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Abstract

Process monitoring and control requires detection of structural changes in a data stream
in real time. This article introduces an efficient sequential Monte Carlo algorithm designed
for learning unknown changepoints in continuous time. The method is intuitively simple:
new changepoints for the latest window of data are proposed by conditioning only on data
observed since the most recent estimated changepoint, as these observations carry most of
the information about the current state of the process. The proposed method shows improved
performance over the current state of the art.

Another advantage of the proposed algorithm is that it can be made adaptive, varying
the number of particles according to the apparent local complexity of the target changepoint
probability distribution. This saves valuable computing time when changes in the change-
point distribution are negligible, and enables re-balancing of the importance weights of ex-
isting particles when a significant change in the target distribution is encountered.

The plain and adaptive versions of the method are illustrated using the canonical contin-
uous time changepoint problem of inferring the intensity of an inhomogeneous Poisson pro-
cess, although the method is generally applicable to any changepoint problem. Performance
is demonstrated using both conjugate and non-conjugate Bayesian models for the intensity.
Appendices to the article are available online, illustrating the method on other models and
applications.
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1 Introduction

Let {y(t) : t ≥ 0} be a continuous time stochastic process of observable data on R+, where

the law of y(t) is governed by a second underlying stochastic process θ(t) ∈ Θ. A changepoint

model for y assumes an unknown number of changepoints τ1 < τ2 < . . . that partition R+ into

disjoint, homogeneous segments [τi, τi+1) such that ∀t ∈ [τi, τi+1), θ(t) = θi for some constant

parameter value θi. Changepoint detection is the task of making inference about the occurrence

of changepoints in the underlying process θ(t) based on the observable process y(t).

The motivation behind the sequential Monte Carlo (SMC) algorithm proposed here is detect-

ing changepoints in continuous time, previously considered by Whiteley et al. (2011) under the

name piecewise deterministic processes. The process data y(·) are assumed to arrive as a con-

tinuous stream, while inferences about θ(·) are made at a discrete sequence of observation times

0 < t1 < t2 < . . .. At each observation time tn, n ≥ 1, the posterior distribution for changepoints

in the interval [0, tn] is sought in order to make such inferences.

The SMC algorithm of Whiteley et al. (2011) is a direct application of the SMC samplers

methodology of Del Moral et al. (2006), which is a more general SMC technique for sampling

sequentially from any sequence of target distributions defined on a common space with a fixed

computational cost. The generality of the SMC samplers method is achieved by augmenting the

target distributions to ever increasing dimensions in order to avoid the need to integrate over

a general transition kernel; whilst that provides the basis for a very general class of samplers,

applicable in a broad variety of contexts, the aim of this article is to propose a more bespoke

SMC algorithm designed specifically for changepoint analysis.

Further adaptation of the SMC sampler methodology to point process models was provided

by Martin et al. (2013), and a fixed computational cost implementation of their method is also

included for comparison in this article. In the wider literature of SMC for changepoint detection,

but within the context of discrete time changepoint analysis, Fearnhead and Liu (2007) make

sequential inference on data where filtering recursions are used to sample exactly from the distri-

bution of the most recent changepoint, and consequently the joint distribution of all changepoints;

the computational cost of exact simulation increases linearly with time and so an approximation

using particle filtering is proposed. Chopin (2007) and Fearnhead and Clifford (2003) approach

discrete changepoint detection in time series by reformulating the changepoint problem as a hid-
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den Markov model and use particle filters to propagate forward the distribution of the time since

the most recent changepoint. Carrying forward inferences about the most recent changepoint is

also an important element of the proposed method.

The next section outlines the Bayesian changepoint model. Section 3 proposes an efficient

new SMC algorithm for changepoint problems; Section 4 demonstrates how this algorithm can

easily be made adaptive, automatically varying the number of particles according to the complex-

ity of the target, which can potentially be valuable when performing inference on a number of

sequences of target distributions in parallel.

2 Bayesian changepoint model

In all of the examples in the main text of this article, the arrivals of changepoints in θ(t) will be

assumed to be a homogeneous Poisson process with constant intensity ν ∈ R+.

Following the notation of Whiteley et al. (2011), let kn be the number of changepoints over

[0, tn]. When kn > 0, let τ1:kn = (τ1, . . . , τkn) ∈ Tn,kn denote the ordered locations of these

changepoints, where Tn,kn = {τ1:kn : 0 < τ1 < . . . < τkn < tn}, and let τ0 = 0 and τkn+1 = tn.

For a concise notation, define τn = (0) if kn = 0, and τn = (kn, τ1:kn) otherwise; the prior

density for τn implied by the Poisson process is

p[0,tn](τn) = νkn exp(−νtn)IEn(τn), (1)

where (En) is the sequence of nested transdimensional spaces, En ⊂ En+1, for which

En =
∞⋃

kn=0

{kn} × Tn,kn .

The appendices to this article in the Supplementary Material consider a generalization of (1),

p[0,tn](τn|s) = νkn exp

(
−νtn + ν

n∑
i=1

min{s, tn − τi}
)
I[0,tn](τ1)

n−1∏
i=1

I(τi+s,tn](τi+1) (2)

for s ≥ 0. This prior enforces a waiting time of at least s after each changepoint event before

resuming the constant intensity ν. Note that p[0,tn](τn) ≡ p[0,tn](τn|s = 0), but for s > 0 this
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prior places a finite bound on the number of changepoints in any finite interval.

