Imperial College London
Department of Mathematics

Synchronisation in Random
Dynamical Systems

Julian Magnus Tke Newman

A thesis presented
for the degree of Doctor of Philosophy
at Imperial College London.






Declaration

I certify that the research documented in this thesis is entirely my own
research, and that all ideas in this thesis which either originate from other
people or are the fruit of my discussions with other people have been explicitly
acknowledged as such.



Copyright

The copyright of this thesis rests with the author and is made available under
a Creative Commons Attribution Non-Commercial No Derivatives licence.
Researchers are free to copy, distribute or transmit the thesis on the condition
that they attribute it, that they do not use it for commercial purposes and that
they do not alter, transform or build upon it. For any reuse or redistribution,
researchers must make clear to others the licence terms of this work.



Abstract

In this thesis, we develop a deeper and much more extensive theory of
synchronisation of trajectories of random dynamical systems (RDS) than
currently exists. In particular, focusing on random dynamical systems with
memoryless noise, we achieve two main goals: Firstly, we demonstrate that
the notion of “statistical equilibria” is purely a property of the measurable
dynamics of a RDS on a standard Borel space; and yet, within such statistical
equilibria is “encoded” the phenomenon of noise-induced synchronisation
(which may then be observed in any compatible metric on the phase space).
Secondly, we provide new, widely applicable criteria for synchronisation
in RDS, considerably improving upon some of the existing criteria for
synchronisation.
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A notice concerning other concurrent research

While carrying out the research on circle RDS documented in Section [5.2
of this thesis, the author was unaware that other research was being carried
out on the same topic (seemingly at more-or-less the same time), the results
of which were documented in a preprint in December 2014[] Although
working specifically in discrete time, this preprint contains several remarkable
results, including conditions for stable synchronisation in invertible RDS on
the circle that are weaker than our conditions presented in Theorem [5.19| of
this thesis: specifically, if there are no deterministic fixed points then stable
synchronisation is equivalent to contractibility] Moreover, remarkably, in
this case we are guaranteed to have exponential-rate stable synchronisation.
Results are also obtained for RDS on a bounded interval (again involving
exponential-rate stability), with partial overlap with Theorem of this
thesis.

"Dominique Malicet. “Random walks on Homeo(S')”. arXiv:1412.8618v1 [math.DS]. 2014. (See, in
particular, Theorems A and E.)

2Here, contractibility is formulated in terms of the possibility for two points to come arbitrarily close
together; but as we prove in Proposition [£.6§ this thesis, it is sufficient just to show that two distinct
points are able to come strictly closer than their initial separation.
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Notations and terminology

We write N for the strictly positive integers, and Ny := Nu{0} for the nonnegative integers.
For a finite set P, |P| denotes the number of elements of P.

A partial order < on a set X is a binary relation that is transitive and has the property
that for all x,y € X,
r=y < (r<y and y=<x).

A linear order (or total order) < on a set X is a partial order on X with the additional
property that for all z,y € X, either x <y or y < x.

Given a smooth map f:M — N between smooth manifolds M and N, we write
df:TM - TN for the derivative of f, and (df),:T,M — TN for the restriction
of df as mapping between T, M and T}, N.

Given a topological space X, B(X) denotes the Borel g-algebra of X. Given a measurable
space (X,X), we interchangeably use the phrases “probability measure on X” and
“probability measure on (X,X)”; given a topological space X, a “probability measure
on X7 always means a Borel probability measure on X (i.e. a probability measure on

(X, B(X))).

Given a metric space (X,d), a point z € X, and a number § > 0, we write Bs(z) :=
{y e X :d(x,y) <0} and Bs(x) := {y € X : d(z,y) < J}; this notation obviously makes
implicit reference to the underlying metric space (X,d) from which the point x is taken.

We always use the term “neighbourhood” to refer to an open neighbourhood.
(Nonetheless, we will sometimes use the phrase “open neighbourhood” to emphasise this.)

Given a measure space (€, F,m), a measurable space (X,), and a measurable map
f:Q - X, we write f,m for the image measure of m under f (that is, f.m(A) :=
m(f~t(A)) for all A € ¥). Given an m-integrable function ¢:Q2 - R, we sometimes
write m(g) to mean [, gdm. (So m(E)=m(1g) for any E € F.)

Given a collection C of subsets of some set €2, we write o(C) for the o-algebra on (2
generated by C. Note that this notation makes implicit reference to the underlying set €2;
still, when using this notation, it will always be clear what the underlying set is. Given a
family (F,)aer of o-algebras F, on ), we write o(F, : o € I) for the smallest o-algebra on
Q) containing the o-algebra F, for every a. Given a family ((Xa, 2 ))aer of measurable
spaces (Xq,2) and a family (f,)aer of functions f,:Q - X, we write o(f, : e I) for
the smallest o-algebra on 2 with respect to which the function f, is measurable for every
ael.
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Notations and terminology

We write E(,)[-] to denote expectation with respect to a probability measure p; in cases
where the underlying probability measure happens to be denoted P, we will sometimes
omit the subscript (p) and just write E[-]. Given a probability space (€2, F,P), a P-
integrable function ¢:2 - R and a sub-c-algebra G of F, we write E[¢|G]: Q2 - R to
denote an (arbitrary) version of the conditional expectation given G of g with respect to
P. Given a probability space (2, F,P), a set E € F, and a sub-o-algebra G of F, we write
P(E|G):Q2 - [0,1] to denote an (arbitrary) version of the conditional probability given G
of E according to P; that is to say, P(F|G) is a G-measurable function satisfying

P(ENG) - /G]P’(E|g)(w)IP’(dw) VGG

Note that P(E|G) "2% E[1|G].
For any statement P, we define

| 1 if Pis true
XP = 0 if P is false.

Given a measurable space (X,X) and a point z € X, we write ¢, for the Dirac mass at
x, namely the probability measure on (X,X) defined by §,(A) = 14(x) for all A € 3.
Obviously, if the singletons in X are X-measurable, then Dirac masses at distinct points
are distinct measures.

As will be introduced in the body of the thesis, when considering stochastic processes
and random dynamical systems, the symbol T is used to refer to Z in discrete time and
R in continuous time; and T* will denote T n[0,00). Given a topological space X, a
T*-indexed family (z;)47+ of elements of X, a point z € X, and a set S ¢ T that is
unbounded above, we say that x; - x as t tends to oo in S if for every neighbourhood U
of = there exists T' € T+ such that for all t € S with ¢t >7T, x; € U.
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Chapter 1. Introduction

In this introduction, we will first give a summary of our main results and an overview
of the thesis; we will then give a general introduction to the topic of synchronisation in
random dynamical systems (RDS) and an overview of some existing results (including
how they relate to our results); finally, we will present a (non-rigorous) exposition of
one of the key results in the theory of RDS that is tied to much of the work in this
thesis, namely the correspondence between two-sided-time and one-sided-time invariant
measures. (Still, all of the theory of RDS that is needed for this thesis will be introduced
rigorously in subsequent chapters.)

1.1 Summary of main results

In this thesis, we study synchronisation of trajectories of memoryless time-homogeneous
random dynamical systems. The vast majority of studies on synchronisation in RDS
have either been particular case studies, or slightly more general results giving sufficient
conditions for synchronisation, in either RDS taking a particular form or RDS satisfying
some special property. By contrast, the aim of this thesis is to develop much more general
results on synchronisation in RDS. In particular, we will provide:

(A) deep insights concerning asymptotic statistics and synchronising behaviour in
measurable RDS;

(B) new, broadly applicable criteria for synchronisation (in topological RDS) that
are weaker and easier to verify than criteria given in previous literature.

We will consider several different modes of synchronisation of trajectories; and
in contrast to virtually all previously existing results, each of our new tests for
synchronisation provides conditions that are either necessary and sufficient for the mode
of synchronisation in question, or at least become necessary and sufficient when a mild
additional assumption is made.

We now give a summary of our main results. Here, ¢ is a memoryless-noise RDS on
a phase space X, and p is a stationary probability measure for the associated Markov
transition probabilities of the one-point motion. A “right-continuous RDS” is a RDS that
is jointly continuous in space and right-continuous in time.

Our main general results concerning measurable RDS are:

e Theorem Taking X to be a standard measurable space, we show that there
is a probability measure ), on the space of probability measures on X with the
property that under any metrisation of the measurable structure of X, the limiting
distribution of the measure-valued Markov process obtained by letting p evolve
under the flow of ¢ is precisely @,. (We also prove some important further
properties of @),.) @, is called the statistical equilibrium associated to p. In

12



1.1 Summary of main results

previous literature, it is only when working with a topology in which ¢ is (spatially)
continuous that a limiting distribution (), has been obtained; by contrast, we
remove all continuity requirements, and show that the limiting distribution @, is a
measurable invariant[l] Foundational to the proof of Theorem [3.6]is Theorem [3.49]
where we prove the one-to-one correspondence between stationary probability
measures and Markov invariant measures without any continuity requirements.

e Corollary 3.9t Taking X to be a standard measurable space and taking p to be
ergodic, we show that there is a (deterministic) number n € Nu {co} such that
under any metrisation of the measurable structure of X, when one observes how all
the trajectories evolve simultaneously under the same realisation of the noise, one
finds that either:

(a) [the case that n < oo] after a long time, the trajectories of a very large
proportion (according to p) of the initial conditions have separated out (in
equal proportions) into n “clusters” of very small diameter; or

(b) [the case that n = oo] there is no significant synchronisation phenomenon in
the asymptotic dynamics.

(This is formalised rigorously, using notions based on convergence in probability.)
We refer to n as the p-clustering number of ¢. In the case that n = 1 (meaning
that a very large proportion of the trajectories of ¢ concentrate into a very small
region), we say that ¢ is statistically synchronising with respect to p. Once again,
results akin to Corollary have been obtained when restricting to a topology in
which ¢ is continuous (see [LeJ87]); but we remove all continuity requirements and
show that the p-clustering number of ¢ is a measurable invariant.

Our main general tests for synchronisation in right-continuous RDS are:

e Theorem [6.I} Taking X to be a compact metric space and taking ¢ to be right-
continuous, we have almost sure synchronisation of the trajectories of any given
pair of initial conditions, together with almost sure local asymptotic stability of
any given initial condition, if and only if the following statements hold:

(i) there is a unique (deterministic) minimal set K c X;

(ii) for any two distinct initial conditions in K, there is a positive probability that
the subsequent trajectories will at some time be closer together than their
initial separation;

(iii) with positive probability there exist locally asymptotically stable initial
conditions in K.

(For RDS on a manifold, condition (iii) is typically verified by showing that
the maximal Lyapunov exponent associated to some ergodic probability measure
supported by K is negative.)

!This fact is discussed in the introduction of [Newl5b| and also mentioned in the author’s open
problem in |[GGTQ15|; but the author has not published a full statement and proof before now.
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1.1 Summary of main results

e Theorem [6.6f We essentially answer the question, “When do we have n = 1 in
Propositions 2 and 3 of [LeJ87]?” More precisely, taking X to be a Borel subset
of a Polish space, taking ¢ to be right-continuous, and taking p to be ergodic,
we provide necessary and sufficient conditions for the phenomenon that there is
almost surely a p-full-measure open set of initial conditions whose trajectories are
asymptotically stable and synchronise with each other. Our conditions for this
phenomenon involve (i) the support of p admitting locally asymptotically stable
trajectories, and (ii) a condition concerning the ability of pairs of trajectories to
simultaneously come close to at least one “typical” point within the support of p.

Our main results regarding synchronisation in monotone RDS on linearly ordered spaced?]
are:

e Theorem [3.13} Taking X to be a standard measurable space, equipped with a Borel
linear order that is preserved by ¢, and taking p to be ergodic, we show that ¢ is
always statistically synchronising with respect to p.

e Theorem [3.18 Taking X to be a Borel subset of R and taking ¢ to be monotone,
we show that if p is ergodic then there is an “attracting random fixed point” whose
law is p. (As a consequence, we obtain easily verifiable necessary and sufficient
conditions for a stationary measure p to be ergodic.)

e Proposition [4.59 We take X to be a Borel subset of R and take ¢ to be monotone,
and we suppose that there exists an ergodic probability measure p such that the only
p-full-measure interval in X is the whole of X. Under this assumption, we show that
all trajectories synchronise almost surely if and only if there exist (with positive, or
equivalently, with full probability) locally asymptotically stable trajectories in X.

Our main result regarding synchronisation in orientation-preserving invertible RDS on
the circle is:

e Theorem [5.19; Taking X to be the circle S', and taking ¢ to be a right-continuous
RDS with ¢(¢,w) being an orientation-preserving homeomorphism for all ¢ and w,
we show that if

(i) there are no deterministic fixed points; and

(ii) for any ordered pair of distinct initial conditions in S!, there is a positive
probability that the anticlockwise separation of their subsequent trajectories
will, at some point in time, be less than their original anticlockwise separation;

then almost sure synchronisation of the trajectories of any given pair of initial
conditions occurs, together with almost sure local asymptotic stability of any given
initial condition. These sufficient conditions are also necessary in the case that
there are no deterministic non-empty open proper subsets of S! that are almost
surely forward-invariant under ¢. (If such an open invariant set does exist, it may
be possible to reduce the question of synchronisation to the question of whether
synchronisation occurs on this set; see [New15c, Proposition 2.16].)

2The topic of synchronisation in monotone RDS on partially ordered spaces is an important one; for
a deep study on this topic, see [FGS15|. Nonetheless, we do not consider this topic here.
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1.1 Summary of main results

Intuitively, Theorem [5.19| guarantees that for any orientation-preserving invertible RDS
on S' with “enough noisiness”, synchronisation is guaranteed to occur. Our main
application of Theorem [5.19) is:

e Theorem [5.25} We consider the RDS ¢ on S! formed by projecting onto S' the
solutions of the SDE
dXt = b(Xt)dt + O'th

on R, where b:R — R is a 1-periodic Lipschitz function and (W;) is a Wiener
process. We show that if 0 # 0 and 1 is the least period of b, then ¢ is guaranteed
to exhibit the “stable synchronisation” phenomenon described in Theorem [5.19
(and in Theorem |6.1]).

(A simple example is discussed where it is found that additive noise destroys a saddle-node
bifurcation.)

Structure of the thesis

In the remainder of Chapter 1, we will first present an introduction to the topic of
synchronisation in RDS, and an overview of the existing results and how they relate to our
results. We will then give an exposition of the well-known correspondence between one-
sided-time and two-sided-time invariant measures (of which the correspondence between
Markov invariant measures and stationary measures is a particular case), including an
explanation of the new contribution to this topic made by Theorem |3.49, This exposition
is worth providing, because (i) the correspondence between one-sided-time and two-sided-
time invariant measures is one of the most fundamental results in the theory of random
dynamical systems, and (ii) this correspondence (or rather, the particular case of it for
Markov invariant measures) forms the basis of our results on statistical equilibria, and
consequently also of our test for p-almost stable synchronisation (Theorem .

In Chapter 2, we introduce random dynamical systems formally. (We specifically
consider memorylessﬁ RDS.) We provide some basic examples, and extensively develop
the foundational material that will be needed later on in the thesis. There does not
currently exist a general in-depth exposition of RDS with the memoryless property.
Therefore, while all the non-trivial concepts and results presented in Chapter 2 have
already appeared in some form in previous literature (except perhaps some of the results
in Section , as well as some of the peripheral results in Section , several of these
concepts and results have not been formulated as rigorously and in as much generality
as we will do here.

In Chapter 3, we develop the theory of statistical equilibria, clustering numbers, and
statistical synchronisation, and also apply this to monotone RDS. The concept of
statistical equilibria has already been established within the setting of continuous RDS
on a pre-defined topological space. (Likewise, therefore, the notions of “clustering
numbers” and “statistical synchronisation” have also been studied within this framework,
although not under these names. Nonetheless, a precise mathematical description of the

30ur formalism of the “memorylessness” property is similar to that in [FGS14].
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1.1 Summary of main results

“clustering” phenomenon, as provided by Corollary [3.9] does not appear to have been
provided before now.) Our key new contribution is to show that these concepts are
not topology-specific but concern the dynamical behaviour of measurable RDS. Also,
while fairly general results regarding synchronisation in monotone RDS already exist,
we provide the most general existing results for the presence of attractive random fixed
points in monotone RDS on linearly ordered spaces.

In Chapter 4, we introduce some further notions of synchronisation and local stability: We
say that a RDS is synchronising (without further qualification) to mean the trajectories
of any given pair of initial conditions synchronise almost surely. Given a probability
measure p on the phase space, we say that a RDS is p-almost everywhere synchronising
to mean that there is a p-full set A such that the trajectories of any given pair of
initial conditions in A synchronise almost surely. We also introduce the notions of
Lyapunov and asymptotic stability. (Our definition of asymptotic stability is different
from the conventional definition, but is “very nearly” equivalent] and much easier to
work with.) Using the notion of asymptotic stability, we define what it means for
a RDS to be stable with respect to p (where p is an ergodic measure of the Markov
transition probabilities), and we define what it means for a RDS to be pointwise-stably
synchronising, (uniformly) stably synchronising, and p-almost stably synchronising. (For
a RDS on R? or a more general manifold, stability with respect to p is typically verified
by showing that the maximal Lyapunov exponent associated to p is negative.) The
notions of stable synchronisation and pointwise-stable synchronisation are important
“Improvements” on the more general notion of a synchronising RDS, since (i) they
overcome potential problems related to instability of trajectories, and (ii) they appear to
be the more “mathematically natural” notions to consider (as suggested by Theorem
and Theorem [6.1}—there do not appear to exist similarly simple characterisations of when
a RDS is merely “synchronising”). Likewise, the notion of p-almost stable synchronisation
is an important improvement on the notion of p-almost everywhere synchronisation. We
also present the most general existing result on forward-time synchronisation in monotone
RDS on subsets of R. Finally, we briefly consider “synchronisation at a deterministic
rate”, and explain that although noise can create synchronisation, there will never be an
almost sure upper bound on how long one has to wait for such synchronisation to occur.
As in Chapter 2, most of the non-trivial results in this chapter are already understood
conceptually; however, our set of definitions for the different modes of forward-time
synchronisation is new, and most of the results here have not been formulated in the
level of generality that we do. (The result on synchronisation in monotone RDS, namely
Proposition [£.59] is also new, although it is conceptually only a slight extension of already
understood facts.)

In Chapter 5, we carry out an in-depth study of stable synchronisation in orientation-
preserving RDS on the circle. We first provide a geometrical characterisation of stable
synchronisation (Theorem [5.6) in terms of “crack points” (a notion adapted from [Kai93]).
We then provide our main test for stable synchronisation, which is essentially the
“generalised form” of results in [DKNO7, Section 5.1]. As an application, we give the

“Indeed, by [New15b, Theorem A11, Remarks A9 and A13], it is precisely equivalent in the case of a
fixed point of a continuous (deterministic) dynamical system on a locally compact metric space.
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1.2 An overview of synchronisation in random dynamical systems

first complete description of synchronisation in Wiener-driven additive-noise SDE on the
circle with Lipschitz drift.

In Chapter 6, we present our test for stable synchronisation on compact spaces, and
our test for p-almost stable synchronisation on general Polish spaces (or Borel subsets
thereof). Once again, these tests are new, and provide considerable improvement on
existing tests for almost sure forward-time synchronisation.

In Appendix A, we present various concepts and facts from measure theory and
probability theory that will be used throughout the thesis. (In particular, we provide
an exposition of the narrow topology.) In Appendix B, we present fundamental results
concerning the “topology of uniform convergence on compact sets”. In Appendix C, we
introduce some foundational ergodic theory for both dynamical systems and Markov
transition probabilities. In none of these appendices do we intend to provide full
expositions of the subjects in question; the main aim is simply to present some of the key
facts that will be needed in the thesis.

1.2 An overview of synchronisation in random
dynamical systems

Noise-induced synchronisation

Let us motivate the whole study of synchronisation in random dynamical systems with
an examplary scenario.

Suppose we have an array of identical non-interacting self-oscillators | where the time-
evolution of each oscillator is governed by the differential equation

i = b(z) (1.1)

for some vector field b on R? (where R? represents the space of possible “states” of one
oscillator). Suppose these oscillators start at different states from each other. Assuming
that the oscillators are not purely dissipative, since there is no interaction between the
oscillators, there is obviously no reason for the oscillators to ever synchronise with each
other.

But now suppose we subject all the oscillators simultaneously to some external forcing

(which acts equally on all the oscillators); for example, we can suppose that the time-
evolution of each oscillator is now governed by the equation

(1) - 2(0) = fotb(:c(s))ds v F(t) (1.2)

5The term “self-oscillator” refers generally to any oscillatory physical system for which, even in the
absence of external driving forces, the total energy does not have to be a monotonically decreasing
function of time. Oscillators whose energy is constrained to decrease over time will normally settle
towards an equilibrium state, but self-oscillators need not do so.

17



1.2 An overview of synchronisation in random dynamical systems

for some function F:[0,00) - R? with F'(0) = 0. A natural question to ask is whether
F(t) can be chosen in such a manner that the oscillators will eventually synchronise with
each other. To be more precise: can F(t) can be chosen in such a manner that the
difference in state between any two of these oscillators tends to 0 as time tends to oo?
Not surprisingly, in many cases the answer to this question is yes.

But now suppose that the external forcing is not deterministic, but random. Indeed,
let us suppose that this external forcing is a completely memoryless random process, and
that its statistical properties do not change over time. (For example, the external forcing
could consist of a sequence of “i.i.d. random kicks”, where the time-separations between
consecutive kicks are i.i.d. exponentially distributed random variables.) We now regard
the time-evolution of the oscillators as being governed by an equation of the form

(1) - 2(0) = fotb(:c(s))ds v B (1.3)

where the function F,, depends on a sample point w drawn randomly from some
probability space (2, F,P). (The “random kicks” example is precisely the situation
that the stochastic process (F,,(t)):s0 is a compound Poisson process.) The question now
becomes: s it possible that with strictly positive probability, or even with full probability,
the processes will synchronise with each other? Remarkably, the answer is often yes.

The phenomenon that processes can be caused to synchronise with each other due to being
subjected to the same external random forcing is known as noise-induced synchronisation.
In mathematical models, this phenomenon will typically appear as the phenomenon that
as time tends to infinity, the difference in state between any two of the processes converges
to 0, either in probability or under a positive-measure (often full-measure) set of sample
paths of the external random forcing.

Noise-induced synchronisation was first described in the 1980s (see [Pik84], which
considers synchronisation of non-interacting self-oscillators subjected to a sequence of
random kicksE] or [Ant84], which considers synchronisation of cyclic phenomena). And
since then, there have been numerous case studies of the phenomenon (see e.g. [Tor+01]
and the references therein), as well as some general rigorous theoretical results, which
will be described later.

Random dynamical systems

Just as equation generates a flow on R? and equation generates a non-
autonomous flow on R%, so equation generates a random dynamical system (RDS)
on R?. A random dynamical system is a dynamical system that is not deterministic but
influenced by a random process (which we refer to as the “noise”).

The natural mathematical framework within which to study the phenomenon of noise-
induced synchronisation is precisely the framework of random dynamical systems. In this
framework, the question of noise-induced synchronisation becomes the question of when

For later work on the same topic, see e.g. [Nak+05].
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1.2 An overview of synchronisation in random dynamical systems

different trajectories of a RDS converge towards each other (under the same realisation
of the noise).

Memoryless RDS and Markov processes

When the term “random dynamical system” is used, it is normally assumed that the RDS
in question is “time-homogeneous” in the sense that it can be defined without reference to
any kind of “external clock”. For a deterministic dynamical system, “time-homogeneity”
would mean that the dynamical system is an autonomous dynamical system; for a random
dynamical system, “time-homogeneity” means that the following two statements hold:

(a) the precise rule specifying how the behaviour of the system is determined by the
behaviour of the noise does not change over time: in other words, writing ¢(¢,w)x
to denote the position at time ¢ of the trajectory whose position at time 0 is z
when the realised behaviour of the noise is given by w, and writing #*w to denote
the time-shifted version of w forward through time s, we have that p(t, 6*w)x is
the position at time s+t of the trajectory whose position at time s is x when the
realised behaviour of the noise is given by w;

(b) the probability distribution for the precise behaviour of the noise is invariant
under any time-shift.

(A noise process satisfying property (b) is said to be (strictly) stationary. A RDS
satisfying property (a) is sometimes said to be an “autonomous RDS”. When (a) and (b)
are both satisfied, we will continue to use the “p(t,w)z” notation, with noise realisations
w being taken from some probability space (€2, F,P).)

When considering RDS satisfying the above two properties, it is also natural (for
mathematical purposes) to treat the noise as having no specified “starting time”, i.e. as
being a two-sided-time random process. Hence we can consider trajectories starting at
any time on the two-sided timeline. (Under a noise realisation w, the trajectory starting
at position x at time 7 is given by (p(t,07w)x)s0. If 7 <0, then 87w denotes the time-
shifted version of w backward through time |7].)

Of course, properties (a) and (b) above can be formulated rigorously; an in-depth study
of random dynamical systems based on these two properties can be found in |Arn98|.
But for now, let us illustrate these two properties with an example: suppose we have a
stochastic differential equation of the form

dXt = b(t,Xt) dt + O'(t7Xt)st (14)

for some semimartingale (Lt)teRE and suppose that this equation generates a well-defined
random dynamical system (where a “noise realisation w” corresponds to a sample path of
the stochastic process (L;)wr). Here, we regard the “noise process” as being represented

"We regard (L;)sr as being a semimartingale if for every 7 € R, the forward-time stochastic process
(Lr+t)ts0 is a semimartingale (with respect to its natural filtration).
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by the increments of the stochastic process (L) f| If the functions b(¢,z) and o(t,z) do
not depend on ¢ but only depend on x, then property (a) is satisfied; if the stochastic
process (L;) has strictly stationary increments, then property (b) is satisfied.

In most studies of random dynamical systems, the systems involved are not only “time-
homogeneous” but also “memoryless”; specifically, this means the following:

(c) the probability distribution for how the noise behaves from a given time ¢ onwards
is statistically independent of how the noise behaves up until time t;

(d) how the system behaves over any given time interval is not affected by how the
noise behaves outside of this time interval.

Once again, illustrating this with equation ([1.4)): if the stochastic process (L;) has
independent increments, then property (c) is satisfied; in every case, property (d) is
satisfied.

Throughout this thesis, we study RDS satisfying properties (a)—(d) above. For any such
RDS, we have associated Markov transition probabilities; that is to say, we can define a
Markov transition function P by

P(t,xz,A) = P(w:p(t,w)reA),

and given any initial condition in the phase space, the subsequent trajectory is a Markov
process for which the associated transition probabilities are given by P. (This is proved
rigorously in Section [2.5} there, and throughout this thesis, the notation “@%(A)” is
preferred over the slightly more conventional “P(¢,x, A)” notation.)

As we will see, much of the study of random dynamical systems revolves around
the stationary distributions of the associated Markov transition probabilities. (See
Appendix C for an introduction to Markov transition probabilities and their stationary
probability distributions.) Conversely, in many situations where one encounters a

homogeneous Markov process, this process can naturally be seen as a trajectory of some
RDS.

From now on, when we use the term “random dynamical system”, we will always mean
a random dynamical system satisfying properties (a)—(d) above except where stated
otherwise; and we will also assume for the rest of Section[I.2]that every random dynamical
system has the property of continuous dependence on initial conditions.

Investigating synchronisation in RDS

When one wishes to investigate mathematically the occurrence or otherwise of noise-
induced synchronisation, typically one of the key concepts involved is that of “Lyapunov
exponents” (which, heuristically, are a measure of the “infinitesimal-scale repulsivity” of

8In other words, the noise process is not a classical stochastic process, but is a kind of “generalised
stochastic process”, where the behaviour of the noise over a time interval [t1,t2] is identified with
(Lt = Lty )ty <tsts -
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trajectories). Specifically, the mazimal Lyapunov exponeniﬂ associated to a trajectory
(o(t,w)z )0 of a spatially differentiable RDS ¢ on a Riemannian manifold (or a suitable
subset thereof) is defined as the limit

Aw, ) := lim $log]|(de(t,w))sl|

if this limit exists. (When the phase space is a compact manifold, this is independent of
the choice of Riemannian structure.E[) If this limit is negative, it typically follows that
the trajectories (evolving under the noise realisation w) which start sufficiently close to x
exhibit some degree of mutual synchronisation[l] Given an ergodic probability measure
p for the Markov transition probabilities associated to the RDS ¢, under fairly weak
conditions on the spatial derivatives of ¢, A(w, ) exists and is constant across (P ® p)-
almost all (w,z){™|let us denote this constant by A,.

The negativity of A\, will often imply that p-almost every initial condition is P-almost
surely locally asymptotically stable. But in and of itself, this does not say anything
about whether two trajectories starting at distant initial conditions will synchronise.
From a practical point of view: negativity of Lyapunov exponents will not automatically
guarantee that an array of processes evolving according to ¢ under the influence of the
same noise realisation will synchronise.

A typical “test” for synchronising behaviour in random dynamical systems takes roughly
the following form:

(A) If the range of possible behaviours that the system can undergo on a finite
time-scale is “sufficiently broad”, and if the system exhibits some local-scale
synchronising behaviour (as suggested by negativity of Lyapunov exponents),
then the RDS will exhibit some “large-scale” synchronising behaviour (in the
sense that many initially distant trajectories will approach each other in the long
run).

The basic principle behind this is that, given enough opportunity (i.e. after a sufficiently
long time), the trajectories of distant initial conditions will eventually be brought within

9The word “maximal” is used because, in more than one dimension, there is typically a “spectrum” of
Lyapunov exponents representing the growth rates of the different possible tangent vectors at the initial
condition x.

0This is an immediate consequence of the fact that the norms induced by two different Riemannian
metrics on a compact smooth manifold X are Lipschitz equivalent on 7T, X uniformly across all x € X;
see [MO10].

HRigorous results to this effect include [LeJ87, Lemme 3] (where we warn that the characters ||* are
missing from the end of the denominator in the formula for §3(T")), [Car85, Proposition 2.2.3], [MS99,
Theorem 3.1, Remark (iii)], [Rue79, Theorem 5.1] and [Arn98, Theorem 7.5.15]. Nonetheless, a useful
task for future research would be to provide (especially in continuous time) a more general result than
those given in these references.

12Gee e.g. the start of Section 2 of [LeJ87| for discrete time; or for continuous time, see |Arn98,
Theorem 4.2.6] (which deals with the entire Lyapunov spectrum), restricted to one-sided time and applied
to the measure ;1 = P® p. As in [New15b, Remark 2.2.12], it is not hard to show that A, <0 if and only if
there exists ¢ > 0 such that the “average finite-time Lyapunov exponent” [ log||(dp(t,w)).||P@p(d(w,x))
is negative.
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some very small region, where synchronisation then occurs. The “sufficiently broad
behaviour” condition typically consists of two parts:

e a “transitivity” condition—i.e. a condition to the effect that individual trajectories,
or small-diameter clusters of trajectories, can be transferred from anywhere in the
phase space (or some relevant subset thereof) to anywhere else in the phase space
(or some relevant subset thereof);

e a “contractibility” condition—i.e. a condition to the effect that distant trajectories
can be brought (to some sufficient degree) closer together.

Now as it happens, there is a second important category of tests for synchronising
behaviour, where the requirement of local-scale synchronisation is replaced by some
“structure-preserving” property of the RDS; in other words, tests of this type take roughly
the following form:

(B) If the phase space of the RDS has some special structure that is respected by
the RDS, and (where necessary) if the range of possible behaviours that the
system can undergo on a finite time-scale is “sufficiently broad”, then the RDS
will exhibit some “large-scale” synchronising behaviour.

We now give a brief overview of some results from each category, as well as a further
result that does not really come under either category:

Tests of “category (A)”

[Bax91] considers random dynamical systems on compact connected smooth manifolds
generated by stochastic differential equations of the form

k
dXt = b(Xt) dt + ZO-Z(Xt) o thZ (15)

i=1
where b and o4, ..., 0 are smooth vector fields and (W}!)yeg, - . ., (VVf)teR are independent
Wiener processes. It is assumed that the set of vector fields {b, 071, ..., 0} satisfies certain

“non-degeneracy” conditions (playing the role of the “transitivity” part of the “sufficienly
broad behaviour” requirement). As in [BS8§|, these conditions imply that there exists
a unique stationary probability measure p for the Markov transition probabilities of
the SDE , and moreover p is equivalent to the Riemannian measure (under any
Riemannian metric on the manifold). One of the results proved in [Bax91] is that if
Ay, < 0 and the trajectories of any two distinct initial conditions are capable of being
brought closer together than their initial separation, then the RDS is “synchronising” in
the sense that for any two initial conditions in the phase space, with full probability the
distance between their subsequent trajectories will tend to 0 as time tends to oo. (See
[Bax91, Theorem 4.10(i)].)

In Theorem of this thesis, we provide general criteria for synchronisation on a
compact phase space. [Bax91, Theorem 4.10(i)] is a particular case of this more general
result; moreover, as a consequence of this result, the conditions on the vector fields in
[Bax91, Theorem 4.10(i)] can be replaced with the weaker condition that there is a unique
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stationary probability measure for the Markov transition probabilities[]

[FGS14] considers general RDS on separable complete metric spaces, and finds sufficient
conditions for certain notions of synchronisation to hold, that are based on convergence
in probability (rather than almost sure convergence). As an application, very broad
classes of ordinary differential equations on R™ are shown to exhibit synchronisation
when perturbed by n-dimensional additive Gaussian white noise. (See also Example
of this thesis.)

In [Hom13|, discrete-time diffeomorphic RDS on a compact manifold are considered.
Theorems 1.1 and 1.2 of [Hom13|] provide sufficient conditions for synchronisation to
occur (on either the whole manifold or a suitable open subset thereof). Once again,
Theorems 1.1 and 1.2 of [Homl13| are particular cases of Theorem of this thesis
(although Proposition of this thesis is needed in order to derive [Hom13| Theorem 1.1]
as a special case of Theorem of this thesis). Nonetheless, the basic idea of the proof
of [Hom13| Theorem 1.1] can be generalised well beyond the context of diffeomorphic
RDS on a compact manifold. Specifically, the basic idea of the proof is that, given any
set S of initial conditions, if the subsequent trajectories are able to simultaneously reach
an arbitrarily small neighbourhood of some point p, and if the trajectory starting at p is
itself able to reach an open region U such that it is possible for all trajectories starting
in U to synchronise with each other, then it is possible for all the trajectories starting
in S to eventually synchronise with each other. It is precisely by combining this idea
with |LeJ87, Proposition 2] (which concerns the “statistical equilibrium” associated to
an ergodic probability measure of the Markov transition probabilities) that Theorem
of this thesis has been obtained.

Tests of “category (B)”

In [CF9§], it is shown that for a monotone (i.e. order-preserving) continuous RDS on R (or
a subinterval thereof) whose Markov transition probabilities admit a unique stationary
probability measure, if there exists a “strictly invariant compact absorbing random set”
that is determined by the past of the noise, then the RDS admits a globally attracting
random fized point (in the “pullback” sense); this implies, in particular, that the distance
between the trajectories of any two given initial conditions converges in probability to 0
as time tends to oco. In Theorem of this thesis, we give a similar result, in which
the unique ergodicity and “absorbing set” conditions are not needed, but rather for each
stationary probability measure p, we conclude that there is a random fixed point that is
attracting within the support of p. [CF98] demonstrates, as its main application, that
adding Gaussian white noise to the right-hand side of the differential equation

i = ar—-a° (1.6)

13In particular, consideration of the “lifted” vector fields onto the unit sphere bundle is not needed.
4T Theorem 1.1, it seems that the required additional assumption that m is the only stationary
probability measure is missing.
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causes the pitchfork bifurcation exhibited by (1.6 to be destroyed, creating instead the
scenario that a globally attracting random fixed point persists across all values of a7
see also Example of this thesis, where the same result is obtained as a consequence

of Theorem [B.18]

Synchronisation in monotone RDS on partially ordered phase spaces has been considered
in [CS04] (with an application being found in |[CCKO06, Proposition 5.6]) and further
developed in [FGS15] (which is not specific to memoryless RDS, but also considers non-
memoryless time-homogeneous RDS).

The first major result to the effect that “sufficiently noisy” invertible RDS on the circle
are synchronising (and in fact, perhaps the first rigorous theoretical study concerning
the phenomenon of noise-induced synchronisation) is due to Antonov in 1984 ([Ant84]).
[Ant84] considers discrete-time RDS on the circle S! generated by a finite family of
orientation-preserving homeomorphisms {fi,..., fr}, where at each stage one of these
maps is selected at random (independently of all previous stages) according to some fixed
probability distribution. It is shown that if the whole circle is a minimal invariant closed
set under both the original RDS ¢ and its time-reversal, then either

i) the maps f1,..., fi are simultaneously conjugate to rotations (in other words, after

i) th imult ly conjugate to rotations (in oth ds, aft
a continuous coordinate change on S', the RDS ¢ just consists of random rotations);
or

(ii) there exists an orientation-preserving homeomorphism ¢:S' - S! such that

e ¢" =idg for some n € N (so all orbits are n-periodic);

e g commutes with f; for all 1 <7 < k; so letting S, denote the set of orbits of
g, we can define the maps fi,..., fz: Sy = Sy as the projections of fi,..., fi
(respectively) onto Sg;

e equipping S, with the obvious topology (making it a topological circle), the
RDS ¢ on S, generated by the maps { fieoe, fk} is synchronising (in that
the trajectories of two given initial conditions will almost surely mutually
converge).

Of course, the case that n =1 (i.e. g is the identity function) is the case that the original
RDS ¢ is synchronising. Note that both scenario (i) and the “n > 2" case of scenario (ii)
are “atypical” situations, and so the “typical” scenario for iterated function systems that

5Nonetheless (as discussed in [Cal+13]), after the addition of noise, synchronisation of trajectories
continues to occur faster than some deterministic rate when « < 0, while for a > 0 there is no almost
sure upper bound on how long one has to wait in order to observe synchronisation of two trajectories.
(Indeed, wherever synchronisation does not occur in the absence of noise, one can never expect the
addition of noise to create an almost sure deterministic rate of synchronisation.) Viewing this from
another perspective: as pointed out to the author by Maxim Arnold, for o < 0 we have synchronisation
of all trajectories under every sample path of the noise, while for o > 0 there is a non-empty Wiener-null
set on which some trajectories will never synchronise. This is a highly relevant observation, because the
space of sample paths is naturally equipped with a topology in which trajectories of the RDS depend
continuously on the sample path. (See Remark [2.7]) We will discuss this further in Section and in

Example
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are minimal in both forward time and reverse time is global-scale synchronisation.

In Section 5.1 of [DKNO7], discrete-time invertible orientation-preserving RDS on the
circle are considered['] It is shown ([DKNO7, Proposition 5.2]) that if the whole circle
is a minimal invariant closed set and any arc is able to contract to an arbitrarily small
length under the action of the RDS, then there is a pullback-attracting random fixed point
which attracts almost the whole circle. Consequently, by reversing time, it is obtained
(IDKNO7, Proposition 5.3, Remarque 5.4]) that if the whole circle is a minimal invariant
closed set under the time-reversal of the RDY| and any arc is able to contract to an
arbitrarily small length under the action of the RDS, then the RDS is synchronising (in
that there is a global random repeller whose law is atomless). This generalises a previous
result ([KNO4, Theorem 1]) on synchronisation in iterated function systems on the circle.

In Section [5.2| of this thesis, we improve this result by showing that, given each of the two
conditions in [DKNO07, Proposition 5.3], the other condition can be replaced with a weaker
condition. Moreover, our version of the contractibility of arcs condition is simply that
every arc is able to contract to a length less than its original length; as in Proposition[5.1§]
of this thesis, this implies that every arc is able to contract to an arbitrarily small length.
We formulate our results in such a way as to cover both discrete and continuous time.

[Kai93| considers the RDS generated by iterations of an orientation-preserving analytic
diffeomorphism f on the circle subject to a sequence of independent (but not necessarily
identically distributed)@ random perturbations, and finds conditions under which the
RDS is synchronising. (Specifically, these conditions are that f has an irrational
rotation number and has no subperiodicity, together with an additional condition on
the probability distributions of the random perturbations.)

There are also several results to the effect that a “generic” order- or orientation-preserving
RDS on a one-dimensional phase space exhibits negative Lyapunov exponents, when
Lyapunov exponents exist. See, for example: |[LeJ87, Proposition 1(b)] with d = 1 (which
applies not only to invertible RDS on S!' but also to strictly monotone RDS on R);
[CF98, Remark 3.7] (which concerns SDE on R); |[Cra02a, Corollary 4.4] (which concerns
continuous RDS on S! in continuous time); and [Kai93, Theorem 2.1(c)].

Vanishing maximal Lyapunov exponents

We have mentioned that when investigating noise-induced synchronisation, Lyapunov
exponents are often considered. Now in general, a maximal Lyapunov exponent of exactly
0 indicates nothing about local-scale attractivity or repulsivity of trajectories[]

16Some rather restrictive additional assumptions are made, but these assumptions are not needed for
the proofs of the synchronisation results.

"Due to the additional assumptions made in [DKNO7, Section 5.1], no distinction is made between
minimality under the forward action of the RDS and minimality under the time-reversal of the RDS

180f the four properties (a)-(d) given further above, this RDS satisfies (a), (c) and (d), but not
necessarily (b).

YThere is no reason to expect that in general, maximal Lyapunov exponents being exactly 0 is a
“degenerate” situation; see e.g. [BBD14].
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Nonetheless, there is one synchronisation result that is worth mentioning, where
synchronising behaviour can be deduced from a non-positive (i.e. negative or zero)
maximal Lyapunov exponent. This result is provided by [Bax91, Corollary 5.12] (together
with [Bax91, Theorem 4.10] mentioned further above): Once again, random dynamical
systems on a compact connected smooth manifold M generated by a SDE of the form
are considered. A stronger “non-degeneracy” condition on the vector fields is
assumed than those required for [Bax91, Theorem 4.10] @ Let p be the unique stationary
probability measure of the Markov transition probabilities associated to equation .
In [Bax91, Corollary 5.12] it is shown that if A\, = 0 and the trajectories of any two
distinct initial conditions are capable of being brought closer together than their initial
separation, then the RDS is statistically synchronising with respect to p (in the sense
of Chapter 3 of this thesis); heuristically, this implies that after a sufficiently long time,
with extremely high probability the trajectories of all but an extremely small proportion
(according to the Riemannian measure) of the initial conditions in the phase space will
lie within some region of extremely small diameter. (The same conclusion, and indeed a
much stronger conclusion, holds when A, is strictly negative rather than 0, as given by
[Bax91, Theorem 4.10].)

1.3 On the one-to-one correspondence 7, < 1}

Foundational to the proof of Theorem is the well-known one-to-one correspondence
between Markov invariant measures and stationary measures, which is itself a special case
of the more general one-to-one correspondence between two-sided-time invariant measures
and one-sided-time invariant measures. We will first explain the former special case (as
studied in this thesis), and then explain the general case.

This section will assume basic familiarity with random dynamical systems.

Stationary measures and Markov invariant measures

Let ¢ be a RDS on a phase space X over a measure-preserving dynamical system
(Q,F, P, (0")er). We write mq: (w,x) » w and 7x:(w,x) — x for the projections from
) x X onto €2 and X respectively.

An invariant measure of ¢ is a probability measure p on Q x X with 7o, = P that
is invariant under the dynamical system (©%),r+ given by

Ol w,r) = (B'w,p(t,w)x).

208pecifically: Let T.oM be the set of non-zero tangent vectors on M; and for any vector field o on M,
let & be the vector field on the manifold T.oM given in local coordinates by 6(x,v) = (z,v, f(x), f'(z)v)
where o(z) = (z, f(z)). (In other words, & is the restriction to T:oM of k o do, where x denotes
the canonical flip on TTM and do:TM — TTM is the derivative of o; see also [Verl4] and [Arn98|
Theorem 2.3.42(ii)].) For [Bax91, Corollary 5.12], it is assumed that the vector fields {1, ..., } satisfy
Hormander’s condition—that is to say, the union of the images of the vector fields contained in the Lie
algebra generated by {61,...,6%} is equal to the whole of T(T.oM).
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Provided the measurable structure of X is that of a standard measurable space (i.e. it
can be regarded as a Borel subset of a Polish space, equipped with the Borel o-algebra),
any probability measure p on €2 x X with mg.u = P admits a disintegration—that is, a
random probability measure p,, such that p can be expressed as

p(A) = [ (A P(dw)

where A, denotes the w-section of a measurable set A c € x X. Moreover, such a
disintegration pu,, is unique up to P-almost everywhere equality. With this, one can
show that p is an invariant measure if and only if

O(t,w)ftw = pgtw P-as.

for each t € T+.

Now suppose we place a two-sided filtration (F2**)serer+ on the underlying probability
space, such that the dynamical system (0') becomes a filtered dynamical system and @ is
adapted to this same filtration (see Section for precise details).@ With this, we can
say that ¢ is a memoryless RDS if the o-algebras F°,, and F§° (defined in the natural
way) are independent o-algebras under P. (This then implies that for all ¢t € T, F*_ and
JF7° are independent.)

Assume ¢ is memoryless. We say that an invariant measure p is a Markov invariant
measure if p admits a disintegration p,, that depends F9,_-measurably on w. Now we
will say that a probability meausre p on X is stationary if

p = | tw)ep()P(dw).

This is the same as saying that p is stationary under the Markov transition probabilities
associated to .

Now then, it is well-known that for a spatially continuous memoryless RDS ¢ on a Polish
space X, the map

i [ () P(w) = e

serves as a bijection from the set Z,; of Markov invariant measures to the set S of
stationary probability measures. Moreover, if we restrict F to being the smallest o-
algebra containing every member of the two-sided filtration (F$**), then the same map
serves as a bijection between the set of ergodic Markov invariant measures and the set of
ergodic stationary probability measures. (This can be obtained as a consequence of the
more general one-to-one correspondence between invariant measures and forward-time
invariant measures, which we will soon describe; see also Section 1.7 of |[Arn98|.)

As in |KS12, Theorem 4.2.9], the inverse of the above bijective map is constructed as

2lIf X is a separable metric space and ¢ is spatially continuous, then we can just take the “natural
filtration” F5*' = o(w > @(0%w,v)r: 2 € X,s <u<u+v<t), as is done in some expositions of the
topic.

27



1.3 On the one-to-one correspondence L, < 1}

follows: given p € S, if we take an arbitrary unbounded increasing sequence (t,) in T+,
the limit

po = I (i, 070).p (1.7

exists in the narrow topology for P-almost all w € €2; moreover, this limiting random
measure i, stays the same (up to almost sure equality) when the sequence (t,) is
changed. This map p — p (where p,, is a disintegration of p) serves as the inverse of
the map u — mx.pu. Asin [LeJ87, Lemme 1(b)], the measure-valued stochastic process
(¢(t,-)«p)ter+ is convergent in distribution, with the limiting distribution @, (called the
“statistical equilibrium” associated to p) being precisely equal to the law of the random

measure /i,

Now let us outline the proof presented in [KS12] that the above construction for the
inverse map is well-defined. Fix p € §. Let (¢,) be an unbounded increasing sequence
in T*, and let pi,, = @(t,,0"w).p for each n and w. It is not hard to show that
for any bounded continuous g: X — R, the stochastic process p,,(g) is a martingale,
and therefore converges almost surely. Now it has been proved in [BPRO6| that for any
sequence of random probability measures y,, ., on a Polish space X, if for every bounded
continuous ¢g: X — R the stochastic process i, ,(g) is almost surely convergent, then the
measure-valued stochastic process p,, is itself almost surely convergent in the narrow
topology. Hence the limit exists in the narrow topology almost surely. It is clear
that if we took a different sequence (t/)) then we would obtain the same limit (almost
everywhere), since the two sequences (t,,) and (t/) can be expressed as subsequences of
one “larger” increasing sequence (s,) on which the above construction can be applied.
Thus the construction of the measure u is well-defined. Moreover, this construction does
not make any use of continuity properties of ¢. Of course, once the measure p has
been obtained, the next stage in the proof of the one-to-one correspondence between Z,
and § is to show that the constructed measure g is an invariant measure. This is a
straightforward task, assuming the spatial continuity of ¢.

Now it is worth mentioning that the result in [BPRO6| is much easier to prove in
the particular case that X is compact. (Indeed, it can be obtained as an immediate
consequence of Corollary ) As a consequence of the result holding when X is
compact, one can easily deduce that the result holds whenever X is a Borel subset of a
Polish space and the sequence of random probability measures i, ,, has the property that

OV B@0) = [ () B(d)

for all m,n € N. (This consequence is obtained simply by embedding X into the Hilbert
cube [0,1]Y and regarding i, as a probability measure on [0, 1]N with p,,(X) = 1.
Letting p,, be the limiting random measure on [0, 1]V, the dominated convergence theorem
gives that [q, 1, (-) P(dw) = [q, ftnw(-) P(dw) for any n, and so p,(X) =1 almost surely.)

In the case of the above construction for the inverse of the map u — mx.u, we have

22Tn some references, such as in [LeJ87| itself, the term “statistical equilibrium” is used to refer to the
Markov invariant measure 1 rather than to @,,.
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that

| (Y B(d) = p

for all n. Consequently, [KS12, Theorem 4.2.9] is not specific to the case that X is Polish,
but holds whenever X is a Borel subset of a Polish space |

Our new approach

The notion of a Markov invariant measure is not a topological notion but purely a
measurable notion. Consequently, for any stationary probability measure p € S, the
associated statistical equilibrium @), remains the same under any change of metric that
preserves both the measurable structure of X and the spatial continuity of ¢. Of course,
most changes of metric that merely preserve the measurable structure of X do not preserve
the spatial continuity of .

However, if we can remove the requirement that ¢ is spatially continuouf?¥ and still
obtain that the measure ;1 as constructed in is an invariant measure, then the whole
picture changes. The one-to-one correspondence between Zp; and § no longer relies on
any continuity assumptions. As a consequence, the statistical equilibrium @, becomes
meaningful without reference to a topology, i.e. it becomes a measurable invariant. Now
as in |[Bax91], the statistical equilibrium (), encodes the statistical asymptotic behaviour
of the n-point motions of ¢. Hence, key properties of the asymptotic n-point dynamics
also become measurable invariants—mnot least, synchronisation of trajectories. (The
precise sense in which synchronisation is preserved under measurable changes of metric
is described in Chapter 3.)

As in Chapter 3, the requirement of spatial continuity to prove the invariance of i can
indeed be removed. This can be achieved as follows: Since p,, is F°, -measurable, we
may assume without loss of generality that F is the smallest o-algebra containing every
member of the two-sided filtration (F:*t). For each ¢ € T+, letting pi,, := @(t,07'w).p for
all w, we may regard the random measure ji;,, as a disintegration of a probability measure
pt on the measurable space (2 x X, F% ® B(X)). One can show that the measure u as
constructed in agrees with uf on F®@B(X) for all t. One can also show that for each
t, ! is invariant under the dynamical system (©%) e+ acting on F5®B(X). Hence, by the
uniqueness of extensions of premeasures to measures, p is invariant under the dynamical
system (©%)sr+ acting on F ® B(X). So u is an invariant measure. (Moreover, again
using uniqueness of extensions, it is not hard to show that if p is ergodic then p is ergodic.)

The above approach makes no reference to the continuity or otherwise of ¢. In other
words, the one-to-one correspondence between Z,; and S described above holds for any
measurable memoryless RDS on a Borel subset of a Polish space.

23] am grateful to Gerhard Keller and Hans Crauel for the discussions that led to these observations.

24We warn, however, that if we remove the spatial continuity of ¢, then we can no longer necessarily
just work with the filtration F5* = o(w = @(0%w,v)x :x € X,s <u < u+wv <t), as ¢ may no longer
be adapted to this filtration. In practice, this will rarely if ever be a problem: a natural choice for the
underlying filtration (F2**) will usually come from the structure of the noise itself, independently of the
RDS that is defined over the noise.
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1.3 On the one-to-one correspondence L, < 1}

Now the martingale convergence arguments used in [KS12, Theorem 4.2.9], when
combined with the consideration of a random measure on X as being a disintegration
of a measure on €2 x X, actually yield a kind of “extension theorem”. Specifically:
one can prove (Theorem that for any one-parameter filtered probability space
(2, F, (Gt)ter+, P) and any standard measurable space (X, X)), given a consistent family
{1t }er+ of probability measures u! on Gy ® ¥ whose Q-projection coincides with PJg,,
there exists a unique probability measure p on o(G; : t € T*) ® ¥ whose restriction to
G ® X agrees with p? for all . In Chapter 3 of this thesis, the way in which we present
the theory of Markov invariant measures is to first develop this extension theorem as a
general result, and then employ it in the proof of the one-to-one correspondence between
Zy and S (Theorem . (So the martingale convergence theorem does not directly
appear within our proof of the correspondence.)

It is also worth adding that in continuous time, by Lévy’s upward theorem together
with the fact that the narrow topology is determined by a countable family of bounded
continuous functions, one can obtain that for any unbounded countable S c [0, c0), in
the narrow topology we have the convergence

o(t,07'w).p - ., ast tends to oo in S (1.8)

P-almost surely. (See also Theorem [3.33]) Again, this statement does not rely on any
continuity properties of . Nonetheless, if we are working with a topology in which the
map ¢~ p(t,07'w)x is left-continuous for every w and x (or right-continuous for every w
and ) 7] then it follows that

o(t,07w)p » p,, ast - oo (1.9)

P-almost surely, where t is not restricted to a countable set but ranges throughout
[0,00). (In general, does not follow from the fact that holds almost surely for
each unbounded countable S’ since there are uncountably many unbounded countable
subsets of [0, 0).)

For fuller details, see Sections |3.3 of this thesis (and in particular, Theorem [3.49)).

2’More generally, the requirement is that for every bounded continuous function g: X — R, the
stochastic process ¢(t,07'w).p(g) is a separable stochastic process.

26This is perhaps most easily demonstrated by the (rather pathological) example of a RDS describing
“random kicks that immediately undo themselves”: Let 2 be the set of surjective increasing right-
continuous functions w:R — Z with w(0) = 0 (equipped with the o-algebra F generated by the projections
w e w(t)); let (0)er be the shift system 0'w(s) = w(s+t)—w(t); and let P be the probability measure on
Q such that the stochastic processes (w(t))0 and (—w(—t))s»0 are independent Poisson processes with
the same parameter \. Let F! := Nsso FL_s where FU = o(w v w(r) —w(u) :u <7 <w). [Alternatively,
one can just take the natural filtration of the RDS ¢ that we will introduce.] Let X = {-1,1}. For any
t>0,weQand xe X, let o(t,w)x =z if the map 7 — 07w(t) is left-continuous at 0 and let p(t,w)z = —x
otherwise. Then we can take p = ju,, = 6; for all w; in this case, will hold almost surely for any given
unbounded countable S, but will not hold for any w € €.
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1.3 On the one-to-one correspondence I, < 1}

One-sided-time invariant measures

Our new approach described above can easily be extended to the more general one-to-
one correspondence between two-sided-time and one-sided-time invariant measures, again
yielding a statement that requires no continuity assumptions.

We still equip the noise with a two-sided filtration (F:**) as described above, and assume
moreover that F is the smallest o-algebra containing all members of this filtration. We
still assume that the RDS ¢ is adapted to this filtration, but we do not need to assume
that ¢ is memoryless. We write Z, for the set of invariant measures of ¢. Again, X is a
Borel subset of a Polish space.

A one-sided-time invariant measure is a probability measure p* on the measurable space
(Qx X, F° ® B(X)) such that mq.u* = P|r> and p* is invariant under (©F);er+. Let us
write ZZ for the set of one-sided-time invariant measures.

By much the same arguments as in Section of this thesis, one can show that without
any continuity requirements, the map

o= ,U|}'5’°®B(X)

serves as a bijection from Z, to Zf, and the inverse map is constructed as follows:
given any p* € 7, taking pf to be a disintegration of u* (over the probability space
(€, F5°,P|£s)), for any unbounded countable S ¢ T+ we have that the limit

po 3= m (£, 07" w) wptgr,, (1.10)
in S
exists in the narrow topology for P-almost all w € 2; moreover, this limiting random
measure i, stays the same (up to almost sure equality) when the set S is changed. This
map p* ~ g (where p, is a disintegration of p) serves as the inverse of the above map
H= M|fg°®B(X).

Now in continuous time, even if we are working in a topology in which the map
(t,x) » p(t,07'w)z is jointly continuous, it is not the case that for every version of
the disintegration p, of p the limit

tlim o(t, 07 w) e pig-e,,

exists almost surely: indeed, if we have one version in which the limit does exist almost
surely, it will generally be possible to modify this version on a null set in such a manner
that the limit no longer almost surely exists. The natural question is then whether there
exist some “reasonable” conditions under which there is guaranteed to exist at least one
version of the disintegration such that this limit does exist almost surely. This question
remains open.
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Chapter 2. Foundations

We will develop the foundational theory of random dynamical systems that will be needed
for results later on in the thesis.

2.1 Standard measurable spaces

Before introducing random dynamical systems, we first introduce the kind of space on
which they will always be assumed to act throughout this thesis.

Recall that a topology or a topological space is said to be Polish if it is separable and
completely metrisable. Note that the completion of any separable metric space is a Polish
space.

Definition 2.1. A measurable space (X, ) is said to be standard if there exists a Polish
topology on X whose Borel g-algebra is 3.

The term standard Borel space is also often used for a measurable space that is standard.
The Borel isomorphism theorem (e.g. |Sri98, Theorem 3.3.13]) states that for a measurable
space (X, ), the following are equivalent:

(i) (X,X) is standard;

(ii) (X,X) is measurably isomorphic to either a finite discrete space, a countable
discrete space, or ([0,1],B([0,1])).

(Obviously it follows, in particular, that (X,3) is standard if and only if there exists a
compact metrisable topology on X whose Borel o-algebra is X.)

