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Abstract 

Climate change, globalisation and increased travel, increasing urban populations, 

overcrowding, continued poverty, and the breakdown of public health infrastructure are 

among the factors contributing to the 30-fold increase in total dengue incidence in the past 

50 years. Consequently, with an estimated 40% of the world’s population at risk of infection, 

dengue is now the world’s most important mosquito-borne viral infection.  

However estimates of dengue transmissibility and burden remain ambiguous. Since the 

majority of infections are asymptomatic, surveillance systems substantially underestimate 

true rates of infection. With advances in the development of novel control measures and 

the recent licensing of the Sanofi Dengvaxia® dengue vaccine, obtaining robust estimates of 

average dengue transmission intensity is key for estimating both the burden of disease from 

dengue and the likely impact of interventions. Given the highly spatially heterogeneous 

nature of dengue transmission, future planning, implementation, and evaluation of control 

programs are likely to require a spatially targeted approach.  

Here we collate existing age-stratified seroprevalence and incidence data and develop 

catalytic models to estimate the burden of dengue as quantified by the force of infection 

( )  and basic reproduction number 0(R ) . We identified a paucity of serotype-specific age-

stratified seroprevalence surveys in particular but showed that non-serotype specific data 

could give robust estimates of baseline transmission. Chapters explore whether estimates 

derived from different data types are comparable. Using these estimates we mapped the 

estimated number of dengue cases across the globe at a high spatial resolution allowing us 

to assess the likely impact of targeted control measures. 
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1 Introduction 

1.1 Background 

Dengue viruses belong to the family Flaviviridae which include yellow fever virus (YFV), zika 

virus, West Nile (WNV), Japanese encephalitis (JEV) and tick-borne encephalitis (TBE) virus 

among others [1,2]. Dengue exists as four antigenically and genetically distinct serotypes 

(DENV-1, 2, 3, and 4) which can co-circulate. Infection with any of the four serotypes can 

result in dengue fever (DF). As a single stranded positive sense RNA arbovirus, they are 

transmitted primarily by the urban-adapted Aedes aegypti mosquito and increasingly by the 

Aedes albopictus mosquito [3–5]. Epidemiology can differ significantly between geographic 

areas – severe dengue pre-dominantly affects children in Southeast Asia in contrast to the 

Americas where disease more often manifests in adults as the milder dengue fever [6]. The 

four serotypes have shared epitopes which can be recognised by antibodies generated 

against any one of them, resulting in cross-reactive immune responses. A degree of cross-

reactivity is also observed between anti-dengue antibodies and other flaviruses, notably JEV 

and YF [7]. 

1.2 Clinical Symptoms and Natural history  

After infection by the bite of an infective mosquito, the incubation period generally lasts for 

3 – 7 days, followed by development of symptoms which can have up to 3 phases (Table 1.1) 

[4]. The clinical spectrum of dengue infection is variable, with symptoms also varying with 

patient age [8,9]. The majority of infections are asymptomatic or result in self-limited acute 

febrile illness. However a minority of infections can cause severe disease such as dengue 

haemorrhagic fever (DHF) and dengue shock syndrome (DSS) [5].  
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Table 1.1: Clinical presentation of dengue.  Adapted from [4,10]. 

 

All dengue-associated symptoms can be caused by any of the four dengue serotypes. The 

greatest risk factor for severe dengue is secondary infection by a heterologous serotype. 

The mechanism  underlying this observation is thought to be  antibody-dependent 

enhancement (ADE) [11,12], whereby antibodies against the previous dengue strain will 

enhance replication of the current strain rather than neutralise it. Upon infection by a 

second heterologous serotype, the virus-antibody complexes can activate complement 

resulting in amplification of the immune response which can enhance the infection of 

monocytic cells. The T-cell mediated lysis of virus infected cells releases cytokines and 

intracellular enzymes which in turn causes plasma leakage and DSS [13,14]. The observation 

that dengue-specific T-cells have a higher avidity for previous dengue serotypes compared 

with the infecting serotype has led to the proposal that original antigenic sin can also play a 

role in the severity of secondary infections compared to primary infections [15]. The time 

interval between primary and secondary infections also appears to play an important role in 

the risk of DHF and DSS [16]. Longer intervals leads to greater decay of dengue antibodies, 

so upon secondary infection antibodies are present at sub-neutralising titres, facilitating 

ADE which can cause normally mild infections to become life threatening [10,13,17,18]. The 

numerous but subtle genotypic variations within the dengue strains have not been 

conclusively demonstrated to have an impact on severity [4].  

 Phase  Symptoms  Comments  

Initial febrile  
(3 – 7 days)  

High temperature, vomiting, myalgias, 
joint pain, occasional transient 
maculopapular rash in children.  

Children are generally less 
symptomatic than adults in this phase. 
Classic dengue fever symptoms are 
associated with older children and 
adults.  

Critical  
(coincides with 
defervescence)  

In a small proportion of patients, 
symptoms of systemic vascular leakage 
may appear – e.g. bleeding 
manifestations and thrombocytopenia.  

If loss of plasma via leakage becomes 
critical, dengue shock syndrome can 
result. This requires urgent and careful 
fluid resuscitation. Delays can lead to 
death in 10% of cases.  

Spontaneous 
recovery  

Change in vascular permeability is 
generally transient and is followed by 
reversion to normal levels after 48-72 
hours coinciding with rapid recovery.  

Secondary rash may become apparent 
at this stage and in adults fatigue may 
persist for weeks after recovery.  
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1.3 Immunity  

Infection with one serotype is thought to be sufficient to confer protective immunity against 

subsequent infections from the same serotype [4]. However a recent study has suggested 

that there may be incomplete protection against homologous re-infection [19]. Cross-

reactive immunity is short-lived and the waning of antibody levels can facilitate ADE upon 

secondary heterologous infection increasing the risk of more severe outcomes of dengue 

such as DHF and DSS [2,4,20]. Estimates of the duration of short-term cross-protection vary 

widely: 4 months - 9 years [21], 5-12 months [22], 2 years [23], and 1-3 years [24]. However 

whether this protects against infection or clinically apparent disease is unknown and 

therefore individuals may still contribute to onward transmission [23,25–27]. The impact of 

cross-immunity on the risk of tertiary and quaternary infections remains unclear. While 

there is now evidence that tertiary and quaternary infections occur [25,28], clinically 

apparent cases are rarely reported and cannot be tested for retrospectively [25]. 

Wikramaratna et al. showed that tertiary and quaternary infections allowed for the high 

seroprevalence at very young ages observed in Haiti [29] and Nicaragua [30] better than 

when assuming complete protection after two heterologous infections [25]. However there 

is little quantitative data on the infectiousness or severity of such infections relative to 

primary and secondary infections. Therefore the contribution of tertiary and quaternary 

infections to onward transmission is not fully understood.  

  



Page 22 of 228 
 

1.4 Diagnostic Methods and Limitations 

There are several laboratory assays available for the diagnosis of dengue infection. As an 

acute viral infection, the sensitivity of each assay depends on when patient samples are 

taken which may affect levels of detectable virus or detectable antibodies. Figure 1.1 

summarises the timeline of symptoms and corresponding diagnostic assays that can be used. 

 

Figure 1.1: Timeline of symptoms and corresponding diagnostic assays. Adapted from [4,20]. 

Diagnosis is largely based on clinical symptoms, but laboratory confirmation is crucial due to 

the extremely variable clinical presentation of dengue infection. The most common 

methods currently employed by diagnostic facilities are: virus isolation, serological assays to 

detect dengue-specific antibodies and antigens, and genomic detection via reverse-

transcription (RT) quantitative polymerase chain reaction (qPCR) [2,10,31]. However, as 

dengue is an acute infection with a viraemic period of only 2 – 7 days, there is a limited 

window of opportunity for virological testing [32]. As such, virological assays and case data 

will only ever identify individuals whose symptoms were severe enough to go to hospital for 

testing and individuals with poor access to healthcare will be overlooked [18]. Thus serology 

is the most widely available and utilised diagnostic method as it is less expensive and easy to 

perform. Serological methods are also not time limited (unlike virus isolation) and can 

identify individuals with prior asymptomatic infections, presenting a clearer and broader 

view of dengue epidemiology within the population [33]. However both diagnostic methods 
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come with their own set of limitations (see chapter 2). However it is important to note that 

the choice of assay will be dictated by and differ between clinical and research settings. 

1.4.1 Virological Assays  

Although dengue virus can be detected in plasma, leukocytes, and body tissues, serum is 

generally used for routine diagnosis. As a RNA virus, dengue is extremely fragile and heat 

labile, thus virological testing (Table 1.2) can be more difficult than serological methods 

[10,34]. Given the acute nature of infection, viraemia is short and samples for virological 

testing must be taken in the first 4 – 5 days of disease. Detection of viral antigens in acute 

phase serum has proved difficult due to the limited viraemic period and the presence of 

immune-complexes from previous heterologous infections. Recently assays have been 

developed that are able to detect dengue E/M antigens and the NS1 protein from the acute 

phase sera of both patients with primary and secondary infections. However antigen 

detection tests are still less reliable than other diagnostic methods currently available on the 

market [35–37]. 

Table 1.2: Summary of virological methods available for diagnosis  (Adapted from [10]). 

*Enzyme-linked immunosorbent assay, **peripheral blood mononuclear cell. 

 

1.4.2 Serological Assays  

In naïve individuals, infection produces a characteristic slow and low titre IgM response 

followed by low titres of IgG one week after the onset of disease. During a secondary 

infection, IgG titres rise rapidly and to a high level over two weeks. IgG antibodies are cross-

reactive with other flaviviruses and can be detected even in the acute phase of a secondary 

infection [32,38]. Plaque-reduction neutralisation tests (PRNTs) can be used to determine 

Assay  Method  Comments  

Virus isolation  Mosquito inoculation  The most sensitive method, however extremely 
time consuming, requiring specialist facilities 
and training.  

 Cell culture Quicker – preferred for routine diagnosis  

Viral antigen 
detection  

ELISA*  Detect viral antigens in serum and PBMCs**. 
Recent advances detect the NS1 protein on the 
viral envelope.  

Genome 
detection  

One-step RT-PCR, pan-dengue 
primer PCR, nested-PCR 
(flavivirus followed by serotype-
specific primers)  

Direct detection of the viral genome in patient 
samples. Provides accurate information on 
serotype and genotype. PCR for routine 
diagnosis can be difficult due to high costs.  
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the infecting serotype and measure the level of protective antibodies a patient has. 

However PRNTs are labour intensive and are generally not used for routine diagnosis [2]. 

The development of IgM enzyme-linked immunosorbent assays (ELISAs) for the detection of 

anti-dengue antibodies, in particular the MAC-ELISA (IgM antibody capture ELISA) has 

improved routine diagnosis, with 10% false negatives and 1.7% false positives reported [2]. 

However, there are numerous commercial kits available (Table 1.3) for detecting anti-

dengue antibodies, many of which have not been standardised. 

Table 1.3: Summary of available serological assays  (Adapted from [10,18]). 

*Red blood cells. ^Enzyme-linked immunosorbent assay. 

Of the serological assays available, IgM and/or IgG capture ELISAs and HI tests are the most 

popular. IgM/IgG ELISAs are now replacing the HI test for routine diagnosis due to their high 

sensitivity and specificity coupled with their simplicity and ease of automation [18]. As the 

primary response, IgM antibodies can be detected in serum, blood, and saliva samples taken 

5 days or more after the onset of fever [4,20]. The MAC-ELISA is a sandwich ELISA where 

human IgM is captured between anti-human-IgM antibodies and dengue-virus specific 

antigens. Current IgM ELISAs are not capable of determining the serotype due to the cross-

reactive nature of the antibodies. In addition, there is a lack of consensus on the extent of 

cross-reactivity of dengue with other flaviviruses: whilst the CDC guidelines state that there 

are issues with cross-reactivity with other flaviviruses where these pathogens co-circulate 

[39], the WHO guidelines state that cross-reactivity rarely occurs [2]. While detection of 

dengue-specific IgM antibodies by capture ELISA is indicative of active or recent infection, 

IgG ELISAs are used for the detection of past infections and use the same viral antigens as 

Assay  Method  Comments  

Haemagglutination 
inhibition assay (HI)  
(Non-serotype specific)  

Serial concentrations of 
patient serum incubated 
with RBCs* and virus.  

Presence of anti-dengue antibodies 
should inhibit virus from cross-linking 
RBCs*.  

ELISA^  
(Non-serotype specific)  

Pan-dengue IgM/IgG  Detects the presence of any anti-
dengue antibody of any serotype.  

 MAC-ELISA  IgM antibody capture ELISA, detects 
IgM vs. all serotypes.  

 IgG  Detects IgG antibodies of all serotypes  

Neutralisation tests  
(Serotype specific)  

Plaque reduction 
neutralisation test (PRNT)  

Cells are incubated with patient sera 
followed by cultured dengue virus at 
serial concentrations; presence of 
anti-dengue antibodies should prevent 
plaque formation.  

Other less utilised assays  Indirect immunofluorescent-antibody test, complement fixation. 
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the IgM ELISA. IgG ELISAs are also unable to differentiate between serotypes and are cross-

reactive with other flaviviruses [40]. These ELISAs are therefore mainly useful for diagnosing 

primary and secondary infections in paired serum samples using a simple algorithm (Table 

1.4). 

Table 1.4: Algorithm for differentiating between primary and secondary infections. Acute 
(symptomatic phase) and convalescent (post-recovery) serum samples are tested by comparing IgM 
and IgG ELISAs and their titres (typically the ratio of IgM:IgG) to determine infection type. Adapted 
from [2,18,39]. 

*ratio differs between different laboratories. + = positive test, - = negative test. 

1.4.3 Dengue Virus Serotyping  

Although the only truly accurate method of ascertaining dengue serotype requires samples 

to be taken during periods of acute viraemia, available methods for serotype-specific 

diagnosis include PRNT, viral isolation with serotype-specific monoclonal antibody 

immunofluorescence staining, and RT-PCR [33,41–43]. Among the above, PRNT is 

considered the gold standard for routine serotyping since RT-PCR (the true gold standard for 

dengue virus serotyping) remains expensive and beyond the resources of most dengue 

endemic countries [42]. However PRNTs are limited by the cross-reactivity of anti-dengue 

antibodies to multiple serotypes and other flaviviruses. Because of this, no universal 

standards have been developed for the interpretation of such PRNT data and the use of 

PRNTs to determine the infecting secondary and heterotypic serotype is generally 

discouraged [10]. The serotype with the highest titre is commonly accepted to be the (most 

recently) infecting serotype. However this may not be definitive due to original antigenic sin.  

Although attempts have been made to use E/M-specific capture IgM ELISAs to serotype 

dengue virus infection, the accuracy and reliability of such tests are still questionable [18]. 

  

Infection Type  IgM Result  IgG Result  IgM/IgG* Titre  

Acute Primary  + (convalescent)   >1 (convalescent)  

Acute Secondary  + (convalescent)   <1 (convalescent)  

 − (convalescent) + (convalescent), x4 increase 
in titre acute → convalescent  

 

Not Acute,  
Secondary  

− (convalescent)  + (convalescent), but no x4 
increase in titre 

 

Not Infected − (convalescent)  − (convalescent)   
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1.5 Current Estimates of Dengue Burden 

As of 2012, the World Health Organisation (WHO) listed dengue as the most important 

mosquito-borne viral infection worldwide. There are now more than 100 endemic countries 

(Figure 1.2) and an estimated 40% of the world’s population at risk of infection [4]. There 

has been a 30-fold increase in incidence over the past 50 years with an increasing number of 

countries reporting dengue cases for the first time [44], including in the Florida Keys in 

September 2009 [45], south-east France in 2010 [46], Madeira, Portugal in 2012 [47], and 

Tokyo, Japan in 2014 [48].  

 

Figure 1.2: Map showing countries at risk of dengue in 2013. Reproduced from [49]. 

Estimates of the global burden of dengue have ranged widely. Previously the WHO 

estimated that 2.5 billion people were at risk with 50 – 100 million infections occurring 

annually [2,50], while Beatty et al. estimated that 3.6 billion people were at risk with 34 

million DF cases and 2 million DHF cases each year [51]. The most recent estimates by Bhatt 

et al. using cartographic approaches estimated 390 million dengue infections per year (95% 

credible interval (CrI): 284 – 528), with 96 million (95% CrI: 67-136) apparent infections. This 

total estimate is more than three times the burden estimate previously quoted by the WHO 

[2,50]. 
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Accurate burden estimation is difficult, not only due to the aforementioned limitations 

associated with dengue diagnostics, but also due to differences in surveillance systems 

leading to underestimation of dengue incidence, the lack of standardised reporting 

procedures or diagnostic criteria, and the lack of integration between private and public 

sectors [52]. The WHO collates surveillance data from dengue affected countries via its 

DengueNet system, but the data are not always updated regularly and there can be 

inconsistencies with other sources (e.g. WHO regional offices or countries) of national and 

subnational data [53]. Previous studies have attempted to estimate the burden of dengue 

and associated economic costs in South East Asia and South America by calculating 

expansion factors from systematic literature reviews, collation of existing data, and 

population-based cohorts [54–57]. However, the lack of standardisation also affects the 

validity of expansion factors (calculated by dividing the cumulative incidence of dengue in 

cohort studies by that from passive data at both national and local levels) as estimates of 

underreporting. Due to the wide spectrum of clinical manifestations and the lack of routine 

laboratory testing, dengue is globally underreported and analyses of officially reported 

dengue numbers need to take this into account [58]. 

1.6 Novel Control Methods 

In their 2012 report the WHO called for the evaluation and integration of current 

interventions to achieve a 50% and 25% reduction in dengue mortality and morbidity 

respectively [44]. As previously mentioned, dengue virus is transmitted between humans 

primarily by the urban-adapted Aedes aegypti mosquito and increasingly by Aedes 

albopictus [3–5]. There are currently no commercially available antiviral drugs, and until the 

Sanofi dengue vaccine is rolled out in the majority of dengue endemic countries, or other 

dengue vaccine candidates are successfully developed [59–63], dengue prevention relies 

heavily on mosquito control [64]. Conventional vector control methods include draining of 

mosquito breeding-sites, larvicides, and biological control (Figure 1.3). Fumigation with 

insecticides is particularly common in cities; however it is costly and disruptive [2,64]. Since 

Aedes aegypti mosquitoes are daytime biters, bed nets, which are a particularly effective 

control measure against malaria are redundant. This makes novel control measures such as 

genetically modified (GM) and Wolbachia-infected mosquitoes even more important. 
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Figure 1.3: New and existing vector control methods. Existing methods (top green region) and methods currently under development (bottom yellow 
region) are shown in the context of mosquito life cycle. Reproduced from Achee et al. [64]. 
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1.6.1 Genetically Modified Mosquitoes 

Release of insects carrying a dominant lethal (RIDL) allele is similar to the traditional sterile 

insect technique (SIT) but in addition to GM males out-competing the wild type males, the 

male mosquitoes carry female-specific lethal genes. So GM males released into the wild will 

deliver specific female-acting transgenes into the wild population. The flightless gene results 

in the reduction of gene expression of a gene usually expressed in the flight muscle. 

Daughters of RIDL males are thus unable to fly and hence to mate or to find human hosts to 

feed on (Figure 1.4a). The late-acting lethal gene induces death in both male and female 

offspring of RIDL males either at the pupal or adult stage (Figure 1.4b). Thus both lethal 

genes will eventually result in a reduction in the wild type population and of female 

mosquitoes which are capable of transmitting the dengue virus [65,66]. Currently this RIDL 

technology has been successfully trialled in Malaysia by Oxitec Ltd. [67] and field trials have 

demonstrated an 80% and 81-95% suppression of the wild Ae. aegypti population in the 

Cayman Islands and Bahia, Brazil respectively [68,69].  

 

Figure 1.4: Release of insects carrying a dominant-lethal allele (RIDL).  Genetically modified males 
are released and mate with wild-type females. RIDL males carry a) a female-acting transgene. 
Daughters of the RIDL males carrying this transgene are flightless and thus unable to find human 
hosts, b) a late-acting lethal gene, which induces death in male and female offspring at the the pupal 
or at the adult stage. Reproduced in part from [65]. 
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1.6.2 Biological Control: Wolbachia 

The endosymbiotic bacterium Wolbachia pipientis naturally infects up to 65% of all insects. 

Wolbachia infects the gonads of their hosts resulting in trans-ovarial transmission to the 

next generation and causes reproductive changes in its host including feminisation, 

parthenogenesis, male killing, and sperm-egg incompatibility [70]. Although Wolbachia does 

not naturally infect Ae. aegypti mosquitoes, once introduced into a population by 

transinfection, the bacterium can spread rapidly due to its maternal transmission route. The 

three mechanisms currently being trialled for vector control via Wolbachia (Figure 1.5) are: 

a) the release of Wolbachia-infected males (similarly to SIT). The offspring of uninfected 

wild-type females and Wolbachia-infected males will die as embryos due to cytoplasmic 

incompatibility. If the native female mosquitoes harbour a different Wolbachia strain to that 

carried by the males, again any offspring will not be viable, b) the release of Wolbachia-

infected females that inhibit pathogen (i.e. dengue) growth. All offspring will carry the 

Wolbachia and exhibit dengue-resistant characteristics, and c) the release of females 

carrying the wMelPop strain of Wolbachia. This particular strain of Wolbachia shortens the 

lifespan of its insect host in addition to inhibiting viral replication in the mosquito. Reducing 

lifespan has a disproportionate impact on dengue transmission since only older insects 

transmit dengue [65]. Currently field trials are on-going in Australia to determine the 

capacity of Wolbachia infected mosquitoes to invade wild Ae. aegypti populations [65,71–

73]. If successful, this form of biological control could be highly cost-efficient and effective in 

the long-term given Wolbachia is self-propagating.  
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Figure 1.5: Summary of how the release of Wolbachia-infected mosquitoes affect the wild type 
population and subsequent offspring. Release of Wolbachia-infected a) males will lead to 
cytoplasmic incompatibility and embryonic death of all offspring with a wild-type female; b) females 
carrying the pathogen-blocking stain of Wolbachia will result in pathogen-resistant female offspring 
and both male and female offspring carrying Wolbachia from birth; c) females carrying the life-
shortening wMelPop strain of Wolbachia will lead to offspring with reduced lifespans that will not 
survive to transmit dengue. Reproduced in part from [65].  

 

1.6.3 Sustainability and Scalability of Novel Control Methods 

The two methods discussed – RIDL and Wolbachia control will require different numbers of 

mosquitoes to be released. With the RIDL method, multiple and numerous releases will be 

required over an indeterminate timeframe since the genetic modification cannot be passed 

on to any of the offspring. Therefore much like the SIT, island settings where elimination of 

mosquitoes is more feasible will likely benefit the most from this method. In other settings, 

constant releases may be needed in order to keep the native mosquito population 

supressed sufficiently [67,73]. In contrast, since Wolbachia infections are transmitted 

transovarially, in theory the bacteria should be able to establish itself in the native mosquito 

population without constant new releases. However this will be setting dependent since 

cytoplasmic incompatibility may lead to non-viable offspring. Additionally, after the local 

mosquito population has been eliminated, wild-type mosquitoes from a different area are 
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likely to invade the now empty niche which would require the re-release of Wolbachia-

carrying mosquitoes [70,74]. For both methods, the production of fit and competitive 

mosquitoes capable of out-competing their wild-type counterparts is crucial. Lab rearing of 

both RIDL and Wolbachia-carrying mosquitoes can quickly lead to in-breeding so the 

periodic modification or infection of wild-type mosquitoes will be essential in maintaining 

the fitness of the modified mosquitoes. Crucially, the release of any genetically or 

biologically modified organisms needs local community acceptance, so good communication 

and transparency will be vital in the implementation of such novel control methods [75,76]. 

1.6.4 Dengue Vaccine 

The recently licensed Sanofi Pasteur’s dengue vaccine (Dengvaxia®) is the first of the dengue 

vaccines in development (Figure 1.6) to have been licensed for use in a country [59]. 

Dengvaxia® is a tetravalent live-attenuated chimeric yellow fever-dengue (CYD) vaccine. 

Phase III trials have shown an overall reduction in dengue cases of 65%, an 81% reduction in 

hospitalised cases, and a 93% reduction in severe dengue cases [60,77]. However the 

vaccine is only licensed for use in children 9 years and older, with increased risk of 

hospitalised cases linked to the use of the vaccine in children under nine years of age [78]. 

Vaccine efficacy was also significantly lower in dengue naïve individuals [60,77]. However 

even under these limitations dengue vaccines can have beneficial individual-level and 

population-level effects by reducing susceptibility to infection given an infectious bite, or by  

reducing the probability of onward transmission from an infected vaccinated person to a 

mosquito. High vaccine coverage will also reduce overall transmission within a community. 

The Strategic Advisory Group of Experts (SAGE) on immunisation recently recommended 

introduction of the vaccine only in settings with high endemicity (>70% seroprevalence in 

target age group) and that the vaccine should not be given in low transmission settings 

(<50% seroprevalence in the target age group) [79].  

Although recent studies suggest that neutralising antibody titres correlate with protection 

from symptomatic infection [80], correlates of protection for an effective dengue vaccine 

are yet to be well established [81]. Given the importance of dengue immunogenicity at 

baseline prior to vaccine administration [60,61], it is vital to have robust baseline estimates 

of dengue transmission intensity and knowledge of prior dengue infections by age. 
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Figure 1.6: Summary of dengue vaccine candidates currently in development.  Reproduced from [82]. 
1GlaxoSmithKline and Walter Reed Army Institute Research. 2National Institute of Allergy and 
Infectious Diseases, US NIH: National Institutes of Health. NIAID licensed its strains to 
several developing country manufacturers on a non-exclusive basis. 3Both Butantan Institute and 
Panacea Biotech use NIAID vaccine formulation. 4US Navy Medical Research and Development. 
5Dengvaxia has been approved by Mexico, the Philippines and Brazil for 9 to 45 year olds living in 
dengue endemic areas. 

  

http://www.denguevaccines.org/live-attenuated-vaccines
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1.7 Catalytic Models and Estimating the Force of Infection 

Transmission intensity or the force of infection (λ) is defined as the per capita rate that 

susceptible individuals acquire infection [83] and is an important indicator of the burden of 

dengue fever (or indeed any infectious disease), and a key parameter in dengue 

transmission dynamics [84]. Dengue is geographically highly heterogeneous in transmission 

intensity [85–87], so improved estimates of λ are of real value in informing the efficient 

implementation of control strategies and their subsequent evaluation and adaptation.  

The force of infection has been estimated from age-stratified case and serological data using 

catalytic models for many pathogens, most notably by Muench (1934) [83], Griffiths (1974) 

[84], Grenfell & Anderson (1985) [88], and Farrington (1990) [89]. Age-stratified data are 

important in terms of the epidemiology and transmission dynamics of infectious diseases as 

age-related changes can reveal temporal changes in the intensity of disease transmission 

within a population. Such data can generally be obtained from two sources [88]:  

1) Age-stratified case-notification data over a certain time-period.  

In countries where dengue fever is notifiable, patients at hospital with clinically 

diagnosed or laboratory confirmed dengue fever will be reported to the national 

surveillance system [90–94]. Hospital databases will also hold records of suspected 

or confirmed dengue.  

Limitations: Reporting bias with age. Cases involving young children are more likely 

to be reported than adults with the same disease. However, if notifications are 

representative of the true age-distribution class, under-reporting (if age-constant, i.e. 

age-independent) should not influence the use of proportional case reports. For 

dengue, since the majority of infections are asymptomatic, notification data will only 

detect severe cases requiring healthcare. It has been suggested that such data 

should be considered the incidence of secondary and heterotypic infections [95]. 

Access to healthcare may also bias the population that is detected by case 

notifications and this should be taken into account in developing countries where 

this may be more of an issue. Finally, the quality of such data will also be highly 

dependent on the country’s or region’s surveillance system and may not be 

generalizable [52].  
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2) Age-stratified seroprevalence surveys.  

These surveys (cohorts or cross-sectional) provide information on the proportion of 

the population that has been previously infected. If serum samples are drawn 

randomly from a population, rather than, for example: hospital outpatients, schools, 

or blood banks, seroprevalence data will provide a far more reliable source of data 

than case data as they can detect all past infections and will not be affected by 

biased reporting or surveillance systems.  

Limitations: In addition to the aforementioned problems associated with dengue 

diagnostics – as a measure of past exposure, serological data are sensitive to past 

changes in disease incidence and can vary as a result of chance variation and sample 

size. As monotypic dengue antibodies are thought to be life-long [13], the variability 

in antibody levels between older age groups will inevitably be small [96]. This may 

mask or change actual age-related changes in the data making accurate serological 

testing over a wide age range crucial. Additionally there will be issues associated 

with cross-reactivity between dengue serotypes and other flaviviruses [2,39]. 