Let θn = θ0:kn = (θ0, . . . , θkn) ∈ Θkn+1 be the vector of parameters corresponding to the

kn + 1 segments of the partition of [0, tn] created by the changepoints in τn, with prior density

p (θn|τn). Over a time interval I ⊂ R+, let y(I) be the path of data observed. Assuming a

likelihood function f (y([0, tn])|τn,θn) for the data over [0, tn] which is known pointwise, the

joint density of the changepoints, the parameters and the sample path is

γ[0,tn](τn,θn, y([0, tn])) = f (y([0, tn])|τn,θn) p (θn|τn) p[0,tn](τn). (3)

The posterior density for the changepoints and parameters is then known up to proportionality by

π[0,tn](τn,θn|y([0, tn])) ∝ γ[0,tn](τn,θn, y([0, tn])). (4)

If the conditional density of the parameters given the changepoints is the conjugate prior to

the likelihood model, then the parameters θn in (3) can be integrated out to give the marginal

posterior density for the changepoints up to proportionality,

π[0,tn](τn|y([0, tn])) ∝ γ[0,tn](τn, y([0, tn])) =

∫
Θkn+1

γ[0,tn](τn,θn, y([0, tn]))dθn. (5)

3 Sequential Monte Carlo algorithm for changepoint distri-

butions

For a fast SMC algorithm for changepoint problems, the proposal distributions for the sequence

of target distributions π[0,tn], n = 1,2, . . ., will sample changepoints from approximations to

the posterior distributions for each update interval (tn−1, tn] without reference to the sampled

changepoints from the previous intervals. Instead, information about changepoints in [0, tn−1]

will be summarized through some convenient estimate t∗n−1 of τkn−1 , the most recent changepoint

(cf. Chopin, 2007; Fearnhead and Clifford, 2003). New changepoints will then be proposed

within the update interval (tn−1, tn] based on the process data from (t∗n−1, tn].

Here t∗n−1 will usually be the posterior mean of τkn−1 estimated from the weighted SMC

sample at tn−1. Other choices are possible: the straightforward choice of t∗n−1 = tn−1 was also
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tested, but led to reduced performance in all examples. The extreme case of t∗n−1 = tn will also

be considered, since this corresponds to proposing changepoints from the prior and thus provides

a fixed-computation cost implementation of the method of Martin et al. (2013).

The motivation behind the proposed algorithm is as follows: If new changepoints within

(tn−1, tn] are to be sampled and appended to the existing changepoint vectors for each particle,

then to construct a good proposal distribution it might be sufficient to retain only those data that

have been observed since the last changepoint in [0, tn], as these data provide all of the available

information on the current state of θ(t) as the process enters (tn−1, tn]. The diversity of the

particles in terms of their earlier changepoints in [0, tn−1] has no future bearing.

Let k̃n ≤ kn be a random variable for the number of changepoints in the update interval

(tn−1, tn]. Further let τ̃n = (0) if k̃n = 0 and τ̃n = (k̃n, τ̃1:k̃n
) otherwise, so that τ̃n ∈ Ẽn where,

Ẽn =
∞⋃

k̃n=0

{k̃n} × {τ̃1:k̃n
: tn−1 < τ̃1 < . . . < τ̃k̃n < tn}

Let π(tn−1,tn](τ̃n|y((t∗n−1, tn])) be the local posterior distribution of changepoints in Ẽn obtained

when conditioning on the data observed in the extended interval (t∗n−1, tn]. Then

π(tn−1,tn](τ̃n|y((t∗n−1, tn])) ∝

γ(tn−1,tn](τ̃n, y((t∗n−1, tn])) = IẼn
(τ̃n)

∫
Θk̃n+1

f
(
y([t∗n−1, tn])|τ̃n, θ̃n

)
p
(
θ̃n|τ̃n

)
p[tn−1,tn](τ̃n)dθ̃n.

In general, sampling directly from the densities π(tn−1,tn](τ̃n|y((t∗n−1, tn])) will not be pos-

sible, except in the special case where t∗n−1 = tn (Martin et al., 2013). Instead, a single re-

versible jump Markov chain Monte Carlo (RJMCMC) (Green, 1995) sampler with target density

π(tn−1,tn](τ̃n|y((t∗n−1, tn])) will provide approximate draws within the SMC algorithm. Impor-

tantly, it is likely that convergence of RJMCMC on the subintervals (tn−1, tn] will be very fast if

the update intervals are small, as the prior probability that there would be more than one change-

point is o(tn − tn−1). To demonstrate the validity of the approximation, the appendices in the

Supplementary Material present a comparison of RJMCMC against exact (rejection) sampling

within the SMC algorithm, which is possible when adopting the alternative model prior (2). The
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results from the two approaches are indistinguishable.

Extending a vector of changepoints in the case of a conjugate Bayesian model, with tar-

get density (5), is the most straightforward case and will be considered first. Second, the non-

conjugate case will be addressed, with extended target density (4). This latter case is more dif-

ficult for two reasons: firstly, sampling from more highly parameterized models is generally

more cumbersome and inefficient; secondly and more importantly, when appending changepoint

vectors from the update interval there is a spare intercept parameter that needs to be handled.

3.1 Conjugate models

Algorithm 1 presents the most straightforward form of the SMC algorithm being proposed, when

assuming a conjugate Bayesian model for y(t) within each changepoint segment.

Algorithm 1 SMC algorithm for changepoint detection

1: Set n = 1 , and w(i)
1 = 1 for i = 1, . . . , N

2: Sample {τ (i)
1 }Ni=1 ∼ π[0,t1](τ1|y([0, t1])) (either approximately via RJMCMC, or exactly)

3: n ← n + 1
4: Calculate t∗n−1 =

∑N
i=1w

(i)
n−1τ

(i)
kn−1

/
∑N

i=1w
(i)
n−1

5: Sample {τ̃ (i)
n }Ni=1 ∼ π(tn−1,tn](τ̃n|y((t∗n−1, tn])) (either approximately via RJMCMC or ex-

actly)
6: Draw a random permutation σ uniformly from SN , the symmetric group on N symbols
7: Combine the particles, {τ (i)

n = (k
(i)
n−1 + k̃

(i)
n , τ

(i)
1 , . . . , τ

(i)
kn−1

, τ̃
σ(i)
1 , . . . , τ̃

σ(i)

k̃n
)}Ni=1

8: Update the importance weights {w(i)
n }Ni=1 according to (6)