For a full proof of the above theorem, see e.g. [Sri98, Theorem 3.3.13] or [KL14}
Theorem A.17]. We now present a sketch of the proof:

Sketch-proof of the Borel isomorphism theorem. The statement is clear if X is finite or
countable. Suppose X is uncountable. First observe that via binary expansions, [0,1)
is measurably isomorphic to a cocountable subset of the set C' := {0,1}"; and therefore
[0, 1] is measurably isomorphic to C' (since any uncountable measurable space in which
all singletons are measurable is clearly isomorphic to any of its cocountable subsets).
Moreover, since N and N x N are isomorphic as sets, it follows that C' is measurably
isomorphic to [0, 1]N. Now it is known that for two measurable spaces to be isomorphic,
it is sufficient that each can be measurably embedded as a measurable subset of the
other; so, to prove the desired result, we show that (I) [0,1]Y contains a copy of X as
a measurable subset, and (II) X contains a copy of C' as a measurable subset. (I) Fix
a complete metrisation d of the topology of X in which diam X < 1. Given a countable
dense subset {x, } ey of X, the map x — (d(x,x,))nen serves as a topological embedding
of X into [0,1]N. If we let U, be the union of all open subsets V of [0,1]" satisfying
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2.1 Standard measurable spaces

diam(X nV) < L under the metric d, one can use the completeness of d to show that
X =X nN2,U, (where X is the closure of X in [0,1]N). (II) If X is a perfect space[]
then (as in the “Cantor middle thirds” construction) one can obtain a copy of C' as the
intersection of a nested sequence of unions of closed balls (under a complete metrisation of
the topology of X). If X is not perfect, then letting N ¢ X be the set of points admitting
a neighbourhood that is at most countable, one can show (using the separability of X)
that N is itself countable, from which it follows that X \ IV is a perfect space. O

It can also be shown ([Sri98, Proposition 3.3.7]) that for any separable metric space
(X,d), the following are equivalent:

e B(X) is standard;

e X is homeomorphic to a Borel subset of a Polish spacef]

(X, d) is isometric to a Borel subset of a separable complete metric space;

X is a Borel subset of the d-completion of X;

e for every metric d’ on X that is topologically equivalent to d, X is a Borel subset
of the d’-completion of X.

Remark 2.2. It is known that, assuming the axiom of choice, every metrisable topology
whose Borel o-algebra is standard is separable ([Sri98, Remark 3.3.8, Theorem 4.3.8]).
Now there are several results in this thesis (particularly in Chapter 3) where, working with
a standard measurable space (X, Y), we prove that in every separable metrisable topology
on X with B(X) = ¥ some particular phenomenon occurs. Since every metrisable
topology whose Borel o-algebra is standard is separable, we can in fact say that in every
metrisable topology on X with B(X) = X, the desired phenomenon occurs. (Nonetheless,
we do still choose to keep the word “separable” in the statements of these results.)

Recall that a sequence of probability measures (j4,,) on a measurable space (X, ) is said
to converge strongly to a probability measure p if for every A € ¥, p,(A) - u(A) as

T — 090.

Lemma 2.3. Let (X,X) be a standard measurable space, let (u,) be a sequence of
probability measures on X, and let i be a probability measure on X. Then u, converges
strongly to p as n — oo if and only if for every Polish topology on X generating X2, i,
converges weakly to .

Proof. 1t is clear that strong convergence always implies weak convergence. Conversely,
suppose that for every Polish topology on X generating >3, u,, converges weakly to u. Fix
any A €Y. By [KL14, Theorem A.11], there exists a Polish topology on X generating X
in which A is both open and closed; since u, converges weakly to p in this topology, we
have that p,(A) - u(A). O

LA topological space X is said to be a perfect space if every point in X is an accumulation point of
X.

2The term “Lusin space” is sometimes used to mean a topological space that is a Borel subset of a
Polish space; however, we avoid the term here, since it can have other meanings also.
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2.2 The formal setup

2.2 The formal setup

We introduce the notion of a “memoryless random dynamical system”. This consists of
two components: a noise space (equipped with a “memoryless” filtration); and an action
of this noise space (“filtered” with respect to the same filtration) on some phase space.

The noise space
Let T be either Z or R, and let T+ := Tn[0,00). (The set T represents the “time set” of the

noise, which we regard as being two-sided.) Let T := Tu{-o00, 00}, and let T* := T*u{oo}.

Let (2, F) be a measurable space. We refer to an element w € Q as a sample point
or noise realisation. Let (Ft)ser ter+ be a family of sub-o-algebras of F such that

(i) fff c ,7-";5 for all to<t; <ty <t3 in T;
(i) o(Fst:seT,teTt)=F.

We refer to (F:t)serter+ as an ezhaustive two-sided filtration of F. Now let (6!)er be a
family of functions #:2 — Q such that

(i) 09 =1idg, and 6t = 6 0 6% for all s,t € T;
(i) 07F! = Fi=7 for all s,t,7 € T with s < t.

We refer to (€2, F, (F5)ser ter+, (0%)ier) as an ezhaustively filtered dynamical system. We
sometimes refer to the group of maps (0!)r as the time-shift system. We will use the
following notations:

Fe = o(F5:teT?) forany seT

F2 o= NFS
seT
Fto = o(Fl, :s€T") forany teT
F2 o= (Flo
teT

(The o-algebras F-2 and FZ are referred to as the tail o-algebras.) It will also be useful
to have the convention that F> := F.

It is easy to show that (given any s,t,7 € T) the following hold:

OF = F

oFE = T,
CFS = FX
0F ., = FII
0FE = F

So in particular, §! serves as a measurable transformation of the measurable space (2, F)
for all £ € T. Let P be a probability measure on (€2, F) with the following properties:
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2.2 The formal setup

(i) O!P =T for all t € T (i.e. P is an invariant measure of the time-shift system (6%));

(ii) for each teT, F!

—00

and F° are independent o-algebras under P.

To verify condition (i), it is sufficient just to consider ¢ € T*. Property (i) implies that
for any measurable space (X,Y) and any (F,Y)-measurable function ¢:Q) - X, the
stochastic process (qof?)er is strictly stationary. Note that given property (i), a sufficient
condition for property (ii) is that there exists t € T such that F!  and F;° are independent
o-algebras under P.

Property (i) implies in particular that for any to < ¢; < t» < t3 in T, F! and F;?
are independent under P. This statement is obvious, except perhaps in the case that
either tg=t; =ty = —oo0 or t; =ty = t3 = 0o. Indeed, for this case, the statement reduces to
being a statement of Kolmogorov’s 0-1 law, which asserts the following:

Lemma 2.4. The tail o-algebras F-2 and FZ consist of only P-null sets and P-full sets.

Proof. For any t € T, F is clearly independent of F*_,. Hence, by Corollary [A.9 Fg
independent of the whole of F. In particular, 72 is independent of itself, i.e. 72 consists
of only P-null sets and P-full sets. One can argue similarly for F-2. [

We will refer to (2, F, (F5*)ser ter+, (0%)ier, P) as a (memoryless, stationary) noise space

Basic examples and results

Let us mention a couple of important typical examples of what the noise space
(Q,F, (Fs*t),(0"),P) could be.

Example 2.5. Let T =Z. Given a probability space (I,Z,v), define

Q= I?
F = 1%
P := %%
0" ((r)rez) = (Qnir)rez for each neZ
Fr o= o((a)rez P ap : m+1<k<n) for each m,n € Z with m <n.

(In particular, F is the trivial o-algebra {@, 2} for each m € Z.)

It is not hard to show that (Q,F,(F™7")mez, rengs (0")nez,P) is a noise space (in
accordance with our formalism). Note that if I is equipped with a second-countable
topology generating Z, then the product topology on €2 generates JF; in this case, if v has
full support in I then P has full support in €.

3In general, a “(stationary) noise space” may be defined as an exhaustively filtered dynamical system
together with a probability measure PP satisfying property (i) (but not necessarily property (ii)). However,
throughout this thesis, we will always require a “noise space” to be memoryless, meaning that P also
satisfies property (ii).

35



2.2 The formal setup

Example 2.6 (Gaussian white noise). As in Sections A.2 and A.3 of [Arn9g|, a d-
dimensional Gaussian white noise process may be described within our framework as
follows: Let T =R. Let Q:={w e C(R,R%) : w(0) = 0}. Let F be the smallest o-algebra
on ) with respect to which the projection W,:w — w(r) is measurable for every r € R. For
each s,t € R with s < ¢, let F! be the smallest g-algebra on 2 with respect to which W, —W;
is measurable for every r € [s,t]. Let P be the Wiener measure on (€0, F)—that is, P is the
unique probability measure under which the stochastic processes (W})0 and (W.; )50 are
independent d-dimensional Wiener processes. For each s,t € R, set 0'w(s) = w(s+t)-w(t).
Once again, it is not hard to show that (0, F, (F5™)ser 120, (0%)ier, P) is a noise space (in
accordance with our formalism).

Remark 2.7. As in Lemma [B.9] on the set C(R,R?), the evaluation o-algebra o(w —
w(t) : t € R) is precisely the Borel o-algebra of the topology of uniform convergence
on compact sets. So in Example [2.6] equipping €2 with the topology inherited from
C(R,R9), we have that F is the Borel o-algebra of Q. As in [Frel3| Proposition 477F],
the Wiener measure P has full support. It is easy to show (using Lemma that the
map (¢,w) ~ O'w is jointly continuous.

We will now show that “memoryless stationary noise is always ergodic”:

Lemma 2.8 (cf. [Newl5c, Lemma 5.1)). For any t € T ~ {0}, 0" is an ergodic
transformation of (2, F,P).

Proof. Since the inverse of an invertible ergodic transformation is ergodic, it is sufficient
just to consider positive t. Fix t € T* \ {0}. Let E € F be a set with 7*(F) = F, and let
h:Q2 - [0,1] be a version of P(E|Fs°). By Lemmal[A.14] for every n € Z, ho#™ is a version
of P(E|F); and by Lemma [2.4] the constant map w — P(E) is a version of P(E|FZ).
Therefore, by Lévy’s downward theorem ([Wil91, Theorem 14.4]), h o 6"(w) — P(F) as
n — oo for P-almost all w € 2. But since 0! is itself P-preserving, it follows that for
each n € Z, ho 0" (w) = P(F) for P-almost all w € Q. In other words, the constant map
w > P(F) is a version of P(E|F2%) for each n, i.e. E is independent of F2 for each n. It
follows by Corollary that E is independent of F. In particular, F is independent of
itself, i.e. P(E) € {0,1}. O

Action of the noise

Let (X,X) be a standard measurable space. We write M x ) for the set of probability
measures on (X, ), and we equip M x x) with its “evaluation o-algebra” fx »), namely
the smallest o-algebra with respect to which the map p — p(A) is measurable for all
A e 3. We say that a probability measure p on X is atomless if p({x}) = 0 for all
x € X. We define the projections mq: Q2 x X - Q and 7x: Q2 x X - X by mq(w,x) =w and
mx(w,x) = x. We write Ax = {(z,z) : x ¢ X} ¢ X x X, and for any A c X, we write
Ay:={(z,z):x e A}. It is not hard to show that for any Ae ¥ AypeX®@X.

Let ¢ = (¢(t,w))ter+wen be a (T+x Q)-indexed family of functions ¢(t,w): X - X such
that:

(i) ¢(0,w) = idx for all we
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2.2 The formal setup

(i) @(s+t,w) = o(t,05w) o p(s,w) for all s,t €T and w €
(iii) for each ¢ € T+, the map (w,z) » p(t,w)r from Q xX to X is (Ff ® X,%)-

measurable.

Properties (i) and (ii) are summarised by saying that ¢ is a (forward) cocycle over (6%)er.
Property (iii) is summarised by saying that ¢ is adapted to (or filtered with respect to) the
filtration (F$*)ser ter+. Note that for each s € T and ¢ € T+, the map (w,y) = ¢(t,0°w)y
from 2 xX to X is (Ftt @ X, ¥)-measurable.

We refer to ¢ as a (filtered) random dynamical system on the phase space (X, ¥) over the
noise space (2, F, (F:*t), (6),P). We will sometimes refer to the family of time-shifts
(0")ser as the base system of the RDS.

In the case that the map (t,w,z) ~» @(t,w)x is (B(T*) ® F ® X, 3)-measurable, we will
say that ¢ is (forward-)measurablef]] In the case that the map (s,t,w,z) — ¢(t,60w)z
is (B(T) ® B(T*) ® F ® ¥, ¥)-measurable, we will say that ¢ is two-way measurable.
(Obviously if T = Z then ¢ is automatically two-way measurable.) Note that if ¢ is
measurable and the map (¢,w) = f'w is jointly measurable, then ¢ is two-way measurable.

A path in X taking the form (p(t,w)x)er+ for some w € Q and x € X will sometimes
be called a (forward) trajectory of ¢. A path in X taking the form (o(t,0 'w)z)er+ for
some w € () and x € X will sometimes be called a pullback trajectory of .

Note that in the “deterministic case” where Q is a singleton {w}, (¢(t,w))ir+ is an
autonomous dynamical system on (X,X). (See Section [C.2])

Physical interpretation of the formalism

The formalism that we have just presented (involving both the noise space and its “action”
on the state space) is intended to be a precise mathematical way of representing the notion
of a non-deterministic dynamical system whose non-determinism is specifically due to
the moment-by-moment influence of the behaviour of some time-homogeneous random
noise process which dictates the evolution of the the system in a time-homogeneous
manner. (Our formalism also incorporates the additional notion that the noise process is
statistically memoryless.)

The term “time-homogeneous” is not inherently a mathematically rigorous term, but
can be understood physically as meaning “making no reference to any kind of external
clock”. Let us first illustrate the concept in terms of deterministic systems.

A “general deterministic dynamical system” (that is not necessarily time-homogeneous)
can be represented mathematically as a two-parameter family (f)s e s of functions
ft: X —» X, where T represents some “set of times”. The physical interpretation is that

4Here, we are using the word in a stricter sense than in Chapter 1, where the term “measurable RDS”
was used (in contrast to the term “topological RDS”) simply to mean an RDS acting on a standard
measurable space with no pre-defined topological structure.
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if a process governed by this dynamical system is at state x € X at time s, then it will
be at state f!(z) at time t. Of course, for this to make physical sense, we require the
consistency relations that (I) f¢ is the identity for all s € T, and (II) f¢ = f* o f! for all
s,t,uel with s <t <u.

By contrast, a deterministic dynamical system that is time-homogeneous can be
represented mathematically in a slightly more succinct manner, namely as a one-
parameter family (f*)sr+ of functions f*: X — X, with the physical interpretation being
as follows: if a process governed by this dynamical system is at state x at time s, then
(regardless of what the time s is) it will be at state f!(x) at time s +¢. For this to
make physical sense, we require the consistency relations that (I) fO0 is the identity, and
(IT) fstt = fto fs for all s,t € T+. These relations form the definition (in the purely
set-theoretic setting) of an “autonomous dynamical system on X”.

Let us now provide a heuristic interpreration for our formalism of a “random dynamical
system”.

We imagine that we have some “time-homogeneous” mnoise process, which (for
mathematical purposes) we regard as being “eternal”, i.e. having no start and no end.
(Indeed, it is not surprising that we should view a “time-homogeneous” noise process in
this way, since there should be no “clock” to specify when the noise process starts or ends.)

Suppose we fix an arbitrary time to be our “reference time ¢t = 0”, and imagine that we
have some mechanism for “plotting” precisely how the noise behaves over time. (Here,
we imagine that the plot is able to display how the noise behaves over the whole timeline,
both the future {¢ > 0} and the past {¢t < 0}.) Since the noise is random, there are
(uncountably) many possibilities for how the plot will turn out. The set of all physical
possibilities for how the plot will turn out is denoted by €2; since the noise is “time-
homogeneous”, the set {2 does not depend on which time was chosen as our reference
time.

Now suppose the plot turns out to be w (which is some element of the set Q); and
suppose that someone else observing the same noise process chooses their reference time
to be 7 later than our chosen reference time (where 7 € T). Then the plot that this person
will obtain (assuming the same plotting mechanism as ours) is denoted by 87w. Of course,
for this to make physical sense we require the consistency relations that (I) 8w = w for
all w e Q, and (IT) 6**w = 665w for all s,t € T and w € .

Now we assume that for each s,t € T with s < ¢, there is some natural o-algebra F!
on (2, representing all the information concerning how the noise behaves over the time
interval T n[s,t] according to our plot; time-homogeneity will then give that 67 F! = Fi-T
for all 7 € T. Naturally, the o-algebra F is taken to be the smallest o-algebra containing

Ft for all s,teT with s <t.

Since the noise is random, we assume that we have a probability measure P on (£2,F)
representing the probability distribution for how our plot will turn out; again, time-
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homogeneity will mean that the probability measure P does not depend on which time
was chosen as our reference time. Of course, for consistency, this demands that P is
ft-invariant for all ¢ € T.

Now imagine that we have some process that is affected by the noise process, in the
following manner: if the process is at state x € X at our reference time 0, and if our plot
of the noise is given by w, then the process will be at state ¢(t,w)x at time t € T+, where
o(t,w) is some function from X to X. (Of course, for consistency, we must have that
©(0,w) is the identity for all w.) Let us also assume that the precise manner in which the
behaviour of the noise dictates the evolution of the process is itself time-homogeneous.
This implies that the function ¢(t,w) does not depend on our chosen reference time.
Hence in particular, if the process is at state y € X at time s € T (relative to our chosen
reference time), and if our plot of the noise is given by w, then (for any t € T*) the
process will be at state ¢(t,0%w)y at time s +¢. Hence, for consistency, we require that
o(s+t,w) =p(t,0°w)op(s,w) for all s,teT* and w € .

Not surprisingly, we also wish to assume that the behaviour of our process during a
given time interval is not affected by the behaviour of the noise outside of that same
time interval. This is represented mathematically by the assumption that the map
(w,z) » @(t,0°w)z is (Fs*' ® ¥)-measurable for each s € T and t € T*. (For this, it
is sufficient just to consider s =0.)

Finally, we also assume that the noise is statistically “memoryless”, which is represented
by the assumption that F° and F°, are independent under P.

2.3 Examples of random dynamical systems

“Standard form” of a discrete-time RDS

Let (I,Z,v) be a probability space, and let (€, F, (Fm+7), (6"),P) be as is Example 2.5
Let (fa)aer be a family of functions f,: X — X such that the map (o, z) » fo(x) is
measurable. Then we can define the family ¢ =(¢(n,w) )nen,, wen Of functions p(n,w): X -
X by

(n, (@ )rez) = fano---0 for-
It is not hard to show that ¢ is a RDS (in accordance with our above formalism). We
refer to ¢ as the RDS generated by the random map (I,Z,v, (fa)aer)-

Stochastic differential equations

Just as the prototypical continuous-time deterministic dynamical systems are those
generated by differential equations, so likewise the prototypical continuous-time random
dynamical systems are those generated by stochastic differential equations (SDE). If X
is a Buclidean space R% or a more general smooth manifoldf| such equations will often

®Processes whose state space is infinite-dimensional (e.g. heat distribution in a room) are often
described by stochastic partial differential equations. (See e.g. [KS12|, which considers RDS generated
by stochastically perturbed Navier-Stokes equations.)
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2.3 Examples of random dynamical systems

take the form i
dry = bzy)dt + ) oi(wy) o dWY (2.1)
i=1
where b,0y,...,05 are vector fields on X, and (W}),...,(W}) are independent one-
dimensional Wiener processes (although more general Lévy processes can certainly be
considered). We refer to b as the drift vector field (or drift coefficient), and we refer to
01,...,0% as the diffusion vector fields (or diffusion coefficients). The circle o indicates
that this equation is to be interpreted as a Stratonovich integral equation. (If X is a
manifold, this is done locally, via charts.) In the case that k = 1, an alternative sample-
pathwise interpretation (making no reference to the underlying probability measure)
exists, namely, to regard as the result of a kind of “linear superposition” of the drift
vector field b over the non-autonomous flow on X whose time-t mappings are the time-W,
mappings of the flow generated by the diffusion vector field o; this interpretation can be
formulated rigorously, and the equivalence (modulo null sets) of the two interpretations
is provided by the Doss-Sussmann theorem (e.g. [Sus78]).

If X =R9, one can alternatively work with equations of the form
k
dry = b(xy)dt + ) oi(xe)dW) (2.2)
i=1

where the lack of the circle indicates that the equation is to be interpreted as an Ito
integral equation. The equation is said to be an additive noise SDFE if the diffusion
coefficients oq,...,0, are all constant. In this case, there is no difference between
the Ito and the Stratonovich formulation: both reduce to the natural sample-pathwise
interpretation, namely as a Volterra integral equation

t k ,
T, = T +/ b(xs)ds + Y oWy, (2.3)
0 i=1

Now ([2.3]) can be re-expressed as a (classical) differential equation
k
g =b (y + Z UZ-Wf) (2.4)
i=1

where y(t) = z, - X5, o;W}. If b is locally Lipschitz then solutions are unique (over any
time interval), and exist for as long as they do not blow up in magnitude to oo. (See
[Bur83, Theorems 3.1.3 and 3.3.1].) If, in addition, there exists A € R such that

(b(y) = b(x)) - (y-z) < Ny-zf Va,yeR? (2.5)

then (among other useful properties) solutions never blow up in forward time. A function
b with this property is said to be one-sided Lipschitz, and such a value A € R is called a
one-sided Lipschitz constant of b. 1If bis C1, then it is easy to show that (2.5)) is equivalent
to

h-Db(x)h < X Va,heR?with |h|=1. (2.6)

The one-sided Lipschitz property provides an upper bound on how quickly different
trajectories can separate under the same realisation of the noise: if (z});50 and (7)o
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2.3 Examples of random dynamical systems

are forward-time solutions of ([2.3) under the same sample paths of the Wiener processes
(W}), and if b is locally Lipschitz and satisfies (2.5)), then Gronwall’s inequality (applied
to |zt — 22|?) gives that

o

|zl — 22, < eMal-2? Vs, t20. (2.7)
A detailed study of synchronisation in additive noise SDE with locally Lipschitz and
one-sided Lipshitz drift can be found in [FGS14]. A stochastic differential equation whose

diffusion coefficients are not all constant is sometimes called a multiplicative noise SDE.

The question of exactly when and how a SDE generates a RDS is quite a complicated issue.
(See |Arn98 Section 2.3] for some details.) Therefore, in this thesis, when we consider
examples involving SDE, we will deal with them in a relatively informal manner—ezcept
in the particularly “simple” case of SDE on the circle with rigidly rotating noise, which
we shall present in detail below.

Gaussian-white-noise perturbation of a vector field on the circle

We identify the circle St with ®/; in the obvious manner, with m:R — S denoting the
associated projection mapping. Given a continuous function h:[0,00) — S!, it is not hard
to show that there exists a continuous function h: [0, 00) = R such that moh = h, and that
this function is unique up to addition by a constant integer; we refer to such a function

h as a lift of h.

Given a Lipschitz 1-periodic function b:R — R and a value o € R, we may formally
define the RDS on S!' generated by the SDE d¢, = b(¢)dt + odW; to be the RDS
described by the following result:

Proposition 2.9. Let (Q,F,(F:*),(0%),P) be as in Erzample (2.6 with d = 1, and
equip ) with the topology of uniform convergence on compact sets. Let b:R — R be
a Lipschitz 1-periodic function, and fix any o € R. There exists a RDS ¢ on S over
(Q, F, (Fz+t),(6),P) with the following properties:

(1) the map (t,w,x) — p(t,w)x from [0,00) x Q xSt to St is continuous;

(ii) given any y € R and w € Q, letting r:[0,00) - R denote the unique lift of the
function t —» o(t,w)w(y) satisfying r(0) =y, r has the property that for all T >0,
the only function u:[0,T] - R satisfying bowe L1([0,T]) and

t
w(t) =y + f b(u(s))ds + ow(t) Vite[0,T]
0
is precisely the function u := r{p 1.

(Note that if o =0 then ¢(¢,w) is independent of w, and is simply the solution flow for
the ODE ¢ = b(¢) on S1.)

Proof of Proposition [2.9. We will first show that the SDE dX; = b(X;)dt + odW; on R
naturally generates an RDS on R with the desired continuity properties. We will then
show that the solution of this SDE depends 1-periodically on its initial condition, enabling
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2.3 Examples of random dynamical systems

us to project the RDS onto S'.

Since b is globally Lipschitz, by standard results regarding existence and uniqueness
of solutions of integral equations (see e.g. Section 3.2 of [Bur83|), we have that for every
y € R and w € €2 there exists a continuous function 7,,:[0,00) - R with the property
that for all T'> 0, the only function u:[0,7] — R satisying bowu € L'([0,7T]) and

u(t) = y +/Otb(u(s))ds v ow(t) ¥ie[0,T]

is the function wu := ry7w|[07T]. We now show that the map (t,w,y) » 7y (%) is continuous.
Fix any convergent sequence (t,) in [0, 00) with limit ¢, any sequence (w,,) in € which
converges uniformly on compact sets to a sample point w, any convergent sequence (¥,,)
in R with limit y. Fix any € > 0. Let § > 0 be such that for all s € [0, 00) with |s -] <,
|ryw(s) =ryw(t)] < 5. Let L >0 be a Lipschitz constant of b, and let N € N be sufficiently
large that for all n > IV, the following statements hold:

() ltn -1l <5
() g =1+ Mo o (5) ~(5)] < oz
By [Bur83, Theorem 3.4.1], for all n > N and s € [0,%+ ] we have that
€ Ls
yion (8) = Ty(s)] < 2oLy )€ S
Therefore, for all n > N,

|7"yn,wn (tn) - Ty,w(t)|

DO ™

IN

|Tyn,wn (tn) - Tyw(tn)| + |7"y,w(tn) - ryw(t”
19 19
— + —
2 2

€

AN

as required.

Note in particular that for each ¢, since the map (y,wlfo4]) = 7y (t) from RxCy([0,%],R)
to R is continuous (where Cy([0,¢],R) is the set of all f e C([0,t],R) with f(0) = 0,
equipped with the topology of uniform convergence), it follows by Lemma that the
map (y,w) = 1y,(t) is (B(R) ® F¢, B(R))-measurable.

Now obviously r,,(0) = y for all y and w. Moreover, fixing any 7 > 0, w € Q and
y € R, setting u(t) :=ry (7 +1¢) for all ¢t > 0, we have that

Y+ fom b(rye(s)) ds + ow(r+1)

g [ b)) ds + [Otb(ry,w(ﬂs))ds + ow(r+1)

g [ Cbrusds + [ by (r +8)) ds + 0w(7) + 007 (t)
= 1)+ [ “bu(s)) ds + o07(8).

u(t)
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2.4 Other formalisms of random dynamical systems

So, for all £ > 0, we have that 7, ,(7 +1) =7, (r)07w(t)-

So then, defining the map ¢(t,w):y = r,,(t) for all t > 0 and w € €2, we have shown
that (¢(t,w))i0,weq is @ RDS on R over the noise space (2, F, (F*t), (0%),P), with the
additional property that the map (¢,w,y) = @(t,w)y is continuous.

Now fixing any y € R, w € Q and k € Z, setting u(t) = r,(t) + k for all t > 0, we
have that

u(t) = y + '/:b(ryw(s))ds +ow(t) + k
Yk + [Otb(u(s) k) ds + ow(t)

gk + fotb(u(s))ds + ow(b).

So, for all ¢ > 0, we have that r, ., () +k = 7k, (f), and therefore (7, ,(t)) = T(rysr.0(1))-

So then, for each ¢t > 0 and w € 2 we can define the map ¢(t,w):S' - St by

ot w)m(y) = m(B(tw)y) VyeR.
It is easy to show that (p(f,w))ss0,weq is itself an RDS, with the desired properties. [

Time-discretisation

Let (Q,F, (F2™)ser 120, (0%)1er, P) be a noise space, and let ¢ be a RDS over this noise
space. Fix any 7> 0. Then over the noise space (€2, F, (Far™ Y imezreng: (07 )nez, P) we
may define the RDS ¢, by ¢, (n,w) = p(n7,w) for all n € Ny and w € Q. We refer to ¢,
as the time-t discretisation of .

2.4 Other formalisms of random dynamical systems
(See also Chapter 1 of [Arn98].)

Throughout the rest of this thesis (except this section), when we refer to a “random
dynamical system”, we will specifically mean a “memoryless random dynamical system”
as defined in accordance with our formalism in Section However, it is worth
mentioning some alternative (mostly, more general) notions of a RDS.

(For convenience we will still, throughout this section, regard the state space of any kind of
“random dynamical system” as having the measurable structure of a standard measurable
space; although some references do not specifically include this in the definition, it is
crucial for the most basic tools of the theory of RDS to be applied.)

RDS without a filtration

Central to our formalism is the underlying two-sided filtration (F$*)er te7+ on the sample
space ). However, in general, the term “random dynamical system” does not necessarily
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2.4 Other formalisms of random dynamical systems

imply the presence or relevance of any pre-defined filtration on €2; a “random dynamical
system” merely consists of:

e a group 6 := (6'),r of measure-preserving transformations of a probability space
(Q,F, ]P’)E]

e a standard measurable space (X, ), and a family ¢ =(p(t,w))ter+ wen of functions
o(t,w): X - X, satisfying the “forward cocycle” property (i.e. properties (i) and
(ii) in our formalism) and

(iii)" for each t € T*, the map (w,z) = p(t,w)x is (F ® X, ¥)-measurable.

By identifying (6, ) with the “product system” ©!: (w,x) — (f'w, p(t,w)x), we have an
equivalent, slightly more succint formulation: A “random dynamical system” is a skew-
product dynamical system on 2 x X (with X standard) whose base system is invertible
and is equipped with an invariant probability measure[]

The above definition of a “general” random dynamical system still captures the notion of
a time-homogeneous noise process determining the evolution of some system in a time-
homogeneous manner; but it does not incorporate a notion of “how the noise behaves
over a given finite time interval”.

Filtered RDS that are not necessarily memoryless

One can also consider a “random dynamical system” as defined in accordance with our
formalism, ezcept without having to satisfy that F!_ and F/° are independent under P
for each t.

Examples of non-memoryless filtered RDS include: (a) RDS generated by SDE (with
time-independent vector fields) that are driven by processes with strictly stationary but
not independent incrememts; and (b) RDS generated by random differential equations

(RDE) of the form
w(t) = f(w(t), x(t))

where the sample points w are functions from R to some suitable space W, P is invariant
under the shift 6'w(s) =w(s+1t), and f(y,-) is a vector field on X for each y ¢ W ]

“Semifiltered” RDS

The term “filtered RDS” has been used elsewhere to describe what we will call a
“semifiltered” RDS, where the system may be able to “remember” the past behaviour of

6Sometimes one also assumes that P is an ergodic probability measure of the family of transformations
(0'), in which case the RDS is sometimes referred to as an ergodic RDS.

TA skew-product dynamical system on a product space (2 x X, F ® ¥) is an autonomous dynamical
system (©)er+ on (2 x X, F ® X) such that the Q-component of ©'(w,z) does not depend on z. The
base system of a skew-product dynamical system (©%) on Q x X is the dynamical system on €2 obtained
by projecting the dynamics of © onto €. See also Section

8A more general time-homogeneous RDE takes the form #(t) = f(60'w, z(t)) where (6")ix is a
measure-preserving group of transformations of (2, F,P), and f(w,-) is a vector field on X for each w.
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2.4 Other formalisms of random dynamical systems

the noise, but cannot predict the future behaviour of the noise. In its simplest formulation,
a semifiltered RDS consists of:

e a measurable space (2, F), and a T-indexed family (F;)r of sub-o-algebras of F
such that F, c F, for s<t and F=o(F:teT);

e a group (0")r of functions 6%:Q) - Q such that 7 F, = F,_, for all t,7 € T;
e a (6')-invariant probability measure P on (2, F);

e a standard measurable space (X, X)), and a RDS ¢ on X over (Q, F,P, (6")cr) such
that the map (w,z) = p(t,w)z is (F; ® ¥, 3)-measurable for each t € T*.

Note that any filtered RDS can be regarded as a semifiltered RDS, by setting F; := F¢_;
and semifiltered RDS can be regarded as a special case of filtered RDS, by setting F! := F;.
For examples of semifiltered RDS, see e.g. [CSS05], or the random differential equations

in [IL02| constructed to aid the study of Wiener-driven SDE.

RDS with non-invertible base

For mathematical reasons, we always consider RDS whose base system is a group (6!)r
of P-preserving transformations. However, one can certainly also consider RDS whose
base system is a P-preserving dynamical system (6¢);.r+ that is not necessarily invertible.
(Indeed, this plays a key role in the proof of the correpondence between one-sided-time
and two-sided-time invariant measures described in Section [1.3])

In this case (following [New15a, Section 7)), if we wish the RDS to be a “filtered RDS”,
we equip 2 with a one-sided filtration (F;)r+ of sub-o-algebras of F such that for all
s,t € T+, 0% is (Fqyt, Fs)-measurable; the RDS ¢ is filtered with respect to this filtration
if for each ¢ € T*, the map (w,x) — p(t,w)x is (F; ® ¥, ¥)-measurable. The noise space
(Q,F, (F)ier+, (0 e+, P) is memoryless if P(E n0-1(F)) = P(E)P(F) for all ¢t € T+,
E e F, and F € o(F, : s € Tt). Note that a “memoryless noise space” in the sense of
Section can be regarded as a memoryless noise space in this sense, by setting F; := F¢.

Local RDS

Now it is, of course, entirely possible to have a stochastic differential equation whose
forward-time solutions blow up in finite time. This naturally motivates the study of local
RDS. Specifically (roughly following [FGS14]), we can define a “local RDS on X" to be
a RDS ¢ on an “extended phase space” X u{0} (equipped with the obvious o-algebra),
such that ¢(t,w)0 =9 for all ¢ and w.

Bundle RDS

Another generalisation of the notion of a RDS is the notion of a bundle RDS, where the
set of possible states of the system evolves over time in accordance with the noise. We
present two possible definitions of a bundle RDS over an invertible measure-preserving
dynamical system (2, F,P, (6*)ser) [

9The author has not seen explicitly the first of the two definitions elsewhere; however, it is useful for
motivating the definition of cohomology of random dynamical systems.
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2.4 Other formalisms of random dynamical systems

e In the first case: We have a measurable space (Y,)) and a surjective (), F)-measurable
function 7:Y — Q such that for each w € €, the set Y, := 771(Q2) equipped with the
induced o-algebra ), from ) is a standard measurable space. And we have a family
©=(p(t,w))ter+ weq of functions p(t,w): Y, - Yp,, such that

(i) ¢(0,w) = idy, for all w € ;
(i) e(s+t,w) = (t,05w) o p(s,w) for all s,teT* and w €
(iii) for each t € T+, the map y — ¢(t,7(y))y is (¥,Y)-measurable.

It follows that ¢(t,w) is (W, Vetw, )-measurable for all ¢ and w.

e In the second case (cf. [Arn98, Definition 1.9.1]): We have a standard measurable
space (Z,Z) and a set Y € F ® Z, such that for each w € Q, the w-section Y, := {x €
Z:(w,x) €Y} of Y is nonempty. And we have a family ¢=(¢(t,w))ter+wen of functions
o(t,w):Y,, = Yy, satisfying (i) and (ii) above, as well as

(iii)" for each t € T*, the map (w,z) » ¢(t,w)x is (), £)-measurable,

where ) denotes the set of all (F ® Z)-measurable subsets of Y. Note that a RDS ¢ on a
phase space X may be regarded as the “trivial case” of a bundle RDS, simply by taking
Z=Xand Y=QxX.

Now a bundle RDS ¢ according to the second definition may be regarded as having the
structure of a bundle RDS under the first definition, by the identification ¢(t,w): (w,z)
(O'w, p(t,w)x). However, a bundle RDS under the second definition has additional
structure which a bundle RDS under the first definition does not have: namely, under
the second definition, one can consider intersections of the form N .pY., where E c Q.
(For bundle RDS according to the first definition, if £ has more than one element then
this intersection is always empty.)

An important motivation for the notion of a bundle RDS (under the second definition) is
the following: Given a deterministic dynamical system (f*);er+ on (X, ) with a forward-
invariant set Y € X, we can restrict (f*) to Y, to obtain a dynamical system on Y.
However, the RDS-analogue of the notion of an “invariant set” is a “random invariant
set”, which is an w-dependent subset of X. The restriction of a RDS ¢ on X to a “random
forward-invariant set” (Y,,).cq will be a bundle RDS.

(Now we warn that the term “bundle RDS” is sometimes also used to refer to a RDS
on a fixed phase space, whose mappings ¢(t,w) take the form of a skew-product map.
[Arn98| uses the term “bundle RDS” in both senses.)

Backward cocycles

Now as we will see, pullback trajectories often play a very significant role in the theory
of RDS. Pullback trajectories of a RDS ¢ can simply be regarded as trajectories of
the system ¢ := (¢(t,07'w) )ser+wen, which forms a “backward cocycle” over the group
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2.4 Other formalisms of random dynamical systems

0:=(67")ser. In general, a backward cocycle on X over a group of maps (6!).r on Q is a
family ¢ = (¢ (t,w) )ter+ weq of functions ¢ (¢,w): X - X such that

(i) ¥(0,w) = idy for all we
(ii) Y(s+t,w) = Y(s,w)ot(t,0w) for all s,teT* and w e Q.

Given a backward cocycle (6,1)), one can obtain a forward cocycle (6, ) by # := -t and
©(t,w) = 1(t,0w). This procedure actually inverts the above procedure for obtaining a
backward cocycle from a forward cocycle. Thus forward cocycles and backward cocycles
are in one-to-one correspondence.

Additional structure on the phase space

So far, we have not discussed RDS that respect some additional structure on the state
space beyond measurable structure (e.g. topological structure, vector space structure,
differentiable structure, Riemannian structure, partial or linear ordering). Later in this
chapter, we will consider “monotone” RDS on ordered spaces, and “(right)-continuous”
RDS on metrisable topological spaces.

In the case that X is equipped with the structure of a measurable vector space, a RDS ¢
on X is said to be linear if p(t,w) is a linear map for all £ and w. In the case that X is
equipped with the structure of a C*-smooth manifold, a RDS ¢ is said to be a C*-smooth
RDS if for every partial differential operator 9, of order less than or equal to k, d,p(t,w)
exists for all ¢t and w and the map (¢,x) — (Jap(t,w))(x) is jointly continuous for all w.

Central to the study of linear RDS and smooth RDS is the multiplicative ergodic theorem,
which provides the existence of “exponential separation rates” called Lyapunov exponents.
See Part II (especially, Chapters 3 and 4) of [Arn98| for a detailed exposition of the
multiplicative ergodic theorem and its major corollaries.

Isomorphism and cohomology of RDS

Of course, different generalisations of our notion of a random dynamical system give
rise to different notions of isomorphism of random dynamical systems. We now mention
some possible notions of “isomorphism”. (These notions do not make reference to any
filtrations on the underlying probability space.)

e Two random dynamical systems
(1, F1, Py, (01)sers X1, B1,01) and (Qa, Fo, Po, (65) s, Xo, Yo, 02)

are 1somorphic as RDS if there exists an (Fi, Fs)-measurably invertible function
g:Q1 = Qs and a (X4, Xs)-measurably invertible function h: X; — X5 such that

(i) g«P1 = Py;
(ii) 0 = globlog forall teT,
(iii) @1(t,w) = h7t o pa(t,g(w)) o h for all t e T+ and w € 2.
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In this case, we refer to (g,h) as a RDS isomorphism from @1 to ps.

Two random dynamical systems
(Qb]:l,Pl»(ei)te’H‘aXlazla@l) and (QQ,FQ,P%(%)teﬂmeE%@)

are isomorphic as bundle RDS if there exists an (F; ® 31, Fy ® ¥s)-measurably
invertible function H:y x X; — 9 x X5 such that

(i) the Qy-component of H(w,x) does not depend on z, but only on w; so we can
define the functions gg:; — Qs and hy: 4y x X7 > X, such that H(w,x) =

(91 (W), hy(w,x));
(i) gu«P1 =Py;

(ii}) (Blw, pr(tw)e) = H(B(gn(w)), eat,gu(w))hu(w,)) for all ¢ € T+,
w ey and = € X.

In this case, we refer to H as a bundle RDS isomorphism from ¢y to vo. (Note that
this terminology is making reference to the first of our two definitions of a bundle

RDS.)

Two RDS over the same base system 6@ are called cohomologous if they are
“isomorphic as bundle RDS over 8”. To be precise: Two random dynamical
systems (X1,%1,¢1) and (X3, X9, ¢2) defined over a measure-preserving group
(Q,F,P,(0")er) are said to be cohomologous if there exists a bundle RDS
isomorphism H from ¢y to ¢y such that gy is the identity function on €. In
this case, we refer to hy as a random measurable conjugacy or a cohomology from
1 to o. It is easy to show that a function h: €2 x X; - X, is a random measurable
conjugacy from ¢ to ¢ if and only if the following hold:

(i) for each w € Q, h(w,-) serves as a bijection between X; and Xs; so we can
define h=1:Q2 x Xy — X7 such that for every w, h™!(w,-) is the inverse function
of h(wa )a
(ii) his (F ® X1, Xo)-measurable, and h7! is (F ® ¥y, ¥ )-measurable;
(iii) ¢1(t,w) = h1(Ow,-) o pa(t,w) o h(w,-) for all t e T+ and w € Q.

Alternatively (for practical purposes), one may choose to regard two RDS over
(2, F,P,(6)4er) as being “cohomologous” if there is a strictly (6¢)r-invariant P-
full set 2" € F such that the restrictions of the two RDS to 2 (defined in the obvious
manner) are cohomologous under the above definition.

Cohomology can be used to define a “bifurcation” in a parametrised family of actions of
the noise space (2, F,P,(6")r) on a topological space X. (Of course, in this context
we would specifically consider cohomologies that “respect topological structure” in some
suitable sense.)

Remark 2.10. Cohomology can also be characterised in terms of “pullback operators”.
Let h:Q x X; - X, be a function satisfying properties (i) and (ii) above. Let
L0(Q, F; X1) and L°(Q, F; X5) denote respectively the set of measurable functions from
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2.5 Markovian dynamics

Q) to X; and the set of measurable functions from ) to X,. Define the function
H:L0(QF; X1) - LO(Q, F; Xo) by (Ha)(w) = h(w,a(w)); it is clear that H is bijective,
with inverse H™! given by (H10)(w) = h"1(w,b(w)). For each t € T*, define the “pullback
operator” PL :LO(Q, F; X1) — LO(Q,F;X1) by (PLa)(w) = ¢i(t,07'w)a(fw); and
define P : LO(Q, F; Xo) — LO(2, F; X3) similarly. It is easy to show that h is a random
measurable conjugacy if and only if

Pl = HoPL oM 29

for all ¢t € T*. For each ¢, to verify (2.8)), it is sufficient just to show that (2.8 holds on a
subset A c L9(Q, F; X;) such that {a(w):a € A} = X for all we Q. (Pullback operators
will be discussed further in Section [2.7])

Non-homogeneous RDS

Just as, in the deterministic context, a major area of study is the theory of non-
autonomous dynamical systems, so also a growing area of research within the setting
of systems affected by noise is the theory of RDS that are not time-homogeneous. The
inhomogeneity is often due to some external deterministic forcing that is not constant
over time, leading to the study of non-autonomous RDS, where ¢ has two time-indeces.
(See e.g. [Che+15], or Section 3 of [FZ15].) One can also consider systems where the noise
itself is not statistically stationary. (See e.g. [Kai93] or [SH02|[™)

2.5 Markovian dynamics

Throughout the rest of this thesis, T, Q, F, Ft 6t P, X, ¥ and ¢ will be as in
Section (although, for much of the thesis, we will consider additional structure on the
phase space X).

For each x € X and t € T*, define the probability measure ¢! on X by

Yl(A) =PlweQ:p(t,w)reA)
=PlweQ:p(t,0°w)reA) (for any seT).

In heuristic terms, for each ¢, (¢} ).ex represents the transition probabilities associated
with the time-t mapping of the RDS .

We will now see that, due to the noise being memoryless, “the statistical dynamics of ¢
are Markovian”.

Lemma 2.11. Fiz an arbitrary probability measure p on X. Quver the probability space
(2x X, Fo X, P®p), define the X-valued stochastic process (My)wr+ by My(w,x) =
o(t,w)x. Then (M;) is a homogeneous Markov process with respect to the filtration
(FE® X) e+, with transition probabilities (L) zex, et -

1Most of the content of [SHO2| really concerns “RDS” without a probability measure on the base;
but this is so that the theory can be applied to systems influenced (in a time-homogeneous manner) by
non-stationary noise.
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2.5 Markovian dynamics

Proof. We start by verifying that the family of probability measures (¢l)ex, er+ does
indeed satisfy the Chapman-Kolmogorov relations: for any z € X, s, € T* and A € X, we
have

3 (A)

/Q La(o(t, 0°w) (s, w)a) P(dw)

[ Lalet 00 e(s,)0) P o P(d(w,2))
(by Lemma [A.10}, since F§ and F**" are independent)

- [ 0D B3 P(d)
fg Pio(s o)z (A) P(dw)
/X SDty(A) 03 (dy)

(since ¢ is precisely the image measure of P under w — (s, w)z)

as required. Now we know that M, is (F{ ® X, ¥)-measurable for each ¢t € T*. Given any
s,t € T* and A € X, we have that for (P ® p)-almost all (w, z),

Pop (M€ Al © X)(w, 7)

=Epep[ (@, 7) » La(Muu(@,2)) | F5 © X ](w, x)

Epep) [ (@0, T) = La(p(t, 0°w) M,(@, 1)) | F§ @ X J(w, z)
Ewep [ (@,2) = 1a(p(t,0°0) My(w, 7)) ]

(by Corollary [A.11] since F ® ¥ and F5** ® {@, X} are (P ® p)-independent)
= E@y[wr La(p(t, 0°0) M(w,2)) ]
@ﬁws(w,x)(A)

as required. O

Hence in particular:

Corollary 2.12. Fiz any xq€ X. Over (2, F,P), define the X -valued stochastic process
(My)er+ by My(w) = p(t,w)xo. Then (M;)wr+ s a homogeneous Markov process with
respect to (Ft)ier+, with transition probabilities (¢L)zex ter+

It is easy to prove Corollary simply by going through the same proof as for
Lemma alternatively, one can derive Corollary as a special case of Lemma

using Lemma [A.14] with Y (w) := (w, zo).

Now for any ¢ € T* and any probability measure p on X, define the probability measure
©p on X by

P(A) = [ () plda).

Using Fubini’s theorem, we have

P(A) © [ Pl p(tw)e e ) p(de)
= Pop((w,x) : p(t,w)reA)

= [ @(tw).p(A) P(dw).
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2.5 Markovian dynamics

Obviously then, we also have that for any s € T, p**p is the image measure of P® p under
(w,x) » @(t,05%w)x and

PD(A) = [ ot 07w).p(A) P(d)
for all AeX.

Since the family of probability measures (¢} )zex ter+ satisfies the Chapman-Kolmogorov
relations, it is not hard to show that ¢***p = p'*(p**p) for all s,t € T* and p e M(xx).

Note that (by definition) a probability measure p on X is stationary under the Markov
transition probabilities (¢f)ex, ter+ if and only if ¢**p = p for all t € T*.

Remark 2.13. (I) Let p be a probability measure on X, and let (M;),r+ be as in
Lemma 2.11] Then for each ¢ € T*, the law M;.(P ® p) of the random variable M; is
precisely ¢*p. (II) Fix any zo € X, and let (M;)er+ be as in Corollary 2.12] Then for
each ¢ € T*, the law (M;).P of the random variable M, is precisely ¢t .

Remark 2.14. In the deterministic case that Q is a singleton {w}, writing f*:= p(t,w),
we have that ¢! = 04 (,) for all x and ¢, and therefore p'*p = flp for any probability
measure p on X and any ¢; so then, a probability measure p is stationary under the Markov
transition probabilities (¢f).ex ter+ if and only if p is invariant under the dynamical

system (f*)ser+.

Lemma 2.15. Suppose ¢ is measurable, and let p be a probability measure on X that

is ergodic with respect to the Markov transition probabilities (¢t )zex ter+. Then for each
AeX, for (P® p)-almost all (w,z) € Q2 x X, we have

lz_:]]-A(SO(ZWJZ)_)p(A) as n — oo ZfT:Z,
=0

3

%fo La(p(t,w)e)dt — p(A) asT »oo if T=R.

Proof. Follows immediately from Lemma [2.11] and the ergodic theorem for Markov

processes[T] (See Sections and [C.0]) [

Definition 2.16. We say that a probability measure p on X is incompressible (under @)
if P-almost every w € Q has the property that for all ¢t € T*, p(t,w).p = p. We say that p
is crudely incompressible (under ) if for each t € T*, P(w: ¢(t,w).p=p) = 1.

Obviously if p is crudely incompressible then p is stationary under the Markov transition
probabilities (L )zex teT+-

HTf in addition to the hypotheses of Lemma the map (t,w) = @'w is jointly measurable,
then the conclusion of Lemma [2.15] can be obtained by an alternative means: namely, it follows from
Lemma ii), together with Birkhoff’s ergodic theorem for the dynamical system (O%);c+ applied to
the function Lgxa.
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2.6 Skew-product dynamics

Definition 2.17. We say that a set A c¢ X is invariant (under @) if P-almost every
w € ) has the property that for all t € T*, o(t,w)A c A. We say that A c X is crudely
invariant (under ) if for each t € T*, there is a P-full set €, c Q such that for all w € €,
o(t,w)A c A. We say that A € X is very crudely invariant (under ) if ¢! (A) =1 for
all z € A and ¢t € T* (i.e. if A is forward-invariant according to the Markov transition
probabilities (L )zex, teT+)-

Obviously a finite or countable set is crudely invariant if and only if it is very crudely
invariant.

Definition 2.18. We will say that a point p € X is a deterministic fived point if {p} is
invariant; and we will say that p € X is a crude deterministic fized point if {p} is crudely
invariant.

2.6 Skew-product dynamics

One important tool for analysing the behaviour of a RDS is its representation as a “skew-
product” flow on the product space {2 x X; while fully encoding the dynamics of ¢, this
is a deterministic dynamical system (thus giving a crucial role to deterministic ergodic
theory for the study of the dynamics of a RDS).

For any 7 € T and ¢ € T*, define the map
OL:OxX - OxX
Ol (w,z) = (0'w,p(t,07w)x).

Lemma 2.19. For each 7 € T, the family (OL)+ satisfies the (autonomous) flow
equations

@9- = 1deX
O3 = ©Lo© forall s,teT".

Proof. We have
O(w,z) = (0w, p(0,07w)z) = (w,2)

and
L0 (w,z) = OL(Ow, (s,07w)z)
= (0'0°w, p(t,070°w)p(s,07w)x)
= (05w, o(t,0°07w) (s, 07w)x)
= (07w, p(s+t,07w)r)
= 07" (w,r)
as required. N

For each 7 € T, we will refer to (O%);er+ as the skew-product dynamical system (associated
to @) started at time .

Now just as (6").r represents time-shifts on €2, so we can (trivially) define a “time-shift
system” (6')sr on the product space 2 x X by 0(w,z) := (0w, ).
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2.6 Skew-product dynamics

Lemma 2.20. For any 71,72 € T, (O )ter+ and (OL))ter+ are conjugated by
e, = 67 o e o 6= VieT.
Proof. We have

NT1—T t NTo—T
0™ 0 O, 0 07 (w, )

07 0 O (07w, 1)

I (0, (1, 07w))
(O'w, p(t,0™w)x)

o, (w,7)

as required. O

So then, since the dynamical systems {(©%)r+ : 7 € T} are all conjugate to each other
via time-shifts, it will suffice for all purposes just to consider the skew-product dynamical
system (O )i+ started at 0. We will therefore drop the subscript 0 and just write

O (w,x) = (0w, o(t,w)z).
For any ¢t € T* and A c Q2 x X, we write O7(A) := (0!)~1(A).

Now it is clear that for each ¢t € T*, ©! is (F ® X, F ® ¥)-measurable; in other words, we
can regard (O%),r+ as a dynamical system on the measurable space (2 x X, F ® X). But
moreover: for any r,t € T+, since ¢ is (FS,’Z,Fer))—measurable and (w,z) ~» p(t,w)x is

(Fg ®X, ¥)-measurable, it follows that ©f is (F2 X, F

—(r+t)
this implies in particular that © is (F ® X, F% ® ¥))-measurable. So in summary: for
any r € T*, (©Y) 1+ can be regarded as a dynamical system on the measurable space
(Qx X, Feo o).

® YJ)-measurable; obviously,

The following lemma serves as an important “link” between the Markovian properties of
¢ and the dynamics of the skew-product system (O?%):

Lemma 2.21. For any probability measure p on X,

(i) (2xX, F %, Plre®p, (©')e1+) is a measure-preserving dynamical system if
and only if p is stationary under the Markov transition probabilities (¢l )zex, ter+;

(i) (Ux X, Fe®%, Plre ®p, (O")er+) is an ergodic measure-preserving dynamical
system if and only if p is ergodic with respect to the Markov transition
probabilities (pL)zex, te+-

Proof. Apply |[New1b5al, Theorem 143]@ with F; == FL. ]

Remark 2.22. In Lemma[2.21] it is important that we restrict the underlying probability
space to the o-algebra F5°. (In fact, we will see in Section that for any probability
measure p on X, for any 7 € T+~ {0}, (Ax X, F2 @ X, P|r= ® p, (O!)ser+) is a measure-
preserving dynamical system if and only if p is crudely incompressible.)

12This is, in turn, based on |Kif86, Lemma I.2.3 and Theorem I1.2.1].

23



2.7 Pullback operations and random fixed points

2.7 Pullback operations and random fixed points

The most basic object in the geometric study of autonomous dynamical systems is the
notion of a “fixed point”. If we wish to generalise this notion to random dynamical
systems, one possible way to do this is to regard a deterministic fized point (see
Definition as being the RDS-analogue of a fixed point of a deterministic dynamical
system. However, this is a very restrictive notion. An alternative, much broader notion
is that of a random fized point: although the RDS ¢ is defined as acting on the state
space X, there is a natural way to regard ¢ as acting on the space L°(P; X') of X-valued
random variables identified up to P-almost sure equality, via the pullback construction; a
“random fixed point” is a fixed point of this action.

In this section, we will introduce some theory of pullback operations and random fixed
points. Several of the results presented here are not actually needed explicitly later on,
but help build an intuition for the mathematical “role” of random fixed points.

There are various possible ways of motivating the “pullback” construction and the
definition of a random fixed point, of which we now present one:

Motivation

Suppose we have a transitivd™| group action of T on a set T, denoted by (,8) — s+
(where ¢t € T and s € T). Heuristically, T represents a “timeline without a defined origin”.

An element (xt)ter of XT will be referred to as an (X-valued) T-path. A T-path (zy)
will be said to be stationary if there exists ¢ € X such that x4y =c for all t € T.

Let (f!)ir+ be an autonomous dynamical system on (X,3). A T-solution of (f*) is
a T-path () such that for all s € T and t € T*, f!(xs) = zsy. It is clear that a stationary
T-path (p)ser is a T-solution of (f*) if and only if p is a fixed point of (f*). Let us now
consider the random case.

Suppose we have a probability space (Q2,F,P) and a T-indexed family m = (7¢)¢er of
(F, F)-measurable functions m¢: €2 - Q such that

(i) 7gpe =0t omg for all se T and t € T;
(i) m.P =P for all t € T.

[Heuristically: (€2, F,P) is a probability space that incorporates the behaviour of some
noise process over the timeline T, and (following the heuristic description in Section [2.2))
7y constructs a “plot” of the noise with respect to t as the reference time.]

An (X-valued) (2, 7T)-process is a T-indexed family (Y;)¢er of (F,X)-measurable
functions Y;: Q2 - X. We will say that an (€2, T)-process (Y;) is m-stationary if there

13A group action of a group G on a set S is said to be transitive if the whole of S is a single orbit of
the action, i.e. if for all z,y € S there exists g € G such that gz =y.
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2.7 Pullback operations and random fixed points

-a

exists an (F,Y)-measurable function a:Q — X such that for each t € T, Y; P2s 4om.

We will say that an (€2, T)-process (Y;) is an (2, T)-solution of ¢ if there is a P-full set
Q' € F such that for all se T, t € T+ and w € Q', (¢, ms(w))Ys(w) = Yo (w).

Lemma 2.23. Suppose we have an (2, T)-solution (Yy) of ¢, a time s € T and a
measurable function a:Q) - X such that

Y, P gom
Then for any t € T+, we will have that

Yoit e (Pan) O Tsrt
where Pla:) — X is given by PLa(w) = o(t,07'w)a(0'w).

Proof. Fix t € T*; let Q' € F be a P-full set such that ¢(t,ms(w))Ys(w) = Vg (w) for all
w e Q5 and let 2" € F be a P-full set such that Y;(w) = a(7s(w)) for all w e Q”. Then
for all w e Q' N Q"

(Pha) o mewp(w) = (Pya) 00 o m(w) = o(t, ms(w))a(ms(w)) = (1, 75 (w)) Vs (w) = Yau(w)

as required. O

Pullback operators

Let £°(€2, F; X) be the set of all (F, ¥)-measurable functions a:{2 — X. We say that two
functions a, b € L2(Q, F; X) are equivalent if a(w) = b(w) for P-almost all w € . With this
notion of equivalence, let LO(IP; X') denote the set of equivalence classes of £O(€2, F; X).
For any a € L9(Q2, F; X), we write [a] € LO(P; X) for the equivalence class represented by
a.

Now for any ¢ € T+, define the “pullback operator” PL:L0(§2, F; X) - LO(Q,F; X) by
PLa(w) = ¢(t,0'w)a(0'w). We show that (PL)i.r+ forms a “dynamical system” on
LO(Q,F; X).

Lemma 2.24. P) is the identity function on LO(Q, F; X ), and for any s,t € T+ we have
that Pstt =PL o Ps.
Proof. Since §° = idg and ¢(0,w) = idx for all w, it follows that Pla = a for all a €
L0, F; X). Now for any s,t € T+, any a € L°(, F; X)) and any w € £, we have
(P oPg)(a))(w) = ¢t 07'w)(Pa)(0'w)
= o(t,07'w) (s, 07507 w)a (07507 'w)
= p(t,0"w)p(s,07CDw)a(6w)
= (s +t,07CDw)a(0w)
= Pia(w)

as required. O
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2.7 Pullback operations and random fixed points

Lemma 2.25. Suppose we have two functions a,b € LO9(Q), F; X) that are equivalent.
Then for any t € T+, Pla and PLb are equivalent.