Muench was the first to propose the use of ‘summation data’ in conjunction with a simple 

catalytic model to estimate the force of infection (λ) stating that limitations with notification 

data meant that estimations can only ever be approximations [83]. He used summation data 

to calculate the exposure rate that would effectively produce the sum of all effective 

exposures observed. He argued that by averaging the lifetime exposure rate in the same 

way that exposure rates are averaged and compared between epidemic and inter-epidemic 

years, different diseases and populations could be compared effectively [83,97]. His simple 

catalytic model assumes that the force of infection is constant i.e. both age and time 

independent. He applied this model to yellow fever data in Brazil, to compare whooping 

cough and chicken pox, and to estimate infection rates of tuberculosis [83,97]. Here he 

introduced the concept of how the effective exposure rate is based on the proportion of the 

population who may show traces of past infection. However the assumption of a constant 

force of infection only holds true if the population in question were homogeneous with 

respect to susceptibility, exposure to the pathogen, and if the infection was endemic with a 

constant incidence rate. Griffiths extended Muench’s simple catalytic model and suggested 

a catalytic linear infection model for measles notification data where the force of infection 
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was assumed to increase linearly with age between 0 – 10 years [84]. He also noted that 

95% of measles infections occur by 10 years of age, after which the force of infection 

decreases. Grenfell and Anderson further extended Muench’s and Griffith’s models using 

measles case notifications and serological data and developed a model where λ was 

modelled using a polynomial function, but allowed the data to determine the order of the 

polynomial to estimate an age-dependent force of infection assuming time-homogeneity 

[88]. Here the authors stressed that the key determinant of the type of model chosen 

should be the quality and type of data available. For case-notification data, quality is 

dependent on the surveillance system used and the associated inherent biases. For 

serological data, whether the samples are representative of the general population is a 

major limitation in addition to the time/age homogeneity that must be assumed since cross-

sectional serological surveys will only provide a picture of who was previously infected at 

one point in time [98]. 

Catalytic polynomial models allow us to examine the age-dependence of the force of 

infection and allow a fair degree of flexibility. However, although polynomials are sufficient 

to model the general characteristics of age-dependence, there are some aspects of λ that 

cannot be accurately described. For example, where seroprevalence may vary from age-to-

age due to diagnostic or sampling reasons, the non-monotonicity will result in negative 

values of λ. Furthermore, estimates of λ may increase unrealistically at older ages requiring 

λ to be estimated over certain age groups. Farrington thus imposed constraints, such as a 

positive λ, on a generalised non-linear model based on prior knowledge of the pathogens of 

interest (measles, mumps, and rubella) in order to mitigate these problems [89,99]. Finally, 

Keiding et al. developed a non-parametric model with a two-step process. The prevalence 

was first estimated using isotonic regression, then the force of infection was calculated by 

using a kernel smoother [100]. He further developed this model by replacing the kernel 

smoother with a spline-based model [101].  

It should be noted that all the catalytic models described above can be regarded as different 

types of survival analysis models if placed within a broader statistical context [102]. All have 

certain limitations. With cross-sectional seroprevalence data, models are being fitted to 

data from a specific time point giving limited ability to distinguish temporal changes in 

incidence of infection from age-related changes in exposure [97]. Importantly, age-stratified 
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data provide information on age and time-dependent changes in infectious disease 

dynamics. One is usually assumed to be constant over time in order to make conclusions 

about the other [103]. However in many infections, both factors will play a part in 

determining patterns of transmission within a population. Therefore age and time-

structured data - ideally age-stratified seroprevalence data at regular intervals are required 

to make stronger conclusions about the force of infection and gives more power to resolve 

age and time effects. Given the importance of age-related changes in the force of infection 

to the design of vaccination and disease control, it is crucial to collect finely age-stratified 

data.  

Although the main catalytic models introduced above assume that susceptible individuals 

can only be infected once in their lifetime, this condition does not hold for multi-strain 

pathogens like dengue where individuals can be infected sequentially with heterogeneous 

serotypes [20]. Ferguson et al. developed a multi-strain survival model to estimate strain-

specific forces of infection which allowed for both age and time-dependent changes in λ and 

assumed a level of varying susceptibility upon secondary infection dependent on prior 

infection history [104]. Many subsequent dengue models developed since are similar to 

Muench’s original model [83], or an adaptation of the multi-strain model by Ferguson et al. 

[104]. 

Dengue dynamics are difficult to disentangle due to the complex immunological responses 

infection can trigger. Infection with each of the four serotypes will result in protective 

immunity against the homologous strain but also a transient period of cross-protection 

against heterologous strains [105]. However as levels of antibodies decay, sub-neutralising 

antibody levels can then result in ADE upon secondary infection with a different serotype 

which may enhance transmission as well as the risk of disease [11,106,107]. This potentially 

needs to be accounted for in estimating forces of infection from serological data [104].  
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1.8 Thesis outline 

The aim of this thesis is to refine baseline estimates of dengue transmissibility from 

currently available data, and to use the methods developed to generate new estimates of 

the global burden of dengue infection and disease. This thesis is divided into 6 chapters. 

Following this introductory chapter: 

1) Chapter 2: in this chapter I collate age-stratified seroprevalence data from the 

literature and estimate the dengue transmission intensity as quantified by the force 

of infection ( )  and the basic reproduction number 0( )R  from non-serotype specific 

serological data. 

2) Chapter 3: following on from chapter 2, I estimate   and 0R  from serotype-specific 

PRNT data and ascertain whether non-serotype- and serotype-specific data can give 

comparable baseline estimates of dengue transmissibility. 

3) Chapter 4: in this chapter I collate age-stratified incidence or case-notification data 

from the literature and estimate   and 0R . I then compare estimates obtained 

from seroprevalence data to incidence data and assess whether the two types of 

data give similar estimates. 

4) Chapter 5: in this chapter I use the model developed in chapter 4 in conjunction with 

the force of infection estimates from chapters 2 and 3, and the probability of dengue 

occurrence data (University of Oxford) to calculate and map the burden of dengue 

disease globally. 

5) Chapter 6: a discussion chapter summarising the key findings of this thesis and 

placing them in the context of the challenges of dengue surveillance, control, and 

evaluation as a whole. 
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2 Estimating Dengue Transmission Intensity from Non-serotype 

Specific Seroprevalence Surveys 

Work in this chapter formed the basis of: Imai N, Dorigatti I, Cauchemez S, Ferguson 

NM (2015) Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in 

Multiple Countries. PLoS Negl Trop Dis 9(4): e0003719. doi: 10.1371/journal.pntd.0003719 

In this chapter I begin with collecting age-stratified seroprevalence data in the literature. 

The following chapter (chapter 3) also uses these collated data. Here, models are developed 

to estimate the force of infection from cross-sectional non-serotype specific seroprevalence 

surveys. 

2.1 Introduction 

Although recent estimates of the global distribution of dengue and the resulting disease 

burden have refined our understanding, estimates of global dengue distribution and 

transmission intensity (as quantified by either the force of infection    - the per capita rate 

at which susceptible individuals acquire infection, or the basic reproduction number, ( 0R )) 

remain ambiguous [108]. In particular, Bhatt et al.’s estimate of 390 million dengue 

infections per year is three times higher than previous official WHO estimates, with India 

accounting for 34% of that total [108]. Motivated by previous work on malaria, the Bhatt et 

al. analysis relied on correlating their geographic niche-modelling based estimates of 

dengue presence with burden estimates derived from serological surveys. While an 

improvement on previous approaches, the fact that dengue infection induces serotype-

specific neutralising immunity weakens the parallels with malaria, in that the maximum 

number of dengue infections an individual can experience is strictly limited (while a person 

can experience dozens of malaria infections in their lifetime). Here we argue that obtaining 

robust estimates of the geographic variation in average dengue transmission intensity – as 

quantified by 0R  (the average number of secondary cases resulting from the introduction of 

a single infectious individual into a large susceptible population [109]), of each serotype – is 

key to improving the reliability of burden estimates. In addition, a quantitative 

understanding of variation in transmission intensity is essential in assessing the likely impact 

of interventions such as vaccine [60,61] or novel vector control measures [70,74,110].  
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However, with no standardised diagnostic method, challenging clinical diagnosis (Box 1) and 

highly variable surveillance systems, there is no consistent way to estimate global dengue 

transmission [39,111,112]. Dengue transmission is geographically highly heterogeneous, 

even down to very fine spatial scales [87], however it can also be driven by temperature 

fluctuations at larger scales leading to similar patterns of transmission across wider regions 

[113]. Most model-based estimates of dengue transmission intensity and reproduction 

number have utilised case-notification data, which heavily depend on the quality of the 

surveillance system and the health infrastructure of the country in question [114–121]. 

Additionally, since the majority of dengue infections generate only mild symptoms, are 

asymptomatic, or are clinically diagnosed as a viral infection, even sensitive healthcare-

based surveillance systems substantially underestimate true rates of infection [122,123]. 

Serological data are therefore invaluable in quantifying dengue transmission, in being able 

to identify both symptomatic and asymptomatic past infections and thus quantify infection 

prevalence and incidence in the population as a whole. 

Here we utilise published age-stratified non-serotype specific seroprevalence surveys and 

estimate   and 0R for dengue in a variety of settings.  
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Box 2.1: Main issues associated with current diagnostic methods 

 Although highly accurate and sensitive, virus isolation and PCR can be time 

consuming and expensive and relies on sampling (and therefore detection) of 

symptomatic cases. 

 Routinely used serological methods - IgM and IgG ELISAs - are unable to differentiate 

between the 4 dengue serotypes and are affected by cross-reactivity with other 

flaviviruses (e.g. yellow fever or Japanese encephalitis).  

 IgG ELISAs are unable to differentiate between past, recent, and current infection [2].  

 IgM ELISAs can be confounded by false positives and are only useful for a limited 

time post-infection [124].  

 In secondary or later infections, serological diagnosis of the most recent infecting 

dengue serotype is difficult due to the presence of pre-existing cross-neutralising and 

cross-reactive antibodies [15,125].  

 Serological assay protocols (e.g. thresholds used to define seropositivity) are not 

standardised across laboratories [112]. 

 Laboratory capacity and general public health infrastructure and surveillance 

systems vary widely within and between countries. 
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2.2 Methods 

2.2.1 Literature Search 

We searched MEDLINE, EMBASE, and Web of Knowledge for publications reporting age-

stratified dengue serological surveys. Figure 2.1 describes the search process and search 

terms used. Studies published before 1980 were not included in the analysis as we were 

interested in contemporary dengue transmission. Studies reporting age-specific 

seroprevalence for at least 5 age groups were included and categorised according to the 

assay type used. Studies reporting fewer than 5 age groups were excluded as these studies 

tended to have wide age groups where the mean seroprevalence did not accurately reflect 

the variability in seroprevalence within that age group (i.e. variability in dengue 

transmission over time as a reflection of age). Data were extracted from published datasets 

where age-specific seroprevalence was tested by IgG enzyme-linked immunosorbent assays 

(ELISAs), inhibition ELISAs (IEs) or PRNTs (used in chapter 3). IgG and IE data are both non-

serotype specific and we refer to them interchangeably.  
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Figure 2.1: Flowchart describing the literature search process for dengue seroprevalence surveys. 

  



Page 44 of 228 
 

2.2.2 Catalytic Models 

Data type: Single cross-sectional non-serotype specific surveys 

In the context of dengue, seroprevalence measures obtained with non-serotype specific 

assays such as IgG ELISAs only give an indication of whether an individual has ‘ever’ been 

infected and do not differentiate between infecting serotypes or identify the number of past 

infections. We assume that upon infection, individuals in age group i  move from being 

seronegative to seropositive. We denote the force of infection (also called the infection 

hazard) by  ; the proportions of the population of age a which are seronegative and 

seropositive as ( )ix a and ( )iz a , respectively (Figure 2.2). Since infection with one serotype 

only provides homologous immunity, a seropositive individual may still be susceptible to 

secondary heterotypic infection [15]. 

 

 

Figure 2.2: Compartmental model showing the flow of individuals in a catalytic model. 

 

Model A: Constant force of infection 

A simple catalytic model (model A) was fitted to the single cross-sectional IgG datasets. The 

model assumes a constant infection hazard  , with infection causing individuals of age a  to 

move from a seronegative ( )x a  to a seropositive ( )z a  state [109]. The proportion 

seropositive (IgG positive) in age group  i  at age a, ( )iz a  is given by: 

 ( ) 1 expiz a a   ,  (2.1) 

where   is the force of infection and a is the age in years. 
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Model B: Constant force of infection and antibody decay 

Since some datasets appeared to have declining seroprevalence with age, the constant force 

of infection model (model A) was extended by assuming that antibodies could decay with 

age at a rate   (Figure 2.3), moving people back to the seronegative class (model B).  

 

 

Figure 2.3: Compartmental model showing the flow of individuals in a catalytic model where 
individuals may lose seropositivity/antibodies. 

 

The proportion of IgG seropositive individuals in age group i  at age a  (in years) is then 

given by: 

(1 )

( ) .

dz
z z

da

z

 

  

  

  

 

 

(2.2) 

Assuming   and   are constant, integrating (2.2) gives: 

   

 

0 0 '
( ) 1 exp ' exp '' '

1 exp

a a a

a
z a da da da

a

    


 

 

         
      

 
           

  
 

 

(2.3) 

 

Data type: Yearly cross-sectional IgG ELISA surveys 

Model C: Time-varying force of infection with interannual variability 

Whenever yearly cross-sectional IgG data were available from the same location, a time-

varying catalytic model (model C) where the force of infection was allowed to vary over time 

was fitted to these data. Assuming the force of infection  has a constant component 0

and a time-varying component given by a sinusoidal function with periodicity T, amplitude  

and phase  : 
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.

( ) 1   si
0

n 2  
T

t
t    

   
     

   
 

. 
(2.4) 

Exposure was also allowed to change with age, by introducing a critical age critA  at which 

exposure levels change. Below that age, exposure is reduced or increased by a scaling factor 

S relative to individuals over that age. For individuals younger than the critical age 

( )crita A  the seroprevalence at age a  and time t  is given by: 

 
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      

     
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(2.5) 

 

For individuals aged equal to or above the critical age ( )crita A , seroprevalence is given by: 
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(2.6) 
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We estimated the force of infection ( 0 ), the periodicity (T ), amplitude ( ) and phase ( ) 

of dengue outbreaks, and the critical age ( critA ) and scale ( S ) at which exposure levels 

change.  

 

Estimation Procedure 

The constant force of infection (A), antibody decay (B), and time-varying force of infection 

models (C) were fitted to the IgG data from each available dataset using a Metropolis-

Hastings Markov Chain Monte-Carlo (MH MCMC) algorithm with a beta-binomial likelihood. 

Uniform priors were assigned to all parameters. We assumed that the probability of testing 

seropositive in each age group was beta-binomially distributed: 

 ~ , ,i i iX BetaBinomial N p   

where iN  is the total number of individuals in age group i , ip  is the probability of testing 

seropositive (or the proportion in that age group seropositive), and   represents over-

dispersion. The likelihood is given by: 

 
 

 

,

,

i i i i

i

i

N B X a N X b
L p

X B a b

   
  
 

, 

where B  is the beta function with standard arguments a  and b . We re-parameterised the 

beta distribution in terms of its mean ( m ) and variance ( v ):  /m a a b   and 

   
2

/ 1v ab a b a b    
 

 respectively. The over-dispersion parameter   was then 

defined as:  / 1v m m     . 

The beta arguments then become:  

 1/ 1a m    and   1 1/ 1b m    . 

Here we assign im p  from equations (2.1) and (2.3) for models A and B respectively, and 

equations (2.5) and (2.6) for model C, and estimate  . Substituting the above into the 

likelihood this becomes: 
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 
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Ignoring the constant, the log-likelihood for one age group is: 

        
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 . 

So total log-likelihood across all age groups is: 
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   

, 

(2.7) 

where iX  is the number of individuals testing positive among those tested in age group i, 

iN  is the total number of individuals tested in age group i ,   represents the degree of 

over-dispersion, and m  is the predicted proportion of seropositive individuals in that age 

group. The predicted proportion of seropositive individuals in each age group is calculated 

by taking the average seroprevalence within each age group. For example for age group 5-9 

years, seroprevalence at each age 5, 6, 7 etc. would be computed and the mean value taken 

as the seroprevalence for that age group. 

Confidence Intervals around the Observed Seroprevalence 

Binomial proportion 95% confidence intervals (CI) were calculated for the reported 

seroprevalence in each age group i  by: 

1.96i

i

X
CI se

N
   , 

where 
    / 1 /i i i i

i

X N X N
se

N


 . 

Here iX  is the number of individuals testing positive among those tested in age group i  

and iN  is the total number of individuals tested in age group i . 
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2.2.3 Estimating the Basic Reproduction Number 

For each model, the strain-specific basic reproduction number 0iR  was estimated under 

two different assumptions: 

1) Tertiary and quaternary infections possible – here we can only analytically derive an 

expression for 0iR  in the case that there is no cross-immunity mediated interactions 

between serotypes. 

2) Individuals develop complete immunity to all dengue serotypes after secondary 

infection – in this case we can explore the different assumptions about cross-

immunity. 

Assumption 1: Tertiary and quaternary infection possible. 

When tertiary and quaternary infections are possible, we can only estimate 0iR   assuming 

there are no cross-immunity mediated interactions between serotypes. Following Ferguson 

et al. [104], the serotype–specific basic reproduction number under assumption 1 is given 

by: 

0

0

( ( ) / ) / ( ( )) 1

1 ( ') ( ', ) '

i i
i

i

d t dt t
R

f a z a t da

 





 
 , (2.8) 

where   is the reciprocal of the infectious period (1/6 days) [126,127], ( )f a  is the 

probability density function of the age distribution of the population and ( )iz a  is the 

proportion seropositive to serotype i at age a.  

For model C where the force of infection varies with time ( )t  is given by:  

0( ) 1   sin 2  
t

t
T

    
   

     
   

 
. 

(2.9) 

Assuming temporal changes in the force of infection are relatively small ( /d dt  ), for 

models A and B equation (2.8) reduces to: 
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(2.10) 
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Assuming that the serotypes are equally transmissible and equally prevalent (and thus that 

the force of infection for each serotype is a quarter of the overall force of infection for 

dengue when four serotypes are in circulation, ), the serotype-specific proportion of 

seropositive individuals of age a, ( )iz a , is given by equations (2.11)–(2.14) for models A – C 

respectively: 

Constant force of infection model (model A):   

( ) 1 exp
4

iz a a
 

   
 

 
 

(2.11) 

 

Antibody decay model (model B):   
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(2.12) 

Time-varying force of infection model (model C):  

For crita A :  
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For crita A : 
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(2.14) 

 

Assumption 2: Complete immunity after secondary infection 

If only primary and secondary infections can occur, the assumption of no cross-immunity 

between serotypes can be relaxed. Following Ferguson et al.[104], the serotype–specific 

basic reproduction number for models A – C is then given by: 
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(2.15) 

Here ( , )x a t  is the proportion seronegative at age a  and time t , ji  is the relative 

susceptibility to infection of someone infected with serotype j  following infection with 

serotype i ,  and ji  is the relative infectiousness of someone infected with serotype j  

following infection with serotype i (relative to a primary infection), and other terms are as 

defined previously. We set ji 1  , and also set ji  = 1 since this parameter cannot be 

estimated from serological data alone. ( )t  is given in equation (2.9) for model C where 

the force of infection varies with time. Assuming temporal changes in the force of infection 

are relatively small ( /d dt  ), for models A-B, (2.15) reduces to: 

0

0

1

( ') ( ') ( ') '
i

ji ji jj i

R
f a x a z a da 






 
 

 
 

(2.16) 
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Expressions for ( )jz a  for models A and C are given in equations (2.17) and (2.18)-(2.19) 

respectively below: 

Constant force of infection model (model A):  

3
1 exp exp

4 4
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(2.17) 

Time-varying force of infection model (model C):  
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For criticala A : 
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(2.19) 

We did not consider models combining both antibody decay (model B) and serotype 

interactions, as derivation of closed-form expressions for 0iR  proved intractable in this case.  

For all calculations, ( )f a  or the probability density function of the age distribution of the 

population was calculated from demography data corresponding to each study year – either 

from the United Nations population estimates [128], or where available the national census 

data of the corresponding study region. 
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2.3 Results 

Fifty-three studies reporting age-specific seroprevalence were identified from a total of 

15,525 potentially relevant papers (Figure 2.1). Of these, 38 used non-serotype specific 

assays including IgG and IEs. Only nine studies used PRNTs and five studies reported results 

from multiple assays. Excluding studies with less than 5 reported age groups from further 

analysis left a total of 30 surveys from 18 countries for IgG data, and 7 studies from 5 

countries for PRNT data. 28 (out of 30) surveys from 17 countries were cross-sectional IgG 

seroprevalence surveys from a single year. The remaining 2 (out of 30) surveys were 

conducted in Nicaragua and combined provided 7 years’ worth of cross-sectional non-

serotype specific data. Most IgG surveys identified were conducted in 2000 – 2010 (23/30), 

while most PRNT surveys were conducted in the 1990s (4/7). Although recent serosurveys 

used commercial diagnostics, many studies used in-house assays. Table 2.1 summarises the 

study and demographics of the datasets retained for analysis from the corresponding or 

closest year. All studies summarised in Table 2.1 were fitted using model A and B, and 

model C was also fitted to the two Nicaraguan datasets. Only an overall force of infection 

could be estimated from non-serotype specific IgG data. As expected, estimates of the force 

of infection varied widely between countries and, to a lesser extent, within countries. Table 

2.2 and Figure 2.4a show parameter estimates derived from the constant force of infection 

model (A), and Figure 2.5 show the model fits. The combined log-likelihood score for this 

model across the 28 datasets was -13206.8, while the combined log-likelihood score for the 

antibody decay model (model B) was -13086.8. Southeast Asian such as Vietnam and 

Thailand, had a higher force of infection compared with most sites in the Americas [6]. 

Corresponding estimates of 0iR  varied according to the assumptions made regarding host 

immunity (Figure 2.4b). Assuming that two heterologous infections are sufficient for 

complete immunity (Assumption 2) produced up to two-fold higher estimates of 0iR  

compared to when we assumed that quaternary infections are required for complete 

immunity (Assumption 1). However, 0iR  estimates under these two assumptions converge 

as the estimated force of infection decreases. 

The joint antibody decay rate (model B) was low when estimated across all non-serotype 

specific datasets at 0.020 (95% CrI: 0.014 – 0.030). Allowing for antibody decay slightly 



Page 55 of 228 
 

increased the estimated force of infection for each dataset (Table 2.3). Of the non-serotype 

specific datasets examined, all 17 countries had more than one serotype in circulation in the 

past. Figure 2.6 shows model B fits.  



Page 56 of 228 
 

Table 2.1: Summary of cross-sectional non-serotype specific datasets identified and associated demographics. 

^ Survey date not given, noted as ‘pre-year of publication’. ⁺All assays were IgG or HI ELISAs .⁻Cross-sectional surveys from multiple years (2001 – 2007).

Country Author Survey Year Region Assay Type⁺ # Serotypes  
circulating 

Participant 
Ages 

N Population size of 
study region 
(thousands) 

Rural/Urban % <15 
years 
old 

Models  
used 

Brazil Braga [129] 2005/06 Recife PanBio 4 5 - 65 2817 40 Urban 28 A and B 

Costa Rica Iturrino-Monge 
[130] 

2002/03 Puntarenas, San Jose PanBio 4 1 - 10 206 358/1373 Urban 31.5 A and B 

Dominican  
Republic 

Yamashiro [131] 2002 Santo Domingo Focus Tech 4 0 - 60 1209 1887 Urban 35 A and B 

El Salvador Hayes [132] 2000/01 Las Pampitas CDC NA 0 - 69 371 944 Rural 38 A and B 

French  
Polynesia 

Deparis [133] 1996 Teroma In-house 4 0 - 21 169 16 Urban 34 A and B 

India Padbidri [134] 1988/89 Andaman HI/N NA 0 - 40 2401 356 Rural 38 A and B 

Laos Vallée [135] 2006 Vientiane In-house 4 0 - 6 143 277 Urban 40 A and B 

 Hiscox [136]  2007/08 Khammouane HI 4 0 - 90 1708 337 Rural  A and B 

Mayotte Sissoko [137] 2006 Mayotte Focus Tech NA 2 - 55 1154 175 Whole island 41 A and B 

Mexico Brunkard [138] 2004 Matamoros PanBio 4 15 - 75 600 412 Urban 32 A and B 

 Ramos [139] 2005 Matamoros Quantitative 4 5 – 65 131 412 Urban  A and B 

Nicaragua⁻ Balmaseda [140] 2001-03 Managua IE 4 5 – 16 1971 2101 Urban 41 A and C 

 Balmaseda [30] 2004-07 Managua IE 4 2 - 9 14182 2101 Urban 38 A and C 

Pakistan Ali [141] Pre-2003^ Khyber  
Pakhtunkhawa 

Cortez NA 0 - 60 613 20000 Urban/rural 42 A and B 

 Mahmood [142]  2012 Lahore NovaTech NA 15 - 55 274 7566 Urban 35 A and B 

Papua  
New Guinea 

Senn [143] 2007/08 Madang  
Province 

PanBio NA 0 - 25 577 493 Urban/rural 39 A and B 

Peru Hayes [144]  1992 Loreto In-house  2 0 - 60 1608 9 Urban/Rural/Jungle 38 A and B 

 Reiskind [145]  1996 Santa Clara In-house 2 5 - 87 1225 2.4 Suburban 36 A and B 

Singapore Goh [146]  1984 National HI 4 0 - 40 425 2709 Urban 24 A and B 

 Yew [147] 2004 National PanBio 4 18 - 74 4152 2709 Urban 19 A and B 

 Yap [148] 2007 National PanBio 4 7 - 85 3939 2709 Urban 17 A and B 

Sri Lanka Malavige [149] Pre-2006^ Colombo district PanBio 4 6 – 18 313 2309 Urban 25 A and B 

 Tissera [150] 2008 Colombo City In-house  4 0 – 12 797 647 Urban 25 A and B 

 Tam [151] 2008 Colombo City In-house 4 0 - 12 797 647 Urban 25 A and B 

Thailand Perret [152] 2000 Bangkok In-house 4 5 – 12 283 6355 Urban 24 A and B 

 Tuntaprasart [153] 2000 Ratchaburi In-house 4 15 - 40 245 842 Urban 21 A and B 

USA Brunkard [138] 2004 Brownsville PanBio NA 15 – 75 600 139 Urban  A and B 

 Ramos [139] 2005 Brownsville Quantitative  NA 5 – 65 139 139 Urban 36 A and B 

Vietnam Bartley [154] 1996/97 Dong Thap Province PanBio 4 0 – 20 308 309 Urban/Rural 32 A and B 

 Thai [155] Pre-2005^ Binh Thuan Province MRL 4 7 - 14 961 1100 Rural 27 A and B 



Page 57 of 228 
 

 

Figure 2.4: A) Force of infection and B) corresponding R0i estimates from constant force of infection 
model (model A) fitted to cross-sectional non-serotype specific datasets.  Posterior median and 95% 
credible intervals (CrI) shown. Assumption 1 = individuals can be infected four times, assumption 2 = 
individuals develop protective immunity after two infections. See end of chapter for figure 
references and ISO country abbreviations. 
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Figure 2.5: Model fits from the constant force of infection model (model A) fit to IgG data (points).  
95% exact confidence intervals around data points, posterior median (line) and 95% CrI (shaded 
area) shown. See end of chapter for figure references and ISO country abbreviations.
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Table 2.2: Summary estimates from the fit of cross-sectional non-serotype specific datasets using model A (constant force of infection). 

