigning full measure to some set A, then it admits an ergodic probability
measure assigning full measure to the same set A.

Continuous maps

Let (X,d) be a separable metric space. Recall that for any Borel probability measure ρ
on X, the support of ρ (denoted suppρ) is defined as the smallest closed ρ-full measure

2It is clear that for each strictly invariant A ∈ Σ, for ρ-almost all x ∈ X, ρ(∣If)(x) assigns trivial
measure to A. However, this does not automatically imply that ρ(∣If)(x) is ergodic for ρ-almost all
x ∈ X, since there may be uncountably many strictly invariant sets, and If need not even be countably
generated.
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subset of X.3 Note that this is precisely the set of points in X all of whose open
neighbourhoods have strictly positive measure according to ρ.

Let f ∶X →X be a continuous map.

We say that a set A ⊂ X is (forward-)invariant (under f) if f(A) ⊂ A. Obviously,
an arbitrary intersection of invariant sets is invariant. Note that for any f -invariant
probability measure ρ, if A ∈ B(X) is invariant then A is ρ-almost invariant, since
A ∖ f−1(A) is empty (and is therefore obviously a ρ-null set).

Obviously, for any x ∈ X, the smallest invariant set containing x is the locus of
its trajectory, {fn(x) ∶ n ∈ N0}. Now, for any x ∈ X, let Gx ∶= {fn(x) ∶ n ∈ N0}. So any
closed invariant set containing the point x must contain the set Gx. But moreover,
observe that Gx is itself invariant: for any y ∈ Gx, letting (mn)n∈N be a sequence in
N0 such that fmn(x) → y as n → ∞, we will have (due to the continuity of f) that
fmn+1(x)→ f(y) as n→∞.

So then, Gx is the smallest closed invariant set containing x.

Now it is easy to check that for any closed invariant G ⊂ X, the following two
statements are equivalent:

(i) the only closed invariant proper subset of G is ∅;

(ii) G is non-empty, and for all x ∈ G, Gx = G.

When these statements hold, we will say that G is minimal (with respect to f). Since
the intersection of two closed invariant sets is a closed invariant set, it is clear that any
two disinct minimal sets must be mutually disjoint.

Proposition. Every non-empty compact invariant set contains at least one minimal set.

Hence in particular, if X is compact, then: (a) there exists at least one minimal set; and
(b) if there is only one minimal set K, then K is the smallest non-empty closed invariant
set.

Our proof is taken from [New15b, Proposition 1.2.6] (which is, in turn, loosely
adapted from the solution to Exercicse 3.3.4 of [KH95]).

Proof. Given non-empty compact sets C2 ⊂ C1 ⊂ X, let dH(C1,C2) ∶= maxx∈C1 d(x,C2).
For any non-empty compact invariant C ⊂ X, we write I(C) for the set of non-empty
closed invariant subsets of C, and we write

m(C) ∶= sup
C̃ ∈ I(C)

dH(C, C̃).

Now fix a non-empty compact invariant set C0 ⊂ X; we will show that C0 contains a
minimal set K. Let C0 ⊃ C1 ⊃ C2 ⊃ . . . be a nested sequence of non-empty closed invariant

3This exists due to the existence of a countable base for the topology of X.
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sets, with dH(Cn,Cn+1) ≥ n
n+1m(Cn) for all n ∈ N0. Cantor’s intersection theorem gives

that K ∶= ⋂∞n=0Cn is non-empty; and obviously K is invariant. Now since C0 is totally
bounded, we must have that dH(Cn,Cn+1)→ 0 as n→∞, and so m(Cn)→ 0 as n→∞. It
is easy to see that m(⋅) is monotone, so it follows that m(K) = 0. Hence K is minimal.

Now it is not hard to show that for any f -invariant probability measure ρ, suppρ is
invariant.4 The Krylov-Bogolyubov theorem gives a kind of “partial converse”: for any
non-empty compact invariant G ⊂ X, there exists an f -invariant probability measure ρ
such that ρ(G) = 1 (i.e. such that suppρ ⊂ G). Since G is compact, by restricting f to
G we can obtain an ergodic decomposition of ρ; and so there must exist at least one
f -ergodic probability measure ρ̃ such that ρ̃(G) = 1.

Note, in particular, that for any compact minimal K ⊂ X, there must exist at
least one ergodic probability measure ρ such that suppρ = K. Also note that if X is
compact and f admits only one invariant probability measure ρ, then suppρ is the
smallest non-empty closed invariant set.