Proof. Fix t € T*. Let Q' € F be a P-full set such that a(w) = b(w) for all w € 2. Then
for all w € §(€2), we have that a(0~'w) = b(0~*w) and so PLa(w) = PLb(w). O

In view of Lemma/2.25| for each t € T* we can define the function P%: LO(P; X') - L°(IP; X)
by Ptla] = [Pta]. Obviously, we have that P2 is the identity function on LO(P; X') and
Pstt = PLo Ps for all s,1€T*.

Remark 2.26. Suppose we have a separable metrisable topology on X generating 3,
in which the map ¢(t,w) is continuous for all ¢+ and w. Suppose we have a sequence
(ay) in L£9(Q, F; X) converging P-almost surely to a € £L°(€2, F; X); then for any ¢ € T+,
a, o 07t converges P-almost surely to a o #7 and therefore (by continuity of ¢(¢,w))
PlLan converges P-almost surely to Pla. It followq"| that if we have a sequence (ay)
in £L9(€2, F; X) converging in probability to a € L2(2, F; X), then for any ¢ € T+, Pla,
converges in probability to PLa. (So for each t € T*, P! is continuous in the topology of
convergence in probability.)

We also mention that there is a strong link between the dynamics of (PY)r+ and the
dynamics of the skew-product system (O%),cr+, as exemplified by Lemma [3.36]

Random fixed points

Definition 2.27. A random fized point or equilibrium of ¢ is a measurable function
q:€2 — X such that P.[q] = [q] for all t € T*, i.e. such that

P(w : p(t,0'w)q(0'w) = q(w)) =1
for all t e T+.

(Obviously, in the case that T = Z, it is sufficient just to check that P}[q] =[q].)

Let ¢: 2 - X be a measurable function. For any ¢ € T* and s € T, the following statements
are clearly equivalent:

o Pllq]=1[a];

o o(t,0%w)q(05w) = q(65+w) for P-almost all w € §;
o o(t,w)q(w) =q(Atw) for P-almost all w € ;

e for P-almost all w € 2, Of(w,q(w)) € graph(q).

(Intuitively, the last of these says that the graph of ¢ is “almost invariant” under ©*. The
penultimate of these is often easiest to work with practically.)

4Since almost sure convergence implies convergence in probability, and convergence in probability
implies the existence of an almost surely convergent subsequence, one obtains the following
characterisation of convergence in probability: a sequence of random variables (a,) converges in
probability to a random variable a if and only if every subsequence of (a,) admits a further subsequence
that converges almost surely to a. (Cf. [Dinl3, Proposition 12.2].)
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2.7 Pullback operations and random fixed points

Proposition 2.28. Let q1,q2:Q — X be random fixed points of ¢ with [q1] # [q2]. Then
P(w:q1(w) = g2(w)) =0.

Proof. Let E = {w: 1(w) = ¢2(w)}. Given any t € T+, letting 2 c Q be a P-full set
such that p(t,w)q1(w) = ¢1(0'w) and p(t, w)qge(w) = g2(Ftw) for all w € ;, we have that
0'(EnQ;) c E. Hence, by Lemma[2.8] P(E) € {0, 1}; and since we assume that [¢1] # [g2],
it follows that P(E) = 0. O

Proposition 2.29 (Relation between random fixed points and stationary solutions). Let
T, Q, F, P and (m) be as in the “Motivation” part of this section, and let q:Q) — X be
a measurable function. The following are equivalent:

(i) q is a random fixed point of v;

(ii) there is an (2, T)-solution (Y3) of ¢ such that for each t € T, Y, " =% qomy.
Proof. (ii)=(i): Suppose (Yz) is an (€2, T)-solution with Y; "2 g o for each t € T.
Then for any t € T, fixing any s € T, we have that for P-almost all w € €2,

p(t,ms(w))q(ms(w)) = ot ms(w))Ys(w) = Yeu(w) = q(msu(w)) = q(0'ms(w)).
Since 7, P =P, it follows that
P(w: p(t,w)g(w) =q(0'w)) = 1.

Since t was arbitrary, ¢ is a random fixed point.

(i)=(ii): Suppose ¢ is a random fixed point. Let Q € F be a P-full set such that for
all meZ, neNand weQ, o(n,0mw)q(0mw) = ¢(0™*"w). Fix an arbitrary s € T. For
each t €T, let Y5,:: €2 - X be a measurable function with

Yoru(w) = ot = [t], morps)(w))q(msipyyw)

for all w e m51(Q). We will show that (Y )¢er is an (€2, T)-solution with Y; & 2% gom for
each t € T. For each t €T, let
= {weQ: p(t-[t],01w)q(0w) = ¢(f'w) }.

Since ¢ is a random fixed point, € is a P-full set. For each t € T, for each w € 7;1(Qn ),
writing w := mg(w), we have that

You(w) = ¢(t-[t],0Mw)g(0w) = g(0'w) = q(ms(w)).

So it remains to show that (Y;) is an (€, T)-solution of ¢. For each w € m;1(Q), s e T
and t € T+, writing w := ms(w), we have that

ot Tarn(@))Yars(@) = 9t,6°0)p(s - 51, 0)(61)

(s +t = [s],0w)q(0w)
o(s+t—|s+t],05Hw)p(|s +t] - 5], 08w) g0 w)
o(s+t—|s+t], 05 Hw)g(al+w)

Yorsrt(w).

So we are done. O
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2.7 Pullback operations and random fixed points

Now it is clear that for an autonomous dynamical system ( f*);er+ on a metric space (Y, d)
with f? being continuous for all ¢, if there exists an initial condition zy € Y such that
ft(zo) converges as t — oo, then the limit is itself a fixed point of (f*). We now consider
a couple of ways that this generalises to the random case, first looking at “pullback
convergence” and then looking at “forward-time convergence”.

Proposition 2.30. Suppose we have a separable metrisable topology on X generating 3,
such that the map p(t,w) is continuous for all t and w. And suppose we have functions
a,q € L2, F; X) such that Pla converges in probability to q as t — oco. Then q is a
random fixed point of .

Proof. As we have established, (P.)r+ is an autonomous dynamical system on L°(IP; X)
with P! being continuous (with respect to convergence in probability) for all ¢. Hence

[q] = lim;_ o0 Pfj[a] is a fixed point of (Pé)tew- —~

Proposition 2.31. Suppose we have a separable metrisable topology on X generating 3,
such that the map o(t,w) is continuous for all t and w.

(A) If ¢ is two-way measurable, then P-almost every w € Q) has the following property:
for any x € X, if p(t,w)x converges as t - oo to a point p € X, then p is a crude
deterministic fixed point of ¢.

(B) Suppose we have functions a,q € LO(2, F; X) and a probability measure P’ on
(, F) that is absolutely continuous with respect to P, such that the stochastic process
(o(t,)a(-))ier+ defined over (Q,F,P") converges in probability to q. Then for P'-almost
every w € ), q(w) is a crude deterministic fived point of ¢.

Remark 2.32. Proposition suggests that in random dynamical systems, one should
expect to see convergence of pullback trajectories more often than convergence of
forward trajectories, since forward trajectories can only converge where there are (crude)
deterministic fixed points. (As we will often see, convergence of pullback trajectories can
easily occur without the presence of crude deterministic fixed points.)

Proof of Proposition [2.31. (A) Suppose ¢ is two-way measurable. Let I be a countable
base for the topology of X. For each U € and n € Ny, let

Apy = {(tyw) eT" xQ : Unp(r,0"w)U + 2 }.

Note that Ay, is (B(T*) ® F)-measurable, since, letting S be a countable subset of U
that is dense in U, we have that

Apn = U{(nw) eT" xQ: o(,0"w)x e U }.
zesS

Now for each U €U, let
Ty = {7eT":Plw: (T,w) € Ayg) <1} = {7eT": P(w: (1,w) € Apyp) <1} (for any n)

and let o o
N = (Ty xQ) n U M A4vm-

n=0m=n

In other words, N() is the set of all (7,w) € Ty x Q with the property that for all m
sufficiently large, U n p(7,0m™w)U # @. It is clear that for any 7 € T+, the 7-section of
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2.7 Pullback operations and random fixed points

N@) (that is, the set {w e Q: (1,w) e N)}) is a P-null set.

Now let N = Upyey N, Let A be the counting measure on Ny if T+ = Ny, and let
A be the Lebesgue measure on [0,00) if T = [0, 00). For every 7 € T*, the 7-section of N
is P-null; so by Fubini’s theorem, there is a P-full set )’ € F such that for every w € 0,
the w-section of NV is a A-null set.

Now fix any w € ' and = € X, and suppose that ¢(t,w)x converges as t - oo to a
point p € X. Fixing a metrisation d of the topology of X, let (U,)..y be a sequence in
U such that p € U, for all r and diam(U,.) - 0 as r — oo. For any 7 € T+ and r € N, we
clearly have that (7,w) € UpoNre_,, Au,.m- So, letting N, be the w-section of N, we have
that for all 7€ T* N\ N, and r € N, 7 does not belong to 7y;,.. Hence, for each 7€ T+ \ NV,

we have that
PweQ:forallreN, Uno(r,0)U +2) = 1.

It clearly follows that
PweQ: p(r,o)p=p) = 1.

So the Dirac mass ¢, is a fixed point of the map p = ¢™p for A-almost all 7 € T*. But
since @***p = ¥ p for all 5,t € T* and p € M(x x), it follows that ¢, is a fixed point of
the map p — ¢™p for all 7€ T*. So p is a crude deterministic fixed point of (.

(B) Suppose for a contradiction that the desired statement is false. Let p be a point
in the support of ¢,[P’ that is not a crude deterministic fixed point of ¢, and let 7€ T*
be such that ¢7({p}) < 1. Fixing a metrisation d of the topology of X, let § >0 be such
that

P(weQ : Bs(p)no(r,w)Bs(p) +2) < 1

and let
E = {weQ: Bs(p) no(r,w)Bs(p) + @}.

Let ¢:= ¢.P'(Bs(p)) > 0. Let n > 0 be such that for all A e F with P(A) <n, P'(A) is less
than § [ It is clear that

B((oe) - o

n=0
so let m € N be such that

P(nhlg‘”T(E)) <
For each t € T, let
B, = {we: d(p(t,w)a(w),q(w)) < 5}

Let T'e T* be such that for all t >T', P'(B;) > 1 - 55775 Let

F = Tﬁ:e-(ﬂm)(m =67 (ﬁ@‘”T(E)).

15The absolute continuity of P’ with respect to P implies that this is possible; see [Do094, Section IX.4].
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2.7 Pullback operations and random fixed points

Since A7 is P-invariant, P(F') <7 and so P’(F') < §. Note that

T (Bs(p) 0 (\Brows < F
n=0

Hence
P@)zw@Jwgmwwm&wj
n=0
> ~(m+1) + P' (¢ (Bs (1)) + Y. P'(Bren)
n=0

> —-(m+1) +c+ (m+1-%)

- <
contradicting the fact that P'(F) < §. O

Remark 2.33. A further obvious fact about fixed points of dynamical systems is the
following: if an autonomous dynamical system (f!) on a metric space (Y,d) admits a
globally attracting fixed point p, then ¢, is the only invariant measure of (f*) (and so in
particular, p is the only fixed point of (f*)). This also generalises to the random case{'9]
A random invariant measure of ¢ is a measurable function p:Q - M x x) such that

P(w : p(t,w)op(w) = p(f'w)) = 1

for all ¢ € T+[I"] Given a separable metric d on X generating 3, a random fixed point ¢ of
p is said to be globally weakly attracting if for every bounded set B c X, the stochastic
process w ~ sup,.p d(p(t,w)z, ¢(f'w)) converges in probability to 0 as t - oo. It is easy
to show that if ¢ is a globally weakly attracting random fixed point then the only random
invariant measure (up to P-almost sure equality) is w = dg(.)-

Examples and basic facts

Example 2.34. Let X = [0,1] (with ¥ being the Borel o-algebra). Let I = {0,1}
(equipped with the discrete o-algebra Z), let v be any probability measure on I, and
define the functions fo, f1:[0,1] = [0,1] by

fo(x) %x
fi(z) = 3(z+1).

As in Section[2.3] let ¢ be the RDS on [0, 1] generated by the random map (1,Z, v, (f;)ier)-
Then it is easy to check that the random variable ¢: Q2 - [0, 1] given by

Q((ir)rez) = O . Z'()’Lll',gll,g .

161 am grateful to Martin Rasmussen and Doan Thai Son for showing me that a globally pullback
attracting random fixed point must be the only random fixed point. Remark[2.33]is a slight generalisation
of this fact.

"Tnvariant measures of random dynamical systems will be discussed in much greater detail in
Chapter 3.
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2.7 Pullback operations and random fixed points

(where the right-hand side is to be interpreted in binary) is a random fixed point of
p. If v = &g then ¢ is obviously a modification of the constant function w +~ 0; for P-
almost every w € €2, all forward trajectories and all pullback trajectories starting in [0, 1)
converge to 0, and therefore one can show that the only other random fixed point of
¢ (up to modification) is the constant function w ~ 1. Similarly, if v = §; then ¢ is a
modification of the constant function w ~ 1, and the only other random fixed point (up
to modification) is the constant function w = 0. If v = Ay + (1 — X)d; for some A € (0,1),
then ¢ is almost surely in the open interval (0, 1); for P-almost every w € €, all pullback
trajectories starting in (0,1) converge to g(w), and therefore one can show that the only
other random fixed points of ¢ (up to modification) are w ~ 0 and w ~ 1.

Example 2.35. Let X, ¥, I and Z be as in Example let v be any probability
measure on I, and define the functions fo, f1:[0,1] = [0,1] by

pte = miae = {2

fi(z)

B 0 z¢€[0,3]
max(0,2z-1) = { 201 ze[b1)
As in Section[2.3] let ¢ be the RDS on [0, 1] generated by the random map (I,Z, v, (fi)ier)-
Then it is easy to check that the random variable ¢:Q2 — [0, 1] given by

Q((ir)reZ) = 0 : i1i2i3i4 e

(where the right-hand side is to be interpreted in binary) is a random fixed point of
w. If v =6y then ¢ is obviously a modification of the constant function w ~ 0; for P-
almost every w € (), all forward trajectories and all pullback trajectories starting in (0,1]
converge to 1, and therefore one can show that the only other random fixed point of
¢ (up to modification) is the constant function w ~ 1. Similarly, if v = §; then ¢ is a
modification of the constant function w ~ 1, and the only other random fixed point (up
to modification) is w ~ 0. If v = Adg + (1 - )07 for some A € (0,1), then g is almost surely
in the open interval (0,1); for P-almost every w € 2, all forward trajectories starting in
[0,1]~ {g(w)} converge to either 0 or 1, and therefore one can show that the only other
random fixed points of ¢ (up to modification) are w — 0 and w ~ 1.

Remark 2.36. In Example 2.34] ¢ is monotone with respect to the lexicographical
order on ™Mo (and continuous with respect to the product topology on ). Similarly,
in Example [2.35 ¢ is monotone with respect to the lexicographical order on IN (and
again continuous). Obviously, in both of these examples, if v = 3(Jy + 01) then the law
of ¢ is the Lebesgue measure. For a simple example of a situation where (once again)
X =1[0,1], I ={0,1}, v = 1(6 + 61), and ¢ is a continuous monotone RDS admitting an
FO_ -measurable random fixed point ¢ whose law is the Lebesgue measure, but where ¢
is severely non-monotone with respect to the lexicographical order on I™No (and severely
discontinuous), see Example [3.19] [with X extended to [0,1]] and Remark [3.20]

Example 2.37 (adapted from |[CKS04, Lemma 4.1]. Let (2, F, (F5*)ser, 20, (0%)1er, P)

181 am grateful to Thomas Cass for pointing out to me that the strong solution of the Orstein-Uhlenbeck
equation, which is typically expressed using integration against Brownian motion, can be re-expressed
(through integration by parts) just using integration against e™**.
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2.7 Pullback operations and random fixed points

be as in Example with d =1. Let X = R. We consider the equation
dry = axgdt + dw(t) (2.9)

where a € R. (For a < 0, a solution of this equation is called an Ornstein- Uhlenbeck
process.) Setting y, := x; — w(t), we have that (2.9)) takes the form of a linear differential
equation y = ay + aw(t). The solution is given by

t
y = e (y0+oz/ e‘asw(s)ds).
0

Hence, the RDS ¢ generated by (2.9) is given by

o(t,w)r = w(t) +e™ (x+a/0te’o‘sw(s) ds)

for all w e Q, t >0 and x € R. Using integration by parts ([Apo74, Theorem 7.6]), this
can be expressed slightly more succinctly as

o(t,w)r = e (x+/0te‘a3dw(s))

where the integral on the right-hand side is a Riemann-Stieltjes integral. We now consider
random fixed points.

e For o < 0: Let ©_ be the set of sample points w € Q for which the map s — e~*3w(s)
is integrable on (—o0,0]. Obviously 6,(2_) = Q_ for all ¢t € R. Tt is also not hard to
show that P(€2_) = 1: one can show (using the strong law of large numbers) that for

P-almost every w € (2, &0

— — 0 as t - oo; for any such sample point w, we have that

le=@sw(s)| < e’%o‘s|@| for s < 0 with |s| sufficiently large, and therefore w € Q_. Now
define the function ¢:€2 - R by

0
o ew(s)ds weQ
a(w) = { 0 otherwise.

Integration by parts yiels that for P-almost every w € 2_, g(w) can be re-expressed as the
improper Riemann-Stieltjes integral f_ooo e~ dw(s). We show that ¢ is a random fixed
point as follows: for all we Q_ and t >0,

plt)al) = ) + e (o [ emus)ds + o [ euls)ds)
- () +a [ ; e 4(s) ds
= w(t) + a[i e (s + 1) ds
= w(t) +a [ e (@uls) +w() ds

= w(t) + a[i e *0'w(s)ds + aw(t) [i e ™ dt
= w(t) + q(0'w) - w(t)
= q(0'w).
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2.7 Pullback operations and random fixed points

For any w for which the improper integral f_ooo e~ dw(s) exists, it is easy to see that every
pullback trajectory converges to this integral (which, as a function of w, is a modification
of q); so q is “globally attracting”, and therefore one can show that it is the only random
fixed point (up to almost-everywhere equality).

e For a = 0: Obviously we just have that p(t,w)z =z +w(t) for all £ >0, w € Q and
x € R. We will show that ¢ has no random fixed points. Let ¢:{2 - R be any measurable
function, and let A € B(R) be a bounded set with ¢.[P(A) > 0. Since A is bounded, one can
show (e.g. using the central limit theorem applied to the sequence (w(n) —w(n —1)),en)
that P(w: ¢(n,w)q(w) € A) - 0 as n — oo in the integers. So, since #' is P-preserving, it
cannot be the case that ¢(6'w) = p(1,w)q(w) for P-almost all w.

e For o > 0: Let €, be the set of sample points w € Q for which the map s — e~ *3w(s)
is integrable on [0,00). Again, 6¢(€,) = Q, for all ¢t € R, and P(€2,) = 1. Define the
function = (5)d N

e e ¥w(s)ds well,
q(w) = { ’ 0 otherwise.

Integration by parts yiels that for P-almost every w € €2,, g(w) can be re-expressed as the
improper Riemann-Stieltjes integral — f0°° e~ dw(s). We show that ¢ is a random fixed
point as follows: for all we Q, and t >0,

o(t,w)q(w)

wo(t) + eo‘t(—a [Temasyds v a [ te‘o‘sw(s)ds)
- W) - a ft " e Dy(s) ds

- w(t) - afome-asw(sm)ds

- w(t) - ozfoooe_o‘s(ﬁtw(s)+w(t))ds

= w(t) - a/(;ooe‘asﬁtw(s) ds — aw(t)/oooe‘o‘sdt
= w(t) + q(0'w) - w(t)
= q(0'w).

By considering the time-reversal of ¢ (see Definition [2.54), one obtains—as in the case
that a < 0—that ¢ is the only random fixed point (up to almost-everywhere equality).

Remark 2.38. Suppose we have a random fixed point ¢:Q2 - X that is (F7,X%)-
measurable for some r € T+. Then ¢ has a modification ¢ that is (FY,,Y)-measurable:
observe that qof~" is (FY,,>)-measurable, and so we can take G(w) = o(r,077w)q(0"w).
(By Remark , if ¢ is an F-7 -measurable random fixed point for some r € T+ \ {0},
then ¢ is a modification of a constant function w ~ p where p is a crude deterministic
fixed point.)

Lemma 2.39. Let ¢:Q) > X be a random fized point that is (FT.,¥)-measurable for
some r € T. Then q.P is ergodic with respect to the Markov kernel (¢)zex for every
t € T+~ {0} (and is therefore ergodic with respect to the family of Markov transition
probabilities (YL)zex ter+ ).
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2.7 Pullback operations and random fixed points

Proof of Lemma [2.39[] Due to Remark 2.38] we can assume without loss of generality
that g is (F%.,Y)-measurable. We first show that ¢.P is stationary under the Markov
transition probabilities (¢%). Note that g o 67! is F-! -measurable for any t. For each
te T+ and A €3, we have

[ (t,67w).a.P(A) P(d)
[ ot,0740).0.0-P(A) ()

f P(@: o(t,07'w)q(07@) € A)P(dw)
0
P(w: @(t,07'w)q(07'w) € A)
(by Lemma |A.10} since F-%, and F?, are independent)
= P(w:q(w)eA)
(since ¢ is a random fixed point)

= q.P(A)

¢ (a.P)(A)

as required. Now to prove ergodicity: fix t € T*~{0}, and let A € ¥ be such that for (¢.[P)-
almost every x € A, pL(A) = 1; we need to show that ¢,P(A) € {0,1}. Let E := ¢ 1(A),
and let

Ey = {weQ: o(t,0'w)q(dw) e A}.

Obviously, since ¢ is a random fixed point, P(E A E,) = 0. Note that 0¢(E) € F=. So
then,

P(E n 0'(E)) = [9 oy POV (@) P(d)
= [, POBIFL) () P(dw)
o' (E)
- f9 oy (@ (1,671 0)a(67) € A) P(d)
‘B
(by Corollary |A.11] since F-%, and F?, are independent)
= fet(E) @Z(e—tw)(A) P(dw)

= [ AL ¢.B(ar)

_ fA 1 ¢.P(dx)

= ¢.P(4)

= P(E).
Hence P(E \ 0'(E)) = 0. It follows by Lemma that P(E) € {0,1}. So ¢.P(A) «
{0,1}. O

Remark 2.40. It turns out that for any F’_-measurable random fixed point ¢q: Q2 - X
(with r finite), under any separable metric on X whose Borel o-algebra is ¥, the dynamics

9Lemma can in fact be obtained as a corollary of Theorem However, we present here a
much more direct proof.

64



2.8 Monotone RDS

of ¢ will be “contracting on average” within the support of ¢.P. The precise sense in
which this is the case will be expounded in Chapter 3.

2.8 Monotone RDS

In this thesis, we consider monotone RDS only on linearly ordered spaces. Monotone
RDS on partially ordered spaces have been studied in e.g. [Chu02] and [FGS15].

We first give some preliminaries on linearly ordered spaces.

Given two linearly (or partially) ordered spaces (Y, <y) and (Z, <), we say that a function
f:Y > Zis (2y,<z)-monotone if for all z,y e Y,

ryy = f(r)=z7 f(y).

Given a linearly (or partially) ordered space (Y,<y), a set A c Y is said to be convex
if for every z,2 € A and y € Y with z < y < 2, we have that y € A. Note that for a
function f:Y — Z between linearly (or partially) ordered spaces (Y, <y ) and (Z,<z), if
f is (2y, <z)-monotone then for every convex Ac Z, f~'(A) is convex in Y.

Given a linearly ordered space (Y, <y ), we will say that a set A c Y is downward-inclusive
if for every z € Y and y € A with x <y, we have that x € A; and we will say that a set
A cY is upward-inclusive if for every x € A and y € Y with x <y, we have that y € A. It
is easy to prove the following (very intuitive) statements:

e every downward-inclusive set and every upward-inclusive set is convex;

e for any downward-inclusive A c Y, the complement Y \ A is upward-inclusive; and
for any upward-inclusive A c Y| the complement Y \ A is downward-inclusive;

e the intersection of two convex sets is convex;
e given two convex sets A, Bc Y if B¢ A then A\ B is convex;

e given a convex set A c Y and a set B c Y that is either downward-inclusive or
upward-inclusive, A \ B is convex;

e for any A c Y, the smallest downward-inclusive set containing A exists and is given
by

A = J{ye X y=<a};
zeA

and the smallest upward-inclusive set containing A exists and is given by

At = J{ye X ix <y}

TeA

e for any A c Y, the smallest convex set containing A exists and is precisely A~ n A*.
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We will soon introduce the notion of a “monotone RDS” on a linearly ordered phase
space. Since the study of RDS fundamentally relies on the measurable structures involved
(namely, the filtration (F$*') on the sample space and the o-algebra ¥ on the phase
space), we specifically consider linear orders that “respect” the measurable structure of
the phase space. This may be formalised as follows:

Definition 2.41. A Borel linear order on (X,Y) is a linear order < on the set X with
the property that {(z,y) e X x X :x <y} e ¥ ® 3.

As an obvious example, the usual linear order < on R is a Borel linear order (assuming
that R is equipped with its usual Borel o-algebra). A very different example is the
lexicographical order on [0,1] x [0, 1] (equipped with the usual Borel o-algebra), that is

def
(z1,22) Ziex (Y1,¥2) <= (z1<y1 or (x1 =y and z3 <yp) ).

Standing Assumption. For the rest of Section we work with a fixed Borel linear
order < on (X,X).

Note that, given any measurable set A € 3, the restriction of < to A is itself a Borel linear
order on A (equipped with the induced o-algebra from ¥). Also note that the map

(,0,513') = p(y €X: y= CIZ) :L 1{(u,v):u3v}(y7x) p(dy)

from M x X to [0, 1] is measurable.

Definition 2.42. We say that the RDS ¢ is monotone (with respect to <) if for all ¢t € T+
and w e Q, p(t,w): X - X is (5, <)-monotone.

Remark 2.43. Note that if T = R and X is a subset of R, equipped with the usual order
<, then (by the intermediate value theorem) any RDS on X with continuous trajectories
must be monotone.

Definition 2.44. Suppose ¢ is monotone with respect to <. We say that a point p € X is
(=-)subinvariant if P-almost every w € ) has the property that for all ¢ € T*, (¢, w)p < p;
we say that p is crudely (<-)subinvariant if for each t € T+, P(w : ¢(t,w)p < p) = 1. We
say that a point p € X is (=-)superinvariant if P-almost every w € €2 has the property that
for all t € T*, p < (t,w)p; we say that p is crudely (=-)superinvariant if for each t € T+,

P(w:p=<p(t,w)p) =1.

Obviously if T = Z then the crudely subinvariant (resp. crudely superinvariant) points
are subinvariant (resp. superinvariant).

Remark 2.45. Let A ¢ X be a crudely invariant set. If max A exists then max A is
crudely subinvariant; and if min A exists then min A is crudely superinvariant.

Lemma 2.46. Let X be a Borel-measurable subset of R, equipped with the induced
topology from R, and with ¥ being the Borel o-algebra (which coincides with the induced
o-algebra from B(R)). Take < to be the usual order < on X, and suppose that ¢ is
monotone. Suppose moreover that the map t — o(t,w)x is right-continuous for all w and
x. Then any crudely subinvariant point is subinvariant, and any crudely superinvariant
point s superinvariant.
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2.8 Monotone RDS

Proof. Let D be a countable dense subset of T*. Let p € X be a crudely subinvariant point.
Fix any w with the property that for all t € D, ¢(t,w)p < p. Since the map t — p(t,w)p is
right-continuous, we have that ¢(t,w)p < p for all t € T*. So p is subinvariant. Likewise
any crudely superinvariant point is superinvariant. ]

As an immediate corollary, we have:

Corollary 2.47. Assume the hypotheses of Lemma and let A c X be a crudely
invariant set. If max A exists then max A is subinvariant, and if min A ezists then min A
1s superinvariant. Hence in particular, if any of the following statements hold:

(a) A is downward-inclusive and max A ezists;

(b) A is upward-inclusive and min A exists;

(c) A is convex and both max A and min A exist;
then A is invariant.

We now go on to consider stationary probability measures for monotone RDS. We first
introduce the “convex core” of a probability measure Y]

Lemma 2.48. For any probability measure p on X, the set of all convex p-full subsets
of X has a least element X, (with respect to inclusion), and X, is E-measumbleﬂ

Proof. For each z € X, let I; == {ye X :y <z} and let [ = {ye X :x <y} Let
J-={xeX:p(l;)=0}, and let J* = {x € X : p(I}) = 0}. Note that J- and J* are
Y-measurable. We will show that

(a) p(J7) = p(J*) = 0;
(b) the set X,:= X\ (J-uJ*) is convex;
(c) every p-full convex set contains X,.

The proof will then be complete. (a) For any x € J-, it is clear that I ¢ J-. With this,
and Fubini’s theorem, we have

p(J7)?

p®p(J xJ7)
p@p((z,y)e xJ 1aw=y) +pep((z,y)e xJ :y=x)
200 p((z,y) e xJ 1 x=y)

2[7 fJ Xa=y p(dz) p(dy)
2 [ o(1;) play)
= 0.

IN

20The term “convex core” has been used in convex geometry for finite measures on Euclidean space,
in [CMO1).

21Tt is actually the case that every convex set is Y-measurable; see [MO15b|. However, we will not
need this fact, except in the case that (X,Y) is a measurable subspace of (R, B(R)) with <:=<, in which
case the fact is clear.
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2.9 Invertible RDS

So p(J~) = 0. Similarly, we have that p(J*) =0. (b) Since the intersection of two convex
sets is convex, it is sufficient to show that X \ J~ and X \ J* are convex. But it is clear
that J- is downward-inclusive and J* is upward-inclusive, so the result is immediate.
(c) Let C'c X be a convex set that does not contain X,, and let x be a point in X, \ C.
Since C' is convex, we either have that x <y for all y € C', or that y < x for all y e C. In
the former case, I; and C' are disjoint, and so since p(I;) > 0, it follows that C' is not a
p-full set. Likewise in the latter case, C' is not a p-full set. O

Definition 2.49. For any probability measure p on X, we refer to the smallest convex
p-full subset of X as the convez core of p (with respect to <), and denote it by X,.

Remark 2.50. Let X be a Borel-measurable subset of R (with ¥ being the induced
o-algebra from B(R)), and take < to be the usual order < on X. Let p be any probability
measure on X. Let a := inf supp p and b := sup supp p (where supp p is taken with respect
to the usual topology). Then we have

(a,0)n X if p({a,b} n X) =0

[a,b)n X  ifae X and p({a}) >0, but p({b} n X) =0

] (a,b]nX  ifbe X and p({b}) >0, but p({a}nX)=0
[a,b]n X  ifa,be X and p({a}), p({b}) > 0.

Lemma 2.51. For any probability measure p on X, for any p-null convex set A c X, we
have that either A and X, are disjoint or A c X,,.

Proof. Suppose we have a probability measure p on X and a p-null convex set A ¢ X,
such that A and X, are not disjoint. Since A is p-null, X, \ A is p-full; and therefore,
since X, \ A is a proper subset of X, it follows that X, \ A is not convex. But since X,
and A are themselves convex, it follows that A c X, O]

Lemma 2.52. Suppose ¢ is monotone. Let p be a stationary probability measure of the
Markov transition probabilities (¢.)zex,ter+. Then X, is crudely invariant.

Proof. Fix any t € T*. We have that

L= p(X,) = [ ple(tw)(X,)) Pld)
and therefore p(p(t,w)™1(X,)) = 1 for P-almost all w € Q. But since ¢ is monotone,

o(t,w) 1(X,) is convex for all w, and therefore X, c p(t,w) 1(X,) for P-almost all w € €,
as required. O

2.9 Invertible RDS

(Several of the results in this section are adapted from Section 4 of [New15¢c].)

We will say that the RDS ¢ is invertible if ¢(t,w) is bijective for all ¢ € T* and w € €,
with the map (w,z) = p(t,w) 1 (z) being (F ® ¥, ¥)-measurable for all ¢ € T+.

We will now show that if ¢ is invertible, then one can obtain a random dynamical system
@ simply by “running ¢ in backward time”.
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2.9 Invertible RDS

Proposition 2.53. Suppose ¢ is invertible. Then the family ¢ = (p(t,w))ter+wen Of
functions p(t,w): X - X given by @(t,w)r = p(t,07tw) " (z) is a random dynamical
system over the noise space (£, F, (f:fs+t))seT,teT+a (07))¢er, P).

Proof. Firstly, it is clear that (2, F, (F7, +t))s€m te1+, (078)4er, P) is indeed a memoryless
stationary noise space (as defined according to our formalism in Section [2.2). Obviously,
?(0,w) =1idy for all w e Q. For any s,t € T* and w € €, we have

P(s+t,w) = p(s+t,07Cy)!

= ((s,67w) 0 p(t,07w)) ™
= p(t,0707w) o p(s,07w)
= @(t,07°w) o @(s,w) "

Finally, for any ¢t € T*, since the map (w,z) ~ ¢(t,w) 1 (z) is (Ff ® ¥, X)-measurable,
we have that the map (w,z) » @(t,07tw) (x) is (FY ® X, 3)-measurable. So we are
done. 0

Definition 2.54. If ¢ is invertible, then we refer to ¢ in Proposition as the inverse
of o, or the time-reversed version of .

Remark 2.55. Note that if ¢ is invertible, then ¢ is invertible as an RDS over
(Q,F, (F oy )semiers, (07" )ier, P), with ¢ = .

Remark 2.56. If ¢ is invertible, then we can “extend its domain of definition” by allowing
negative times as well as positive times: specifically, set ¢(-t,w) = ¢(t,w) for all ¢t € T*.
One can easily check that the “two-sided cocycle equation”

o(s+t,w) = p(t,Pw)op(s,w) Vs, teT

is satisfied for all w. We should warn, however, that a stationary probability measure p
of the Markov transition probabilities (¢! ).ex, ter+ generally does not satisfy the equation

p=[qp(t,w).p(-) P(dw) for negative t € ']I‘

Example 2.57. For any Lipschitz 1-periodic b:R — R and any o € R, the RDS on S!
generated by the SDE d¢; = b(¢)dt + odW; (as defined in Section is invertible.
(For the proof, see Proposition m) The inverse of this RDS can be regarded as “the
RDS on S! generated by the SDE d¢;, = —b(¢,)dt + aodW_,”.

Now if ¢ is invertible, then for any z € X and ¢t € T* we may define the probability
measure ¢, on X by

PL(A) = P(weQ:xep(t,w)A).

Note that (@L)zex ter+ is precisely the family of Markov transition probabilities associated
with the time-reversed version ¢ of ¢, and that a probability measure p on X is stationary

220ne interesting exception is the case that X is finite. Here, one can show that if ¢ is invertible then
every stationary probability measure is crudely incompressible, and thus for each t € T* we have that
e(t,w)ep = p(=t,w)p = p almost surely.
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2.9 Invertible RDS

under the Markov transition probabilities (@%)gex ter+ if and only if for all ¢ € T+ and

AeX,
p(A) = [ p(e(t,)A) P(dw). (2.10)

As in Remark 2.56| the set of stationary probability measures under (L ),ex ter+ generally
does not coincide with the set of stationary probability measures under (@) ex tet+-

Now observe that if ¢ is invertible, then a finite set P c X is crudely invariant under ¢
if and only if P is crudely invariant under .

Lemma 2.58. Suppose ¢ is invertible, and let p be a probability measure that is ergodic
with respect to either the Markov transition probabilities (¢l )zex ter+ or the Markov
transition probabilities (@) zex ter+. Then either p is atomless, or p = ﬁzxep 0, for
some finite crudely invariant set P c X.

Proof. Suppose p is not atomless. Let m := max,.x p({x}), and let P:={x: p({x}) =m}.
For any t € T* and w € ), since p(t,w) is bijective, we have that either

(i) (t,w)P =p(t,w) ' (P) = P; or
(i) @(t,w)P # P, and p(¢(t,w)P) and p(p(t,w) 1(P)) are both less than P.

So then, since p is stationary under either (¢!) or (@), we have that for each ¢ € T+,
scenario (i) occurs for P-almost all w € 2 (i.e. P is crudely invariant). Hence in particular,
©L(P)=¢tL(P)=1for all z € P and t € T*. Since p is ergodic under either (¢.) or (¢t),
it follows that p(P) = 1. O

Lemma 2.59. Suppose ¢ 1is invertible and q:Q0 — F is a random fixed point of .
Then q is also a random fized point of ¢ (regarded as a RDS over the noise space
(Q7f7 (f__é;s+t))se’1[‘,te’1[‘+a (eit)teTa]P)))'

Proof. Fix t € T*. For P-almost all w € €2, we have that

p(t,07w)q(0"'w) = q(w)
and therefore
q(07'w) = @(t,w)q(w)

as required. O
So then, applying Lemma to ¢, we obtain the following:

Corollary 2.60. Suppose ¢ is invertible, and let q:Q2 - X be a random fixed point of
@ that is (F°,X)-measurable for some r € T. Then q.P is ergodic with respect to the
Markov kernel (@L)zex for each t € T+~ {0} (and is therefore ergodic with respect to the
family of Markov transition probabilites (p%)zex, ter+)-

We finish this section on invertible RDS with the following:

Lemma 2.61. Suppose ¢ is invertible, and let q:2 - X be a random fixed point of ¢
that is either (FT,%)-measurable or (F2°,%)-measurable for some r € T. Then ¢.P is
either atomless or a Dirac mass on a crude deterministic fixed point.
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2.10 Two “derived” RDS

Proof. 1t suffices just to consider the case that ¢ is F7-measurable, since we can then
just take the inverse of ¢ to give the case that ¢ is F°-measurable for some r € T. Due
to Remark [2.38, we can assume without loss of generality that ¢ is F°, -measurable.

Suppose that ¢,[P is not atomless. Then by Lemmas and [2.58] there is a finite
crudely invariant set P c S' such that ¢,P = ﬁ Y sep 0z Fix an arbitrary x € P. Let

E :=q'({z}), and for each n € N let
E, = {weQ: p(n,0"w)q(0"w) = x}.

Obviously, since ¢ is a random fixed point, P(E A En) =0 for each n. For each n € N, for
any F'e F= . we have that

P(EnF) fFIED(EU-“";)(w)P(dw)

[ POEFS) () Pld)
[ @+ on,07")a(67D) = 2) P(dw)

(by Corollary since F and F* are independent)
- [ P@: p(n,07w)g(@) = ) P(dw)

| P({p(n,w)x}) Plde)
[F ﬁ P(dw)

(since @(n,w)z € P for P-almost all w)

HP(F)

- P(E)P(F).

So FE is independent of F> for each n € N, and therefore F is independent of F. In
particular, F is independent of itself, and so P(F) = 1. Hence |P| =1, i.e. ¢.P is a Dirac
mass at a crude deterministic fixed point. O]

2.10 Two “derived” RDS

The n-point motion

Since we assume that (X, X)) is standard, the measurable space (X, ¥8") is also standard
for any n € N (as it is the Borel space associated to the n-fold product of any compact
metrisable topology on X generating ¥). We define the family ¢ "= (¢ "(t,w))ser+ wea Of
functions p*"(t,w): X™ - X" by

O (t,w) (1, .. xn) = (plt,w)ry, ..., o(t,w)z, ).

It is clear that ¢*™ is a RDS on X™ (over the same noise space over which the RDS ¢ is
defined). We refer to ¢*" as the n-point motion of . We denote the associated Markov
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2.10 Two “derived” RDS

transition probabilities by (% )xexn ter+. Given any probability measure p on X", we
define the probability measure o; p on X" by

Pap(A) = [ eh(A) plax)

for all A € X®". Note, as before, that this can be re-expressed as

Paap(A) = [ " (tw).p(A) P(d)
for all A e X®n,

Proposition 2.62 (cf. [Kun90, Theorem 4.3.2]). For any integern > 2, for any probability
measure p on X, p®" is stationary under the Markov transition probabilities (@l )xexn, teT+
if and only if p 1s crudely incompressible under .

Proof. If p is crudely incompressible then for any t € T+ and Ey,..., E, € X,

go'é:)(pQM)(El x...x Ey)

/Q O (t,w)« (pP")(Ey % ... x E,)P(dw)

/g; Ii p(t,w).p(E;) P(dw)

= [ TTotE) B()
P (B x ... x Ey).

So p®" is stationary under (% )xexn ter+. Now, conversely, suppose that p®" is stationary
under (¢l )xexn ter+. Fix t € T+. For any A € 3, we have that

Epy[w = p(t,w).p(A)]
= Eg)[w = @ (t,0). (p"")(Ax X"1)]
— p®n(A % Xn—l)

p(A)

and (writing Var(p[-] for the variance of a random variable)

Varey[w = ¢(t,w).p(A)]

Ee[w = (0(t,w0).p(A))?] = E@lw = o(t,w).p(A)]?
= E@)[w = @ (t,w).(p®") (A% x X"2)] = p(A)?

= PP (A*x X"7?) - p(A)?

- 0.

Hence ¢(t,w).p(A) = p(A) for P-almost all w € Q. Since (X,X) is standard, there
exists a countable m-system C generating ¥ (by Remark [A.T)). P-almost every w € Q
has the property that for all A € C, ¢(t,w).p(A) = p(A). Therefore, by Corollary [A.6]|
o(t,w).p = p for P-almost all w € Q2. Hence p is crudely incompressible. O
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2.11 RDS in a topological setting

The image-measure RDS

Since we assume that (X, ) is standard, the measurable space (M x x), R(x,x)) is also
standard (as it is the Borel space associated to the narrow topology corresponding to
any Polish topology on X generating ). Now writing ¢(t,w).: Mx ) = M(x ) for
the function sending a probability measure p on X to the image measure p(t,w).p, let
Px = (Pt W) e )te wear-

It is not hard to show that ¢, is a RDS on M(x 5 (over the same noise space over which
the RDS ¢ is defined). The “non-trivial” part is to show that the map (w,p) = p(t,w).p
is (F¢ ® Rix,»), R(x,x))-measurable, which we justify as follows: for any A € ¥, we have

p(tw)ep(A) = [ Lalp(t,w)a) p(de),

so by Lemma |[A.12 the map (w,p) = ¢(t,w).p(A) is (FE ® R(x,n), B([0,1]))-measurable,

as required.

We refer to ¢, as the image-measure RDS associated to . We denote the associated
Markov transition probabilities by (%) pery vy, ter+- Given any probability measure @ on
M(x ), we define the probability measure ¢*@Q on M(xx) by

Q) = [ (A Q)

(X,%)

for all A€ f(x ). Once again, this can be re-expressed as
PR = [ p(tw)..Q(A) P(dw)

for all Ae Rixy). (Here, p(t,w)«.Q(A) = Q({pe Mxx): ¢(t,w).peA}).)

Remark 2.63. One useful intuitive way of visualising a trajectory (p(t,w).p)o of the
image-measure RDS ¢, is as follows: Imagine we endow the phase space X with some
initial distribution of mass p; we then run the RDS according to some noise realisation
w, and see how the distribution of mass evolves over time. At time ¢, the distribution of
mass is given by ¢(t,w).p.

2.11 RDS in a topological setting

Fix a separable metrisable topology on X generating ..

We will define certain continuity properties for a RDS, and from then on, we will study
properties of “right-continuous” RDS.

(We work with the convention that for any subset E of R and any function f: E - X, we
say that f is right-continuous at ¢ € F if the restriction of f to En[t, o) is continuous at
t, and we likewise say that f is left-continuous at ¢ if the restriction of f to En (—oo,t]
is continuous at ¢.)
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2.11 RDS in a topological setting

Definition 2.64. We will say that ¢ is spatially continuous if the map ¢(t,w): X —» X
is a continuous function for all ¢ € T* and w € €.

Definition 2.65. We will say that ¢ is continuous if the map (t,z) — p(t,w)x is
continuous for all w e Q.

Definition 2.66. We will say that ¢ is right-continuous if for any decreasing®|sequence
(t,) in T* converging to a value t and any sequence (x,) in X converging to a point z,
o(ty,w)z, - p(t,w)r as n — oo for all w e Q.

Obviously, right-continuity of ¢ implies in particular that (a) ¢ is spatially continuous;
and (b) for each x and w the trajectory ¢t — ¢(t,w)z is right-continuous. Note also that
if ¢ is right-continuous then ¢ is measurable ]

Remark 2.67. By Lemmal[A.20] if ¢ is right-continuous then for any decreasing sequence
(t,) in T* converging to a value ¢ and any sequence (x,,) in X converging to a point z, @&
converges in the narrow topology to ¢f. (In particular, the Markov transition probabilities

(¢)zex. ter+ are Feller-continuous.)

Definition 2.68. We will say that ¢ is cadlag if ¢ is right-continuous and for each
t e T+~ {0} and w € Q there exists a continuous function ¢_(¢,w): X - X such that for
any strictly increasing sequence (t,,) in T* converging to ¢ and any sequence (x,) in X
converging to a point x, ©(t,,w)x, - ¢_(t,w)xr as n - oo.

Definition 2.69. We will say that ¢ has left-continuous pullback trajectories if for every
x e X and w € Q) the map ¢ —» (¢, 07 w)x is left-continuous.

Note that if T = Z then continuity, spatial continuity, right-continuity and cadlag are all
equivalent, and ¢ necessarily has left-continuous pullback trajectories.

Definition 2.70. We will say that ¢ is an open-mapping RDS if ¢ is right-continuous
and for every t € T+, w e Q and open U c X, ¢(t,w)U is open.

Definition 2.71. Suppose ¢ is right-continuous. Moreover, let Y be a separable
metrisable topological space (with B(Y) standard), and let ¢’ be a right-continuous
RDS on Y over (Q,F,(Fs+t),(0),P). A function h: X — Y is called a deterministic
semiconjugacy from o to @' if h is continuous and surjective and for all t € T+, w € €2 and
xeX, h(p(t,w)x) =¢'(t,w)h(x).

Standing Assumption. For the rest of Section we assume that ¢ is right-
CONtINUOUS.

Lemma 2.72. For any v € X and open U c X, the set
E.v = {weQ:3teT* st. o(t,w)relU}

is F§°-measurable. Given any dense D c T+, P(E, ) >0 if and only if there exists t € D
such that ¢, (U) > 0.

ZHere, a “decreasing sequence” need not be strictly decreasing.
2See e.g. [Newlba, Lemma 16(B)].
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2.11 RDS in a topological setting

If P(E, ) >0, then we say that U is accessible from x (under ¢). Note that for any open
U c X, the set of points in X from which U is accessible is itself open.

Proof of Lemma[2.73. Let D be any countable dense subset of T*. For each w € Q, since
the map t —» ¢(t,w)x is right-continuous, it is clear that

JteT* st. p(t,w)reU <= 3FteD st. p(t,w)rel.

In other words,
E.v = U{weQ: p(t,w)xeU}, (2.11)
teD
and so F, € F5°. Now given any dense D c T, we can take the countable dense set D
to be a subset of D. Obviously if there exists ¢ € D such that ¢! (U) > 0 then P(E, /) > 0;
and conversely, if P(E, ) > 0 then by equation there exists t € D ¢ D such that
et (U) > 0. O

Remark 2.73. We have defined “accessibility” in terms of there being a positive
probability of reaching a given set from a given point. Nonetheless, it is useful to note
the following: Suppose that (as is usually the case in practice for continuous RDS) there
exists a separable metrisable topology on 2 whose Borel g-algebra coincides with F, such
that P has full support and the map w ~ ¢(t,w)z is continuous for each ¢ and x. Then,
to show that an open set U is accessible from a point x, it is sufficient just to find one
sample point w € 2 and a time ¢ € T* such that ¢(¢,w)x € U. Note in particular that,
to show that a given point p € X is not a deterministic fixed point (i.e. that X \ {p}
is accessible from p), it is sufficient to find one sample point w and a time ¢ such that

o(t,w)p # p.

Lemma 2.74. For any closed G ¢ X and t € T*, the set {w € Q : p(t,w)G c G} is
Fl-measurable. This set is a P-full set if and only if L(G) =1 for all v € G.

Proof. Let S c G be a countable set that is dense in G. For each w € Q, since p(t,w) is
continuous, we have that p(t,w)G c G if and only if ¢(t,w)S c G; in other words

{weQ:p(t,w)GcG} = N{weQ: p(t,w)reG} e F (2.12)
zeS
as required. As in the proof of Lemma [2.72] the rest is clear by equation (2.12]). H

Recall that a set A ¢ X is said to be invariant (under ) if P-almost every w € €2 has
the property that for all ¢ € T*, p(t,w)A c A; and a set A € ¥ is said to be very crudely
invariant (under @) if for each z € A and t € T+, pL(A) = 1. (In other words, A is said
to be very crudely invariant under ¢ if A is forward-invariant according to the Markov
transition probabilities (¢! )zex, ter+-)

Lemma 2.75. For any closed G c X, the set {w € Q : p(t,w)G c G Yt e T*} is F5°-
measurable. This set is a P-full set if and only if pL(G) =1 for allz € G and t € T*. (In
other words: a closed set is invariant if and only if it is very crudely invariant).

Obviously, as a special case of this, any crude deterministic fixed point is in fact a
deterministic fixed point.
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Proof of Lemma [2.75. For each w € Q and x € G, since the map ¢ — p(t,w)z is right-
continuous, we have that

e(t,w)reGVteT < p(t,w)zreGViteD.
In other words,

{weQ:p(t,w)GcGVteT"} = N{weQ: p(t,w)GcG}, (2.13)

teD
which is Fg°-measurable due to Lemma [2.74f The rest is clear by Lemma and
equation (2.13)). O

Note in particular that for any probability measure p that is stationary under the Markov
transition probabilities (¢%)zex ter+, supp p is invariant. As in Section for any non-
empty compact invariant G c¢ X there exists at least one ergodic probability measure p
with p(G) = 1.

We will now see that for an ergodic probability measure p, almost all trajectories starting
in supp p are almost surely dense in supp p.

Lemma 2.76. Let p be a probability measure that is ergodic with respect to the Markov
transition probabilities (pL)zex ter+. Then (P ® p)-almost every (w,x) € Q x X has the

property that for all T € T+, {p(t,w)x:t>T} = supp p.
Lemma can be obtained as an immediately corollary of Lemma (using the fact

that there is a countable base for the topology of X). However, we give the following
more elementary proof:

Proof. For any open U c X, let

Ay ={(w,2)eQx X : It e T s.t. p(t,w)reU}
= {(w,2) e x X : FteT* s.t. O(w,z2) eQxU}.

It is clear that for any (w,z) € Q@ x X and 7 € T*, if O7(w,z) € Ay then (w,x) € Ay.
Moreover, Ay is (Fg° ® X)-measurable, since (due to the right-contintuity of ¢) it can be
expressed as

Ay = U{(w,2) eQx X : p(t,w)x e U}

teD
where D may be any countable dense subset of T*. Consequently, by Lemma M(ii),
P ® p(Ay) is equal to either 0 or 1. Note that Q x U c Ay, so if p(U) > 0 then
P p(QxU) =p(U) >0 and therefore P® p(Ay) = 1.

Let U be a countable base for the topology of X, and let V :={U e U : U nsuppp + &}.
Observe that the set A c Qx X of points (w, ) whose trajectory {¢(t,w)x }ser+ densely
covers supp p is given by

A = {(w,2) eQx X : supppc {p(t,w)z:te T |
= {(w,2) eQx X : supppc {mx(O(w,2)) : te T} |

- N Av.

Uey
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Consequently, for any T' € T+, the set AT c Q x X of points (w,z) whose trajectory
subsequent to time 7" densely covers supp p is given by

AM w,x)eQXX:supppc{gp(t,w)x:tZT}}

- {(
= {(w.2) eQx X s suppp e {mx (0T (w,2)) s e T} |
-6

T(mAU).

UeV

So then, the set A c Q x X of points (w,x) with the property that for all T" € T+,
supp p € {@(t,w)x :t>T} is given by

A= @-T(m AU).

TeN UeVy

Now for any U €V, p(U) > 0 and therefore P® p(Ay) = 1. Hence P® p(A) = 1.

In other words, (P ® p)-almost every (w,x) € © x X has the property that for all
T e T+, suppp c {p(t,w)z:t>T}. But also, since suppp is an invariant closed p-full
measure set, it is clear that (P ® p)-almost every (w,z) € © x X has the property that
{p(t,w)x:teT+} csuppp. So we are done. O

Now for any = € X, let G, ¢ X be the smallest invariant set containing x; as in Section|C.4]
this can be written explicitly as

G, = | suppgt.
teT+
Note in particular that for any open U c X, U n (G, is non-empty if and only if U is
accessible from x. In other words, GG, is precisely the set of points y € X such that every
neighbourhood of y is accessible from z. Obviously (by definition), for any x € X, for any
y € G, we have that G, c G,.

Lemma 2.77. Fiz a metrisation d of the topology of X. The map (z,y) = d(x,G,) from
X x X to [0,00) is upper semicontinuous.

Proof. Let (z,) and (y,) be convergent sequences in X, with limits x and y respectively,
such that the sequence 7, := d(x,,G,, ) converges to a value ¢ as n - oo. And suppose
for a contradiction that ¢ > d(x,G,) =:r. Then on the one hand, B%(T +e)(7) s accessible

from y; but on the other hand, since for every n we have that B,, (x,) is not accessible
from y,,, we therefore have that for all n sufficiently large, B 1 (Hc)(x) is not accessible

from y,,. So the set of points from which B 1 +C)(x) is accessible includes y but excludes
yn for sufficiently large n; this contradicts the fact that the set of points from which an
open set is accessible is itself open. O

Now we will say that a set G ¢ X is minimal (with respect to @) if the following equivalent
statements hold:

(i) G is closed and invariant, and the only closed invariant proper subset of G is @;
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(ii) G is a non-empty closed invariant set, and for all x € G, G, = G;

(iii) G is a non-empty closed invariant set, and for all z € G and open U c X with
UnG #@, U is accessible from x.

(So G is minimal with respect to ¢ if and ony if G is minimal according to the Markov
transition probabilities (¢! ),ex ter+.) If the whole phase space X is minimal (i.e. if the
only closed invariant sets are X and @), we say that ¢ has minimal dynamics (on X).
Obviously, if ¢ has minimal dynamics then every stationary probability measure of the
Markov transition probabilities (¢l ) ex, ter+ has full support.

Remark 2.78. As in Appendix C, every non-empty compact invariant set contains a
minimal set. Hence in particular, if X is compact then there exists at least one minimal
set. Also note that for any non-empty compact invariant set C, if C' contains only one
minimal set K, then every non-empty closed invariant subset of C' must contain K.

The following fairly intuitive lemma (which is not really specific to RDS but can be
generalised to homogeneous Markov processes with sufficient continuity properties) will
play a crucial role in the proofs of some of our results:

Lemma 2.79. Suppose K c X is a compact set possessing no non-empty closed invariant
subsets. Then given any x € X, for P-almost every w € §2 there exist arbitrarily large times
t e T*nQ such that p(t,w)x ¢ K.

The proof of Lemma is essentially the same as the proof of [BS88, Proposition 4.1].

We will use the following general fact:

Lemma 2.80. Let (U, F,(F)ier+,P) be a filtered probability space, and let (M;)er+
be an X-valued homogeneous Markov process with respect to (Fi)wer+, with transition
probabilities (pL)zex ter+. Fiz s € T*, let D be a countable subset of T+, and let T : Q2 - D
be an Fs-measurable function. Then for any A e B(X),

P(M,.p € AlF) T2 1%, (A).

Proof of Lemma[2.80, First observe that w ~ /“‘254(:&)(’4) is indeed Fy-measurable: for
any I € B([0,1]), we have

il @ et} = U(tw: @) =t nfwipy (A e D)) € £

teD

Now for any E € F;, we have

fE 1 (M) (w)) P(dw)

tZ[:) [EOT-l({t}) La(Mri(w)) P(dw)

E tM A)P(dw
teD[i‘nTl({t})'u S(w)( JPdw)
T ((AYP(dw

as required. N
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2.11 RDS in a topological setting

Proof of Lemma[2.79. Let D :=T*nQ. Fix x € X and let M;(w) := p(t,w)x for all ¢ and
w. By Corollary[2.12] (M,) is a Markov process with transition probabilities (¢%)sex, ser-
For each y € K, G, ¢ K (since K admits no non-empty closed invariant subsets), and so
X N K is accessible from y; hence, as in the proof of Lemma [2.72], there exists 7 € D such
that ¢7 (K) < 1.@ So, defining the function I: K — [0,1] by

— 1 t
l(y) = inf o, (K),

we have that [ is strictly less than 1 on the whole of K. Note that for each t € D, the
map y - gpty(K ) is upper semicontinuous; therefore, [ is upper semicontinuous. So then,
since K is compact, [ has a maximum value ¢/, which is strictly less than 1. Fix a value
ce (c’,1). Obviously, for all y € K there exists 7 € D such that ¢ (K) < c; but moreover,

one can easily construct a measurable function 7: K — D such that gog(y)(K ) < ¢ for all
y € K %] We extend 7 to the whole of X by setting 7(y) =0 for all y e X\ K.

Now to obtain the desired result, it is sufficient just to show that for each N e N, for
P-almost every w € € there exists t € D with ¢t > N such that ¢(t,w)x ¢ K. Fix any N € N,
and define an increasing sequence (7},)nen, of functions 7, : Q2 - D by

To(CU) = N
Ta(w) = Toa(w) + (Mg, (@) (n21)

for all w € Q. Note that for each w, the sequence T}, (w) is strictly increasing in n until the
first point n* at which My , ,)(w) ¢ K, beyond which the sequence remains constant.

For each n € Ny, let E, := {w € Q : My, ,(w) € K}. Obviously if N2, E, is P-null
set, then in particular we have that P-almost every w € {2 there exists ¢ > N such that
p(t,w)z ¢ K, as is required. So we will show that N>, F, is P-null set; to do this, we
will prove by induction that for each n € Ny, P(E,) < c".