Country Author Force of Infection    Over-dispersion   
0iR (95% CrI) LnL 

  (95% CrI) (95% CrI) Assumption 1  Assumption 2  

Brazil Braga et al.[129] 0.058 (0.050-0.080) 0.155 (0.116-0.346) 1.55 (1.47-1.80) 2.08 (1.90-2.70) -1056.2 

Costa Rica Iturrino-Monge et al.[130] 0.107 (0.086-0.197) 0.329 (0.264-0.555) 1.87 (1.68-2.73) 2.77 (2.35-4.72) -115.8 

Dominican Republic Yamashiro et al.[131] 0.117 (0.104-0.153) 0.087 (0.050-0.264) 1.84 (1.74-2.13) 2.67 (2.44-3.29) -229.9 

El Salvador Hayes et al. (2)[132] 0.099 (0.076-0.430) 0.443 (0.299-0.799) 1.82 (1.62-5.43) 2.67 (2.21-10.66) -47.6 

French Polynesia Deparis et al.[133] 0.304 (0.261-0.463) 0.044 (0.016-0.396) 3.73 (3.30-5.41) 6.90 (5.97-10.42) -51.6 

India Padbidri et al.[134] 0.002 (0.001-0.007) 0.010 (0.004-0.239) 1.01 (1.01-1.04) 1.01 (1.01-1.05) -336.4 

Laos Vallee et al.[135] 0.037 (0.030-0.076) 0.043 (0.018-0.231) 1.23 (1.18-1.48) 1.36 (1.28-1.87) -46.4 

 Hiscox et al.[136]  0.021 (0.019-0.026) 0.033 (0.022-0.126) 1.13 (1.12-1.16) 1.18 (1.16-1.23) -1093.7 

Mayotte Sissoko et al.[137] 0.010 (0.009-0.017) 0.056 (0.033-0.241) 1.06 (1.05-1.09) 1.07 (1.06-1.12) -544.6 

Mexico Brunkard et al.[138] 0.035 (0.031-0.047) 0.093 (0.061-0.300) 1.23 (1.21-1.32) 1.37 (1.32-1.55) -286.3 

 Ramos et al.[139] 0.037 (0.030-0.059) 0.133 (0.073-0.439) 1.24 (1.20-1.41) 1.40 (1.31-1.74) -78.2 

Pakistan Ali et al.[141] 0.007 (0.006-0.016) 0.063 (0.035-0.308) 1.05 (1.04-1.10) 1.05 (1.05-1.14) -302.0 

 Mahmood et al.[142]  0.033 (0.030-0.044) 0.040 (0.018-0.253) 1.22 (1.19-1.29) 1.34 (1.30-1.49) -174.7 

Papua New Guinea Senn et al.[143] 0.222 (0.175-0.357) 0.116 (0.053-0.521) 2.55 (2.19-3.58) 4.11 (3.39-6.15) -175.7 

Peru^ Hayes (1) et al.[144]  0.037 (0.034-0.048) 0.061 (0.042-0.189) 1.37 (1.34-1.51) 1.37 (1.34-1.51) -828.1 

 Reiskind et al.[145]  0.013 (0.013-0.016) 0.014 (0.007-0.083) 1.11 (1.11-1.14) 1.11 (1.11-1.14) -675.7 

Nicaragua* Balmaseda et al.[30,140] 0.218 (0.214 – 0.223) 0.016 (0.009 – 0.028) 3.22 (3.16 – 3.27) 6.42 (6.27 – 6.58) -8184.2 

Singapore Goh et al.[146]  0.055 (0.047-0.086) 0.229 (0.166-0.507) 1.43 (1.37-1.71) 1.80 (1.65-2.47) -143.4 

 Yew et al.[147] 0.023 (0.020-0.035) 0.147 (0.099-0.422) 1.21 (1.18-1.34) 1.33 (1.27-1.59) -2273.7 

 Yap et al.[148] 0.027 (0.025-0.033) 0.041 (0.027-0.146) 1.26 (1.25-1.33) 1.44 (1.40-1.57) -2084.4 

Sri Lanka Malavige et al.[149] 0.040 (0.037-0.053) 0.034 (0.018-0.139) 1.35 (1.31-1.47) 1.61 (1.54-1.88) -206.8 

 Tissera et al.[150] 0.134 (0.118-0.202) 0.160 (0.124-0.320) 2.24 (2.06-2.99) 3.69 (3.28-5.35) -509.7 

 Tam et al.[151] 0.128 (0.120-0.154) 0.026 (0.015-0.089) 2.17 (2.09-2.45) 3.53 (3.35-4.18) -504.8 

Thailand Perret et al.[152] 0.112 (0.092-0.166) 0.120 (0.050-0.607) 2.16 (1.91-2.91) 3.79 (3.08-5.98) -46.8 

 Tuntaprasart et al.[153] 0.137 (0.127-0.175) 0.038 (0.019-0.175) 2.43 (2.30-2.92) 4.26 (3.93-5.42) -175.0 

USA (Texas) Brunkard et al.[138] 0.010 (0.009-0.016) 0.086 (0.056-0.279) 1.08 (1.07-1.12) 1.10 (1.09-1.17) -381.9 

 Ramos et al.[139] 0.011 (0.009-0.026) 0.226 (0.149-0.578) 1.09 (1.07-1.21) 1.12 (1.08-1.32) -84.1 

Vietnam Bartley et al.[154] 0.142 (0.129-0.184) 0.088 (0.056-0.243) 2.12 (2.02-2.50) 3.36 (3.09-4.23) -147.0 

 Thai et al.[155] 0.112 (0.101-0.153) 0.093 (0.063-0.285) 2.02 (1.91-2.45) 3.19 (2.92-4.27) -606.3 
^Only 2 serotypes in circulation, calculation adjusted accordingly, i.e. assuming complete immunity upon secondary infection (assumption 2). Assumption 1: tertiary and quaternary infections 
possible, assumption 2: complete protection after secondary infection. 
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Figure 2.6: Model fits from the antibody decay model (model B) fit to IgG data (points). 95% exact CI 
around data points, posterior median (line) and 95% CrI (shaded area) shown. See end of chapter for 
figure references and ISO country abbreviations.
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Table 2.3: Summary estimates from the fit of cross-sectional non-serotype specific datasets using model B.  All the non-serotype specific datasets were 
fitted together using the antibody decay model (model B) to estimate an overall shared antibody decay rate.  

*Assumption 1: tertiary and quaternary infections possible. Global log-likelihood = -13086.8.

Country Author  (95% CrI)   (95% CrI)   (95% CrI) 
0iR  Assumption 1* LnL 

Brazil Braga et al.[129] 0.020 
(0.014 – 0.030) 

0.203 (0.161 – 0.267) 0.010 (0.001-0.039) 2.32 (2.07-2.60) -1063.0 

Costa Rica Iturrino-Monge et al.[130] 0.115 (0.072 – 0.178) 0.158 (0.046-0.375) 1.59 (1.36-1.95) -116.3 

Dominican Republic Yamashiro et al.[131] 0.186 (0.128 – 0.258) 0.164 (0.067-0.326) 1.89 (1.60-2.26) -306.3 

El Salvador Hayes et al. (1)[132] 0.702 (0.217 – 0.986) 0.150 (0.015-0.596) 5.11 (2.20-7.21) -332.2 

French Polynesia Deparis et al.[133] 0.356 (0.172 – 0.811) 0.131 (0.010-0.529) 2.93 (1.89-5.47) -41.6 

India Padbidri et al.[134] 0.002 (0.001 – 0.009) 0.007 (0.000-0.251) 1.01 (1.01-1.04) -42.2 

Laos Vallee et al.[135] 0.038 (0.021 – 0.068) 0.019 (0.001-0.134) 1.16 (1.09-1.30) -204.6 

 Hiscox et al.[136]  0.037 (0.028 – 0.053) 0.025 (0.006-0.108) 1.16 (1.13-1.22) -492.7 

Mayotte Sissoko et al.[137] 0.017 (0.010 – 0.031) 0.071 (0.019-0.288) 1.07 (1.04-1.12) -478.3 

Mexico Brunkard et al.[138] 0.098 (0.058 – 0.179) 0.058 (0.013-0.219) 1.47 (1.28-1.82) -537.9 

 Ramos et al.[139] 0.090 (0.049 – 0.187) 0.044 (0.001-0.288) 1.43 (1.23-1.88) -388.8 

Pakistan Ali et al.[141] 0.011 (0.007 – 0.021) 0.036 (0.003-0.245) 1.05 (1.03-1.10) -89.6 

 Mahmood et al.[142]  0.060 (0.041 – 0.097) 0.022 (0.001-0.200) 1.28 (1.19-1.43) -296.5 

Papua New Guinea Senn et al.[143] 0.451 (0.224 – 0.792) 0.053 (0.002-0.346) 3.11 (2.02-4.69) -172.9 

Peru Hayes (2) et al.[144]  0.065 (0.040 – 0.116) 0.149 (0.062-0.344) 1.58 (1.36-1.99) -951.6 

 Reiskind et al.[145]  0.022 (0.017 – 0.030) 0.018 (0.002-0.099) 1.20 (1.16-1.27) -692.9 

Singapore Goh et al.[146]  0.089 (0.046 – 0.185) 0.441 (0.219-0.709) 1.48 (1.24-2.04) -176.3 

 Yew et al.[147] 0.040 (0.019 – 0.091) 0.240 (0.099-0.532) 1.24 (1.12-1.56) -68.5 

 Yap et al.[148] 0. 051 (0.031 – 0.090) 0.167 (0.072-0.373) 1.32 (1.19-1.56) -2765.2 

Sri Lanka Malavige et al.[149] 0. 046 (0.036 – 0.060) 0.025 (0.001-0.113) 1.26 (1.20-1.35) -2767.6 

 Tissera et al.[150] 0. 144 (0.125 – 0.166) 0.006 (0.000-0.0345) 1.81 (1.67-1.96) -2440.3 

 Tam et al.[151] 0. 140 (0.127 – 0.160) 0.004 (0.000-0.025) 1.78 (1.65-1.93) -42.3 

Thailand Perret et al.[152] 0.414 (0.116 – 0.942) 0.139 (0.024-0.556) 3.96 (1.72-8.33) -288.1 

 Tuntaprasart et al.[153] 0. 157 (0.118 – 0.204) 0.033 (0.002-0.164) 1.96 (1.69-2.28) -71.9 

USA (Texas) Brunkard et al.[138] 0. 018 (0.011 – 0.030) 0.071 (0.017-0.258) 1.09 (1.06-1.15) -51.1 

 Ramos et al.[139] 0.020 (0.008 – 0.057) 0.215 (0.055-0.568) 1.10 (1.01-1.30) -19.8 

Vietnam Bartley et al.[154] 0.166 (0.117 – 0.232) 0.120 (0.036-0.293) 1.85 (1.57-2.21) -158.8 

 Thai et al.[155] 0.135 (0.105 – 0.176) 0.035 (0.005-0.164) 1.76 (1.58-2.01) -607.5 
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With age-structured serosurvey data from multiple sequential years (as was available for 

Nicaragua), it was possible to estimate temporal and age-specific changes in exposure 

[30,140] (Figure 2.7a). Model C which allowed for the force of infection to vary sinusoidally 

over time and to change at (fitted) age threshold was fitted to those data. Table 2.4 

summarises the estimated parameter values and Figure 2.8 show the model fits. We 

estimated that exposure increased in individuals over 3.9 years old (95% CrI: 2.7 – 5.4 years), 

with the estimated force of infection during the study period (2001 – 2007) being 0.323 

(95% CrI: 0.261 – 0.377) above 3.9 years and 0.174 (95% CrI: 0.118 – 0.280) below 3.9 years. 

These estimates represent the average total force of infection for all four serotypes in 

circulation. The force of infection was estimated to vary with a period of 8.8 years (95% CrI: 

1.3 – 12.5 years). Resulting estimates of 0iR  (Figure 2.7b) showed the same dependence on 

immunity assumptions as the point estimates derived from single serosurveys (Figure 2.4), 

but interestingly showed less temporal variation than the force of infection estimates 

(Figure 2.7a). 
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Figure 2.7: Estimated time-varying A) serotype-specific force of infection in individuals under the 
threshold age and B) R0i derived by fitting the time-varying force of infection model (model C) to 
Nicaraguan data (2001 – 2007). Posterior median and 95% CrI shown. Assumption 1: individuals can 
be infected up to four times, assumption 2: individuals develop protective immunity after their 
second infection.  
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Table 2.4: Summary parameter estimates where the time-varying force of infection model (model C) 
was fitted to 7 years’ worth of cross-sectional data from Nicaragua.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Observed (points) and estimated (line) cross-sectional seroprevalence in Nicaragua from 
2001 to 2007 using the age-threshold model with time-varying force of infection (model C).  95% 
exact confidence intervals around data points, posterior median (line) and 95% CrI (shaded area) 
shown. 

  

Parameter Name Median Estimate (95% CrI) LnL 

Force of infection   0.323 (0.261 – 0.377) -7848 

Amplitude   0.360 (0.072 – 0.670) 

Phase   0.392 (0.015 – 0.990) 

Periodicity (yrs) T  8.8 (1.3 – 12.5) 

Scaling of for those under 
critical age threshold relative 
to those over that threshold 

S  0.54 (0.39 – 0.84) 

Critical age (yrs) threshold at 

which   assumed to change 
criticalA  

3.9 (2.7 – 5.4) 

Over-dispersion    0.016 (0.009 – 0.028) 
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2.4 Discussion 

From a literature review, we selected 30 studies reporting age-structured seroprevalence 

data obtained with IgG/IE assays in 18 different locations from 1980 to 2010. From each 

dataset, we estimated dengue transmission intensity, quantified by λ and 0iR . Overall, our 

estimates highlight the highly heterogeneous nature of dengue transmission in both space 

and time. This analysis also highlights how the relationship between the force of infection 

and 0iR  is affected by underlying assumptions about serotype interactions and immunity. 

The majority of our estimates of 0iR  from 18 countries ranged from 1 – 4 (28 out of 28 and 

24 out of 28 from the constant force of infection model (model A) fitted to IgG datasets 

under assumption 1: individuals can be infected four times, and 2: individuals develop 

protective immunity after two infections, respectively).  

Dengue epidemiology differs between the Americas and Southeast Asia. Severe dengue 

predominantly affects children in Southeast Asia in contrast to the Americas where disease 

more often manifests in adults as the milder dengue fever [6]. However the changing 

demographics in Thailand (lower birth and death rates) have increased the average age of 

DHF suggesting that the epidemiology will continue to evolve [121]. However with the cross-

sectional data used in this analysis it is difficult to determine whether the higher force of 

infection in South East Asia is a reflection of the length of time dengue has been in 

circulation. The recent Phase III dengue vaccine trial conducted in several countries in Latin 

America showed that the forces of infection are highly heterogeneous across Latin America, 

with some countries comparable to South East Asia (Columbia and Honduras) and others 

having much lower forces of infection (Mexico and Puerto Rico) [77]. However, multiple 

cross-sectional surveys or cohort studies would be needed to estimate how forces of 

infection by age have changed over time. The low 0iR  estimated in the Indian subcontinent 

is probably due to the lack of datasets from this region and the spatial heterogeneity of 

transmission within that large region. The one serosurvey from India used in our study was 

conducted in Andaman, an island with a low population density where we estimated a very 

low force of infection. It is likely that the epidemiology of dengue on Andaman is not 

representative of dengue epidemiology on the mainland.  



Page 66 of 228 
 

Seroprevalence surveys have the benefit of not being affected by surveillance system 

sensitivity or case reporting rates, but still have several limitations (Box 1) [10,31]. A 

particular issue is the wide variation in the assays used between studies (Table 2.1). 

Optimally, one would assess the sensitivity of transmission intensity estimates to factors 

that varied between assays, such as the threshold used to define seronegativity. However, 

such an analysis requires access to the raw titer data which was not provided in any of the 

publications reviewed here. Additionally, seroprevalence surveys sometimes use serum 

samples collected for a different purpose and therefore may not be representative of the 

population. Six out of the 31 studies used such samples: from blood banks [131], ante-natal 

clinics [152], hospitals [143,146,156], or residual samples from a different study [154]. Use 

of convenience samples can increase the volume of serological data produced, but the 

potential biases such sampling introduces must be taken into account when analysing such 

data. Cross-reactivity with Japanese encephalitis and other flaviviruses such as zika virus can 

also be an issue with IgG assays. Of the studies included in this chapter, there were 6 

countries where Japanese encephalitis cases had occurred in the past (Laos, Sri Lanka, India, 

Vietnam, and Singapore). Table 2.5 summarises each author’s justification (where available) 

in their chosen assay in their study context. 

  



Page 67 of 228 
 

Table 2.5: Justification of assay choice in each country where Japanese encephalitis (JE) cases had 
been previously reported. 

 

Although we can only estimate a total force of infection across all serotypes from non-

serotype specific data (such as surveys using IgG ELISA assays), such data are still sufficient 

for assessing heterogeneity in overall dengue transmission intensity between different 

populations. It is not possible to disentangle temporal from any age-dependent variation in 

exposure from single cross-sectional seroprevalence surveys, requiring broad assumptions 

to be made about such variation. Hence, for simplicity, we generally assumed constant 

transmission intensity over time when analysing single cross-sectional surveys. However, for 

Nicaragua [30,140], data from multiple sequentially conducted serosurveys were available, 

so we were able to estimate time and age-dependent changes in the force of infection. We 

found evidence of long term variation in transmission intensity over a timescale of 1-12 

Country Ref Justification 

Singapore Goh et al. 
Yew et al. 
Yap et al. 
[146–148] 

Although the PanBio ELISA can be cross-reactive with JE, the 
incidence of JE in Singapore is very low in comparison to dengue 
which is endemic. They therefore concluded that the impact of false 
positives on the observed dengue seroprevalence would be 
minimal. 

Sri Lanka Tam et al. 
[151] 

Specifically tested how the seropositivity against JE would affect 
dengue estimates using JE vaccination history as a proxy. They 
found no evidence for JE having an effect and conclude that the 
majority of past infections detected by the ELISA were dengue. 

 Malavige et al. 
[149] 

Cite the high specificity and sensitivity of the PanBio assay making it 
unlikely that JE was affecting the results, but go on to specify that 
false positives cannot be completely ruled out. 

 Tissera et al. 
[150] 

Surveyed in a known dengue area and so state that the impact of JE 
would be minimal. 

India Padbidri et al. 
[134] 

Tested samples in conjunction with neutralizing antibodies and so 
cross-reactivity with JE can be ruled out. 

Thailand Perret et al. 
[152] 

Tested all samples with IgM and IgG ELISAs for JE as well and 
excluded cross-reactivity in dengue positive samples by calculating 
the ratio between JE and dengue IgG antibody. 

 Tuntaprasart 
et al. [153] 

Conducted a post-outbreak survey and therefore contribution of JE 
is likely to be minimal. 

Laos Vallee et al. 
[135] 

Authors differentiate between recent JE and dengue infection. 
However they are unable to differentiate past infections. However 
they state that dengue infections appeared to be more frequent 
than JE. 

 Hiscox et al. 
[157] 

Authors categorized their results as: if a sample was positive for 
both JE and dengue this was considered flavivirus positive. If the 
sample produced a 2-fold higher titre to the homologous virus they 
were categorized as DENV positive or JEV positive only. 
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years, and that exposure levels changed with age, with children aged 4 or older having twice 

the exposure of those under that age. We suspect that this may be associated with school 

attendance, with children spending more time away from home leading to an increase in 

exposure if the majority of transmission is occurring outside the domestic environment 

[158]. This school-cohort effect has also been observed in Sri Lanka, conversely with a 

decrease in exposure, where Tam et al. estimated an age-varying force of infection of 0.154 

(95% CI: 0.132 – 0.177) for 0.5 – 6 year olds and 0.087 (95% CI: 0.020 – 0.154) for children 

aged 6 years and above also demonstrating the existence of different transmission 

environments [151]. 

In the next chapter (chapter 3) I compare the estimates obtained from IgG data to estimates 

derived from serotype-specific PRNT data and summarise the issues associated with cross-

sectional seroprevalence data and discuss the limitations of this analysis. In addition, a 

simple regression is used to explore the impact that potential environmental and 

demographic covariates have on the estimated force of infection. 
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ISO 3 letter code Country 

BRA Brazil 

CRI Costa Rica 

DOM Dominican Republic 

IND India 

LAO Laos 

LKA Sri Lanka 
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MYT Mayotte 

PAK Pakistan 

PER Peru 

PNG Papua New Guinea 

PYF French Polynesia 

SGP Singapore 

SLV El Salvador 

THA Thailand 

USA United States of America 

VNM Vietnam 
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3 Estimating Dengue Transmission Intensity from Serotype-specific 

Seroprevalence Surveys and a Comparison of Data Types 

Work in this chapter formed the basis of: Imai N, Dorigatti I, Cauchemez S, Ferguson 

NM (2015) Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in 

Multiple Countries. PLoS Negl Trop Dis 9(4): e0003719. doi: 10.1371/journal.pntd.0003719 

In this chapter I use the cross-sectional serotype-specific PRNT data identified in chapter 2 

and apply a multistrain model to estimate the serotype-specific force of infection. Re-

analysing the PRNT data as non-serotype specific data allows us to compare how useful less 

expensive assays can be. I then summarise the limitations of analysing seroprevalence data. 

3.1 Introduction 

In the previous chapter (chapter 2) I analysed data from non-serotype specific IgG ELISAs 

used in less expensive cross-sectional surveys. In this chapter I use serotype-specific 

seroprevalence data from PRNTs, which are considered the current gold standard for non-

acute routine dengue serotyping (PCR for acute serotyping), to estimate strain-specific 

forces of infection. Due to the much lower costs, future seroprevalence studies are still 

likely to depend on IgM or IgG ELISAs rather than the more labour intensive PRNTs. Here I 

compare the estimates derived from IgG, IE and PRNT data to determine the usefulness of 

less expensive assays. 

3.2 Methods 

3.2.1 Literature Search 

The literature was searched for age-stratified seroprevalence surveys since 1980 and data 

were extracted from published datasets where age-specific seroprevalence was tested by 

PRNTs. The search process is described in detail in chapter 2.  

3.2.2 Catalytic Models 

Data type: Cross-sectional PRNT surveys 

Since dengue viruses exist as four distinct serotypes, individuals may be seropositive for one 

serotype but seronegative for the other three serotypes. For example an individual may 

have a primary infection with DENV-1 (DENV-1 seropositive), and then upon secondary 
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infection with e.g. DENV-2, that individual becomes DENV-2 seropositive, still remaining 

DENV-1 seropositive. In order to fit serotype-specific PRNT data, we applied the multi-strain 

catalytic model developed by Ferguson et al. [104]. Different model variants (model D1 – 

D4) were assessed as described below, which explored different assumptions on serotype 

interactions.  

Moreover, for comparison purposes, we fitted the same PRNT data to model A (constant 

force of infection model described in chapter 2), having defined individuals with PRNT titres 

below the detection limit for all four dengue serotypes as seronegative and individuals with 

at least one PRNT titre over the detection limit as seropositive. Since assays differed 

between surveys, here the detection limit also varied from study to study. The data were 

fitted to model A as described in chapter 2. 

Model D1 (no interaction): No interaction between circulating serotypes 

Here we assume complete serotype independence. We assumed absence of antibody-

dependent enhancement (ADE), no cross-protection, no change in susceptibility and no 

change in transmissibility following primary infection. 

Under these assumptions the proportion seronegative against all dengue serotypes, ( , )x a t  

is given by: 
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The proportion seropositive against strain i only is given by: 
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, 

(3.1) 

where i  is the force of infection of strain i ,T  is the periodicity in years,   is the amplitude, 

  is the phase, t  is the chronological time in years and a  is the age in years. 

 

Models D2-D4: Assuming interaction between serotypes 

The following models assume interaction between serotypes mediated by cross-immunity. 

We define ij  to be susceptibility of an individual to infection with serotype j following 

infection with serotype i , relative to the susceptibility of an individual who has never been 

infected with dengue.  

Ferguson et al. [104] showed that the proportion of the population at age a  and time t , 

seropositive for strain i  and seronegative for each other serotype j  in circulation, ( )j i , 

( , )iw a t , is given by: 
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(3.2) 

where we assume that the force of infection is given by: 
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Substituting the definition of the force of infection given in equation (3.3) into equation 

(3.2) we obtain: 
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, 

(3.4) 

where i  is the force of infection of strain i ,T  is the periodicity in years,   is the amplitude, 

  is the phase, t  is the chronological time in years and a  is the age in years. 

Finally, evaluating the integral between 0 and a gives: 
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(3.5) 

Here  ,x a t  is the proportion seronegative (completely unexposed to any strain of dengue), 

which is explicitly given by: 
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Model D2 (equal interaction): We assume that susceptibility enhancement-inhibition ij  is 

identical for all strain combinations. We estimate 5 parameters: a force of infection for each 

serotype i ( 1,...,4)i  and one susceptibility parameter ij   for all , 1,...,4i j  . 

Model D3 (primary interaction): We assume that susceptibility enhancement-inhibition is 

dependent only on the primary infecting strain ( )i  . We estimate 8 parameters: a force of 

infection for each serotype i  and a susceptibility enhancement-inhibition term for each 

primary infecting serotype i  . 

Model D4 (secondary interaction): We assume that susceptibility enhancement-inhibition is 

dependent only on the secondary infecting strain ( )j . We estimate 8 parameters: a force 

of infection for each serotype i and a susceptibility enhancement-inhibition term for each 

secondary infecting serotype j . 

 

Estimation Procedure 

Given a seroprevalence survey of N individuals at time 0t , the kN  individuals in each age 

class k can be classified into: xkn  the number unexposed (seronegative against any strain, 

PRNT < cut off defined in the study), ikn  the number monotypically exposed against 

serotype i  (PRNT for serotype i > cut off defined and PRNT < cut off defined in the study for 

the remaining serotypes), and ( –   )k xk i ikN n n   multi-typically exposed (PRNT > cut off 

defined in the study for 2 or more serotypes). The multinomial log-likelihood is then given 

by: 
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,  

(3.6) 

where the proportion seropositive and seronegative in each age group was calculated by 

taking the average seroprevalence within each age group. For example, for age group 5-9 
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years, seroprevalence at each age 5, 6, 7 etc. would be computed and the mean value taken 

as the seroprevalence for that age group.  

Models D1 – D4 were fitted to PRNT data using the MH-MCMC algorithm using the 

multinomial log-likelihood defined in equation (3.6). Since the available PRNT data are all 

cross-sectional seroprevalence surveys from a single year, we assume no seasonality and set 

0  . For the constant force of infection model (model A) fitted to the re-defined PRNT 

data a beta-binomial likelihood was defined as described previously (chapter 2). All models 

were fitted using the R Statistical Package (version 3.1.0) [159]. 

 

Deviance Information Criterion (DIC) 

Goodness of fit of each model variant was assessed using the DIC calculated by: 

ˆ 2D pD C DI   , 

where D̂  is the deviance at the posterior mean:  

 og |ˆ 2lD P data      . 

pD  is the effective number of parameters calculated as the difference between the 

deviance of the posterior mean  D  and the deviance at the posterior mean  D̂ . 

    ˆpD D D  , 

where  2log |D P data      . 

 

3.2.3 Estimating the Basic Reproduction Number, R0 

For the PRNT data, since we were able to estimate serotype-specific forces of infection, we 

estimated strain-specific reproduction numbers ( 0iR ) as described by Ferguson et al. [104]. 

For the constant force of infection model (model A) fitted to PRNT data, methods are 

described in chapter 2. As in chapter 2, for each model we estimated 0iR  under two 

different assumptions: 
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1. Tertiary and quaternary infections possible – here we can only analytically derive an 

expression for 0iR  in the case that there are no cross-immunity mediated 

interactions between serotypes. 

2. Individuals develop complete immunity to all dengue serotypes after secondary 

infection – in this case we can explore different assumptions about cross-immunity.  

Assumption 1: Tertiary and quaternary infection possible. 

When tertiary and quaternary infections are possible, we can only estimate 0iR  assuming 

there are no cross-immunity mediated interactions between serotypes. Thus estimates 

cannot be derived for models D2-D4 (equal interaction, primary interaction, and secondary 

interaction models). 

Following Ferguson et al. [104], the serotype–specific basic reproduction number under 

assumption 1 is given by: 

0

0
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, 
(3.7) 

where   is the reciprocal of the infectious period (1/6 days) [126,127], ( )f a  is the 

probability density function of the age distribution of the population and ( )iz a  is the 

proportion seropositive to serotype i at age a. Assuming temporal changes in the force of 

infection are relatively small ( /d dt  ), for model D1 equation (3.7) reduces to: 
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The serotype-specific proportion of seropositive individuals of age a, ( )iz a , for model D1 

(no interaction) is given by: 

 ( ) 1 expi iz a a     (3.8) 
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Assumption 2: Complete immunity after secondary infection 

If only primary and secondary infections can occur, we can relax the assumption of no cross-

immunity between serotypes. Following Ferguson et al.[104], the serotype–specific basic 

reproduction number for the no interaction, equal interaction, primary interaction, and 

secondary interaction models (D1 – D4) is given by: 

0
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Here ( , )x a t  is the proportion seronegative at age a and time t and ji  is the relative 

infectiousness of someone infected with serotype j  following infection with serotype i

(relative to a primary infection), and other terms are as defined previously. We set ji  = 1 

since this parameter cannot be estimated from serological data alone. Assuming temporal 

changes in the force of infection are relatively small ( /d dt  ), this reduces to: 
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For model D1 (no interaction) we set ji 1  , while for models D2 (equal interaction), D3 

(primary interaction), and D4 (secondary interaction) we estimate the interaction 

parameters ji . For models D1 and D2-D4 the proportion of population seropositive for 

strain j only are given in equation (3.5).  

For all calculations, ( )f a  or the probability density function of the age distribution of the 

population was calculated from demography data corresponding to each study year – either 

from the UN population estimates [128], or where available the national census data of the 

corresponding study region. 
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3.2.4 Multiple Linear Regression 

A weighted regression analysis was used to explore the relationship between the   values 

(estimated from the constant force of infection model (model A) fitted to the non-serotype 

specific seroprevalence data in chapter 2, and the   values estimated from model A fit to 

the serotype-specific PRNT data re-categorised as IgG data) and a number of environmental 

and demographic covariates (equation (3.9)). 

0 1 2 max 3 4 5 6absLat T P N G U               , (3.9) 

where   is the force of infection, absLat  is the absolute latitude, maxT  is the average 

maximum temperature, P  is the population size of the study region, N  is the total number 

of individuals sampled, G  is the GDP per capita (USD), and U  is whether the study was 

conducted in an rural or urban area (0=rural, 1=urban). Data on each covariate was 

extracted from the source publication, United Nations estimates [128], or World Bank 

estimates [160]. The model was weighted according to the variance of the   estimates 

(weights = 1/variance of the posterior distribution). The model was fitted in the R Statistical 

Package (version 3.1.0) [159]. 
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3.3 Results 

3.3.1 Parameter Estimates 

Of the 53 studies reporting age-specific seroprevalence identified in chapter 2, only nine 

studies used PRNTs. Excluding studies with fewer than 5 reported age groups from further 

analysis left a total of 7 studies from 5 countries, conducted mostly in the 1990s (4 of 7). 

Table 3.1 summarises the study and demographics of the datasets retained for analysis from 

the corresponding or closest year. Model A (constant force of infection) and models D1 – D4 

(no interaction, equal interaction, primary interaction, and secondary interaction) were 

fitted to studies summarised in Table 3.1. 

PRNT data are serotype-specific, allowing us to estimate the serotype-specific force of 

infection ( i ) and basic reproduction number ( 0iR  ) for each serotype individually (Figure 

3.1). Estimates varied widely between different surveys, again highlighting the 

heterogeneity of dengue transmission. Within the same survey, serotype-specific 

differences in transmission intensity were apparent, demonstrating how a certain serotype 

may be more dominant at any one time point. For example, for model D2 (equal interaction), 

force of infection estimates for Haiti were 0.046 (95% CrI: 0.010 – 0.179) for DENV-1 but 

0.219 (95% CrI: 0.088 – 0.445) for DENV-4. 
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Table 3.1: Summary of PRNT surveys identified and associated demographics. 