C.2 Ergodic theory for dynamical systems

An (autonomous) dynamical system on a set X is a T+-indexed family of (f t)t∈T+ of
functions f t ∶X →X such that the “flow equations”

(i) f 0 = idX ;

(ii) f s+t = f t ○ f s for all s, t ∈ T+.

Sometimes an individual function h ∶X →X is called a dynamical system on X, because
it naturally generates the discrete-time dynamical system (hn)n∈N0 . (Indeed, we made
reference to this use of terminology in Section C.1 when we mentioned “measure-
preserving dynamical systems”.)

Given a measurable space (X,Σ), an (autonomous) dynamical system on (X,Σ)
is a dynamical system (f t) on the set X with the additional property that f t is
(Σ,Σ)-measurable for all t ∈ T+. We will say that a dynamical system (f t) on (X,Σ)
is measurable if the map (t, x) ↦ f t(x) is (B(T+) ⊗ Σ,Σ)-measurable. (Obviously, if
T+ = N0 then any dynamical system on (X,Σ) is measurable.)

Invariant and ergodic measures

Let (f t)t∈T+ be a dynamical system on a measurable space (X,Σ).

We say that a probability measure ρ on X is (f t)-invariant (or invariant under
(f t)) if ρ is f t-invariant for every t ∈ T+. In this case, we also say that (f t) is ρ-
preserving, or that (X,Σ, ρ, (f t)) is a measure-preserving dynamical system. Note that if
T+ = N0, then a probability measure ρ onX is (f t)-invariant if and only if ρ is f 1-invariant.

4In fact, it is not hard to show that f(suppρ) is a dense subset of suppρ. Hence in particular, if
suppρ is compact then f(suppρ) = suppρ.
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Given an (f t)-invariant probability measure ρ, we will say that a set A ∈ Σ is ρ-
almost invariant (under (f t)) if A is ρ-almost invariant under f t for every t ∈ T+. It is
easy to show that if T+ = N0, then a set A ∈ Σ is ρ-almost invariant under (f t) if and

only if A is ρ-almost invariant under f 1. Let I(f
t)

ρ denote the set of ρ-almost invariant
sets, that is,

I(f
t)

ρ = ⋂
t∈T+
If tρ .

Obviously I(f
t)

ρ is a sub-σ-algebra of Σ.

We will say that a set A ∈ Σ is strictly invariant (under (f t)) if A is strictly
invariant under f t for all t ∈ T+. It is easy to show that if T+ = N0, then a set A ∈ Σ
is strictly invariant under (f t) if and only if A is strictly invariant under f 1. Let I(f t)
denote the set of strictly invariant sets, that is,

I(f t) = ⋂
t∈T+
If t .

Obviously I(f t) is a sub-σ-algebra of Σ.

Given an (f t)-invariant probability measure ρ, we will say that a measurable function
g ∶X → R is ρ-almost invariant (under (f t)) if the following equivalent statements hold:

(i) g is ρ-almost invariant under f t for all t ∈ T+;

(ii) g is measurable with respect to I(f
t)

ρ .

Note that if T+ = N0, then a measurable function g ∶X → R is ρ-almost invariant under
(f t) if and only if g is ρ-almost invariant under f 1.

We will say that a probability measure ρ on X is ergodic with respect to (f t) (or
(f t)-ergodic) if the following equivalent statements hold:

(i) ρ is (f t)-invariant, and ρ(A) ∈ {0,1} for every ρ-almost invariant set A ∈ Σ;

(ii) ρ is (f t)-invariant, and for every measurable ρ-almost invariant g ∶X → R there
exists c ∈ R such that g(x) = c for ρ-almost all x ∈X;

(iii) ρ is (f t)-invariant, and the only (f t)-invariant probability measure that is
absolutely continuous with respect to ρ is ρ itself;

(iv) ρ is an extreme point of the convex set of (f t)-invariant probability measures.

In this case, we will also say that (X,Σ, ρ, (f t)) is an ergodic (measure-preserving)
dynamical system.

Once again, any two distinct ergodic probability measures are mutually singular.

Note that if ρ is an (f t)-invariant probability measure and there exists τ ∈ T+
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such that ρ is ergodic with respect to the map f τ , then ρ is ergodic with respect to the
dynamical system (f t). Note also that if T+ = N0 then a probability measure ρ on X is
ergodic with respect to (f t) if and only if ρ is ergodic with respect to f 1.