The n = 0 case is trivial. Now fix any m € Ny such that P(F,,) < ¢™. First observe
that for each s € D, the set E,, n T, 1({s}) € Fs-measurable. One way to see this is as
follows: provided m > 1 and s > N, we can express E,, nT,1({s}) as

U {weQ:7(My(w))=trs1—t, forallO<r<m-1}|n{weQ: My(w) e K};
to,..-,tmeD
N=tp<...<tm=s

otherwise we have

1) s<N

%) m>1and s=N

1%} m=0and s> N
M;Y(K) m=0and s=N.

Ey 0 T, ({s}) =

Z5Using the compactness of K, one can show that 7 can be taken from a bounded interval [0,T] (where
T is independent of y). Consequently (as in [BS88, Proposition 4.1]) in addition to proving Lemma [2.79]
one can make a statistical statement about the length of time taken to escape from K; however, we will
not need this for our purposes.

*e.g. if (8p)nen is an enumeration of D, set 7(y) = sy(,) where N(y) := min{n ¢ N: @5 (K) < 1}.
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2.11 RDS in a topological setting

So then,

P(Epni) fE g, (W) P(dw) (since By Ey)

fE Lk (Mg, (w)(w)) P(dw)
[E ILK(MTm(w)H'(MTm(w)(w))(w))P(dw)
:H' MS T w P d
Sez,;) /EmmT;ll({s}) i (Mys (M ( ))(W)) (dw)
= T(Ms(w)) K ]P> d
sezl:) ‘/E\‘mﬂTml({s}) (’DMS(“’) ( ) ( (JJ)
(by Lemma [2.80] with T := 7(M,))

c P(dw
DO L
cP(E,)

m+1

IN

IN

C

So we are done. O]
We have the following important corollary:

Corollary 2.81. Let C' ¢ X be a compact invariant set, and suppose that C' contains
only one minimal set K. Let U c X be an open set with U n K + @. Then for each
x € C, for P-almost every w € Q there exist (arbitrarily large) times t € T* N Q such that
o(t,w)xeU.

(Note that one particular case of this is the case that C' is itself minimal.)

Proof. By Remark C'~\ U cannot possess any non-empty closed invariant subsets.
Hence Lemma [2.79 combined with the invariance of C' gives the result. O]

Now since we assume that the RDS ¢ is right-continuous, it is easy to check that the n-
point motion ¢*" is a right-continuous RDS on X" (equipped with the product topology).
For any (z,y) € X x X we will write G(,,) ¢ X x X to denote the smallest closed invariant
set under ¢*? containing (x,y).

Let us denote the standard projections from X x X to X by m:(z,y) » z and
Ta: (T,y) = Y.

Lemma 2.82. For any x,y € X, m(Gy)) = Gz and m(Gay) = Gy.

Hence in particular, if G, is compact then 7(G ;) = G, and m2(G (o)) = Gy

Proof of Lemma[2.83. Let A := m(G(s,)); so we need to show that A = G,. We first
show that A is invariant; for this, it is sufficient to show that for every ue A, X \ A is
not accessible from w. Fix u € A, and let v € X be such that (u,v) € G(,,). Obviously
(by definition) the sets (X \ A) x X and G, are mutually disjoint; and so, since G, )
is invariant, (X \ A)x X is not accessible from (u,v). Hence X \ A is not accessible from .
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2.12 Invertible RDS in a topological setting

It remains to show that A admits no closed invariant proper subsets containing . Let C
be a closed proper subset of A containing z; we will show that C'is not invariant. Since C'
is closed and A ¢ C, it follows that A ¢ C, and thus the sets (X \ C') x X and G, have
non-empty intersection. Therefore (X \ C') x X is accessible from (z,y), and so X ~ C' is
accessible from z. Thus C' is not invariant.

Hence we have shown that 7, (G ,,)) = G, Likewise, m2(G (4 y)) = Gy- O

2.12 Invertible RDS in a topological setting

As in Section [2.11} fix a separable metrisable topology on X generating 3.

Lemma 2.83. If o(t,w): X - X is a homeomorphism for allt and w, then ¢ is invertible
(in the sense of Section[2.9).

Proof. Fix t € T*; we need to show that the map (w,z) = (t,w) H(x) is (Ff e X, X)-
measurable. Since X is separable and the map = — ¢(t,w)~!(x) is continuous for each w,
it is sufficient?] to show that the map w = p(t,w)™!(x) is (F, X)-measurable for each .
Fix x € X and a closed set G c X. Let S c G be a countable set that is dense in G. Note
that for every w € Q, ¢(t,w)G is closed and ¢(t,w)S is dense in ¢(t,w)G; hence we have
that = € p(t,w)G if and only if every neighbourhood of z intersects ¢(¢,w)S. In other
words, fixing a metrisation of the topology of X, we have

{weQ:p(t,w) H(z)eG} = ﬂU{weQ p(t.w)y € Bi(z)}.

n=1 yeS
Clearly the RHS is Ft-measurable. So we are done. O

Definition 2.84. We will say that ¢ is right-continuously invertible if ¢ is right-
continuous, invertible, and has the property that for any decreasin sequence (t,)
in T* converging to a value t and any sequence (x,) in X converging to a point z,
o(tn,w) Hz,) = @(t,w) () as n - oo for all we ).

Definition 2.85. We will say that ¢ is continuously invertible if ¢ is continuous,
invertible, and has the property that the map (¢,x) ~ ¢(t,w)™*(z) is continuous for
all w e Q.

Now we will say that a o-locally compact metrisable space Y respects inverses if for
any sequence of homeomorphisms f,:Y — Y converging uniformly on compact sets to a
homeomorphism f:Y — Y, we have that f;! converges uniformly on compact sets to f~.
As in Appendix B, if either Y is compact or every point in Y has a neighbourhood that
is contained in a compact connected set, then Y respects inverses.

Lemma 2.86. Suppose X is o-locally compact and respects inverses. (A) If ¢ is right-
continuous and @(t,w) is a homeomorphism for all t and w, then @ is right-continuously
invertible. (B) If ¢ is continuous and ¢(t,w) is a homeomorphism for all t and w, then
@ 1s continuously invertible.

27See [Cra02b, Lemma 1.1] or [New15al Lemma 16(A)]
280nce again, here a “decreasing sequence” need not be strictly decreasing.
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2.12 Invertible RDS in a topological setting

Proof. (A) Fix a decreasing sequence (t,) in T* converging to a value t € T*. By
Lemma the right-continuity of ¢ means precisely that for every w € Q, o(t,,w)
converges uniformly on compact sets to ¢(t,w). Hence, since X respects inverses,
©(t,,w)™t converges unifomly on compact sets to ¢(t,w)!; so by Lemma for any
sequence (x,) in X converging to a point x, p(t,,w) ! (x,) converges to ¢(t,w) ! (x).
(B) is similar, replacing a “decreasing sequence (t,)” with any convergent sequence
(tn)- O

With this, we can now prove Example 2.57}

Proposition 2.87. For any Lipschitz 1-periodic b:R — R and any o € R, the RDS on S!
generated by the SDE d¢, = b(¢y)dt + adW, is continuously invertible.

Proof. Let ¢ be the RDS on S! generated by the SDE d¢, = b(¢y)dt + odW,. By
Lemma [2.86] it is sufficient just to show that ¢(¢,w) is a homeomorphism for all ¢ > 0
and w € Q; but since any continuous injective self-map of S! is a homeomorphism, it
is sufficient to show that ¢(¢,w) is injective for all t and w. Fix t > 0, w € Q and
xo € SY, and let 21 = p(t,w)xg. Let u:[0,t] > R be a continuous function such that
m(u(s)) = p(t-s,w)xg for all s € [0,¢]. Define @ € Q by w(s) =w(t-s)-w(t) for all s € R.
Then we have that for all 7€ [0,],

u(T)

u(t) + fOH b(u(t - ) ds + ow(t - 7)

u(t) + thb(u(s))ds + ow(t—7)

u(0) + /Ttb(u(s))ds + ow(t-7) + u(t) - u(0)

u(0) + thb(u(s))ds v ow(t-r) - (fotb(u(s))ds + aw(t))
u(0) + fo " _b(u(s))ds + ow(r).

So, letting ¢’ denote the RDS on S! generated by the SDE d¢; = -b(¢;)dt + adW,, we
have that

zo =m(u(t)) = ¢'(t,@)w(u(0)) = ¢'(t,0)z.

Recall that the point xy € S! was arbitrary; hence p(t,w) is injective. O

Now recall that if ¢ is invertible, then for each z € X and t € T* we may define a
probability measure @, on X by @f(A) =P(w: p(t,w) (z) € A).

Lemma 2.88. Suppose ¢ is right-continuously invertible. Then for any open set U ¢ X
the following are equivalent:

(1) U is invariant;
(i1) U is crudely invariant (i.e. for eacht € T*, for P-almost allw € Q, p(t,w)U c U );
(111) @ (U)=0 for allz e X \U and t e T*.

(Observe that (iii) is the same as saying that X \ U is very crudely invariant under the
inverse RDS ¢.)

82



2.12 Invertible RDS in a topological setting

Proof. Let U be an open set, and let G := X \U. Note that for any ¢ and w, p(t,w)U c U
if and only if ¢(t,w)™'(G) c G. Hence the statement is proved by going through the

proofs of Lemmas and replacing ¢(t,w) with @(t,w)~! and L with @t. O

Remark 2.89. Even when ¢ is right-continuously invertible, a very crudely invariant
open set U ¢ X need not be invariant. Indeed, if p(¢,w) is bijective for all ¢ and w and
the probability measure ¢! is atomless for all z and ¢, then it is easy to show that the
complement of every finite set is very crudely invariant but not invariant.

Recall that we say that ¢ has minimal dynamics if the only closed invariant sets are
X and @. In this case, every stationary probability measure of the Markov transition
probabilities (%) zex ter+ has full support.

Definition 2.90. Suppose ¢ is right-continuously invertible. We will say that ¢ has
reverse-minimal dynamics (on X) if the only open invariant sets are X and @.

Note that (by characterisation (iii) in Lemma [2.88]) this is the same as saying that X is
minimal according to the Markov transition probabilities (@) yex, ter+-

Obviously if ¢ is right-continuously invertible and has reverse-minimal dynamics, then
every stationary probability measure of the Markov transition probabilities (@%)zex. ter+
has full support. But moreover, we have the following:

Lemma 2.91. Suppose that X is infinite, that o is right-continuously invertible, and that
@ either has minimal dynamics or has reverse-minimal dynamics. Let p be a probability
measure that is stationary under either the Markov transition probabilities (@Y%) zex ter+ OT
the Markov transition probabilities (@) zex ter+. Then p is atomless.

Proof. Suppose for a contradiction that p is not atomless. As in the proof of Lemma[2.58]
let P be the set of points of maximal mass according to p. Recall that P is crudely
invariant; and therefore (since ¢ is a right-continuous RDS) P is invariant. So if ¢ has
minimal dynamics then P = X; but this cannot be the case, since P is finite. On the
other hand, since P is a finite invariant set, S' \ P is clearly also invariant, and therefore
if © has reverse-minimal dynamics then S! x P = X; but P is not empty, so this cannot
be the case. O]
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Chapter 3. Measurable Dynamics, and
Clusters of Trajectories

Overview

When we speak of “synchronising behaviour” in random dynamical systems, we refer
broadly to the phenomenon that under a typical noise realisation, many trajectories of
the RDS become very close to each other after a long time. Now if we wish to somehow
“quantify” such synchronising behaviour, we can either consider rates of mutual approach
of different trajectories, or we can consider the scale of the synchronising behaviour—that
is, how much of the phase space will contract into a small region after a long time. In
this section (and indeed, throughout this thesis), we focus on the latter consideration.

Suppose we have a RDS ¢ on a phase space X (which, for the moment, we assume
to be equipped with some separable metric, so that we can measure the distance between
trajectories). As in Remark suppose we endow X with some initial distribution of
mass p; in this case, let us take p to be an ergodic probability measure of the Markov
transition probabilities associated to ¢. We then simulate the forward-time running of the
RDS, and see how the distribution of mass evolves over time. “Synchronising behaviour”
corresponds to significant proportions of the mass becoming clustered into very small
regions of space after a long time. Now if we wait a very long time, and then look to see
how the mass has become distributed, we will observe one of the following scenarios:

(i) there is no obvious indication of any real synchronising behaviour;

(i) virtually all of the mass has separated out into n tiny clusters (for some n € N),
each of mass approximately equal to %

If we start the process again, keeping the same initial mass distribution p but allowing
the noise realisation to be different, we will observe the same scenario (with the same n
if scenario (ii) occurs).

The above has essentially been demonstrated by Le Jan[l]in the context of a composition
of random diffeomorphisms on a compact smooth manifold. It is known (e.g. [FGS14])
that the arguments can be extended well beyond this context. In fact, one of the goals
of this chapter is to prove that the same phenomenon holds true for any RDS (even
if discontinuous) on a Borel subset of a complete separable metric space satisfying the
measurability requirements in Section [2.2]

When scenario (ii) occurs, we will refer to the number of clusters n as the p-clustering
number of ¢; and when scenario (i) occurs, we will say that the p-clustering number of ¢

1See Lemme 1 and part (a) of the proof of Proposition 2 in [LeJ87]. Proposition 3 of [LeJ87] describes
a stronger form of clustering that occurs when there is local asymptotic stability; see also Theorem [£.52]
of this thesis.
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3.1 Statistical equilibria and clustering numbers

1s 0o. In the case that the p-clustering number of ¢ is 1, we will say that ¢ is statistically
synchronising with respect to p.

Remark 3.1. Our above description of the phenomenon is, of course, very crude: the
“scenarios” described above are actually statements about the asymptotic behaviour (with
the clusters having “infinitesimal diameter” asymptotically), and may be formalised as
in Corollary [3.9] It is well-known that there exist dynamical systems where it takes a
remarkably long time for the “asymptotic picture” to start to develop within finite-time
simulations; and it seems that this is particularly likely to arise with random dynamical
systems, for the following reason: Due to the strong law of large numbers, if a model of
noise allows for “freak events” with positive probability, then with full probability such
“freak events” will happen infinitely often. It may well happen that such events, when
they occur, have a “freak effect” on the phase space dynamics, while the overall effect of
the more “normal” behaviour of the noise does nothing to counteract this. Accordingly,
these “freak events” may be what determine the asymptotic behaviour of the RDS; and
yet in such cases, since these events are so rare, one can expect it to take a very long
time for the dynamics to begin to resemble the asymptotic dynamics. Such a scenario
is particularly likely to occur for systems affected by Gaussian white noise, since the
tails of the Gaussian distribution decay extraordinarily fast. Accordingly, there is a place
for studying “intermediate time-scale dynamics” (as opposed to asymptotic dynamics) of
RDS. In some cases, one possible way to do this is to study the asymptotic behaviour of
the (not necessarily memoryless) RDS obtained when a very small perturbation is made
to either the probability distribution P of the underlying noise or the action ¢ of the
noise, in such a manner that sufficiently “extreme” behaviour of the noise now either has
zero probability or no longer has an “extreme” effect on the dynamics. (In particular,
this can serve as one motivation for the study of “bounded noise” RDS.) Nonetheless, it
is out of the scope of this particular thesis to study “intermediate time-scale dynamics”.

The major goal of this chapter of the thesis is to prove the following remarkable fact:
The clustering number of a RDS is purely a “measurable dynamics” property; that is to
say, given a RDS on a standard measurable space (X,Y), the clustering number exists
and is the same under all separable metrics] whose Borel o-algebra coincides with .

A further goal of this section is to prove that for a monotone RDS admitting an ergodic
distribution, the associated clustering number is always equal to 1; in fact, provided
the phase space is the real line (equipped with its usual ordering), and the RDS has
appropriate continuity properties, the RDS will admit a “pullback-attracting random
fixed point”.

3.1 Statistical equilibria and clustering numbers

Let (2, F, (F&*)ser ter+, (6!)ieT, P) be a noise space (in accordance with our formalism in
Section [2.2)), let (X,X) be a standard measurable space, and let ¢ be a RDS on (X,X)
over (Q, F, (F5)semier+, (0))ter, P) (in accordance with our formalism in Section [2.2)).

2As in Remark assuming the axiom of choice, every metric whose Borel o-algebra coincides with
Y. is separable.
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For any measurable space (E, &), we denote the set of probability measures on (E,€) by
Mg, ey, which we equip with the evaluation o-algebra (g ¢). For convenience, we will
drop the subscripts when considering the space of probability measures on (X, X); that
is to say, we will just write M to denote the set of probability measures on (X,¥), and
we will just write K for the evaluation o-algebra on M.

Hence, for example, an element @ € My n) is a probability measure on the space of
probability measures on (X, X).

Given any separable metrisable topological space (E,T), we write N for the associated
topology of weak convergence on Mg »(7)). Recall that the Borel o-algebra of N7 is

precisely R(g,o(1))-

Recall that for any A c X, Ay :={(z,z):x e A}. We will use the notations introduced in
Section for the n-point motions and the image-measure RDS, and their associated
Markov transition probabilities.

Definition 3.2. For any n € N, let £,, ¢ M denote the set of probability measures p of
the form p = %ZZLI 9., for distinct points xq,...,x, € X. (In particular, Iy denotes the
set of Dirac masses on X.) Let K. c M denote the set of atomless probability measures
on X.

Lemma 3.3. For allneNu{oo}, K, is R-measurable.

Proof. Fix a separable metrisable topology on X generating ¥, and let & be a countable
base for this topology. For any open V c X, let Uy be the set of members of U that are
contained in V. It is easy to show that for any finite n, a probability measure p on X
belongs to IC,, if and only if there exist mutually disjoint sets Vi,...,V,, €U such that for
eachie{l,...,n},

e p(V;)= %, and
e for all U eUy,, p(U) is equal to either 0 or 2.

So then, writing 4, to denote the collection of all mutually disjoint subcollections of U
of size n—that is,

U, = {VcU:|V|=n, VAV =g for all distinct V,V eV}

—we can express K, as

G = U Q) (treMeo) =2 n ) (e Mep)e 0.).

Ve, VeV Uelly

Hence K,, € &.
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It remains to show that K., € K It is not hard to show that a probability measure
p belongs to K, if and only if p® p(Ax) = 0; one way to show this is as follows:

peke & p{z))=0VreX

<~ p({x}) =0 for p-almost all z € X
— [ La(z,y) p(dy) = 0 for p-almost all x € X
X

= [ [ Las@w) pldy) p(ar) = 0
<= p®p(Ax) =0,

So then, since the map p—~ p® p(Ax) is measurable (Lemma [A.15)), Ko € &. O

Now for any () € M(x,5) and any n € N, we define the probability measure £, (Q) on X"
by
EAQA) = [ (4 Q(dp)

for all A € ¥®*. (This is well-defined by Lemma [A.15, and the monotone convergence
theorem gives that this is a probability measure.)

Observe that for any m,n € N with m < n, the image measure of E,(Q) under the
projection (z1,...,x,) = (z1,...,x,) is precisely E,,(Q).

Lemma 3.4. Suppose we have Q) € Maq) and n e NU {oo} such that Q(IC,)) =1. Then
for any Ae,

n = 0.

Ey(Q)(Aq) = {%El(g)(/l) n < oo

Proof. First suppose that n < co. For any p € K,,, writing p = % > zep 0x Where |P| =n, we
have that

| o} pda)
[An Pl 5

= np(A) -
BQQ;

n

p®p(Ay)

B = [ 20w = LE@)A)

Now we have seen in the proof of Lemma that for every p € Ko, p®p(Ax) = 0. Hence,
if n = oo then F3(Q)(Ax) =0, and therefore Ey(Q)(A4) =0 for any A€ 3. O

The following lemma is a useful link between the image-measure RDS and the n-point
motions.

Lemma 3.5. For any n € N and any probability measure Q on (M, R) that is stationary
under the Markov transition probabilities (%) pepm, ter+, En(Q) is stationary under the
Markov transition probabilities (@t )xexn, tet+-
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Proof. We need to show that for each ¢ € T*, ¢i* E,(Q) = E,(Q). For any ¢t € T* and
A€ ¥®" we have

(£ Bn(@) () = [ B(@( 0" (1) (4)) Pldo)
fnfMme”@?w)‘%A)) Q(dp) P(dw)
fgfM(%O(f’w%p)m(A)@(dp)P(dw)

fQ fMP®”(A) (t,w).Q(dp) P(dw)
() Q)

| o) Qup)

(since @ is stationary under (<pf,) peM, teT+)

= E.(Q)(A).

So we are done. O

We will use the notation (E™,7®") to denote the n-fold product of a topological space
(E,T). We now state the central theorem of Chapter 3

Theorem 3.6. Let p be a probability measure on X that is stationary under the Markov
transition probabilities (¢!)zex, ter+. Then there exists a probability measure QQ, on (M, K)
that is ergodic with respect to the Markov kernel (¢5)zem for every t € T* {0}, such that
Ei(Q,) = p and for any separable metrisable topology T on X generating ¥, the following
statements hold:

(a) @' converges in Ny, to Q, ast — oo;
(b) for all r e N, @l* (p®") converges in Nyer to E,(Q,) ast — oo.

Moreover, if p is ergodic with respect to the Markov transition probabilities (¢L)zex, ter+,
then there exists n e Nu {oo} such that Q,(K,) = 1.

(Note that by Lemma [3.5, for each r € N, E,(Q,) is stationary under the Markov
transition probabilities (¢f)xexr ter+-)

Now observe that (as in Remark [2.13|1I), but applied to the image-measure RDS) for any
t € T+, ¢, is precisely the law of the measure-valued random variable w = ¢(t,w).p. So
then, given any separable metrisable topology 7 on X generating ¥, we may regard @,
as the limiting distribution of the Markov process (w = @(t,w).p)wr+ Whose state space
is the topological space (M, N7).

Definition 3.7. Let p be a stationary probability measure of the Markov transition
probabilities (¢! )ex ter+. We refer to the measure (), described in Theorem as the
statistical equilibrium associated to p.

3In Theorem property (a) generalises [LeJ87, Lemme 1(b)], while property (b) generalises [Bax91,
Proposition 2.6]; the final statement about the case that p is ergodic generalises part (a) of the proof of
[LeJ87, Proposition 2].
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Definition 3.8. Let p be an ergodic probability measure of the Markov transition
probabilities (¢f)zex e+, and let n € Nu {co} be such that Q,(K,) = 1. Then we
refer to n as the p-clustering number of p. In the case that n =1, we will say that ¢ s
statistically synchronising with respect to p.

(We will in fact see that ¢ is statistically synchronising with respect to p if and only
if there exists an F°_-measurable random fixed point of ¢ whose law is p, formalising

Remark [2.40])

We now provide a more “geometric” interpretation of the clustering number (formalising
the crude description given in the overview).

Let d be a separable metric on X whose Borel o-algebra coincides with ». For any
integer n > 2, any 6 > 0 and any 0 < v < §, we will say that a probability measure p
on X is (n,7,d)-clustered (according to d) if there exist points z1,...,z, € X such that
min{d(z;,z;) :i# j} > § and for each 1 <i<n, p(B,(z;)) > =21

Corollary 3.9. Let p be an ergodic probability measure of the Markov transition
probabilities (L) zex ter+, and let n be the p-clustering number of ¢. For any separable
metric d on X whose Borel o-algebra coincides with X2, we have:

n = oo, then for all € >0 there exists 0 >0 an e T* such that for allt >7T,
A) h I 0 th ists 6 >0 and T €T h th Ht>T

PlweQ: forallze X, p(t,w).p(Bs(x))<e) > 1-e.

(B) If n=1, then for all € >0 there exists T € T* such that for all t > T,

P(w e : there exists v € X s.t. p(t,w).p(B(x))>1-¢) > 1-¢.

(C) If 2<n < oo, then for all € > 0 there exists 6 > 0 such that for all 0 <~y < d there
exists T € T such that for allt >T,

P(weQ: o(t,w).p is (n,7y,0)-clustered) > 1-(g+7).

Proof. Fix a separable metric d on X whose Borel o-algebra coincides with X, and let T
be the induced topology. For any r € (0, 1], let 7, ¢ M be the set of probability measures
p on X with the property that there exists x € X such that p({z}) > r. We start by
proving the following claim:

Claim 1. For any r € (0,1], if J, is a Q,null set then the following holds: for all
€ > 0 there exists 6 >0 and T" € T* such that for all £ > T,

PlweQ:forall xe X, o(t,w).p(Bs(x))<r) > 1-e.

Proof of Claim 1: Let S be a countable dense subset of X. For each k € N, let JF ¢ M
be the set of probability measures p on X with the property that there exists x € S such
that p(B. (z)) > 7. (Obviously, JF is decreasing in k.) We first show that

4

(D) N2y JF = T, and
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3.1 Statistical equilibria and clustering numbers

(IT) for each k, the Np-closure of J**! is contained in J*.

To see that (I) holds: It is clear that J,. c JF for each k; in the other direction, suppose

we have a probability measure p belonging to Mo, JF. Let (2x)ren be a sequence in S

such that for each k, p(B1 (zx)) 2 7. We now consider N equipped with the structure of
4

a simple graphf] where the set of edges F is as follows: for all distinct ky, ko € N,

{kike} € E = B (u,) n B (z,) * @.
471 472

Since p(X) is finite, it is clear that every induced subgraph of N must have finitely many
connected components; hence in particular, every infinite induced subgraph of N must
contain a connected infinite induced subgraph. So let (G;);ey be a sequence of connected
infinite induced subgraphs of N such that for each j € N, G;.1 ¢ G;n[j,00). For each
JeN, let Uj == Ugeg, Bfk(:zrk) Since G471 ¢ G; for each j, we have that U,,; c U; for each
j; and since p(U;) > r for all j, it follows that (N2, U;) > r. Now since G is connected
and minG; > j for every j € N, it follows that diamU; - 0 as j - oo. (This is due to
the convergence of the series Y, 4%) Hence N2, Uj is a singleton. So p belongs to J,.

To see that (II) holds: Fix k € N, and let (p;),en be a sequence in J#+! converging in N7 to
a measure p € M. Let (z;),en be a sequence in S such that for each j, pj(B _(z5)) 27

Let U; := U;2 ]B (wz) for each j. (Obviously U; is decreasing in j.) Flrst suppose
for a contradlctlon that N7 Uj is empty. Then we may cover X by open sets V' with
the property that for sufficiently large j € N, V nU; = @. Since X is separable, this
cover admits a countable subcover {V;};n. For each m € N, let W,, := U, V;. For each
m, we have that for sufficiently large j, W,,, nU; = @ and therefore p;(W,,) < 1-r.
Consequently, p(W,,) <1 -r for each m; but since W,, increases to X as m — oo, this
then implies p(X) < 1-r, giving a contradiction. So then, N3, U; is non-empty; so fix a
point z € N2, Uj. It is clear that for infinitely many j, B _s_() contains B (a:j) and

therefore ,oj(B El _(x)) > 7. It follows that p(B 3 ({B)) > r. Hence in partlcular there
obviously ex1sts €5 such that p(B (z)) 2. So peJF, as required.
4

Now then, since (I) holds, we have that Q,(JF) - 0 as k - oo. Since (II) holds, we
have that for each k,

limsup (7)< limsup o, (T57) < Q,(TFT) < Qu(Th).
t—o00 t—o0
Combining these, we have that

hm lim sup gpp(jk”)

t—o00

1A simple graph is a set G equipped with a set E of 2-element subsets of G' (called the set of edges).
Given x,y € G, it is said that = is connected to y if either x = y or there exists n € N and a list
(z0,---,2n) € X" such that 29 = =, ¥, = y and {x;_1,2;} € E for all 1 <4 < n. This defines an
equivalence relation on G; the equivalence classes are called connected components. When there is only
one connected component (namely, the whole of G), we say that G is connected. An induced subgraph of
G is a set H c G equipped with the set of edges Ey :={Pc H: P ¢ E}.

90



3.1 Statistical equilibria and clustering numbers

So then, for every ¢ > 0 there exists k£ € N and T" € T* such that for all ¢ > T', ! (TF*') < ¢;
the statement that ¢! (JF*!') < e is precisely the statement that

P(w €2 : there exists € S s.t. p(t,w).p(Bs(z)) >2r) < €
where ¢ := 4,6%, which implies that
PlweQ :forallze S, p(t,w).p(Bs(z))<r) > 1-¢,
which (due to Lemma is precisely the same as saying that
P(weQ: forall ze X, o(t,w).p(Bs(x))<r) > 1-e¢.

This completes the proof of Claim 1.

We now prove part (A): If n = oo then (by definition) @,(K«) = 1 and therefore Q,(J,) =0
for every r € (0,1]. So then, for every ¢ € (0,1], applying Claim 1 with r := & gives that
there exists 0 >0 and T € T+ such that for all t > T,

P(weQ:forall ze X, p(t,w).p(Bs(x))<e) > 1-¢

as required. (The case that € > 1 is obviously an automatic tautology.)

Now assuming n < oo, let K,, ¢ M be the set of probability measures p taking the form
p=+¥",6,, for some (z1,...,7,) € X" (where the points z1,...,z, are not necessarily
distinct). Moreover, for any v > 0, let Z, ¢ M be the set of probability measures p

for which there exist points x1,...,x, € X with the following property: for any distinct

i1, 5ime{l,...,n},
ﬁ(kszle(mik)) > @

(Due to Lemma|A.13] for any countable dense S c X, it is always possible to choose the
points x1, ..., 2, to belong to S.) Obviously, if n > 2 and there exists ¢ >« such that g is
(n,7,0)-clustered, then p € Z,.

Since Q,(K,) =1, we obviously have in particular that Q,(K,) = 1, and therefore:
Claim 2. For every > 0 there exists T € T* such that for all t > T, ¢! (Zy) > 1~ 1.
Proof of Claim 2: Fix v > 0. We first show that Z, contains an N-open set U containing

Kn. Let (p;)jen be an Np-convergent sequence whose limit 5 belongs to K,; we need

to show that for all j sufficiently large, p; belongs to Z,. But this is clear: writing

p= %Z?:l dz,, we have that for any distinct i,...,4, € {1,...,n},

k=1

and therefore, for all j sufficiently large

Pj ( @ Bv(%)) , ml=)

S 13

n
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3.1 Statistical equilibria and clustering numbers

as required.

So then, letting U be an open set with I, c U c Z,], we have
liminf ¢(Z7) > liminf g}(U) > Qu(U) > Qu(K.) = 1.

and therefore, for all ¢ sufficiently large, ¢i(Z;) > 1 -~. This completes the proof of
Claim 2.

We now prove part (B): Suppose n = 1, and fix £ > 0. By Claim 2, there exists T' € T+
such that for all t > T, L (Z7) > 1 -¢, i.e.

P(w € : there exists € X s.t. p(t,w).p(B(x))>1-¢) > 1-¢

as required.

We now prove part (C): Suppose 2 <n < co. Given any § >0 and any 0 <y < min(é, 5),
if a probability measure p € Z,) is not (n,~,0)-clustered then there exist z1, 25 € X such
that d(z1,22) < ¢ and p(B,(z1) U By(22)) > @ > s from which it folllows that
p(Bas(x1)) > 5=. Hence a sufficient condition for a probability measure p to be (n,7,d)-
clustered is that p € Z,) and for all z € X, p(Bas(x)) < 5.

Now fix € > 0. Obviously Qp(jgi) = 0, and so on the basis of Claim 1, let ¢ € (0, 3)
and 7" € T* be such that for all ¢t > T,

P(weQ:forall e X, o(t,w)p(Bas(z)) <o) > 1-c.

For 0 <~ < ¢, by Claim 2 there exists T" € T+ such that for all £ > T",
PlweQ: p(t,w)pell) > 1-,
and so for all ¢ > T:=max(7",T"),
P(weQ: p(t,w).peZ) and for all z € X, p(t,w).p(Bos(z)) <5 ) > 1= (e+7)

which implies

P(weQ: o(t,w).pis (n,7,0)-clustered ) > 1-(g+7).
So we are done. ]

We also have a further way in which to understand statistical synchronisation:

Corollary 3.10. Let p be an ergodic probability measure of the Markov transition
probabilities () yex, ter+. Fir a separable metric d on X whose Borel o-algebra coincides
with X2, and for each t € T*, define the function

e Qx X xX - [0,00)
(W, 2,y) = d(p(t,w)z, ¢(t,w)y).

The following statements are equivalent:
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3.1 Statistical equilibria and clustering numbers

(i) @ is statistically synchronising with respect to p;

(i1) as a stochastic process over the probability space (Ax X x X, F@Y X, Pop®p),
ry converges in probability to 0 as t — oo.

Proof. First suppose that ¢ is statistically synchronising with respect to p. So
Ey(Q,)(Ax)=1. Fix e>0. Let

U. == {(u,v) e X x X :d(u,v) <e}.

Since U. is a neighbourhood of Ay, we have that ¢l5(p ® p)(U.) - 1 as t - oo (by
statement (ii) in Theorem [3.6). But ¢!;(p ® p)(U.) is precisely equal to

Pepep((w,z,y) : re(w,z,y) <e).

So r; converges in probability to 0 as t - oo.

Now suppose that ¢ is not statistically synchronising with respect to p. So E2(Q,)(Ax) <
1. For each € >0, let
Ge = {(u,v) e X x X :d(u,v) <e}.

It is clear that GG, decreases as ¢ decreases, with the intersection ..o G. being Ay. Hence
there must exist € > 0 such that c:= Ey(Q,)(G:) < 1. Since G. is closed, we have (by
statement (ii) in Theorem that for all ¢ sufficiently large, ¢l;(p ® p)(G:) < c. But

@i (p® p)(G.) is precisely
P®p®p( (w,x,y) : rt(w7x7y) < 6)'
So it follows in particular that r; does not converge in probability to 0 as t — oco. O]

Let us now mention the “deterministic” case of Theorem [3.6, Suppose ) is a singleton
{w}; then writing f* = p(t,w), we have that for any probability measure p on X, ¢! is
precisely equal to 6;:,. Hence, for any (f*)-invariant probability measure p, @), is simply
equal to d,. So then, the final statement in Theorem reduces to a simple statement
about the atoms of an ergodic measure of an autonomous dynamical system, which we
can easily prove directly.

Proposition 3.11. Let (ft)i+ be an autonomous dynamical system on (X,%), and let
p be an (f')-ergodic probability measure. Then either:

(i) p is atomless; or

(ii) p can be expressed in the form p = %Z?zldxi for distinct points x1,...,x, € X
forming the locus of a periodic orbit of (f*).

In the case that T+ = [0,00), p must be either atomless or a Dirac mass at a fixed point

of (f)f]

5The proof that we present for this last statement is adapted from the answer to the MathOverflow
question [MO15¢| provided by Arnaud Chéritat.
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3.2 Synchronisation and pullback-attracting random fixed points in monotone RDS

Remark 3.12. The last statement of Proposition does not extend to statistical
equilibria of RDS in general: it is perfectly possible to have (under some metric d)
a continuous RDS in continuous time admitting an ergodic distribution for which the
associated clustering number is finite and strictly more than 1. For example, for any
neN, if b:R - R is a Lipschitz periodic function with least period + then (for any o # 0)
the RDS on S! generated by the SDE d¢; = b(¢,)dt + odW; has a p-clustering number
of exactly n (where p is the unique stationary probability measure). See Corollary
for the proof.

Proof of Proposition [3.11]. Suppose p is not atomless. Let m := max{p({z}) : x € X}, and
let P:={xeX:p({x})=m}. Since p is invariant under (f*), we have that for all ¢t € T+,

p(J'(P)) = p(f(f1(P))) 2 p(P)

(where f~t(-) denotes the preimage under f*), and therefore (due to the definition of P),
ft(P) = P. Hence, due to the ergodicity of p, we have that p(P) = 1; in other words,
writing P =: {z1,...,z,}, we have that p = 1 Y7, 0,,. Once again, due to the ergodicity of
p, the only invariant proper subset of P is @. Hence, fixing x € P, the set {f!(x):t>T}
must be equal to P for every T € T*; in other words, z is a periodic point of (f*) whose
trajectory is equal to P.

Now suppose that T+ = [0,00). Suppose once again that p is not atomless; so p is a
uniform distribution on set P of size n, forming the locus of a periodic trajectory of (f?).
To show that n = 1, it is sufficient to show that for every ¢t > 0, the elements of P are
t-periodic. Fix t >0, and let g := fﬁ. Obviously there exist r € {1,...,n} and = € P such
that ¢g"(z) = . But since r divides n!, it follows that fi(x) = x, and so the points of P
are t-periodic. O

So Theorem is not a particularly “deep” statement in the deterministic case; it
particular, it says nothing about synchronisation. However, in the more general non-
deterministic case, it is very common for an atomless ergodic probability measure of
the Markov transition probabilities to have a finite clustering number (implying real
synchronising behaviour).

3.2 Synchronisation and pullback-attracting random
fixed points in monotone RDS

We now mention an important case where statistical synchronisation is guaranteed.

Theorem 3.13. Suppose there exists a Borel linear order < on (X,%) with respect to
which ¢ is monotone. Then ¢ is statistically synchronising with respect to every ergodic
probability measure of the Markov transition probabilities (@l )zex, te+-

In the case that < is just the standard ordering on R or a Borel subset thereof, we actually
find that there is a “(crudely) pullback-attracting” random fixed point. Although this
is very much a “topology-specific” concept, for the sake of completeness we will now
describe it here.
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3.2 Synchronisation and pullback-attracting random fixed points in monotone RDS

Standing Assumption. For the rest of Section (except the Open Question [3.29),
let X be a Borel-measurable subset of R, equipped with the induced topology from R, and
let 32 be the Borel o-algebra. We equip X with the usual order <, and assume that ¢ is
monotone with respect to <. Given any A c X, we write inf A and sup A to denote the

infimum and supremum of A as a subset of R.

(So inf A and sup A always exist, but might not be elements of X.)

Given a set A c X, a left-accumulation point of A is a point x € X that can be expressed
as the limit of a strictly increasing sequence in A, and a right-accumulation point of A
is a point x € X that can be expressed as the limit of a strictly decreasing sequence
in A. An isolated point of X is a point x € X such that the singleton {x} is open in
X; this is equivalent to saying that x is neither a left-accumulation point of X nor a
right-accumulation point of X.

Definition 3.14. Let A c X be a convex set, and let ¢:€2 - X be a random fixed point
of p. We say that q is pullback-attracting over A if P-almost every w € €2 has the property
that for all z € A, p(t,07'w)r - q(w) as t - co. We say that ¢ is crudely pullback-
attracting over A if for every unbounded countable set S c T* there is a P-full set (2 c 2
such that for every w e Qg and x € A, p(t,07'w)z - q(w) as ¢ tends to oo in S.

Obviously, if T = Z (or, more generally, if ¢ has left-continuous pullback trajectories),
then any random fixed point that is crudely pullback-attracting over a convex set A is,
in fact, pullback-attracting over A. We also have the following:

Lemma 3.15. Suppose that ¢ is a right-continuous RDS. Let q:€) - X be a random fixed
point that is crudely pullback-attracting over a convex set A c X. Suppose the following
statements both hold:

(a) if max A exists and is a right-accumulation point of X, then max A is also a
left-accumulation point of A;

(b) if min A exists and is a left-accumulation point of X, then min A is also a right-
accumulation point of A.

Then q is pullback-attracting over A.

(Note that statements (a) and (b) cover the case that A is open in X and the case that
A is connected and not a singleton.)

Proof. Since the case that T = Z is immediate, assume that T = R. Let us work with
the metric d(x,y) = arctan|z — y|. Fix any w € 0 with the property that for all z € X,
o(t,07*w)z > ¢(w) in Q. Fix any z € X, and € >0, and let G = B.(¢q(w)); we will show
that for all ¢ € R sufficiently large, ¢(t,07'w)x € G. We consider separately the following
cases:

(I) « is in the interior (relative to X) of A;

(IT) z = max A, and x is a right-accumulation point of X and a left-accumulation
point of A;
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3.2 Synchronisation and pullback-attracting random fixed points in monotone RDS

(III) x = min A, and z is a left-accumulation point of X and a right-accumulation
point of A.

First consider case (I). Let U be a neighbourhood of x such that U ¢ A and minU =: a
and maxU =: b both exist. Let 7' > 0 be such that for all ¢t € Q with ¢ > T', o(t,07'w)a
and ¢(t,07'w)b both belong to G. Since ¢ is monotone and G is convex, we have that
for all t € Q with t > T, U c (t,07'w)"1(G). Now fix any t € R with ¢ > T. Since the map
T+ (7,0 'w)x is right-continuous, we can choose 0 € (0, —T") such that t -0 € Q and
0(0,07'w)x € U. So then,

o(t,07w)r = o(t—8,0°"'w)p(5,07 W)
o(t-0,0°"'w)U

c G (sincet-0eQandt-0>T).

m

Now consider case (II). Take any a € A that is not an extreme point of A, and let
U:=Xn(a,z). Let T >0 be such that (i) for all ¢t € Q with ¢t > T, p(t,07'w)x € G, and
(ii) for all t e R with t > T, p(t,0 'w)a € G. (Such a time T exists, by case (I).) Note that
forall t e Q with t > T, U c ¢(t,07'w) 1 (G). Now fix any ¢t € R with ¢t > T. Suppose for
a contradiction that x ¢ ¢(t,07'w)~1(G). Since a € p(t,07w) 1 (G) and ¢(t,07'w)1(G)
is convex, it follows that sup ¢(t,07'w)~1(G) < z. But moreover, since ¢ is continuous in
space, we have that ¢(t,07'w)1(G) is closed in X and therefore sup p(t,0-'w) 1 (G) < x.
So fix any y € A with sup p(t,07'w)"'(G) <y < x. Now U is a neighbourhood of y, and
therefore, just as in case (I), we have that ¢(¢,07'w)y € G; but this contradicts the fact
that sup o(t,07'w) H(G) < y.

Case (III) is similar to case (II). O

Remark 3.16. Note that if a random fixed point ¢:Q2 — X is crudely pullback-
attracting over some non-empty convex set A ¢ X, then ¢ has a modification ¢ that
is FO_-measurable: fixing any y € A, let g(w) be equal to the limit of the sequence
©(n,0"w)y if this limit exists, and some arbitrary constant otherwise. Hence in
particular, by Lemma [2.39] ¢.P is ergodic with respect to Markov transition probabilities
(¢ )zex ter+- Using the dominated convergence theorem, it is not hard to show that for
every probability measure m on X with A being an m-full set, o*m converges weakly to
q.P as t - oo.

Remark 3.17. Suppose ¢ is a right-continuous RDS, and suppose we have a function
q:Q) — X such that for P-almost every w € Q, for all z € X, p(t,07'w)x - g(w) as t - oo.
Let ¢:2 - X be as in Remark (where we may take any y € X). It is easy to show
that ¢ is a random fixed point agreeing with ¢ outside a null set, and that ¢ is pullback-
attracting over X. Moreover, one can show that ¢ is a “strong” random fixed point, in
the following sense: if we let

Q= {weQ:forallneNyand z € X, o(t,0-"Dw)z - G0 "w) as t - oo},
then ) is a P-full set with the properties that

(i) 04(Q) = for all t € T, and
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(i) o(t,w)d(w) = G(A'w) for all t € T+ and w € €.
(Moreover, Q2 € F=.)

Now recall that for any probability measure p on X, X, denotes the smallest p-full-
measure convex set (referred to as the “convex core of p”).

Theorem 3.18. Let p be a stationary probability measure of the Markov transition
probabilities (ph)zex. ter- -

(A) If p is (¥.)-ergodic then there is a random fized point q:Q - X with law ¢.P = p
which is crudely pullback-attracting over X,,.

[The remaining statements simply concern conditions for ergodicity and unique ergodicity;
they can be derived as a consequence of part (A).]

(B) If p is (¢l)-ergodic then the only (¢.)-stationary probability measure p with
p(X,)=11s p.

(C) Hence, for any two distinct (pl)-ergodic probability measures p; and po, the sets
X, and X, are disjoint.

(D) The following statements are equivalent:

(1) p is (#})-ergodic;
(i1) every downward-inclusive crudely invariant set is either p-null or p-full;
(111) every upwards-inclusive crudely invariant set is either p-null or p-full;

(tv) there are no non-empty convex crudely invariant proper subsets of X,.

(E) Suppose that ¢ is a right-continuous RDS, and that p is not a Dirac mass and
X, is connected. Then p is (¢t )-ergodic if and only if there are no deterministic
fized points in X,. (In this case, the random fizved point q in part (A) is pullback-
attracting over X,.)

Example 3.19. (This example is the same as that studied in [AM14]). Let X = (0,1),
with ¥ being the Borel o-algebra. Fix any c € (0,3). Let I = {0,1} (with Z being the
discrete o-algebra), let v = 1(dy + 61), and define the functions fo, f1: (0,1) - (0,1) by

1
_ m xX €T € (O, 1- C]
Jo(@) { —i(l—w) re[l-¢1)
ey z€(0,c]
) = 2c ’
hi(@) { 1= s (1-a) wele1).
In other words, fy and f; are piecewise-affine order-preserving homeomorphisms, with
the point (1 - ¢, 1) being the only corner point of the graph of f;, and the point (c, 3)
being the only corner point of the graph of f;. Let ¢ be the RDS generated by the
random map (I,Z,v, (fi)ir)- It is easy to show that the Lebesgue measure [ on (0,1) is
stationary under the Markov transition probabilities (¢)ge(0,1),neno- It is also clear that
¢ has no deterministic fixed points. Hence, by Theorem [3.1§ (parts (A), (B) and (E)), !
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is the unique (¢7)-ergodic probability measure and ¢ admits a random fixed point with
law [ which is pullback-attracting over the whole of (0,1) [

Remark 3.20 (cf. [AM14], Theorem 6.3]). Let ¢ be any version of the random fixed point
in Example Then for any n € N, for any non-empty F € F°, and any E’' c E with
E \ E' being P-null, the image ¢(E’) is a Lebesgue-full subset of (0,1). To see this:
Without loss of generality, assume E’ € F. Let a_,.1, @ pi0,...,0 € I be such that the
cylinder set C' := I%sn x {(Q_p41, ¥ pi2,--.,00)} x IN is contained in E. Let Qe F be
a P-full set such that ¢(n,0"w)q(f"w) = g(w) for all w € Q, and let ¢’ = C N QN E".
So q(E") 2 q(C") 2 fago...0 fa_, ., (q(0(C"))). Since ¢ has a modification that is
FO -measurable and F° is independent of F', we must have that for every Lebesgue-
positive measure set S € B((0,1)), ¢"1(S5) has a positive-measure intersection with -7(C")
and therefore with 6-"(C”). But since (by the “measurable image theorem”, [New15a,
Exercise 104(B)]) the set ¢(6="(C")) is universally measurable with respect to B((0,1)), it
follows that ¢(0="(C")) is a Lebesgue-full set. Since the maps f,_,.,,.-., fo are surjective
and piecewise linear, they map Lebesgue-full sets onto Lebesgue-full setsﬂ and so q(E£")
is a Lebesgue-full set.

Example 3.21 (adapted from [CF98]). Let (Q,F, (F5*)ser, 120, (6)1er,P) be as in
Example 2.6] with d = 1. Let X = R. Consider a RDS ¢ generated by an equation

of the form
dry = f(xzy)dt + odw(t)

where 0 # 0 and f € C!(R,R), satisfying the integrability condition that for an

antiderivative F' of f,
e dr < oo.
—00

As in |[CF98, Remark 3.7], there exists a unique stationary probability measure of the
Markov transition probabilities (¢%). By Theorem [3.18(A) (together with the last
statement in part (E) of Theorem [3.18)), there exists a random fixed point ¢:Q - R
that is pullback-attracting over R. To illustrate: the deterministic ODE

dr; = (ax—2®)dt (3.1)

exhibits a supercritical pitchfork bifurcation as a crosses from negative to positive, but
the Wiener-driven SDE
dr; = (ax—-2°)dt + odW, (3.2)

(where o # 0) has a globally pullback-attracting random fixed point for all values of a.

Hence, in this scenario, noise destroys the pitchfork bifurcation. (See also Example [6.7])

Open Question 3.22. Is Theorem (B) specific to the case that X is a Borel-ordered
subspace of R, or does it hold for monotone RDS on any standard measurable space (X, )
equipped with a Borel linear order <?

6The same result is obtained in [AM14], by a different method. As one of the steps within this method,
it is proved that ¢ is synchronising in forward time (i.e. synchronising in the sense of Definition |4.6]).

"More generally, a function f:1 — J (where I and .J are intervals) is said to have the Luzin N property
if the image of any Lebesgue-null set is Lebesgue-null; if f is surjective and has the Luzin N property,
then the image of any Lebesgue-full set is Lebesgue-full.
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3.3 Random measures and measure-valued stochastic processes

(If the answer is that Theorem [3.1§|B) holds in the general case, then parts (C) and (D)
of Theorem also extend to the general case, since they follow from part (B) without
any reference to the special structure of R.)

Remark 3.23. The notion of pullback-attracting random fixed points (and more general
pullback-attracting “random invariant sets”) is not specific to monotone systems on
subsets of R. In particular, for a general RDS ¢ on a metric space (X,d) (with B(X)
being standard), a random fixed point ¢:2 - X is said to be globally pullback-attracting
if P-almost every w € 2 has the property that for every non-empty bounded B c X,
sup,.p d(p(t,07w)x, q(w)) - 0 as t - oo.

Now let us make some comments about the physical significance of pullback-attraction.
Pullback-attraction does not directly represent “synchronisation”, since synchronisation
concerns the mutual approach of forward-time trajectories, while pullback-attraction
just concerns dynamics in the past. Nonetheless, it is true that “almost sure pullback-
attraction towards a singleton implies (forward-time) synchronisation in probability”. To
be precise: suppose we have a random fixed point ¢:2 - X and a set A € B(X) such
that for P-almost all w € Q, sup,.4 d(p(t,07'w)x, g(w)) - 0 ast - oo; then the stochastic
procesy)| diam(¢(¢,)A) converges in probability to 0 as ¢ - co. (This is due to the fact
that almost sure convergence implies convergence in probability, combined with the (6%)-
invariance of IP.)

The rest of Chapter 3 is now devoted to proving Theorems and [3.18,

3.3 Random measures and measure-valued stochastic
processes

Convergence of stochastic processes

Let (E, &) be any measurable space; although an “FE-valued random variable” is normally
written as an (F, £)-measurable function Y:Q) - E| one can alternatively write it as an -
indexed family (x,).cq of elements of F such that the map w ~ x,, is (F, £)-measurable.
Likewise, we have two possible notational conventions for a “stochastic process” taking
values in E: one is to regard an “FE-valued stochastic process” as being a T*-indexed
family (Y;)ser+ of (F,E)-measurable functions Y;: Q2 - E| while the other is to regard an
“E-valued stochastic process” as being a (T* xQ)-indexed family (¢, )ter+ wen of elements
of E such that the map w +~ x;,, is (F,£)-measurable for each ¢ € T*.

Although, for random variables and for stochastic processes, the former convention is
the more standard, we will often use the latter convention in this section.

Now let E be a separable metrisable topological space. Let (x,).co be an E-valued
random variable, and let (¢, )i+ weq be an E-valued stochastic process.

81t is clear that the map w ~ diam(¢(t,w)A) is measurable for each t if ¢ is spatially continuous; in
general, the map w — diam(p(t,w)A) is universally measurable for each ¢. (This is a fairly straightforward
consequence of the measurable projection theorem.)
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3.3 Random measures and measure-valued stochastic processes

Definition 3.24. We say that the stochastic process (x:.,) converges almost surely to
the random variable (z,) if P-almost every w € Q has the property that z;, — z, as

t — oo.

Definition 3.25. We say that the stochastic process (x:,) converges via countable
subnets to the random variable (z,,) if for every unbounded countable set S c T+ there
is a P-full set {2g c Q such that for every w € Qg, 4, - 2, as t tends to oo in S.

Obviously if T* = Ny then almost sure convergence and convergence via countable subnets
are the same. If T* = [0,00), then the notion of almost sure convergence is strictly
stronger than the notion of convergence via countable subnets; note that convergence via
countable subnets is preserved under modification (whereas almost sure convergence is
only preserved under indistinguishability).

Random probability measures

We use the notation that for any probability measure p on X and any p-integrable function
9:X >R, p(g) = [x 9(z) p(dx). So for any Ae X, p(A) = p(1a4).

Recall that we write m: Q2 x X — Q and 7x:2 x X - X to denote, respectively, the
projections (w, ) » w and (w,z) ~ .

A “random probability measure on X” simply means an (M, K)-valued random variable,
that is, an Q-indexed family (p,)weq of probability measures p,, on (X, X) such that the
map w ~ fi,(A) is measurable for all A € 3.

Given a sub-c-algebra G of F, we say that a random probability measure (p,) is G-
measurable if the map w ~ p, is (G,8)-measurable (i.e. if the map w ~ pu,(A) is G-
measurable for all A € ¥).

We say that two random probability measures (u,,) and (fi,) on X are equivalent if
Plwe:p, =) =1

We now introduce some notations: We write £°(Q2, F; M) for the set of all random
probability measures on X. Given any sub-o-algebra G of F, we write £L°(,G; M)
for the set of all random probability measures on (X,3) that are G-measurable. We
write LO(PP; M) for the set of all equivalence classes of random probability measures on
X. Likewise, given any sub-o-algebra G of F, we write LO(P|g; M) for the set of all
equivalence classes of G-measurable random probability measures on X.

Given a random probability measure (p,) on X, we define the “mean probability
measure” E,u, on X by

(Eop)(A) = [ p(A)P(d)

for all A € X. Note that for any bounded measurable g: X — R,
(Eupio)(9) = [ pul9)P(d),
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3.3 Random measures and measure-valued stochastic processes

Also note that for any random variable ¢:Q — X, E,d4(. is precisely the law ¢,IP of q.

We have a “dominated convergence theorem for random probability measures”:

Lemma 3.26. Fiz a separable metrisable topology T on X generating 3. Let (pi,)wen
be a random probability measure, and let (U2)nen weq be an M-valued stochastic process
converging almost surely to (piy)weq in N7. Then E,u® — E,u, in N

Proof. Given any bounded continuous function g: X — R, we have that pu%(g) - p.(g)
for P-almost all w € €2, and so by the dominated convergence theorem

En)(9) = [ Hi()Pw) > [ pu9)P(dw) = (Eupt) (o)

as required. N

Now we say that a probability measure p on (2 x X, F ® ) is P-compatible if mq.pu =P,
that is, u(F x X) = P(F) for all E € F. We write MP for the set of P-compatible
probability measures on (2 x X, F @ ¥).

Likewise, given any sub-c-algebra G of F, we say that a probability measure p on
(2 x X,G®Y) is Plg-compatible if u(E x X) = P(E) for all E € G. We write MFlo
for the set of P|g-compatible probability measures on (2 x X,G ® 3).

We will soon see that “random probability measures (up to equivalence) are in one-to-one
correspondence with compatible probability measures”.

Disintegrations

Given any random probability measure (y,) on X, we may define a P-compatible
probability measure p on 2 x X by

p(A) = (A0 P(dw)
where, for any A € F ® ¥ and any w € €2, A, denotes the w-section of A, that is
A, ={reX:(w,x)eA}.

(Using the monotone convergence theorem, it is easy to check that p is indeed a
probability measure.)

It is easy to show (using Corollary |A.7) that for any bounded measurable g:Q x X - R,

/Qxxg(”’x)“(d(“vx)) = fgfxg(w,w)uw(dx)lf”(dw).

We refer to p as the integrated form of (u,,). Note that mx.pu = Eypu,,.

By Corollary to show that a probability measure p on €2 x X is the integrated
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3.3 Random measures and measure-valued stochastic processes

form of a random probability measure (f,), it is sufficient to show that for every E € F

and A e X,
p(ExA) = [ po(A)P(d).

Now given a P-compatible probability measure p on €2 x X, we refer to any random
probability measure (p,) whose integrated form is equal to p as a (version of the)
disintegration of p (with respect to P). And more generally: let G be any sub-o-algebra
of F; then, given a IP|g-compatible probability measure v on (Q2x X,G® ), a (version of
the) disintegration of v with respect to P|g is a G-measurable random probability measure
(1t,,) whose integrated form agrees with v on G ® 3.

It is clear that if two random probability measures (1) and (f,) are equivalent then
they share the same integrated form. We now give the “disintegration theorem”, which
essentially states that every P-compatible probability measure admits a disintegration, and
this disintegration is unique up to equivalence (and more generally: every P|g-compatible
probability measure admits a disintegration with respect to P|g, and this disintegration
is unique up to equivalence).

Lemma 3.27 (Disintegration Theorem). Fiz any sub-o-algebra G of F. For any
(pw)wea € LO(Q2,G; M), let [(pw)wea] € LO(P|g; M) denote the equivalence class of G-
measurable random probability measures represented by (i, )weq, and let p denote the
integrated form of (fiy)weq. Then the map

LO(Plgi M) —  MFle
[(Ho)wea] /L|g®2
serves as a bijection between LO(P|g; M) and MFls.

Remark 3.28. Really, it suffices just to state the case that G = F, namely, to state that
the map

L'(P; M) - MF
[(He)wea] = n

serves as a bijection between LO(P; M) and MP; the case of a more general sub-o-algebra
G then follows by redefining the probability space (2, F,P) to be (©2,G,P|g).

We now give a proof of Lemma [3.27, adapted from [Bil95, Theorem 33.3] (which
specifically considers conditional distributions of random variables).

Proof of Lemma[3.27. As in Remark [3.28, we assume without loss of generality that
g="F.

Surjectivity: Fix u € MP. First suppose that X is finite or countable. For each z € X,
let p, be the finite measure on 2 given by p,(E) = u(E x {z}) for all E € F; since pu is
P-compatible, we have that for every P-null set F € F, p,(E) < u(E x {z}) =0. So p, is
absolutely continuous with respect to P for all z € X. So for each x € X, let h,:Q - [0,1]
be a version of the density of p, with respect to P. Now it is clear that

sz = P,

zreX
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3.3 Random measures and measure-valued stochastic processes

and therefore

S by TEOL

reX
So let let Q € F be a P-full set such that for all w € Q, ¥,y hy(w) = 1. For each w € Q, let
i, be the probability measure on X given by pu,({z}) = h,(w) for all x € X; and fixing
an arbitrary probability measure ¢ on X, let p,, := ¢ for all we Q2 ~ Q. It is clear that for
every A € X, the map w — ,(A) is measurable; so (py,)wen € L2(2, F; M). Now for each
EeF and Ac X, we have

[ () P@e) = 3 [ ha(e)Pldw) = ¥ po(B) = p(ExA),

zeA reA

So p is the integrated form of (1), as required.