^Number of serotypes known to have been in circulation.

Country Author Year Region Age Range 
(years) 

N Serotypes^ Population size 
of study region 
(thousands) 

Rural/Urban % Aged  
<15 yrs 

Models 
used 

Cuba Guzman et al.[161] 1983 Cerro 0 – 45 1295 2 125.5 Urban 26 A, D1 – D4 

 Guzman et al.[162] 1997/98 Santiago 0 - 95 1151 2 475.6 Urban 17.3 A, D1 – D4 

Haiti Halstead et al.[29] 1996/99 Port au Prince 6 – 14 210 4 2000 Urban 43 A, D1 – D4 

Indonesia Graham et al.[163] 1995 Yogyakarta 4 – 10 1837 4 421 Urban 34 A, D1 – D4 

Peru Morrison et al.[158] 1999 Iquitos 5 – 60+ 2524 2 350 Urban 34 A, D1 – D4 

Thailand Sangkawibha et al.[164] 1980 Rayong 0 - 10 1009 4 53 Suburban 39.4 A, D1 – D4 

Thailand Rodriguez-Barraquer et 
al.[165] 

2010 Rayong 6 - 19 1647 4 230 Urban 19.3 A, D1 – D4 
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Figure 3.1: Serotype-specific estimates of A) force of infection, λi, and B) R0i estimates derived from 
model D2 (equal interaction) fitted to the PRNT datasets. Posterior median and 95% CrI shown. See 
end of chapter for references and ISO country codes. 

 

Comparison of cross-protection or enhancement parameters under different assumptions 

allowed us to estimate the probable serotype causing primary and secondary infections. 

However, due to the wide credible interval of the estimated parameter, it was difficult to 

definitively determine the sequence of infections (Table 3.2 - Table 3.5).  

For all datasets, the model fit improved when we assumed some level of inter-serotype 

interaction, demonstrating that inter-serotype interactions play an important role in dengue 

dynamics. Figure 3.2 – Figure 3.5 show the model fits for each model variant and Table 3.6 

compares the DIC for each model variant. 
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Figure 3.2: Model fits from the multi-serotype no interaction model (D1) fit to PRNT data (points).  
95% exact confidence intervals around data points, posterior median (line) and 95% CrI (shaded 
area) shown. *Multitypic (right-most column) defined as multi-typically infected with more than one 
serotype. PRNT > cut-off point for ≥2 serotypes. [Ref] refers to ISO/reference list at end of chapter. 
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Table 3.2: Summary estimates of the strain-specific forces of infection (λ) and reproduction numbers (R0i) obtained from model D1 fitted to PRNT surveys 
assuming no inter-serotype interaction. *Assumption 1: individuals can have up to 4 infections, 2: individuals develop immunity after 2 infections. 

 Country Cuba Haiti Indonesia Peru Thailand  

 Author Guzman et al.[161] Guzman et al.[162] Halstead et al.[29] Graham et al.[163] Morrison et al.[158] Sangkawibha et 
al.[164] 

Rodriguez- 
Barraquer et al.[165] 

i  

 

DENV-1 
 

0.027  
(0.025 – 0.030) 

0.013 
(0.012 – 0.014) 

0.074  
(0.030 – 0.129) 

0.046  
(0.042 – 0.051) 

0.081  
(0.077 – 0.085) 

0.030  
(0.023 – 0.038) 

0.024  
(0.020 – 0.029) 

DENV-2 
 

0.013  
(0.012 – 0.014) 

0.005 
(0.004 – 0.006) 

0.146  
(0.094 – 0.204) 

0.058  
(0.053 – 0.063) 

0.073  
(0.069 – 0.077) 

0.082  
(0.072 – 0.093) 

0.041  
(0.036 – 0.045) 

DENV-3 
 

NA NA 0.103 
(0.055 – 0.159) 

0.011 
(0.008 – 0.014) 

NA 0.051 
(0.042 – 0.060) 

0.024 
(0.020 – 0.029) 

DENV-4 
 

NA NA 0.167 
(0.115 – 0.225) 

0.018 
(0.015 – 0.022) 

NA 0.047 
(0.038 – 0.056) 

0.029 
(0.024 – 0.033) 

ii
   0.040 

(0.038 – 0.043) 
0.018 
(0.017 – 0.020) 

0.494 
(0.434 – 0.561) 

0.134 
(0.127 – 0.141) 

0.154 
(0.148 – 0.160) 

0.209 
(0.196 – 0.224) 

0.118 
(0.112 – 0.124) 

0iR  

Assumption 1 

DENV-1 
 

1.93 
(1.84 – 2.02) 

1.41 
(1.37 – 1.2.02) 

2.97 
(1.74 – 4.53) 

2.46 
(2.30 – 2.63) 

3.70 
(3.54 – 3.86) 

1.79 
(1.58 – 2.03) 

2.10 
(1.87 – 2.36) 

DENV-2 
 

1.41 
(1.36 – 1.46) 

1.16 
(1.13 – 1.16) 

4.99 
(3.55 – 6.73) 

2.88 
(2.70 – 3.08) 

3.41 
(3.27 – 3.55) 

3.36 
(3.05 – 3.70) 

3.06 
(2.79 – 3.36) 

DENV-3 
 

NA NA 3.77 
(2.48 – 5.31) 

1.31 
(1.23 – 1.40) 

NA 2.40 
(2.15 – 2.68) 

2.10 
(1.87 – 2.35) 

DENV-4 
 

NA NA 5.59 
(4.10 – 7.33) 

1.52 
(1.42 – 1.63) 

NA 2.28 
(2.04 – 2.56) 

2.34 
(2.10 – 2.60) 

0iR  

Assumption 2 

DENV-1 
 

1.93 
(1.84 – 2.02) 

1.41 
(1.37 – 1.2.02) 

6.91 
(6.05 – 7.98) 

3.11 
(2.96 – 3.28) 

3.70 
(3.54 – 3.86) 

3.56 
(3.35 – 3.79) 

4.05 
(3.82 – 4.31) 

DENV-2 
 

1.41 
(1.36 – 1.46) 

1.16 
(1.13 – 1.16) 

7.80 
(6.70 – 9.15) 

3.45 
(3.28 – 3.64) 

3.41 
(3.27 – 3.55) 

4.42 
(4.13 – 4.74) 

4.64 
(4.37 – 4.94) 

DENV-3 
 

NA NA 7.20 
(6.26 – 8.35) 

2.59 
(2.48 – 2.71) 

NA 3.80 
(3.56 – 4.07) 

4.05 
(3.82 – 4.30) 

DENV-4 
 

NA NA 8.19 
(7.01 – 9.64) 

2.66 
(2.54 – 2.79) 

NA 3.75 
(3.52 – 4.01) 

4.17 
(3.93 – 4.43) 

 LnL -1631.9 -1091.3 -137.3 -2632.8 -2898.5 -1320.7 -1785.2 
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Figure 3.3: Model fits from the multi-serotype equal interaction model (D2) fit to PRNT data (points). 
95% exact confidence intervals around data points, posterior median (line) and 95% CrI (shaded 
area) shown. *Multitypic (right-most column) defined as multi-typically infected with more than one 
serotype. PRNT > cut-off point for ≥2 serotypes. [Ref] refers to ISO/reference list at end of chapter. 
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Table 3.3: Summary estimates of the force of infection (λ) and serotype-specific reproduction number (R0i) assuming inter-serotype interactions are equal 
for all serotype combinations. Model D2 (equal interaction) fitted to PRNT data. 

*φ is the interaction parameter describing susceptibility enhancement-inhibition estimated using model D2. 

 

 

 Country Cuba Haiti Indonesia Peru Thailand 

 Author Guzman et al.[161] Guzman et al.[162] Halstead et al.[29] Graham et al.[163] Morrison et al.[158] Sangkawibha et 
al.[164] 

Rodriguez- 
Barraquer et al.[165] 

i  

 

DENV-1 
 

0.027 
(0.024 – 0.030) 

0.013 
(0.012 – 0.015) 

0.046 
(0.010 – 0.179) 

0.042 
(0.037 – 0.047) 

0.062 
(0.057 – 0.068) 

0.021 
(0.015 – 0.029) 

0.012 
(0.012 – 0.016) 

DENV-2 
 

0.007 
(0.005 – 0.008) 

0.003 
(0.002 – 0.004) 

0.120 
(0.038 – 0.176) 

0.056 
(0.050 – 0.062) 

0.056 
(0.050 – 0.063) 

0.081 
(0.069 – 0.095) 

0.033 
(0.029 – 0.037) 

DENV-3 
 

NA NA 0.081 
(0.023 – 0.373) 

0.008 
(0.006 – 0.010) 

NA 0.041 
(0.033 – 0.051) 

0.012 
(0.009 – 0.016) 

DENV-4 
 

NA NA 0.219 
(0.088 – 0.445) 

0.013 
(0.011 – 0.017) 

NA 0.037 
(0.029 – 0.047) 

0.018 
(0.014 – 0.021) 

ii
   0.033 

(0.031 – 0.036) 
0.016 
(0.015 – 0.018) 

0.518 
(0.403 – 0.681) 

0.119 
(0.112 – 0.127) 

0.118 
(0.112 – 0.125) 

0.182 
(0.167 – 0.198) 

0.075 
(0.070 – 0.080) 

 *  1.350 
(0.691 – 2.024) 

0.128  
(0.005 – 0.519) 

0.475 
(0.107 – 0.994) 

1.100 
(0.898 – 1.330) 

0.898 
(0.697 – 1.120) 

1.199 
(0.935 – 1.493) 

5.561 
(4.728 – 6.530) 

0iR  

 

DENV-1 
 

1.89 
(1.75 – 2.07) 

1.50 
(1.43 – 1.56) 

10.15 
(6.75 – 28.65) 

3.23 
(2.99 – 3.51) 

3.67 
(3.38 – 3.99) 

3.54 
(3.21 – 3.94) 

2.49 
(2.29 – 2.71) 

DENV-2 
 

1.32 
(1.13 – 1.63) 

1.46 
(1.30 – 1.54) 

10.94 
(7.33 – 19.03) 

3.50 
(3.25 – 3.77) 

3.56 
(3.26 – 3.92) 

4.32 
(3.92 – 4.79) 

3.25 
(3.00 – 3.53) 

DENV-3 
 

NA NA 10.50 
(6.97 – 19.55) 

2.77 
(2.56 – 3.02) 

NA 3.76 
(3.40 – 4.18) 

2.49 
(2.29 – 2.71) 

DENV-4 
 

NA NA 11.81 
(7.83 – 19.57) 

2.84 
(2.62 – 3.09) 

NA 3.71 
(3.35 – 4.13) 

2.62 
(2.40 – 2.84) 

 LnL -1631.9 -1091.3 -137.3 -2632.8 -2885.9 -1320.7 -1785.2 
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Figure 3.4: Model fits from the multi-serotype primary interaction model (D3) fit to PRNT data 
(points).  95% exact confidence intervals around data points, posterior median (line) and 95% CrI 
(shaded area) shown. *Multitypic (right-most column) defined as multi-typically infected with more 
than one serotype. PRNT > cut-off point for ≥2 serotypes. [Ref] refers to ISO/reference list at end of 
chapter.
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Table 3.4: Summary estimates of the force of infection (λ) and serotype-specific reproduction number (R0i) assuming inter-serotype interactions are 
dependent only on the primary infecting serotype. Model D3 (primary interaction) fitted to PRNT data.

  Cuba  Haiti Indonesia Peru Thailand  

 Author Guzman et 
al.[161] 

Guzman et al.[162] Halstead et al.[29] Graham et al.[163] Morrison et al.[158] Sangkawibha et 
al.[164] 

Rodriguez- 
Barraquer et al.[165] 

i  

 

DENV-1 
 

0.028 
(0.026 – 0.031) 

0.013 
(0.012 - 0.015) 

0.116 
(0.013 – 0.312) 

0.036 
(0.027 – 0.048) 

0.026 
(0.022 – 0.030) 

0.014 
(0.008 – 0.026) 

0.018 
(0.002 – 0.034) 

DENV-2 
 

0.004 
(0.003 – 0.006) 

0.003 
(0.002 – 0.004) 

0.045 
(0.014 – 0.182) 

0.046 
(0.038 – 0.060) 

0.091 
(0.086 – 0.097) 

0.106 
(0.082 – 0.126) 

0.011 
(0.007 – 0.024) 

DENV-3 
 

NA NA 0.115 
(0.017 – 0.309) 

0.006 
(0.004 – 0.014) 

NA 0.028 
(0.019 – 0.046) 

0.021 
(0.004 – 0.035) 

DENV-4 
 

NA NA 0.126 
(0.032 – 0.317) 

0.029 
(0.016 – 0.041) 

NA 0.030 
(0.018 – 0.049) 

0.026 
(0.006 – 0.041) 

ii
   0.033 

(0.030 – 0.036) 
0.016 
(0.015 – 0.017) 

0.452 
(0.358 – 0.579) 

0.119 
(0.111 – 0.126) 

0.117 
(0.111 – 0.123) 

0.180 
(0.165 – 0.196) 

0.075 
(0.070 – 0.080) 

  
1   

4.188 
(2.167 – 6.716) 

0.361 
(0.018 – 1.414) 

1.785 
(0.244 – 12.465) 

0.596 
(0.038 – 1.670) 

0.011 
(0.000 – 0.053) 

0.397 
(0.018 – 1.641) 

9.434 
(0.202 – 19.264) 

2   0.126 
(0.005 – 0.736) 

0.143 
(0.005 – 0.719) 

0.237 
(0.013 – 1.065) 

0.333 
(0.013 – 1.345) 

4.904 
(3.736 – 6.291) 

2.781 
(1.492 – 4.612) 

0.653 
(0.031 – 3.294) 

3   
NA NA 1.095 

(0.150 – 5.693) 
0.464 
(0.018 – 2.789) 

NA 0.473 
(0.029 – 1.526) 

11.475 
(1.227 – 19.503) 

4   NA NA 0.510 
(0.052 – 2.011) 

4.277 
(1.804 – 7.217) 

NA 0.759 
(0.080 – 1.978) 

9.644 
(1.374 – 19.101) 

0iR  DENV-1 
 

1.41 
(1.17 – 1.72) 

1.47 
(1.35 – 1.47) 

5.08 
(1.13 – 12.07) 

3.71 
(2.30 – 5.12) 

5.02 
(4.78 – 5.26) 

5.03 
(2.77 – 6.63) 

1.46 
(1.06 – 5.20) 

DENV-2 
 

2.02 
(1.61 – 2.19) 

1.45 
(1.23 – 1.54) 

11.94 
(7.10 – 17.58) 

4.43 
(2.88 – 5.25) 

1.43 
(1.20 – 1.72) 

2.48 
(1.49 – 3.79) 

5.03 
(3.74 – 5.62) 

DENV-3 
 

NA NA 7.17 
(2.47 – 13.78) 

3.59 
(1.34 – 5.17) 

NA 4.99 
(3.13 – 6.59) 

1.24 
(1.04 – 4.02) 

DENV-4 
 

NA NA 10.52 
(5.90 – 16.49) 

1.55 
(1.00 – 2.08) 

NA 4.25 
(2.57 – 6.29) 

1.45 
(1.08 – 4.05) 

 LnL -1625.4 1091.8 -136.7 -2629.1 -2804.8 -1316.3 -1779 
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Figure 3.5: Model fits from the multi-serotype secondary interaction model (D4) fit to PRNT data 
(points). 95% exact confidence intervals around data points, posterior median (line) and 95% CrI 
(shaded area) shown. Multitypic (right-most column) defined as multi-typically infected with more 
than one serotype. PRNT > cut-off point for ≥2 serotypes. [Ref] refers to ISO/reference list at end of 
chapter.
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Table 3.5: Summary estimates of the force of infection (λ) and serotype-specific reproduction number (R0i) assuming inter-serotype interactions are 
dependent only on the secondary infecting serotype. Model D4 (secondary interaction) fitted to PRNT data. 
 

 Country Cuba Haiti Indonesia Peru Thailand 

 Author Guzman et al.[161] Guzman et al.[162] Halstead et al.[29] Graham et al.[163] Morrison et al.[158] Sangkawibha et 
al.[164] 

Rodriguez-Barraquer 
et al.[165] 

i  DENV-1 
 

0.028 
(0.026 – 0.031) 

0.013 
(0.012 – 0.015) 

0.035 
(0.008 – 0.174) 

0.044 
(0.033 – 0.053) 

0.026 
(0.022 – 0.030) 

0.017 
(0.011 – 0.026) 

0.013 
(0.009 – 0.018) 

DENV-2 
 

0.004 
(0.003 – 0.006) 

0.003 
(0.002 – 0.004) 

0.076 
(0.023 – 0.267) 

0.055 
(0.044 – 0.067) 

0.092 
(0.086 – 0.097) 

0.096 
(0.078 – 0.113) 

0.029 
(0.024 – 0.039) 

DENV-3 
 

NA NA 0.077 
(0.016 – 0.313) 

0.007 
(0.005 – 0.010) 

NA 0.035 
(0.023 – 0.048) 

0.013 
(0.009 – 0.019) 

DENV-4 
 

NA NA 0.208 
(0.056 – 0.401) 

0.013 
(0.010 – 0.017) 

NA 0.033 
(0.022 – 0.046) 

0.019 
(0.014 – 0.027) 

ii
   0.033 

(0.030 – 0.036) 
0.016 
(0.015 – 0.017) 

0.456 
(0.363 – 0.575) 

0.119 
(0.111 – 0.126) 

0.117 
(0.111 – 0.124) 

0.180 
(0.165 – 0.196) 

0.075 
(0.071 – 0.080) 

  
1  0.125 

(0.005 – 0.699) 
0.142 
(0.005 – 0.705) 

1.061 
(0.026 – 8.135) 

0.558 
(0.021 – 2.443) 

4.909 
(3.735 – 6.313) 

3.030 
(0.138 – 8.914) 

5.287 
(0.343 – 9.690) 

2  4.158 
(2.173 – 6.727) 

0.359 
(0.016 – 1.444) 

1.322 
(0.056 – 8.146) 

1.061 
(0.066 – 2.882) 

0.011 
(0.000 – 0.052) 

0.187 
(0.008 – 0.965) 

7.975 
(3.015 – 9.929) 

3  NA NA 0.479 
(0.013 – 5.901) 

2.774 
(0.106 – 9.050) 

NA 1.793 
(0.100 – 5.862) 

4.838 
(0.319 – 9.715) 

4  NA NA 0.372 
(0.014 – 3.571) 

0.912 
(0.038 – 4.090) 

NA 1.260 
(0.054 – 5.463) 

4.408 
(0.321 – 9.570) 

0iR  

 

DENV-1 
 

1.41 
(1.17 – 1.71) 

1.47 
(1.35 – 1.54) 

7.44 
(4.46 – 12.44) 

2.82 
(2.00 – 4.08) 

5.03 
(4.80 – 5.27) 

3.65 
(2.38 – 5.22) 

2.27 
(1.95 – 2.78) 

DENV-2 
 

2.02 
(1.63 – 2.19) 

1.45 
(1.24 – 1.53) 

9.04 
(5.42 – 14.24) 

3.39 
(2.39 – 4.63) 

1.43 
(1.20 – 1.73) 

3.10 
(2.32 – 3.95) 

3.46 
(2.84 – 3.93) 

DENV-3 
 

NA NA 8.01 
(3.86 – 13.77) 

1.99 
(1.07 – 3.47) 

NA 3.27 
(2.08 – 5.12) 

2.56 
(1.98 – 3.41) 

DENV-4 
 

NA NA 7.86 
(4.56 – 13.27) 

2.69 
(1.98 – 3.50) 

NA 3.42 
(2.43 – 5.17) 

2.33 
(1.97 – 2.98) 

 LnL -1625.4 -1091.8 -137.1 -2632.7 -2804.8 -1317.6 -1784.6 
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Table 3.6: DIC comparison of different model variants (A, D1-D4) for serotype-specific PRNT datasets. 

 

Interestingly, the serotype-specific estimates of the reproduction number did not scale 

linearly with the estimated values of the force of infection, although the relative order is 

maintained i.e. if 3 4  then 03 04R R . If one serotype dominates, as was the case in Haiti, 

changes in the force of infection of the other non-dominant serotypes marginally affect the 

estimates of the reproduction number of the non-dominating serotypes.  

In order to compare the estimates of dengue force of infection derived from IgG and PRNT 

assays, we also analysed the PRNT data ignoring strain-specificity (i.e. treating PRNT data as 

if it were IgG data), by categorising individuals as ‘seronegative’ if their PRNT titers were 

negative for all serotypes, or seropositive if they tested positive for at least one serotype. 

We used the same thresholds for seronegativity used by each source study. The resulting 

force of infection estimates generated using model A were consistent with the sum of the 

individual serotype-specific λ estimates obtained from the full PRNT datasets (Table 3.7 

summarises the parameter estimates and Figure 3.7 show the model fits). This consistency 

was highest when some level of inter-serotype interaction (cross-protection or 

enhancement) was allowed for (Figure 3.6). 

Author/Country/Ref Model Variant DIC 

 D1 

No 
interaction 

D2 

Equal 
interaction 

D3 

Primary 
interaction 

D4 

Secondary 
interaction 

Guzman/Cuba/[161] 3300 3300 3279 3283 

Guzman/Cuba/[162] 2223 2223 2221 2220 

Halstead/Haiti/[29] 278 278 277 275 

Graham/Indonesia/[163] 5300 5300 5294 5298 

Morrison/Peru/[158] 5819 5819 5632 5633 

Sangkawibha/Thailand/[164] 2657 2657 2648 2649 

Rodriguez-
Barraquer/Thailand/[165] 

3602 3602 3582 3597 
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Figure 3.6: Total force of infection (λ) estimates (for all 4 serotypes) derived from models A (constant 
force of infection), D1-D4 (no interaction, equal interaction, primary interaction, and secondary 
interaction models) fitted to PRNT datasets (treating PRNT data as IgG data). Models D2 – D4 allow 
for cross-protection between serotypes. Posterior median and 95% CrI shown. 

 

Table 3.7: Summary estimates where the constant force of infection model (A) was fitted to PRNT 
data  re-categorised into ‘seronegative’ (PRNT < cut-off for all serotypes) or ‘seropositive’ (PRNT > 
cut-off for at least one serotype). 

    
0iR  (95% CrI)  

Country Author   

(95% CrI) 

  

(95% CrI) 
Assumption 1 Assumption 2 LnL 

Cuba Guzman et al.[161] 0.040 
(0.032 – 0.073) 

0.184 
(0.136-0.424) 

1.52 
(1.40 – 2.14) 

1.52 
(1.40 – 2.14) 

-893 

 Guzman et al.[162] 0.014 
(0.012 – 0.021) 

0.176 
(0.137-0.337) 

1.14 
(1.12 – 1.23) 

1.14 
(1.12 – 1.23) 

-652 

Haiti Halstead et al.[29] 0.398 
(0.340 – 0.596) 

0.062 
(0.023-0.520) 

3.67 
(3.26 – 5.08) 

6.32 
(5.49 – 9.16) 

-22 

Indonesia Graham et al.[163] 0.120 
(0.107 – 0.170) 

0.074 
(0.047-0.272) 

1.89 
(1.79 – 2.32) 

2.81 
(2.59 – 3.77) 

-1234 

Peru Morrison et al.[158] 0.128 
(0.121 – 0.146) 

0.037 
(0.028-0.087) 

2.94 
(2.82 – 3.28) 

2.94 
(2.82 – 3.28) 

-10254 

Thailand Sangkawibha et 
al.[164] 

0.170 
(0.141 – 0.301) 

0.334 
(0.280-0.529) 

2.15 
(1.94 – 3.15) 

3.33 
(2.86 – 5.45) 

-581 

 Rodriguez- 
Barraquer et al.[165] 

0.076 
(0.069 – 0.097) 

0.097 
(0.073-0.216) 

1.81 
(1.73 – 2.09) 

2.77 
(2.56 – 3.50) 

-1071 
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Figure 3.7: Model A (constant force of infection) fit to PRNT data (points), having re-categorised 
them as ‘seropositive’ (PRNT > cut-off for at least one serotype) and ‘seronegative’ (PRNT < cut-off 
for all serotypes). 95% exact confidence intervals around data points, posterior median (line) and 
95% CrI (shaded area) shown. 

 

3.3.2 Regression Analysis 

Multiple regression analysis was conducted to explore the relationship between estimated 

dengue transmission intensity and the covariates summarised in Figure 3.8. Table 3.8 

summarises the analysis results. The multiple regression with all 6 predictors produced 

R2=0.37. The only predictor with strong evidence for an association with   was whether the 

study was conducted in an urban or rural setting, indicating that urban environments are 

associated with a higher force of infection. The distance from the equator (absolute 

latitude) and GDP per capita had weak evidence for a negative association with transmission 

intensity (Table 3.8). 
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Figure 3.8: Scatterplots showing the relationship between estimated force of infection, and 
demographic and environmental covariates. A) Absolute latitude, B) average maximum temperature, 
C) sample size, D) population size of study region, E) whether the study was conducted in an urban 
or rural setting, and F) GDP per capita (USD). Each point is an estimate for a single year. 

 

  



Page 97 of 228 
 

Table 3.8: Weighted multiple regression results 

Variable Correlation with   Coefficients (95% CI) p-value 

Intercept - 5.33x10-2 

(-3.16x10-2 – 1.38x10-1) 

0.21 

Absolute latitude -0.14 -8.98x10-4 

(-1.88x10-3 – 8.15x10-5) 

0.07 

Average maximum temperature 0.20 -1.08x10-3 

(-4.44x10-3 – 2.28x10-3) 

0.52 

Sample size -0.29 -2.54x10-7 

(-1.09x10-5 – 1.04x10-5) 

0.96 

Population size of study region -0.16 -1.57x10-9 

(-4.31x10-9 – 1.17x10-9) 

0.25 

Urban/Rural^ 0.18 3.66x10-2 

(1.71x10-2 – 5.60x10-2) 

<0.001 

GDP per capita (USD) -0.23 -8.03x10-7 

(-1.64x10-6 – 3.56x10-8) 

0.06 

^coded as 1=urban, 0=rural.  
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3.4 Discussion 

In the first part of this discussion I will discuss the results of the PRNT data, and in the latter 

half discuss the results and limitations of serology data in general (chapter 2 and 3). 

From a literature review, we selected 7 studies reporting age-structured and serotype-

specific seroprevalence data obtained with PRNT assays from 5 countries between 1980 and 

2010. As in the previous chapter, from each dataset, we estimated dengue transmission 

intensity, quantified by the force of infection (λ) and the basic reproduction numbers ( 0iR ). 

Although we can only calculate a total force of infection across all serotypes from non-

serotype specific data (such as surveys using IgG ELISA assays), such data are still sufficient 

for assessing heterogeneity in overall dengue transmission intensity between different 

populations. However as demonstrated by the variable serotype specific i  estimated from 

the PRNT data, even within the same population, the dominant serotype in circulation 

changes over time [23,28,166]. Furthermore, we found that estimates of 0iR varied between 

serotypes, suggesting serotypes (or genotypes) differ in their intrinsic transmissibility 

[28,104,165]. These findings are in line with recent studies estimating type-specific 0iR  from 

10 endemic countries [167]. Therefore the assumption that all serotypes have identical i  

required to estimate serotype-specific transmission intensity from IgG data must be 

regarded as a crude simplification. However, we found that non-serotype specific data do 

yield an estimate of the total force of infection from all serotypes consistent with the sum of 

serotype-specific forces of infection able to be derived from PRNT data, particularly when 

analysis of the latter allowed for inter-serotype interaction (cross-protection or 

enhancement) [23]. 

Given the highly heterogeneous nature of dengue transmission, weighted multiple 

regression was conducted to explore the relationship between the estimated forces of 

infection and various potential predictors. Whether the study was conducted in an urban or 

rural environment was the only covariate to have a statistically significant association, with 

urban areas associated with a higher force of infection. Ideally we would have explored the 

associations using a meta-regression, allowing for the between trial variance with a random 

effects model. However since the outcome of interest (force of infection) was in itself 

calculated from a model, we could not calculate sampling variances from our data. 
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Our analysis has a number of additional limitations. First, in translating force of infection 

estimates into estimates of 0iR  we rely on a model which assumes exposure is due to 

endemic transmission, meaning all resulting 0iR estimates are by definition greater than 

one. Clearly this is less appropriate for settings with low seroprevalence such as Texas 

(chapter 2), where some or all of the seropositivity detected is due to imported cases rather 

than local transmission.  

Second, as in chapter 2 it is not possible to disentangle temporal from any age-dependent 

variation in exposure from single cross-sectional PRNT surveys, requiring broad assumptions 

to be made about such variation. Hence, for simplicity, we generally assumed constant 

transmission intensity over time when analysing single cross-sectional surveys. However we 

know from analysis of Nicaraguan data collected over 7 years (chapter 2) that there is long 

term variation in transmission intensity. Unfortunately PRNT data from the same site across 

multiple years were not available. Furthermore the majority of surveys analysed here were 

conducted in the 1990s hence the estimates may no longer be an accurate reflection of 

current dengue transmission dynamics. 

Third, estimates of transmission intensity (particularly 0iR ) are sensitive to assumptions 

about cross-protective immunity between serotypes – and most notably the extent to which 

tertiary and quaternary infections contribute to transmission.  While there is increasing 

evidence that tertiary and quaternary infections occur [25,28], there is little quantitative 

data on the infectiousness of such infections relative to primary and secondary infections. 