9: Calculate the effective sample size ESS =
∑N

i=1 w
(i)
n−1

2
/(
∑N

i=1w
(i)
n−1)2

10: if ESS < ESSmin = N/3 then
11: Resample {τ (i)

n , w
(i)
n }Ni=1 according to the weights to obtain unweighted particles

{τ (i)
n , 1}Ni=1

12: Optionally move each particle according to the π[0,tn]-invariant kernel used for RJMCMC
sampling, and retain the same importance weights

13: end if
14: goto 3

At time tn−1, the algorithm assumes a set ofN importance weighted particles {τ (i)
n−1, w

(i)
n−1}Ni=1

that approximate π[0,tn−1](τn−1|y([0, tn])). Let t∗n−1 =
∑N

i=1 w
(i)
n−1τ

(i)
kn−1

/∑N
i=1 w

(i)
n−1be the Monte

Carlo estimate of the posterior mean of τkn−1 . Then at time tn, N new sub-particles are sam-

pled from π(tn−1,tn](τ̃n|y((t∗n−1, tn])), either approximately via RJMCMC, or by exact sampling
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if possible. Then setting τn = (τn−1, τ̃n), the implied importance distribution on [0, tn] from

combining the two sets of particles is known up to proportionality through

q[0,tn](τn) = γ[0,t1](τ1, y([0, t1]))
n∏
j=2

γ(tj−1,tj ](τ̃j, y((t∗j−1, tj])).

When RJMCMC is used to draw approximate samples from π(tn−1,tn](τ̃n|y((t∗n−1, tn])) in

each update, there will be autocorrelation in each batch of samples. To negate this, before joining

the particles together step 6 of the algorithm samples a random permutation for the labels of the

sample from the new interval, to break the autocorrelation of the combined particles.

The importance weights are then updated to account for the discrepancy between the impor-

tance distribution and the changepoint posterior distribution (5). For n > 1 the weight for the ith

particle is given by

wn(τ (i)
n ) =

γ[0,tn](τ
(i)
n , y([0, tn]))

q[0,tn](τ
(i)
n )

= wn−1(τ
(i)
n−1)wn(τ (i)

n ), (6)

where the incremental weight

wn(τ (i)
n ) =

γ[0,tn](τ
(i)
n , y([0, tn]))

γ[0,tn−1](τ
(i)
n−1, y([0, tn−1]))γ(tn−1,tn](τ̃

(i)
n , y((t∗n−1, tn]))

, (7)

is computationally simple to calculate; for example, in the case of t∗n−1 = tn−1 this is analogous

to calculating the probability of accepting an RJMCMC death move for a changepoint at tn−1.

Again it should be noted that, strictly, (6) and (7) are only approximate formulas when the up-

date samples have been generated by RJMCMC. However, a comparison with exact sampling

presented in the appendices in the Supplementary Material demonstrates any bias introduced by

this approximation to appear negligible.

Note that the entire SMC scheme is equivalent to sequential importance sampling on a se-

quence of distributions defined on nested spaces with a transition kernel approximating

Kn(τn|τ
′

n−1) ∝ δτ ′n−1
(τn−1)γ(tn−1,tn](τ̃n, y((t∗n−1, tn])).

When the effective sample size (ESS) (Liu, 1996) of the particles drops below a threshold,
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commonly taken to be N/3, the systematic resampling approach (Kitagawa, 1996) is used (Al-

gorithm 1, Step 9 to 11). Additionally, a sweep of RJMCMC moves is applied to the particle set

after resampling (Algorithm 1, Step 12), as adopted in Del Moral et al. (2006), Whiteley et al.

(2011) and Martin et al. (2013).

3.2 Non-conjugate models

The SMC algorithm for non-conjugate models follows the steps of Algorithm 1, with the ex-

ception that the marginal posteriors π[0,tn](τn|y([0, tn])) from (5) are unavailable. Changepoints

can be sampled approximately at each update via RJMCMC, but from the joint distribution of

changepoints and parameters π(tn−1,tn](τ̃n, θ̃n|y((t∗n−1, tn])).

Suppose at tn−1 a weighted sample of changepoints and parameters {τ (i)
n−1,θ

(i)
n−1, w

(i)
n−1}Ni=1

has been obtained from π[0,tn−1](τn−1,θn−1|y([0, tn−1])), and subsequently at time tn a sample

{τ̃ (i)
n , θ̃

(i)
n }Ni=1 is drawn from π(tn−1,tn](τ̃n, θ̃n|y((t∗n−1, tn])). Combining the particles from these

two samples is less straightforward, as there is an extra, redundant parameter for θ(t) for the

segment (τkn−1 , τ̃1]. The implied proposal distribution would be over-parameterized, so the pa-

rameter pair (θkn−1 , θ̃0) needs to be combined to form a single parameter θ∗n for (τkn−1 , τ̃1].

Let s1(θkn−1 , θ̃0) be a suitably chosen function to combine the two model parameters into a

single value θ∗n. As the marginal distribution of θ∗n implied by the proposal density and s1 is

unlikely to have an analytic solution, a joint change of variables is required. Let s2(θkn−1 , θ̃0) be

a second transformation such that the pair

(θ∗n, un−1) = s(θkn−1 , θ̃0) = (s1(θkn−1 , θ̃0), s2(θkn−1 , θ̃0))

comprise a one to one mapping (θkn−1 , θ̃0) 7→ (θ∗n, un−1), and let |Js| be the determinant of the

Jacobian of s. Following the change of variable s, the implied proposal density is known up to

proportionality and satisfies

q[0,tn](τn,θn, u1:n−1) =q[0,tn−1](τn−1,θn−1, u1:n−2)π(tn−1,tn](τ̃n, θ̃n, y((t∗n−1, tn]))|Js|,

where θn = (θ0, . . . , θkn−1−1, θ
∗
n, θ̃1, . . . , θ̃k̃). This proposal density generates parameters suited

to the concatenated changepoints, but also the nuisance parameters u1:n−1. To accommodate
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these nuisance parameters, a general solution is to extend the target distribution,

π[0,tn](τn,θn, u1:n−1|y([0, tn])) , π[0,tn](τn,θn|y([0, tn]))
n−1∏
j=1

π̃(uj|τj,θj) (8)

where π̃ can be any density with the correct support for uj . As the true target (4) is a marginal of

(8), standard importance sampling estimates obtained in the extended space can still be used to

give an approximation for the true target distribution and its normalizing constant.