Now suppose that X is uncountable. By the Borel isomorphism theorem, we may assume
without loss of generality that (X,X) = ([0,1],B([0,1])). For each a € [0,1]nQ, let P,
be the finite measure on 2 given by P,(F) = u(E x [0,a]) for all E € F; once again, it is
clear that P, is absolutely continuous with respect to IP for all a. So for each a € [0,1)nQ,
let H,:Q — [0,1] be a version of the density of P, with respect to P; and set H(w) :=1
for all w e Q. For each a,b e [0,1]nQ with a < b, there exists a P-full set Q,; € F such
that H,(w) < Hy(w) for all w € ;. So let

Q= m me.
a,be[0,1]1nQ
a<b
By construction, for all w € ' the map a — H,(w) from [0,1]n@Q to [0, 1] is increasing.
Now for each a €[0,1) nQ and w € ', let H,y(w) = inf{Hy(w) : b € (a,1] nQ}; obviously
Py(Q) decreases to P,(€2") as b decreases to a, and so by the monotone convergence
theorem we have that

L’Ha+(w)P(dw) = P (Q) = fQIHa(az)IP(dw),

implying in particular that there is a P-full subset 2/, ¢ F of ' such that H,, = H, on
Q. So let

Q= [ Q.
a€[0,1)nQ
For each w € Q and = € [0,1]\ Q, let H (w) := inf{H,(w) : a € (z,1] nQ}. It is
clear that the map = » H,(w) from [0,1] to [0,1] is increasing and right-continuous
for all w € Q. So for each w € Q, let p,, be the probability measure on [0,1] given by
1o ([0,2]) = Hy(w) for all z € [0,1]; and fixing an arbitrary probability measure ¢ on
[0,1], let gy, := ¢ for all w € Q~ Q). For each E € F, let Dy be the collection of all
Borel subsets A of [0, 1] with the properties that the map w ~ p,(A) is measurable and
Ji bw(A)P(dw) = p(E x A). By construction, Dg contains [0, a] for every a € [0,1] n Q;
moreover, by the monotone convergence theorem, Dg is a A-system on [0,1]. Hence, by
the 7-A theorem (Lemma [A.5), Dg is equal to the whole of B([0,1]). This is true for

every F € F, and therefore p is the integrated form of (u,,).
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3.3 Random measures and measure-valued stochastic processes

Injectivity:  Let (u,) and (u!,) be random probability measures sharing the same
integrated form p. For each A € ¥, we have that

[Euw(A)IP(dw) - [Ey;(A)IP(dw) VEcF

and therefore p,(A) = p/,(A) for P-almost all w € Q. Now let C be a countable -
system generating ¥. Then P-almost every w € () has the property that for all A € C,
to(A) = pl,(A); and hence, by Corollary = pl, for P-almost all w € €. O

We have mentioned that taking the “expectation” of a random probability measure can
be achieved by taking the X-projection of the integrated form of the random probability
measure. We will now see that (as in [Arn98, p23]) taking the “conditional expectation
given G” of a random probability measure can be achieved by taking a P|g-disintegration
of the (G ® X)-restriction of the integrated form of the random probability measure:

Lemma 3.29. Let G be a sub-c-algebra of F. Let (u,) and (u!,) be random probability
measures on X, with (ul,) being G-measurable. Suppose that the integrated forms of (i)
and (pl,) agree on G ® X; then for any bounded measurable g: X — R,

E[& e 1:(9)|G](w) "2 ul(g)-

Proof. Fix any F € G. Writing o and p’ for the integrated forms of (u,) and (u!))
respectively, we have that

L@@ = [ g@uae) = [ g@)pdwan) = [ )P
as required. O

We now show that the converse of Lemma holds; in fact, we will prove a slightly
stronger version of the converse. Let us say that a collection {g,}aes of bounded
measurable functions g,: X — R is measure-determining if for any probability measures
p1 and py on X,

p1(9a) = p2(ga) Vael = pi=ps.

Note that a countable measure-determining set does exist: take {14}ac for some
countable m-system C generating 3.

Lemma 3.30. Let {g;}ien be a countable measure-determining set of bounded measurable
functions g;: X - R, and let G be a sub-o-algebra of F. Let (u,) and (1)) be random
probability measures on X, and suppose that for each i € N,

B[ p5(9:)|G](w) "2 pl(9:)-
Then the integrated forms of () and (pl,) agree on G ® 3.

Proof. On the basis of Lemma , let (fi,) be a G-measurable random probability
measure whose integrated form agrees with the integrated form of (u,) on G ® 3. By
Lemma [3.29, we have that for each i € N, for P-almost all w € €2,

fro(9i) = E[@w us(g:) |G 1(w) = p,(g:)-
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3.3 Random measures and measure-valued stochastic processes

So let Q c Q be a P-full set such that ji,(g;) = 4/, (g;) for all w e Q and i € N. Then, since
{g: }ien is measure-determining, fi, = 4/, for all w € Q. Thus (/i) and (x/,) have the same
integrated form, and therefore in particular, the integrated form of (u/,) agrees with the
integrated form of (p,) on G ® 3. O

Definition 3.31. Let G be a sub-c-algebra of F. We will say that a P-compatible
probability measure p on (2 x X, F ® X)) is G-measurable if there exists a disintegration
of p with respect to P which is G-measurable[]

Lemma 3.32. Let G; and Gy be independent sub-o-algebras of F, and let p be a P-
compatible probability measure that is Gi-measurable. Then

tlgex = Plg, ® mxup.

Proof. Let (1) be a Gi-measurable disintegration of pu. For any F € G, and A € ¥, we
have

p(ExA) = [ Tn(@)n(4)P(dw)

fQ 10(@) P(d) fQ 1o(A)P(dw)  (by Lemma [A.10)
P(E)WX*N(A)

as required. O

Measure-valued martingales

As in Remark [A.T9] given a separable metrisable topology 7 on X generating X, a
countable set {g; }ien of bounded continuous functions g;: X — R is said to be convergence-
determining (according to T) if for any sequence (p,) in M and any p € M,

pn(gi) = p(g;) asn —> oo foreveryie N = p, - pin Ny as n — oo.

Asin Theorem |[A.16) such a set of functions {g; };ey does exist. Obviously any convergence-
determining set of functions is also measure-determining.

The following result can be regarded as “Lévy’s upward theorem for measures”.

Theorem 3.33. Let (G;)er+ be a filtration on (2, F), and write Go, := 0(G; : t € T+). Let
(fw)we be a Goo-measurable random probability measure on X, and let (pl,)ier+ weq be an
M-valued stochastic process such that for each t € T+, the random probability measure
(1) weqr is Gi-measurable and the integrated form of (ut)weq agrees with the integrated
form of (fty)wea on G:®X. Then for every separable metrisable topology T on X generating
Y, (1)) e+ weq converges via countable subnets to (pi,)weq in the narrow topology Nr.

Remark 3.34. We emphasise that for each unbounded countable S c T+, the exceptional
P-null set on which the convergence fails will generally depend on the topology T.
(Indeed, for any unbounded countable S c T+, if the exceptional null set can be chosen
independently of 7, then outside this exceptional null set we will have strong convergence
as t - oo in S, by Lemma [2.3])

oIf (Q, F,P) is a complete probability space and G contains all P-null sets, then this is equivalent to
saying that every disintegration of p with respect to P is G-measurable.
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Proof of Theorem|[3.33 Fix a separable metrisable topology 7 on X generating Y. Let
{gi}ien be a convergence-determining set of bounded continuous functions ¢;: X - R. For
each 7 € N and t € T+, Lemma [3.29 gives that

E[& = po(90) |G )(w) "2 4l (9:)-

So then, Lévy’s upward theorem[¥] gives that for each i, the stochastic process
(1,(9:) )ter+wen is a modification of a stochastic process converging almost surely to
the random variable (14,(¢;))weq. Hence in particular, (uf(g;))er-weq converges via
countable subnets to (14,(g;))wen- So for each i € N and each unbounded countable
S c T+, let Qg) c 2 be a P-full set such that for each w € Qg), pt(gi) = pw(gi) as t - oo
in S. Then, defining Qg = N2, Qg) for any unbounded countable S c T+, we have that
for each w e Qg, pt, > p, in N ast — oo in S. [

The following “extension theorem” is based on the martingale convergence theorem.

Theorem 3.35. Let (G;)ier+ be a filtration on (2, F), and write Go, := 0(Gy : t € T+). Let

/“'L: U(gt@E) - [071]

teT+

be a function with the property that for each t € T*, [i|g,ex is a P|g,-compatible probability
measure. Then there exists a unique probability measure p on (Q x X,Go, ® ) agreeing
with 1 on User+(Gr ® X); the measure p is itself P|g.-compatible.

Proof. Existence: For each n € N, let (u?),eq be a disintegration of fi|g,ex with respect
to Plg,. Fix a compact metrisable topology 7 on X generating X, and let {g;},en be
a convergence-determining set of continuous functions g;: X — [0,1]. For each i,n € N,
Lemma [3.29] gives that

E(& = 5 (90) [Gner (@) T2 4l (g0)-

Thus, for each 4, the stochastic process (1(gi))nen,wen is a (uniformly bounded)
martingale, and therefore converges almost surely. So let Q € F be a P-full set such that
for every w € Q and i € N, the sequence (1"(g;))ney is convergent. By Corollary [A.18]
for each w € Q, u converges in the narrow topology some probability measure p,, as
n — oo; fixing an arbitrary probability measure ¢ on X, we can then define p, := ¢ for all
w e QN Q. Let i be the integrated form of the random probability measure (jiy)weq. Fix
any n € N; for each i € N, the conditional dominated convergence theorem gives that

BL& - (916 1) 727 i BL@ > 12 (91) 60 ]()
"2 hm p(e) (by Lemma 20

= pus(9i)-

19[Nev65, Proposition IV.5.6] gives a combined statement of the martingale convergence theorem and
Lévy’s upward theorem for separable stochastic processes; by [Nev65, Proposition I11.4.3], every R-valued
stochastic process has a separable modification.
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Hence, by Lemma [3.30] filg,ex = filg,ex- This is true for every n, so the measure
= filg..ex fulfils the properties described in the statement of the theorem.

Uniqueness: It is easy to see that G, ® 3. is precisely the o-algebra on €2 x X generated by
User+(G: ® £) (which is itself a 7-system, as in Remark [A.3)). Hence Corollary gives

the uniqueness of the measure pu. O]

3.4 Invariant measures

Recall that for each ¢ € T+, we define the map ©:Q x X - Q x X by 0Y(w,z) =
(0'w, o(t,w)z).

Lemma 3.36 ([Arn98, Lemma 1.4.4]). Let u be a P-compatible probability measure on
QO x X, with disintegration (f,)weq. Then for any t € T+, OLyu is P-compatible, with
disintegration (p(t,07tw) .« fg-tw ) wea-

Proof. Fix t € T*. Let v be the integrated form of (p(¢,07'w).jig-te,)weq. For any E € F
and A € X, we have

OLu(ExA) = [ [ Ta(®w,o(tw)a) pld(w, )
= [ [ 15(0w) La(p(t,)2) () P(dw)
= [ [ 15() La(e(t,00)2) po-io(de) P(d)
= [ 7).t (4) P(d)
= y(Ex A).
Hence O 1 = v. O

As a particular case of this, we will now prove Remark [2.22]
Corollary 3.37. Let p be a probability measure on X. The following are equivalent:
(i) (AxX, FOX,P®p, (0)r+) is a measure-preserving dynamical system;

(ii) there exists r € T+ \ {0} such that (2 x X, F% @ ¥, Plr= ® p, (O!)ser+) is a
measure-preserving dynamical system;

(111) p is crudely incompressible.

Proof. 1t is clear that (i)=(ii). Now suppose that (ii) holds. Fix any ¢ € T+ with 0 < ¢ < r.
Given any A €3, Lemma gives that for all F e F%,

[ ot 07w).p(A)P(d) = OLP®p)(ExA) = Pop(ExA) = P(E)p(A):

since this is true for every E € F% and the map w ~ ¢(t,07w).p(A) is itself F%-
measurable, it follows that ¢(t,07'w).p(A) = p(A) for P-almost all w € Q. This is true
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for each A € ; so let C be a countable m-system generating %, and let Q c Q be a P-full
set such that for every w e Q and A € C, p(t,07'w).p(A) = p(A). Then (by Lemma
@(t,0~tw).p = p for every w € . Thus we have shown that for every ¢ € T* with 0 <t <r,
o(t,07'w).p is P-almost surely equal to p. Now consider ¢t € T+ with ¢ > r, and let
n:=|%]. For each i € {1,...,n}, we have that ¢(r,07"w).p = p for P-almost all w € Q;
hence p(nr,6=""w),p = p for P-almost all w € Q. But we also have that p(t-nr,0~'w).p=p
for P-almost all w € Q. So then, ¢(t,07tw).p = @(nr,07"w).o(t —nr,07'w).p = p for P-
almost all w € ). Thus ¢ is crudely incompressible.

Finally, the fact that (iii)=(i) follows immediately from Lemma(3.36] with p:=P®p. O

Definition 3.38. A probability measure p on (2 x X, F ® X)) is said to be @-invariant
if p is both P-compatible and invariant under the dynamical system (©!);r+; and p is
said to be @-ergodic if i is both P-compatible and ergodic with respect to the dynamical
system (O%)er+.

Remark 3.39. Recall that an invariant probability measure of a dynamical system is
ergodic if and only if it is an extreme point of the convex set of invariant measures of
that dynamical system. Now observe that for any (©!);cr+-invariant measure p, mo.p is
(6%)-invariant. Consequently, since P is (0!)-ergodic, it is not hard to show (as in [Cra02b),
Lemma 6.19(i)]) that a @-invariant probability measure is p-ergodic if and only if it is an
extreme point of the convex set of p-invariant probability measures.

Definition 3.40. A random probability measure (u,,) is said to be p-invariant (resp. -
ergodic) if its integrated form is ¢-invariant (resp. p-ergodic).

Using Lemma [3.36] we can now characterise (p-invariant probability measures in terms of
their disintegrations.

Lemma 3.41. For any random probability measure (p,) on X, the following are
equivalent:

(1) (no) is p-invariant;
(i1) for each t € T*, for P-almost all w e Q, p, = o(t,07'wW) . pug-to,;
(i1i) for each t € T*, for P-almost all w € Q, gy, = p(t, W) ;s
(iv) the map w ~ i, is a random fized point of the image-measure RDS ¢, .

Proof. The equivalence of (i) and (ii) follows immediately from Lemma [3.36] The
equivalence of (ii) and (iii) is due to the (6%)-invariance of P. The equivalence of (iii)
and (iv) is automatic from the definitions. O

Remark 3.42. Observe that for any measurable function ¢:2 — X, the random
probability measure (dq4(.)) is @-invariant if and only if ¢ is a random fixed point of
¢. (In fact, it is not hard to show that if ¢ is a random fixed point then (d.)) is
p-ergodic.)

The following is adapted from part (a) of the proof of [LeJ87, Proposition 2.
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3.4 Invariant measures

Lemma 3.43. Let (u,) be a p-ergodic random probability measure. Then there exists
neNu{oo} such that for P-almost all w €Y, p, € KC,,.

To prove Lemma [3.43] we use the following simple observation:

Lemma 3.44. Suppose we have a value c € [0,1] and a probability measure p on X, such

that for p-almost every x € X, p({x}) = ¢. Then either ¢ =0 and p € Ko, or ¢ = % and

p €k, for somen eN.

Proof of Lemmal[3.44 1If ¢ = 0 then there clearly cannot exist a singleton of strictly
positive measure under p; so p € Ko. If ¢ >0, then the finite set P of points x satisfying
p({z}) = cis a p-full measure set; so letting n :=|P|, it is clear that c=1 and pe K,,. O

Proof of Lemma[3.43 Define the function h:Q x X — [0,1] by h(w,z) = p,({z}). Note

that h is measurable, since it can be expressed as

hMw,z) = /XﬂAX(fE:y)Mw(dy)~

Now for each t € T+, let Q; c Q be a P-full set such that for each w € Q;, (t,w) 1w = fgte-
Then for all (w,x) € Q; x X, we have

O (w,x)) = pge)({p(t,w)z})

1o (0 (t,w) ({e(t,w)a}))
po({2})

h(w,x).

v

a.

So then, letting p be the integrated form of (u,), we have that ho ©! "S" b for each
t € T*. Hence, since p is ©-ergodic, there exists ¢ € [0,1] such that h=1({c}) is a p-full
set. So for P-almost every w € €2, p,, has the property that p,({x}) = ¢ for u,-almost all
x € X. The result then follows by Lemma [3.44] O

The following is an extension of [Arn98, Theorem 1.8.4(iv)].

Lemma 3.45. Suppose there ezists a Borel linear order < on (X, X)) with respect to which
@ is monotone. Let (u,,) be p-ergodic random probability measure. Then for P-almost all
w e ), p, s a Dirac mass.

We first prove the following:

Lemma 3.46. Let < be a Borel linear order on (X,%). Suppose we have a value c € [0, 1]
and a probability measure p on X, such that for p-almost everyx € X, p(ve X :v <x) =c.
Then p is a Dirac mass (and c=1).

Lemma is fairly clear in the case (X, X, <) = (R, B(R), <); nonetheless, we can prove
it for more general Borel linear orders:

Proof of Lemma[3.46. We write “x <y” to mean “z <y and z # y”. For any z € X, let
I, ={veX:v=<z}andlet I :=I[,~{x} ={ve X :v<za}. ForanyxeX with p({z}) >0,
we have that p(I) =0 (since for all v € I’ p(I,) is strictly less than p(I,)). So then, we
have that either
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3.4 Invariant measures

(a) p is atomless; or

(b) there exists a unique z* € X with p({z*}) > 0, in which case p(I..) = 0 and

p({z*}) =c

Now suppose for a contradiction that p is not a Dirac mass (in which case, in case (b),
¢ # 1). Define a probability measure p on X and a value ¢ € [0,1] by

. { ¢ in case (a)

p(A)  in case (a) q
at © 71 0 in case (b).

p(A) = { p(AN{z* )
1-¢

in case (b)

We first show that p is atomless and for p-almost all x € X, p(I2) = ¢. In case (a), this is
clear. In case (b), it is clear that p is atomless. Also, in case (b), for any x € X with the
property that p(I,) = ¢, we have that p(I.) = p(I,) = 0; by assumption, the set of points
x that do not have this property is a p-null set, and is therefore clearly also a p-null set.

Now then, since p is atomless, we have that p® p(Ax) =0, and therefore

1 = pep((z,y):x<y) + pop((z,y):y<x)
= 2p®p((2,y) v <y)

=2 [ [ oy itdr) p(dy)
= 2 [ (1) (dy)
= 2¢.

Hence éz%.

(Of course, this rules out case (b); but we shall soon rule out every situation.)

Now define the following 6 subsets of X x X x X:

Jio= {(r,y,2) rx<y<z}
Jy = {(z,y,2) rx<z<y}
J3 = {(v,y,2) ry<x=<z}
Jy o= {(v,y,2) ry<z=<ua}
Js = {(z,y,2) s z<zx <y}
Jo = {(z,y,2) : 2<y <z}

Note that the sets Ji, ..., Js are mutually disjoint. Now J; is (¥ ® ¥ ® 3)-measurable,
since, writing I’ := { (z,y) : © <y} ¢ X x X, we can express J; as

Jio= (I'x X)n (X x I').
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3.5 Markov invariant measures and the proofs of the main results

Likewise the sets J,. .., Jg are also (2 ® ¥ ® X)-measurable. So then,

6
ﬁ®ﬁ®ﬁ(L_J1Ji)

67® 7@ (1)

=6 [ [ [ Xaues i) pdy) p(d2)
=6 [ [ (o [ e i) i) a2)

= 6 [ [ e ) dy) ()

=6 [ [, ptdy) (d)

- 6 [ 15012 p(d)

= 6f4p(dz

_ 3

2
which is absurd. Hence p is a Dirac mass (and therefore it is also clear that c=1). [
Proof of Lemma[3.45 Let I = {(v,z) ¢ X x X : v < 2z}, and for each z € X, let
I, = {v e X : v < x}. Since ¢ is monotone, we have that for all ¢, w and z,

Sp(ta W)Ix c Lp(t,w)a:~

Now define the function h:Qx X — [0,1] by A(w,z) = p,(I;). Note that h is measurable,
since it can be expressed as

h(w,z) = Lﬂj(v,x)uw(dv).

For each t € T+, let €; c Q be a P-full set such that for each w € €, (¢, W) fiw = fote-
Then for all (w,x) € Q; x X, we have

MO (w, ) = pgt(w)(Lp(tw)e)

1o (2 (t, ) (T (t0)e))
:uw(]m)

h(w,x).

v

So then, letting p be the integrated form of (1), we have that h o ©! "S" h for each

t € T*. Hence, since p is ©-ergodic, there exists ¢ € [0,1] such that h=1({c}) is a p-full
set. So for P-almost every w € €2, u,, has the property that p,(I,) = ¢ for p,-almost all
x € X. The result then follows by Lemma [3.46]| O

3.5 Markov invariant measures and the proofs of the
main results

Definition 3.47. A Markov invariant measure of ¢ is a p-invariant probability measure
won (2x X, F®X) that is F° -measurable.
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3.5 Markov invariant measures and the proofs of the main results

Remark 3.48. As in Remark [2.38, any ¢-invariant measure that is F’-measurable
for some r € T is in fact a Markov invariant measure: if, for some r € T+, () is an
Fr-measurable disintegration of a p-invariant measure p, then (o(r,07"w), j1g-ry) is an
FO_ -measurable disintegration of the same probability measure p.

Now let Z,; denote the set of Markov invariant measures of ¢, and let S denote the set of
probability measures on X that are stationary under the Markov transition probabilities

(()Otx )meX, teT+-

The following theorem is a generalisation of [KS12, Theorem 4.2.9HE|

Theorem 3.49. The map p — 7x.pu serves as a bijection between Ly, and S. The
wmverse map can be constructed as follows: for any € Ly, letting p := mx.p and letting
(pe) be any disintegration of p, we have that for any separable metrisable topology T
on X generating ¥ the M-valued stochastic process (@(t,07'w).p)ier+ wen converges via
countable subnets to (i) in the narrow topology N. If the topology T is such that ¢ has
left-continuous pullback trajectories, then this convergence can be strengthened to almost
sure convergence.

For any p € Iy, g is the only (©!)-invariant probability measure on (2 x X, F ® ¥)
whose restriction to Fg° ® ¥ coincides with Pre @ mx.j1. Hence i is -ergodic if and only
if Tx.p is ergodic with respect to the Markov transition probabilities (pL)zex, tet+-

So then, for any stationary probability measure p of the Markov transition probabilities
(¢ )zex ter+ there exists a unique Markov invariant measure p whose X-projection
coincides with p. Via disintegration, we can re-express this fact as follows: for any
stationary probability measure p of the Markov transition probabilities (¢%)zex, ter+
there exists an F9,_-measurable p-invariant random probability measure (1) such that
E,u, = p; and such a random probability measure is unique up to equivalence.

Note that by Corollary [3.37, for any crudely incompressible probability measure p, the
unique Markov invariant measure whose X-projection coincides with p is P ® p.

Proof of Theorem[3.49. For any u € Zys, we have (by Lemma and Remark [3.48)) that
plFeen = P|Fe ® Tx.p1; hence, by Lemma M(i), Tx«t €S.

We next establish that the map p — mx.pu from Zy, to S is surjective, by constructing
explicitly a (right-)inverse. Fix any p € S. For each t € T*, define the probability measure
pton (Qx X, F% ®3X) by

PHA) = Pep(@t(A) VAcFeoy.

Since IP is (6")-invariant, it is clear that pf is P|z=-compatible for each t. Now recall from
Section that for each s € T*, ©! is (F5° ® X, F*° ® ¥)-measurable; so then, given any

"UWorking only in the context of a spatially continuous RDS on a Polish space, Theorem 4.2.9 of
[KS12] asserts that the map p— wx.p from Ty, to S is bijective, with the inverse being as in (1.7) for
any unbounded increasing (t;,).
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3.5 Markov invariant measures and the proofs of the main results

s,t € T* with s < ¢, we have that for all Ae FX ®%,

pt(A)

P®p(©7'(A4))
P®p(07(07(4)))
Pep((07°(A))
(since, by Lemma (i), Pl ® p is ©-invariant)
1*(A).

Hence, by Theorem (with G; = F% and G, = F), there exists a unique probability

measure 4 on (2 x X, F ® X)) which agrees with pf on F% ® X for every t € T*; and p is
itself P-compatible. Fixing any 7 € T*: for all ¢ € T*, as in Section [2.6| we have that ©7 is
(F2 o, Ff‘(’t”) ® X)-measurable; and so for any A € % ® X, noting that A is obviously
also in ff‘(’HT) ® 23, we have that

OIu(A) = p'(07(4))
P& p(0-*7)(A))
Pep(67(4))
(since, by Lemma M(i), P|ze ® p is ©7-invariant)

(' (A).

Hence ©7p is equal to . This is true for any 7 € T+, and therefore i is p-invariant. Now
by Lemma for each ¢ € T+ the integrated form of (¢(t,07'w).p)weq agrees with pt
on F% ® 3. Hence, by Theorem , letting (p,,) be any disintegration of u, we have
that for any separable metrisable topology 7 on X generating 3 the M-valued stochastic
process (¢(t,07'w).p)ier+ weq converges via countable subnets to (i) in N7; in the case
that ¢ has left-continuous pullback trajectories under 7, we have that for any bounded
continuous g: X - R the map t — g(p(t,07'w)x) is left-continuous for all z and w, and
therefore (by the dominated convergence theorem) the map t — [, g(¢(t,07*w)x) p(dx)
is left-continuous for all w; hence, in this case, the map t — p(t,07'w),p is left-continuous
in N7 for all w, and so (¢(t,07'w).p)ier+ weq converges almost surely to () in N7.

In any case, the measure p is F9_-measurable, since, fixing any Polish topology T on
X generating Y and an arbitrary probability measure ¢ on X, the random probability
measure

[ Nr-lim p(n,07"w).p if this limit exists
e c otherwise

is a disintegration of . Hence u € Zy;. By construction, u| Fres = P| 7o ®p, and therefore
(by Lemma [3.32)) mx.p = p. This completes the proof of the surjectivity of the map
W= Ty from Iy to S.

We next show that for any i € Zy, fi is the only (©)-invariant probability measure on
(Q2x X, F ®¥) whose restriction to F§° ® X coincides with P|z= ® mx.fi; by Lemma W,
this implies the injectivity of the map u — wx.u from Zy; to S. Fix any i € Zyy; let
p = 7x.t €8S, and let pt (for each t) and p be as constructed above. Let p’ be any
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3.5 Markov invariant measures and the proofs of the main results

(©!)-invariant probability measure with the property that y/|rxes = P|z> ® p. Then for
any t e T+, for all Ae F% ® X,

W(A) = w(07(A) = Pep(07(4)) = p'(4),

and therefore p/ = pu; but since fi itself has the property that f Fres = P| Fe ® p, We can
conclude that p' = i, as required.

Now for any € Zy; that is @-ergodic, it is clear that P|ze ® mx . is ergodic with respect
to (), and therefore by Lemma [2.21](ii), my.u is ergodic with respect to the Markov
transition probabilities (¢ )yex ter+. Conversely, for any p € Iy, that is not p-ergodic, p
can be expressed as a non-trivial convex combination of two (©!)-invariant probability
measures v, and v, that are distinct from p; since p is the only (©%)-invariant probability
measure on (2 x X, F ® ¥) whose restriction to F5° ® ¥ coincides with P|ze ® mx. 1, we
have that I/1|f8°®2 and V2|f(‘)>°®2 are distinct from ]PLT-SO ® mx« . Thus PLT-SO ® Tx« [t 1S not
ergodic with respect to (©%), and therefore, by Lemma[2.21fii), 7x.j is not ergodic with
respect to the Markov transition probabilities (¢%)ex, ter+- ]

Remark 3.50. For any P-compatible probability measure p, we can define the initial
observation time of j1 to be the infimum of the set of values r € T such that p is Fr -
measurable. We have established (in Remark that for any ¢-invariant measure
1, the initial observation time of p cannot be a strictly positive finite value. Now
suppose we have a Markov invariant measure p for which the initial observation time
is strictly negative; then there exists r € T* \ {0} such that p is F-7 -measurable, and so
by Lemma , the restriction of 1 to % ® ¥ coincides with P|z= ® mx.p; hence, by
Corollary [3.37, mx.p is crudely incompressible, and therefore =P ® 7y, p. So then, we
have the following simple classification of Markov invariant measures: for any Markov
invariant measure u, either

(a) =P ® p for some crudely incompressible probability measure p (in which case
the initial observation time of y is obviously —oo); or

(b) mx.pu is not crudely incompressible, and the initial observation time of p is 0.
In view of Theorem [3.49] we are now in a position to prove Theorem [3.6}

Theorem 3.51. Let p be a stationary probability measure of the Markov transition
probabilities () zex ter+. Let (po) be a disintegration of the unique Markov invariant
measure (1 satisfying wx.pu = p, and let Q, € M) be the image measure of P under
the map w v~ . (This does not depend on which version (u,) of the disintegration is
chosen.) Then Q, fulfils the properties described in Theorem .

Proof. Since w +~ p,, is a random fixed point of ¢, and has a modification that is F9_-
measurable, Lemma gives that (), is ergodic with respect to the Markov kernel
(go%),;eM for every ¢t € T+ ~ {0}. Now fix a separable metrisable topology 7 on X
generating Y. For each t € T*, ¢! is the law of the random variable w = o(,07'w). p; so
then, for any unbounded increasing sequence (¢, )ney in T+, since (@(tn, 07"w)«P)neN, wen
converges almost surely to (fi,)weq in N7, Lemma gives that ¢} converges to Q,
in Njy,. Fixing any r € N, we have that (¢(¢,07'w).p)®" = @*"(t,07'w).(p®") for all
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3.5 Markov invariant measures and the proofs of the main results

t and w; and so, for any unbounded increasing (t,)ny in T*, Lemma gives that
(@ (tn, 07w)  (P®7) )nen, wenr converges almost surely to (U8 )wen in N7er, and therefore

i (P°1) = Eu(@ (1, 07w). (p°7))
"2 Eu(u®)  (by Lemma [3.26)
= ET‘(Q)

Now if p is ergodic with respect to the Markov transition probabilities (¢! )ex teT+, then
(pw) is p-ergodic (by Theorem [3.49), and so by Lemma [3.43] there exists n € Nu {0}
such that p, € IC,, for P-almost all w € €2, and therefore Q,(KC,) = 1. O

Theorem [3.13] then follows from Lemma B.45 and Theorem B.511

Remark 3.52. For any probability measure p that is ergodic with respect to the Markov
transition probabilities (¢l ),ex teT+, @ is statistically synchronising with respect to p if and
only if the unique (up to equivalence) F° -measurable p-invariant random probability
measure () satisfying E,u,, = p is P-almost everywhere a Dirac mass. In other words, ¢
is statistically synchronising if and only if there exists an F°_-measurable random fixed
point ¢:€2 - X such that ¢.PP = p.

We now prove Theorem [3.18]

Proof of Theorem[3.18. (A) Let us work with the metric d(x,y) = arc tan |z —y|. Suppose
p is (¢! )-ergodic. On the basis of Theorem and Remark [3.52] let ¢:Q - X be
an F°_-measurable random fixed point of ¢ such that ¢.P = p. We will show that
q is crudely pullback-attracting over X,. Fix any unbounded countable S c T*. By
Theorem , for P-almost every w € €, ¢(t,07'w).p converges weakly to d4,) as t
tends to oo in S so fix any sample point w for which this is the case. Fix z € X, and
>0, and let V := B.(q(w)). Obviously ¢(¢,07'w).p(V) — 1 as t tends to oo in S. Let
A-={yeX,:y<z}and A" = {ye X, :y >} Itis clear that p(A~) and p(A*) are
both positive. Let v := min(p(A~), p(A*)). Let T € S be such that for all t € S with ¢ > T,
o(t,07'w).p(V) >1—-+. Fix any t € S with ¢ > T. Since p(p(t,07'w)"1(V)) > 1 -7, we
have that ¢(t,07'w)~1 (V') intersects both A~ and A*; but since ¢ is monotone, we also
have that ¢(t,07'w)=1(V) is convex. Therefore, x € p(t,07tw)~1(V).

(B) Suppose p is (¢t )-ergodic. Let p be a probability measure on X with p(X,) = 1. For
any bounded continuous g: X - R, the dominated convergence theorem gives that

[Lawyematay) = [ glenomw)r)Po pd(w,x)
> [ 9(a(@) P8 p(d(w,2)) asn— oo in N
- | 9a() P(dw)
= fXg(y)p(dy)-

Thus ™5 converges weakly to p as n — oo in N. Hence in particular, if p is (¢%)-
stationary then p = p.
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(C) Take any two distinct (¢l )-ergodic probability measures p; and py. Since X, is
crudely invariant (by Lemma [2.52)), p2(X,, ) must be equal to either 0 or 1; but po(X,,)
cannot be equal to 1, otherwise (by part (B)) we would have that ps = p;. So p2(X,,) =0;
and likewise, p1(X,,) = 0. Hence, by Lemma [2.51], we have that either X, and X, are
disjoint or X, = X,,. But it is clear that X, # X,,, since p;(X,,) = 1 but p1(X,,) =0.
So X, and X,, are disjoint.

(D) It is clear that (i)=(ii) and (i)=(iii). We next show that (ii) and (iii) together imply
(iv). Suppose (iv) does not hold, and let A be a non-empty convex crudely invariant
proper subset of X,. Let A~ be the smallest downward-inclusive set containing A, and
let A* be the smallest upward-inclusive set containing A. Since ¢ is monotone and
A is crudely invariant, it clearly follows that A~ and A* are crudely invariant. Since
A=A"nA" and A is a proper subset of X,, we have that at least one of the sets A~
and A* does not contain the whole of X,. First suppose that X, ¢ A~. Then X,n A~
is a convex proper subset of X,, and so p(A~) = p(X,nA~) <1. But also, X,\ A~ is a
convex proper subset of X,, and so p(X,\~ A7) <1, and so p(A~) > 0. So then, A™ is a
downward-inclusive crudely invariant set that is neither p-null nor p-full, and so (ii) does
not hold. Likewise, if we suppose that X, ¢ A*, then A* is an upward-inclusive crudely
invariant set that is neither p-null nor p-full, and so (iii) does not hold.

It remains to show that (iv)=(i). Suppose that (i) does not hold, i.e. that p is not
ergodic. Let py be a (¢ )-ergodic probability measure such that po(X,) = 1. Obviously
X,, € X,. By part (B), it follows that X, is a proper subset of X, (since py is the only
(¢l )-stationary probability measure assigning full probability to X, ). Hence (iv) does
not hold.

(E) Suppose there is a deterministic fixed point p in X,. If we assume that p is not
the maximum of X,, we have that the set X n[-oo,p] is a measurable invariant set that
is neither p-null nor p-full, and therefore p is not (¢! )-ergodic. Likewise, if we assume
that p is not the minimum of X,, we have that the set X n[p, co] is a measurable invariant
set that is neither p-null nor p-full, and therefore p is not (¢! )-ergodic. Since p is not
a Dirac mass, p cannot be both the maximum and the minimum of X,; so we conclude
that p is not (L )-ergodic.

Conversely, suppose p is not (¢! )-ergodic. Let py be a (¢} )-ergodic probability measure
such that po(X,) = 1. As in part (D), we have that X, is a proper subset of X,. Let A
be a connected component of X, \ X, . First suppose that the elements of A are greater
than the elements of X, , and let p = sup X, = inf A. Since X, is crudely invariant and
 is continuous in space, it is clear that p is crudely subinvariant; and therefore, since ¢
has right-continuous trajectories, p is subinvariant (by Lemma . Now for each n € N,
it is clear that p([p,p++]nA) > 0; so let p, be a (! )-ergodic probability measure such
that p,([p,p+1]nA) >0, and let p, :=inf X, . By part (C), X, and X, are disjoint,
and therefore p, > p. Hence in particular, p, € [p,p + %] For the same reason that p is
subinvariant, we have that p,, is superinvariant for each n. Let Q be a P-full set such that
forall we Q, neNand ¢ e T+, o(t,w)pn > pn. Since @ is continuous in space and p,, = p
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as n — oo, we have that for all w e Q and ¢ € T*, ©(t,w)p > p. So p is superinvariant. But
p is also subinvariant. Hence p is a deterministic fixed point. Now if we suppose instead
that the elements of A are less than the elements of X, then we can similarly show that
inf X, is a deterministic fixed point.

If pis (pl)-ergodic, Lemma gives that the random fixed point ¢ in part (A) is
pullback-attracting over X,. O

117



Chapter 4. Sample-Pathwise Concepts of
Synchronisation and Stability

In Chapter 3, we considered a notion of synchronising behaviour which, philosophically,
is based around convergence in probability. (See, in particular, Corollary ) We will
now consider notions of synchronisation that are based around the notion of mutual
convergence of distinct trajectories under individual realisations w of the noise. Unlike
in Chapter 3, the notions that we are consider are not measurable invariants, and in
many cases, are not even topological invariants, but depend on a given metric (or at
least, a given uniform structure). Nonetheless, in the case that the phase space X is
equipped with a compact metrisable topology, all the notions of synchronisation that we
shall consider are topological invariants, due to the following lemma:

Lemma 4.1. Fixz a compact metrisable topology on X, and suppose we have a T*-indezxed
family (Ay)er+ of sets A, ¢ X. Suppose there exists a metrisation of the topology on X
in which diam(A;) - 0 as t > co. Then it holds that in every metrisation of the topology
on X, diam(A4;) - 0 as t - oo.

Proof. Fix any metrisation d of the topology on X; we will show that the following
statements are equivalent:

(i) diam(A;) -0 as t — oo;

(ii) for every neighbourhood U of Ax in X x X, there exists T € T* such that for all
tZT, AtXAtCU.

(Since (ii) makes no reference to the metric d, this will complete the proof.) Let us equip
X x X with the metric di( (z1,22), (y1,y2)) = d(x1,y1) + d(2z2,y2). Since Ay is compact,
every neighbourhood U of Ax contains some e-neighbourhood of Ax. But it is easy to
check that for every € > 0, the e-neighbourhood U, of Ay is precisely

Us = {(x1,22) e X x X : d(x1,29) <}
and therefore, for any A c X,
diam(A)<e <= AxAcU..
Hence it is clear that (i) and (ii) are equivalent. O

Standing Assumption. Throughout the rest of Chapter 4, we fix a separable metric d
on X whose Borel o-algebra coincides with X2, and we assume that ¢ is a right-continuous
RDS on the metric space (X,d).

Since we work with a fixed metric d, we will usually write B(X) instead of ¥; nonetheless,
we are still assuming that B(X) is standard (which is equivalent to saying that X is a
Borel-measurable subset of the d-completion of X'). We still write M for the set of Borel
probability measures on X. Recall that ¢ is called an open-mapping RDS if o(t,w)U is
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4.1 Borel and random equivalence relations

open for every ¢, w and open U c X.

Before discussing synchronising behaviour, it will be useful first to briefly discuss “random
equivalence relations”. (Specifically, this will become relevant when considering pairs of
initial conditions whose subsequent trajectories synchronise.)

4.1 Borel and random equivalence relations

A Borel equivalence relation on (X, B(X)) is an equivalence relation ~ on X such that the
set {(z,y) € X x X : x ~y} is B(X x X)-measurable. Note that if ~ is a Borel equivalence
relation then every equivalence class of ~ is B(X)-measurable.

Lemma 4.2. Let ~ be a Borel equivalence relation on (X, B(X)). Given any probability
measure p on X, the following statements are equivalent:

(i) one of the equivalence classes of ~ is a p-full measure set;
(ii) p® p((2,y) : v ~y)=1.
Proof. Suppose (i) holds, and let X be a p-full equivalence class of ~. Then
[X p(y:x ~y) p(dx)
/x p(y:x~y)p(dz)
[ p(X) plda)

= 1.

p®p((2,y) :x~y)

Now suppose (i) does not hold. Then for every x € X, p(y:x ~y) <1 and therefore

p@p((z,y) :x~y) = pr(y=I~y)p(dﬂf) < L O

Now we define a random equivalence relation on (X,B(X)) to be an Q-indexed family
(~w)weq Of equivalence relations ~,, on X such that the set {(w,z,y) e Qx X x X : x ~, y}
is (F ® B(X x X))-measurable.

Note that in this case, ~, is a Borel equivalence relation for every w € ().

Given a sub-o-algebra G of F, we will say that a random equivalence relation (~,) is
G-measurable if the set {(w,z,y) €2 x X x X :x ~, y} is (G ® B(X x X))-measurable.

Definition 4.3. Given a random equivalence relation (~,) on (X,B(X)), we define the
P-almost-sure projection of (~,) to be the equivalence relation ~ on X given by

xry <= Plw:z~y,y)=1

Note that this is indeed an equivalence relation on X, and moreover, that it is a Borel
equivalence relation on (X, B(X)).
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4.2 Synchronisation

Lemma 4.4. Let (~,) be a random equivalence relation on (X,B(X)), with ~ being the
P-almost-sure projection of (~,). Given any probability measure p on X, the following
statements are equivalent:

(i) one of the equivalence classes of ~ is a p-full measure set;
(i1) for P-almost every w € Q, one of the equivalence classes of ~,, is a p-full set.

Proof. By Lemma [4.2] (i) is equivalent to saying that p® p((z,y) :  ~y) =1, i.e. that
(p®p)-every (z,y) € X x X has the property that for P-almost all w € Q, x ~,, y; by Fubini’s
theorem, this is equivalent to saying that for P-almost all w € Q, p®p((z,y) : x ~, y) =1,
which (by Lemma 4.2 again) is equivalent to (ii). O

4.2 Synchronisation

Given any sample point w € {2 and any points z,y € X, we will say that = and y synchronise
under w, and write x ~, y, if d(p(t,w)z, o(t,w)y) >0 as t - oco.

It is clear that for each w € ), ~, is an equivalence relation on X. By Lemma 4.1
(applied to the set A; := ¢(t,w){x,y}), if X is compact then for every w the equivalence
relation ~,, is preserved under any topology-preserving change of metric.

Lemma 4.5. (~,)ueq s an F§°-measurable random equivalence relation on (X,B(X)).

Proof. Let D be a countable dense subset of T*. Since ¢ has right-continuous trajectories,
it is clear that x ~, y if and only if d(¢(t,w)z, p(t,w)y) = 0 as t tends to oo in D; hence
we can write - o
N = NU N {w2,y): dle(tw)z,e(tw)y) < 1}
i=1 j

=1 teD
t>j

Hence the set {(w,z,y) 2z ~, y} is (Fg° ® B(X x X))-measurable. O

Now let ~ be the P-almost-sure projection of (~, ), that is
r~y = Plw:d(p(t,w)r, e(t,w)y) >0ast—>o0) = 1.
Given z,y € X, we will say that x and y synchronise almost surely if x ~ y.

Definition 4.6. We say that ¢ is synchronising if the whole of X is one equivalence
class of ~. Given a probability measure p on X, we will say that ¢ is p-almost everywhere
synchronising if ~ admits a p-full measure equivalence class.

For example: It is easy to show that the RDS in Example is synchronising, and that
the RDS is Example m is synchronising for a < 0. The RDS generated by (3.2) in
Example is also synchronising, as will be explained in Example [6.7]

Lemma 4.7. Let p be an ergodic probability measure of the Markov transition probabilities
(98 )wex ter+ such that ¢ is p-almost everywhere synchronising. Then ¢ is statistically
synchronising with respect to p.
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4.2 Synchronisation

Proof. Since ¢ is p-almost everywhere synchronising, the stochastic process (7;)qr+ in
Corollary converges almost surely to 0. Hence (r;) converges in probability to 0, and
so  is statistically synchronising with respect to p. O

The following is adapted from [New15b, Proposition 2.1.4].

Lemma 4.8. If ¢ is synchronising then there is at most one stationary probability
measure of the Markov transition probabilities (¢L)zex ter+; and if such a stationary
probability measure p exists, we have that for every probability measure m on X, o"*m — p
weakly as t - oo[T]

Proof. Suppose ¢ is synchronising, and suppose we have a stationary probability measure
p of (). Fix an arbitrary point p € X; we will show that ¢! converges weakly to p as
t - oo. Let g: X - R be any bounded Lipschitz function. Since ¢ is synchronising, we
have that for (P® p)-almost all (w,z) € Qx X, 2 ~, p and so g(p(t,w)z)-g((t,w)p) = 0
as t - oo. Hence the dominated convergence theorem gives that

[ aet.w)) (Be p)(dw,2) - [ (et ) Blds) » 0 as too.
® ®

Observe, however, that

@ = [ g()p(d2)

since P|z ® p is (OF)-invariant, and that

® = [ a) ().

Thus we have shown that ¢}, - p weakly as t - oo for every p € X. It follows, by the
dominated convergence theorem, that ¢*m — p weakly as t - oo for every probability
measure m on X. O

Recall that, given a probability measure p on X, a continuity set of p is a set A ¢ X with
the property that p(A4°) = p(A) (i.e. p(OA) = 0). (As in Appendix A, weak convergence
of probability measures can be characterised by convergence on measurable continuity
sets.) The following is a generalisation of [New15c, Theorem 4.5(II)].

Proposition 4.9. Let p be a probability measure on X that is ergodic with respect to
the Markov transition probabilities (¢t)zex ter+, and let A c X be a continuity set of p.
Then P-almost every w € ) has the property that for any equivalence class C' of ~, with
p(C) >0, for any x € C,

- Z_:HA@P(Z}W)?C) - p(A) asn—-o00 ifT=2Z,
L)

7 [ alett )it - p(A) asT oo i T=R

(where p denotes the completion of p).

"When a Feller-continuous family of Markov transition probabilities (u!) on a separable metric space
X admits a probability measure p with the property that u'*m — p weakly as t — oo for every probability
measure m on X, it is sometimes said that p is strongly mizing with respect to (u.).
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4.2 Synchronisation

Two immediate corollaries are:

Corollary 4.10. Suppose that ¢ is synchronising, and that there exists a probability
measure p on X that is stationary under the Markov transition probabilities (pL)zex, tet+-
Given any x € X and any continuity set A c X of p, for P-almost all w € Q) we have

lz_:]lA(go(zw:L') - p(A) asn—-o0 ifT=12,
i=0

S

7 [ ualet et > 54) s T FT=R

Corollary 4.11. Let p; and ps be distinct ergodic probability measures of the Markov
transition probabilities (¢L)zex ter+. Then P-almost every w € §2 has the property that for
any equivalence class C' of ~,, if p1(C) >0 then po(C) = 0.

(Corollary follows from Prpoosition [4.9 by considering a continuity set A € B(X) of
p1 such that po(A) # p1(A).)

Proof of Proposition[{.9. For convenience, write A for the counting measure on Z if T = Z,
or the Lebesgue measure on R if T = R; and for any B c R, we write Tp :=Tn B. Given
any S c X and ¢ >0, Bs(S) denotes the d-neighbourhood of S. Note that p(A) = p(A).

For each ¢ > 0, let
D5 = (B(;(A) \/_1) U (B(s(X \A)HA)

Note that the set Djs decreases as 0 decreases. Also note that for any x € Ds,
max(d(z, A),d(x, X ~ A)) < 0; hence NsoDs c OA. So then, since p(0A) = 0, we
have that p(Ds) = 0 as § — 0.

On the basis of Lemma let Q c Q be a P-full set with the property that for every
w € (), for p-almost all y € X the following two statements hold:

) F o iR (DDA > 5(A) as T = oo

(ii) for each n €N, %fT[OyT)ILD%(gp(t,w)y) A(dt) = p(Dy) as T — oo.

Fix any w € Q for which ~, admits an equivalence class C' with p(C) > 0. Fix such an
equivalence class C, and fix any x € C'. Since p(C') > 0, we may fix a point y € C' such
that statements (i) and (ii) hold. Now we need to show that

S [ Ta(o(t,0)z) A(dt) - p(A) as T — oo.

[0,T)

Fix ¢ > 0, and let N € N be such that p(D%) < e. Let Ty € T* be such that for all
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4.2 Synchronisation

t € T(7,.00), d((t,w)x, o(t,w)y) < +. For each T > Tj, we have that

- % fT Li(p(t,w)y) A(dt) - p(A) + % fT [TOVT)ILA(go(t,w):E)—ﬂg(go(t,w)y) A(dt)

[To,T)
1 _ 1
< [ et - g + 2 [ it )e) - Lalp(tw)p)l Ad)
Trry,m) T Iz, )
1 _ 1
<z [ et - fA)] + 5 [ o, (et wly) Mdb).
Trry,m) T Igyry N
-0 a;rT»oo »p(D%) as T—o0

So, since p(D L ) < &, we have that for all T sufficiently large,

‘%/T[O,T)HA(SO(taw)x) Adt) = p(A)] < ¢

as required. N
The following is a slight generalisation of part (b) of the proof of [LeJ87, Proposition 2].

Lemma 4.12. Let p be an ergodic probability measure of the Markov transition
probabilities (¢L)zex ter+, and suppose there exists a P-positive measure set E € F such
that for each w e E, ~,, admits an equivalence class of strictly positive measure according
to p. Then the p-clustering number of ¢ is finite.

Proof. Let R :={(w,z,y) :x ~, y}, and let § :=P® p® p(R). We have

fg fx ply € X 1y~ @) p(da) P(dw)

[E fX py € Xy ~, x) p(da) P(dw)
> 0.

o

v

Fix any ¢ > 0, and let G. := {(z,y) : d(z,y) < €}. For each (w,z,y) € R we have
that 1o (p(t,w)x,p(t,w)y) - 1 as t - oo, and therefore (by the dominated convergence
theorem),

lim fmﬂGs(@(t,W)x,w(t,w)y)Pw@p(d(w,x,y)) =0
Hence in particular,
limsup ¢;,(p ® p)(G2) = lirl'énsupfQ o Le (@ w) @) Pepep(dw,,y) 2 0,
and so, letting @, be the statistical equilibrium associated to p, E>(Q,)(G.) > d. Since

e was arbitrary, it follows that F»(Q,)(Ax) > 4. So E2(Q,)(Ax) >0, and therefore the
p-clustering number of ¢ is finite. m
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Remark 4.13. One can also obtain Lemma as a fairly direct consequence of
Corollary B.9(A).

Lemma 4.14. Suppose that ¢ is invertible, and that ¢ is synchronising. Let p be a
probability measure that is ergodic with respect to either the Markov transition probabilities
(1) zex ter+ or the Markov transition probabilities (@) zex ter+. Then p is either atomless
or a Dirac mass at a deterministic fixed point.

Proof. 1f ¢ is synchronising then any finite invariant subset of X must be a singleton.
Hence the result follows immediately from Lemma [2.58]. m

4.3 Concepts of local stability

Overview

Suppose we have a physical process whose time-evolution is “theoretically” governed
by some mathematical model. In practice, the process will always be subject to small
perturbations from various sources not accounted for in the model; and moreover, if the
model includes an assumption on what the initial state of the process is, in practice the
initial state will most likely not be exactly as is assumed in the model. Heuristically,
we regard the process as being “stable” (with respect to the model) if, in spite of these
practical considerations, the time-evolution of the physical process will still not “deviate
too seriously” away from the time-evolution predicted by the model.

In the context of synchronisation of different processes, stability is a highly relevant
issue. If, under some (deterministic or stochastic) mathematical model, two physical
processes are predicted to synchronise with each other, this synchronisation will never
actually be achieved in practice if the processes are easily “knocked off course” by small
unaccounted-for perturbations.

Perhaps the simplest approach to examining “stability” is the following: assume that
the model for the evolution of the process really is accurate, but imagine that at some
time, we perturb the process within an instant from its current state x to a new state
x+0 that is close to x; what effect will this perturbation have on the subsequent trajectory?

From this point of view, we now mention two basic notions of stability for processes
governed by deterministic models:

e Lyapunov stability. Heuristically, this is the notion that if a process is subjected
to a small perturbation at some given moment in time, provided we know that the
perturbation is small enough, the subsequent evolution of the process will never
deviate too far away from how the process would have evolved if the perturbation
had not occurred.

o Asymptotic stability. In the sense that we shall use the termf] heuristically,
this is the notion that if a process is subjected to a small perturbation at some

2 Asymptotic stability is often defined as the combination of both Lyapunov stability and local
pointwise attractivity; the definition that we shall use (which is similar in principle to that used in
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given moment in time, there is a definite time-scale within which—provided the
perturbation was sufficiently small—the subsequent evolution of the process will
return to being “practically the same” as if the perturbation had not occurred.

To illustrate: Imagine we have a fixed metal dome that is modelled as rigid and
frictionless, and we have a “point particle” placed on the surface of this dome. Imagine
that the particle is “intended” to start with zero velocity at the very top of the dome,
and is modelled as being subject only to gravity and the contact force from the dome.
Provided the curvature at the top of the dome is finite, the classical laws of mechanics
dictate that the particle will forever remain at the top of the dome. However, if the initial
position of the particle is not quite perfectly at the top of the dome, then the particle
will slide down the dome, and will eventually be in a completely different location from
if it had started perfectly at the top of the dome. So a stationary particle at the top of
the dome is not Lyapunov stable.

By contrast, imagine we have a fixed upright metal cup that is modelled as rigid and
frictionless, and we have a “point particle” placed on the inside of this cup. Imagine that
the particle is “intended” to start with zero velocity at the very bottom of the cup, and
is modelled as being subject only to gravity and the contact force from the cup. Once
again, the classical laws of mechanics dictate that the particle will forever remain at the
bottom of the cup. Now if the initial position of the particle is not quite perfectly at the
bottom of the cup but is very close, and the initial speed of the particle is not exactly zero
but is very small, then the particle will still forever move around very close to the bottom
of the cup. Thus, a stationary particle at the bottom of the cup s Lyapunov stable; but
since there are no dissipative forces present, a stationary particle at the bottom of the
cup is not asymptotically stable. However, if we now imagine that the cup is filled with
air and our model incorporates air resistance, then any particle which does not escape
the cup will eventually settle towards being stationary at the bottom of the cup. Hence
a stationary particle at the bottom of the cup is now asymptotically stable.

We will soon show that, provided basic continuity requirements are satisfied, asymptotic
stability always implies Lyapunov stability.

So far, our description of stability has been within a deterministic setting, and we will
soon go on to formalise the above notions within the deterministic setting. In the case
of a nowse-influenced process, each possible realisation w of the noise gives rise to a law
specifying the time-evolution of the processf]| and hence, for each w, we can consider the
notions of Lyapunov and asymptotic stability.

[FGS14]) is slightly different from this, but “very nearly coincides” with this; see the Appendix of
[New15b| for details.

3Tn reality, many stochastic models for the evolution of a system do not actually assign to each noise-
realisation w a law for the evolution of a system; instead, they provide an equivalence class of such
assignments, where two such assignments are “equivalent” if they agree on almost every noise-realisation
w. (For example, this is the case for a typical multiplicative-noise SDE with more than one diffusion
term.) In such a situation, every representative of the equivalence class serves as an equally valid model;
so one can just fix an arbitrary representative of the equivalence class.
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We now formalise the notions of Lyapunov and asymptotic stability, and show that (under
mild conditions) asymptotic stability implies Lyapunov stability. This is an important
fact to prove, since, when we go on to consider stability in random dynamical systems,
we will only work with asymptotic stability.

Stability in non-autonomous dynamical systems

(In the following discussion of stability in non-autonomous dynamical systems, the
separability of the metric d and the standardness of B(X) is not relevant.)

A non-autonomous dynamical system on the metric space (X, d) is a family (f*")ser rer+
of continuous functions f&*': X — X such that

(i) fs=idx for all seT;
(ii) f2 = f?o f;t forall tg <ty <ty in T.

Definition 4.15. We will say that a non-autonomous dynamical system (f$*?) is right-
continuous if for any decreasingﬂ sequence (t,) in T* converging to a value ¢t and any
sequence (z,) in X converging to a point z, f:*'"(z,) — fs*(x) as n — oo for all s € T*.

Note that if ¢ is a right-continuous RDS, then (¢(t,0°w))ser te7+ is a right-continuous
non-autonomous dynamical system for every w € 2.

Definition 4.16. We will say that a non-autonomous dynamical system (f*') is cadldg
if (f**) is right-continuous and for each s € T and ¢ € T* \ {0} there exists a functior[]
g5*t: X - X such that for any strictly increasing sequence (¢,,) in T* converging to t and
any sequence (r,,) in X converging to a point x, f5*'"(z,) —» g5*(z) as n — oo.

Note that if ¢ is a cadlag RDS, then (p(t,0%w))serter+ is a cadlag non-autonomous
dynamical system for every w € €.

Now recall that a family (fa)aer of functions f,: X — X is said to be equicontinuous
at a point x € X if for every € > 0 there exists 6 > 0 such that for all o € I,

fa(BzS(x)) c Be(fa(x))-

Definition 4.17. We will say that a non-autonomous dynamical system ()t er+
is finite-time stable if for every s € T and T € T*, the family of functions (f$*)oc<r is
equicontinuous at every point in X.

The following is [New15b, Lemma Al].
Lemma 4.18. Fvery cadlag non-autonomous dynamical system is finite-time stable.

Proof. Let (fs**)serter+ be a cadlag non-autonomous dynamical system, and suppose for
a contradiction that we have s € T, T € T* and x € X such that the family (f5**)ocs<r
is not equicontinuous at x. Then there exist ¢ > 0, a sequence (z,) in X converging
to o, and a sequence (t,) in T* n [0,T], such that d(f:™ (x,), f*(x)) > e for all

4Here, a “decreasing sequence” need not be strictly decreasing.
°For our purposes here, we will not need the function g5** to be continuous.
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n. Let (n;).n be an unbounded increasing sequence in N such that either (¢, )iy is

a decreasing sequence (with t* := inf; ¢, ) or (t,)ia is a strictly increasing selquence
(with ¢* := sup, t,,). If (¢,,) is decreasing then g (z,,) = f57(2) and i (2) >
F5H(z) as i — oo, so d(fim (xni),f?t"i(x)) — 0 as ¢ — oo, contradicting the fact that
d(f& (xy), f(x)) > e for all n. If (t,,) is strictly increasing then Fortn (z,,) = g5t ()
and 27 (z) - g5+t () as i - o0, so once again, d(fo " (q:n),ffﬁ"l(:c)) -0 as i — oo,
contradicting the fact that d(f:™ (x,), f&*'(z)) > € for all n. So in either case, we have

a contradiction. O

Definition 4.19. Given a point x € X and a value sy € T, we will say that a non-
autonomous dynamical system (f$*)serser+ 18 Lyapunov stable at x at time sq if the
family of functions ( fﬁg”)tew is equicontinuous at x.