Consistent with published theory [166], our estimates of 0iR  were lower when we assumed 

tertiary and quaternary infections were as infectious as earlier infections (Assumption 1) 

than when we assumed complete immunity was acquired after secondary infection 

(Assumption 2). When one serotype had a very large force of infection relative to the other 

three serotypes (e.g. Haiti model 2: DENV-1 at 0.046 (95% CI: 0.010 – 0.179) compared to 

DENV-4 at 0.219 (95% CI: 0.088 – 0.445)), then regardless of the value of i  of the remaining 

serotypes, all 0iR  estimates were large and similar to each other. Thus it appears that the 

value of 0iR  is dominated by very large i  and changes in the other three i  play a minimal 

role. This uncertainty has relevance for planning interventions [23,26,105], since 0R  
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determines the coverage and effectiveness of vaccination or vector control measures 

required to achieve control of transmission [168]. The results from trials of the Sanofi live-

attenuated chimeric vaccine [60,61] make this issue more pressing, since reliable estimates 

of transmission intensity – and of the health burden due to dengue – will be important in 

strategic planning and resource allocation for vaccination in different contexts. 

Fourth, while PRNT assays are currently the gold standard for routine dengue serotyping, 

cross-reactivity means care must be taken when interpreting the results of serosurveys in 

areas where there is co-circulation of different flaviviruses or routine use of yellow fever or 

Japanese Encephalitis vaccine [20].  

Finally, our literature search highlighted that use of serological surveys as a tool to assess 

transmission remains rare for dengue, with publications of outbreak reports and notified 

case incidence data being much more common. Generally, published models estimating 

dengue transmission risk have therefore used notification data, the reliability of which 

therefore heavily depend on the quality of the surveillance system [169]. Gaining a better 

global picture of the variation in transmission will improve both estimates of the disease 

burden caused by dengue and assist in control planning. We would therefore advocate 

much more widespread and routine use of serological surveys as a surveillance tool which 

provides invaluable data for an immunising infection such as dengue. While PRNT data 

provide the maximum information, these chapters (chapters 2 and 3) shows that even the 

much less expensive ELISA-based assays would provide reasonable baseline estimates of 

overall transmission intensity.  
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3.6 ISO Abbreviations 

 

ISO 3 letter code Country 

CUB Cuba 

PER Peru 

HTI Haiti 

IDN Indonesia 

THA Thailand 

 

 



Page 103 of 228 
 

4 Estimating Dengue Transmission Intensity from Case-notification 

Data from Multiple Countries 

 Work in this chapter formed the basis of: Imai N, Dorigatti I, Cauchemez S, Ferguson NM. 

Estimating Dengue Transmission Intensity from Case-notification Data from Multiple 

Countries. PLoS Negl Trop Dis 2016; 10: e0004833. 

In this chapter, I collate age-stratified case notification data from the literature and develop 

models to estimate the force of infection. Comparing these estimates to those obtained 

from seroprevalence data (chapters 2 and 3) shows that incidence data can be equally 

useful whilst also highlighting the limitations associated with such data. 

4.1 Introduction 

Dengue is the most widely distributed mosquito-borne viral infection, but assessment of its 

geographic variation in transmission remains challenging. Analysis based on mapping the 

probability of occurrence of dengue estimated dengue causes 390 million annual infections 

worldwide [108]. However, these estimates relied on assuming a direct linear correlation 

between probability of occurrence and incidence, rather than estimating transmission 

intensity as quantified by the force of infection or reproduction number. Here we develop 

methods to estimate transmission intensity from routine, age-stratified surveillance data on 

suspected dengue case incidence.   

All four serotypes of dengue virus (DENV-1, 2, 3, and 4) can cause dengue fever with the risk 

of severe dengue increasing with subsequent heterologous infections. Once infected, 

individuals develop long-lived protective homotypic immunity and short-lived heterotypic 

immunity [23,123]. Once antibody levels wane below the threshold required to provide 

protection ADE becomes a risk, leading to secondary heterologous infection having an 

enhanced risk of causing clinically apparent disease [4,20]. Hence while the majority of 

primary dengue infections are asymptomatic [170], secondary heterologous infection has 

been identified as a major risk factor for symptomatic and severe dengue [13,171,172]. 

Therefore the majority of cases seen in hospitals [122] or reported via surveillance systems 

[173] tend to be secondary infections.  
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In previous work, we estimated dengue transmission intensity from age-stratified 

seroprevalence data but highlighted the relative paucity of seroprevalence data compared 

with routine surveillance data on the incidence of suspected dengue [174]. This reflects 

dengue fever, DHF, and DSS being notifiable diseases in most countries [90–94]. Indeed, in 

many countries, incidence reports are the only type of data available. However the clinical 

diagnostic criteria vary and different countries have their own reporting standards [53]. The 

WHO collates surveillance data from dengue affected countries via its DengueNet system, 

but the data are not always updated regularly and there can be inconsistencies with other 

sources (e.g. WHO regional offices or countries) of national and subnational data [53].  

The lack of systematic data on dengue incidence, the lack of standardized reporting 

procedures or diagnostic criteria, and the lack of integration between private and public 

sectors makes accurate estimation of the true dengue burden difficult [52]. Previous studies 

have attempted to estimate the burden of dengue and associated economic costs in South 

East Asia and South America by calculating expansion factors from systematic literature 

reviews, collation of existing data, and population-based cohorts [52,54–57]. However, the 

lack of standardisation also affects the validity of expansion factors (calculated by dividing 

the cumulative incidence of dengue cohort studies by that from passive data at both 

national and local levels) as estimates of underreporting. Due to the wide spectrum of 

clinical manifestations and the lack of routine laboratory testing, dengue is globally 

underreported and analyses of officially reported dengue numbers need to take this into 

account [58]. 

While reported incidence levels cannot be relied upon to directly quantify disease burden, 

the age distribution of dengue cases provides more reliable information on dengue 

transmission intensity. Here we propose an approach for estimating average transmission 

intensity - as quantified by the force of infection or basic reproduction number ( 0R ) – from 

age-stratified incidence data. We compare estimates derived from seroprevalence and 

incidence data and assess the level of under-reporting of dengue disease. In addition, we 

estimate the relative contribution of primary to quaternary infections to the observed 

burden of dengue disease incidence. 
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4.2 Methods 

4.2.1 Literature Search 

Web of Knowledge and PubMed were searched for age-stratified incidence data since 1980 

as we were interested in contemporary dengue transmission and wanted to be consistent 

with our previous study (chapters 2 and 3) where we collated age-stratified seroprevalence 

data [174]. Search terms used were: ‘dengue’ and ‘age’ and (‘incidence’ or ‘cases’ or 

‘notifications’ or ‘notified cases’) with inclusion criteria mapped to subject headings. 

Additional web-based searches were performed to augment the primary literature search. 

Data were extracted from published datasets where authors reported age-stratified 

incidence data with corresponding population age-structure data.  

4.2.2 Estimating the Force of Infection and Reporting Rates 

We consider a population stratified into M age groups and denote aj  and aj+1 the lower and 

upper age bounds respectively of age group j  (j=0,…, M-1). Our model assumes perfect 

homotypic protection following infection with any serotype. Thus, an individual can 

experience a maximum of four dengue infections in their life (corresponding to the four 

dengue serotypes). Ideally, we would allow forces of infection to vary by serotype (DENV-1 

to DENV-4). However as serotype-specific data were not available, we assumed circulating 

serotypes were equally transmissible, i.e. had the same force of infection,  , which does 

not vary over time. The incidence of primary infections ( 1I ) for any one serotype for people 

in an age group j  is calculated as the integral of the probability of being seronegative to all 

four strains at age a  multiplied by four times the constant serotype-specific infection 

hazard,  , (since primary infection can occur with any of the four serotypes). Age a  spans 

the range 
1[ , ]j ja a 

, as described by the bounds of integrations. Equations (4.1) - (4.4) give 

the incidence of primary to quaternary infections respectively when four serotypes are in 

circulation.  
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 The incidence of primary infections (  1I j ) is given by: 
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(4.1) 

The incidence of secondary infections (  2I j ) is given by: 

   
1

1 1

3

2

3 3 4 4

4 3 (1 )

4 3

j

j

j j j j

a
a a

a

a a a a

I j e e da

e e e e

 

   




 

 

   

 

      
   


 

. 

(4.2) 

The incidence of tertiary infections (  3I j ) is given by: 
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(4.3) 

Finally the incidence of quaternary infections (  4I j ) is given by: 
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Total dengue infection incidence  T = 1 2 3 4I I I I    is, as expected: 
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 The average observed annual disease incidence rate per person in an age group is then 

given by a weighted sum of the primary to quaternary infection rates: 

 
 

  2 1 1 3 3 4

1
( ) ( ) ( ) ( )D j I j I j I j I j B

w j
          

, 
(4.5) 

where    1j jw j a a   is the width of the age group j ,   is the probability that a 

secondary infection results in a detected dengue case (=reporting rate), 1  is the probability 

that a primary infection is detected relative to a secondary infection, and 3  is the 

probability that a tertiary or quaternary infection is detected relative to a primary infection. 

Here B  is a baseline risk of disease used to represent any non-dengue related illnesses that 

are misdiagnosed as dengue, and is only estimated when fitting incidence where laboratory 

confirmation was lacking. Since we assumed that most symptomatic cases were secondary 

infections, we estimated the probability of detecting all other cases relative to secondary 

cases. We estimated these parameters using age-structured incidence data taking into 

account the age-structure of the population. Where fewer than 4 serotypes were in 

circulation, we changed the weighted sum of infection incidence accordingly as described 

below. 
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If there are fewer than four serotypes in circulation 

When there are fewer than four serotypes in circulation, the maximum number of infections 

an individual can acquire also changes accordingly. 

1) Only one serotype in circulation 

With only one serotype in circulation, individuals will only be infected once in their lifetime. 

Thus the incidence of primary infection in age group j  (with lower age bound aj  and upper 

age bound aj+1) 1( )I j is given by: 
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The incidence of disease in age group j  is then given by: 

 
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2) With two serotypes in circulation 

With two serotypes in circulation, individuals can have up to two infections in their lifetime. 

The incidence of primary infection in age group j  (with lower age bound aj  and upper age 

bound aj+1) 1( )I j  is given by: 
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and the incidence of secondary infection in age group j , 2 ( )I j is given by: 
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The incidence of disease in age group j  is then given by: 

 
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3) With three serotypes in circulation 

With three serotypes in circulation, individuals can have a maximum of 3 infections.  

The incidence of primary infection in age group j  (with lower age bound aj  and upper age 

bound aj+1) 1( )I j  is given by: 

   

 

1

1

3

1

3 3

3
j

j

j j

a
a

a

a a

I j e da

e e



 








 



 


 

The incidence of secondary infection in age group j , 2 ( )I j   is given by: 
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and the incidence of tertiary infection in age group j , 3( )I j  is given by: 
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The incidence of disease in age group j  is then given by: 
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Where population numbers were not available, the population age-structure closest to the 

survey population was used (taken from census data or from United Nations estimates 

[128]). We defined two model variants.  

Model 1A and 1B: assuming a single reporting rate across all ages 

For model 1 we assumed a single baseline reporting rate (  ) across all age groups and 

estimated 4 (or 5) parameters: i ,  ,  1 , 3  (and B). Where multiple years of incidence data 

were available from the same survey we fitted each model variant to individual years 

(model 1A), and to the cumulative incidence (model 1B). 

Models 2A and 2B: Assuming age-dependent reporting rates 

For model 2 we assumed an age-dependent reporting rate (
y  and o ) that changed at a 

certain age threshold thresholdA ;  

, if 

, if 

y threshold

o threshold

a a

a a

 



 

 
; 

that we estimated additionally to i , 1 , 3  (and B) for a total of 6 (or 7) parameters.  

A single value of 1  and 3  were estimated per country. Where incidence data were 

available for multiple years, we fitted each model variant to individual years (model 2A) and 

to the cumulative incidence (model 2B).  

When fitting to the cumulative incidence e.g. cumulative incidence over 10 years, we 

multiplied the estimated annual disease incidence by 10 to take into account the survey 

period.  

Estimation Procedure 

The expected number of cases per year in age-group j  ( jC ) is: 

j j jC n D   (4.6) 

where jn  is the population size of age group j .  
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We assumed that the number of cases reported in each age-group were Dirichlet-

multinomially (DMN) distributed, as we expected the overall distribution of cases would be 

more over-dispersed than what we would expect from a multinomial distribution [175]. The 

log-likelihood is given by: 

      
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, ; ln 1/ ln 1/

1 1
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j j
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, 

(4.7) 

where   is the over-dispersion parameter characterising how different a DMN distribution 

is from the corresponding multinomial distribution (MN) with the same category 

probabilities (the larger the  , the greater the difference) and jy  is the observed number of 

cases in age class j . The probabilities ( )jp  are then calculated as the expected proportion 

of cases in one age group relative to the total number of cases across all age groups. 

j

j

jj

C
p

C



.  
(4.8) 

We then assumed that the total number of cases across all ages ( N ) is Poisson distributed: 
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(4.9) 

where   is the total expected number of cases across all age groups  jj
C .  

The full log-likelihood is then: 
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(4.10) 

Finally, the average annual incidence rate per person can be calculated using equation (4.5). 

All models were fitted to the data using a MH MCMC algorithm using a Dirichlet-multinomial 

log-likelihood with uniform priors in version 3.1.0 of the R statistical language [159]. 
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4.2.3 Calculating the Basic Reproduction Number (R0i) 

We assumed dengue transmission was at endemic equilibrium and that the force of 

infection ( ) was constant in time. We additionally assumed that all serotypes in circulation 

were equally transmissible, i.e. had the same force of infection and basic reproduction 

number. We calculated a strain-specific basic reproduction number (R0i) from the single 

force of infection ( i ) estimated under two different assumptions about the number of 

infections required to acquire complete immunity. Under assumption 1, complete 

protection is acquired upon quaternary infection.  Under assumption 2, complete protection 

is reached after secondary infection (i.e. only primary and secondary infections are 

infectious). These assumptions match that of our previous work estimating the force of 

infection from serological data (chapters 2 and 3) and allowed us to compare the R0i 

estimates obtained from both types of data [174]. 

Assumption 1 – individuals can be infected 4 times, there is no cross-immunity between 

serotypes. The basic reproduction number for serotype i  is given by: 

0
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1 ( ) ( )
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R
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
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, 
(4.11) 

where  f a  is the proportion of the population aged a .  iz a  is the proportion of 

population aged a  seropositive to serotype i and is calculated by: 
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(4.12) 
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Assumption 2 – Complete immunity after secondary infection. 

If only primary and secondary infections can occur, we can relax the assumption of no cross-

immunity between serotypes. The basic reproduction number (the same for any serotype) is 

given by: 
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(4.14) 

where  f a  is the proportion of the population aged a , n  is the number of serotypes in 

circulation,  x a  is the proportion of the population seronegative at age a  calculated by: 

   expx a a  , and  iz a  is the proportion of the population seropositive for serotype 

i  at age a  calculated by: 
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Integrating between ages ja  and 1ja  : 
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4.2.4 Comparing Force of Infection Estimates by Data Type  

We used weighted regression to assess how comparable force of infection estimates 

obtained from incidence data  inc  were with those derived from serological data  sero . 

We compared force of infection estimates from seroprevalence data described previously 

[174] and from 4 additional seroprevalence datasets (summarised in Table 4.3. Estimated as 

described in chapter 1, model A) with the estimates we derived from incidence data. 

Location- and time-matched incidence and serology data were not available, so we matched 

datasets by country, region, and survey year (within 5 years of each other). Since 

seroprevalence data represent all past infections, we compared force of infection estimates 

with those obtained from cumulative incidence data (models 1B and 2B) rather than yearly 

incidence data (Table 4.1). We used the deming regression (a weighted regression) method 

described by Ripley and Thompson [176] which explicitly accounts for measurement errors 

in both force of infection estimates from seroprevalence data (y-axis) and incidence data (x-

axis) to estimate the maximum likelihood estimation (MLE) line. Confidence intervals for the 

regression line were estimated using the jackknife estimate of the variance-covariance 

matrix between the estimated intercept and slope of the regression. The areas of the 
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symbols on the plots are proportional to the point weights, which correspond to the 

reciprocal of the variance of the error term in the linear regression. The larger circles 

indicate greater weight, i.e. smaller error. This was implemented using the deming package 

in R [177]. 

 

4.2.5 Multiple Linear Regression 

A weighted regression analysis was used to explore the relationship between the   values 

(estimated using the single reporting rate model fitted to cumulative incidence data (1B) 

where possible) and a number of environmental and demographic covariates (equation 

(4.17)). 

0 1 2 max 3 4 5 6 7absLat T P N G U Lab                  (4.17) 

where   is the force of infection, absLat  is the absolute latitude, maxT  is the average 

maximum temperature, P  is the population size of the study region, N  is the total number 

of individuals sampled, G  is the GDP per capita (USD), U  is whether the study was 

conducted in an rural or urban area (0=rural, 1=urban, 3=both), and Lab  is whether the 

cases were laboratory confirmed as dengue (0=no, 1=yes). Data on each covariate was 

extracted from the source publication, United Nations estimates [128], or World Bank 

estimates [160]. The model was weighted according to the variance of the   estimates 

(weights = 1/variance of the posterior distribution) and fitted in the R Statistical Package 

(version 3.1.0) [159]. 
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Table 4.1: Incidence datasets matched to closest serology datasets by region, year, or country 

*Although not cumulative incidence, these datasets were retained for analysis as they matched the corresponding seroprevalence surveys exactly by year 

and region. ^The two datasets reported DHF cases only; we therefore assumed all observed cases were due to secondary infections.

 
Incidence Datasets Serology Datasets 

Country  Author Survey Year Region Diagnosis Ref Author 
Survey 
Year 

Region Ref 

Brazil Penna 2001/06 Amazon Clinical [178] Silva-Nunez 2004 
Ramal do Granada 
(Acre State Amazon) 

[179] 

Brazil Cordeiro 2002/06 Pernambuco (Recife) Lab confirmed [180] Braga 2005/06 Recife (NE) [129] 

Brazil Cardoso 2000/09 Vitoria (~Rio) Lab confirmed [181] Lima 1998 Sao Paulo [92] 

Brazil Cordeiro 1995/01 
Pernambuco 
(Recife) 

Lab confirmed [180] Fernando 1996 
Paco do Lumiar, Sao Jose de Ribamar,  
Estado do Maranho 

[182] 

Laos Anker 2000/06 National Clinical [183] Vallee 2006 Vientiane [135] 

Nicaragua Hammond 1999/01 Leon Clinical/Lab [184] Balmaseda 2001/06 Managua [30] 

Singapore Anker 1999/05 National Clinical/Lab [183] Yew 2004 National [147] 

Singapore Ler 2000/07 National Lab confirmed [185] Yap 2007 National [148] 

Taiwan Lin 2003/09 Kaohsiung City Lab confirmed [186] Shu 
1997-
1998 

Liuchiu Hsiang [35] 

Thailand Thai MoH* 2000 Bangkok^ Lab confirmed [187] Perret 2000 Bangkok [152] 

Thailand Thai MoH* 2000 Ratchaburi^ Lab confirmed [187] Tuntaprasart 2000 Ratchaburi [153] 

Thailand Thai MoH* 2010 Rayong Lab confirmed [187] 
Rodriguez-
Barraquer 

2010 Rayong [188] 

Vietnam Cuong 1998/09 Hanoi Lab confirmed [189] Bartley 
1996-
1997 

Dong Thap [154] 
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4.3 Results 

4.3.1 Literature Search 

We identified 23 papers reporting incidence data. Figure 4.1 describes the search process 

and Table 4.2 summarises the studies identified. Seven papers reported age-stratified 

incidence data from multiple years, one paper reported data where the number of 

serotypes in circulation had changed over the survey years, 6 papers reported cumulative 

age-stratified incidence data, 8 papers reported age-stratified incidence data from a single 

year, and 2 papers reported age-stratified incidence data from multiple countries.  

 

Figure 4.1: Flowchart describing the literature search process for age-stratified incidence data. 

 

When considering each year separately, the identified studies provided a total of 96 

datasets from 13 countries.  The years included ranged from 1978 – 2011. The dataset 

reporting incidence data from 1978 was included since data were presented for the 11-year 

time period of 1978 – 1988 [190]. Of the 23 papers, 10 reported dengue incidence at the 
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national level and only 2 studies reported cases detected via active as well as passive 

surveillance. Three additional surveys were obtained from the Ministry of Health in Thailand 

[187] that reported age-specific incidence from Bangkok (2000), Ratchaburi (2000), and 

Rayong (2010) giving a total of 99 datasets from 13 countries. 
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Table 4.2: Summary of cross-sectional incidence datasets identified and associated demographics. *with active surveillance. 

Country Survey 
Year 

Region Diagnosis # serotypes in 
circulation 

Age range 
sampled 

Number surveyed Population  
size of study region  

Urban/Rural Ref 

Brazil 1995-2001 Pernambuco State Lab confirmed 2 0 - 80+ 8355325 8.5M Urban/Rural [191] 

 2002-2006 Pernambuco State Lab confirmed 3 0 - 80+ 8355325 8.5M Urban/Rural [191] 

 2000-2009 Vitoria Lab confirmed 3 0 - 80+ 292304 0.28M–0.32M Urban/Rural [181] 

 2001-2006 Amazon Clinical 4 0 - 70 3478916 23.6M Rural/Urban [178] 

Cambodia 2006-2008 Kampong Chan Province Lab confirmed* 4 0 - 20 804943 90000 Urban/Rural [192] 

 2006-2007 Kampong Chan Lab confirmed 4 0-14 14493 90000 Urban/Rural [193] 

China 1978-1988 Guangzhou Clinical 4 0 - 71+ 69671492 11.64M Urban [190] 

 1989-1999 Guangzhou Clinical 4 0 - 71+ 68990737 11.64M Urban [190] 

 2000-2009 Guangzhou Clinical 4 0 - 71+ 39489838 11.64M Urban [190] 

 2005-2011 Guangdong Clinical 4 0 - 80+ 88918687 104.3M Urban [90] 

Laos 2000-2006 National Clinical/Lab 4 0 - 15+ 4980938 5.4M Urban/Rural [183] 

 2010 Savannakhet Province Clinical 4 0 - 40+ 4879056 0.83M Urban [194] 

 2010 National Clinical 4 0 - 40+ 6388648 6.5M Urban/Rural [195] 

Nicaragua 1999-2001 Leon Lab confirmed 3 0 - 55 359723 0.39M Urban [184] 

Philippines 1998-2005 National Clinical/Lab 4 0 - 15+ 71661584 77.7M Urban/Rural [183] 

Puerto Rico 2006 Patillas Lab confirmed 4 0 - 40+ 16741 20200 Urban [196] 

 2007 National Lab confirmed 4 0 - 70+ 3823678 3.8M Urban/Rural [197] 

 2010 National Lab confirmed 4 0 - 70+ 3717885 3.7M Urban/Rural [173] 

 1994 National Lab confirmed 3 0 - 75+ 3525248 3.5M Urban/Rural [198] 

 1995-1997 National Lab confirmed 3 0 - 75+ 3525248 3.5M Urban/Rural [198] 

Singapore 1999-2005 National Clinical/Lab 4 0 - 15+ 2617012 4M Urban [183] 

 2005 National Lab confirmed 4 0 - 80 3447129 4.3M Urban [199] 

 2005 National Lab confirmed 4 0 - 55+ 4265809 4.3M Urban [185] 

 2007 National Lab confirmed 4 1 - 55+ 4588466 4.6M Urban [185] 

Sri Lanka 1997 National Clinical 4 0 - 65 17337179 17.3M Urban/Rural [200] 

 1996-2005 National Clinical 4 0 - 15+ 17706365 17.3M Urban/Rural [183] 
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Table 4.2 continued 

 

 

Table 4.3: Summary parameter estimates from four extra seroprevalence datasets 

Country Survey 
Year 

Region Diagnosis # serotypes in 
circulation 

Age range 
sampled 

Number surveyed Population  
size of study region  

Urban/Rural Ref 

Taiwan 2003-2009 Kaohsiung City Lab confirmed 4 0 - 74+ 10555563 1.5M Urban [186] 

Thailand 2000-2010 National Clinical 4 0-65+ 796686 66.4M Urban/Rural [201] 

 2006-2007 Ratchaburi Lab confirmed 4 0-14 6381 38208 Urban [193] 

 2000 Bangkok Lab confirmed 4 0-65 5054 6355144 Urban [187] 

 2000 Ratchaburi Lab confirmed 4 0-65 1371 791217 Urban [187] 

 2010 Rayong Lab confirmed 4 0-72 1059 616916 Urban [187] 

Vietnam 1998-2009 Hanoi Lab confirmed 4 0 - 80 6346088 6.5M Urban [189] 

Yemen 2010 Hadramout Lab confirmed 3 0 - 55+ 797049 0.7M Urban/Rural [202] 

Country Author Region Urban/Rural   force of infection 

(95% CrI) 
 over-dispersion 

(95% CrI) 
0iR Assumption 1 

(95% CrI) 
0iR Assumption 2 

(95% CrI) 

Ref 

Brazil Fernando Paco do Lumiar 
Sao Jose de Ribamar 
Estado do Maranho 

Urban 0.013 (0.011-0.021) 0.070 (0.044-0.270) 1.09 (1.08-1.15) 1.12 (1.10-1.21) [182] 

Brazil da Silva-Nunes Amazon Rural 0.008 (0.007-0.017) 0.026 (0.009-0.319) 1.05 (1.05-1.12) 1.06 (1.05-1.16) [203] 

Brazil Lima Campinas Urban 0.007 (0.006-0.016) 0.111 (0.079-0.319) 1.05 (1.04-1.11) 1.06 (1.05-1.15) [204] 

Taiwan Shu Liuchiu Hsiang Urban 0.026 (0.023-0.037) 0.157 (0.112-0.380) 1.24 (1.21-1.34) 1.38 (1.32-1.60) [35] 
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4.3.2 Additional Seroprevalence Surveys 

In addition to the seroprevalence surveys identified in chapters 2 and 3, the force of 

infection was estimated from four more surveys from Brazil and Taiwan to correspond to 

the incidence datasets identified here. Parameter estimates are given in Table 4.3, and 

model fits are shown in Figure 4.2. 

 

Figure 4.2: Model fits from non-serotype specific constant force of infection model (A) fitted to the 
extra seroprevalence datasets (as described previously [174] and chapter 2. Datasets described in 
Table 4.3). 95% exact confidence intervals around data points, posterior median (line) and 95% CrI 
(shaded area) shown. 

 

4.3.3 Parameter Estimates 

As expected, force of infection estimates varied widely between countries, with less 

variation seen within countries. Figure 4.3 and Figure 4.4 show the distribution of the total 

force of infection ( total ) grouped by country (calculated by multiplying the serotype-

specific force of infection by the number of serotypes in circulation) from models 1A (single 

reporting rate,  , fitted to yearly incidence data) and 2A (age-dependent reporting rate, y  

and o , fitted to yearly incidence data) respectively. Individual estimates are given in Table 

4.4 - Table 4.5 and the model fits are shown in Figure 4.5 – Figure 4.29. 
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Figure 4.3: Total force of infection and corresponding R0i estimates from models 1A (single reporting 
rate) fitted to yearly incidence data grouped by country. Each point represents the posterior median 
estimate and the error bars the 95% CrI. The box represents the country-specific central estimate 
calculated by taking the mean values of the MCMC output for each country (the line and limits of the 
box represents the posterior median and 95% CrI respectively). 
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Figure 4.4:  Total force of infection and corresponding R0i estimates from models 2A (age-dependent 
reporting rate) fitted to yearly incidence data grouped by country. Each point represents the 
posterior median estimate and the error bars the 95% CrI. The box represents the country-specific 
central estimate calculated by taking the mean values of the MCMC output for each country (the line 
and limits of the box represents the posterior median and 95% CrI respectively). 
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Table 4.4: Summary parameter estimates from model 1 fitted to yearly incidence data (model 1A). 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections.  