Now if (f t) is measurable, then for any (f t)-invariant probability measure ρ, the
following are equivalent:

(i) ρ is (f t)-ergodic;

(ii) ρ(A) ∈ {0,1} for every strictly invariant set A ∈ Σ.

Birkhoff’s ergodic theorem for semiflows

Assume T+ = [0,∞). Let (X,Σ, ρ, (f t)) be a measure-preserving dynamical system, with
(f t) measurable, and let g ∶X → R be a ρ-integrable function.

Then for ρ-almost all x ∈X, the map t↦ g(f t(x)) is locally integrable and

1

T ∫
T

0
g(f t(x))dt → E(ρ)[g∣I(f

t)](x) as T →∞.

(This statement also holds with I(f t) replaced by I(f
t)

ρ , as it can be shown that due to

the measurability of (f t), I(f t) and I(f
t)

ρ agree modulo ρ-null sets.)

In particular, if ρ is ergodic then

1

T ∫
T

0
g(f t(x))dt → ∫

X
g dρ as T →∞

for ρ-almost all x ∈X.

Ergodic decomposition

Let (f t) be a measurable dynamical system on a standard measurable space (X,Σ).
Then for any (f t)-invariant probability measure ρ on X, we have (as in Section C.1) the
integral representation

ρ = ∫
X
ρ(∣I(f t))(x) ρ(dx)

and one can show that ρ(∣I(f t))(x) is (f t)-ergodic for ρ-almost every x ∈X.

(Once again, we can also replace I(f t) with I(f
t)

ρ .)

Spatially continuous dynamical systems

Let (X,d) be a separable metric space. Let (f t) be a dynamical system on X such that
f t is continuous for all t ∈ T+.

We say that a set A ⊂ X is (forward-)invariant (under (f t)) if A is invariant
under f t for all t ∈ T+. In the case that T+ = N0, A is invariant under (f t) if and only
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if A is invariant under f 1. Note that, once again, an arbitrary intersection of invariant
sets is invariant.

For any x ∈ X, let Gx ∶= {f t(x) ∶ t ∈ T+}. Once again, it is easy to show that Gx

is the smallest closed invariant set containing x.

We say that a set G ⊂ X is minimal (with respect to (f t)) if the following equivalent
statements hold:

(i) G is closed and invariant, and the only closed invariant proper subset of G is ∅;

(ii) G is a non-empty closed invariant set, and for all x ∈ G, Gx = G.

Note that if a closed set G ⊂ X is invariant under (f t) and there exists τ ∈ T+ such that
G is minimal with respect to f τ , then G is minimal with respect to (f t). Also note that
if T+ = N0 then a set G ⊂ X is minimal with respect to (f t) if and only if G is minimal
with respect to f 1.

Exactly the same proof as in Section C.1 gives that every non-empty compact
invariant set contains at least one minimal set.

Once again, the support of any (f t)-invariant probability measure is invariant. If
(f t) is measurable as a dynamical system on (X,B(X)),5 then every non-empty compact
invariant contains the support of at least one (f t)-ergodic probability measure, and
every compact minimal set is equal to the support of at least one (f t)-ergodic probability
measure. If, in addition, X is compact and (f t) admits only one invariant probability
measure ρ, then suppρ is the smallest non-empty closed invariant set.

C.3 Ergodic theory for Markov kernels

Let (X,Σ) be a measurable space. A Markov kernel (or family of one-step transition
probabilities) on X is an X-indexed family (µx)x∈X of probability measures on X, such
that the map x ↦ µx(A) is measurable for all A ∈ Σ.6 Note that for any measurable
function f ∶X → X, (δf(x))x∈X is a Markov kernel on X. We refer to the Markov kernel
(δx)x∈X as the identity kernel.

Let (µx) be a Markov kernel on X. For any probability measure ρ on X, we
define the probability measure µ∗ρ on X by

µ∗ρ(A) ∶= ∫
X
µx(A)ρ(dx).

Note that if (µx) = (δf(x)) for some measurable f ∶X → X, then for any probability
measure ρ on X, µ∗ρ = f∗ρ.

5A sufficient condition for this is that the map t↦ f t(x) is right-continuous for all x ∈X.
6We prefer the “µx(A)” notation to the (perhaps more common) “P (x,A)” notation, as it allows us

to consider individual probability measures µx without unnecessary cumbersomeness of notation.
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We say that a probability measure ρ on X is stationary under (µx) (or (µx)-
stationary) if µ∗ρ = ρ. (In particular, given any measurable f ∶X → X, a probability
measure ρ on X is stationary under (δf(x)) if and only if ρ is f -invariant. Note that
every probability measure on X is stationary under the identity kernel.)