The importance weights given in (6) for the non-conjugate case with this extended target are

wn(τ (i)
n ,θ(i)

n , u
(i)
1:n−1) =

γ[0,tn](τ
(i)
n ,θ

(i)
n , u

(i)
1:n−1, y([0, tn]))

q[0,tn](τ
(i)
n ,θ(i)

n , u
(i)
1:n−1)

= wn−1(τ
(i)
n−1,θ

(i)
n−1, u

(i)
1:n−2)wn(τ (i)

n ,θ(i)
n , u

(i)
n−1),

with the incremental weight

wn(τ (i)
n ,θ(i)

n , u
(i)
n−1) =

γ[0,tn](τ
(i)
n ,θ

(i)
n , y([0, tn]))π̃(u

(i)
n−1|τ (i)

n ,θ
(i)
n )

γ[0,tn−1](τ
(i)
n−1,θ

(i)
n−1, y([0, tn−1]))γ(tn−1,tn](τ̃

(i)
n , θ̃

(i)
n , y((t∗n−1, tn])|J(i)

s |
.

The particular parameter transformation s1 should be chosen such that if θkn−1
and θ̃0 are sam-

ples from the corresponding conditional posterior distributions, then θ∗n = s1(θkn−1
, θ̃0) should

approximate a draw from the posterior for the joined segment. The transformation s2 is less crit-

ical, but should have a distribution that can be loosely identified so as to guide how to extend the

target distribution. An example is provided in Section 3.3.2.

3.3 Illustrative examples

Two examples are now presented where y(t) is a Poisson process. In the first example the pro-

posed changepoint SMC algorithm (referred to as SMC CP) is demonstrated on the coal-mining

disaster data analyzed by Raftery and Akman (1986), Green (1995) and Del Moral et al. (2006)

among others. Performance is compared with the SMC samplers algorithm (SMC S) used in Del

Moral et al. (2006) and the fixed-cost approximation of the prior-sampling method of Martin et al.

(2013) using the SMC CP algorithm with t∗n−1 = tn (SMC CP P). The second example demon-

strates the non-conjugate extension of the algorithm using data simulated from a shot noise cox
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process taken from Whiteley et al. (2011); performance is compared with the piecewise deter-

ministic processes particle filter (SMC PDP) of Whiteley et al. (2011) when applied to the same

model. The data and C++ code for both examples are available in the Supplementary Material.

In SMC CP, RJMCMC is used to obtain approximate samples from each of the update inter-

vals (tn−1, tn], using standard Metropolis Hastings moves of birth (uniformly on the subinterval),

death or movement (uniformly) of a changepoint, selected with equal probability when available.

Starting from an initial particle with no changepoints, a burn-in of 5,000 samples is discarded.

For both examples, full RJMCMC on the whole interval [0, tn] is used as an alternative method

to sample from the sequence of posteriors π[0,tn](τn|y([0, tn])), with the maximum a posteriori

sample obtained from π[0,tn−1] serving as a starting value for sampling from π[0,tn]. For gauging

performance, this “sequential MCMC” (denoted SMCMC) approach can be considered as a gold

standard way to generate samples from the posterior given the data from [0, tn], although carrying

a much higher computational cost than SMC.

3.3.1 Coal data

The coal mining disaster data consist of the dates of coal-mining disasters in the UK between

1851 and 1962 and are a popular data set for applying changepoint analysis. It is assumed that the

disasters follow an inhomogeneous Poisson process with piecewise constant intensity function.

The intensity was estimated in a sequential time frame in Del Moral et al. (2006), and here a

comparison will be made with results from the SMC samplers (SMC S) algorithm from that

article using the code provided therein.

For a vector of changepoints τn at time tn, define the parameter vector λn = (λ0, . . . , λkn)

such that the intensity of the process λ(t) =
∑kn

i=0 λiI(τi,τi+1](t). If ri =
∫ τi+1

τi
dy(t) is the number

of disasters occurring in (τi, τi+1], then the likelihood of the observed process data is

f(y([0, tn])|τn,λn) =
kn∏
i=0

λrii exp{−λi(τi+1 − τi)},

If independent conjugate Γ(α, β) priors are assigned to the intensity levels,

p(λn|τn) =
kn∏
i=0

βα

Γ(α)
λα−1
i exp(−βλi), (9)
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then for posterior inference the intensities λn can be integrated out to obtain the posterior distri-

bution for the changepoints (5) up to proportionality through

γ[0,tn](τn, y([0, tn]) = νkn exp(−νtn)
kn∏
i=0

βα

Γ (α)

Γ (α + ri)

(β + τi+1 − τi)α+ri
.