Author [Ref] Year Country i
 (95% CrI)   (95% CrI) B  (95% CrI)   (95% CrI)  1  (95% CrI)  3  (95% CrI) tot (95% CrI) 0iR * (95% CrI) LnL 

          1 2  

Cordeiro 
[191] 

1995 Brazil 0.014 
(0.011-0.023) 

0.261 
(0.211-0.804) 

NA 0.012(0.008-
0.067) 

0.023 
(0.014-0.060) 

0.541 
(0.282-0.980) 

0.028 
(0.023-0.046) 

1.40 
(1.32-1.69) 

1.40 
(1.32-1.69) 

-17854 

 1996 0.019 
(0.016-0.030) 

0.390  
(0.338-0.810) 

NA 0.010 
(0.007-0.053) 

0.039 
(0.033-0.059) 

1.63 
(1.53-2.01) 

1.63 
(1.53-2.01) 

-40383 

 1997 0.018 
(0.014-0.027) 

0.610 
(0.530-0.948) 

NA 0.009 
(0.006-0.047) 

0.035 
(0.031-0.054) 

1.57 
(1.48-1.90) 

1.57 
(1.48-1.90) 

-57709 

 1998 0.020 
(0.018-0.027) 

0.883 
(0.800-0.994) 

NA 0.005 
(0.003-0.029) 

0.039 
(0.037-0.054) 

1.63 
(1.59-1.90) 

1.63 
(1.59-1.90) 

-93278 

 1999 0.020 
(0.018-0.028) 

0.572 
(0.20-0.844) 

NA 0.005 
(0.003-0.025) 

0.040 
(0.036-0.055) 

1.64 
(1.58-1.92) 

1.64 
(1.58-1.92) 

-64112 

 2000 0.019 
(0.017-0.026) 

0.452 
(0.407-0.719) 

NA 0.006 
(0.004-0.033) 

0.038 
(0.034-0.052) 

1.64 
(1.56-1.89) 

1.64 
(1.56-1.89) 

-50580 

 2001 0.018 
(0.016-0.026) 

0.289 
(0.257-0.515) 

NA 0.002 
(0.001-0.009) 

0.036 
(0.032-0.052) 

1.60 
(1.52-1.90) 

1.60 
(1.52-1.90) 

-31022 

 2002 0.024 
(0.023-0.031) 

0.962 
(0.928-0.999) 

NA 0.044 
(0.029-0.157) 

0.071 
(0.068-0.094) 

1.81 
(1.78-2.11) 

2.18 
(2.13-2.68) 

-
209223 

 2003 0.012 
(0.010-0.016) 

0.382 
(0.339-0.709) 

NA 0.008 
(0.005-0.035) 

0.035 
(0.031-0.049) 

1.37 
(1.32-1.53) 

1.48 
(1.41-1.73) 

-47533 

 2004 0.014 
(0.013-0.019) 

0.075 
(0.069-0.128) 

NA 0.006 
(0.003-0.032) 

0.043 
(0.038-0.056) 

1.46 
(1.41-1.63) 

1.63 
(1.55-1.88) 

-11581 

 2005 0.012 
(0.011-0.017) 

0.173 
(0.157-0.312) 

NA 0.007 
(0.004-0.035) 

0.037 
(0.033-0.051) 

1.40 
(1.35-1.56) 

1.53 
(1.46-1.78) 

-23548 

 2006 0.014 
(0.013-0.021) 

0.214 
(0.192-0.339) 

NA 0.009 
(0.006-0.048) 

0.042 
(0.038-0.062) 

1.46 
(1.41-1.70) 

1.62 
(1.54-1.99) 

-34400 

Penna 
[178] 

2001 0.006 
(0.005-0.015) 

0.457 
(0.333-0.947) 

0.007 
(0.003-0.238) 

0.022 
(0.010-0.332) 

0.023 
(0.018-0.059) 

1.16 
(1.13-1.44) 

1.24 
(1.18-1.80) 

-14639 

 2002 0.005 
(0.004-0.095) 

0.304 
(0.192-0.851) 

0.006 
(0.003-0.713) 

0.022 
(0.008-0.411) 

0.022 
(0.017-0.381) 

1.15 
(1.12-4.55) 

1.22 
(1.16-8.78) 

-9046 

 2003 0.006 
(0.004-0.179) 

0.348 
(0.228-0.864) 

0.007 
(0.003-0.817) 

0.024 
(0.010-0.451) 

0.022 
(0.017-0.715) 

1.16 
(1.12-8.28) 

1.23 
(1.17-16.66) 

-10371 

 2004 0.005 
(0.003-0.673) 

0.214 
(0.103-0.857) 

0.007 
(0.003-0.905) 

0.036 
(0.014-0.598) 

0.019 
(0.013-2.691) 

1.14 
(1.09-
31.46) 

1.19 
(1.12-63.04) 

-5540 
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Table 4.4 continued (2/5).  

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after 2 infections. 

Author [Ref] Year Country i
 (95% CrI)   (95% CrI) B  (95% CrI)   (95% CrI)  1  (95% CrI)  3  (95% CrI) tot (95% CrI) 0iR * (95% CrI) LnL 

          1 2  

Penna 
[178] 

2005 Brazil 0.005 
(0.004-0.020) 

0.298 
(0.196-0.883) 

0.007 
(0.003-0.408) 

0.032 
(0.014-0.384) 

0.023 
(0.014-0.060) 

0.541 
(0.282-0.980) 

0.021 
(0.016-0.082) 

1.15 
(1.11-1.62) 

1.22 
(1.15-2.21) 

-8556 

 2006 0.005 
(0.004-0.014) 

0.325 
(0.237-0.854) 

0.004 
(0.002-0.206) 

0.013 
(0.005-0.280) 

0.019 
(0.015-0.058) 

1.13 
(1.10-1.42) 

1.19 
(1.14-1.77) 

-7823 

Vong 
[192] 

2006 Cambodia 0.084 
(0.078-0.104) 

0.190 
(0.183-0.201) 

NA 0.014 
(0.011-0.030) 

0.128 
(0.097-0.286) 

0.506 
(0.506-0.977) 

0.335 
(0.311-0.414) 

2.27 
(2.16-2.67) 

4.19 
(3.85-5.42) 

-20854 

 2007 0.071 
(0.067-0.082) 

0.964 
(0.928-0.999) 

NA 0.006 
(0.004-0.012) 

0.285 
(0.269-0.330) 

2.03 
(1.97-2.24) 

3.48 
(3.28-4.11) 

-110705 

 2008 0.062 
(0.057-0.077) 

0.303 
(0.292-0.327) 

NA 0.015 
(0.012-0.032) 

0.248 
(0.228-0.309) 

1.87 
(1.79-2.14) 

3.00 
(2.77-3.81) 

-34280 

Wichmann 
[193] 

2006 0.037 
(0.022-0.191) 

0.353 
(0.251-0.946) 

NA 0.209 
(0.081-0.937) 

0.146 
(0.087-0.765) 

1.32 
(1.18-3.78) 

1.54 
(1.26-12.89) 

-31 

 2007 0.078 
(0.066-0.176) 

0.899 
(0.852-0.995) 

NA 0.158 
(0.047-0.833) 

0.313 
(0.264-0.705) 

1.73 
(1.60-2.98) 

2.57 
(2.23-5.80) 

-543 

Anker 
[183] 

2000 Laos 0.004 
(0.001-0.043) 

0.049 
(0.023-0.898) 

NA 0.179 
(0.066-0.909) 

0.268 
(0.175-0.706) 

0.575 
(0.328-0.981) 

0.015 
(0.004-0.172) 

1.16 
(1.04-2.75) 

1.23 
(1.04-3.93) 

-1051 

 2001 0.007 
(0.001-0.051) 

0.078 
(0.047-0.903) 

NA 0.165 
(0.058-0.906) 

0.026 
(0.006-0.205) 

1.24 
(1.05-2.76) 

1.39 
(1.07-4.04) 

-3630 

 2002 0.013 
(0.006-0.070) 

0.135 
(0.099-0.855) 

NA 0.223 
(0.075-0.915) 

0.050 
(0.026-0.282) 

1.53 
(1.27-3.74) 

1.97 
(1.45-5.63) 

-8186 

 2003 0.015 
(0.008-0.098) 

0.179 
(0.125-0.810) 

NA 0.278 
(0.135-0.936) 

0.059 
(0.032-0.392) 

1.56 
(1.30-4.41) 

2.00 
(1.51-7.81) 

-17292 

 2004 0.010 
(0.003-0.061) 

0.050 
(0.035-0.810) 

NA 0.153 
(0.047-0.869) 

0.040 
(0.013-0.242) 

1.35 
(1.12-2.92) 

1.59 
(1.16-4.43) 

-3280 

 2005 0.009 
(0.002-0.073) 

0.092 
(0.054-0.922) 

NA 0.195 
(0.081-0.903) 

0.034 
(0.010-0.294) 

1.28 
(1.08-3.11) 

1.47 
(1.11-4.91) 

-5243 

 2006 0.009 
(0.003-0.067) 

0.093 
(0.059-0.877) 

NA 0.201 
(0.052-0.897) 

0.036 
(0.012-0.267) 

1.33 
(1.10-3.20) 

1.56 
(1.14-5.00) 

-5948 

Khampapongpane 
[195] 

2010 0.013 
(0.007-0.401) 

0.115 
(0.064-0.484) 

0.095 
(0.033-0.932) 

0.075 
(0.041-0.460) 

0.052 
(0.029-1.603) 

1.37 
(1.21-15.5) 

1.64 
(1.32-30.5) 

-33953 

Prasith 
[194] 

2010 0.022 
(0.010-0.791) 

0.092 
(0.057-0.647) 

0.336 
(0.099-0.970) 

0.377 
(0.211-0.935) 

0.086 
(0.039-3.164) 

1.70 
(1.30-27.8) 

2.39 
(1.50-55.1) 

-22762 
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Table 4.4 continued (3/5)  

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

Author [Ref] Year Country i
 (95% CrI)   (95% CrI) B  (95% CrI)   (95% CrI)  1

 (95% CrI)  3
 (95% CrI) tot

(95% CrI) 
0iR  * (95% CrI) LnL 

          1 2  

Anker 
[183] 

1998 Philippines 0.019 
(0.001-0.065) 

0.034 
(0.025-0.930) 

NA 0.274 
(0.106-0.930) 

0.178 
(0.059-0.831) 

0.532 
(0.269-0.977) 

0.077 
(0.003-0.262) 

1.71 
(1.03-3.20) 

2.25 
(1.03-4.90) 

-33865 

 1999 0.028 
(0.021-0.088) 

0.006 
(0.005-0.014) 

NA 0.195 
(0.066-0.901) 

0.113 
(0.085-0.351) 

2.09 
(1.82-4.07) 

2.89 
(2.46-6.77) 

-9156 

 2001 0.023 
(0.012-0.086) 

0.018 
(0.013-0.666) 

NA 0.278 
(0.109-0.937) 

0.094 
(0.048-0.343) 

1.96 
(1.48-4.21) 

2.71 
(1.87-7.02) 

-23843 

 2002 0.025 
(0.016-0.077) 

0.015 
(0.011-0.184) 

NA 0.330 
(0.167-0.936) 

0.101 
(0.062-0.308) 

2.03 
(1.64-3.78) 

2.81 
(2.17-5.67) 

-16213 

 2003 0.019 
(0.001-0.067) 

0.032 
(0.023-0.860) 

NA 0.398 
(0.223-0.946) 

0.077 
(0.004-0.267) 

1.89 
(1.04-3.94) 

2.68 
(1.05-5.95) 

-28567 

 2004 0.023 
(0.011-0.086) 

0.016 
(0.015-0.755) 

NA 0.275 
(0.113-0.942) 

0.093 
(0.045-0.345) 

1.92 
(1.45-4.09) 

2.63 
(1.80-6.79) 

-22020 

 2005 0.018 
(0.002-0.069) 

0.030 
(0.021-0.842) 

NA 0.269 
(0.111-0.919) 

0.071 
(0.008-0.277) 

1.65 
(1.07-3.29) 

2.14 
(1.10-5.09) 

-32194 

Rigau-Perez 
[198] 

1994 Puerto Rico 0.022 
(0.020-0.028) 

0.355  
(0.314-0.490) 

NA 0.005 
(0.003-0.018) 

0.391 
(0.272-0.860) 

0.634 
(0.403-0.986) 

0.067 
(0.061-0.085) 

1.91 
(1.83-2.20) 

2.35 
(2.21-2.82) 

-50388 

 1995 0.020 
(0.017-0.026) 

0.033 
(0.029-0.355) 

NA 0.007 
(0.003-0.129) 

0.059 
(0.051-0.079) 

1.73 
(1.63-2.02) 

2.05 
(1.89-2.52) 

-3062 

 1996 0.019 
(0.016-0.026) 

0.030 
(0.026-0.358) 

NA 0.009 
(0.004-0.161) 

0.058 
(0.048-0.079) 

1.71 
(1.58-2.01) 

2.01 
(1.82-2.51) 

-2697 

 1997 0.020 
(0.018-0.027) 

0.035 
(0.031-0.528) 

NA 0.006 
(0.003-0.149) 

0.061 
(0.053-0.082) 

1.76 
(1.65-2.05) 

2.10 
(1.92-2.58) 

-3370 

Ramos 
[196] 

2006 0.017 
(0.013-0.039) 

0.369 
(0.307-0.807) 

NA 0.043 
(0.018-0.444) 

0.069 
(0.050-0.155) 

1.62 
(1.44-2.70) 

2.29 
(1.82-5.44) 

-203 

Sharp 
[173] 

2010 0.015 
(0.011-0.026) 

0.165 
(0.140-0.746) 

NA 0.029 
(0.020-0.106) 

0.061 
(0.044-0.106) 

1.70 
(1.48-2.34) 

2.46 
(1.92-4.14) 

-24291 

Tomashek 
[197] 

2007 0.010 
(0.006-0.020) 

0.053 
(0.043-0.379) 

NA 0.025 
(0.018-0.080) 

0.040 
(0.025-0.081) 

1.39 
(1.23-1.86) 

1.71 
(1.37-2.83) 

-7042 

Anker 
[183] 

1999 Singapore 0.004 
(0.002-0.041) 

0.133 
(0.053-0.912) 

NA 0.161 
(0.050-0.919) 

0.052 
(0.032-0.141) 

0.520 
(0.259-0.976) 

0.014 
(0.006-0.166) 

1.16 
(1.07-3.13) 

1.23 
(1.09-4.99) 

-521 

 2000 0.013 
(0.004-0.055) 

0.023 
(0.020-0.894) 

NA 0.217 
(0.082-0.942) 

0.051 
(0.015-0.220) 

1.71 
(1.19-4.76) 

2.46 
(1.29-8.36) 

-362 

 2001 0.016 
(0.009-0.064) 

0.061 
(0.057-0.591) 

NA 0.289 
(0.098-0.955) 

0.064 
(0.04-0.255) 

2.00 
(1.48-6.20) 

3.23 
(1.93-11.86) 

-940 
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Table 4.4 continued (4/5). *Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author 
[Ref] 

Year Country i
 (95% CrI)   (95% CrI) B  (95% CrI)   (95% CrI)  1

 (95% CrI)  3
 (95% CrI) tot

(95% CrI) 
0iR * (95% CrI) 

LnL 

          1 2  

Anker 
[183] 

2002 Singapore 0.009 
(0.003-0.062) 

0.125 
(0.090-0.919) 

NA 0.229 
(0.068-0.945) 

0.052 
(0.032-0.141) 

0.520 
(0.259-0.976) 

0.034 
(0.013-0.248) 

1.44 
(1.16-5.02) 

1.83 
(1.24-9.20) 

-1506 

 2003 0.010 
(0.004-0.058) 

0.140 
(0.106-0.855) 

NA 0.246 
(0.082-0.953) 

0.039 
(0.017-0.233) 

1.50 
(1.21-4.75) 

1.96 
(1.34-8.60) 

-1859 

 2004 0.010 
(0.006-0.050) 

0.345 
(0.260-0.915) 

NA 0.247 
(0.086-0.942) 

0.038 
(0.023-0.200) 

1.46 
(1.26-3.67) 

1.85 
(1.44-6.09) 

-4135 

 2005 0.016 
(0.009-0.072) 

0.293 
(0.258-0.822) 

NA 0.280 
(0.090-0.951) 

0.065 
(0.038-0.288) 

1.94 
(1.51-6.30) 

3.01 
(1.99-12.20) 

-6857 

Koh 
[199] 

2005 0.011 
(0.009-0.014) 

0.267 
(0.250-0.470) 

NA 0.007 
(0.005-0.034) 

0.043 
(0.038-0.058) 

1.43 
(1.37-1.59) 

1.80 
(1.66-2.20) 

-20559 

Ler 
[185] 

2005 0.012 
(0.011-0.016) 

0.265 
(0.250-0.369) 

NA 0.006 
(0.003-0.041) 

0.047 
(0.043-0.065) 

1.47 
(1.42-1.68) 

1.91 
(1.79-2.43) 

-25085 

 2007 0.005 
(0.004-0.008) 

0.337 
(0.276-0.872) 

NA 0.005 
(0.003-0.033) 

0.019 
(0.015-0.033) 

1.18 
(1.14-1.32) 

1.27 
(1.19-1.56) 

-14719 

Anker 
[183] 

1996 Sri Lanka 0.033 
(0.020-0.105) 

0.004 
(0.003-0.500) 

NA 0.336 
(0.168-0.943) 

0.216 
(0.155-0.575) 

0.617 
(0.373-0.979) 

0.133 
(0.081-0.419) 

2.99 
(2.15-7.33) 

4.98 
(3.38-12.70) 

-1139 

 1997 0.027 
(0.015-0.099) 

0.002 
(0.002-0.443) 

NA 0.235 
(0.071-0.929) 

0.108 
(0.060-0.395) 

2.35 
(1.72-5.94) 

3.58 
(2.40-10.96) 

-810 

 1998 0.034 
(0.023-0.113) 

0.003 
(0.002-0.355) 

NA 0.197 
(0.059-0.920) 

0.135 
(0.093-0.453) 

2.58 
(2.07-6.08) 

3.89 
(3.01-11.53) 

-989 

 1999 0.024 
(0.010-0.098) 

0.004 
(0.003-0.684) 

NA 0.233 
(0.082-0.920) 

0.097 
(0.040-0.392) 

2.16 
(1.45-5.58) 

3.19 
(1.83-10.18) 

-1174 

 2000 0.021 
(0.008-0.099) 

0.008 
(0.006-0.739) 

NA 0.225 
(0.079-0.924) 

0.084 
(0.033-0.395) 

2.09 
(1.39-6.34) 

3.16 
(1.70-11.82) 

-2302 

 2001 0.018 
(0.004-0.079) 

0.012 
(0.009-0.801) 

NA 0.286 
(0.128-0.948) 

0.071 
(0.017-0.315) 

1.98 
(1.20-5.75) 

3.03 
(1.31-9.55) 

-2218 

 2002 0.002 
(0.000-0.057) 

0.049 
(0.011-0.913) 

NA 0.134 
(0.043-0.882) 

0.008 
(0.002-0.226) 

1.10 
(1.02-4.12) 

1.13 
(1.02-6.93) 

-2262 

 2003 0.002 
(0.000-0.060) 

0.025 
(0.006-0.806) 

NA 0.137 
(0.047-0.929) 

0.009 
(0.001-0.242) 

1.10 
(1.01-4.42) 

1.14 
(1.01-7.54) 

-1215 

 2004 0.008 
(0.001-0.065) 

0.019 
(0.013-0.905) 

NA 0.176  
(0.064-0.923) 

0.030 
(0.002-0.259) 

1.37 
(1.03-4.69) 

1.66 
(1.03-8.06) 

-2864 

 2005 0.007 
(0.000-0.067) 

0.006 
(0.004-0.673) 

NA 0.156 
(0.056-0.898) 

0.028 
(0.002-0.269) 

1.33 
(1.02-4.56) 

1.57 
(1.02-7.72) 

-881 
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Table 4.4 continued (5/5). ^All cases reported = DHF, we have assumed that all cases were due to secondary cases and fixed γ₁ and γ₃ = 0. 
Author [Ref] Year Country i

 (95% CrI)   (95% CrI) B  (95% CrI)   (95% CrI)  1
 (95% CrI)  3

 (95% CrI) tot
(95% CrI) 

0iR * (95% CrI) LnL 

          1 2  

Kulatilaka 
[200] 

2010 Sri 
Lanka 

0.066 
(0.056-0.369) 

0.001 
(0.001-0.001) 

0.083 
(0.058-0.539) 

0.009 
(0.006-0.052) 

0.216 
(0.155-0.575) 

0.617 
(0.373-0.979) 

0.265 
(0.226-1.478) 

3.66 
(3.18-26.65) 

7.46 
(6.22-85.19) 

-1565 

Limkittikul 
[201] 

2000 Thailand 0.055 
(0.049-0.199) 

0.012 
(0.009-0.016) 

0.060 
(0.032-0.686) 

0.033 
(0.018-0.213) 

0.009 
(0.005-0.040) 

0.505 
(0.263-0.978) 

0.221 
(0.195-0.795) 

3.37 
(3.04-11.67) 

6.44 
(5.67-23.65) 

-29875 

 2001 0.050 
(0.045-0.094) 

0.089 
(0.071-0.121) 

0.062 
(0.033-0.213) 

0.033 
(0.019-0.153) 

0.201 
(0.178-0.377) 

3.14 
(2.86-5.58) 

5.92 
(5.25-11.26) 

-
225605 

 2002 0.052 
(0.044-0.246) 

0.068 
(0.036-0.103) 

0.091 
(0.042-0.884) 

0.051 
(0.027-0.244) 

0.207 
(0.177-0.984) 

3.45 
(3.01-17.10) 

6.87 
(5.80-35.60) 

-
188228 

 2003 0.049 
(0.041-0.229) 

0.032 
(0.018-0.058) 

0.132 
(0.051-0.825) 

0.053 
(0.027-0.238) 

0.196 
(0.165-0.915) 

3.33 
(2.88-16.32) 

6.62 
(5.50-34.43) 

-
107289 

 2004 0.044 
(0.038-0.231) 

0.023 
(0.011-0.036) 

0.094 
(0.040-0.918) 

0.045 
(0.023-0.232) 

0.177 
(0.151-0.923) 

3.05 
(2.68-16.59) 

5.94 
(5.01-34.97) 

-66730 

 2005 0.042 
(0.036-0.179) 

0.026 
(0.016-0.043) 

0.103 
(0.045-0.691) 

0.038 
(0.020-0.204) 

0.168 
(0.144-0.715) 

2.95 
(2.62-12.81) 

5.70 
(4.86-27.29) 

-79945 

 2006 0.042 
(0.035-0.207) 

0.026 
(0.015-0.045) 

0.115 
(0.047-0.747) 

0.053 
(0.028-0.223) 

0.166 
(0.140-0.829) 

2.97 
(2.59-15.33) 

5.76 
(4.79-32.31) 

-80484 

 2007 0.041 
(0.036-0.154) 

0.048 
(0.034-0.065) 

0.056 
(0.029-0.569) 

0.035 
(0.020-0.193) 

0.163 
(0.144-0.616) 

2.96 
(2.68-11.34) 

5.76 
(5.04-23.94) 

-
112810 

 2008 0.037 
(0.034-0.059) 

0.076 
(0.066-0.091) 

0.031 
(0.018-0.318) 

0.016 
(0.009-0.106)  

0.147 
(0.135-0.236) 

2.74 
(2.57-4.19) 

5.21 
(4.78-8.74) 

-
159451 

 2009 0.036 
(0.033-0.179) 

0.042 
(0.022-0.058) 

0.061 
(0.029-0.900) 

0.024 
(0.012-0.172) 

0.146 
(0.131-0.715) 

2.76 
(2.53-13.70) 

5.26 
(4.68-28.46) 

-
103220 

 2010 0.034 
(0.032-0.045) 

0.101 
(0.092-0.119) 

0.027 
(0.016-0.086) 

0.009 
(0.005-0.052) 

0.136 
(0.127-0.179) 

2.67 
(2.54-3.38) 

5.07 
(4.71-6.88) 

-
215302 

Wichmann 
[193] 

2006 0.039 
(0.025-0.156) 

0.380 
(0.284-0.961) 

NA 0.164 
(0.060-0.904) 

0.156 
(0.099-0.623) 

1.34 
(1.20-3.02) 

1.60 
(1.31-8.59) 

-31 

 2007 0.070 
(0.045-0.186) 

0.617 
(0.551-0.954) 

NA 0.232 
(0.108-0.908) 

0.282 
(0.181-0.743) 

1.75 
(1.44-3.92) 

2.76 
(1.85-12.38) 

-114 

Bangkok^ 
[187] 

2000 0.047 
(0.044-0.055) 

0.055 
(0.054-0.058) 

NA 0.013 
(0.010-0.030) 

0 0 0.188 
(0.175-0.219) 

3.31 
(3.11-3.84) 

7.19 
(6.59-8.69) 

-11467 

Ratchaburi^ 
[187] 

2000 0.050 
(0.048-0.058) 

0.108 
(0.106-0.114) 

NA 0.012  
(0.009-0.034) 

0 0 0.202 
(0.192-0.232) 

3.37 
(3.23-3.82) 

6.60 
(6.25-7.66) 

-2810 

Rayong 
[187] 

2010 0.025 
(0.024-0.027) 

0.114 
(0.112-0.122) 

NA 0.001 
(0.001-0.002) 

0.009 
(0.005-0.040) 

0.505 
(0.263-0.978) 

0.099 
(0.097-0.107) 

1.99 
(1.96-2.09) 

3.25 
(3.16-3.50) 

-4128 

Ghouth 
[202] 

2010 Yemen 0.006 
(0.003-0.018) 

0.159 
(0.109-0.902) 

NA 0.083 
(0.048-0.446) 

0.233 
(0.088-0.943) 

0.501 
(0.244-0.977) 

0.019 
(0.008-0.055) 

1.16 
(1.07-1.49) 

1.19 
(1.07-1.67) 

-1792 
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Table 4.5: Summary parameter estimates from model 2 fitted to yearly incidence data (model 2A). 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

  

Author 
[Ref] 

Year Country i
(95%CrI) y (95%CrI) o

(95%CrI) B
(95%CrI) 

 

thresholdA

(95%CrI) 

  (95%CrI)  1

(95%CrI) 

 3

(95%CrI) 
tot

(95%CrI) 
0iR * (95%CrI) LnL 

            1 2  

Cordeiro 
[191] 

1995 Brazil 0.013 
(0.008-0.026) 

0.281 
(0.163-0.944) 

0.312 
(0.183-0.939) 

NA 65 
(20-80) 

0.009 
(0.004-0.052) 

0.038 
(0.027-
0.072) 

0.553 
(0.284-
0.983) 

0.026 
(0.017-0.052) 

1.36 
(1.23-1.79) 

1.36 
(1.23-1.79) 

-17854 

 1996 0.016 
(0.013-0.030) 

0.478 
(0.364-0.947) 

0.382 
(0.283-0.934) 

NA 65 
(50-80) 

0.010 
(0.006-0.058) 

0.032 
(0.025-0.059) 

1.51 
(1.39-2.02) 

1.51 
(1.39-2.02) 

-40383 

 1997 0.016 
(0.014-0.028) 

0.667 
(0.516-0.979) 

0.519 
(0.400-0.938) 

NA 65 
(50-80) 

0.008 
(0.005-0.046) 

0.032 
(0.027-0.056) 

1.51 
(1.43-1.95) 

1.51 
(1.43-1.95) 

-57709 

 1998 0.021 
(0.019-0.028) 

0.718 
(0.560-0.988) 

0.826 
(0.659-0.990) 

NA 35 
(20-80) 

0.006 
(0.003-0.040) 

0.041 
(0.038-0.056) 

1.67 
(1.61-1.94) 

1.67 
(1.61-1.94) 

-93277 

 1999 0.017 
(0.015-0.027) 

0.661 
(0.558-0.972) 

0.487 
(0.390-0.929) 

NA 65 
(65-80) 

0.003 
(0.002-0.022) 

0.035 
(0.030-0.053) 

1.55 
(1.47-1.89) 

1.55 
(1.47-1.89) 

-64111 

 2000 0.017 
(0.014-0.026) 

0.494 
(0.423-0.953) 

0.458 
(0.352-0.949) 

NA 65 
(50-80) 

0.004 
(0.003-0.028) 

0.035 
(0.029-0.052) 

1.57 
(1.47-1.90) 

1.57 
(1.47-1.90) 

-50580 

 2001 0.015 
(0.011-0.025) 

0.362 
(0.281-0.951) 

0.369 
(0.264-0.940) 

NA 65 
(50-80) 

0.005 
(0.003-0.029) 

0.029 
(0.022-0.049) 

1.48 
(1.34-1.85) 

1.48 
(1.34-1.85) 

-31021 

 2002 0.024 
(0.023-0.031) 

0.952 
(0.906-0.999) 

0.683 
(0.386-0.993) 

NA 80 
(65-80) 

0.044 
(0.029-0.177) 

0.071 
(0.068-0.094) 

1.81 
(1.77-2.12) 

2.18 
(2.11-2.69) 

-
209223 

 2003 0.011 
(0.009-0.017) 

0.450 
(0.366-0.962) 

0.419 
(0.333-0.956) 

NA 65 
(35-80) 

0.008 
(0.004-0.045) 

0.032 
(0.027-0.050) 

1.34 
(1.28-1.55) 

1.44 
(1.35-1.76) 

-47533 

 2004 0.014 
(0.013-0.019) 

0.076 
(0.069-0.366) 

0.398 
(0.102-0.967) 

NA 80 
(80-80) 

0.005 
(0.003-0.039) 

0.041 
(0.038-0.056) 

1.45 
(1.40-1.63) 

1.60 
(1.54-1.89) 

-11581 
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Table 4.5 continued (2/8).  