Given a (µx)-stationary probability measure ρ, for any A ∈ Σ with ρ(A) = 1, it is
clear that µx(A) = 1 for ρ-almost all x ∈ X. (This does not, however, imply that µx
is absolutely continuous with respect to ρ for ρ-almost all x ∈ X, since the collection
of all ρ-full-measure members of Σ is not generally countable. Indeed, as a simple
counter-example: the Lebesgue measure on [0,1] is stationary with respect to the
identity kernel on [0,1], and yet there does not exist x ∈ [0,1] such that δx is absolutely
continuous with respect to the Lebesgue measure.)

Note that any convex combination of (µx)-stationary probability measures is (µx)-
stationary.

Given a (µx)-stationary probability measure ρ, we will say that a set A ∈ Σ is
ρ-almost invariant (according to (µx)) if the following equivalent statements hold:

(i) for ρ-almost all x ∈ A, µx(A) = 1;

(ii) for ρ-almost all x ∈X ∖A, µx(A) = 0;

(iii) for ρ-almost all x ∈X, µx(A) = 1A(x).

It is not hard to show that the set I(µx)ρ of all ρ-almost invariant sets A ∈ Σ forms a
sub-σ-algebra of Σ.

Note that, given a measurable map f ∶X → X and an f -invariant probability
measure ρ, a set A ∈ Σ is ρ-almost invariant according to the Markov kernel (δf(x)) if
and only if it is ρ-almost invariant under f .

Given a probability measure ρ on X and a ρ-integrable function g ∶X → R, we
write ρ(g) as a shorthand for ∫X g(x)ρ(dx). Given a (µx)-stationary probability
measure ρ, we will say that a bounded measurable function g ∶X → R is ρ-almost
invariant (according to (µx)) if the following equivalent statements hold:

(i) µx(y ∈X ∶ g(y) = g(x) ) = 1 for ρ-almost all x ∈X;

(ii) µx(g) = g(x) for ρ-almost all x ∈X;

(iii) µx(g) ≥ g(x) for ρ-almost all x ∈X;

(iv) µx(g) ≤ g(x) for ρ-almost all x ∈X;

(v) g is measurable with respect to I(µx)ρ .

We will say that a probability measure ρ on X is ergodic with respect to (µx) (or (µx)-
ergodic) if the following equivalent statements hold:
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(i) ρ is (µx)-stationary, and ρ(A) ∈ {0,1} for every ρ-almost invariant set A ∈ Σ;

(ii) ρ is (µx)-stationary, and for every bounded measurable ρ-almost invariant
function g ∶X → R there exists c ∈ R such that g(x) = c for ρ-almost all x ∈X;

(iii) ρ is (µx)-stationary, and the only (µx)-stationary probability measure that is
absolutely continuous with respect to ρ is ρ itself;

(iv) ρ is an extreme point of the convex set of (µx)-stationary probability measures.

Note that, given a measurable map f ∶ X → X, a probability measure ρ on X is ergodic
with respect to f if and only if it is ergodic with respect to (δf(x)).

Once again, any two distinct ergodic probability measures are mutually singular.

Ergodic decompositions and continuity of Markov kernels will be considered in
the next section.

C.4 Ergodic theory for semigroups of Markov

kernels

Let (X,Σ) be a measurable space. A family of Markov transition probabilities or
a semigroup of Markov kernels on X is an (X × T+)-indexed family (µtx)x∈X, t∈T+ of
probability measures µtx on X such that the following hold:

(i) the map x↦ µtx(A) is measurable for each A ∈ Σ and t ∈ T+;

(ii) µ0
x = δx for all x ∈X (i.e. (µ0

x)x∈X is the identity kernel);

(iii) for all x ∈X, s, t ∈ T+ and A ∈ Σ, the “Chapman-Kolmogorov relation”

µs+tx (A) = ∫
X
µty(A)µsx(dy)

is satisfied.

Obviously (µtx)x∈X is a Markov kernel on X for each t ∈ T+. So, using the notation
introduced in Section C.3, point (iii) can be expressed slightly more succinctly as

µs+tx = µt∗µsx

for all x ∈X and s, t ∈ T+. Note that for any Markov kernel (µx) on X, there is a unique
discrete-time family of Markov transition probabilities (µnx)x∈X,n∈N0 such that (µ1

x) = (µx);
this can be constructed explicitly by the recursive relation

µ0
x = δx ; µn+1

x (A) = ∫
X
µny(A)µx(dy) for n ≥ 0.