Conditional on the changepoints, the intensity levels λi have independent posterior distributions

λi|τn, y([0, tn]) ∼ Γ (α + ri, β + τi+1 − τi) . (10)

Del Moral et al. (2006) also treated changepoints as a Poisson process, but assumed a non-

conjugate prior for the intensities with λ0 ∼ Γ(α0, β0) and λi|λi−1 ∼ Γ(λ2
i−1/χ, λi−1/χ),

pSMC S(λn|τn) =
β0

α0

Γ(α0)
λα0−1

0 e−β0λ0
kn∏
i=1

(λi−1/χ)λi−1
2/χ

Γ(λi−1
2/χ)

λ
λi−1

2/χ−1
i e−λi−1λi/χ. (11)

To make inference under (11), whilst still adopting the conjugate priors for the intensity

levels (9) for ease of sampling, the following particle re-weighting is proposed: Given a (pos-

sibly) weighted sample of changepoints {τ (i)
n , w

(i)
n }Ni=1 obtained from Algorithm 1 or sequen-

tial MCMC, λ(i)
n can first be sampled from (10) for each particle to give a weighted sample of

changepoints and intensities {τ (i)
n ,λ

(i)
n , w

(i)
n }Ni=1. Second, this augmented sample can be simply

reweighted to give an approximate sample from the non-conjugate model of Del Moral et al.

(2006), with new weights w̄(i)
n given by

w̄(i)
n = w(i)

n

pSMC S(λ
(i)
n |τn)

p(λ
(i)
n |τ (i)

n )
.

Del Moral et al. (2006) chose to perform inference annually, which implies a sequence of

112 changepoint densities where the nth density concerns the date range [1851, 1851 + n]. The

prior intensity parameter for the occurrence of changepoints was chosen to be ν = 2/112. For

the non-conjugate model intensity priors, following Del Moral et al. (2006) α0 = 4.5 and β0 =

1.5, while χ = 5; for the conjugate model, uninformative priors are used with α = β = 0.1.

Again following Del Moral et al. (2006), the overall number of particles N = 10,000. For

SMCMC, 1,000,000 samples are drawn from each posterior to give reliable posterior estimates
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for comparison.

Figure ?? shows the average over 5,000 runs of the online, or filtered, intensity function for

the non-conjugate model, estimated each year using SMC CP, SMC S, SMC CP P and SM-

CMC. The SMC CP and SMC CP P methods perfectly track the target SMCMC curve, which

represents the best possible inference. In particular, SMC CP and SMC CP P perform much

better than SMC S for the first fifty years of densities, and after that from 1900 the performance

of the algorithms are more comparable. Figure ?? also shows the average mean square error and

ESS for the SMC algorithms. The ESS for SMC CP shows good stability across the 112 year

period, whereas particularly SMC S initially suffers from persistent weight degeneracy. In total

SMC S performs resampling due to the ESS dropping below the threshold an average of 29.0

times, compared with SMC CP performing resampling only 7.6 times in total, and SMC CP P

9.7 times.

Overall, the improvement of SMC CP over SMC S is very clear for this example, but the

performance gain of SMC CP over the SMC CP P strategy of sampling from the prior for each

interval (Martin et al., 2013) is less pronounced. A likely reason for this is that the coal data are a

low frequency data set, with an average of less than two data points arriving per update interval,

and so the differences between the prior and local posterior distributions will be more slight. In

Appendix B of the Supplementary Material, a higher frequency synthetic Poisson process data set

is analyzed, and under these conditions the performance of sampling from the prior deteriorates.

For computation time, a single run of SMC CP on the coal data took 8.25s on a notebook

with 1.1 GHz Intel Core processor, which is less that a tenth of a second per update interval.

SMC CP P took even less time, 2.25s, since no MCMC or thinning is required. In contrast

SMC S took 58s, although part of the faster run times of SMC CP and SMC CP P could be due

to the efficient implementation of the code (available in the Supplementary Material).

3.3.2 Shot noise Cox process

Now suppose y(t) is a shot noise Cox process, where changepoints τ1:kn now correspond to shots

(positive jumps) in the intensity function

λ(t) =
kn∑
i=0

λi exp{−κ(t− τi)}I(τi,τi+1](t),
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where κ > 0 is a fixed decay parameter for the decrease in intensity between shots. The pa-

rameters λn = λ0:kn are the random intensity levels immediately after the shots, λi , λ(τi)

and are constrained such that the shots are always positive; that is, λi > λ−i where λ−i ,

λi−1 exp{−κ(τi − τi−1)} is the intensity just before τi.

Following Whiteley et al. (2011), the prior density for the intensity levels is

p(λn|τn) = αkn+1 exp(−αλ0)
kn∏
i=1

exp{−α(λi − λ−i )}I(λ−i ,∞)(λi). (12)

The likelihood of the observed process data is

f(y([0, tn])|τn,λn) = exp

{
−

kn∑
i=0

(λi − λ−i+1)/κ+

∫ tn

t=0

log λ(t)dy(t)

}
.

A conjugate model approximation to the shot noise Cox process would need to forgo the con-

straint λi > λ−i . Particularly for low values of κ, which constitute the harder inference problems,

reweighting samples from the unconstrained conjugate model in SMC would be an unreliable

approach, since the proportion of particles obeying the required constraint, and therefore having

non-zero weight according to the target model, would diminish over time. So for this application

the non-conjugate algorithm of Section 3.2 is favored.

When performing a “birth” move in RJMCMC, the location of the new changepoint is drawn

from the proposal distribution specified in Whiteley et al. (2011). This simply puts higher prob-

ability of proposing a changepoint at regions in the process y(·) where an increased rate of oc-

currence of events was observed, which might correspond to a shot. To follow the non-conjugate

SMC algorithm, the intensity parameters λi are also sampled during RJMCMC. Note that, con-

ditional on all other parameters, the λi corresponding to interior changepoints (0 < i < n) have

both lower and an upper constraints: Necessarily, λi ∈ (λ−i , exp{κ(τi+1− τi)}λi+1). Under (12),

the full conditional distribution of λi is a truncated gamma distribution

π(λi|·) ∝ λrii exp{−(ακ+ 1)ziλi}I(λ−i ,exp{κ(τi+1−τi)λi+1)}(λi),

where ri is the number of y events in (τi, τi+1] and zi = [1− exp{−κ(τi − τi−1)}]/κ.