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

Author 
[Ref] 

Year Country i (95%CrI) y (95%CrI) o (95%CrI) B (95%CrI) 
thresholdA

(95%CrI) 

  

(95%CrI) 
 1

(95%CrI) 

 3

(95%CrI) 

tot

(95%CrI) 
0iR * (95%CI) 

LnL 

            1 2  

Cordeiro 
[191] 

2005 Brazil 0.012 
(0.010-0.018) 

0.180 
(0.156-0.741) 

0.288 
(0.168-0.961) 

NA 80 
(65-80) 

0.007 
(0.004-
0.040) 

0.038 
(0.027-
0.072) 

0.553 
(0.284-
0.983) 

0.036 
(0.031-
0.053) 

1.38 
(1.32-1.59) 

1.50 
(1.41-1.82) 

-23548 

 2006 0.014 
(0.012-0.022) 

0.215 
(0.189-0.806) 

0.290 
(0.201-0.946) 

NA 80 
(50-80) 

0.009 
(0.006-
0.054) 

0.042 
(0.036-
0.066) 

1.45 
(1.39-1.76) 

1.61 
(1.51-2.09) 

-34400 

Penna 
[178] 

2001 0.007 
(0.0052-0.081) 

0.277 
(0.093-0.922) 

0.473 
(0.288-0.971) 

0.020 
(0.005-0.883) 

70 
(50-90) 

0.047 
(0.015-
0.671) 

0.027 
(0.019-
0.226) 

1.19 
(1.13-7.75) 

1.30 
(1.19-8.57) 

-14641 

 2002 0.006 
(0.004-0.076) 

0.239 
(0.047-0.879) 

0.397 
(0.216-0.948) 

0.011 
(0.003-0.907) 

70 
(50-90) 

0.046 
(0.012-
0.704) 

0.024 
(0.016-
0.362) 

1.17 
(1.11-5.81) 

1.25 
(1.15-7.72) 

-9048 

 2003 0.006 
(0.004-0.074) 

0.219 
(0.047-0.861) 

0.415 
(0.246-0.953) 

0.020 
(0.004-0.939) 

70 
(50-90) 

0.059 
(0.016-
0.680) 

0.026 
(0.017-
0.295) 

1.18 
(1.12-5.03) 

1.27 
(1.16-7.05) 

-10374 

 2004 0.005 
(0.003-0.076) 

0.169 
(0.049-0.841) 

0.340 
(0.170-0.954) 

0.009 
(0.002-0.809) 

70 
(50-90) 

0.048 
(0.017-
0.675) 

0.021 
(0.013-
0.305) 

1.15 
(1.09-5.62) 

1.21 
(1.12-7.33) 

-5541 

 2005 0.006 
(0.004-0.077) 

0.204 
(0.052-0.851) 

0.396 
(0.214-0.956) 

0.014 
(0.004-0.910) 

70 
(50-90) 

0.062 
(0.021-
0.705) 

0.024 
(0.016-
0.311) 

1.17 
(1.11-3.68) 

1.26 
(1.15-7.83) 

-8558 

 2006 0.005 
(0.004-0.016) 

0.279 
(0.137-0.853) 

0.409 
(0.237-0.951) 

0.006 
(0.002-0.538) 

70 
(50-90) 

0.023 
(0.007-
0.423) 

0.020 
(0.014-
0.063) 

1.14 
(1.10-7.28) 

1.20 
(1.13-14.59) 

-7825 

Vong  
[192] 

2006 Cambodia 0.077 
(0.069-0.127) 

0.190 
(0.177-0.221) 

0.097 
(0.055-0.798) 

NA 
 

16 
(15-21) 

0.011 
(0.008-
0.027) 

0.141 
(0.108-
0.369) 

0.601 
(0.368-
0.980) 

0.309 
(0.276-
0.507) 

2.15 
(2.00-3.20) 

3.82 
(3.37-7.03) 

-20853 

 2007 0.068 
(0.065-0.080) 

0.955 
(0.912-0.999) 

0.307 
(0.159-0.947) 

NA 20 
(19-21) 

0.004 
(0.003-
0.010) 

0.274 
(0.259-
0.318) 

1.98 
(1.92-2.19) 

3.33 
(3.15-3.94) 

-
110702 

 2008 0.046 
(0.042-0.058) 

0.344 
(0.326-0.424) 

0.042 
(0.030-0.123) 

NA 18 
(18-18) 

0.005 
(0.004-
0.012) 

0.184 
(0.167-
0.233) 

1.61 
(1.54-1.81) 

2.27 
(2.10-2.82) 

-34269 
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Table 4.5 continued (3/8). 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

Author 
[Ref] 

Year Country i

(95%CrI) 

y

(95%CrI) 

o

(95%CrI) 

B
(95%CrI) 

thresholdA  

(95%CrI) 

  

(95%CrI) 
 1

(95%CrI) 

 3

(95%CrI) 

tot

(95%CrI) 0iR * (95%CrI) 
LnL 

            1 2  

Wichmann 
[193] 

2006 Cambodia 0.041 
(0.023-
0.254) 

0.317 
(0.229-
0.927) 

0.545 
(0.303-
0.980) 

NA 10 
(10-15) 

0.228 
(0.094-
0.937) 

0.141 
(0.108-
0.369) 

0.601 
(0.368-
0.980) 

0.164 
(0.092-
0.905) 

1.36 
(1.19-5.51) 

1.65 
(1.28-7.28) 

-31 

 2007 0.078 
(0.065-
0.187) 

0.880 
(0.814-
0.993) 

0.637 
(0.351-
0.986) 

NA 15 
(10-15) 

0.158 
(0.049-
0.886) 

0.314 
(0.261-
0.747) 

1.73 
(1.59-3.12) 

2.58 
(2.22-6.16) 

-543 

Anker 
[183] 

2000 Laos 0.001 
(0.001-
0.156) 

0.368 
(0.082-
0.948) 

0.269 
(0.1089-
0.941) 

NA 15 
(15-15) 

0.206 
(0.076-
0.909) 

0.115 
(0.062-
0.461) 

0.496 
(0.261-
0.975) 

0.006 
(0.003-
0.623) 

1.06 
(1.03-6.23) 

1.07 
(1.03-11.03) 

-1052 

 2001 0.004 
(0.002-
0.171) 

0.263 
(0.016-
0.958) 

0.243 
(0.112-
0.938) 

NA 15 
(15-15) 

0.227 
(0.086-
0.918) 

0.017 
(0.008-
0.685) 

1.16 
(1.07-6.55) 

1.23 
(1.09-13.88) 

-3631 

 2002 0.019 
(0.007-
0.146) 

0.120 
(0.046-
0.929) 

0.243 
(0.164-
0.917) 

NA 15 
(15-15) 

0.234 
(0.089-
0.919) 

0.076 
(0.029-
0.584) 

1.81 
(1.30-6.13) 

2.48 
(1.52-10.86) 

-8186 

 2003 0.023 
(0.008-
0.123) 

0.135 
(0.072-
0.950) 

0.379 
(0.248-
0.965) 

NA 15 
(15-15) 

0.248 
(0.108-
0.926) 

0.092 
(0.033-
0.492) 

1.88 
(1.32-5.26) 

2.54 
(1.54-10.10) 

-17292 

 2004 0.007 
(0.002-
0.177) 

0.152 
(0.014-
0.957) 

0.229 
(0.100-
0.922) 

NA 15 
(15-15) 

0.221 
(0.080-
0.928) 

0.028 
(0.008-
0.706) 

1.24 
(1.07-6.53) 

1.40 
(1.09-14.37) 

-3281 

 2005 0.045 
(0.004-
0.162) 

0.026 
(0.019-
0.954) 

0.303 
(0.148-
0.956) 

NA 15 
(15-15) 

0.233 
(0.091-
0.923) 

0.179 
(0.018-
0.648) 

2.35 
(1.14-5.63) 

3.29 
(1.22-11.94) 

-5243 

 2006 0.045 
(0.006-
0.167) 

0.030 
(0.020-
0.935) 

0.292 
(0.126-
0.944) 

NA 15 
(15-15) 

0.225 
(0.088-
0.929) 

0.180 
(0.026-
0.669) 

2.54 
(1.23-6.44) 

3.65 
(1.37-13.88) 

-5948 

Khampapongpane 
[195] 

2010 0.019 
(0.009-
0.161) 

0.092 
(0.040-
0.658) 

0.229 
(0.140-
0.895) 

0.110 
(0.031-
0.869) 

40 
(30-40) 

0.085 
(0.040-
0.573) 

0.075 
(0.034-
0.605) 

1.54 
(1.24-9.00) 

1.97 
(1.39-10.81) 

-33953 

Prasith 
[194] 

2010 0.043 
(0.016-
0.281) 

0.068 
(0.045-
0.524) 

0.346 
(0.171-
0.957) 

0.358 
(0.137-
0.962) 

80 
(15-80) 

0.357 
(0.189-
0.942) 

0.172 
(0.066-
0.713) 

2.51 
(1.52-5.42) 

4.13 
(1.98-6.62) 

-22762 
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Table 4.5 continued (4/8) 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

Author 
[Ref] 

Year Country i

(95%CrI) 

y

(95%CrI) 

o

(95%CrI) 

B
(95%CrI) 

thresholdA

(95%CrI) 

  

(95%CrI) 
 1

(95%CrI) 

 3

(95%CrI) 

tot

(95%CrI) 0iR * (95%CrI) 
LnL 

            1 2  

Anker 
[183] 
  

1998 Philippines 0.006 
(0.002-
0.127) 

0.196 
(0.017-
0.965) 

0.097 
(0.041-
0.870) 

NA 15 
(15-15) 

0.278 
(0.102-
0.924) 

0.082 
(0.048-
0.225) 

0.323 
(0.140-
0.954) 

0.022 
(0.010-
0.508) 

1.20 
(1.09-5.05) 

1.32 
(1.12-9.40) 

-33864 

 1999 0.060 
(0.001-
0.147) 

0.004 
(0.003-
0.933) 

0.111 
(0.036-
0.857) 

NA 15 
(15-15) 

0.351 
(0.159-
0.941) 

0.239 
(0.005-
0.587) 

3.17 
(1.04-6.01) 

4.80 
(1.05-11.80) 

-9157 

 2001 0.002 
(0.001-
0.066) 

0.601 
(0.340-
0.981) 

0.099 
(0.055-
0.652) 

NA 15 
(15-15) 

0.252 
(0.095-
0.929) 

0.008 
(0.005-
0.264) 

1.07 
(1.05-3.54) 

1.10 
(1.06-5.54) 

-23843 

 2002 0.002 
(0.001-
0.124) 

0.507 
(0.127-
0.970) 

0.116 
(0.043-
0.818) 

NA 15 
(15-15) 

0.348 
(0.177-
0.936) 

0.007 
(0.004-
0.496) 

1.07 
(1.04-5.15) 

1.09 
(1.05-8.55) 

-16213 

 2003 0.011 
(0.003-
0.135) 

0.093 
(0.012-
0.941) 

0.060 
(0.030-
0.810) 

NA 15 
(15-15) 

0.373 
(0.188-
0.937) 

0.044 
(0.012-
0.540) 

1.49 
(1.13-6.34) 

1.92 
(1.19-10.80) 

-28567 

 2004 0.002 
(0.001-
0.125) 

0.432 
(0.158-
0.974) 

0.083 
(0.036-
0.789) 

NA 15 
(15-15) 

0.266 
(0.101-
0.941) 

0.009 
(0.005-
0.501) 

1.08 
(1.05-5.39) 

1.11 
(1.06-10.03) 

-22019 

 2005 0.057 
(0.004-
0.141) 

0.012 
(0.009-
0.938) 

0.170 
(0.070-
0.874) 

NA 15 
(15-15) 

0.354 
(0.173-
0.958) 

0.226 
(0.016-
0.566) 

2.92 
(1.14-5.48) 

4.32 
(1.21-10.57) 

-32194 

Rigau-Perez 
[198] 

1994 Puerto 
Rico 

0.022 
(0.018-
0.029) 

0.438 
(0.376-
0.894) 

0.517 
(0.400-
0.962) 

NA 55 
(25-99) 

0.003 
(0.002-
0.016) 

0.198 
(0.098-
0.648) 

0.539 
(0.299-
0.979) 

0.066 
(0.053-
0.087) 

1.90 
(1.70-2.23) 

2.33 
(2.00-2.89) 

-50387 

 1995 0.019 
(0.017-
0.027) 

0.040 
(0.034-
0.636) 

0.403 
(0.139-
0.972) 

NA 85 
(85-85) 

0.007 
(0.003-
0.159) 

0.058 
(0.051-
0.080) 

1.73 
(1.62-2.02) 

2.05 
(1.87-2.53) 

-3062 

 1996 0.018 
(0.010-
0.026) 

0.037 
(0.032-
0.846) 

0.397 
(0.151-
0.960) 

NA 85 
(75-85) 

0.011 
(0.005-
0.285) 

0.055 
(0.030-
0.077) 

1.67 
(1.34-1.98) 

1.96 
(1.44-2.46) 

-2697 

 1997 0.020 
(0.015-
0.029) 

0.042 
(0.036-
0.831) 

0.359 
(0.109-
0.973) 

NA 85 
(75-85) 

0.010 
(0.004-
0.235) 

0.061 
(0.046-
0.087) 

1.75 
(1.56-2.14) 

2.09 
(1.78-2.72) 

-3371 
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Table 4.5 continued (5/8) 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

 

Author 
[Ref] 

Year Country i

(95%CrI) 

y

(95%CrI) 

o

(95%CrI) 

B
(95%CrI) 

thresholdA

(95%CrI) 

  

(95%CrI) 
 1

(95%CrI) 

 3

(95%CrI) 

tot

(95%CrI) 0iR * (95%CrI) 
LnL 

            1 2  

Ramos 
[196] 

2006 Puerto 
Rico 

0.017 
(0.013-
0.042) 

0.441 
(0.351-
0.930) 

0.470 
(0.327-
0.959) 

NA 40 
(30-61) 

0.038 
(0.014-
0.450) 

0.198 
(0.098-
0.648) 

0.539 
(0.299-
0.979) 

0.069 
(0.050-
0.170) 

1.62 
(1.43-2.92) 

2.29 
(1.81-6.17) 

-203 

Sharp 
[173] 

2010 0.015 
(0.009-
0.030) 

0.195 
(0.158-
0.943) 

0.276 
(0.194-
0.940) 

NA 60 
(20-81) 

0.020 
(0.012-
0.076) 

0.061 
(0.035-
0.119) 

1.69 
(1.38-2.56) 

2.45 
(1.68-4.69) 

-24289 

Tomashek 
[197] 

2007 0.010 
(0.003-
0.022) 

0.066 
(0.051-
0.936) 

0.240 
(0.096-
0.947) 

NA 70 
(30-85) 

0.023 
(0.015-
0.075) 

0.039 
(0.011-
0.087) 

1.37 
(1.10-1.93) 

1.67 
(1.14-3.01) 

-7042 

Anker 
[183] 

1999 Singapore 0.003 
(0.001-
0.124) 

0.312 
(0.025-
0.954) 

0.307 
(0.135-
0.936) 

NA 15 
(15-15) 

0.231 
(0.065-
0.954) 

0.042 
(0.023-
0.131) 

0.505 
(0.258-
0.971) 

0.010 
(0.006-
0.496) 

1.11 
(1.07-7.32) 

1.16 
(1.08-14.52) 

-521 

 2000 0.003 
(0.001-
0.169) 

0.321 
(0.012-
0.970) 

0.171 
(0.064-
0.928) 

NA 15 
(15-15) 

0.264 
(0.107-
0.951) 

0.010 
(0.005-
0.675) 

1.13 
(1.06-12.55) 

1.18 
(1.07-14.64) 

-362 

 2001 0.010 
(0.003-
0.124) 

0.146 
(0.027-
0.955) 

0.178 
(0.079-
0.938) 

NA 15 
(15-15) 

0.320 
(0.124-
0.958) 

0.041 
(0.013-
0.496) 

1.59 
(1.16-7.13) 

2.20 
(1.24-12.77) 

-940 

 2002 0.008 
(0.003-
0.104) 

0.197 
(0.035-
0.962) 

0.282 
(0.145-
0.951) 

NA 15 
(15-15) 

0.288 
(0.099-
0.956) 

0.032 
(0.013-
0.417) 

1.42 
(1.16-8.00) 

1.77 
(1.24-14.23) 

-1506 

 2003 0.014 
(0.005-
0.105) 

0.135 
(0.043-
0.946) 

0.265 
(0.150-
0.948) 

NA 15 
(15-15) 

0.314 
(0.116-
0.960) 

0.055 
(0.018-
0.421) 

1.75 
(1.22-8.03) 

2.53 
(1.35-16.24) 

-1859 

 2004 0.016 
(0.007-
0.078) 

0.233 
(0.104-
0.937) 

0.432 
(0.318-
0.961) 

NA 15 
(15-15) 

0.298 
(0.096-
0.959) 

0.062 
(0.029-
0.310) 

1.77 
(1.34-5.15) 

2.52 
(1.60-9.25) 

-4135 

 2005 0.023 
(0.011-
0.082) 

0.241 
(0.132-
0.947) 

0.372 
(0.288-
0.944) 

NA 15 
(15-15) 

0.299 
(0.106-
0.950) 

0.092 
(0.044-
0.328) 

2.42 
(1.61-7.12) 

4.09 
(2.22-14.06) 

-6857 
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Table 4.5 continued (6/8). 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

 

Author 
[Ref] 

Year Country i

(95%CrI) 

y

(95%CrI) 

o

(95%CrI) 

B
(95%CrI) 

thresholdA

(95%CrI) 

  

(95%CrI) 
 1

(95%CrI) 

 3

(95%CrI) 

tot

(95%CrI) 0iR * (95%CrI) 
LnL 

            1 2  

Koh 
[199] 

2005 Singapore 0.011 
(0.009-
0.016) 

0.266 
(0.238-
0.768) 

0.361 
(0.278-
0.945) 

NA 65 
(55-85) 

0.007 
(0.004-
0.036) 

0.042 
(0.023-
0.131) 

0.505 
(0.258-
0.971) 

0.043 
(0.035-
0.064) 

1.43 
(1.34-1.66) 

1.80 
(1.60-2.37) 

-20559 

Ler 
[185] 

2005 0.012 
(0.010-
0.017) 

0.268 
(0.250-
0.734) 

0.342 
(0.256-
0.961) 

NA 81 
(55-81) 

0.006 
(0.003-
0.056) 

0.047 
(0.041-
0.068) 

1.47 
(1.41-1.72) 

1.91 
(1.76-2.54) 

-25085 

 2007 0.004 
(0.003-
0.009) 

0.390 
(0.280-
0.952) 

0.463 
(0.294-
0.959) 

NA 81 
(45-81) 

0.005 
(0.002-
0.034) 

0.017 
(0.013-
0.036) 

1.16 
(1.12-1.36) 

1.24 
(1.16-1.64) 

-14719 

Anker 
[183] 

1996 Sri Lanka 0.001 
(0.001-
0.028) 

0.424 
(0.015-
0.969) 

0.087 
(0.032-
0.854) 

NA 15 
(15-15) 

0.338 
(0.163-
0.947) 

0.091 
(0.066-
0.216) 

0.529 
(0.286-
0.975) 

0.004 
(0.002-
0.140) 

1.05 
(1.02-2.81) 

1.05 
(1.03-5.12) 

-1139 

 1997 0.001 
(0.000-
0.093) 

0.535 
(0.221-
0.978) 

0.125 
(0.054-
0.789) 

NA 15 
(15-15) 

0.229 
(0.072-
0.918) 

0.002 
(0.001-
0.174) 

1.02 
(1.01-4.17) 

1.02 
(1.01-7.27) 

-810 

 1998 0.001 
(0.000-
0.024) 

0.381 
(0.002-
0.971) 

0.113 
(0.047-
0.846) 

NA 15 
(15-15) 

0.287 
(0.105-
0.947 

0.003 
(0.002-
0.125) 

1.03 
(1.02-3.73) 

1.03 
(1.02-5.56) 

-990 

 1999 0.001 
(0.000-
0.026) 

0.260 
(0.002-
0.962) 

0.170 
(0.067-
0.922) 

NA 15 
(15-15) 

0.308 
(0.115-
0.956) 

0.005 
(0.002-
0.103) 

1.05 
(1.02-2.54) 

1.06 
(1.02-5.02) 

-1175 

 2000 0.084 
(0.001-
0.103) 

0.005 
(0.003-
0.951) 

0.198 
(0.063-
0.933) 

NA 15 
(15-15) 

0.330 
(0.133-
0.943) 

0.334 
(0.004-
0.151) 

5.53 
(1.05-2.74) 

9.91 
(1.06-5.53) 

-2302 

 2001 0.002 
(0.001-
0.031) 

0.288 
(0.005-
0.968) 

0.150 
(0.045-
0.918) 

NA 15 
(15-15) 

0.321 
(0.147-
0.936) 

0.009 
(0.004-
0.150) 

1.10 
(1.04-2.40) 

1.14 
(1.05-5.98) 

-2218 

 2002 0.002 
(0.001-
0.075) 

0.160 
(0.004-
0.964) 

0.284 
(0.121-
0.948) 

NA 15 
(15-15) 

0.256 
(0.092-
0.942) 

0.010 
(0.003-
0.270) 

1.11 
(1.03-6.22) 

1.15 
(1.04-12.97) 

-2263 
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Table 4.5 continued (7/8). 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

 

Author 
[Ref] 

Year Country i

(95%CrI) 

y

(95%CrI) 

o

(95%CrI) 

B
(95%CrI) 

thresholdA

(95%CrI) 

  

(95%CrI) 
 1

(95%CrI) 

 3

(95%CrI) 

tot

(95%CrI) 0iR *(95%CrI) 
LnL 

            1 2  

Anker  
[183] 

2003 Sri Lanka 0.001 
(0.000-
0.055) 

0.463 
(0.152-
0.970) 

0.269 
(0.116-
0.908) 

NA 15 
(15-15) 

0.205 
(0.069-
0.909) 

0.091 
(0.066-
0.216) 

0.529 
(0.286-
0.975) 

0.002 
(0.001-
0.218) 

1.03 
(1.01-6.45) 

1.03 
(1.02-13.2) 

-1215 

 2004 0.003 
(0.001-
0.059) 

0.162 
(0.005-
0.957) 

0.228 
(0.083-
0.948) 

NA 15 
(15-15) 

0.301 
(0.105-
0.957) 

0.011 
(0.004-
0.240) 

1.13 
(1.04-6.74) 

1.18 
(1.05-14.23) 

-2865 

 2005 0.001 
(0.000-
0.086) 

0.428 
(0.098-
0.962) 

0.246 
(0.107-
0.899) 

NA 15 
(15-15) 

0.188 
(0.057-
0.936) 

0.002 
(0.001-
0.324) 

1.02 
(1.01-7.22) 

1.02 
(1.01-15.06) 

-882 

Kulatilaka 
[200] 

2010 0.066 
(0.058-
0.128) 

0.001 
(0.001-
0.002) 

0.459 
(0.216-
0.979) 

0.079 
(0.058-
0.507) 

65 
(65-65) 

0.010 
(0.006-
0.057) 

0.266 
(0.230-
0.467) 

3.67 
(3.23-7.54) 

7.48 
(6.36-14.43) 

-1566 

Limkittikul 
[201] 

2000 Thailand 0.060 
(0.051-
0.439) 

0.009 
(0.004-
0.016) 

0.457 
(0.173-
0.974) 

0.127 
(0.040-
0.901) 

80 
(80-80) 

0.056 
(0.025-
0.280) 

0.008 
(0.004-
0.036) 

0.466 
(0.235-
0.972) 

0.240 
(0.204-
0.758) 

3.61 
(3.16-8.14) 

6.99 
(5.95-16.47) 

-29877 

 2001 0.049 
(0.043-
0.080) 

0.099 
(0.087-
0.127) 

0.322 
(0.122-
0.960) 

0.043 
(0.025-
0.148) 

80 
(65-80) 

0.027 
(0.016-
0.133) 

0.194 
(0.173-
0.319) 

3.06 
(2.79-4.75) 

5.73 
(5.10-9.50) 

-225604 

 2002 0.051 
(0.044-
0.275) 

0.070 
(0.050-
0.104) 

0.354 
(0.124-
0.963) 

0.084 
(0.039-
0.447) 

80 
(65-80) 

0.049 
(0.027-
0.231) 

0.203 
(0.174-
0.901) 

3.38 
(2.97-19.26) 

6.71 
(5.70-39.95) 

-188228 

 2003 0.063 
(0.044-
0.458) 

0.015 
(0.010-
0.058) 

0.451 
(0.189-
0.970) 

0.429 
(0.098-
0.965) 

80 
(80-80) 

0.088 
(0.048-
0.294) 

0.253 
(0.175-
0.831) 

4.21 
(3.01-14.14) 

8.72 
(5.83-27.66) 

-107291 

 2004 0.041 
(0.037-
0.073) 

0.030 
(0.026-
0.039) 

0.385 
(0.133-
0.962) 

0.036 
(0.019-
0.281) 

80 
(80-80) 

0.025 
(0.016-
0.134) 

0.163 
(0.146-
0.291) 

2.86 
(2.62-4.86) 

5.45 
(4.85-10.22) 

-66728 

 2005 0.040 
(0.036-
0.271) 

0.032 
(0.021-
0.044) 

0.391 
(0.132-
0.970) 

0.059 
(0.029-
0.910) 

80 
(80-80) 

0.029 
(0.016-
0.202) 

0.161 
(0.143-
0.308) 

2.86 
(2.60-4.53) 

5.46 
(4.81-10.86) 

-79944 
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Table 4.5 continued (8/8). 

*Assumption1 = 4 infection, assumption 2 = 2 infections. ^All cases reported = DHF, we have assumed that all cases were due to secondary cases and fixed γ₁ and γ₃ = 0.

Author 
[Ref] 

Year Country i

(95%CrI) 

y

(95%CrI) 

o

(95%CrI) 

B
(95%CrI) 

thresholdA

(95%CrI) 

  

(95%CrI) 
 1

(95%CrI) 

 3

(95%CrI) 

tot

(95%CrI) 0iR  (95%CrI)* 
LnL 

            1 2  

Limkittikul 
[201] 

2006 Thailand 0.041 
(0.035-
0.267) 

0.028 
(0.019-
0.046) 

0.409 
(0.158-
0.970) 

0.094 
(0.034-
0.670) 

80 
(80-80) 

0.046 
(0.026-
0.207) 

0.008 
(0.004-
0.036) 

0.466 
(0.235-
0.972) 

0.164 
(0.141-
0.680) 

2.94 
(2.61-10.1) 

5.68 
(4.84-19.90) 

-80483 

 2007 0.039 
(0.035-
0.062) 

0.054 
(0.046-
0.067) 

0.323 
(0.114-
0.956) 

0.034 
(0.018-
0.133) 

80 
(65-80) 

0.025 
(0.016-
0.120) 

0.157 
(0.140-
0.247) 

2.86 
(2.62-4.32) 

5.51 
(4.88-9.04) 

-
112810 

 2008 0.036 
(0.034-
0.050) 

0.077 
(0.071-
0.092) 

0.367 
(0.136-
0.973) 

0.028 
(0.015-
0.097) 

80 
(65-80) 

0.014 
(0.009-
0.071) 

0.145 
(0.134-
0.198) 

2.72 
(2.56-3.54) 

5.16 
(4.74-7.22) 

-
159451 

 2009 0.036 
(0.032-
0.071) 

0.043 
(0.033-
0.059) 

0.347 
(0.105-
0.966) 

0.053 
(0.027-
0.227) 

80 
(80-80) 

0.021 
(0.012-
0.117) 

0.144 
(0.130-
0.284) 

2.73 
(2.53-5.13) 

5.19 
(4.66-10.87) 

-
103220 

 2010 0.033 
(0.031-
0.044) 

0.103 
(0.093-
0.124) 

0.284 
(0.109-
0.961) 

0.028 
(0.016-
0.145) 

80 
(65-80) 

0.009 
(0.005-
0.053) 

0.134 
(0.125-
0.176) 

2.65 
(2.51-3.33) 

5.01 
(4.64-6.75) 

-
215303 

Wichmann 
[193] 

2006 0.045 
(0.026-
0.164) 

0.340 
(0.259-
0.933) 

0.573 
(0.344-
0.981) 

NA 10 
(10-15) 

0.184 
(0.067-
0.897) 

0.179 
(0.105-
0.654) 

1.40 
(1.22-3.17) 

1.74 
(1.34-9.44) 

-31 

 2007 0.073 
(0.049-
0.177) 

0.603 
(0.529-
0.956) 

0.600 
(0.376-
0.984) 

NA 15 
(10-15) 

0.241 
(0.100-
0.919) 

0.292 
(0.196-
0.707) 

1.79 
(1.49-3.70) 

2.87 
(1.97-11.33) 

-114 

Bangkok^ 
[186] 

2000 0.047 
(0.044-
0.055) 

0.055 
(0.054-
0.058) 

0.508 
(0.248-
0.974) 

NA 98 
(98-98) 

0.013 
(0.010-
0.032) 

0 0 0.188 
(0.175-
0.219) 

3.30 
(3.10-3.83) 

7.17 
(6.57-8.68) 

-11467 

Ratchaburi^ 
[186] 

2000 0.050 
(0.048-
0.058) 

0.109 
(0.106-
0.114) 

0.502 
(0.247-
0.974) 

NA 98 
(98-98) 

0.012 
(0.009-
0.031) 

0 0 0.202 
(0.191-
0.232) 

3.37 
(3.22-3.82) 

6.59 
(6.23-7.66) 

-2810 

Rayong 
[186] 

2010 0.019 
(0.018-
0.022) 

0.156 
(0.147-
0.187) 

0.074 
(0.069-
0.088) 

NA 28 
(28-31) 

0.000 
(0.000-
0.001) 

0.008 
(0.004-
0.036) 

0.466 
(0.235-
0.972) 

0.077 
(0.072-
0.089) 

1.73 
(1.68-1.87) 

2.56 
(2.44-2.93) 

-4115 

Ghouth 
[202] 

2010 Yemen 0.005 
(0.002-
0.021) 

0.201 
(0.112-
0.947) 

0.384 
(0.172-
0.973) 

NA 80 
(55-80) 

0.090 
(0.049-
0.463) 

0.222 
(0.090-
0.931) 

0.491 
(0.248-
0.980) 

0.015 
(0.007-
0.063) 

1.13 
(1.06-1.57) 

1.15 
(1.06-1.78) 

-1792 
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Figure 4.5: Model fits of models 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to yearly incidence data from Brazil (Cordeiro et al. [191]). 95% exact confidence intervals shown 
around data points, posterior median (line) and 95% credible interval (shaded area) shown. 
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Figure 4.6: Model fits of models 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to yearly incidence data from Brazil (Penna et al. [178]). 95% exact confidence intervals shown 
around data points, posterior median (line) and 95% credible interval (shaded area) shown. 
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Figure 4.7: Model fits of models 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to yearly incidence data from Cambodia (Vong et al. [192] and Wichmann et al. [193]).  
95% exact confidence interval around data points, posterior median (line) and 95% credible interval 
(shaded area) shown. 
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Figure 4.8: Model fits of model 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to yearly incidence data from Laos (Anker et al., [183] Prasith et al., [194] and Khampapongpane et al. 
[195]). 95% exact confidence interval around data points, posterior median (line), and 95% credible 
interval (shaded area) shown. 