It is easy to check that for any dynamical system (f t) on (X,Σ), (δf t(x))x∈X, t∈T+ is a
family of Markov transition probabilities.
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Wherever we do not include subscripts after (µtx), assume that (µtx) refers to the
whole family of Markov transition probabilities (µtx)x∈X, t∈T+ .

We say that a family of Markov transition probabilities (µtx) is measurable if the
map (x, t) ↦ µtx(A) is (Σ ⊗ B(T+),B([0,1]))-measurable for every A ∈ Σ. Note that if
T+ = N0 then every family of Markov transition probabilities is measurable. Also note
that for any measurable dynamical system (f t) on (X,Σ), (δf t(x)) is measurable.

Sometimes, for convenience, we just use the terms kernel and semigroup to refer,
respectively, to a Markov kernel or semigroup of Markov kernels.

Stationary and ergodic measures

Let (µtx) be a family of Markov transition probabilities on a measurable space (X,Σ).
We say that a probability measure ρ on X is stationary under (µtx) (or (µtx)-stationary)
if ρ is stationary under the kernel (µtx)x∈X for each t ∈ T+. In the case that T+ = N0, a
probability measure ρ is stationary under (µtx) if and only if ρ is stationary under the
kernel (µ1

x)x∈X .

Given a (µtx)-stationary probability measure ρ, we will say that a set A ∈ Σ is ρ-
almost invariant (according to (µtx)) if A is ρ-almost invariant according to the kernel
(µtx)x∈X for each t ∈ T+. In the case that T+ = N0, A is ρ-almost invariant according to
(µtx) if and only if A is ρ-almost invariant according to the kernel (µ1

x)x∈X .

Let I(µ
t
x)

ρ denote the set of ρ-almost invariant sets, that is,

I(µ
t
x)

ρ = ⋂
t∈T+
I(µ

t
x)x∈X

ρ .

Obviously I(µ
t
x)

ρ is a sub-σ-algebra of Σ.

Given a (µtx)-stationary probability measure ρ, we will say that a measurable
function g ∶X → R is ρ-almost invariant (according to (µtx)) if the following equivalent
statements hold:

(i) g is ρ-almost invariant according to the kernel (µtx)x∈X for each t ∈ T+;

(ii) g is measurable with respect to I(µ
t
x)

ρ .

Note that if T+ = N0, then a measurable function g ∶X → R is ρ-almost invariant
according to (µtx) if and only if g is ρ-almost invariant according to the kernel (µ1

x).

We will say that a probability measure ρ on X is ergodic with respect to (µtx) (or
(µtx)-ergodic) if the following equivalent statements hold:

(i) ρ is (µtx)-stationary, and ρ(A) ∈ {0,1} for every ρ-almost invariant set A ∈ Σ;

(ii) ρ is (µtx)-stationary, and for every bounded measurable ρ-almost invariant
function g ∶X → R there exists c ∈ R such that g(x) = c for ρ-almost all x ∈X;
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C.4 Ergodic theory for semigroups of Markov kernels

(iii) ρ is (µtx)-stationary, and the only (µtx)-stationary probability measure that is
absolutely continuous with respect to ρ is ρ itself;

(iv) ρ is an extreme point of the convex set of (µtx)-stationary probability measures.

Once again, any two distinct ergodic probability measures are mutually singular.

Note that if ρ is a (µtx)-stationary probability measure and there exists τ ∈ T+
such that ρ is ergodic with respect to the kernel (µτx)x∈X , then ρ is ergodic with respect
to the semigroup (µtx). Note also that if T+ = N0 then a probability measure ρ on X is
ergodic with respect to (µtx) if and only if ρ is ergodic with respect to (µ1

x)x∈X .

Ergodic decomposition

Let (µtx) be a measurable family of Markov transition probabilities on a standard
measurable space (X,Σ). Then for any (µtx)-stationary probability measure ρ on X,
we have the integral representation

ρ = ∫
X
ρ(∣I(µ

t
x)

ρ )(y) ρ(dy)

and one can show that ρ(∣I(µ
t
x)

ρ )(y) is (µtx)-ergodic for ρ-almost every y ∈X.