For the SMC algorithm, it can be supposed that two sets of particles have been obtained at
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time tn:

• {τ (i)
n−1,λ

(i)
n−1, w

(i)
n−1}Ni=1, a weighted sample from π[0,tn−1](τn−1,λn−1|y([0, tn−1]));

• {τ̃ (i)
n , λ̃

(i)
n }Ni=1, sampled from π(tn−1,tn](τ̃n, λ̃n|y((t∗n−1, tn])).

To combine the two intensity parameters λkn−1 and λ̃0 to a single intensity parameter λ∗n for the

merged interval (τkn−1 , τ̃1], an attractive function would be

s1(λkn−1 , λ̃0) =
[λkn−1(1− exp{−κ(tn−1 − τkn−1)}) + λ̃0(1− exp{−κ(τ̃1 − tn−1)})]

(1− exp{−κ(τ̃1 − τkn−1)})
,

which preserves the cumulative intensity over (τkn−1 , τ̃1]. However, this function might propose

an illegal intensity according to the constraints of the model. To ensure a legitimate proposal, it

is easiest to work with the parameterization provided by the shots, θi = λi − λ−i . Working in

this parameter space, to guarantee a legitimate move the simplest choice of s is then the bivariate

identity function, implying θ∗n = θkn−1 = λkn−1 − λ−kn−1
and un−1 = θ̃0 = λ̃0. This proposal has

the potential to work well, since the proposal density for changepoints in (tn−1, tn] assumes the

last shot in [0, tn−1] was at t∗n−1, and carries forward the data from t > t∗n−1.

Finally, to extend the target distribution, π̃(un−1|τ1:kn , λ0:kn) can be defined to be the full

conditional from which the parameter θ̃0 was originally proposed.

Viewed from the intensity parameterization, the proposed parameters at tn will be:

{τ (i)
n = (τ

(i)
1 , . . . , τ

(i)
kn−1

, τ̃
(i)
1 , . . . , τ̃

(i)

k̃n
)}Ni=1

{λ(i)
n = (λ

(i)
0 , . . . , λ

(i)
kn−1

, λ̃
(i)
1 + δ(i)

n , . . . , λ̃
(i)

k̃n
+ δ(i)

n }Ni=1,

where δ(i)
n = λ

(i)
kn−1

exp{−κ(τ̃
(i)
1 − τ (i)

kn−1
)} − λ̃(i)

0 exp{−κ(τ̃
(i)
1 − tn−1)}.

For a true comparison against the piecewise deterministic process (SMC PDP) algorithm in

Whiteley et al. (2011), the same shot noise parameter values are used: ν = 1/40, κ = 1/100 and

α = 2/3. The data obtained from the code provided in Whiteley et al. (2011) are simulated over

[0, 2000], with 40 update intervals each of length 50. The total number of particles N = 500 and

the ESS resampling threshold is set to 200. Again as a comparison to both SMC algorithms, the

slower but accurate SMCMC algorithm is used to provide a “gold standard” of inference.
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Figure ?? shows the online filtering estimate for the intensity function using the three dif-

ferent algorithms SMC CP, SMC PDP and SMCMC for the shot noise Cox process as well as

a histogram of the data over the time period. Although both SMC algorithms perform well, the

SMC CP algorithm tracks the SMCMC curve more reliably, with SMC PDP slightly overesti-

mating some of the shots in the intensity.

Figure ?? also shows the ESS at each time point for both SMC CP and SMC PDP, and

SMC CP shows much better stability in terms of the variability of the weights. The proposal

distribution specified in Whiteley et al. (2011) only allows birth of changepoints within each

update interval, so initially the algorithm may be overfitting changepoints causing high variability

in the weights.

Whiteley et al. (2011) also plotted the number of unique particles, over time, that eventu-

ally survived to the final iteration of the SMC algorithm. The third panel of Figure ?? plots

this quantity both before and after resampling, as although there may be many unique particles

the importance weights may have high variance, implying a low quality particle approximation,

Whiteley et al. (2011). Here SMC CP shows much more of a diverse particle set further back in

time then SMC PDP both before and after resampling. However, it should be noted that when

ESS falls below the threshold, SMC CP performs MCMC on the whole of τ̃n according to the

π[0,tn]-invariant kernel whereas SMC PDP only perform MCMC on τkn . The fourth panel of Fig-

ure ?? shows the change in performance if SMC CP is disallowed from performing any MCMC,

disadvantaging the method against SMC PDP; then the performance is much more comparable.

4 Adaptive sequential Monte Carlo

In many applications such as finance or security, there can be cause to make sequential inference

about many independent target probability distributions in parallel. In finance, such problems

could arise in automated trading, where beliefs about the future prices of many stocks will be

continually updated; and in security, statistical models can be used for monitoring each entity in

a large network for unusual behavior. Notationally, suppose there is a collection of m sequences

of target distributions {πj[0,tn]}, j = 1, . . . ,m, such that inference is to be made about each target

distribution πj[0,tn] at the same sequence of update times t1 < t2 < . . ..

For SMC algorithms, when updating beliefs about each of these target distributions it is de-
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Figure 2: Results for the shot-noise model using SMCMC (??), SMC CP (??) and SMC PDP
(??). Row 1: Online estimated intensity function. Row 2: Effective sample size, ESSmin = 200
(??). Rows 3-4: Number of unique particles present in the final sample before (dashed line) and
after (solid line) resampling, with (row 3) and without (row 4) MCMC sampling for SMC CP
when ESS < ESSmin.
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sirable to allocate more computational resource to those target distributions that appear to have

changed the most. For existing SMC methods this idea is problematic and has not been widely

explored, since the number of particles N is typically fixed from the start; these particles are

either refined or resampled as the target distribution evolves, but the same number of particles

is always maintained. Indeed, the effective sample size typically drops at precisely those times

when the target distribution undergoes the most change, and resampling is required to ensure that

the N particles are still relevant, at the cost of a loss of diversity of the particles.