Definition 4.20. Given a point x € X and a value sy € T, we will say that a non-
autonomous dynamical system (f5*)gerer+ is asymptotically stable at x at time sq if
there exists a neighbourhood U of z such that diam(f3*(U)) =0 as t — oo.

Example 4.21. Let X =R and let T =R. (A) Suppose f5*(z) = xet. Then for every
x eR and sg € R, (f5*) is asymptotically stable at = at time sg. (B) Suppose f5*(x) = x.
Then for every z € R and sg € R, (f*) is Lyapunov stable at x at time sg, but not
asymptotically stable at z at time so. (C) Suppose f:*t(z) = xesg™(®)t. Then for every
x <0 and sg € R, (f*) is asymptotically stable at z at time sq; but for every z > 0 and
sp € R, (fs*?) is not Lyapunov stable at x at time sp.

The following is essentially [New15b, Theorem A11(II)].

Lemma 4.22. Let (fs*)serter+ be a non-autonomous dynamical system that is finite-
time stable. For any x € X and so € T, if (f5*)senter+ is asymptotically stable at x at
time So, then (f3*)serter+ is Lyapunov stable at x at time so.

Proof. Let x € X and s € T be such that (f3*!) et te7+ is asymptotically stable at x at time
s0, and fix £ > 0. Let 7 > 0 be such that diam(f:*(B,(x))) - 0 as t - co. Let T e T*
be such that for all ¢t > T, f*"(B.(x)) ¢ B-(f:*(x)). On the basis of the fact that
(f£) et e+ is finite-time stable, let 7 > 0 be such that for all 0 <t < T, f2*"(B:(z)) c
B.(f2*(x)). Then setting 0 := min(r,7), we have that fs**(Bs(z)) ¢ B.(f*"(z)) for
all t e T*. So we are done. O

4.4 Asymptotic stability in RDS
(Most of the content of this section is taken from Section 2.2 of [New15b].)

Typically, local stability of trajectories of RDS is investigated by considering Lyapunov
ezponents. Specifically, given a differentiable RDS on a Riemannian manifold and an
ergodic probability measure p for the associated Markov transition probabilities, provided
the partial derivatives of the RDS are “reasonably well controlled”, there exists a value

6This means that the RDS is differentiable in space, with the derivatives depending continuously (or
right-continuously) on time.
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A € [—o0,00) (called the mazimal Lyapunov exponent) which, loosely speaking, is a
measure of infinitesimal-scale repulsivity common to the trajectories of p-almost all initial
conditions almost surely. If A = 0, one cannot normally make any conclusions about
either Lyapunov or asymptotic stability. However, if A < 0 then one can usually conclude
that (at any one given time) the trajectories of p-almost all initial conditions are almost
surely asymptotically stable. (See [New15b, Remark 2.2.12] and the references mentioned
therein for further details.)

Naturally then, when considering stability in RDS, we will specifically consider asymptotic
stability; for cadlag RDS, this automatically implies Lyapunov stability (by Lemmas

and [4.18).

Definition 4.23. Given a sample point w € €2 and a set A ¢ X, we will say that A
contracts under w if diam(p(t,w)A) - 0 as t — oco.

(By Lemma [£.1] if X is compact then this notion is not specific to our choice d of
metrisation of the topology of X.)

Note that for any sample point w, if A;, Ay ¢ X are sets which contract under w and
Ay n Ay # @, then Ay U Ay contracts under w. (More generally, if A;, Ay ¢ X are sets
which contract under w, and A; and As belong to the same equivalence class of the
synchronisation equivalence relation ~,, then A; U Ay contracts under w.)

Definition 4.24. Given a sample point w € {2 and a point z € X, we will say that x
is asymptotically stable under w, or that the pair (w,x) is asymptotically stable, if there
exists a neighbourhood U of = such that U contracts under w.

In other words, x is asymptotically stable under w if and only if the non-autonomous
dynamical system (p(t,0°w))serter+ i asymptotically stable at x at time 0. More
generally: given any r € T, the statement that the non-autonomous dynamical system
(¢(t,0°w))ser ter+ is asymptotically stable at x at time r is precisely the statement that
x is asymptotically stable under 67w.

Now let O c Q x X denote the set of all asymptotically stable pairs (w,z). For each
reX,let O, :={weQ:(w,z)e0}, that is O, is the set of sample points w under which
x is asymptotically stable.

For any A c X, let E4 c ) denote the set of sample points under which A contracts.
Obviously, for any sets A; c A ¢ X, we have that E4, c E4,. Note that for any x € X

OI = L_JlEB%(x)

Lemma 4.25. (A) For every open U c X, Ey e F§°. (B) O e F* @ B(X). (C) For all
teT, ©YO0)cO. If ¢ is an open-mapping RDS, then for all t € T+, ©71(0) = O.

Proof. (A) Fix a non-empty open set U c¢ X. Let S ¢ U be a countable set that is
dense in U. Then (by the spatial continuity of ¢) Ey is precisely the set of sample
points w for which sup, s d(¢(t,w)z,¢(t,w)y) - 0 as t - co. But now letting D
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4.4 Asymptotic stability in RDS

be a countable dense subset of T*, since a pointwise supremum of right-continuous
functions is right lower semicontinuous, Ey is precisely the set of sample points w for
which sup, ¢ d(¢(t,w)r, o(t,w)y) — 0 as t tends to co in D; that is,

o0

U N N {w:dle(t,w)z,o(tw)y) <1}

J=1 teDn[j,00) z,yeS

DX

by =

7

I
—

So EUEJ:(;)O.

(B) Now let U be a countable base for the topology on X. It is clear that, given any V e U,
every pair (w,x) € By x V is asymptotically stable; conversely, given any asymptotically
stable pair (w, ), there exists a neighbourhood V € U of x such that V' contracts under
w, i.e. such that (w,z) € Ey x V. Thus, we have that O = Uy.y Ev x V, and therefore
O e Fg @ B(X).

(C) Given any t € T* and (w,x) € ©7(0), there exists a neighbourhood U of ¢(t,w)z
such that U contracts under #'w, and therefore p(t,w) '(U) contracts under w; since
o(t,w) is continuous, ¢(t,w) (V) is a neighbourhood of z, and so x is asymptotically
stable under w. Hence ©7*(0) c O. One can similarly show that if ¢ is an open-mapping
RDS then for t € T+, ©{(0) c O (i.e. O c ©7(0)); and of course, combining this with
the fact that ©7*(O) c O for all t € T* gives that ©7t(0O) = O for all t € T*. O

Now then, for each x € X, let
Py(z) = P(O,) = P(0°(0,)) (for any seT)

and let P.(x) = P(Ep,(s)) for all 7 > 0. It is clear that P.(x) increases as r decreases,
with Py(z) =sup,.o P-(z) = lim,_¢ P,(z).

Definition 4.26. We will say that a point x € X is almost surely stable if Py(xz)=1. We
will say that x is potentially stable if Py(zx) > 0.

Definition 4.27. Let A ¢ X be a set that is invariant under ¢. We will say that ¢
s everywhere stable in A if every x € A is almost surely stable. We will say that ¢ is
uniformly stable in A if P.(-) - 1 uniformly on A as r - 0.

In the case that the invariant set A is compact, there is no difference between everywhere
stability and uniform stability:

Lemma 4.28. Let K ¢ X be a compact set. If Py(x) =1 for all x € K, then P.(-) - 1
uniformly on K as r — 0.

Proof. Fix € >0. Every x € K has a neighbourhood U such that P(Ey) >1-¢. So let U
be a collection of open sets covering K, such that for each U e U, P(Ey) > 1 -¢. Since
K is compact, there exists § > 0 such that for every x € K there exists U, € U such that
Bs(x) c Uy. So then, for all r € (0,9) and x € K, P.(z) = P(Epy.)) >1-¢. O

Lemma 4.29. Let p be an ergodic probability measure of the Markov transition
probabilities (¢4)zex ter+. Then P ® p(O) is equal to either 0 or 1.
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4.4 Asymptotic stability in RDS

Proof. Follows immediately from Lemma [4.25] (parts (B) and (C)) and the fact that
Plre ® p is (©F)-ergodic (Lemma [2.21)). O

Now let U, ¢ X be the set of potentially stable points, and let A, be the set of almost
surely stable points.

Proposition 4.30. (4) U,s ¢ X is open, and X \ Uy is invariant under ¢. If ¢ is an
open-mapping RDS then Ay is very crudely invariant under ¢ (that is, pt(As) =1 for all
xeAgs andteT*). (B) For any stationary probability measure p of the Markov transition
probabilities (pL)zex ter+, p(Ups N Ag) = 0.

Lemma 4.31. For any x € X and t € T+, Py(z) > [y Po(y) ¢L(dy). If ¢ is an open-
mapping RDS then the inequality becomes equality.

Proof of Lemma[{.31 Note that Py(y) = P(6-1(0,)) for all y and t. Now fix any z € X
and t e T*.

fX Po(y) ¢4 (dy)

fQ Py(p(t,w)z) P(dw)
fg P07 (Op(t,)x)) P(dw)
/Q fQ T1o(0'@, o(t,w)r) P(do) P(dw)

[2 Lo(0'w, o(t,w)x) P(dw)

(using Lemma |A.10] since the map (w,y) = 1o(0'w,y)
is (F° ® B(X))-measurable, due to Lemma [£.25(B))

./(.2 ﬂ@—t(o) (w, :L“) P(dw)

< f 1o(w, ) P(dw) (by Lemma [£25(C))
Q
= P()((L’)
If © is an open-mapping RDS then the “<” in the penultimate line becomes “=". n

Proof of Proposition[{.30. (A) For any x € Uy,s and r >0 with P,(z) >0, we clearly have
that B,(z) c Uys. So Uy is open. Now fix any x € X \ U, and ¢t € T*. Since Py(z) =0,
Lemma [4.31] gives that Py(y) = 0 for ¢'-almost all y € X, i.e. L(X \U,) = 1. So X \ U,
is very crudely invariant under ¢; and therefore, since X \ U, is closed, Lemma
gives that X \ U, is invariant. Now suppose that ¢ is an open-mapping RDS, and fix
any z € A; and ¢t € T*. Since Py(z) = 1, Lemma [4.31] gives that Py(y) = 1 for ¢! -almost
all y e X, i.e. pL(A;)=1. So Ay is very crudely invariant.

(B) For any ergodic probability measure p’ of the Markov transition probabilities
(L) wex; ter+, Lemma [£.29 gives that either Pp’(O) = 0 or P®p'(O) = 1. In the former case
we have that p'(U,s) = p'(A4s) = 0, and in the latter case we have that p’'(Uys) = p'(A4s) = 1;
so in either case, p'(Uys N As) = 0. Now for any stationary probability measure p of
the Markov transition probabilities (¢f).ex ter+, p admits an integral representation via
ergodic probability measures (as in Appendix C), and therefore p(U,s \ A;) = 0. O
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4.4 Asymptotic stability in RDS

Definition 4.32. Let p be a stationary probability measure of the Markov transition
probabilities (L )ex ter+. We will say that ¢ is stable with respect to p if P® p(O) = 1.

Note that, by Fubini’s theorem, the following statements are equivalent:
(i) ¢ is stable with respect to p;
(ii) p-almost every x € X is almost surely stable;

(iii) P-almost every sample point w € (2 has the property that p-almost every z € X
is asymptotically stable under w.

For any s € T, since 6% is P-preserving, we have that these are equivalent to:

(iv) P-almost every sample point w € € has the property that p-almost every x € X
is asymptotically stable under #%w.

The following proposition can be interpreted, crudely, as saying that if ¢ is stable with
respect to p, then ¢ is “p-almost uniformly stable in X”.

Proposition 4.33. Let p be a stationary probability measure of the Markov transition
probabilities () zex ter+ such that ¢ is stable with respect to p. For every € > 0 there
exists 0 >0 such that for all t € T+, the set

{(w,z) : Bs(o(t,w)z) contracts under 6w }

contains a set of measure greater than 1 —¢ according to P ® p.

Proof. Let S c X be a countable dense set, and let

O = UUEs,q) xBi(y).
n=1yeS n
Note that the collection U := {B1(y) :n e N,y € S} is a base for the topology on X, and
therefore (as in the proof of Lemma [4.25(B)),

O = UEVXV

Vel

UU Es, ) x B1(y)

n=1yeS n

(e e]

UUEs, @ *xBily) = O.

n=1yeS n

al

So P p(O) = 1.

Now fix € > 0, let NV € N be such that

N
P@p(U UEBQ(y)xBi(y)) > 1-¢,

n=1yeS "
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4.4 Asymptotic stability in RDS

and let § = % Fix any ¢ € T*. Since P|z> ® p is O-invariant, we have that

P@p(tvj o (EB%(y) x B;(y)))

n=1yeS
N
- pos(0 (UU Bn o 50))
n=1yeS n

> 1-e.

So it remains to show that for any n € {1,...,N} and y € S, for any (w,z) €
@‘t(EBz(y) xB%(y)>, Bs(¢(t,w)x) contracts under #'w. Fix such n, y and (w,z).
We know that d(y,¢(t,w)x) < L, and that B:(y) contracts under §'w. For any
z € Bs(p(t,w)x), we have that '

d(y,z) < d(y,p(t,w)z) +d(p(t,w)z,z) < 2+4§ < 2.
So Bs(¢(t,w)x) c B2(y), and therefore Bs(p(t,w)x) contracts under Gtw. O

Now recall that two distinct ergodic probability measures are mutually singular. A further
statement can be made in the case that  is stable with respect to one of the two measures.

Lemma 4.34. Let p be an ergodic probability measure of the Markov transition
probabilities (oL )zex, ter+ such that ¢ is stable with respect to p. For any ergodic probability
measure p' of (L) zex ter+ distinct from p, (supp p)n(suppp’) has empty interior relative

to supp p.

Proof. Let p' be an ergodic probability measure of (f) such that (suppp) n (suppp’)
has non-empty interior relative to supp p. So (supp p)n(supp p’) has p-positive measure.
Since ¢ is stable with respect to p, p-almost every x € X is almost surely stable. So pick a
point x € (supp p) N (supp p’) that is almost surely stable. For P-almost every w € 2, the
~,~equivalence class of x contains a neighbourhood of z, and therefore has both p-positive
measure and p/-positive measure. By Corollary it follows that p = p'. O

We go on to consider “sets admitting stable trajectories”. For any A c X, define the set

Oy = {weQ: at least one point x € A is asymptotically stable under w}

- Uo..

zeA

It is easy to see that O4 = Oj.
Lemma 4.35. For any Ac X, Oy is Fg°-measurable.

Proof. Let U be a countable base for the topology on X, and let
Uy = {Ueld : UnA+gz}.

It is clear that for any w € €2, the existence of a point x € A that is asymptotically stable
under w is equivalent to the existence of an open set U € U, that contracts under w. In
other words,

Os = U Ev,
UEZ/{A

and so Lemma [4.25(A) gives the result. O
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4.4 Asymptotic stability in RDS

Definition 4.36. We will say that a set A c X admits stable trajectories if P(O4) > 0.

Proposition 4.37. (A) A set Ac X admits stable trajectories if and only if there ezists
x € A that is potentially stable. (B) Suppose ¢ is an open-mapping RDS. Then a closed
invariant set G ¢ X admits stable trajectories if and only if P(Og) = 1.

The proof of part (A) uses the following fact:

Lemma 4.38. P-almost every w € Q has the property that for any x € X, if (w,z) is
asymptotically stable then x is potentially stable.

Proof of Lemma[].38 Let U be a countable base for the topology on X, and let
Z/lo = {UEU : ]P(EU) = 0}

Let

Q= QN U EU-
Uely
Now fix any w €  and 2 € X. If (w, ) is asymptotically stable then there exists U € U
with z € U such that w € Eyy, and hence U ¢ Uy; so P(Ey) > 0 and therefore z is potentially
stable. O]

Proof of Proposition[{.37. (A) For every x € A, since O, c Oy, it is clear that if x is
potentially stable (i.e. P(O,) > 0) then A admits stable trajectories. Conversely: Let €
be a P-full set with the property described in Lemma If P(O4) >0 then O4n Q is
non-empty. So take any w e O4n<, and let x € A be a point that is asymptotically stable
under w; then, since w € Q, z is potentially stable.

(B) Let Q be a P-full set such that ¢(t,w)G c G for all ¢ € T+ and w € Q. For any
weQnOg and ¢ € T+, if we let x € G be a point that is asymptotically stable under w,
then p(t,w)z is a point in G that is asymptotically stable under 6‘w, and so f'w € Og. So
0t (2N Og) c O¢ for all t € T+; hence, by Lemma , P(O¢) €{0,1}. So then, G admits
stable trajectories if and only if P(Og) = 1. O

Lemma 4.39. Let p be an ergodic probability measure of the Markov transition
probabilities (pL)zex ter+. Then @ is stable with respect to p if and only if supp p admits
stable trajectories.

Proof. 1t is clear that if ¢ is stable with respect to p then supp p admits stable trajectories.
Now suppose supp p admits stable trajectories. So P(Ogupp,) > 0; and obviously, for each

w € Ogupp p there is a p-positive measure set of points that are asymptotically stable under
w. Hence P® p(0O) >0, and so by Lemma |4.29, P ® p(O) = 1. O

The following result will play a key role when we come to study “stable synchronisation”
on compact spaces.

Proposition 4.40. Let C'c X be a compact invariant set, and suppose that C' contains
only one minimal set K. Then ¢ is uniformly stable in C' if and only if K admits stable
trajectories; and in this case, for every x € C,

P(w:d(e(t,w)z, K) >0 ast - o0) = 1.
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4.4 Asymptotic stability in RDS

In the proof of Proposition m (and also later on), we will use the following elementary
lemma (which, heuristically, will play the role of a “strong Markov” property) in
conjunction with Corollary (which, heuristically, will generate a “random time at
which to apply the strong Markov property”):

Lemma 4.41. Let D be a countable set, and let < be a linear order on D. Suppose we
have, for each s € D and n €N, events R, s, Sy s € F with the following properties:

e for alln and s, S, s is independent of o(R, 4t < s);
o for alln, P(Usp Rns) = 1;
o info(pP(S,s) = 1 asn — oco.

Then

IP’(U U Rnsn Sn,s) = 1.
n=1seD

Proof. We write “s <t” to mean “s <t and s #t”. First fix n e N. Since P(Uep Rns) =1
and D is countable, we must have that for all € > 0 there exist ¢; < ... <t,, in D such
that P(UIZ, Ry, ) > 1—¢€, and so

P ( U Rn,s M Sn,s) > P (U Rn,ti n Sn,tz)
seD =1
m i—1 0
> P (U Rn,ti N U Rn,tj) N Sn,ti) (Where U R’%tj = Q)
i=1 J=1 J=1
m i—1
= Z P Rn,tl N Rn,tj)P(Sn,ti)
=1 Jj=1
m i—1
> Z P (Rn,ti N U Rn,tj)) inf P(Sms)
i1 j=1 seb

I}
=
—_ !
Cs
oy
3
S
» 5
iy
=
A

v

(1 - 6) i?Df IED(Sn,s)

This is true for all €, and so

IP’(U Rn,snsn,s) > inf P(Sy).

seD
The desired result then follows from the fact that infsep P(S,s) = 1 as n — oo. O

Proof of Proposition[{.40. Suppose K admits stable trajectories. We first show that
there exists at least one point in K that is almost surely stable. Since K is compact
and is minimal according to the Markov transition probabilities (¢f).ex, ter+, there is an
ergodic probability measure p of the Markov transition probabilities (¢f).ex e+ such
that supp p = K. By Lemma [£.39] ¢ is stable with respect to p, i.e. p-almost every point
x € K is almost surely stable.
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4.5 Stable synchronisation

Now let p € K be an almost surely stable point. Fix any z € C, and for each n € N
and s € Qn T+ let

Rn,s
Sn,s

{w €Q: p(s,w)re B% (p)}
o~ (EB%@)) :

Note that for every n and s, o(Ry,, : t < s) ¢ F§ and (by Lemma [.25(A)) S, € Fe.
Corollary [2.81] gives that P (Us R, ) = 1 for all n. Obviously P(S,.s) = P1(p) for all n
and s, and so P(S, ) = 1 as n — oo uniformly in s. So then, Lemma gives that

P (UURM N Sn,s) = 1.

Now it is clear that R, nS,s c O, for all n and s, and so P(O,) = 1, i.e. = is almost
surely stable. Since x € C' was arbitrary, it follows that ¢ is everywhere stable in C|
and therefore, since C' is compact, ¢ is uniformly stable in C'. Now let  be a P-full set
such that ¢(t,0w)K c K for all w e Q, t € T+ and s e QN T*. Fix any z € C, and still
let R, and S, s be as above for all n € N and s € Q n'T*. For any n and s, for any
weR,snSysN Q, we have that

d(p(t,w)z, p(t - s,0°w)p) - 0 as t > oo

and therefore
d(e(t,w)z, K) - 0 as t - oo.

Hence the set {w : d(¢(t,w)z, K) - 0 as t - oo} is a P-full set, as required. O

Remark 4.42. As a consequence of Proposition [4.40] if X is compact and there is only
one stationary probability measure p of the Markov transition probabilities (L) ex, tet+,
then ¢ is uniformly stable in X if and only if ¢ is stable with respect to p.

4.5 Stable synchronisation

Recall that for each w € 2, we define the equivalence relation ~, on X by
gy = d(ptw)r, o(t,w)y) - 0 ast - oo.

Definition 4.43. We will say that ¢ is pointwise-stably synchronising if ¢ is both
synchronising and everywhere stable in X.

Definition 4.44. We will say that ¢ is (uniformly) stably synchronising if ¢ is both
synchronising and uniformly stable in X.

Recall that due to Lemma [4.28] if X is compact, then ¢ is uniformly stable in X if and
only if ¢ is everywhere stable in X. Hence in particular, if X is compact, then ¢ is stably
synchronising if and only if ¢ is pointwise-stably synchronising.
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4.5 Stable synchronisation

Example 4.45. Suppose € is a singleton {w}, T = Z and X = S!. Let f:S! - S! be
an orientation-preserving homeomorphism possessing exactly one fixed point, and define
¢ by ¢(n,w) = f7. Then ¢ is synchronising, since every trajectory converges to the
fixed point of f; but ¢ is not (pointwise-)stably synchronsing, since the fixed point of
f does not have a neighbourhood that contracts under w. Indeed, the fixed point of f
is not even a Lyapunov stable fixed point. From a practical point of view: ironically,
although f is in theory a “synchronising” dynamical system, any (sufficiently accurate)
practical implementation of this dynamical system will appear to be “chaotic”. For,
no matter how close two trajectories start, they will eventually move very close to the
unstable fixed point, from which point what happens next will be entirely dictated by
unaccounted-for sources of perturbation or random inaccuracies.

Lemma 4.46. Given a sample point w € Q and an open set U c X, the following
statements are equivalent:

(i) U can be expressed as a union of open sets that contract under w and are
contained in the same equivalence class of ~, ;

(ii) there exists an increasing sequence (Vi)ren of open subsets Vi of U such that
Urey Vie = U and for each k, Vi contracts under w.

Proof. 1t is clear that (ii)=(i). Now suppose that (i) holds. Since the union of an
arbitrary collection of open sets is equal to the union of some countable subcollection
thereof, we may write U = U2, W, for some sequence (W, ),y of open sets that contract
under w. Since all members of the collection {W, },«y belong to the same equivalence
class of ~,, it follows that any finite union of members of this collection contracts under
w; so taking Vj == UF_, W,., we have that (i) holds. O

Definition 4.47. When the equivalent statements in Lemma hold, we will say that
U is o-contracting under w.

Remark 4.48. Note that if U is o-contracting under w then any compact G c U contracts
under w. If X is o-locally compact then the converse statement also holds: if every
compact G ¢ U contracts under w then (since U can be expressed as the union of the
interiors of countably many compact subsets of U) U is o-contracting.

Proposition 4.49. ¢ is pointwise-stably synchronising if and only if there s a P-full set
QcQ and a Q-indexed family (U(w)), .o of dense open subsets of X such that

(i) for each weQ, U(w) is o-contracting under w, and
(ii) for each x € X, the set {weQ:zeU(w)} is a P-full set.

Proof. First suppose that ¢ is pointwise-stably synchronising. Let S be a countable dense
subset of X. Let 2 be a P-full set such that for all w € €2,

(a) for all z,y €S, x ~, y, and

(b) every z € S has a neighbourhood that contracts under w.
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For each w € €, let U(w) be the union of all open sets that contract under w. Since every
non-empty open set intersects S, we have in particular that all open sets contracting under
w are contained in the same equivalence class that contains S; hence U is o-contracting.
Obviously, for any = € X, since the set {w € Q : x is asymptotically stable under w} is a
P-full set, it follows that the set {w e Q:z € U(w)} is a P-full set.

Now in the converse direction, suppose we have Q and (U(w)),.q as in the statement
of the proposition. For any two points x,y € X, we have that for P-almost all w,  and
y both belong to U(w) and therefore x ~, y. So ¢ is synchronising. Moreover, for any
z e X, for any w e Q with z € U(w), since U(w) can be expressed as a union of open sets
that contract under w, we have in particular that x has a neighbourhood that contracts
under w. So ¢ is everywhere stable in X. O

Definition 4.50. We say that ¢ is globally contractive if for P-almost all w € {2, every
non-empty bounded subset of X contracts under w.

Obviously if ¢ is globally contractive then ¢ is stably synchronising.

Remark 4.51. As a consequence of Remark if ¢ is globally contractive then ¢ has
at most one random fixed point ¢: 2 - X (up to P-almost sure equality). Moreover, such
a random fixed point, if it exists, must have a modification which is F°,-measurable/l]
Hence, if ¢ is globally contractive, then the existence of a random fixed point is equivalent
to the existence of a stationary probability measure for the Markov transition probabilities
(¢L). When ¢ is globally contractive and a random fixed point ¢:2 - X does exist, ¢
is sometimes said to be a globally forward-attracting random fixed point. This is in
contrast to the notion of a globally pullback-attracting random fixed point (defined in
Remark , which concerns dynamics in the past. (Note, however, that both of these
serve as globally weakly attracting random fixed points, as defined in Remark )

We now go on to consider “p-almost stable synchronisation”. The following important
result is essentially Proposition 3 of [LeJ87]:

Theorem 4.52. Let p be an ergodic probability measure of the Markov transition
probabilities (¢L)zex ter+ such that ¢ is stable with respect to p. Let n be the p-clustering
number of p. Then n < oo, and for P-almost every w € Q) there exist mutually disjoint sets
open sets Uy, ..., U, c X such that the following holds: for each i € {1,....,n}, p(U;) = %
and U; is o-contracting under w; but for any distinct i,j € {1,...,n}, for any x € U; and

yeU;, xd,y.
As an immediate corollary of Theorem [£.52] and Lemma [£.7], we have:

Corollary 4.53. Let p be an ergodic probability measure of the Markov transition
probabilities (p%)zex ter+. Then the following statements are equivalent:

(i) @ is both stable with respect to p, and p-almost everywhere synchronising;

"To see this: Fix any c € X. Since d(p(n,w)e, q(0"w)) = 0 as n — oo for P-almost all w € €, it follows
that the stochastic process d(¢(n,0 ™ )c,q(-)) converges in probability to 0, and therefore there exists
an increasing sequence (m,,) in N such that ¢(m,,,0 " w)c - ¢(w) for P-almost all w € Q.
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(ii) @ is both stable with respect to p, and statistically synchronising with respect to
p;

(11i) for P-almost every w € Q) there is an open p-full set that is o-contracting under
w.

Obviously, (i) is the same as saying that there exists a p-full set A € B(X) such that any
point z € A is almost surely stable and any two points x,y € A synchronise almost surely.

Definition 4.54. Let p be an ergodic probability measure of the Markov transition
probabilities (¢! )zex ter+. We say that ¢ is p-almost stably synchronising if the equivalent
statements in Corollary hold.

Example 4.55. Let X = S', which we identify with ®/z (with 7:R - S! denoting the
associated projection). Let ¢ be the RDS such that ¢(¢,w)m(0) = 7(0) for all £ and w, and
on S' {7 (0)}, ¢ agrees with the projection onto S' of the RDS in Example [3.19] Then
¢ is not synchronising, but ¢ is l-almost stably synchronising (where [ is the Lebesgue
measure on St).

Let us now give a proof of Theorem We start with the following lemma:

Lemma 4.56. Fiz any n €N, and let (u,) be a p-invariant random probability measure
such that for P-almost all w € ), u,, takes the form

o = % 2 Oy

yeA(w)

for some set A(w) c¢ X with |A(w)| = n. Then for P-almost every w € Q for which u,
takes this form, for any distinct y1,y2 € A(w), y1 and yz belong to different equivalence
classes of ~,.

Proof. The statement is vacuously true if n =1, so assume n > 2. Let Q e F be a P-full
set such that for all w € 2, p,, takes the form described in Lemma m For each k € N
let

Er = {weQ: there exists r € X s.t. /Lw(B%(ZE)) > 13

Note that Ej is measurable: for any countable dense set S c X, due to Lemma we
have that

B = Ulwef s pu(By(@) > 3

Now for any k, for any w € Qn E, there must exist disinct points y1,y, € A(w) such that
d(y1,y2) < % Hence it is clear that Q n N, E, = @. So then, P (N Ex) =0, and therefore
P(EL) = 0 as k — co. So letting

E = (VUM (5.

k=1 1i=0 j=1

s

we have that P(E) = 0. Now for any j,k € N, for any w € 0-9(Q), if there exist disinct
points yi,y» € A(fw) such that d(yi,ys) < 1, then w € 67(Ey). Accordingly, for any
we N2 077 (Q), if

min( d(y;,y2) : distinct y1,y2 € A(Fw)) - 0 as j— o
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4.5 Stable synchronisation

then w € E. Since (j,) is p-invariant, we have that for P-almost all w € N3, -3 (Q), for
every j € No, A(0/w) = p(j,w)A(w). So then, since P(E) =0, we have that for P-almost
every w € N2 077(82),

min(d(y:,y2) : distinet y1,y2 € p(j,w)A(w)) + 0 as j— oo

and hence in particular, there do not exist distinct yi,90 € A(w) such that
d(e(J,w)y1, (j,w)y2) = 0 as j > oo. Thus we have shown that for P-almost all w € €,
any distinct points y1,y2 € A(w) must belong to different equivalence classes of ~,,. [

Proof of Theorem[{.53 For P-almost every w € 2, there exist open sets intersecting
supp p which contract under w (and are therefore contained in equivalence classes of
~). Hence, by Lemma [1.12] n < co.

To prove the rest of the theorem, it is sufficient to find, for each ¢ > 0, a P-full set
Q). € F of sample points w with the property that there exist open sets Wy,...,W,, c X
such that for each i € {1,...,n}, p(W;) >+ —& and W; contracts under w, and moreover
such that the sets W7,...,W,, are contained in distinct equivalence classes of ~,.

(The fact that this is sufficient for the desired result to be true is visually intuitively
clear; still, one way to prove it rigorously is as follows: Let Q* := ﬂﬁlﬁﬁ- Clearly,
P(£2*) = 1; now fix any w € Q*. For each integer j > n(n + 1), let Wl(]),...,Wéj) c X be
open sets contracting under w, each of measure greater than % - % according to p, and

belonging to distinct equivalence classes of ~,. Note in particular that p(Wi(j )) > L for

n+1
each j>n(n+1) and i€ {1,...,n}. Hence, it is not hard to see that for each j >n(n+1)

and i€ {1,...,n}, there exists a unique m;(z) € {1,...,n} such that I/Vi(n(nﬂ))mwggi) + Q.
. J
So for each i € {1,...,n}, define U; := U2 wb)

) Waity- Then U; is o-contracting under
J

w for each 7, and the sets Uy,...,U, are contained in distinct equivalence classes of ~.

Moreover, it is clear that p(U;) > L for each 4, and therefore p(U;) = L for each 1.)

Let p be the unique Markov invariant measure whose X-projection coincides with p,
and let (1) be a disintegration of . On the basis of Lemma [4.56] let Q € F be a P-full
set such that for all w € €2, u,, takes the form

Ho = 5 D, 0y

yeA(w)

for some set A(w) c X with |A(w)| = n such that the elements of A(w) belong to distinct
equivalence classes of ~,. Now let U be a countable base for the topology on X that
is closed under finite unions, and let 4 denote the collection of all mutually disjoint
subcollections of U of size n. For each £ > 0, let

Y= { Vel : VWeV, p(W)>1-e}
let

QE = U ﬂ (EW N {weQ:,uw(W)Z%}),
Vesle WeV
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4.5 Stable synchronisation

and let Q. := Q.n Q. Note that every w € Q. has the desired property given further above:
since w € ()., there exist mutually disjoint open sets W7, ..., W, contracting under w, each
of measure greater than %—5 according to p and measure equal to % according to p,; and
s0, since w € Q, it follows that the sets Wi, ..., W, are contained in distinct equivalence
classes of ~,. So then, it only remains to show that P(€2.) =1 for every ¢ > 0.

Since O € Fg° ® B(X), we have that u(O) = P® p(O) = 1, and so for P-almost all
weQ, po(z: (w,z) e 0)=1. Let Qe F be a P-full set such that for every w € Q the
following statements hold:

(i) for all j e Ny, 07w e Q and ©(7,079W) s flg-i, = o ;
(i) ¢(j,07w).p converges weakly to p, as j tends to oo in N;
(iil) pro(z: (w,z) €O) =1.

Note that statement (i) implies that for every j € N, p(j,077w) maps A(6~7w) bijectively
into A(w). Also note that statement (iii) is equivalent to saying that every point in A(w)
is asymptotically stable under O.

Now fix any €. We will show that
Q c U N e (4.1)
k=1 j=k

Fix any w € Q). Let us write Yi,--.,Yn for the elements of A(w). Let Vi,...,V, be open
neighbourhoods of ¥, ..., y, respectively, that are mutually disjoint and each contract
under w. Since ¢(j,077w).p converges weakly to p, as j tends to oo in N, and 4, (V;) = =
for each 1 < < n, there must exist k € N such that for all j > k, p(¢(j, 077w)1(V;)) > + ¢
for each i. Now fix any 7 > k. For each 1 <i < n, since the base U is closed under finite
unions, ¢(7,07w)~1(V;) contains a set W; € U, itself containing (7,0 7w) 1 ({y;}), such
that p(W;) > % —e. Moreover, the sets W1y, ..., W, are obviously mutually disjoint, and
each contract under #~Jw; and since each W; contains exactly one element of A(f0-w),
we have that -5, (W;) = £ for each i. Hence 6w ¢ Q.. And by assumption, 0w € Q;
s0 0~Jw € Q.. Thus we have proved (4.1]).

So then, for any n > 0, letting k € N be sufficiently large that P(ﬂ;’ik QJ(QS)) >1-n, we
have that
]P)(QE) = P(Gk(QE)) > 1-n.

Since 1 was arbitrary, we are done. O]

We now mention the case of monotone RDS on a one-dimensional phase space. (We still
assume that ¢ is right-continuous.)

We will say that a set A c R is endpoint-complete if the following statements both hold:
(i) if A is bounded above then max A exists;

(i) if A is bounded below then min A exists.
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4.5 Stable synchronisation

In other words, A is endpoint-complete if and only if the convex hull of A (relative to R)
is a closed subset of R.

Lemma 4.57. Suppose X is a Borel-measurable subset of R, with d being the standard
metric. Suppose that ¢ is monotone (with respect to the usual order <). Let p be any
probability measure on X with X, =X. The following statements are equivalent:

(1) P-almost every w € Q2 has the property that for any a,b e X with a <b, [a,b]n X
contracts under w;

(i1) @ is pointwise-stably synchronising,
(111) ¢ is synchronising;
(iv) ¢ is p-almost everywhere synchronising.

If X s endpoint-complete, then these are in turn equivalent to:

(v) ¢ is globally contractive;
(vi) @ is stably synchronising.

Proof. 1t is clear that (i)=-(ii)=(iii)=(iv). We now show that (iv)=(i). Suppose that (iv)
holds. Fix any w € Q with the property that ~, has a p-full equivalence class. Let X be
the p-full equivalence class of ~,. Now fix any a,b € X with a <b, and let I := [a,b] n X.
Since X, is the whole of X, the sets (-o0,a] n X and [b,00) n X both have positive
measure under p; hence these sets both have non-empty intersection with X. So there
exist x1 < a and x5 > b such that x; ~, xo. But since ¢ is monotone, we also have that
o(t,w)I c[p(t,w)ry, p(t,w)xs] for all t € T*. It follows, therefore, that I contracts under
w, as required.

Obviously (v)=(vi)=(ii). Finally, if X is endpoint-complete then (i)=(v), since it is
clear that every bounded set B c X is contained in some closed interval [a,b] with
a,be X. O

Example 4.58. The RDS in Example [2.34] is globally contractive, as is the RDS in
Example for @ < 0. The RDS in Example [3.19 (which has been shown to be

synchronising in [AM14]) is pointwise-stably synchronising, but not uniformly stably
synchronising. The RDS generated by (3.2) in Example is globally contractive; see

Example [6.7]

Proposition 4.59. Suppose X is a Borel-measurable subset of R, with d being the
standard metric. Suppose that ¢ is monotone (with respect to the usual order <). Suppose
moreover that there exists an ergodic probability measure p of the Markov transition
probabilities (ph)gex e+ such that X, = X. Then ¢ is synchronising if and only if ¢
15 stable with respect to p.

Proof. 1f ¢ is synchronising then, in particular, ¢ is pointwise-stably synchronising (by
Lemma ; so ¢ is everywhere stable in X, and therefore ¢ is stable with respect
to p. Conversely: we know by Theorem that ¢ is statistically synchronising with
respect to p; so if, in addition, ¢ is stable with respect to p, then by Corollary we
have that ¢ is p-almost everywhere synchronising, and therefore (by Lemma [4.57)) ¢ is
synchronising. O
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4.6 Contractibility

Much of the remainder of this thesis will be devoted to tests for synchronising behaviour.
All of these tests will involve the notion of “contractibility” of pairs of points, and so we
will introduce this notion now.

Note that for any invariant set A ¢ X, Ax A is invariant under the two-point motion ¢*2.

Definition 4.60. Given points x,y,p € X, we will say that (z,y) is contractible towards
p if every neighbourhood of (p,p) in X x X is accessible from (z,y) under the two-point
motion ©*2. This is the same as saying that for every £ > 0,

P(w: 3teT st. p(t,w)z,p(t,w)y € B-(p)) > 0.

Proposition 4.61. The set € = {(p,z,y) € X x X x X : (z,y) is contractible toward p}
is B(X x X x X)-measurable.

Proof. Given any metrisation d of the product topology on X x X, we have that

¢ = {(p,:ﬁ,y) : CZ((p>p)> G(w,y)) = O}
Hence the result follows from Lemma applied to p*2. O

Definition 4.62. Given points z,y € X and a set A ¢ X, we will say that (z,y) is
contractible towards A if every neighbourhood of A4 in X x X is accessible from (x,y)
under p*2.

Lemma 4.63. For any z,y € X and Ac X, (z,y) is contractible towards A if and only
if there exists p € A such that (x,y) is contractible towards p.

Proof. (x,y) is contractible towards A if and only if G, ,) intersects every neighbourhood
of Ay; but since G, is closed, this is equivalent to saying that G, intersects A 4.
Obviously this is the same as saying that there exists p € A such that (p, p) € G(,,), which
is equivalent to saying that there exists p € A such that every neighbourhood of (p,p) is
accessible from (z,y) under ¢*2. So we are done. O

Definition 4.64. Given points x,y € X, we say that (x,y) is generally contractible if
(z,y) is contractible towards X (i.e. if there exists p € X such that (z,y) is contractible
towards p).

Note that, given a closed invariant set G ¢ X and any points z,y € G, if (x,y) is generally
contractible then (z,y) is contractible towards G. (The reason is that, since G x G is a
closed invariant set under 2, (x,y) cannot be contractible towards any point p € X \G.)

Lemma 4.65. Given a compact invariant set K c¢ X and points x,y € K, (x,y) is
generally contractible if and only if for every € >0,

P(w: 3teT s.t. d(o(t,w)z, o(t,w)y) <e) > 0. (4.2)
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4.6 Contractibility

Proof. The “only if” direction is clear (and has nothing to do with the set K). For the
“if” direction: For each € > 0, let

URe = {(u,v) e Kx K : d(u,v) <e}.

Suppose that holds for every € > 0. Since K x K is invariant under ¢*?, it follows
that there is a positive-measure set of sample points w with the property that at some
time ¢, *2(t,w)(x,y) € UK<. Now for every neighbourhood U of Ak, as in the proof of
Lemma there exists € > 0 such that U%¢ c U; and so U is accessible from (z,y). O

The following concept has been considered in [BS88| and [Bax91].

Definition 4.66. Let K c X be a compact invariant set. We will say that ¢ is
contractibld| on K if for all distinct z,y € K,

P(w : 3teT s.t. d(p(t,w)x, p(t,w)y) <d(z,y)) > 0.

Remark 4.67. Suppose there exists a separable metrisable topology on 2 whose Borel
o-algebra coincides with F, such that P has full support and for all t € T* and x € X,
the map w ~ p(t,w)z is continuous. Then, as in Remark , in order to show that ¢
is contractible on a compact invariant set K, it is sufficient to show that for each pair
of distinct points x,y € K there exists a sample point w € {2 and a time ¢ € T* such that

d(p(t,w)z, p(t,w)y) <d(z,y).

Proposition 4.68 (cf. [BS88, Proposition 4.1]). Let K ¢ X be a compact invariant set.
The following statements are equivalent:

(i) every pair (x,y) € K x K is generally contractible;
(ii) ¢ is contractible on K;
(iii) (K x K)~ Ag contains no non-empty closed”| invariant sets (under ©*?);

(iv) given any two points x,y € K, for P-almost every w € Q) there exists an unbounded
increasing sequence (t,) in T* N Q such that d(o(t,,w)z,(t,,w)y) = 0 as

n — o0.

Proof. (1)=(ii) is clear. We next show (ii)=(iii). Suppose (iii) does not hold, and let
C c (K x K) N Ag be a non-empty compact invariant set. Let (z,y) € C be a point
which minimises the function (u,v) = d(u,v) on C'x C. Then it is clear that (z,y) is not
generally contractible; so (ii) does not hold. Now suppose that (iii) holds. To show that
(iv) holds, it is sufficient to show that for each z,y € K and k € N, for P-almost all w € Q
there exist arbitrarily large times ¢ at which d(¢(t,w)z, o(t,w)y) < 1. So fix z, y and k,
and let U := {(u,v) € X x X : d(u,v) < 1}. Then (K x K)\ U is a compact set containing
no non-empty closed invariant sets, and so by Lemma for P-almost all w € 2 there
exist arbitrarily large times ¢ at which ¢*2(t,w)(z,y) ¢ (K x K)~U. But since K x K
is itself invariant, it follows that for P-almost all w € €2 there exist arbitrarily large times
t at which ¢*2(t,w)(z,y) € U, as required. Finally, (iv)=(i) follows immediately from
Lemma K65 O

8In [New15b), the term “two-point contractible” is used.
9that is, closed in X x X; the statement that (K x K)\ A contains no invariant sets that are closed
relative to (K x K) \ Ak would be much stronger.
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Lemma 4.69. If K is a compact invariant set on which ¢ is contractible, then K contains
only one minimal set.

Proof. Let K be a compact invariant set containing two distinct minimal sets M; and
M,. Note that M; and M, are mutually disjoint. Let (x,y) be a point in M; x My which
minimises the function (u,v) ~ d(u,v) on M; x My. Then x and y are distinct points,
and (z,y) is not generally contractible. ]

Now in one of the synchronisation tests that we will present later on (Theorem , one
of the conditions involved is contractibility on a certain compact minimal set. In some
situations, it may not be easy to verify directly that ¢ is contractible on a given set K;
but it may be easier to verify that ¢ is “contractible on a full measure open subset” of
K—in which case, if K is minimal, ¢ must be contractible on the whole of K. To be
precise:

Proposition 4.70. Let p be a stationary probability measure of the Markov transition
probabilities () zex ter+ such that supp p is a compact minimal set. Suppose there ezists
A csupp p such that:

e p(A)=1;
e the interior of A relative to supp p is non-empty;
o cvery pair in A x A is generally contractible.
Then o s contractible on supp p.
Proposition is adapted from |[New15b| Proposition 3.1.2].

Proof. Let K :=supp p. Fix any z,y € K; we will show that (z,y) is generally contractible.
This is equivalent to showing that G,,) N Ag # @. Since G, N Ag # @ for all
(u,v) € Ax A, it is sufficient just to show that G, ,) contains at least one point in
AxA.

By Lemma [2.82 since K x K is compact, the image of G(,,) under the projection
(u,v) ~ u is precisely G,; but this is itself equal to K, since K is minimal. Now let
D be a countable dense subset of T+, and let

B = {zeK :foralteD, ¢L(A)=1}.

Since p is stationary and p(A) = 1, we have that p(B) = 1—and so, in particular, B is
non-empty. So let us fix a point (u,v) € G(,,) with uw € B. Let U ¢ X be an open set
such that U n K is a non-empty subset of A; since K is minimal, U is acessible from v.
Since the map t — ¢! (U) is right lower semicontinuous, there must exist t* € D such that
¢ (U) > 0. Since K is invariant, it follows that ! (A) > 0. So then, there exists a P-
positive-measure set of sample points w such that ¢(t*,w)u and ¢(t*,w)v are both in A.
Hence G, has non-trivial intersection with A x A, and therefore G, ,) has non-trivial
intersection with A x A. O
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4.7 Deterministic-rate synchronisation

In this section, we consider the issue of whether one can give an upper bound on how
long one has to wait in order to observe synchronisation of trajectories of a RDS.

Definition 4.71. Given x,y € X, we say that x and y synchronise at a deterministic rate
if there exists a function h: T+ — [0, c0], with h(t) - 0 as t - oo, such that for P-almost
every w € (), for all t € T*, d(p(t,w)z, p(t,w)y) < h(t). Given such a function h, we say
that x and y synchronise at least as quickly as h.

Now when two deterministic processes do not synchronise in the absence of noise, it is
normal that noise can cause the processes to synchronise, but such synchronisation cannot
be expected to occur at any deterministic rate. This is indicated by the following:

Proposition 4.72. Suppose that (as in Remark there exists a separable metrisable
topology on 0 whose Borel o-algebra coincides with F, such that P has full support and
the map w — p(t,w)x is continuous for each t and x. Suppose we have x,y € X and
wo € 2 such that x ¢, y. Then x and y do not synchronise at a deterministic rate.

Proof. Fix any function h:T* — [0,00] such that h(t) - 0 as t - oco. Let t € T* be
such that d(¢(t,wo)x, p(t,wo)y) > h(t). Then by Remark applied to the two-point
motion ¢*2, P(w: d(p(t,w)x, p(t,w)y) > h(t)) > 0. O

Now if we wish to be able to say that two physical processes will synchronise faster
than some given deterministic rate, we may need to take into account that the processes
will inevitably be subject to small perturbations not accounted for in the model. This
motivates the following definitions:

Definition 4.73. Given x € X, we say that x is asymptotically stable at a deterministic
rate if there exists a neighbourhood U of z and a function h: T+ — [0, 00], with A(t) - 0
as t — oo, such that for P-almost every w € 2, for all ¢ € T+, diam(p(t,w)U) < h(t).

Definition 4.74. We will say that ¢ is globally contracting at a deterministic rate if for
every bounded B c X there exists a function h:T* — [0,00], with A(t) - 0 as t - oo,
such that for P-almost every w € Q, for all t € T+, diam(¢(t,w)B) < h(t).

Note that if X =R? (with the usual metric) and every z € R? is asymptotically stable at
a deterministic rate, then ¢ is globally contracting at a deterministic rate[l%]

Remark 4.75. It is easy to see that if X is compact and ¢ is invertible, then there
must exist at least one point in X that is not asymptotically stable at a deterministic
rate. Consequently, one can show that if ¢ also has reverse-minimal dynamics, then there
cannot exist a point in X that is asymptotically stable at a deterministic rate.

Example 4.76. In Example [2.34] ¢ is globally contracting at a deterministic rate. (For
the deterministic-rate synchronisation of x and y, take h(n) = %) In Example [2.37]
with o < 0, @ is globally contracting at a deterministic rate. (For the deterministic-rate

107t is not hard to show that this statement generalises to whenever (X, d) has the Heine-Borel property
(namely, that every closed bounded set is compact) and is path-connected.
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synchronisation of z and y, take h(t) = d(x,y)e*.) In Example there do not exist
distinct points x,y € (0,1) that synchronise at a deterministic rate. (This is easy to show
using the fact that sufficiently close to 0, fy is a linear contraction towards 0 and f; is a
linear expansion away from 0.) For the RDS generated by in Example [3.21] if a <0
then ¢ is globally contracting at a deterministic rate, but if a > 0 then there do not exist
distinct points z,y € R that synchronise at a deterministic rate. (See Example ) In
Example [£.45] for every x,y € S!, z and y synchronise at a deterministic rate; but this
is of virtually no practical relevance, since the fixed point towards which all trajectories
converge is not even Lyapunov stable under f.

Remark 4.77. One may be tempted to assume that having synchronisation at a
deterministic rate (in the sense of Definition is inherently more practically useful
than having almost sure synchronisation in a model that cannot provide a strict upper
bound on the time taken for the synchronisation to be observed. However, (even assuming
that there are no issues concerning local stability) this is not so. Suppose, for example,
that we have one system in which the distance between the trajectories of two given
initial conditions is predicted to decay almost surely at least as quickly as some function
h. And suppose we have a second system (with the same state space) in which the
distance between the trajectories of the same initial conditions is predicted to decay,
with probability greater than 1 — 27190 at least as quickly as h. In practice, it is far
more likely for either system to undergo some catastrophe not accounted for in the
model (e.g. theft, or an earthquake) than for someone to toss 100 consecutive heads on
a fair coin! (Nonetheless, it should still be said that for many systems where noise-
induced synchronisation theoretically occurs, the synchronisation will take a long time to
be observed, especially if the noise intensity is small; see Remark )
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Chapter 5. Synchronisation in Orientation-
Preserving RDS on the Circle

Before presenting general criteria for synchronising behaviour in RDS (Chapter 6), we
first look specifically at the case of orientation-preserving RDS on S!. Here, we have a
geometrically intuitive characterisation of stable synchronisation, as well as fairly weak
sufficient conditions for stable synchronisation that do not involve local stability. The
content of this chapter is based on [New15c].

Let S! be the unit circle, which we identify with the quotient of the additive group
(R,+) by the subgroup Z. Let m:R — S! denote the natural projection; a lift of a point
x €S is a point 2’ € R such that 7(x') = z, and a lift of a set A c S! is a set B c R such
that w(B) = A. Let | denote the (normalised) Lebesgue measure on S'. Define the metric
d on S' by

d(z,y) = min{|z’' —¢'|: 2’ is a lift of z, ¢’ is a lift of y}.

Note that under this metric, for any connected J c St,
diam J = min(I(J), )

The following basic fact is sufficiently clear that we do not write out a proof; nonetheless,
it will be useful to state it explicitly.

Lemma 5.1. (A) For any probability measure p on S, the following statements are
equivalent:

e p is atomless;

e for any sequence (J,,) of connected subsets of St, if I(J,) - 0 as n — oo then
p(Jn) = 0 as n — oo;

e for any sequence (J,,) of connected subsets of S', if I(J,) —» 1 as n — oo then
p(Jn) > 1 asn — oo,

(B) For any probability measure p on S', the following statements are equivalent:
e p has full support;

e for any sequence (J,) of connected subsets of S', if p(J,) = 0 as n - oo then
I(Jp) =0 asn—oo;

e for any sequence (J,) of connected subsets of S', if p(J,) - 1 as n - oo then
I(J,) =1 asn— oco.

Define the anticlockwise distance function d,:S' x S - [0,1) by

di(z,y) = min{r>0: w(z' +7) =y}
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where ' may be any lift of . Obviously d, is not symmetric, but rather satisfies the
relation

di(y,z) = 1-di(z,y).
It is clear that for all z,y € S',

[ di(z,y) ifdi(z,y) <3
d(w.y) = {d+(y,$) if di(z,y) > 3.

Note that d, is continuous on the set {(z,y) € S! xS' : x # y}. For any interval I c R of
positive length less than 1, letting x1 := w(inf ), x5 := w(sup /) and J = w(I), we have
that

l(@(tﬂ"])‘]) = d+(<p(t,w)x1,<p(t,w):c2) (51)

for all ¢t and w.

Standing Assumption. Throughout Chapter 5, we assume that X =S', equipped with
the metric d given above, and that ¢ is a right-continuous RDS. We also assume that
o(t,w) is an orientation-preserving homeomorphism for all t € T+ and w € €.

By Lemmas and [2.86], it follows that ¢ is right-continuously invertible; and if ¢ is
continuous then ¢ is continuously invertible.

Recall that, as in Section , (@%)zex ter+ denotes the family of “time-reversed” Markov
transition probabilities associated to ¢. As in Chapter 4, for each w € €2, ~, denotes the
equivalence relation

r~yy = d(p(t,w)r, p(t,w)y) > 0 as t - .

5.1 Stable synchronisation in terms of crack points

Definition 5.2 (c.f. [Kai93|). Given a point r € St and a sample point w € €2, we will say
that r is a crack point of w if the following equivalent statements hold:

e for every open U c S! with r e U, [(¢(t,w)U) = 1 as t - oo;
e for every closed G c St with 7 ¢ G, l[(p(t,w)G) — 0 as t — oo;
e for every A c S! with r ¢ A, diam(o(t,w)A) -0 as t - oco.

It is clear that any sample point admits at most one crack point. If a sample point w
admits a crack point, then we will say that w is contractive.

Now if a sample point w admits a crack point r, then it is clear that all points in St~ {r}
are equivalent under ~,,. Hence, we have that either

(a) the equivalence relation ~, has two equivalence classes, namely {r} and S! \ {r};
or

(b) the equivalence relation ~, has one equivalence class (the whole of St).
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5.1 Stable synchronisation in terms of crack points

In case (a), we say that r is a repulsive crack point of w.

Definition 5.3. Let Q. c © be the set of contractive sample points, and let 7:Q, — S!
denote the function mapping a contractive sample point w to its crack point 7(w).

Lemma 5.4. Q. is F§°-measurable, and 7:Q, - S is measurable with respect to the
o-algebra F,. of F§°-measurable subsets of Q.. For allt €T, 61(S2.) = Q.; and 7(f'w) =
o(t,w)T(w) for all we Q. and t € T*.

Proof. Let R be a countable dense subset of S'. For any connected J c S, it is clear (by
considering rational times) that

{weQ : l(p(t,w)J) > 0ast—> oo} € F. (5.2)

So then, in order to show that Q. € Fy°, it suffices to prove the following statement: a
sample point w € ) is contractive if and only if for every n € N there is a connected open
set U, ¢ S! with endpoints in R such that 1-= < [(U,) <1 and I(p(t,w)U,) - 0 as t - oo.
Now the “only if” direction is obvious. For the “if” direction: suppose that for every n € N
there exists a connected open set U, ¢ S' with endpoints in R such that 1 -+ <{(U,) <1
and [(¢(t,w)U,) — 0 as t - oo; and let U := ;24 U,. Since U, is connected for all n and
I(U,) > 1 as n — oo, we clearly have that either U = S! or S! \ {U} is a singleton. Now
suppose, for a contradiction, that U = S'. Then, since S! is compact, there is a finite
subset {ny,...,nx} of N such that S' = U, U,,; but since I(¢(t,w)U,,) = 0 as t - oo for
each 7, we then have that [(¢(t,w)S') - 0 as t - oo, which is absurd. So then, we must
have that S \ U is equal to a singleton {r}. We now show that r is a crack point. Fix
any closed G c S! with r ¢ G. Take n such that {(U,) > 1 -d(r,G); then G c U,, and so
I(o(t,w)G) = 0 as t > co. Hence r is a crack point of w.

Thus we have shown that (2. is Fj°-measurable. Now for any non-empty closed connected
K c S, it is clear that a sample point w € €2, belongs to #~!(K) if and only if for every
closed connected G ¢ S' \ K with boundary in R, [(¢(t,w)G) » 0 as t - co. So by
and the countability of R, 7 1(K) € F. for every closed connected K c S'. Hence 7 is
F.measurable.

Now for any w € 2, r € St and t € T*, we obviously have that if U c S! is a neighbourhood
of r then ¢(t,w)U is a neighbourhood of ¢(t,w)r, and that if V' c St is a neighbourhood
of o(t,w)r then p(t,w) (V) is a neighbourhood of 7; so then, it is easy to see that

r is a crack point of w <= (t,w)r is a crack point of §'w.

So then, for any w € 2 and ¢ € T*, we have that w € Q. < 0'w € Q. (so 071(2.) =.); and
obviously 7(0'w) = p(t,w)7(w) for all w € Q.. O

Corollary 5.5. P(2.) is equal to either 0 or 1. In the case that P(2.) = 1, either:
(a) for every x eS', P(we. : 7(w)=z) = 0; or

(b) there exists a deterministic fived point p € St such that P(w € Q. : 7(w) =p) = 1.
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5.1 Stable synchronisation in terms of crack points

Proof. The fact that P(£.) € {0,1} follows immediately from Lemma and the
ergodicity of PP under (6*) (Lemma [2.8). In the case that P(€2.) = 1, define the function

r:Q) - St by
] Fw) wef
riw) = { ko weQNQ,

where k is an arbitrary constant. By Lemma [5.4] r is an Fj°-measurable random fixed
point, and therefore Lemma gives that either case (a) or case (b) holds. O

We now characterise stable synchronisation in terms of crack points.