Feller-continuous Markov transition probabilities

Let (X,d) be a separable metric space. We will say that a Markov kernel (µx) on
X is Feller-continuous if the map x ↦ µx is continuous with respect to the narrow
topology. We will say that a family of Markov transition probabilities (µtx) on X
is Feller-continuous if the kernel (µtx)x∈X is Feller-continuous for every t ∈ T+; in the
case that T+ = N0, this is equivalent to saying that the kernel (µ1

x)x∈X is Feller-continuous.

We say that a set A ∈ B(X) is forward-invariant according to a Markov kernel
(µx) on X if µx(A) = 1 for every x ∈ A. We say that A ∈ B(X) is forward-invariant
according to a family of Markov transition probabilities (µtx) on X if A is forward-
invariant according to the kernel (µtx)x∈X for every t ∈ T+; if T+ = N0 then this is
equivalent to saying that A is forward-invariant according to the kernel (µ1

x)x∈X .

For either a kernel (µx) or a semigroup (µtx), it is not hard to show (using the
fact that there is a countable base for the topology of X) that an arbitrary intersection
of closed forward-invariant sets is forward-invariant.

Now let (µtx) be a Feller-continuous family of Markov transition probabilities on
X, and for any x ∈X, let

Gx ∶= ⋃
t∈T+

suppµtx.

Fix x ∈ X. For any open U ⊂ X, it is easy to see that U ∩Gx ≠ ∅ if and only if there
exists t ∈ T+ such that µtx(U) > 0. In other words, Gx is precisely the set of points y such
that for every neighbourhood U of y there exists t ∈ T+ such that µtx(U) > 0. Moreover,
we have the following:
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C.4 Ergodic theory for semigroups of Markov kernels

Proposition. Gx is the smallest closed forward-invariant set containing x.

The proof is taken from [New15b, Lemma 1.2.3].

Proof. It is clear that any closed forward-invariant set containing x must contain suppµtx
for every t, and therefore must contain Gx. So it remains to show that Gx is itself forward-
invariant. Fix any y ∈ Gx, and suppose for a contradiction that there exists t ∈ T+ such
that µty(Gx) < 1. Since Gx is closed, the map ξ ↦ µtξ(Gx) is upper semicontinuous, and
so there exists a neighbourhood V of y such that µtξ(Gx) < 1 for all ξ ∈ V . Since y ∈ Gx,
there exists s ∈ T+ such that µsx(V ) > 0. Hence

µs+tx (X ∖Gx) = ∫
X
µtξ(X ∖Gx)µsx(dξ) ≥ ∫

V
µtξ(X ∖Gx)µsx(dξ) > 0.

But it is clear that µs+tx (Gx) = 1, since by definition suppµs+tx ⊂ Gx. So we have a
contradiction.

We say that a set G ⊂ X is minimal according to a Feller-continuous family of Markov
transition probabilities (µtx) if the following equivalent statements hold:

(i) G is closed and forward-invariant, and the only closed forward-invariant proper
subset of G is ∅;

(ii) G is a non-empty closed forward-invariant set, and for all x ∈ G, Gx = G;

(iii) G is a non-empty closed forward-invariant set, and for all x ∈ G and open U ⊂X
with U ∩G ≠ ∅, there exists t ∈ T+ such that µtx(U) > 0.

We say that a set G ⊂X is minimal according to a Feller-continuous Markov kernel (µx)
is the following equivalent statements hold:

(i) G is closed and forward-invariant, and the only closed forward-invariant proper
subset of G is ∅;

(ii) G is non-empty, closed, and forward-invariant according to the unique discrete-
time family of Markov transition probabilities (µnx)x∈X,n∈N0 with (µ1

x) = (µx).
Note that, given a Feller-continuous family of Markov transition probabilities (µtx), if a
closed set G ⊂X is forward-invariant according to (µtx) and there exists τ ∈ T+ such that
G is minimal according to the kernel (µτx)x∈X , then G is minimal according to (µtx).

Given a Feller-continuous kernel (µx) or semigroup (µtx), any two distinct minimal sets
are mutually disjoint, and every non-empty compact forward-invariant set contains at
least one minimal set; the proof is exactly the same as in Section C.1. Once again, the
support of any stationary probability measure is forward-invariant. Given a semigroup
(µtx) that is both Feller-continuous and measurable,7 every non-empty compact forward-
invariant contains the support of at least one ergodic probability measure, and every
compact minimal set is equal to the support of at least one ergodic probability measure.
If, in addition, X is compact and (µtx) admits only one stationary probability measure
ρ, then suppρ is the smallest non-empty closed forward-invariant set.