As a prequel to this article, Heard and Turcotte (2015) derived a sequential approach to deter-

mining sample sizes during sampling, based on the apparent relative entropy of the different dis-

tributions. By estimating the Kullback-Leibler (K-L) divergence of each sample from its target,

samples can be allocated optimally to minimize the overall discrepancy. Similarly, Fox (2003)

considered estimating the K-L divergence of the sample from a target, although with respect to

the predictive distribution of a particle filter for a hidden Markov model.

In the context of SMC, such an adaptive sample size strategy can be applied at each update

when sampling from the proposal distributions πj(tn−1,tn](τ̃n|y((t∗jn−1, tn])). The rationale behind

this approach is as follows. By conditioning on all data since the estimated most recent change-

point t∗jn−1, the proposal density πj(tn−1,tn](τ̃n|y((t∗jn−1, tn])) was chosen such that

πj[0,tn](·, ·|y([0, tn])) ≈ πj[0,tn−1](·, ·|y([0, tn−1]))πj(tn−1,tn](·, ·|y((t∗jn−1, tn]))

Hence this proposal density will have higher entropy when more probability is assigned to the ex-

istence of multiple new changepoints of uncertain location within (tn−1, tn], which in turn implies

a larger distance between the old and new target distributions. So by taking more samples dur-

ing the current update interval, the uncertainty surrounding the new changepoints will be better

captured. Whereas if another target distribution j′ strongly appears to have no new changepoints

during the same update window, it will be acceptable to take fewer samples to represent this

portion of the distribution.

At time tn−1, suppose there were N j weighted samples approximating the jth target distribu-

tion πj[0,tn−1]. Then, following the algorithm of Heard and Turcotte (2015) or some other adaptive

strategy, suppose M j samples are obtained from πj(tn−1,tn](τn|y((t∗jn−1, tn])), the update proposal

at time tn. Typically M j 6= N j , so at step 7 of the SMC Algorithm 1 there are two unequal
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sized groups of particles to combine. To redress this imbalance, copies need to be made of some

particles in the smaller sample so that the two sample sizes are equal. When N j < M j , this

task of replicating particles can be used advantageously to reduce the variability of the weights

of the old particles and increase the effective sample size. The next section outlines a simple

procedure for determining how many copies to make of each particle, and how the particles are

consequently reweighted. It can be noted that the same algorithm can equally be applied for

increasing the number of new particles when N j > M j , but this trivially reduces to assigning

τ
(i)
n = τ

(i mod Mj)
n for i > M j .

4.1 Replicating particles

Suppose there are currentlyN particles for the region [0, tn−1] that need to be paired withM > N

particles from (tn−1, tn] following an increased sampling allocation. When considering duplicat-

ing particles from the weighted particle set, it is important to note that there may already be

duplicated particles, perhaps from previous iterations. For continuous time changepoints, dupli-

cates also arise when particles with no changepoints are sampled. For simplicity of notation,

assume now that the weighted particle set has been labeled such that the first N ′ < N particles

are unique. For 1 ≤ i ≤ N , let m(i)
0 be the number of replicates of τ (i)

n−1 in the N particles, and

define w̄(i) = w
(i)
n−1m

(i)
0 . Then note that {τ (i)

n−1, w̄
(i)}N ′i=1 is an equivalent representation of the full

weighted particle set, since

N ′∑
i=1

w̄(i)δ
τ
(i)
n−1

(τn−1) ≡
N∑
i=1

w
(i)
n−1δτ (i)

n−1
(τn−1).

It is necessary to work with this reduced representation, as otherwise the algorithm would

admit the possibility of making different numbers of copies of the same particle. Assume that

each unique particle i will be replicated m(i) times, so that
∑N ′

i=1m
(i) = M . Then in order

to minimize the sum of the squared weights and ensure that any Monte Carlo estimates are the

same after the particle set has been increased, the revised weight for particle i is w̄(i)/m(i). The

important implication here is that replicating highly weighted particles will reduce those weights,

which will make the weights more uniform and therefore boost the effective sample size in step

9 of Algorithm 1.
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Algorithm 2 Increasing particle set from N to M

1: Set m(i) = m
(i)
0 and w̄(i) = m

(i)
0 w

(i) for i = 1, . . . , N ′. Let m =
∑N ′

i=1m
(i) = N

2: Calculate δi = (w̄(i))2/{(m(i) + 1)m(i)} for i = 1, . . . , N ′

3: Let i∗ = argmaxi{δi : i = 1, . . . , N ′}
4: while m < M do
5: Let i∗∗ = argmaxi{δi : i = 1, . . . , N ′,i 6= i∗}
6: Let xN ′ = min

(
M −m, d

√
(w̄(i∗))2/δi∗∗ + 0.25− 0.5−m(i∗)e

)
7: Let mi∗ = mi∗ + xN ′ and m = m+ xN ′
8: Let δi∗ = (w̄(i∗))2/{(m(i∗) + 1)(m(i∗))}
9: Let i∗ = i∗∗

10: end while
11: Let i′ = 1
12: for i = 1 : N ′ do
13: for j = 1 : m(i) do
14: τ

∗(i′)
n−1 = τ

(i)
n−1

15: w
∗(i′)
n−1 = w̄(i)/m(i)

16: i′ = i′ + 1
17: end for
18: end for
19: (τ

(i)
n−1, w

(i)
n−1)← (τ

∗(i)
n−1, w

∗(i)
n−1) for i = 1, . . . ,M

Choosing optimal values {m(i)}N ′i=1, so that the resulting sum of squared weights is minimized

is a complex optimization problem, and solving this directly would add too much computational

burden to the overall SMC algorithm. So instead, Algorithm 2 presents a sequential optimization

method.

The quantity δi, calculated in step 2, represents the decrease in the sum of the squared weights

if the ith particle is replicated once, and this is used to identify the next particle to replicate, i∗.