Theorem 5.6. ¢ is stably synchronising if and only if P(Q.) = 1 and case (a) of
Corollary holds. In this case, for P-almost every w € €., 7(w) is a repulsive crack
point of w.

Remark 5.7. If P(Q2.) = 1 and case (b) of Corollary holds, then ¢ is synchronising
if and only if for P-almost all w € 2., p is a non-repulsive crack point of w.

Most of the rest of Section [5.1]is devoted to proving Theorem [5.6]

The following lemma is similar in principle to [LeJ87, Lemme 1(a)].

Lemma 5.8. Let p be an atomlesdl| probability measure that is stationary under the
Markov transition probabilities (L) zex ter+. For any connected J ¢ S*, for P-almost all
w e, p(p(t,w)J) is convergent as t - oo.

Proof. Fix a connected J c S', and for each ¢t and w let hy(w) = p(p(t,w)J). Note that
for each boundary point z of J, the map ¢ — (¢, w)x is right-continuous for all w. Hence,
since p is atomless, the map ¢ — hy(w) is right-continuous for all w. So if we can show
that (h¢)er+ is a martingale with respect to the filtration (F¢)ier+, then the martingale
convergence theorem will give the desired result. Fix any s,t € T*. We have that

E[heul F5l(w) = E[@ = p(e(s +1,0)J) [ F5 [(w)
E[@ = p(p(t,0°0) ((s,0)J)) [ F5 ](w)
B[ > p(i(t, 0°5) (9(5,0))) ]
(by Lemma [A.11] since F§ and F¢*' are independent)

= p(p(s,w)J)
(by equation ([2.10) with #°w in place of w)
= hs(w).
So we are done. O

Lemma 5.9. Suppose that ¢ is synchronising, and that there exists an atomless
probability measure that is stationary wunder the Markov transition probabilities
(@;,)xeX’tE']Iw—. Then P(QC) = 1

!The condition that p is atomless can in fact be dropped, although the proof then becomes significantly
longer, as it is harder to justify that the martingale (h;)er+ almost surely has right-continuous sample
paths. In any case, we will not need this for our purposes.
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5.1 Stable synchronisation in terms of crack points

Proof. Let p be an atomless stationary probability measure of the Markov transition
probabilities (¢f). First, let us fix any connected set J c St with 0 <I(J) < 1, and write
0J={x,y}. For P-almost every w € €2, we have that d(¢(t,w)z, p(t,w)y) = 0 as t - oo,
and so for any unbounded increasing sequence () in T+ with [(p(t,,w)J) convergent,
the limit of [(¢(t,,w)J) is equal to either 0 or 1. But also, we know by Lemma [5.8 that
for P-almost every w € Q, p(p(t,w)J) is convergent as t - oo. Combining these facts,
we have (using Lemma [5.1[(A)) that for P-almost every w € Q, I(p(t,w)J) converges to
either 0 or 1 as ¢ — oo.

Now then, fix an arbitrary k € R, and for each v € [0,1], let J, := w([k,k + v]). Let
2 c Q be a P-full set such that for each w e Q' and v € [0,1]nQ, I(¢(t,w)J,) converges
to either 0 or 1 as t - oo. For each w € (¥, let

c(w) = sup{ve[0,1]:l(p(t,w)],) >0ast—>oco}
= inf{ve[0,1]:(¢(t,w)J,) > 1 as t - oo}.

It is easy to see that for each w € Q' w(k+c(w)) is a crack point of w. So we are done. [J

Lemma 5.10. Suppose ¢ s stably synchronising.  Then the Markov transition
probabilities then the Markov transition probabilities (@)sex ter+ admit at least one
stationary probability measure that is atomless.

Proof. First suppose that ¢ does not have a deterministic fixed point. Since S! is compact,
there exists at least one probability measure p that is ergodic with respect to (¢%); and
by Lemma |4.14] such a probability measure must be atomless.

Now suppose that ¢ does have a deterministic fixed point p. Let p’ € R be a lift of
p, and for each v € [0,1], let J, := w([p’,p" + v]). Define the function h:Q - [0,1] by

h(w) = sup{ve[0,1) : I(p(t,w)J,) > 0 ast > co}.

For any c € [0,1) and w € £, h(w) > ¢ if and only if there exists v € (¢,1) N Q such that
l(p(t,w)J,) = 0 as t - co. Hence h is Fg°-measurable. Now since ¢ is everywhere stable

in S!, we know that for P-almost every w €  there exists a neighbourhood U of p such
that {(p(t,w)U) - 0 as t - oo. Hence h(w) € (0,1) for P-almost all w € .

Now define the function ¢: Q2 — S! by

g(w) = (P +h(w)).

Since h is Fg°-measurable, ¢ is Fj°-measurable. Given any t € T* and w € €2, we have
that for all v e [0,1),

I(p(s,w)dy) > 0ass—>00 <= I(p(s,0w)(p(t,w)],))—>0ass—> o0

and therefore ¢(0'w) = p(t,w)q(w). Hence, by Corollary ¢.IP is ergodic with respect
to (@%). Moreover, since h(w) € (0,1) for P-almost all w € 2, ¢.[P is not equal to d,. Since
 is synchronising, ¢ cannot have more than one deterministic fixed point, and so ¢,]P
is not a Dirac mass at a deterministic fixed point. Therefore (by either Lemma or
Lemma , q. P is atomless. O
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5.1 Stable synchronisation in terms of crack points

Combining Lemmas and gives that if ¢ is stably synchronising then P(£2.) = 1.

Lemma 5.11. Suppose P(2.) = 1. Then ¢ is stably synchronising if and only if case (a)
in the statement of Corollary[5.9 holds.

Proof. For any z,y € S' and w € Q,, if 7(w) # z and 7(w) # y then = ~, y. Hence it is
clear that in case (a) in the statement of Corollary ¢ is synchronising. For any x € St
and w € Q,, if 7(w) # = then there obviously exists a neighbourhood U of x such that
diam(¢(¢,w)U) - 0 as t - co. Hence, in case (a) in the statement of Corollary [5.5] ¢ is
everywhere stable (and therefore uniformly stable, since S! is compact). Thus we have
seen that in case (a) in the statement of Corollary @ is stably synchronising.

Now if there exists p € S' such that P(w € Q. : 7#(w) = p) > 0, then p is not almost
surely stable, and so ¢ is not stably synchronising. O]

Combining Lemma with the fact that if ¢ is stably synchronising then P(£2.) = 1
yields all of Theorem [5.6], except the final assertion that if ¢ is stably synchronising then
7(w) is almost surely repulsive.

The following statement is not specific to orientation-preserving RDS on the circle, but
generalises to any right-continuous RDS on a metric space (X, d) with B(X) standard.

Lemma 5.12. Let ¢:Q2 - St be a F§°-measurable random fized point, and suppose that
q:P is atomless. Let p be any stationary probability measure of the Markov transition
probabilities (¢L)zex ter+. For P-almost every w e 2, p(x €Stz ~, q¢(w)) =0.

Proof. Define the function Oy : 2 xSt xSt - QxS x S! by

@[2](("]7 xz, y) = (elwa 90(17 w)az ()0(17 w)y)

Define the probability measure p on the measurable space (2 x St x St, Fs° @ B(St x St))
by
D(A) = Pop((w,1) e QxS : (w,2,9(w)) € A).

For any A € F5° ® B(S! xSt), since ¢ is Fg°-measurable, the set {(w, ) : (w,z,q(w)) € A}
is (Fg° ® B(S'))-measurable. With this, we have
PO (4) = Pop((w,2) e QxS (0w, o(1,w)z,o(1,w)q(w)) € A)

P®p((w,z)e QxS (0'w, p(1,w)z,q(0'w)) e A)
Pep(O0 H(w,2) e QxS (w,z,q(w)) e A})
P& p((w,z) e QxS (w,2,q9(w)) e A)

(since Pl ® p is ©'-invariant)
p(A).
So p is Opyp-invariant. Now since ¢, [P is atomless, we have that

P(2xAx) = Pop((w,z)eQxS":qw)=1)

./Sl P(weN:q(w) =) p(dx)
0.
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5.1 Stable synchronisation in terms of crack points

So letting U, = {(z,y) € S' x S' : d(x,y) < &} for each € > 0, we have that p(Q2x U.) = 0
as € - 0. Hence the set

K

{(w,7,y) e QxS xS : d(o(n,w)z, o(n,w)y) >0 asn —» oo}

oo o0 o0

NUN Op(@xU2)
n= j=i

is a p-null set. Therefore (by definition of p), the set

L = {(w,2) eQxS": d(p(n,w)z,o(n,w)g(w)) >0 asn > oo}
is a (P ® p)-null set. So (with Fubini’s theorem) we are done. O

Hence we can complete the proof of Theorem [5.6} since S! is compact, there must exist a
stationary probability measure p of the Markov transition probabilities (¢! ); so applying
Lemma with ¢ being the function r in the proof of Corollary [5.5 we have that for
P-almost every w € €2, the equivalence relation ~, has more than one equivalence class,
and so 7(w) is repulsive.

We mention a further relevant fact, which we will not prove here:

Proposition 5.13. Suppose o is stably synchronising, and let r:Q - St be a measurable
function agreeing with 7 P-almost everywhere in Q.. There exists an F°_-measurable
random fized point a:Q) — S' such that every p-invariant probability measure on (€ x
SUF® B(S')) has a disintegration () taking the form

Mo = )\(Sa(w) + (1 - )\)(Sr(w)
for some X € [0,1].
We may regard the pair of random fixed points (a,r) as the attractor-repeller pair of .
For a proof of Proposition see [Newlbc, Theorems 5.10, 5.13].
For an important example of a stably synchronising RDS on S!, see Section [5.3]

Finally, we introduce briefly the notion of a “crack set”:

Definition 5.14. Fix a sample point w € ) and a non-empty finite set R c¢ S'. We say
that R is a crack set of w if the following statements hold:

(i) each connected component of St \ R is o-contracting under w;

(ii) any two distinct connected components of S! \ R are contained in distinct
equivalence classes of ~,.

And we say that a crack set R is repulsive if for any z € S' N R, d(p(t,w)x, p(t,w)R) 40
as t — oo.

Observe that a point 7 € S is a crack point of w if and only if the singleton {r} is a crack
set of w, and that r is a repulsive crack point if and only if {r} is a repulsive crack set.
Also note that if R is a crack set of w with at least two elements, then R is precisely the
set of all boundary points of equivalence classes of ~,. Hence, any given sample point
possesses at most one crack set.
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5.2 A test for stable synchronisation

Proposition 5.15. Let ¢’ be a right-continuous RDS on St over (Q, F, (Fs*t),(6),P)
such that ¢'(t,w) is an orientation-preserving homeomorphism for all t and w; and
suppose we have a deterministic semiconjugacy h:St — St from ¢ to ', with a strictly
increasing lift H:R - R. For any w € Q and r € S, if r is a crack point of w under ¢’
then h=*({r}) is a crack set of w under . If, in addition, r is repulsive (under ') then
h=t({r}) is repulsive (under ¢).

Proof. For any = € S', the number of elements of h=1({z}) is precisely the degree k of
hP] and each connected component of S' \ h=!({z}) is mapped homeomorphically into
St\{z} by h. It is not hard to show that

inf{d(z,y): 2,y €S, h(z) =h(y)} > 0. (5.3)

It is also not hard to show that for all & > 0 there exists §(¢) € (0,3) such that for any
connected J c St of length less than 4, the length of every connected component of h=1(.J)
is less than ¢.

Now suppose r is a crack point of w under ¢’. Let I be any connected component
of St~ h71({r}), and let G be a compact subset of I. Fix any € > 0. Obviously h(G)
is a compact subset of S' \ {r}, so let J be a compact connected subset of S' \ {r}
containing h(G). Note that G is contained in a connected component K of h=*(.J). For
all t € T*, we have that p(t,w)K c h=1(¢'(t,w)J). Now let T € T* be such that for all
t>T, (¢ (t,w)J) < d(e). Then, since p(t,w)K is connected (for any t), we have that
forall t > T, I(p(t,w)K) < e and therefore diam(p(t,w)G) < €. Since ¢ was arbitrary, we
have that G contracts under w. Hence [ is o-contracting under w. Now given distinct
connected components I; and Iy of S N\ h=1({r}), if we take x € I; and y € I, such that
h(z) = h(y), then h(p(t,w)z) = h(p(t,w)y) for all ¢, and therefore by (6.3), = 4. v.
Hence I, and I, belong to distinct equivalence classes of ~,,. Thus we have shown that
h=t({r}) is a crack set of w under ¢.

Suppose that the crack set h~1({r}) is not repulsive, and let z € S* \ h=1({r}) be such
that d(@(t,w)z, o(t,w)(h1({r}))) = 0 as t - oo. Since h is uniformly continuous, it
follows that d(¢'(t,w)h(z),¢'(t,w)r) - 0 as t - co. Since h(x) # r, it follows that r is
not repulsive. O]

5.2 A test for stable synchronisation

The aim of this section is to present weak and easily verifiable sufficient conditions for
stable synchronisation. Heuristically, the conditions that we shall give demonstrate that
“sufficient flexibility” in how the noise can effect the system is guaranteed to lead to
stable synchronisation. An application shall be presented in detail in Section [5.3]

Some additional results which will not be presented here are included in Section 2 of
[New15¢].

When we wish to say that ¢ is contractible on S, we will just say that “p is contractible”.

Zthat is, the unique integer k for which the map y ~ H(y) - ky is periodic.
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5.2 A test for stable synchronisation

Definition 5.16. We say that ¢ is two-way contractibld’] if for any distinct z,y € S*,
P(w: 3teT st. dy(e(t,w)r, p(t,w)y) <d (xz,y)) > 0.

By reversing the order of inputs, this is equivalent to saying that for any distinct x,y € S*,
P(w: 3teT st. dy(e(t,w)r, p(t,w)y) >d(x,y)) > 0.

We can also define two-way contractibility in terms of connected subsets of S': ¢ is
two-way contractible if and only if for every connected set J c St with 0 <I(J) <1,

P(w: 3teT s.t. l(e(t,w)J)<I(J)) > 0.

Again, this is equivalent to saying that for every connected set J c St with 0 <(J) < 1,
P(w: 3teT s.t. l(e(t,w)J)>1(J)) > 0.

Obviously, if ¢ is two-way contractible then ¢ is contractible.

Remark 5.17. Suppose there exists a separable metrisable topology on €2 whose Borel
o-algebra coincides with F, such that P has full support and for all ¢ € T+ and z € St,
the map w ~ @(t,w)r is continuous. Then, as in Remarks [2.73| and [4.67, in order
to show that ¢ is two-way contractible, it is sufficient to show that for each pair of
distinct points z,y € S there exists a sample point w € Q and a time ¢ € T+ such that

di (p(t,w)z, o(t,w)y) <d.(z,y).

We will not need the following proposition elsewhere, but it is worth stating nonetheless:

Proposition 5.18. If ¢ is two-way contractible then for any x,y € S' and € > 0 there
exists t € T+ such that

P(w : dy(@(t,w)x, p(t,w)y) <e) > 0.

For the proof, see [New15c, Proposition 2.5].

The following theorem (the main result of this section) generalises results in [DKNO7,
Section 5.1].

Theorem 5.19. The following statements are equivalent:
(i) ¢ is two-way contractible and has no deterministic fized points;
(ii) ¢ is contractible and has reverse-minimal dynamics;

and when these hold,  is stably synchronising.

35In  |[Newlbc|, the term “compressible” is used; however, since we already use the term
“incompressible” to describe probability measures on the phase space X, we use the term “two-way
contractible” here in order to avoid confusion. (The term “two-point contractible” also reflects the
meaning more clearly.)
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5.2 A test for stable synchronisation

Observe in particular that if ¢ has reverse-minimal dynamics then contractibility, two-
way contractibility, synchronisation and stable synchronisation are all equivalent.

Before proving Theorem [5.19] it is worth mentioning that in continuous time, if ¢ is
continuous then reverse-minimal dynamics and minimal dynamics are the same:

Proposition 5.20. If T = R and ¢ is continuously invertible, then the following are
equivalent:

(i) @ has reverse-minimal dynamics on S';
(ii) ¢ has minimal dynamics on St.

Proof. We first show that (i)=(ii). Suppose we have a closed invariant non-empty proper
subset G of S'; we need to show that there exists an open invariant non-empty proper
subset U of S!. Firstly, if G is a singleton {p} then U := S! \ {p} is clearly invariant.
Now consider the case that GG is not a singleton, and let V' be a connected component
of S' N\ G; we will show that U = S \ V is invariant. (Note that U is non-empty,
i.e. V #S! since G is not a singleton.) Fix any w with the property that o(t,w)G c G
for all t € T+. Since OV c G, we have that for all ¢, p(t,w)0V c G and therefore in
particular ¢(t,w)0V NV = @. Now since ¢ is a continuous RDS, we can define continuous
functions a,b: [0, 00) - R with a < b such that [a(t),b(t)] is a lift of ¢(¢,w)V for all t.
(So {a(t),b(t)} projects onto ¢(t,w)dV for all ¢t.) For all ¢, since p(t,w)o0V n V =@,
we have that a(t),b(t) ¢ (a(0),6(0)). Therefore (due to the intermediate value theorem),
a(t) < a(0) for all t and b(t) > b(0) for all t. Hence V c o(t,w)V for all t. Since ¢(t,w)
is bijective for all ¢, it follows that ¢(t,w)U c U for all . So U is invariant.

Now, in order to show that (ii)=(i), first observe that a set A c S! is invariant if and
only if P-almost every w € Q) has the property that for all £ € T,

o(t,w) (X NA) ¢ X\A

Hence the fact that (ii)=(i) follows from the fact that (i)=(ii), except with the family of
functions (¢(t,w))ter+weq replaced by the family of functions (¢(t,w)™!)ser+weq- O

Proof of Theorem m

To prove Theorem we will first prove that (i)=(ii)=stable synchronisation, and
then, using material developed along the way, we will prove that (ii)=(i).

Proof that (i)=(ii). Suppose ¢ is two-way contractible and has no deterministic fixed
points. Suppose for a contradiction that ¢ does not have reverse-minimal dynamics, and
let U be an open invariant non-empty proper subset of S!. Let V' be a maximal-length
connected component of U. Since there are no deterministic fixed points, S' \ U is not
a singleton and so [(V') < 1. Hence, since ¢ is two-way contractible, there is a positive-
measure set of sample points w € Q for each of which, for some ¢, € T+, I(¢(t,,w)V) >
[(V'). However, ¢(t,w)V is connected for all ¢t and w, and so if I(p(t,,w)V) > (V) then
©(tw,w)V cannot be a subset of U. This contradicts the fact that U is invariant. O
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We now start working towards the proof that (ii)=-stable synchronisation.

Lemma 5.21. Suppose that  is contractible, and that there exists a stationary probability
measure p of the Markov transition probabilities (@L)zex ter+ that is atomless and has full
support. Then ¢ is synchronising.

(We will soon prove that under these same conditions, ¢ is stably synchronising.)

Proof. Fix any distinct z,y € S'. Let J c S! be a connected set with 0J = {z,y}.
By Proposition and Lemma [5.8] there is a P-full set of sample points w with the
properties that

(a) there exists an unbounded increasing sequence (t,) in T+ such that

d(p(tn,w)z, o(t,,w)y) >0 asn— oco;

(b) p(p(t,w)J) is convergent as t — co.

Fix any w with both these properties, and let (¢,) be as in (a). For any n,
d(p(tn,w)z, o(t,,w)y) is precisely the smaller of [(¢(t,,w)J) and 1-1(¢(t,,w)J). Hence
there must exist a subsequence (t,,, ) of (¢,) such that either I(¢(t,,,,w)J) > 0 asn - oo
or I(¢(tm,,w)J) - 1 as n - oo. Since p is atomless, Lemma [5.1(A) then gives that
either p(¢(tm,,w)J) = 0 asn— oo or p(p(ty,,,w)J) =1 asn— oo. Since p(p(t,w)J) is
convergent as t — oo, it follows that either p(¢p(t,w)J) = 0 as t — oo or p(p(t,w)J) = 1
as t - oo. Since p has full support, Lemma [5.1(B) then gives that either I(p(t,w)J) - 0
ast — oo or l(p(t,w)J) = 1 as t - oo. Hence d(p(t,w)z, p(t,w)y) - 0 as t — oo. O

Lemma 5.22. Under the hypotheses of Lemma for any connected J c S',
P(w: l(p(t,w)J)>0ast—>o00) = 1-p(J).

Proof. Fix any connected J c S'. As in the proof of Lemma [5.21] we have that for
P-almost every w € €, either

p(e(t,w)J) -0 and [(p(t,w)J)—>0 ast— oco.

or
plp(t,w)J) =1 and I(p(t,w)J)—>1 ast— oo.

So then, letting E denote the set of sample points w for which the latter scenario holds,
the dominated convergence theorem gives that as ¢ - oo,

[ otpt) ) B(dw) > [ 1p(w)P(dw) = P(E).
But we also know that for any ¢,
[ pletw)D)P(dw) = p(7).

Hence P(E) = p(J), i.e. the probability of the latter scenario is p(J) and the probability
of the former scenario is 1 - p(.J), as required. O]
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5.3 Example: Additive-noise SDE on S!

Combining Lemmas and [5.22, we have:

Corollary 5.23. Under the hypotheses of Lemma|5.21], v is stably synchronising.

Proof. We already know (from Lemma [5.21)) that ¢ is synchronising. Now fix any x € X.
Let (Up,)nen be a nested sequence of connected neighbourhoods of = such that N, U, = {x}.
For each n,

Py(x) = P(w : Jopen Us x s.t. [(o(t,w)U) >0 ast—>oc0)
> P(w: I(e(t,w)U,) > 0ast—o0)
= 1-p(Uy).
But since p is atomless, p(U,) — 0 as n - oo. Hence Py(x) = 1. So ¢ is everywhere stable
(and therefore uniformly stable). O

Now since S! is compact, there exists at least one stationary probability measure p of the
Markov transition probabilities (@%)zex ter+. If ¢ has reverse-minimal dynamics, then it
is clear that p has full support, and Lemma [2.91] gives that p is atomless. Combining this
with Corollary completes the proof that (ii)=>stable synchronisation.

Finally, to show that (ii)=(i), we use the following corollary of Lemma [5.22}
Corollary 5.24. Under the hypotheses of Lemma|5.21], ¢ is two-way contractible.

Proof. For any connected J c St with 0 < [(J) < 1, since p has full support, p(J) < 1.
Hence, by Lemma there is a positive-measure set of sample points w such that
I(o(t,w)J) > 0 as t - oo. So in particular, ¢ is two-way contractible. O

Combining Corollary with the fact that reverse-minimality implies the existence of
a (pL)-stationary probability measure that is atomless and has full support yields that

(i) =(i).

5.3 Example: Additive-noise SDE on S!

We now demonstrate an application of Theorem [5.19; we will see that for a “generic”
vector field on S', the system resulting from an additive superposition of Gaussian white
noise over this vector field is stably synchronising. Specifically, stable synchronisation
occurs when the vector field has no subperiodicity. We will also see what happens when
the vector field does have subperiodicity.

Recall that the Wiener measure in Example has full support (with respect to the
topology of uniform convergence on compact sets).

Theorem 5.25. Given any Lipschitz periodic function b:R — R with least period 1, and
any o € R~ {0}, the RDS on S' generated by the SDE d¢, = b(¢py)dt + odW, is stably
synchronising.

Lemma 5.26. Let b:R - R be a continuous periodic function, and let k > 0 be a value
that is not a period of b. Then there exists a € R such that b(a+ k) < b(a).
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5.3 Example: Additive-noise SDE on S!

Proof of Lemma[5.20. Let m >0 be a period of b. To prove the result, we assume that
there exists a’ € [0,m) such that b(a’+k) > b(a’) and show that this implies the existence
of a point a € [0, m) such that b(a + k) < b(a). Note that since b is m-periodic,

fomb(x+k)dx - fomb(az)dm.

But since b is continuous, there exists € € (0,m — a’) such that

! ’

fa b(x+l<;)dx>/a b(z) da.

Hence it is clear that there exists a € [0,m) such that b(a + k) < b(a). O

Proof of Theorem[5.25. Let ¢ be the RDS generated by the SDE d¢, = b(¢;)dt + odW,.
We first show that ¢ has no deterministic fixed points: for any p € St, if we take w(t) =
%@t for some arbitrary k # 0, then the function u:t — p(t,w)p satisfies the differential
equation @ =b(u) —b(p) + k (to be interpreted in the obvious way) and so it is not the
case that ¢(t,w)p = p for all ¢; so by Remark , p is not a deterministic fixed point.
We next show that ¢ is two-way contractible. Assume without loss of generality that
o > 0. Fix a connected set J c St with 0<[(J) <1, and let [c1,c2] ¢ R be a lift of J (so
¢ —c1 =1(J)). Since b is continuous and periodic but not I(J)-periodic, by Lemma [5.26]
there exists a € R such that b(a+1(J)) < b(a); obviously, we can choose a to be larger than
c1. Pick any 0 <k <b(a) —b(a+1(J)), and let £ >0 be such that for all 1 € (a—¢,a+¢)
and zo € (a+1(J)—e,a+1(J) +¢),

b(z1) > b(xs) + k.
Let M := max,eg [b(z)|, and pick any 0 > 0 with
0 < min(ﬁ, E)
AM "2
Let n > 0 be a value sufficiently large sufficiently that
M )

on  a-c

Let w € 2 be a sample point such that

() = { nt tel0, 0]

8 fe[LL oo).

Let uy,up:[0,00) = R be lifts of the functions t = ¢(t,w)w(c1) and t — p(t,w)m(c2)

respectively, such that u;(0) = ¢; and u2(0) = co. For each ¢ € (0, %), we have that

() = b(u(t) +on e (on(1-2),on(1+2)) c (on(1- ), on(1+;2))

and likewise

ip(t) € (on(l-2-),om(1+ ).
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5.3 Example: Additive-noise SDE on S!

Hence, we have that
u(%53t) € (a-d,a+9)

and
up () € (a+U(J)-d,a+1(J)+4).

“’;1 ,00), we have that

() = bur(t)) and as(t) = b(us(t)).

a—-c1 a—cCy
on ’ on

Now for each ¢ € (

Suppose for a contradiction that there exists t € ( + 537) such that
ui(t) ¢ (a—e,a+e¢).

Let

t1 = min{t > 2w (8) ¢ (a-c,a+¢€)}.
Obviously u(t1) is equal to either a — ¢ or a +e. So (by the mean value theorem), there

exists ¢o € (7%, 11) such that

b(ui(t2))] = [t (t2)]

\

= M,
contradicting the fact that M = max, |b(z)|. So then, we have that
uy(t) € (a-c,a+e) Vte %’%"’ﬁ)

Likewise, we have that

us(t) € (a+1(J)-¢e,a+1(J)+¢) Vte(aggl,“;;1+ﬁ).

So then,
in(t) ~n(t) < k¥ be (e g )

on ' on

and therefore

a—cy £ a—cq £ a—cy a—ci ]{ZE
uz( on +557) — U ( on Tan) < uz( on )—Ul(g—n)—m
a—cy a—cyi kE
- (uz(w)—(a+l(J)))+(a—u1(g—n))+l(J)—m
a—cCcy a—cy kE
< Jua(52) = (@ WD) + Ja - (52| + 1) - 5
< 25+Z(J)—;—]\Z
< 20+1(J) -26
- 1(J).
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5.3 Example: Additive-noise SDE on S!

Hence

Wp(52 + 557, w) ) < U(J).
So (by Remark [5.17)), ¢ is two-way contractible.

Since ¢ has no deterministic fixed points and is two-way contractible, Theorem [5.19
gives that ¢ is stably synchronising. O]

As an example, consider the SDE
dp, = (a+ecos(2my))dt + odW,

where € # 0. In the deterministic case where o = 0, we have the following: for |a| < |¢],
there is one repelling fixed point and one attracting fixed point, whose basin of attraction
is the whole circle minus the repelling fixed point; for |a| = |¢], there is exactly one fixed
point, which attracts every orbit but is not Lyapunov stable; and for |a| > |¢], there are no
fixed points, and all orbits move periodically round the circle with the same periodicity.
(So the system exhibits a saddle-node bifurcation as a increases past || or decreases past
—lel.) However, when noise is incorporated—i.e. when o # 0—Theorem [5.25| gives that
the associated RDS is stably synchronising for all values of a. Hence we can say that
for |a| > |e|, the addition of noise has the effect of “creating” synchronisation, i.e. the
phenomenon of “noise-induced synchronisation” occurs. In terms of random attractors
and repellers: by Proposition [5.13] when noise is incorporated, we have that for all values
of a there is one repelling random fixed point (namely, the crack point) and one attracting
random fixed point. (So noise destroys the saddle-node bifurcation.)

We now consider the case that the least period of b is not 1. Obviously if b is a constant
function then there cannot be synchronisation, since (under any realisation of the noise)
any two trajectories stay the same distance apart. If the least period of b is % for some
n > 2, then the RDS is not contractible on S!, since any two trajectories starting at
distance % apart will remain at distance % apart; nonetheless, there will still be some

local synchronisation:

Corollary 5.27. Let b:R — R be a Lipschitz periodic function with least period % (for
some n € N), and fiz any 0 € R\ {0}. Let ¢ be the RDS on S' generated by the SDE
dp, = b(¢)dt + odW,. Then for P-almost every w € Q there exists p € S' such that
the set {p + W(%)}k=07,,.7n_1 is a repulsive crack set of w. Consequently, there is a unique
stationary probability measure p for the Markov transition probabilities () zex. ter+, and
the p-clustering number of @ is precisely n.

Lemma 5.28. Let b:R — R be a Lipschitz %—pem’odic function (for some n e N), and fix
any o € R. Let ¢ be the RDS on S' generated by the SDE d¢, = b(¢)dt + odW,. Let
¢’ be the RDS on S generated by the SDE d¢, = nb(L¢,)dt + nodW,. Then, for any
weQ, yeSt and k € Z, letting u:[0,00) = R be a lift of the map t — ¢'(t,w)y, we have
that

pt)m(Lu(0) + £) = w(lu(t) + £) (5.4)

for allt>0. Hence the map h:x — nx is a deterministic semiconjugacy from @ to ¢'.
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5.3 Example: Additive-noise SDE on S!

Proof of Lemma[5.28 Fix k € Z. Let v(t) := 2u(t) + £ for all ¢. Then for all ¢ >0,

%(U(O) + /:nb(%u(s))ds . naw(t)) . %
= 0(0) + /Otb(v(s) By ds + ow(?)
~ 0(0) + /Otb(v(s))ds + owl(d).

This proves (5.4). Now for any z € S!, if we fix a lift 2’ € R of z and take

v(t)

y:=h(x), u(0):=nx', k:=0,

then applying h to both sides of (5.4]) gives that h(p(t,w)x) = ¢'(t,w)y. So h is a
deterministic semiconjugacy from ¢ to ¢’. [

Proof of Corollary[5.27. Let ¢, ¢" and h be as in Lemma [5.28f By Theorem [5.25]
¢’ is stably synchronising. Hence, by Theorem [5.6] P-almost every w € Q admits a
repulsive crack point r(w) under ¢’. By Proposition and Lemma , it follows
that h='({r(w)}) is a repulsive crack set of w under ¢. Obviously, h=1({r(w)}) takes the
form {p + W(%)}kzo’m,n,l for some p € S'.

Now recall, from the proof of Theorem [5.25] the construction of a sample point w taking
the trajectory of ¢; into the arc with lift (a - d,a + d); this construction demonstrates in
general that every (deterministic) non-empty open set is accessible from every point in
S*. So ¢ has minimal dynamics on S'. Now let p be an ergodic probability measure of
(¢L). Since S' is minimal, p must have full support. Since P-almost every w € 2 admits
a crack set, it is clear that ¢ is stable with respect to p. But since every stationary
probability measure of (%) must have full support, it then follows by Lemma that
p is the only stationary probability measure of (¢%)/[]

Now let k£ be the p-clustering number of ¢. Since ¢ is stable with respect to p,
Theorem gives that k < co. For P-almost every w € Q, letting Uy,..., U, be as
described in Theorem we have that Uy, ..., U are contained in distinct equivalence
classes of ~, and (since p has full support) UY, U; is dense in S'. Hence (by a simple
“pigeonhole principle” argument) we have that k = n. [

As an example, consider the SDE
dp, = (a+ecos(2mngy))dt + odW,;

where € # 0 and n > 2. In the deterministic case where ¢ = 0, we have the following:
for |a| < |e| there are n repelling fixed points and n attracting fixed points, with the
basin of attraction of each attracting fixed point being the open interval connecting two
consecutive repelling fixed points; for |a| = |¢|, there are exactly n fixed points, with

4 Alternatively: it is not hard to show, using the strong Markov property, that for any continuous
RDS ¢ on S! with T = R, the interiors of the supports of two distinct (¢, )-ergodic probability measures
must be mutually disjoint. Hence in particular, if ¢ has minimal dynamics, then there is only one
(¢!)-stationary probability measure.
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5.3 Example: Additive-noise SDE on S!

heteroclinic connections between consecutive fixed points; and for |a| > |e|, there are no
fixed points, and all orbits move periodically round the circle with the same periodicity.
However, when noise is incorporated—i.e. when o # 0—the conclusions of Corollary
hold: the addition of noise does not have the effect of causing “global” synchronisation,
but synchronisation within intervals of length % does occur. (Thus one can still say that
for |a| > |¢|, the phenomenon of “noise-induced synchronisation” occurs.) In terms of
random attractors and repellers: when noise is incorporated, for all values of a there
is a “random repeller” consisting of n points (namely, the crack set) and a “random
attractor” consisting of n points (namely, the support of the unique Markov invariant
measure). Dynamically, this scenario is somewhat analogous to the dynamics exhibited
by the discrete-time dynamical system f on S! given by the lift

F(z) = z + ecos(2mnz) + <

where € # 0 is small. (This dynamical system also has an n-point repeller, namely the

4k+3 "1 . N o f4k+1 7L
T oo and an n-point attractor, namely the periodic orbit }k:O )

periodic orbit { i
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Chapter 6. General Synchronisation Tests

So far, we have seen criteria for synchronisation in monotone RDS and in orientation-
preserving RDS on the circle. In this chapter, we present two tests for synchronisation
in RDS on more general phase spaces.

Standing Assumption. Throughout Chapter 6, we fix a separable metric d on X whose
Borel o-algebra coincides with 3, and we assume that ¢ is a right-continuous RDS on
the metric space (X,d).

(Recall once again that the condition that the Borel o-algebra of d is standard is equivalent
to the condition that X is a Borel subset of the d-completion of X.)

As in Chapters 4 and 5, for each w € €2, ~,, denotes the equivalence relation

rryy <= d(e(t,w)r, e(t,w)y) > 0 ast - oo.

6.1 Necessary and sufficient conditions for stable
synchronisation on compact spaces

Recall that if X is compact then ¢ admits at least one minimal set K c X. Also recall
that every compact minimal set can be expressed as the support of an ergodic probability
measure of the Markov transition probabilities (¢f),ex ter+. The following result is the
main result of [New15b].

Theorem 6.1. Suppose X is compact. Then ¢ is stably synchronising if and only if the
following conditions hold:

(i) there is a unique minimal set K c X;
(ii) @ is contractible on the unique minimal set K;
(11i) the unique minimal set K admits stable trajectories.

Now if X is compact and ¢ is synchronising then (by Lemma there is a unique
stationary probability measure of the Markov transition probabilities (¢! ) ex, ter+. Hence
Theorem [6.1] can be re-expressed as follows:

Corollary 6.2. Suppose X is compact, and let p be a stationary probability measure of
the Markov transition probabilities (p%)zex ter+. Then ¢ is stably synchronising if and
only if the following conditions hold:

(i) supp p is the only minimal set;
(ii) @ is contractible on supp p;

(111) supp p admits stable trajectories.
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6.1 Necessary and sufficient conditions for stable synchronisation on compact spaces

Note that a sufficient condition for supp p to be the only minimal set is that p is the only
(oL )-stationary probability measure.

Proof of Theorem[6.1]. If ¢ is synchronising then obviously ¢ is contractible on X. So
Lemma [£.69] gives that (i) holds; and therefore, obviously, (ii) holds. If ¢ is stably
synchronising then (iii) also holds.

Now suppose that (i), (ii) and (iii) hold. By Proposition [4.40] (i) and (iii) imply that ¢ is
uniformly stable; so we just need to establish that ¢ is synchronising. Let C'c X x X be
any non-empty closed set that is invariant under the two-point motion ¢*2. By the final
assertion in Proposition [£.40] it is clear that C' has non-empty intersection with K x K.
Now by (ii), Proposition m gives that any non-empty closed invariant subset of K x K
has non-empty intersection with Ax. Hence C' has non-empty intersection with Ag.
Now it is clear that for any closed G' ¢ X, G is invariant if and only if Ag is invariant
under ©*2; so then, since K is minimal, it is clear that Ag is minimal under ¢*2. Hence,
since C' has non-empty intersection with A, it follows that Ag c C. Now recall that C'
was an arbitrary non-empty closed invariant set under ¢*2. So then, we have seen that
Af is contained in every non-empty closed invariant set under ¢*2. So A is the only
minimal set under ¢*2.

Now fix any z,y € X. Fix a point p € K, and for each n e N and s e QnT+, let

Ros = {weQ: (p(s,0)z,¢(s,w)y) € Br(p) x B1(p)}
Sms =07 (EB%(p))-

Note that for every n and s, o(R,; :t <s) c F§ and S, € F°. Since K is the only

minimal set under p*2, Corollary gives that P (U, R, ) = 1 for all n. Obviously
P(S,s) = P1(p) for all n and s, and so P(S, ) - 1 as n - oo uniformly in s. So then,

Lemma 41| gives that
P(UURn,SnSn,S) -1 (6.1)

Now for any n and s, for any w € R, sn.S, s, we clearly have that x ~, y. Hence (6.1]) gives
that for P-almost all w € €, x ~, y. Since x and y were arbitrary, ¢ is synchronising. [J

Example 6.3. This example is taken from Section 4 of [Newlbb| (which is itself an
extension of the “no subperiodicity” case of the example in |[LeJ87]). Let X = S!, which
we identify with ®/z in the obvious manner. Recall that for any continuous function
f:St — St there exists k € Z (called the degree of f) such that for any lift F:R - R of f,
the map y — F(y) — ky is 1-periodic. If f is an orientation-preserving homeomorphism,
the degree of f is 1. Following the terminology of [Kai93|, if f has degree 1 then a
subperiod of f is a value a € (0, 1) such that the map y » F'(y) —y is a-periodic. Now fix
any smooth function f:S' — St of degree 1, and let F:R — R be a lift of f. Let I =[0,1),
with Z being the Borel o-algebra of I, and let v be the Lebesgue measure on I. For each
a €I, define f,:S! - S! by

fo(m(2)) = m(F(z+a)-a)
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6.2 Necessary and sufficient conditions for p-almost stable synchronisation

(where m:R — S! denotes the natural projection). Let ¢ be the RDS generated by the
random map (I,Z,v,(fa)aer). It is easy to show that the Lebesgue measure [ on S! is
stationary under the Markov transition probabilities (¢7)gest nen,- Define A € [-o00, 00)
by

1
A= fo log [F'(y)| dy.

If [ is ergodic with respect to the Markov transition probabilities (¢7), then A is precisely
the “Lyapunov exponent” associated to I; by [LeJ87, Lemme 3], if A < 0 then ¢ is
stable with respect to I. If [ is not (¢?)-ergodic but A < 0, then (due to the existence
of an ergodic decomposition of 1) there exists a (¢7)-ergodic probability measure p for
which the associated Lyapunov exponent is negative; and so once again, ¢ is stable with
respect to p. Hence, in either case, if A < 0 then S! admits stable trajectories. (If f is
a diffeomorphism, then due to the strict form of Jensen’s inequality, we automatically
have that A < 0.) Now one can show that S! is minimal if and only if f is not a rational
rotation; and one can show that ¢ is contractible on S! if and only if f has no subperiods.
(Note that any rational rotation must have a subperiod.) So then, applying Theorem ,
we have the following: if f has no subperiods and X\ <0 then ¢ s stably synchronising.

6.2 Necessary and sufficient conditions for p-almost
stable synchronisation

If we have a (¢!)zex ter+-ergodic probability measure p on X such that ¢ is stable with

respect to p, a natural question to ask is whether ¢ is p-almost stably synchronising. To

phrase the issue another way: In Theorem [4.52] when do we have that n = 17 We will
now answer this question.

As in Chapter 4, define the equivalence relation ~ on X by
x~y = Pw:iz~,y)=1

Definition 6.4. Let p be a probability measure on X. A p-full-length rectangle is a
set A c X x X taking the form A = A; x Ay where Ay, Ay € B(X) with p(A;) > 0 and

p(A2) = 1.

Now let p be an ergodic probability measure of the Markov transition probabilities
(¢8)zex ter+. For any x € supp p, it is clear that either p(G,) =0 or G, = supp p.

Definition 6.5. Given an ergodic probability measure p of the Markov transition
probabilities (¢! )zex ter+ and a point x € suppp, we will say that x is p-transitive if

G, =suppp.
Let A, denote the set of p-transitive points. By Lemma [2.76] A, is a p-full set.

For any p € X, we write €, c X x X for the set of pairs that are contractible towards
p. For any A c X, we write €4 c X x X for the set of pairs that are contractible towards A.

The following is the main result of [New16].
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6.2 Necessary and sufficient conditions for p-almost stable synchronisation

Theorem 6.6. Let p be an ergodic probability measure of the Markov transition
probabilities (¢l )zex ter+, and suppose that ¢ is stable with respect to p.E| The following
statements are equivalent:

(1) there is a non-p-null set R ¢ X such that for each p € R, the set €, contains a
p-full-length rectangle;

(i) the set €4, contains a p-full-length rectangle;
(111) @ is p-almost stably synchronising;

(iv) there is a p-full set A ¢ X such that for all x,y € A and p € suppp, (z,y) is
contractible towards p.

Condition (ii) is likely to be the most useful in practice for testing whether we have p-
almost stable synchronisation.

The “non-trivial” part is showing that (ii)=>(iii). Our proof generalises a technique in
[Hom13, Proof of Theorem 1.1].

Proof. Suppose (i) holds; then since A, is a p-full set, A,n R # @, and so there exists
p € A, such that €, contains a p-full-length rectangle, implying (ii).

Now suppose that (ii) holds. Let @, be the statistical equilibrium associated to p. Let
(@ﬁ])tew be the skew product flow associated to ¢*2, that is

@EQ](W,ZE,Q) = (Qtw,go(t,w)x,go(t,w)y).
By Lemma [2.21(A), P|ze ® E5(Q,) is (@E])tdp—invariant. For each ¢ > 0, let U. :=
{(z,y) e X x X :d(u,v) <e}. Obviously Qx Ay = N2, Q x Ur, and so writing
Z ={(w,z,y) : d(p(j,w)z,0(j,w)y) > 0 as j > oo}

NUNeg@xu)),

k=1 i=0 j=i

we have that P ® E»(Q,)(Z) < Ex(Q,)(Ax). But it is also clear that Q@ x Ax c Z.
Therefore P ® E5(Q),)(Z ~ (2 x Ax)) = 0. Hence, by Fubini’s theorem, the set

Y = {(2,9) € (Xx X)N Ayt P(wiz~y)>0)

is an Fy(Q,)-null set. Now let Ay, Ay € B(X) be such that p(A4;) >0, p(Az2) =1 and
Ay x Ay c €y,. We will show that for any (x,y) € Ay x Ay, P(w: z ~, y) > 0. Fix any
(z,y) € Ay x Ay, and let p € A, be such that (z,y) is contractible towards p. Let U,V c X
be open sets with U c V., p(U) > 0 and P(Ey) > 0; and let t; € T+ be such that ! (U) > 0.
Since (t1,w) is continuous for all w, let r > 0 be such that

kyi=P(w:p(t,w)B.(p)cU) > 0

'Recall that by Lemmam7 this is precisely the same as saying that supp p admits stable trajectories.
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6.2 Necessary and sufficient conditions for p-almost stable synchronisation

and let tg € T+ be such that

ko =P(w : p(to,w)a, ¢(to,w)y € Br(p)) > 0.
Then we have that
P(W L~y y)
P(w : @(to,&))l’,@(to,&))y € BT'(p) and @(tl,etow)Br(p) c U and 6t0+t1 € EV)

k’okl]P(E\/)
> 0

v

as required. So in particular, (A; x A2) N Ax c Y. Now since E1(Q,) = p, we have that
p(As) =1 for Q,-almost all p e M, and therefore

E(@Qu) (A x A2) = [ pAD5(A) Qua5) = [ #(A)Qu(d) = p(A).

Let n be the p-clustering number of ¢. (Since ¢ is stable with respect to p, n < c0.) We
have that

Ex(Qp) (A1 x A2)nAx) = Ex(Qp)(Auna,) = 5p(A1)
by Lemma 3.4 and therefore
E(Qp) ((Arx A) N Ax) = 2=2p(Ay).
But since (A; x Ay) N Ay ¢ Y, we have that
Ey(Q,) (A1 x A))NAx) = 0.

Since p(A;) # 0, it obviously follows that n = 1, i.e. (iii) holds.

Now suppose that (iii) holds; we show that (iv) holds. Let A be the p-full-measure
equivalence class of ~, and (on the basis of Lemma let z € A be a point with the
property that for P-almost all w € €, for every T € T+, {p(t,w)z : t > T} is dense in
supp p. Fix any x,y € A, and any p € suppp and € > 0. Let T € T* be such that the set

E={w:VtxT, p(t,w)r,o(t,w)y € Bz (p(t,w)z) }

has positive measure. For P-almost every w € F, there exists ¢t > T such that
¢(t,w)z € Bs(p) and therefore ¢(t,w)z, p(t,w)y € B(p).

Finally, it is clear that (iv)=(i). O

Example 6.7 (Single- and double-well potentials, cf. [FGS14], [New16], [Cal+13]). Let
X =R? (equipped with the Euclidean metric) for some d € N. Let V:R? - R be a radially
symmetric polynomial of order at most 4, that is

V(z) = aglz|* + o]z + o

where ay, aq, an € R. We say that V' is a well potential if either as > 0, or aig = 0 and o > 0.
We say that V' is a hill potential if either ap < 0, or ap =0 and oy < 0. If ap = ay =0, then
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we say that V' is a flat potential. We can divide the case that V' is a well potential into two
cases: (a) if either ap > 0 and ay > 0, or s =0 and «; > 0, then V has its global minimum
at x = 0, and we refer to V as a single-well potential; (b) if as >0 and «; < 0 then V has
a local maximum at x = 0 and its global minimum throughout the ring |z| = \ /-5, and

we refer to V' as a double-well potential. Now let (2, F, (F2)ser 120, (0%)ier, P) be as in
Example 2.6] Let b:= -VV. We consider the equation

dry = b(x)dt + dw(t). (6.2)
One can check that
h+Db(z)h = -8ay(x+h)? - dag)z|* - 2a.

for all z,h € R? with |h| = 1. Hence, if ay > 0, then b satisfies the one-sided Lipschitz
condition and so generates a RDS ¢. (In the case that ap =0 and ay > 0,
describes a d-dimensional Ornstein-Uhlenbeck process.) From now on, suppose that V' is
a well potential. By the integrability condition in [FGS14, Section 2.2|, the probability
measure p on R? with density proportional to e=2V() has the property that for each ¢ > 0,
p is the unique stationary probability measure of the Markov kernel (¢! ),ge¢. Moreover,
by [FGS14, Example 4.8], the “maximal Laypunov exponent” associated to p is strictly
negative. As stated in Section 4 of [FGS14], one deduces that the time-1 discretisation ¢4
of ¢ (see Section is stable with respect to p. By , it follows that ¢ is stable with
respect to p. Now (as with any additive-noise SDE) it is not hard to see that the whole
phase space R is a minimal set of ¢: fix any = € R¢ and any non-empty open U c R<.
Take any y € U and, selecting a sufficiently large value 7y > 0, take a sample point wy € €2
with
wo(t) = not(y—z) Vte]|O, nio]

Then we will have that gp(n—lo,wo) € U. So R? is a minimal set of ¢; note that this is
precisely the same as saying that every point in R? is p-transitive under ¢. Now it is not
hard to see that every (z,y) € R? x R? is contractible towards any of the points k € R? at
which V' is minimal: e.g. taking k& of the form (|k],0(¢-1)) and fixing any & > 0, we can
select sufficiently large values n;,7, > 0 that if we take a sample point w; with

0 = { ey o]
w = !
! (77270(d_1)) le [nilﬂoo)v

we will have that (t,w;)z, p(t,w;)y € B.(k) for all sufficiently large . So then, ¢
satisfies hypothesis (ii) of Theorem (since A, = R? and €ga > € = RIxR9), so ¢
is p-almost stably synchronising. By Hérmander’s theorem ([Haill, Theorem 1.3]), ¢!,
is equivalent to the Lebesgue measureE%and therefore, equivalent to p—for all x € R?
and ¢ > 0. Hence we conclude that ¢ is actually pointwise-stably synchronising.ﬁ (To

2Direct application of [Haill, Theorem 1.3] would require b to have bounded derivatives. Although
b does not have bounded derivatives, one can multiply b by test functions 1 which are equal to 1 on
arbitrarily large balls around z in order to conclude that ¢, is equivalent to the Lebesgue measure.

3In the case that V is a single-well potential, it is easy to show by elementary methods (as we will soon
see) that ¢ is in fact globally contractive. In the case that V' is a double-well potential, the author expects
that by combining the facts that ¢ has a globally pullback-attracting random fixed point ([FGS14]) and
 is stable with respect to p, it will follow that ¢ is globally contractive.
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see this, apply Lemma with h(w,®) being the characteristic function of the event
that ¢(1,w)z and ¢(1,w)y synchronise under #'@ and are each asymptotically stable
under #'w.) Now if the noise term “+dw(t)” is removed from the right-hand side of
, the associated (deterministic) flow is globally synchronising in the case that V is
a single-well potential, but not in the case that V is a double-well potential. Thus we
have “noise-induced synchronisation” in the case that V' is a double-well potential. Hence
in particular, the bifurcation between the dynamics of the single-well potential and the
dynamics of the double-well potential is “destroyed” by the presence of noise. We now
consider the determinism of the rate of synchronisation. If as > 0 and a; > 0 then the
one-sided Lipschitz constant of b can be taken to be negative, and so by , @ is globally
contracting at an (exponential) deterministic rate. Now if as > 0 and «; =0, it is easy to
show that for any compact K c (0, 00) there exists A\x <0 such that

(b(y)-b(z))-(y-z) < A\ Va,yeR?with |y-a|e K.

Hence, using Gronwall’s inequality, one can again show that ¢ is globally contracting at
a deterministic rate. So then, ¢ is globally contracting at a deterministic rate whenever
V' is a single-well potential. On the other hand, if V' is a double-well potential, then for
any distinct z,y € R?, x and y do not synchronise at a deterministic rate: we can select
a sufficiently large value n > 0 that if we take a sample point w with

_ [—ant(z+y) tel0, 7]
“’“)‘{—%(w) te[l,00),

then o(t,w)xr and @(t,w)y converge to different minimum points of V' as t - oo. (Of
course if d > 1 then just taking w(t) = 0 would also work for a generic pair of points
x,y e RL)
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Appendix A. Some Preliminaries from
Measure and Probability Theory

Throughout this thesis, familiarity with some of the most foundational concepts and
results from probability theory and stochastic analysis is assumed. Nonetheless, there are
some topics in measure theory and probability theory that are worth covering explicitly,
which we do here. Specifically, we will cover: infinite product o-algebras; the 7-\ theorem
and some of its important corollaries (such as the monotone class theorem); results
concerning expectations and conditional expectations involving independent o-algebras;
measurability of operations involving integrals; a result concerning the measure of a ball
about a variable centre point in a metric space; the formula for changing variables in
conditional expectations; and the measurable and topological structure of a space of
probability measures (including a fairly detailed exposition of the narrow topology).

Infinite product o-algebras

Given a family ((Xg,2a))aer of measurable spaces (X,,%,), if the Cartesian product
X, Xa 18 non-empty then we define the product o-algebra ®ae ;2o to be the smallest
o-algebra on X __, X, with respect to which the map

><Xa g X&

ael

(xoz)aef = Tg

is measurable for every & € I. If we also have a family (pq)qer of probability measures
o on (X4, 2,), then there exists a unique probability measure ®ae 1 lo on the product
space (XaeIXav ®a612a) such that for any oy, ..., € I, forany Ay € Xy, ..., A, € X0,

®ua({(:va)ad P g, €A V1 Sz’én}) = ﬁuai(Ai).

ael

(See e.g. [Kak43].)

It is easy to show that for a family (X, )aes of second-countable topological spaces X,
indexed by a countable set I,

B(XXa) = ®B(Xa)

ael ael

where X X, is equipped with the product topology.

ael

The 7\ theorem

A 7-system is a collection of sets that is closed under pairwise intersections. A \-system
(or Dynkin system) on a set 2 is a collection of subsets of {2 that includes €2 itself and is
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closed under both countable disjoint unions and complements relative to 2. For example,
given a g-algebra F on 2 and two probability measures p; and ps on (€2, F), it is clear
that {F € F: pui1(F) = ua(E)} is a A-system on €.

Remark A.1. If (£, F) is a measurable space with F being countably generated, then
there exists a countable m-system generating F: for any countable A c F with o(A) = F,
the smallest m-system containing 4, namely the set

C:={Ain...nA,:neN, Ay, ... A, e A},

is a countable 7-system generating F[l] Note that the Borel o-algebra of a second-
countable topological space is countably generated (since any countable base for a
topology is also a generator for the Borel o-algebra thereof), and therefore is generated
by a countable 7-system.

Remark A.2. For any family ((X,,>,))acr of measurable spaces (X,,Y%,), if the
Cartesian product X . X, is non-empty then the product o-algebra ®a€ 12 is generated
by the m-system

ael

C := {(XAQ)X( X Xa) : J c I finite, AaeEaVaeJ}.
aed ael~J

Remark A.3. Let (2, F) be a measurable space, and let {F, : « € I} be a collection of
sub-g-algebras of F that is totally ordered by inclusion. Then U,er Fo is a m-system.

Remark A.4. We mention another important example of a A-system: Let ({2, F) and
(X,%) be measurable spaces, and let (p,).,co be a family of probability measures on
X. Then it is easy to show that the set D := {A e ¥ : w~ p,(A) is measurable } is a
A-system on X.

Lemma A.5 (7-\ theorem). Let D be a A-system on a set ), and let C c D be a w-system.
Then the o-algebra on ) generated by C is contained in D.

For a proof, see [Wil91, Lemma A1.3]. We now give three important immediate corollaries.
(For “generalisations” of the first two of these corollaries, see Exercise 6 and Lemma 7 of
[New1ba].)

Corollary A.6. Let (2, F) be a measurable space, and let py and ps be probability
measures on (2, F). If there exists a w-system C ¢ F generating F such that pui(E) =
w2 (E) for all E €C, then py = us.

Proof. Since {E € F: u1(EF) = po(E)} is a A-system on 2 containing the m-system C, we
have by Lemma that p; and uy agree on the whole of F. O

Corollary A.7 (Monotone class theorem, [Wil91, Theorem 3.14]). Let (2, F) be a
measurable space, and let H be a set of functions from £ to R such that:

(a) the constant function w — 1 is in H;

!The author is grateful to Nathaniel Eldredge for first drawing his attention to this very useful fact.
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(b) for any c1,co € R and g1,92 € H, c1g1 + c2g2 € H;

(¢) for any uniformly bounded, increasing sequence of functions g, € H, the pointwise
limit goo:=lim,, g,, 15 1n H;

(d) there exists a m-system C generating F such that for all E€C, 1p e H.
Then H includes all bounded measurable functions g:€2 - R.

Proof. Let D := {E € F : 1g € H}. By properties (a), (b) and (c), D is a A-system;
and property (d) states that C ¢ D. Hence by Lemma 1 € H for every E € F.
Property (b) then gives that H includes all bounded simple functions. Property (c) then
gives that H includes all bounded measurable functions. O]

Corollary A.8. Let (0, F,P) be a probability space, let C ¢ F be a w-system, and let
G € F be an event that is independent (under P) of every member of C. Then G is
independent of o(C').

Proof. Let D:={F e F:P(EnG)=P(E)P(G)}. We know that C c D, and it is easy to
see that D is a A-system. Therefore, by Lemma 0(C) c D, i.e. G is independent of
a(C). O

As an important special case of Corollary [A.8] we have the following:

Corollary A.9. Let (2, F,P) be a probability space, let {F, : o € I} be a collection of
sub-c-algebras of F that is totally ordered by inclusion, and let G € F be an event that is
independent (under P) of F, for every a € I. Then G is independent of o(Fo:cvel).

Proof. As in Remark [A.3] C := Uyer Fo is a m-system. Hence Corollary gives the
desired result. 0

Results about independent o-algebras

Lemma A.10. Let (2, F,P) be a probability space, let Gy and Gy be independent sub-o-
algebras of F (under P ), and let h:Q2xQ - R be a bounded (G, ® Go)-measurable function.

Then
/Qh(w,w)IP’(dw) - fmh(w,@)mwd(w,@)).

Proof. In the case that h = 14, «¢g, for some G € G; and G € G,, we have

]P(Gl n Gg)

P(G1)P(G2)
=P® ]P)(Gl X GQ)

fm oo, (w, @) P ® P(d(w,3))

fﬂ 16, %6, (w,w) P(dw)

as required. Now {G; x Gg : Gy € G, Gy € Gy} is a m-system generating G; ® Gy, so
Corollary [A.7] gives the desired result for general h. O
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Corollary A.11. Assume the hypotheses of Lemmal[A.10. Then
E[w = h((JJ,OJ) |g1] P-g-& E[w = h( ’ 7("-)) ]

The intuition behind Corollary is quite clear: if a random quantity H is determined
by two statistically independent pieces of information, then the conditional expectation
of H given the knowledge of the first piece of information is simply equal to the mean of
H averaged over the set of possibilities for the second piece of information, with the first
piece of information being taken to be as it was observed.