7A sufficient condition for a Feller-continuous family of Markov transition probabilities (µtx) to be
measurable is that the map t↦ µtx is right-continuous with respect to the narrow topology for all x ∈X.
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C.5 Discrete-time Markov processes

Let (X,Σ) be a measurable space. Let (Ω,F , (Fn)n∈N0 ,P) be a filtered probability space.
Let (µx)x∈X be a Markov kernel on X.

We say that a sequence (Mn)n∈N0 of functions Mn ∶Ω → X is a (homogeneous)
Markov process with respect to the filtration (Fn), with transition probabilities (µx)x∈X if
the following hold:

(i) for each n ∈ N0, Mn is (Fn,Σ)-measurable;

(ii) for each n ∈ N0 and A ∈ Σ,

P(M−1
n+1(A)∣Fn)(ω) = µMn(ω)(A) P-a.s.

It follows that for any n ∈ N0 and any bounded measurable g ∶X → R,

E[g(Mn+1)∣Fn](ω) = ∫
X
g(x) µMn(ω)(dx) P-a.s.

(Just approximate g by simple functions, and use the dominated and conditional
dominated convergence theorems.)

Remark. Given a sequence (Mn)n∈N0 of (F ,Σ)-measurable functions Mn ∶Ω→X, if there
exists a filtration of sub-σ-algebras of F with respect to which (Mn) is a Markov process
with transition probabilities (µx), then in particular (Mn) must be a Markov process
with respect to its natural filtration F̃n ∶= σ(Mr ∶ 0 ≤ r ≤ n), with the same transition
probabilities (µx). This property can be characterised purely by the law of the stochastic
process (Mn) (that is, the image measure of P under the map ω ↦ (Mn(ω))n∈N0 from Ω
to XN0).8

Proposition. Let (Mn) be a Markov process (with respect to any filtration on (Ω,F)),
with transition probabilities (µx). Then for all n ∈ N0, Mn+1∗P = µ∗(Mn∗P).

Proof. For any A ∈ Σ,

P(M−1
n+1(A)) = ∫

Ω
µMn(ω)(A)P(dω) = ∫

X
µx(A)Mn∗P(dx) = µ∗(Mn∗P)(A)

as required.

Now let (µnx)x∈X,n∈N0 be the unique discrete-time semigroup of Markov kernels with µ1
x =

µx for all x.

Proposition. Let (Mn) be a Markov process with respect to the filtration (Fn), with
transition probabilities (µx). Then for any n, r ∈ N0 and A ∈ Σ,

P(M−1
n+r(A)∣Fn)(ω) = µrMn(ω)(A) P-a.s.

8 Specifically, (Mn) is a Markov process with respect to its natural filtration if and only if its law is a
“Markov measure” as in Section 4 of [New15a] (not to be confused with a “Markov invariant measure”
of a RDS, as introduced in Section 3.5 of this thesis).
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C.6 Continuous-time Markov processes

(Therefore, we may also describe (Mn) as a “Markov process with (n-step) transition
probabilities (µnx)x∈X,n∈N0”.)

Proof. We prove the statement by induction on r. The statement is clear for all n ∈ N0

with r = 0. Now fix k ∈ N0 such that the statement is true for all n ∈ N0 with r = k. For
any n ∈ N0 and A ∈ Σ, we have that for P-almost all ω,

µk+1
Mn(ω)(A) = ∫X µ

k
x(A) µMn(ω)(dx)

= E[µkMn+1
(A)∣Fn](ω)

= E[P(M−1
n+k+1(A)∣Fn+1) ∣Fn](ω)

= P(M−1
n+k+1(A)∣Fn)(ω).

Thus the statement is true for all n ∈ N0 with r = k + 1. Hence the result follows by
induction.

The ergodic theorem for discrete-time Markov processes

Let ρ be a (µx)-stationary probability measure, and let g ∶X → R be a ρ-integrable
function. Let (Mn)n∈N0 be a Markov process (with respect to any filtration on (Ω,F))
with transition probabilities (µx), and suppose moreover that M0∗P = ρ (from which it
follows that Mn∗P = ρ for every n ∈ N0). Then

1

n

n−1

∑
i=0
g(Mi(ω)) → E[ g(M0) ∣M−1

0 I
(µx)
ρ ](ω) as n→∞

for P-almost all ω ∈ Ω. Hence in particular, if ρ is ergodic then

1

n

n−1

∑
i=0
g(Mi(ω)) → ∫

X
g dρ as n→∞

for P-almost all ω ∈ Ω.