The number of replicates of particle i∗ that are then made, xN ′ , calculated in step 6, is the largest

integer solving the inequality

(w̄(i∗))2

(m(i∗) + xN ′ + 1)(m(i∗) + xN ′)
< δi∗∗ ,

since this is the smallest number of replicates that are required for i∗ not to remain the optimal

particle to replicate.

20



4.2 Example: The VAST data

The IEEE VAST 2008 Challenge data are synthetic data comprising information of mobile call

records for a small community of 400 mobile phones, over a 10 day period. The challenge was

aimed at social network analysis, with the aim of uncovering anomalous behavior within the so-

cial network. The data can be obtained from www.cs.umd.edu/hcil/VASTchallenge08.

A successful approach taken in Heard et al. (2010) was to monitor the incoming call patterns

of each phone to detect changes from their normal patterns, and thereby obtain a much smaller

subset of potentially anomalous IDs that can further be investigated. After correcting for diurnal

effects on normal behavior as in Heard et al. (2010), this approach reduces to the online detection

of changepoints of 400 processes which can be assumed to follow a Poisson process with a

conjugate prior for the intensity as detailed in Section 3.3.1. Furthermore, it was later shown in

Heard and Turcotte (2015) that for a fixed computational effort, more accurate inference could be

obtained from the Poisson process model of these data by using the adaptive sampling strategy

presented in that paper.

The SMC Algorithm 1 can be deployed to simulate a real time changepoint analysis of the

incoming call data for each phone number in the network. Each phone number is reanalyzed

each hour over the ten days of data, which corresponds to 240 update intervals. Furthermore, to

illustrate the adaptive version of the SMC algorithm, a variable number of particles are assigned

to each process in each update window according to the complexities of their distributions using

the Algorithm given in Heard and Turcotte (2015) for minimizing the total estimation error of the

distributions. On each interval, each process is given a minimum of 500 particles, but the total

number of samples to be adaptively allocated across the processes m∗ = 4,000,000; so equal

sample sizes would correspond to 10,000 particles for each process. The data and C++ code for

both examples are available in the Supplementary Material.

For each update window, Figure ?? shows a box plot of the sample sizes N j allocated to the

400 processes. The dotted line shows the sample size that would be allocated to each process

under a fixed sample size strategy, where N j = 10,000. It is interesting to note that on some

update intervals, most of the samples sizes are bunched together (making the box appear as a

single horizontal line); this is particularly the case at the start of the observation period, when

little is known about any of the distributions.
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Figure 3: Top: Box plot of the sample sizes {N j} allocated by adaptive SMC to the individuals in
the VAST data for each of the 240 update intervals. Equal allocation corresponds toN j = 10,000
(??). Rows 2-3: Binned empirical intensity of incoming call data and SMCMC (??) estimated
online intensity (after correcting for diurnal changes in intensity); Row 2: Adaptive (??) and
fixed (??) sample size estimates for the ID allocated the most samples in adaptive SMC; Row 3:
Adaptive (??) and fixed (??) sample size estimates for the ID allocated fewest samples. Bottom:
squared errors of estimates from the mean intensity from SMCMC.
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In Ye et al. (2008) it was shown that the main anomalous activity involved at least four actors

with respective phone IDs 1, 2, 3 and 5, who change their handsets on the eighth day of the

data period. Interestingly, IDs 5 and 1 get the highest and second highest total allocation of

sampling effort in the adaptive SMC algorithm, and the other anomalous IDs get the eleventh

and fourteenth highest allocations. Figure ?? shows the estimated intensity functions for the IDs

obtaining the highest (ID 5) and lowest (ID 365) overall number of samples. It can be seen that

ID 5 has much more event data than ID 365, and a correspondingly more interesting intensity

function.

For each of these IDs, the second and third plots in Figure ?? show the estimated intensities

obtained from SMCMC and SMC CP using either adaptive or fixed sample sizes, and on this

scale the differences in the estimates are difficult to detect. However, the bottom panel of Figure

?? shows just the squared errors of these intensity functions from the SMCMC estimate, and

there the adaptive approach is shown to have promising benefits.

5 Discussion

A new SMC algorithm for changepoint analysis has been presented, and shown to outperform

existing SMC methods. The computational effort of the algorithm does not increase over time.

Effective sample size (ESS) thresholding has been used to control diversity of the particles in

all examples; other standard techniques for improving SMC performance can also be applied to

Algorithm 1, such as the Resample-Move algorithm of Gilks and Berzuini (2001), where MCMC

transition kernels are applied to the particle set after ESS resampling to introduce diversity. The

algorithm has also been shown to be adaptive in the number of particles used over time, which

further improves upon the computational savings that SMC methods offer.

The simplicity of the method derives from summarizing existing particles at each time step

with a single point estimate, before sampling changepoints for the new interval conditioning only

upon that point estimate. Cases where this estimate has low variance are when this approach

will work best, whereas when beliefs about the most recent changepoint are more diffuse this

summary will be an over-simplification and should lead to faster weight degeneration. Possible

extensions to the method could therefore be to calculate several point estimates, such as a set of

quantiles of the distribution for the last changepoint, and then take a mixed sample from each of
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the implied proposals.

6 Supplementary Material

All supplemental files are contained in a single archive.

Appendices : Appendix A presents an analysis using the changepoint prior (2) which permits

exact simulation within the SMC algorithm. Appendix B considers simulated data from

a more challenging Poisson process with 500 changepoints. Appendix C demonstrates

application of the algorithm to two different changepoint data problems: piecewise constant

Gaussian regression with unknown mean and variance, and Poisson regression.

C++ code : The code and the data for the examples in Section 3.3.1, 3.3.2, 4.2 and the other

applications presented in the appendices. See the README file for details on how to run

the code for the examples. The code and the data are also available to download from

https://github.com/mjmt05/rjmcmc.git.
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