Proof of Corollary[A.11 Fix any G € G;. Defining h:Q x Q - R by h(@,w) =
lg(@)h(®,w), we have

[Gh(w,w)P(dw) fQ}AL(W,w)P(dw)
/g;fgil(@’w) P(dw) P(dw) (by Lemma

f(;E[w o (@, w) | P(dD)

as required. O

Partial integrals are measurable

The following fundamental result is a particular case of [Newlba, Lemma 8].

Lemma A.12. Let (I,7), (2, F) and (X, %) be measurable spaces, and suppose we have
a family (pw)wea of probability measures p,, on X such that the mapping w — p,(A) is
F-measurable for all A € 3. For any bounded measurable function g:Q x I x X - R, the
function g: Q2 x I - R given by

gw.0) = [ gw,0,2) pu(dn)
18 measurable.

In most applications, either g will not depend on « or g will not depend on w, and in
many cases p,, will also not depend on w (i.e. the integrator will just be a deterministic
measure, rather than a random measure).

Proof of Lemma[A.13 In the case that g = 1 p«pxa for some E € F, BeZ and A € ¥, the
function g is given by g(w, @) = 1g.p(w,a)p,(A), which is clearly a measurable function.
Since {ExBxA: EeF BeI Aec¥X}isa m-system generating F ® Z ® %, we apply
Corollary to give the desired result for general g. (Condition (c) of Corollary is
satisfied due to the dominated convergence theorem and the fact that a pointwise limit
of real-valued measurable functions is measurable.) ]
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Measures of balls

Lemma A.13. Let (X,d) be a metric space, and let p be a Borel probability measure on
X. Let 0: X — (0,00) be a lower semicontinuous function. Then the map

z = p(Bsy(x))
18 lower semicontinuous.

(In particular, taking § to be a constant, we have that the map = — p(Bs(x)) is lower
semicontinuous.)

Proof. Fix an arbitrary convergent sequence (x,) in X and value [ € [0,1] with the
property that p(Bs(,)(2,)) < I for all n; writing x := lim, x,, we will show that
1

p(Bsy(x)) < 1. Let 0 = liminf, . 8(x,); so 6(z) < 0. For each integer j > 55 let

n; € N be such that 0(z,;) > o - % and d(z,z,;) < %; for any y € Bg_%(x), we have that
~ 1
d(yw%'nj) < d(y7$)+d(xaxnj) < 5_2_ < (5('1'71]')7
J

and so y € By, y(7,,). So then, for each j > B;_ 1(:6) is contained in By, y(2,),

2%
and therefore p(B(s 1(:(;)) < I. Consequently, we have "that p(Bs(z)) < I, and therefore

p(B(;(x) (JJ)) < [. Il

Transformation of conditional expectations

The following result is the conditional-expectation version of the “change-of-variables
formula” [ fgo Y dP = [¢d(Y.P)].

Lemma A.14. Let (Q,F,P) be a probability space. Let (S,S) be a measurable space, let
g:S = R be a measurable function, and let £ be a sub-o-algebra of S. Given a random
variable Y:Q — S satisfying Ewy[|g(Y)]] < oo (and therefore Ey,p[|g|] < 00), we have
that

Ewy[g(V)[Y'E] 2% B [glE](Y).

(That is to say, for any version h:S — R of the conditional expectation Ecy,p)[g|E], the
function h oY is a version of the conditional expectation Ewpy[g(Y )Y 1E].)

Proof. Let h:S — R be a version of Ey,p)[¢|6]. For any A e Y-1E, writing A = Y~1(F)
for some F € £, we have

[ Y @) P() = [ n(@)YViPde) = [ g@)VP(r) = [ g(¥ () Pldw)

as required. O
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Spaces of probability measures

For convenience, given a probability space (X, 3, p) and a p-integrable function g: X - R,
we will sometimes write p(g) as a shorthand for [, g(z) p(dz).

Given a measurable space (X,Y), we write M(x ) for the set of probability measures
on (X, ), which we equip with its “evaluation o-algebra”

Ry = o(prp(A): AeX).

So for any measurable space (€2, F), a function p: 2 - My 5 is measurable if and only if
the map w — p(w)(A) is measurable for all A € X. In this case, we also have that for every
bounded measurable function g: X - R, the map w ~ p(w)(g) is measurable (since we can
approximate g by simple functions). Moreover, given a probability measure P on (€2, F),
we can define the “mean probability measure” p on X by p(A4) = [,p(w)(A)P(dw).
(This is indeed a probability measure, by the monotone convergence theorem.) For any
bounded measurable g: X — R, we have that p(g) = [,p(w)(g)P(dw). (To see this,
just approximate g by a uniformly bounded sequence of simple functions, and apply the
dominated convergence theorem.)

Lemma A.15. Given measurable spaces (X1,%1) and (X2, %2), the map

M(Xl,El) XM(XQ,Ez) - M(XlxXg,El(XiEg)
(plapZ) = p1® P2

is measurable (with respect to the respective evaluation o-algebras).

Proof. Let D := {B € ¥; ® Xy : the map (p1,p2) » p1 ® p2(B) is measurable }. As in
Remark [A.4 D is a A-system on X; x X,. It is also clear that for any A; € ¥; and
Az € Xy, the map (p1,p2) = p1 ® p2(Ar x Ag) = pi1(A1)p2(Az) is measurable; so D
contains the m-system {A; x Ay : Ay € ¥y, Ay € Yo}, Hence, by Lemma , the map
(p1, p2) = p1 ® p2(B) is measurable for all B € X1 ® ¥y, as required. O

We now go on to consider Borel probability measures on separable metric spaces.

Recall that, given two topological spaces X and Y, a function f: X — Y is called
a topological embedding (of X into Y) if f is continuous and injective, and the map
f1:f(X) - X is continuous (where f(X) is equipped with the induced topology from
Y). In the case that X and Y are metrisable, a function f: X — Y is a topological
embedding if and only if the following holds: for any sequence (x,) in X and any point
relX,

Ty > = f(z,) > f(2).
Given two topological spaces X and Y, a function f: X — Y is called a closed embedding
(of X into Y') if f is a topological embedding and f(X) is a closed subset of Y. This
implies that for every closed G c X, f(G) is closed in Y. In the case that X and Y are
metrisable, it is easy to check that a function f: X — Y is a closed embedding if and
only if the following holds: f is continuous, and for every divergent sequence (z,) in X,
the sequence (f(z,)) is divergent in Y.

182



A Some Preliminaries from Measure and Probability Theory

Recall that a topological space (or a topology) is said to be Polish if it is both
separable and completely metrisable.

Theorem A.16. Let X be a separable metrisable topological space (with T denoting the
topology on X ). Then there exists a separable metrisable topology N7 on M xp(x))
characterised as follows: fiving any metrisation d of T, a sequence (p,) converges in Nt
to p if and only if the equivalent statements

(i) p(U) <liminf p,(U) for every open U c X ;
(it) p(G) > limsup p, (G) for every closed G c X ;

(11i) pn(g) = p(g) for every bounded d-Lipschitz g: X - R;
(iv) pn(g) = p(g) for every bounded continuous g: X - R;
(v) pn(A) — p(A) for every Borel-measurable continuity set A of pf]

hold. There exists a countable set {g;}iew of continuous functions g;: X — [0,1] such that
the map p = (p(gi))ien serves as a topological embedding of M xp(x)) (equipped with
the topology N7) into [0,1]N (equipped with the product topology). The topology N7 is
compact if and only if T is compact, and N7 is Polish if and only if T is Polish. The
Borel o-algebra of Nt is precisely R(x (x))-

A proof is given in Section 0.6 of [New15a], except for characterisation (v) of the topology
N7, which can be found in [Par05, Theorem I1.6.1].

Definition A.17. The topology N7 is called the narrow topology or the topology of weak
convergence. When the topology 7 on X is implicitly assumed from the context, we will
say that “u, converges weakly to ;” to mean that pu, converges to u in Nr.

Note that for any metric space ¥ and any function p:Y — M x g(x)) that is continuous
with respect to the narrow topology,

(i) the map y +~ p(y)(U) is lower semicontinuous for every open U c X;
(ii) the map y — p(y)(G) is upper semicontinuous for every closed G c X;

(ii) the map y = [y g(z)p(y)(dz) is continuous for every bounded continuous
function g: X — R.

The following corollary of Theorem is clear:

Corollary A.18. The separable metrisable space (X,T) is compact if and only if the
topological embedding p — (p(g:))ien of M(x,p(x)) into [0,1] described in Theorem[A.1¢
1 a closed embedding.

2A continuity set of p is a set A c X satisfying p(0A) = 0.
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Remark A.19. A set of functions {g; };eny with the property described in Theorem
is said to be convergence-determining, since this property is precisely the property that
for any sequence (p, ) of probability measures on X and any probability measure p on X,

PnA—/’Tﬂ asn—>oo <= VieN, p,(g:) = p(g:) asn — oo.

Lemma A.20 (“Almost sure convergence implies convergence in distribution”). Let X be
a separable metrisable topological space. Let (2, F,P) be a probability space, let q:Q2 - X
be a measurable function, and let (q,) be a sequence of measurable functions q,:Q — X
such that g,(w) - q(w) as n - oo for P-almost all w € Q. Then q,.P converges in the
narrow topology to ¢,IP as n - oo.

Proof. Fix any bounded continuous ¢: X — R. For P-almost all w € Q, g(g.(w)) —
g(q(w)) as n - oo, and so by the dominated convergence theorem, we have

P(9) = [ 9(a@)P() 5 [ ga(w))P(dw) = 0.P(9)
as required. O
We now give the “topological version” of Lemma [A.T5]

Lemma A.21. Given separable metrisable topological spaces X; and X, the map

Mx,,B(x1)) X M(Xa,B(X2)) = M (X1xXa, B(X1%X2))
(p1ap2) = P11 ® P

is continuous (with respect to the respective narrow topologies).
For a proof, see [Bil99, Theorem 2.8(ii)].

Lemma A.22. Let (X,T) be a separable metrisable topological space. The map x ~ 6,
serves as a closed embedding of (X,T) into (M xp(x)), NT)-

Proof. Given a sequence (x,) in X converging to z, we clearly have that d,, (g) - d.(9)
for any continuous ¢g: X — R; so in particular, z = d, is an Ny-continuous mapping. So
to complete the proof, it remains just to show that if (z,) is a divergent sequence in X
then (d,,) is a divergent sequence in M x p(x)). Suppose for a contradiction that (z,)
is a divergent sequence but d,, converges in N7 to a probability measure p. Since every
point in X is not the limit of the sequence (x,), we can cover X by open sets U for which
{n e N:x, ¢ U} is infinite; note that for every such set U, liminf,_ . d,, (U) = 0, and
therefore p(U) = 0. Now X is second-countable, and therefore we can find a countable
subcover for the open cover of X that we have constructed. Thus we can cover X by
countably many p-null sets, giving a contradiction. O]
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Appendix B. Uniform convergence on
compact sets

The purpose of this Appendix is to present some of the basic facts concerning “uniform
convergence on compact sets” that are assumed in this thesis.

Let Y be a metrisable topological space.

Lemma B.1. Let K be a compact metrisable topological space and let (fy)nenu{eo} be @
family of continuous functions f,: K — Y. For any two metrisations di; and dy of the
topology on'Y , f,, converges uniformly to f. under d; asn — oo if and only if f,, converges
uniformly to fo under dy as n — oo.

Proof. Let C := {5 }ney U {0}, and define F : C x K - Y by F(0,z) = feo(z) and
F(%n,x) = fu(z) for all x € K and n € N. Let dx be a metrisation of the topology on K,
and let d be the metrisation of the product topology on C' x K given by

d((t1,21), (t2,x2)) = max(|ta —t1], dx (21, 22)).

Obviously C' x K is compact, and therefore under any given metrisation of the topology
on Y, F'is continuous if and only if F' is uniformly continuous. Hence, to show the desired
result, it is sufficient to show that under any given metrisation dy of the topology on Y, F'
is uniformly continuous if and only if f,, converges uniformly to f., as n - co. Fix such a
metrisation dy. It is obvious that if F' is uniformly continuous then f,, converges uniformly
t0 foo as m — oo. Conversely, suppose that f,, converges uniformly to f. as n — oo, and
fix any € > 0. Let N € N be such that for all n > N and z € K, dy(fu(2), fu(x)) < 5.
Now since K is compact, f, is uniformly continuous for all n e Nu {oo}. So let 6; >0 be
such that for all x,y € K with dg(z,y) < 61, dy (feo (), foo(y)) < §; and let 65 > 0 be such
that for all z,y € K with dg(z,y) < ds and all n e {1,....N =1}, dy(fu(2), fu(y)) < e.
Now set ¢ := min(5k,d1,02). Then it is easy to show that for any (¢1,21) and (f2,22) in
C x K with d((t1,x1), (t2,2)) <8, dy (F(t1,21), F(t2,22)) <. So we are done. O

Given a compact metrisable space K and a metrisation dy of the topology on Y, we
may define a metric dg g4, on the set C(K,Y’) of continuous functions f : K - Y by
driay (f1, f2) = maxgex dy (fi(x), f2(z)). It is easy to show that this is indeed a metric,
and that convergence in this metric precisely coincides with uniform convergence. Hence,
by Lemma the topology induced by dg 4, on C'(K,Y’) is independent of the metric
dy. We refer to this topology as the topology of uniform convergence or the uniform
topology.

Lemma B.2. Let K be a compact metrisable space. If Y is separable then C(K,Y") is
separable. If dy is complete then dg 4, is complete. Hence if Y is Polish then C(K,Y’)
15 Polish.

For a proof, see [Kec95, Theorem 4.19].
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Lemma B.3. Let K be a compact metrisable space. For any subbase V for the topology
on'Y, the collection of sets

U = {{feC(K,)Y): f(G)cU} :UeV, closed Gc K}
is a subbase for the uniform topology on C(K,Y).

Proof. Throughout this proof, we work with a metrisation dy of the topology on Y.
First, fix any open U c Y and closed G c K; for any f € C(K,Y) with f(G) c U, since
f(G) is compact, we have that U is a uniform neighbourhood of f(G). Hence it is clear
that {f e C(K,Y): f(G)c U} is an open set in the uniform topology.

Now if we fix any subbase V for the topology on Y, letting V be the m-system
generated by V (that is, the set of all finite intersections of members of V), it is clear
that m-system generated by U contains the set

{{feC(K,Y): f(G)cU} : UeV, closed G c K }.

Hence we may assume without loss of generality that ) is a base for the topology on Y.
Fix any fy € C(K,Y) and € > 0; we need to find Wy,..., W, €U such that fo e N, W;
and for any f e Ny W;, max,cx dy (fo(x), f(x)) <e. Since fo(K) is compact, there exist
Ui,...,Un €V such that diamU; < ¢ for each 1 < j <m and fo(K) c UjZ; U;. Moreover
(due to the Lebesgue number lemma) there exist Vi,...,V,, € V such that fo(K) c U, V;
and for each 1 <i <n there exists 1 < j; <m such that V; c Uj,. It is clear that taking

Wi = {feCE.Y): f(f1 (Vi) < Uy}
for each 1 <4 < n fulfils our requirement. ]

Now we say that a topological space is o-locally compact if it is both locally compact and
o-compact. It is not hard to show that for a metrisable topological space X the following
are equivalent:

(i) X is o-locally compact;
(ii) X is both locally compact and separable;
(iii) there exists a sequence (K,) of compact subsets of X such that U, K2 = X.

It is easy to see that if X is o-locally compact then every closed subset of X is o-locally
compact. But also, if X is o-locally compact then every open subset of X is o-locally
compact. To see this: Let U c X be an open set, and let (K,,) be an increasing sequence
of compact subsets of X such that U, K = X; define the sequence (f(n) of compact
subsets of U by K, := {x e K, :d(x, X \U) > L}, Then it is clear that U, Ke=U.

Proposition B.4. Let X be a o-locally compact metrisable space. Then there is a
metrisable topology on C(X,Y) such that a sequence (f,) in C(X,Y) converges to a
function f e C(X,Y) if and only if for every compact K ¢ X, f,|x converges uniformly
to flx. Given any sequence (K, )nen of non-empty compact subsets of X with U, K2 = X,
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and any metrisation dyea of the product topology on X, C(K,,Y), if we define the
function

H:C(X,)Y) » XC(K,Y)

neN

f = (f|K17f|K27f|K37”')

then an exemplary metrisation of the above topology on C(X,Y) is

(f1: f2) = dpwoa(H (1), H(f2))-

We refer to the topology described in Proposition [B.4] as the topology of uniform
convergence on compact sets. Note that if K is compact then this is simply the topology
of uniform convergence.

Proof of Proposition[B.J Tt is clear that H is injective, and therefore (f1,f2) +
dprod (H(f1), H(f2)) is a metric on C(X,Y). Hence, to show the desired results, it is
clearly sufficient just to show that if a sequence (f,,) in C'(X,Y") converges to f € C(X,Y)
uniformly on K for all i € N, then (f,,) converges to f uniformly on any compact K c X.
But this is clear, since for any compact K c X there must exist a finite set S c¢ N such
that K c U;es K7. So we are done. n

From now on, fix a o-locally compact metrisable space X. We always assume that
C(X,Y) is equipped with the topology of uniform convergence on compact sets.

Corollary B.5. If Y is separable (resp. completely metrisable, Polish) then C(X,Y") is
separable (resp. completely metrisable, Polish). In any case, for any subbase V for the
topology on'Y the collection of sets

U = {{feCX,)Y): f(K)cU}:Uce€V, compact K c X }
is a subbase for the topology on C(X,Y).

Proof. 1t is clear from Propositionand Lemmathat if Y is separable then C'(X,Y")
is separable. Now it is easy to show that the function H in Proposition clearly
maps C(X,Y) onto a closed subset of X, C(K,,Y) (using the fact that every point in
X has a neighbourhood entirely contained in one of the compact sets K,,). Hence, by
Proposition[B.4and Lemma[B.2] if Y is completely metrisable then C'(X,Y") is completely
metrisable. Finally, fix a sequence (K,)ney of non-empty compact sets such that K7 c
K¢, for all i e N and U, K = X. By Proposition and Lemma the collection of
sets

{{feC(X,)Y): f(G)cU} :UeV, closed Gc K,,, neN, }
is a subbase for the topology on C'(X,Y"). But this collection is precisely equal to 4. [

The following lemma in a sense justifies taking the topology of uniform convergence on
compact sets as the “natural” topology on C'(X,Y).

Lemma B.6. Suppose we have a metric space T and a function h:T - C(X,Y). Then
h is continuous if and only if the map (t,x) — h(t)(x) is continuous.
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B Uniform convergence on compact sets

Proof. Fix a metrisation dy of the topology on Y. First we suppose h is continuous.
Fix a sequence (t,, T, )ney converging in T x X to a point (¢,z), and fix any € > 0. Let
K c X be a compact set containing a neighbourhood of . Let N; € N be such that for
all n > Ny, x, € K and dy (h(t)(xy,),h(t)(x)) < 5. Let Ny be such that for all n > Ny,
dg.ay (h(tn)|k, h(t)|k) < 5. Then for every n >max(Ni, No) we have that

dy (h(tn)(zn), h(£)(2)) < dy (h(tn)(zn), h(t)(2n)) + dy (h(t)(2n), h(t)(2)) < e

Now suppose that the map (t,z) — h(t)(x) is continuous. Fix a sequence (t,)neny in T'
converging to point ¢, and a compact set K ¢ X. We know that the map (¢, z) — h(t)(x)
is uniformly continuous on {t, nenu(eo} X K. It immediately follows that as n — oo, h(t,)
converges to h(ts ) uniformly on K. O

Corollary B.7. Let (f.) be a sequence of continuous functions f,: X — Y, and let
f: X =Y be another continuous function. The following statements are equivalent:

(i) fn converges to f uniformly on compact sets;

(ii) for every convergent sequence (x,) in'Y converging to a point z, f,(x,) - f(x)
asn — co.

Proof. Follows from Lemma with 7' := Nu {oo}, h(n) := f, for n < oo, and h(o0) =
f- m

Now let Homeo(X) be the set of homeomorphisms from X to itself, equipped with the
induced topology from C'(X, X).

Lemma B.8. If either (a) X is compact or (b) every point in X has a neighbourhood
contained 1 a compact connected set, then the map

Homeo(X) — Homeo(X)
fe

18 continuous.

The case that X is compact is quite elementary, and we will soon present it. The other
case has been proved in [Dij05].

Proof of Lemma[B-§ for X compact[]] Let (f,) be a sequence of homeomorphisms
fn: X — X converging uniformly to a homeomorphism f: X — X. Since X is compact,
we have that f~! is uniformly continuous and therefore f=' o f,, converges uniformly
to the identity function. By the symmetry of d(-,-), it follows that f,! o f converges
uniformly to the identity function; and therefore (by right-composing with f=1) f!
converges uniformly to f~1. O

Lemma B.9. Suppose Y is separable. Then the Borel o-algebra of C(X,Y") is precisely
the “evaluation o-algebra” o(f v~ f(x):z € X).

LOur proof will actually give the following more general fact: If (X,d) is a metric space and (f,) is
a sequence of bijective functions f,: X — X converging uniformly to a bijective function f:X — X with
7! being uniformly continuous, then f,;! converges uniformly to f'.
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Proof. Tt is clear that for each z € X the evaluation map f — f(x) from C(X,Y) to YV
is continuous and therefore Borel-measurable. So the evaluation o-algebra is contained
in B(C(X,Y)).

Now let (K, )nn be a sequence of compact subsets of X such that U, K: = X
and let {U, },ey be a countable subbase for the topology on Y. We have that

B(C(X,Y)) = o({feC(X,Y): f(K,)cU,}:mmneN).

Fix m,n € N, and let dy be a metrisation of the topology on Y. For each i € N, let
Gi={z €U, :dy(z,Y \Uy,) > 1}. For any f e C(X,Y), since f(K,) is compact, we
have that f(K,) c Uy, if and only if U, is a uniform neighbourhood of f(K,), which is
the same as saying that there exists i € N such that f(K,) c G;. So if we let E be a
countable dense subset of K,, then we have that

oo

{feC(X,)Y): f(K,)cUy} = UN{feCX,Y): f(z) e G}
i=1xel
Hence {f e C(X,Y): f(K,) c Uy} is a member of the evaluation o-algebra on C(X,Y").
It follows that B(C'(X,Y")) is contained in the evaluation o-algebra. O

Note in particular that if Y is Polish then the evaluation o-algebra on C(X,Y) is
standard.

Corollary B.10. Suppose Y is separable. For any compact K c X, the o-algebra o(f —
f(z) : x € K) is the Borel o-algebra of the smallest topology with respect to which the
restriction map f v~ f|x is continuous, where f|x is regarded as a member of C(K,Y’)
equipped with the uniform topology.
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Appendix C. Ergodic Theory and Markov
Processes

The proofs of most of the results in this appendix can be found in [New1ba].

We will state results first for dynamical systems (in discrete and continuous time), and
then for Markov transition probabilities (in discrete and continuous time). However, a
dynamical system is really just the “deterministic case” of a family of Markov transition
probabilities.

(Hence many of the results given here for dynamical systems are not proved separately
for dynamical systems in [Newlba], but are special cases of results for Markov transition
probabilities that are proved explicitly in [New15a].)

As in the main body of the thesis, T* denotes either Ny or [0,00). Given a measurable
space (X,X), M(xy) denotes the set of probability measures on X. As throughout the
rest of the thesis, M(x y) is equipped with the o-algebra characterised by the following
property: for any measurable space (€2, F), a map p:Q - Mx y) is measurable if and
only if the map w ~ p(w)(A) is measurable for all A € X.

C.1 Ergodic theory for measurable maps

Invariant and ergodic measures

Let (X,X) be a measurable space, and let f: X — X be a measurable map.

We say that a probability measure p on X is f-invariant (or invariant under f)
if fup =p (le. p(f71(A)) = p(A) for all A € ). In this case, we also say that f is
p-preserving, or that f is a measure-preserving transformation of (X,3,p), or that
(X,X,p, f) is a measure-preserving dynamical system.

Note that any convex combination of f-invariant probability measures is f-invariant.

Given an f-invariant probability measure p, we will say that a set A € ¥ is p-almost
invariant (under f) if the following equivalent statements hold:

(i) p(AN f71(A)) =0 (i.e. for p-almost all z € A, f(x) € A);
(i) p(f~1(A)~ A) =0 (i.e. for p-almost all x € X N A, f(z) e X \ A);
(iii) p(A A f1(A)) =0 (ie. for p-almost all x € X, z € A<= f(z) € A).
It is not hard to show that the set ij of all p-almost invariant sets A € ¥ forms a

sub-g-algebra of X.
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C.1 Ergodic theory for measurable maps

We will say that a set A € X is strictly invariant (under f) if f~'(A) = A. Again, it is
not hard to show that the set Z7 of strictly invariant sets A € ¥ forms a sub-c-algebra of X.

Given an f-invariant probability measure p, we will say that a measurable function
g: X = R is p-almost invariant (under f) if the following equivalent statements hold:

(i) g(f(x)) = g(x) for p-almost all z € X;
(i) g(f(x)) = g(x) for p-almost all x € X;
(iii) g(f(z)) < g(z) for p-almost all z € X;
(iv) g is measurable with respect to ZJ.

We will say that a probability measure p on X is ergodic with respect to f (or f-ergodic)
if the following equivalent statements hold:

(i) pis f-invariant, and p(A) € {0,1} for every p-almost invariant set A € 3;
(ii) pis f-invariant, and p(A) € {0,1} for every strictly invariant set A € ¥;

(iii) p is f-invariant, and for every measurable p-almost invariant g : X — R there
exists ¢ € R such that g(z) = ¢ for p-almost all = € X;

(iv) pis f-invariant, and the only f-invariant probability measure that is absolutely
continuous with respect to p is p itself;

(v) p is an extreme point of the convex set of f-invariant probability measures
(that is to say, p is f-invariant and cannot be expressed as a non-trivial convex
combination of two distinct f-invariant probability measures).

In this case, we will also say that f is an ergodic (measure-preserving) transformation
of (X,%,p), or that (X, X, p, f) is an ergodic (measure-preserving) dynamical system.

It is known that any two distinct ergodic probability measures are mutually singular.

Birkhoff’s ergodic theorem

Let f be a measure-preserving transformation of a probability space (X,X, p), and let
g: X = R be a p-integrable function. Then

nz_;g(fl(m)) - E(p)[g|If](JZ) as n — oo

S|

for p-almost all 2 € X)!| (This statement also holds with Z/ replaced by Z,’: , as it can be
shown that Z/ and ZJ agree modulo p-null sets.)

LObviously here we fiz, independently of x, a version E) [g|If ]: X - R of the conditional expectation
of g given Z7.
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C.1 Ergodic theory for measurable maps

In particular, if p is ergodic then

n—-1
S g1 @) » [ gdp asn— oo

=0

for p-almost all x € X.

Ergodic decomposition

Let (X,X) be a standard measurable space (meaning, as in Section that X can be
expressed as the Borel o-algebra of a Polish topology on X).

Let p be a probability measure on X, and let Z be a sub-c-algebra of ¥. As a
special case of the disintegration theorem (Lemma , one can show the following:
There exists (unique up to p-almost everywhere equality) a measurable function
p(|Z): X - M(x ) with the property that for every A e X, the map z ~ p(|Z)(x)(A) is
a version of the conditional probability p(A|Z). The function p(|Z) is referred to as (a
version of ) the conditional distribution of p given Z.

Now let f:X — X be a measurable map, and let p be an f-invariant probability
measure. Fix a version p(|Zf) of the conditional distribution of p given Zf. As an
equation to be evaluated at each set A € ¥, we have (trivially, from the definition of a
conditional distribution) the following integral representation of p:

p = [T (@) pldr). (C.1)

It is not hard to show that for p-almost all x € X, the probability measure p(|Z7)(x) is
f-invariant; moreover, using Birkhoft’s ergodic theorem, one can show that for p-almost
all z € X, p(|Z7)(x) is ergodic with respect to fP Hence equation is referred to as
an ergodic decomposition of p.

(Once again, in all the above we can replace the o-algebra Z7 with I[f )

Note, in particular, that as a consequence we have the following: if a measurable
map on a standard measurable space admits an invariant probability measure, then it
admits an ergodic probability measure; moreover, if it admits an invariant probability
measure assigning full measure to some set A, then it admits an ergodic probability
measure assigning full measure to the same set A.

Continuous maps

Let (X, d) be a separable metric space. Recall that for any Borel probability measure p
on X, the support of p (denoted supp p) is defined as the smallest closed p-full measure

21t is clear that for each strictly invariant A € X, for p-almost all = € X, p(|Zf)(z) assigns trivial
measure to A. However, this does not automatically imply that p(|Zf)(z) is ergodic for p-almost all
x € X, since there may be uncountably many strictly invariant sets, and Z/ need not even be countably
generated.
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C.1 Ergodic theory for measurable maps

subset of XP| Note that this is precisely the set of points in X all of whose open
neighbourhoods have strictly positive measure according to p.

Let f: X — X be a continuous map.

We say that a set A ¢ X is (forward-)invariant (under f) if f(A) c A. Obviously,
an arbitrary intersection of invariant sets is invariant. Note that for any f-invariant
probability measure p, if A € B(X) is invariant then A is p-almost invariant, since
AN f71(A) is empty (and is therefore obviously a p-null set).

Obviously, for any z € X, the smallest invariant set containing z is the locus of
its trajectory, {f"(z) : n € Ng}. Now, for any z € X, let G, := {f"(z) : n e Ng}. So any
closed invariant set containing the point x must contain the set G,. But moreover,
observe that G, is itself invariant: for any y € G, letting (m,)ny be a sequence in
Ny such that f™(x) - y as n - oo, we will have (due to the continuity of f) that

frst(a) = f(y) as n — oo.

So then, G, is the smallest closed invariant set containing x.

Now it is easy to check that for any closed invariant G c X, the following two
statements are equivalent:

(i) the only closed invariant proper subset of G is &;
(ii) G is non-empty, and for all x € G, G, = G.

When these statements hold, we will say that G is minimal (with respect to f). Since
the intersection of two closed invariant sets is a closed invariant set, it is clear that any
two disinct minimal sets must be mutually disjoint.

Proposition. Fvery non-empty compact invariant set contains at least one minimal set.

Hence in particular, if X is compact, then: (a) there exists at least one minimal set; and
(b) if there is only one minimal set K, then K is the smallest non-empty closed invariant
set.

Our proof is taken from [Newlbb, Proposition 1.2.6] (which is, in turn, loosely
adapted from the solution to Exercicse 3.3.4 of [KH95]).

Proof. Given non-empty compact sets Co c C} ¢ X, let dy(Ch,Cs) := maxec, d(z, Cy).
For any non-empty compact invariant C' ¢ X, we write I(C') for the set of non-empty
closed invariant subsets of C, and we write

m(C) = sup dy(C,C).
Cel(C)

Now fix a non-empty compact invariant set Cy c¢ X; we will show that Cj contains a
minimal set K. Let Cy > Cy 2 C5 ... be a nested sequence of non-empty closed invariant

3This exists due to the existence of a countable base for the topology of X.
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C.2 Ergodic theory for dynamical systems

sets, with dy(Cp,Cri1) > 5m(C,,) for all n € Ny. Cantor’s intersection theorem gives
that K :=N;>,C, is non-empty; and obviously K is invariant. Now since Cj is totally
bounded, we must have that dy(C,,,Cp41) = 0 as n — oo, and so m(C,,) - 0 as n — oco. It

is easy to see that m(+) is monotone, so it follows that m(K) = 0. Hence K is minimal. [J

Now it is not hard to show that for any f-invariant probability measure p, suppp is
invariant[] The Krylov-Bogolyubov theorem gives a kind of “partial converse”: for any
non-empty compact invariant G ¢ X, there exists an f-invariant probability measure p
such that p(G) =1 (i.e. such that suppp c G). Since G is compact, by restricting f to
(G we can obtain an ergodic decomposition of p; and so there must exist at least one
f-ergodic probability measure p such that p(G) = 1.

Note, in particular, that for any compact minimal K c X, there must exist at
least one ergodic probability measure p such that suppp = K. Also note that if X is
compact and f admits only one invariant probability measure p, then suppp is the
smallest non-empty closed invariant set.

C.2 Ergodic theory for dynamical systems

An (autonomous) dynamical system on a set X is a T*-indexed family of (f?)sr+ of
functions f*: X - X such that the “flow equations”

(1) 0=idX;
(i) fett = fto fs for all s,teT.

Sometimes an individual function h: X — X is called a dynamical system on X, because
it naturally generates the discrete-time dynamical system (A"),ey,. (Indeed, we made
reference to this use of terminology in Section when we mentioned “measure-
preserving dynamical systems”.)

Given a measurable space (X,X), an (autonomous) dynamical system on (X,%)
is a dynamical system (f*) on the set X with the additional property that f* is
(X, ¥)-measurable for all ¢ € T*. We will say that a dynamical system (f*) on (X,X)
is measurable if the map (t,x) ~ fi(z) is (B(T*) ® X, ¥)-measurable. (Obviously, if
T+ = Ny then any dynamical system on (X,Y) is measurable.)

Invariant and ergodic measures

Let (ft)tr+ be a dynamical system on a measurable space (X, X).

We say that a probability measure p on X is (f!)-invariant (or invariant under
(f)) if p is fl-invariant for every t € T*. In this case, we also say that (f?) is p-

preserving, or that (X, 3, p, (f?)) is a measure-preserving dynamical system. Note that if
T+ = Ny, then a probability measure p on X is (f*)-invariant if and only if p is f!-invariant.

4In fact, it is not hard to show that f(suppp) is a dense subset of suppp. Hence in particular, if
supp p is compact then f(supp p) = supp p.
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C.2 Ergodic theory for dynamical systems

Given an (f?)-invariant probability measure p, we will say that a set A € X is p-
almost invariant (under (f*)) if A is p-almost invariant under f* for every ¢t € T*. It is
easy to show that if T* = N, then a set A € ¥ is p-almost invariant under (f?) if and

only if A is p-almost invariant under f!. Let Ip(f " denote the set of p-almost invariant
sets, that is,

" = Nz

teT+

Obviously I,gf Vs a sub-o-algebra of 3.

We will say that a set A € X is strictly invariant (under (f*)) if A is strictly
invariant under f* for all ¢ € T*. It is easy to show that if T+ = Ny, then a set A € X
is strictly invariant under (f?) if and only if A is strictly invariant under f!. Let Z("
denote the set of strictly invariant sets, that is,

U = ﬂIft.

teT+

Obviously Z(U") is a sub-o-algebra of 3.

Given an (f!)-invariant probability measure p, we will say that a measurable function
g: X = R is p-almost invariant (under (ft)) if the following equivalent statements hold:

(i) g is p-almost invariant under f* for all t € T*;

(ii) g is measurable with respect to I,Sf D,

Note that if T+ = Ny, then a measurable function g: X — R is p-almost invariant under
(f*) if and only if g is p-almost invariant under f!.

We will say that a probability measure p on X is ergodic with respect to (f') (or
(ft)-ergodic) if the following equivalent statements hold:

(i) pis (f*)-invariant, and p(A) € {0,1} for every p-almost invariant set A € 3;

(ii) pis (f?)-invariant, and for every measurable p-almost invariant g : X — R there
exists ¢ € R such that g(z) = ¢ for p-almost all x € X;

(iii) p is (f*)-invariant, and the only (f!)-invariant probability measure that is
absolutely continuous with respect to p is p itself;

(iv) p is an extreme point of the convex set of (f*)-invariant probability measures.

In this case, we will also say that (X,3,p,(f?)) is an ergodic (measure-preserving)
dynamical system.

Once again, any two distinct ergodic probability measures are mutually singular.

Note that if p is an (f!)-invariant probability measure and there exists 7 € T*
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C.2 Ergodic theory for dynamical systems

such that p is ergodic with respect to the map f7, then p is ergodic with respect to the
dynamical system (f*). Note also that if T+ = N then a probability measure p on X is
ergodic with respect to (f?) if and only if p is ergodic with respect to f*.

Now if (f*) is measurable, then for any (f*)-invariant probability measure p, the
following are equivalent:

(i) pis (f*)-ergodic;

(ii) p(A) €{0,1} for every strictly invariant set A € 3.

Birkhoff’s ergodic theorem for semiflows

Assume T+ = [0,00). Let (X, %, p, (f?)) be a measure-preserving dynamical system, with
(f*) measurable, and let g: X — R be a p-integrable function.

Then for p-almost all z € X, the map ¢t —~ g(f!(x)) is locally integrable and

%'[OTg(ft(x))dt - E(p)[gg(ft)](x) as T — oo,

(This statement also holds with Z() replaced by Z,Sf t), as it can be shown that due to
t
the measurability of (f*), ZU") and I,ﬁf ) agree modulo p-null sets.)

In particular, if p is ergodic then

= [ or@)ar > [ gdp asT o0

for p-almost all x € X.

Ergodic decomposition

Let (f*) be a measurable dynamical system on a standard measurable space (X,3).
Then for any (f*)-invariant probability measure p on X, we have (as in Section |C.1)) the
integral representation

p = [ p(ZU) (@) pldr)
and one can show that p(|Z(F))(z) is (f?)-ergodic for p-almost every z € X.

(Once again, we can also replace ZU*) with I,Sft).)

Spatially continuous dynamical systems

Let (X,d) be a separable metric space. Let (f?) be a dynamical system on X such that
ftis continuous for all ¢ € T*.

We say that a set A c¢ X is (forward-)invariant (under (f*)) if A is invariant
under f* for all t € T*. In the case that T+ = Ny, A is invariant under (f*) if and only
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C.3 Ergodic theory for Markov kernels

if A is invariant under f'. Note that, once again, an arbitrary intersection of invariant
sets is invariant.

For any = ¢ X, let G, := {ft(x):teT*}. Once again, it is easy to show that G,
is the smallest closed invariant set containing x.

We say that a set G ¢ X is minimal (with respect to (f?)) if the following equivalent
statements hold:

(i) G is closed and invariant, and the only closed invariant proper subset of G is @;
(ii) G is a non-empty closed invariant set, and for all z € G, G, = G.

Note that if a closed set G c X is invariant under (f*) and there exists 7 € T+ such that
G is minimal with respect to f7, then G is minimal with respect to (f*). Also note that
if T+ = Ny then a set G ¢ X is minimal with respect to (f?) if and only if G is minimal
with respect to f1.

Exactly the same proof as in Section gives that every non-empty compact
invariant set contains at least one minimal set.

Once again, the support of any (f!)-invariant probability measure is invariant. If
(f*) is measurable as a dynamical system on (X, B(X)) ]| then every non-empty compact
invariant contains the support of at least one (f*)-ergodic probability measure, and
every compact minimal set is equal to the support of at least one (f?)-ergodic probability
measure. If, in addition, X is compact and (f?) admits only one invariant probability
measure p, then supp p is the smallest non-empty closed invariant set.

C.3 Ergodic theory for Markov kernels

Let (X,X) be a measurable space. A Markov kernel (or family of one-step transition
probabilities) on X is an X-indexed family (u,)zcx of probability measures on X, such
that the map = — p,(A) is measurable for all A € £F] Note that for any measurable
function f: X — X, (0f(s))zex is a Markov kernel on X. We refer to the Markov kernel
(02)zex as the identity kernel.

Let (u.) be a Markov kernel on X. For any probability measure p on X, we
define the probability measure p*p on X by

pp(A) = [ () p(do)

Note that if (pz) = (0f@)) for some measurable f: X — X, then for any probability
measure p on X, u*p = f.p.

°A sufficient condition for this is that the map ¢+ ff(x) is right-continuous for all z € X.
6We prefer the “u,(A)” notation to the (perhaps more common) “P(z, A)” notation, as it allows us
to consider individual probability measures p, without unnecessary cumbersomeness of notation.
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C.3 Ergodic theory for Markov kernels

We say that a probability measure p on X is stationary under (u;) (or (fiz)-
stationary) if p*p = p. (In particular, given any measurable f: X — X, a probability
measure p on X is stationary under () if and only if p is f-invariant. Note that
every probability measure on X is stationary under the identity kernel.)

Given a (p,)-stationary probability measure p, for any A € ¥ with p(A4) = 1, it is
clear that p,(A) = 1 for p-almost all x € X. (This does not, however, imply that p,
is absolutely continuous with respect to p for p-almost all x € X, since the collection
of all p-full-measure members of ¥ is not generally countable. Indeed, as a simple
counter-example: the Lebesgue measure on [0,1] is stationary with respect to the
identity kernel on [0, 1], and yet there does not exist x € [0,1] such that 0, is absolutely
continuous with respect to the Lebesgue measure.)

Note that any convex combination of (u,)-stationary probability measures is (u)-
stationary.

Given a (g )-stationary probability measure p, we will say that a set A € ¥ is
p-almost invariant (according to (u,)) if the following equivalent statements hold:

(i) for p-almost all z € A, p,(A) =1;
(i) for p-almost all x € X N A, p,(A) =0;
(iii) for p-almost all z € X, p (A) = La(x).

It is not hard to show that the set Ip(“ *) of all p-almost invariant sets A € ¥ forms a
sub-c-algebra of >.

Note that, given a measurable map f:X — X and an f-invariant probability
measure p, a set A € ¥ is p-almost invariant according to the Markov kernel (d7(,)) if
and only if it is p-almost invariant under f.

Given a probability measure p on X and a p-integrable function ¢g: X — R, we
write p(g) as a shorthand for [, g(z)p(dz). Given a (u,)-stationary probability
measure p, we will say that a bounded measurable function ¢g: X — R is p-almost
invariant (according to (u.)) if the following equivalent statements hold:

(i) pe(ye X : g(y) =g(x)) =1 for p-almost all z € X;
(i) pz(g) = g(x) for p-almost all z € X;
(iii) p.(g) > g(z) for p-almost all z € X;
(iv) pz(g) < g(x) for p-almost all x € X;
(k)

(v) ¢ is measurable with respect to Z,"*.

We will say that a probability measure p on X is ergodic with respect to (pu.) (or (fiz)-
ergodic) if the following equivalent statements hold:
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C.4 Ergodic theory for semigroups of Markov kernels

(i) pis (p.)-stationary, and p(A) € {0,1} for every p-almost invariant set A € ¥;

(ii) p is (ps)-stationary, and for every bounded measurable p-almost invariant
function ¢ : X — R there exists ¢ € R such that g(z) = ¢ for p-almost all z € X;

(iii) p is (p,)-stationary, and the only (u,)-stationary probability measure that is
absolutely continuous with respect to p is p itself;

(iv) p is an extreme point of the convex set of (u,)-stationary probability measures.

Note that, given a measurable map f: X — X, a probability measure p on X is ergodic
with respect to f if and only if it is ergodic with respect to (d7(y)).

Once again, any two distinct ergodic probability measures are mutually singular.

Ergodic decompositions and continuity of Markov kernels will be considered in
the next section.

C.4 Ergodic theory for semigroups of Markov
kernels

Let (X,X) be a measurable space. A family of Markov transition probabilities or
a semigroup of Markov kernels on X is an (X x T*)-indexed family (uf)gex, ter+ of
probability measures pf on X such that the following hold:

(i) the map z ~ ul(A) is measurable for each A € ¥ and ¢ € T*;
(i) pul =0, for all x € X (i.e. (u2)zex is the identity kernel);

(iii) for all x € X, s,t € T+ and A € 3, the “Chapman-Kolmogorov relation”

p(A) = [ () pi(dy)
is satisfied.

Obviously (ut).ex is a Markov kernel on X for each ¢ € T*. So, using the notation
introduced in Section , point (iii) can be expressed slightly more succinctly as

s+t t*, s

pet =

for all z € X and s,t € T*. Note that for any Markov kernel (p,) on X, there is a unique
discrete-time family of Markov transition probabilities (1%)ex, nen, Such that (ul) = (12);
this can be constructed explicitly by the recursive relation

W = G i A) = [ () pa(dy) forn >0,

It is easy to check that for any dynamical system (f*) on (X,3), (6ft(2))wex,ter+ IS a
family of Markov transition probabilities.
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Wherever we do not include subscripts after (ul), assume that (ul) refers to the
whole family of Markov transition probabilities (yf)zex, tet+-

We say that a family of Markov transition probabilities (ul) is measurable if the
map (z,t) » pi(A) is (X ® B(T*),B([0,1]))-measurable for every A € ¥. Note that if
T+ = Ny then every family of Markov transition probabilities is measurable. Also note
that for any measurable dynamical system (f*) on (X,X), (05 (,)) is measurable.

Sometimes, for convenience, we just use the terms kernel and semigroup to refer,
respectively, to a Markov kernel or semigroup of Markov kernels.

Stationary and ergodic measures

Let (i) be a family of Markov transition probabilities on a measurable space (X,).
We say that a probability measure p on X is stationary under (ut) (or (ul)-stationary)
if p is stationary under the kernel (u)..x for each ¢t € T*. In the case that T* = Ny, a
probability measure p is stationary under (ul) if and only if p is stationary under the
kernel (u})gex.

Given a (ul)-stationary probability measure p, we will say that a set A € X is p-
almost invariant (according to (ul)) if A is p-almost invariant according to the kernel
(pl)zex for each t € T*. In the case that T+ = Ny, A is p-almost invariant according to
(pt) if and only if A is p-almost invariant according to the kernel (pl).cx.

Let I,g” =) denote the set of p-almost invariant sets, that is,

Zé”;) _ mIp(utz)zeX'

teT+
Obviously I,S“ 2 g a sub-o-algebra of X.
Given a (u!)-stationary probability measure p, we will say that a measurable

function ¢g: X — R is p-almost invariant (according to (ul)) if the following equivalent
statements hold:

(i) g is p-almost invariant according to the kernel (ul),cx for each t € T*;

(ii) g is measurable with respect to Ié“ 2,

Note that if T* = Nj, then a measurable function ¢g: X — R is p-almost invariant
according to (u!) if and only if g is p-almost invariant according to the kernel (pul).

We will say that a probability measure p on X is ergodic with respect to (ut) (or
(ut)-ergodic) if the following equivalent statements hold:

(i) pis (u)-stationary, and p(A) € {0,1} for every p-almost invariant set A € ¥;

(i) p is (pL)-stationary, and for every bounded measurable p-almost invariant
function g : X — R there exists ¢ € R such that g(z) = ¢ for p-almost all z € X;
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(iii) p is (pi)-stationary, and the only (ul)-stationary probability measure that is
absolutely continuous with respect to p is p itself;

(iv) p is an extreme point of the convex set of (ul)-stationary probability measures.

Once again, any two distinct ergodic probability measures are mutually singular.

Note that if p is a (ul)-stationary probability measure and there exists 7 € T*
such that p is ergodic with respect to the kernel (u7).cx, then p is ergodic with respect
to the semigroup (u%). Note also that if T+ = Ny then a probability measure p on X is
ergodic with respect to (pt) if and only if p is ergodic with respect to (k) ex-

Ergodic decomposition

Let (ul) be a measurable family of Markov transition probabilities on a standard
measurable space (X,>). Then for any (u!)-stationary probability measure p on X,
we have the integral representation

p = [ (TN W) pldy)
and one can show that p(|I,(,“§”))(y) is (ul)-ergodic for p-almost every y € X.

Feller-continuous Markov transition probabilities

Let (X,d) be a separable metric space. We will say that a Markov kernel (u,) on
X is Feller-continuous if the map = ~ pu, is continuous with respect to the narrow
topology. We will say that a family of Markov transition probabilities (ul) on X
is Feller-continuous if the kernel (ul).cx is Feller-continuous for every ¢ € T*; in the
case that T+ = Ny, this is equivalent to saying that the kernel (pl),cx is Feller-continuous.

We say that a set A € B(X) is forward-invariant according to a Markov kernel
(pz) on X if p,(A) = 1 for every x € A. We say that A € B(X) is forward-invariant
according to a family of Markov transition probabilities (u%) on X if A is forward-
invariant according to the kernel (ul),cx for every t e T+; if T* = Ny then this is
equivalent to saying that A is forward-invariant according to the kernel (pl)zex-

For either a kernel (p,) or a semigroup (u!), it is not hard to show (using the
fact that there is a countable base for the topology of X) that an arbitrary intersection
of closed forward-invariant sets is forward-invariant.

Now let (u!) be a Feller-continuous family of Markov transition probabilities on
X, and for any x € X, let

G = | supp .

teT+
Fix x € X. For any open U c X, it is easy to see that U n G, # @ if and only if there
exists t € T* such that pf(U) > 0. In other words, G, is precisely the set of points y such
that for every neighbourhood U of y there exists ¢ € T+ such that ul(U) > 0. Moreover,
we have the following:
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C.4 Ergodic theory for semigroups of Markov kernels

Proposition. G, is the smallest closed forward-invariant set containing x.
The proof is taken from |[New15b, Lemma 1.2.3].

Proof. 1t is clear that any closed forward-invariant set containing = must contain supp pt
for every t, and therefore must contain GG,.. So it remains to show that G, is itself forward-
invariant. Fix any y € GG, and suppose for a contradiction that there exists ¢t € T* such
that uf(G,) < 1. Since G, is closed, the map & ~ Mé(Gm) is upper semicontinuous, and
so there exists a neighbourhood V' of y such that pi(G,) <1 for all { € V. Since y € G,
there exists s € T* such that ps(V') > 0. Hence

XN G = [ XN G pa(de) > [ (XN G pi(dg) > 0,

But it is clear that ps*'(G,) = 1, since by definition supp us*t ¢ G,. So we have a

X
contradiction. ]

We say that a set G ¢ X is minimal according to a Feller-continuous family of Markov
transition probabilities (1) if the following equivalent statements hold:

(i) G is closed and forward-invariant, and the only closed forward-invariant proper
subset of G is @;

(ii) G is a non-empty closed forward-invariant set, and for all z € G, G, = G,

(iii) G is a non-empty closed forward-invariant set, and for all z € G and open U ¢ X
with U n G # @, there exists t € T* such that u! (U) > 0.

We say that a set G ¢ X is minimal according to a Feller-continuous Markov kernel (1)
is the following equivalent statements hold:

(i) G is closed and forward-invariant, and the only closed forward-invariant proper
subset of G is @;

(ii) G is non-empty, closed, and forward-invariant according to the unique discrete-
time family of Markov transition probabilities (17)zex, nen, With (pl) = ().

Note that, given a Feller-continuous family of Markov transition probabilities (pl), if a
closed set G c X is forward-invariant according to (i) and there exists 7 € T+ such that
G is minimal according to the kernel (u7),cx, then G is minimal according to (ul).

Given a Feller-continuous kernel (u,) or semigroup (u), any two distinct minimal sets
are mutually disjoint, and every non-empty compact forward-invariant set contains at
least one minimal set; the proof is exactly the same as in Section [C.1] Once again, the
support of any stationary probability measure is forward-invariant. Given a semigroup
(u%) that is both Feller-continuous and measurable[T] every non-empty compact forward-
invariant contains the support of at least one ergodic probability measure, and every
compact minimal set is equal to the support of at least one ergodic probability measure.
If, in addition, X is compact and () admits only one stationary probability measure
p, then supp p is the smallest non-empty closed forward-invariant set.

TA sufficient condition for a Feller-continuous family of Markov transition probabilities (%) to be
measurable is that the map ¢ = u’, is right-continuous with respect to the narrow topology for all x € X.

202



C.5 Discrete-time Markov processes

C.5 Discrete-time Markov processes

Let (X,Y) be a measurable space. Let (Q, F, (Fy,)nen,, P) be a filtered probability space.
Let (1)zex be a Markov kernel on X.

We say that a sequence (M, )nen, of functions M,:Q — X is a (homogeneous)
Markov process with respect to the filtration (F,), with transition probabilities (fiz)zex if
the following hold:

(i) for each n € Ny, M, is (F,,>)-measurable;
(ii) for each n e Ny and A e X,
P(Ma(A)F) (W) = pag, @) (A) P-as.

It follows that for any n € Ny and any bounded measurable g: X — R,

Elg(Ma)IF)@) = [ 9(0) s, () Pas,

(Just approximate ¢ by simple functions, and use the dominated and conditional
dominated convergence theorems.)

Remark. Given a sequence (M, )ney, of (F, ¥)-measurable functions M,,: Q2 - X, if there
exists a filtration of sub-o-algebras of F with respect to which (M,,) is a Markov process
with transition probabilities (p,), then in particular (Af,) must be a Markov process
with respect to its natural filtration .7:"n = 0(M, : 0 <r <n), with the same transition
probabilities (p,). This property can be characterised purely by the law of the stochastic
process (M,) (that is, the image measure of P under the map w — (M, (w))ney, from 2

to XNo)

Proposition. Let (M,) be a Markov process (with respect to any filtration on (2, F)),
with transition probabilities (u;). Then for all n € No, M, ,1,P = pu*(M,.P).

Proof. For any A€,

POLL(A)) = [ (A P) = [ p(4) M P(dr) = e (M,P)(A)
as required. O

Now let (1%)zex, nen, be the unique discrete-time semigroup of Markov kernels with pl =
1, for all .

Proposition. Let (M,) be a Markov process with respect to the filtration (F,), with
transition probabilities (p1,). Then for any n,r € Ny and A€ X,

P(M 0 (ANF) (W) = iy, ) (A) P-as.

8 Specifically, (M,,) is a Markov process with respect to its natural filtration if and only if its law is a
“Markov measure” as in Section 4 of [Newl1ba] (not to be confused with a “Markov invariant measure”
of a RDS, as introduced in Section of this thesis).
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(Therefore, we may also describe (M,,) as a “Markov process with (n-step) transition
probabilities (1%)zex, nen,” -)

Proof. We prove the statement by induction on r. The statement is clear for all n € Ny
with 7 = 0. Now fix k € Ny such that the statement is true for all n € Ny with r = k. For
any n € Ny and A € X, we have that for P-almost all w,

il (A) = [ HE(A) pag, (o)

El4fs,,, (AIF](w)
[]P( n+k+1(A)‘:Fn+1)’f ](w)
= ( n+k+1(A)|‘F )(w)

Thus the statement is true for all n € Ny with » = £+ 1. Hence the result follows by
induction. [

The ergodic theorem for discrete-time Markov processes

Let p be a (u,)-stationary probability measure, and let g: X — R be a p-integrable
function. Let (My,)nen, be a Markov process (with respect to any filtration on (2, F))
with transition probabilities (u,), and suppose moreover that My.P = p (from which it
follows that M,,.IP = p for every n € Ny). Then

l;) (Mi(w)) - E[Q(MOHMOT(“I J(w) asn - oo

3

for P-almost all w € €2. Hence in particular, if p is ergodic then

1 n-
LS p(Mi(w)) - [ gdp as oo
n = X

for P-almost all w € €.

The above result is obtained by applying Birkhoff’s ergodic theorem to the left-
shift map on the sequence space XNo, equipped with the law , of (M,). The main
technicality is to show that every p -almost invariant set in this sequence space depends,
up to modification, on only the first coordinate. For details, see Section 4 of [New15a].

C.6 Continuous-time Markov processes

Let (X,X) be a measurable space. Let (Q,F,(F:)w[0,0),P) be a filtered probability
space, and let Fo := 0(F; 1t >0). Let (ph)zex, te[0,00) e a semigroup of Markov kernels
on X.

We say that a [0, oo)-indexed family (M;)o of functions M;:Q — X is a (homogeneous)

Markov process with respect to the filtration (F;), with transition probabilities
(115) zex te[0,00) if the following hold:
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(i) for each t >0, M, is (F;, ¥)-measurable;
(ii) for each s,t>0 and A€ X,
P(MI(A)|F) (W) = f,)(A) P-as.

Remark. Given a family (M;);s of measurable functions M;: Q2 - X, if there exists
a filtration on (€, F) with respect to which (M/;) is a Markov process with transition
probabilities (uf ), then (M;) must in particular be a Markov process with respect to its
natural filtration F; := o(M, : 0 < s < t), with the same transition probabilities (ut).
(Once again, this property is characterised purely by the law of the stochastic process
(M), that is, the image measure of P under the map w + (M;(w))so from Q to X[0:)))

Now for any t > 0 and any probability measure p on X, in keeping with the notation
introduced in Section [C.3] we define the probability measure pp on X by

np(A) = fX/vLi(A)p(dfv)'

As in discrete time, it is easy to show that if (M;) is a Markov process with transition
probabilities (uf) then for any s,¢ >0, Mg, [P = pt* (M, P).

The ergodic theorem for continuous-time Markov processes

Let p be a (ul)-stationary probability measure, and let g: X — R be a p-integrable
function. Let (M;)0 be a Markov process (with respect to any filtration on (§2,F))
with transition probabilities (p%). Suppose moreover that the map (¢t,w) —» My(w) is
jointly measurable, and M. = p (from which it follows that M.[P = p for every ¢ > 0).

Then for P-almost all w € 2, the map ¢ — g(M;(w)) is locally integrable and
1 rT t
ffo g(My(w))dt — E[Q(MOHMO_IIé%)](w) as ' — oo.

In particular, if p is ergodic then for P-almost all w € €2,

T
%./(; g(My(w))dt — Lgdp as T — oo.

A proof in the case that (M;)o has right-continuous sample paths in some separable
metrisable topology generating Y can be found in Section 4 of [New15a]. The more general
case is obtained by combining [New15al Corollary 71] (where it is shown that the almost-
invariant sets of the time-shift dynamical system on X[%=) are determined modulo null
sets by their 0-coordinate) with the general ergodic theorem for stationary stochastic
processes (see e.g. [Lin02, Theorem 5.5] with two-sided time replaced by one-sided time
and x(t) := go M,).

9The statement as appears in [Lin02, Theorem 5.5] requires the additional assumption that the map
(t,w) = x(t)(w) is jointly measurable. The proof also omits some non-trivial steps: The stationarity of
the stochastic process x,, := [nn—l x(t) dt is justified by [MO14]. (More precisely, this directly covers the
case that z(t) is essentially bounded; the general case is then obtained by “capping” z(¢) within [-N, N]
and letting N — o0.) The fact that the limit of the finite-time averages is J-measurable modulo null sets
relies on this limit being Bgr-measurable modulo null sets; this is justified by [MO15a] together with the
stationarity of (z(t))ier. (Again, this only directly covers the bounded case, but can then be extended

to cover the unbounded case.)
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