The above result is obtained by applying Birkhoff’s ergodic theorem to the left-
shift map on the sequence space XN0 , equipped with the law µρ of (Mn). The main
technicality is to show that every µρ-almost invariant set in this sequence space depends,
up to modification, on only the first coordinate. For details, see Section 4 of [New15a].

C.6 Continuous-time Markov processes

Let (X,Σ) be a measurable space. Let (Ω,F , (Ft)t∈[0,∞),P) be a filtered probability
space, and let F∞ ∶= σ(Ft ∶ t ≥ 0). Let (µtx)x∈X, t∈[0,∞) be a semigroup of Markov kernels
on X.

We say that a [0,∞)-indexed family (Mt)t≥0 of functions Mt ∶Ω→X is a (homogeneous)
Markov process with respect to the filtration (Ft), with transition probabilities
(µtx)x∈X, t∈[0,∞) if the following hold:
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(i) for each t ≥ 0, Mt is (Ft,Σ)-measurable;

(ii) for each s, t ≥ 0 and A ∈ Σ,

P(M−1
s+t(A)∣Fs)(ω) = µtMs(ω)(A) P-a.s.

Remark. Given a family (Mt)t≥0 of measurable functions Mt ∶Ω → X, if there exists
a filtration on (Ω,F) with respect to which (Mt) is a Markov process with transition
probabilities (µtx), then (Mt) must in particular be a Markov process with respect to its
natural filtration F̃t ∶= σ(Ms ∶ 0 ≤ s ≤ t), with the same transition probabilities (µtx).
(Once again, this property is characterised purely by the law of the stochastic process
(Mt), that is, the image measure of P under the map ω ↦ (Mt(ω))t≥0 from Ω to X[0,∞).)

Now for any t ≥ 0 and any probability measure ρ on X, in keeping with the notation
introduced in Section C.3, we define the probability measure µt∗ρ on X by

µt∗ρ(A) ∶= ∫
X
µtx(A)ρ(dx).

As in discrete time, it is easy to show that if (Mt) is a Markov process with transition
probabilities (µtx) then for any s, t ≥ 0, Ms+t∗P = µt∗(Ms∗P).

The ergodic theorem for continuous-time Markov processes

Let ρ be a (µtx)-stationary probability measure, and let g ∶X → R be a ρ-integrable
function. Let (Mt)t≥0 be a Markov process (with respect to any filtration on (Ω,F))
with transition probabilities (µtx). Suppose moreover that the map (t, ω) ↦ Mt(ω) is
jointly measurable, and M0∗P = ρ (from which it follows that Mt∗P = ρ for every t ≥ 0).

Then for P-almost all ω ∈ Ω, the map t↦ g(Mt(ω)) is locally integrable and

1

T ∫
T

0
g(Mt(ω))dt → E[ g(M0) ∣M−1

0 I
(µtx)
ρ ](ω) as T →∞.

In particular, if ρ is ergodic then for P-almost all ω ∈ Ω,

1

T ∫
T

0
g(Mt(ω))dt → ∫

X
g dρ as T →∞.

A proof in the case that (Mt)t≥0 has right-continuous sample paths in some separable
metrisable topology generating Σ can be found in Section 4 of [New15a]. The more general
case is obtained by combining [New15a, Corollary 71] (where it is shown that the almost-
invariant sets of the time-shift dynamical system on X[0,∞) are determined modulo null
sets by their 0-coordinate) with the general ergodic theorem for stationary stochastic
processes (see e.g. [Lin02, Theorem 5.5]9 with two-sided time replaced by one-sided time
and x(t) ∶= g ○Mt).

9The statement as appears in [Lin02, Theorem 5.5] requires the additional assumption that the map
(t, ω) ↦ x(t)(ω) is jointly measurable. The proof also omits some non-trivial steps: The stationarity of
the stochastic process xn ∶= ∫

n
n−1 x(t)dt is justified by [MO14]. (More precisely, this directly covers the

case that x(t) is essentially bounded; the general case is then obtained by “capping” x(t) within [−N,N]
and letting N →∞.) The fact that the limit of the finite-time averages is J -measurable modulo null sets
relies on this limit being BR-measurable modulo null sets; this is justified by [MO15a] together with the
stationarity of (x(t))t∈R. (Again, this only directly covers the bounded case, but can then be extended
to cover the unbounded case.)
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