 



Page 141 of 228 
 

 

Figure 4.9: Model fits of model 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to yearly incidence data from the Philippines (Anker et al. [183]). 95% exact confidence intervals 
around data points, posterior median (line), and 95% credible intervals (shaded area) shown. 
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Figure 4.10: Model fits of model 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to yearly incidence data from Puerto Rico (Rigau-Perez et al., [198] Ramos et al., [196] Tomashek et 
al., [197] and Sharp et al. [173]). 95% exact confidence intervals around data points, posterior 
median (line), and 95% credible interval (shaded area) shown. 
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Figure 4.11: Model fits of model 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to yearly incidence data from Singapore (Anker et al., [183] Koh et al., [199] and Ler et al. [185]). 
95% exact confidence intervals around data points, posterior median (line), and 95% credible 
interval (shaded area) shown. 



Page 144 of 228 
 

 

Figure 4.12: Model fits of model 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to yearly incidence data from Sri Lanka (Anker et al. [183]). 95% exact confidence interval around 
data points, posterior median (line), and 95% credible interval (shaded area) shown. 
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Figure 4.13: Model fits of model 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to yearly incidence data from Thailand (Limkittikul et al. [201]). 95% exact confidence intervals 
around data points, posterior median (line), and 95% credible interval (shaded area) shown. 
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Figure 4.14: Model fits of model 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to yearly incidence data from Thailand (Wichmann et al., [193] and data from Bangkok, Ratchaburi, 
and Rayong [187]). 95% exact confidence intervals around data points, posterior median (line), and 
95% credible interval (shaded area) shown. 

 

 

Figure 4.15: Model fits from model 1 (single reporting rate) and 2 (age-dependent reporting rate) 
fitted to yearly incidence data from Yemen (Ghouth et al. [202]). 95% exact confidence intervals 
around data points, posterior median (line), and 95% credible intervals (shaded area) shown. 
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Figure 4.16 and Figure 4.17 show the distribution of the total force of infection ( total ) 

grouped by country (calculated by multiplying the serotype-specific force of infection by the 

number of serotypes in circulation) from models 1B (single reporting rate,  , fitted to 

cumulative incidence data) and 2B (age-dependent reporting rate, y  and o
, fitted to 

cumulative incidence data) respectively. Individual estimates are given in Table 4.6 and 

Table 4.7 and the model fits are shown in Figure 4.18 – Figure 4.29. 

 

 

Figure 4.16: Total force of infection and corresponding R0i estimates from model 1B (single reporting 
rate) fitted to cumulative incidence data grouped by country. Each dot represents the posterior 
median estimate and the error bars the 95% CrI. The box represents the country-specific central 
estimate calculated by taking the mean values of the MCMC output for each country (the line and 
limits of the box represent the posterior median and 95% CrI respectively).  
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Figure 4.17:  Total force of infection and corresponding R0i estimates from model 2B (age-dependent 
reporting rate) fitted to cumulative incidence data grouped by country. Each dot represents the 
posterior median estimate and the error bars the 95% CrI. The box represents the country-specific 
central estimate calculated by taking the mean values of the MCMC output for each country (the line 
and limits of the box represent the posterior median and 95% CrI respectively) 
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Table 4.6: Summary parameter estimates from model 1 fitted to cumulative incidence data where available by country (single reporting rate, model 1B). 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

  

Author [Ref] Year Country i (95% CrI)  (95%CrI) B (95%CrI)  (95%CrI)  1 (95%CrI)  3 (95%CrI) tot (95%CrI) 0iR (95%CrI)* LnL 

          1 2  

Cordeiro 
[191] 

1995/01 Brazil 0.016 
(0.013-0.024) 

0.546 
(0.468-0.956) 

NA 0.008 
(0.005-0.041) 

0.034 
(0.018-0.144) 

0.496 
(0.268-0.976) 

0.033 
(0.026-0.047) 

1.52 
(1.40-1.77) 

1.52 
(1.40-1.77) 

-355182 

 2002/06 0.012 
(0.011-0.018) 

0.479 
(0.432-0.791) 

NA 0.006 
(0.004-0.036) 

0.037 
(0.033-0.053) 

1.40 
(1.35-1.58) 

1.53 
(1.46-1.81) 

-326485 

Cardoso 
[181] 

2000/09 0.012 
(0.012-0.015) 

0.078 
(0.073-0.103) 

NA 0.002 
(0.001-0.008) 

0.037 
(0.035-0.045) 

1.44 
(1.40-1.54) 

1.59 
(1.53-1.75) 

-4333 

Penna 
[178] 

2001/06 0.005 
(0.003-0.011) 

0.373 
(0.251-0.901) 

0.005 
(0.003-0.076) 

0.025 
(0.011-0.244) 

0.019 
(0.014-0.043) 

1.13 
(1.10-1.31) 

1.18 
(1.13-1.53) 

-55909 

Vong 
[192] 

2006/08 Cambodia 0.069 
(0.067-0.077) 

0.180 
(0.173-0.189) 

NA 0.003 
(0.002-0.007) 

0.037 
(0.015-0.229) 

0.383 
(0.170-0.961) 

0.277 
(0.266-0.308) 

2.00 
(1.95-2.14) 

3.37 
(3.24-3.80) 

-55933 

Wichmann 
[193] 

2006/07 0.027 
(0.016-0.163) 

0.263 
(0.150-0.946) 

NA 0.159 
(0.058-0.896) 

0.107 
(0.062-0.652) 

1.22 
(1.13-3.16) 

1.34 
(1.17-9.37) 

-30 

Luo 
[190] 

1978/88 China 0.018 
(0.014-0.235) 

0.000 
(0.000-0.001) 

0.399 
(0.237-0.741) 

0.002 
(0.001-0.023) 

0.046 
(0.020-0.366) 

0.514 
(0.255-0.970) 

0.071 
(0.056-0.941) 

1.82 
(1.62-2.72) 

2.83 
(2.28-5.76) 

-12911 

 1989/99 0.011 
(0.009-0.019) 

0.000 
(0.000-0.001) 

0.062 
(0.021-0.645) 

0.003 
(0.001-0.028) 

0.042 
(0.037-0.077) 

1.44 
(1.38-1.90) 

1.84 
(1.69-3.05) 

-12430 

 2000/09 0.012 
(0.005-0.081) 

0.000 
(0.000-0.006) 

0.243 
(0.084-0.560) 

0.055 
(0.034-0.269) 

0.049 
(0.022-0.352) 

1.53 
(1.22-5.72) 

2.05 
(1.34-11.45) 

-4413 

Guo 
[90] 

2005/11 0.004 
(0.003-0.010) 

0.000 
(0.000-0.005) 

0.006 
(0.002-0.099) 

0.028 
(0.018-0.104) 

0.018 
(0.011-0.040) 

1.15 
(1.09-1.36) 

1.22 
(1.12-1.63) 

-3459 

Anker 
[183] 

2000/06 Laos 0.011 
(0.006-0.042) 

0.102 
(0.074-0.372) 

NA 0.177 
(0.062-0.909) 

0.201 
(0.073-0.917) 

0.530 
(0.259-0.978) 

0.043 
(0.024-0.168) 

1.40 
(1.22-2.50) 

1.71 
(1.36-3.55) 

-45133 

Khampapongpane 
[195] 

2010 0.013 
(0.006-0.049) 

0.150 
(0.076-0.744) 

0.060 
(0.022-0.860) 

0.065 
(0.034-0.382) 

0.053 
(0.026-0.197) 

1.38 
(1.18-2.49) 

1.64 
(1.28-4.07) 

-33953 

Prasith 
[194] 

2010 0.018 
(0.009-0.082) 

0.139 
(0.082-0.469) 

0.164 
(0.059-0.934) 

0.297 
(0.162-0.937) 

0.072 
(0.038-0.328) 

1.57 
(1.29-4.04) 

2.10 
(1.49-6.92) 

-22762 

Hammond 
[184] 

1999/01 Nicaragua 0.021 
(0.005-0.035) 

0.026 
(0.021-0.858) 

NA 0.014 
(0.009-0.058) 

0.489 
(0.258-0.969) 

0.506 
(0.239-0.979) 

0.062 
(0.016-0.104) 

1.46 
(1.11-1.81) 

1.62 
(1.13-2.18) 

-1182 

Anker 
[183] 

1998-2005 Philippines 0.022 
(0.011-0.059) 

0.116 
(0.089-0.860) 

NA 0.265 
(0.119-0.938) 

0.316 
(0.137-0.932) 

0.460 
(0.225-0.967) 

0.086 
(0.043-0.237) 

1.86 
(1.43-3.21) 

2.53 
(1.76-4.82) 

-166118 
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Table 4.6 continued (2/2) 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

 

Author [Ref] Year Country i (95% CrI)  (95%CrI) B (95%CrI)  (95%CI)  1 (95%CrI)  3 (95%CrI) tot

(95%CrI) 
0iR (95%CrI)* LnL 

          1 2  

Rigau-Perez 
[198] 

1994 Puerto Rico 0.022 
(0.021-0.028) 

0.350 
(0.304-0.496) 

NA 0.005 
(0.003-0.019) 

0.408 
(0.282-0.904) 

0.656 
(0.416-0.987) 

0.067 
(0.062-0.085) 

1.92 
(1.83-2.20) 

2.36 
(2.22-2.83) 

-50388 

 1995/97  0.020 
(0.017-0.026) 

0.032 
(0.028-0.389) 

NA 0.006 
(0.003-0.143) 

  0.060 
(0.052-0.079) 

1.74 
(1.64-2.01) 

2.07 
(1.91-2.51) 

-9112 

Ramos 
[196]  

2006  0.017 
(0.013-0.043) 

0.364 
(0.300-0.804) 

NA 0.043 
(0.018-0.422) 

  0.070 
(0.051-0.170) 

1.64 
(1.44-2.93) 

2.32 
(1.83-5.20) 

-203 

Sharp 
[173] 

2010  0.015 
(0.011-0.028) 

0.160 
(0.134-0.504) 

NA 0.028 
(0.020-0.094) 

  0.062 
(0.046-0.111) 

1.71 
(1.50-2.43) 

2.48 
(1.97-4.37) 

-24291 

Tomashek 
[173] 

2007  0.010 
(0.005-0.020) 

0.053 
(0.044-0.699) 

NA 0.025 
(0.018-0.075) 

  0.040 
(0.021-0.079) 

1.38 
(1.20-1.83) 

1.69 
(1.30-2.75) 

-7042 

Anker 
[183] 

1999/05 Singapore 0.016 
(0.009-0.069) 

0.136 
(0.114-0.631) 

NA 0.328 
(0.112-0.956) 

0.047 
(0.020-0.444) 

0.488 
(0.229-0.974) 

0.062 
(0.035-0.275) 

1.86 
(1.45-5.50) 

2.78 
(1.86-10.03) 

-16182 

Koh 
[199] 

2005 0.011 
(0.009-0.014) 

0.268 
(0.251-0.527) 

NA 0.008 
(0.005-0.039) 

0.043 
(0.037-0.057) 

1.42 
(1.35-1.58) 

1.79 
(1.63-2.18) 

-20559 

Ler 
[185] 

2005/07 0.009 
(0.008-0.013) 

0.243 
(0.223-0.779) 

NA 0.006 
(0.003-0.050) 

0.037 
(0.031-0.052) 

1.36 
(1.30-1.53) 

1.64 
(1.51-2.06) 

-40149 

Anker 
[183] 

1996/05 Sri Lanka 0.019 
(0.013-0.079) 

0.070 
(0.057-0.356) 

NA 0.197 
(0.060-0.928) 

0.179 
(0.093-0.645) 

0.458 
(0.228-0.970) 

0.075 
(0.053-0.315) 

1.95 
(1.65-5.24) 

2.89 
(2.28-9.10) 

-16555 

Kulatilaka 
[200] 

2010 0.059 
(0.050-0.090) 

0.001 
(0.001-0.001) 

0.059 
(0.044-0.105) 

0.008 
(0.005-0.029) 

0.236 
(0.201-0.361) 

3.31 
(2.89-4.94) 

6.55 
(5.49-10.74) 

-1565 

Lin 
[186] 

2003/09 Taiwan 0.001 
(0.000-0.004) 

0.123 
(0.033-0.889) 

NA 0.010 
(0.007-0.053) 

0.034 
(0.019-0.399) 

0.508 
(0.253-0.980) 

0.002 
(0.001-0.015) 

1.02 
(1.01-1.15) 

1.02 
(1.01-1.21) 

-4241 

Limkittikul 
[201] 

200./10 Thailand 0.041 
(0.037-0.058) 

0.057 
(0.052-0.069) 

0.034 
(0.021-0.142) 

0.017 
(0.011-0.083) 

0.018 
(0.008-0.073) 

0.514 
(0.254-0.973) 

0.163 
(0.149-0.231) 

2.88 
(2.68-3.91) 

5.48 
(4.99-7.97) 

-1387845 

Wichmann 
[193] 

2006/07 0.058 
(0.037-0.198) 

0.470 
(0.411-0.945) 

NA 0.191 
(0.075-0.909) 

0.231 
(0.147-0.493) 

1.56 
(1.33-4.10) 

2.19 
(1.58-9.13) 

-146 

Cuong 
[189] 

1998/09 Vietnam 0.015 
(0.014-0.019) 

0.024 
(0.022-0.044) 

NA 0.010 
(0.007-0.031) 

0.039 
(0.016-0.682) 

0.496 
(0.253-0.971) 

0.061 
(0.055-0.076) 

1.54 
(1.48-1.69) 

2.06 
(1.92-2.42) 

-58901 
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Table 4.7: Summary parameter estimates from model 2 fitted to cumulative incidence data by country  (age-dependent reporting rate, model 2B). 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

Author [Ref] Country Year i

(95%CrI) 

y

(95%CrI) 

o

(95%CrI) 

B  
(95%CrI) 

thresholdA  

(95%CrI) 



(95%CrI) 
 1

(95%CrI) 

 3

(95%CrI) 

tot

(95%CrI) 

0iR (95%CrI)* LnL 

            1 2  

Cordeiro 
[191] 

Brazil 1995/01 0.018 
(0.014-
0.030) 

0.481 
(0.341-
0.943) 

0.460 
(0.369-
0.942) 

NA 65 
(20-79) 

0.007 
(0.004-
0.044) 

0.047 
(0.024-
0.193) 

0.491 
(0.258-
0.970) 

0.036 
(0.029-0.059) 

1.57 
(1.45-2.00) 

1.57 
(1.45-2.00) 

-355181 

 2002/06 0.012 
(0.010-
0.018) 

0.514 
(0.449-
0.966) 

0.494 
(0.368-
0.946) 

NA 65 
(50-79) 

0.006 
(0.004-
0.035) 

0.035 
(0.029-0.053) 

1.37 
(1.30-1.58) 

1.48 
(1.38-1.81) 

-326485 

Cardoso 
[181] 

2000/09 0.012 
(0.011-
0.015) 

0.078 
(0.072-
0.134) 

0.342 
(0.093-
0.973) 

NA 90 
(90-90) 

0.002 
(0.001-
0.008) 

 

0.037 
(0.034-0.045) 

1.43 
(1.40-1.54) 

1.58 
(1.53-1.76) 

-4333 

Penna 
[178] 

2001/06 0.006 
(0.004-
0.177) 

0.225 
(0.033-
0.910) 

0.403 
(0.222-
0.968) 

0.014 
(0.003-
0.820) 

70 
(30-90) 

0.045 
(0.017-
0.536) 

0.024 
(0.016-0.708) 

1.17 
(1.11-8.19) 

1.25 
(1.15-16.48) 

-55911 

Vong 
[192] 

Cambodia 2006/08 0.066 
(0.064-
0.073) 

0.183 
(0.177-
0.193) 

0.049 
(0.029-
0.216) 

NA 19 
(19-21) 

0.002 
(0.001-
0.005) 

0.033 
(0.015-
0.197) 

0.425 
(0.197-
0.966) 

0.265 
(0.256-0.292) 

1.94 
(1.91-2.07) 

3.22 
(3.10-3.58) 

-55927 

Wichmann 
[193] 

2006/07 0.030 
(0.016-
0.185) 

0.235 
(0.136-
0.931) 

0.495 
(0.272-
0.969) 

NA 15 
(10-15) 

0.183 
(0.068-
0.889) 

0.119 
(0.064-0.739) 

1.25 
(1.13-3.63) 

1.40 
(1.18-7.02) 

-31 

Luo 
[190] 

China 1978/88 0.017 
(0.014-
0.073) 

0.001 
(0.000-
0.001) 

0.491 
(0.245-
0.976) 

0.378 
(0.217-
0.748) 

90 
(90-90) 

0.002 
(0.001-
0.024) 

0.049 
(0.021-
0.394) 

0.522 
(0.262-
0.979) 

0.070 
(0.054-0.191) 

 

1.80 
(1.60-3.17) 

2.79 
(2.22-6.83) 

-12911 

 1989/99 0.011 
(0.009-
0.024) 

0.001 
(0.000-
0.001) 

0.511 
(0.254-
0.979) 

0.071 
(0.023-
0.701) 

90 
(90-90) 

0.003 
(0.001-
0.031) 

0.042 
(0.037-0.097) 

1.44 
(1.38-2.19) 

1.84 
(1.69-3.91) 

-12430 

 2000/09 0.012 
(0.005-
0.084) 

0.001 
(0.00-
0.008) 

0.498 
(0.242-
0.978) 

0.199 
(0.060-
0.552) 

90 
(90-90) 

0.052 
(0.033-
0.256) 

0.047 
(0.020-0.357) 

1.50 
(1.20-10.71) 

1.98 
(1.30-12.43) 

-4413 

Guo 
[90] 

2005/11 0.004 
(0.003-
0.010) 

0.001 
(0.00-
0.007) 

0.471 
(0.219-
0.973) 

0.007 
(0.002-
0.117) 

90 
(90-90) 

0.029 
(0.019-
0.104) 

0.018 
(0.011-0.039) 

1.15 
(1.09-1.35) 

1.22 
(1.12-1.61) 

-3459 
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Table 4.7 continued (2/3). 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

 

Author [Ref] Country Year i

(95%CrI) 

y

(95%CrI) 

o

(95%CrI) 

B  
(95%CrI) 

thresholdA

(95%CrI) 



(95%CrI) 
 1

(95%CrI) 

 3

(95%CrI) 

tot

(95%CrI) 
0iR (95%CrI)* LnL 

            1 2  

Anker 
[183] 

Laos 2000/06 0.016 
(0.003-
0.150) 

0.079 
(0.024-
0.949) 

0.331 
(0.176-
0.955) 

NA 15 
(15-15) 

0.204 
(0.074-
0.908) 

0.171 
(0.070-
0.828) 

0.476 
(0.248-
0.972) 

0.063 
(0.010-
0.601) 

1.59 
(1.09-
5.86) 

2.05 
(1.13-
11.58) 

-45134 

Khampapong
pane 
[195] 

2010 0.014 
(0.006-
0.095) 

0.117 
(0.060) 

0.234 
(0.137-
0.885) 

0.059 
(0.023-
0.582) 

40 
(20-40) 

0.070 
(0.034-
0.432) 

0.057 
(0.024-
0.380) 

1.41 
(1.17-
4.06) 

1.70 
(1.26-
7.51) 

-33953 

Prasith 
[194] 

2010 0.025 
(0.012-
0.173) 

0.097 
(0.061-
0.435) 

0.451 
(0.236-
0.969) 

0.260 
(0.097-
0.937) 

80 
(40-80) 

0.340 
(0.188-
0.929) 

0.098 
(0.047-
0.692) 

1.81 
(1.36-
7.41) 

2.63 
(1.64-
12.71) 

-22762 

Hammond 
[184] 

Nicaragua 1999/01 0.014 
(0.002-
0.034) 

0.038 
(0.023-
0.937) 

0.398 
(0.131-
0.959) 

NA 
 

55 
(39-55) 

0.016 
(0.010-
0.059) 

0.451 
(0.227-
0.971) 

0.502 
(0.264-
0.975) 

0.043 
(0.005-
0.103) 

1.31 
(1.04-
1.80) 

1.40 
(1.04-
2.16) 

-1183 

Anker 
[183] 

Philippines 1998-
2005 

0.010 
(0.006-
0.096) 

0.253 
(0.094-
0.943) 

0.170 
(0.117-
0.788) 

NA 15 
(15-15) 

0.301 
(0.132-
0.930) 

0.186 
(0.105-
0.829) 

0.443 
(0.207-
0.968) 

0.042 
(0.024-
0.385) 

1.41 
(1.23-
4.40) 

1.73 
(1.38-
7.35) 

-166118 

Rigau-Perez 
[198] 

Puerto Rico 1994 0.022 
(0.017-
0.029) 

0.456 
(0.377-
0.920) 

0.514 
(0.413-
0.967) 

NA 55 
(25-99) 

0.003 
(0.002-
0.015) 

0.165 
(0.080-
0.658) 

0.565 
(0.313-
0.977) 

0.065 
(0.052-
0.087) 

1.89 
(1.68-
2.24) 

2.31 
(1.97-
2.90) 

-50387 

 1995/97 0.020 
(0.016-
0.027) 

0.040 
(0.035-
0.841) 

0.368 
(0.127-
0.969) 

NA 85 
(75-85) 

0.008 
(0.003-
0.212) 

0.059 
(0.047-
0.080) 

1.73 
(1.56-
2.03) 

2.05 
(1.78-
2.54) 

-9113 

Ramos 
[196] 

2006 0.017 
(0.013-
0.039) 

0.454 
(0.364-
0.917) 

0.470 
(0.317-
0.957) 

NA 40 
(30-61) 

0.038 
(0.014-
0.395) 

0.069 
(0.051-
0.156) 

1.63 
(1.44-
2.71) 

2.31 
(1.84-
5.49) 

-203 

Sharp 
[173] 

2010 0.016 
(0.009-
0.030) 

0.193 
(0.158-
0.942) 

0.274 
(0.194-
0.939) 

NA 60 
(20-81) 

0.019 
(0.011-
0.078) 

0.062 
(0.038-
0.120) 

1.71 
(1.41-
2.57) 

2.50 
(1.75-
4.73) 

-24289 

Tomashek 
[197] 

2007 0.010 
(0.003-
0.022) 

0.070 
(0.052-
0.916) 

0.217 
(0.091-
0.935) 

NA 60 
(30-85) 

0.022 
(0.015-
0.080) 

0.039 
(0.010-
0.087) 

1.38 
(1.09-
1.93) 

1.68 
(1.12-
3.01) 

-7041 
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Table 4.7 continued (3/3). 

*Assumption 1: individuals can be infected up to four times. Assumption 2: individuals are immune after two infections. 

Author [Ref] Country Year i

(95%CrI) 

y

(95%CrI) 

o

(95%CrI) 

B  
(95%CrI) 

thresholdA

(95%CrI) 



(95%CrI) 
 1

(95%CI) 

 3

(95%CI) 

tot

(95%CI) 
0iR (95%CI)* LnL 

            1 2  

Anker 
[183] 

Singapore 1999/05 0.011 
(0.005-
0.108) 

0.201 
(0.053-
0.942) 

0.249 
(0.151-
0.942) 

NA 15 
(15-15) 

0.300 
(0.117-
0.952) 

0.052 
(0.022-
0.398) 

0.535 
(0.275-
0.970) 

0.044 
(0.020-
0.431) 

1.58 
(1.24-
8.19) 

2.14 
(1.40-
16.10) 

-16182 

Koh 
[199] 

2005 0.010 
(0.008-
0.016) 

0.267 
(0.238-
0.869) 

0.375 
(0.279-
0.919) 

NA 65 
(55-85) 

0.008 
(0.005-
0.047) 

0.042 
(0.031-
0.063) 

1.41 
(1.30-
1.65) 

1.75 
(1.51-
2.35) 

-20560 

Ler 
[185] 

2005/07 0.009 
(0.007-
0.014) 

0.242 
(0.214-
0.814) 

0.350 
(0.252-
0.945) 

NA 80 
(55-80) 

0.006 
(0.003-
0.062) 

0.036 
(0.027-
0.057) 

1.36 
(1.26-
1.59) 

1.63 
(1.43-
2.20) 

-40150 

Anker 
[183] 

Sri Lanka 1996/05 0.001 
(0.000-
0.188) 

0.165 
(0.003-
0.953) 

0.115 
(0.036-
0.738) 

NA 15 
(15-15) 

0.238 
(0.098-
0.910) 

0.250 
(0.112-
0.899) 

0.507 
(0.262-
0.975) 

0.004 
(0.001-
0.521) 

1.05 
(1.02-
11.17) 

1.05 
(1.02-
24.38) 

-16555 

Kulatilaka 
[200] 

2010 0.065 
(0.055-
0.128) 

0.001 
(0.001-
0.001) 

0.491 
(0.215-
0.974) 

0.083 
(0.058-
0.374) 

65 
(65-65) 

0.009 
(0.006-
0.035) 

0.260 
(0.221-
0.514) 

3.61 
(3.12-
7.20) 

7.31 
(6.07-
16.67) 

-1566 

Lin 
[200] 

Taiwan 2003/09 0.001 
(0.000-
0.003) 

0.221 
(0.069-
0.933) 

0.429 
(0.211-
0.963) 

NA 75 
(55-85) 

0.010 
(0.006-
0.051) 

0.033 
(0.017-
0.334) 

0.527 
(0.270-
0.973) 

0.002 
(0.001-
0.011) 

1.01 
(1.01-
1.11) 

1.01 
(1.01-
1.14) 

-4241 

Limkittikul 
[201] 

Thailand 200./10 0.044 
(0.038-
0.375) 

0.047 
(0.033-
0.067) 

0.393 
(0.131-
0.974) 

0.069 
(0.038-
0.790) 

80 
(80-80) 

0.030 
(0.016-
0.196) 

0.022 
(0.011-
0.070) 

0.512 
(0.252-
0.978) 

0.174 
(0.154-
0.500) 

3.04 
(2.75-
7.40) 

5.88 
(5.15-
15.79) 

-1387846 

Wichmann 
[193] 

2006/07 0.062 
(0.039-
0.196) 

0.461 
(0.387-
0.944) 

0.591 
(0.364-
0.985) 

NA 10 
(10-15) 

0.183 
(0.067-
0.916) 

0.248 
(0.155-
0.786) 

1.61 
(1.35-
4.05) 

2.34 
(1.63-
13.65) 

-146 

Cuong 
[189] 

Vietnam 1998/09 0.018 
(0.014-
0.026) 

0.021 
(0.010-
0.106) 

0.025 
(0.023-
0.894) 

NA 30 
(15-79) 

0.005 
(0.002-
0.024) 

0.044 
(0.020-
0.270) 

0.523 
(0.284-
0.982) 

0.072 
(0.055-
0.103) 

1.64 
(1.48-
1.98) 

2.31 
(1.91-
3.15) 

-58897 
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Figure 4.18: Model fits of model 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted 
to cumulative incidence data from Brazil (Cordeiro et al., [191] Cardoso et al., [181] and Penna et al. 
[178]). 95% exact confidence intervals around data points, posterior median (line), and 95% credible 
interval (shaded area) shown. 

 

 

 

Figure 4.19: Model fits of models 1 (single reporting rate) and 2 (age-dependent reporting rate) 
fitted to cumulative incidence data from Cambodia (Vong et al. [192] and Wichmann et al. [193]).  
95% exact confidence interval around data points, posterior median (line) and 95% credible interval 
(shaded area) shown. 
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Figure 4.20: Model fits of models 1 (single reporting rate) and 2 (age-dependent reporting rate) 
fitted to cumulative incidence data from China (Luo et al. [190] and Guo et al. [90]). 95% exact 
confidence interval around data points, posterior median (line) and 95% credible interval (shaded 
area) shown. 

 

 

 

Figure 4.21: Model fits of model 1 (single reporting rate) and model 2 (age-dependent reporting 
rate) fitted to cumulative incidence data from Laos (Anker et al. [183]).  95% exact confidence 
interval around data points, posterior median (line) and 95% credible interval (shaded area) shown. 
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Figure 4.22: Model fits of model 1 (single reporting rate) and model 2 (age-dependent reporting 
rate) fitted to cumulative incidence data from Nicaragua (Hammond et al. [184]). 95% exact 
confidence interval around data points, posterior median (line) and 95% credible interval (shaded 
area) shown. 

 

 

 

Figure 4.23: Model fits of model 1 (single reporting rate) and model 2 (age-dependent reporting 
rate) fitted to cumulative incidence data from the Philippines (Anker et al. [183]).  95% exact 
confidence intervals around data points, posterior median (line) and 95% credible interval (shaded 
area) shown. 
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Figure 4.24: Model fits of model 1 (single reporting rate) and model 2 (age-dependent reporting 
rate) fitted to yearly incidence data from Puerto Rico (Rigau-Perez et al. [198]).  95% exact 
confidence intervals around data points, posterior median (line) and 95% credible intervals (shaded 
area) shown. 

 

 

 

Figure 4.25: Model fits of model 1 (single reporting rate) and model 2 (age-dependent reporting 
rate) fitted to cumulative incidence data from Singapore (Anker et al. [183] and Ler et al. [185]).  
95% exact confidence interval around data points, posterior median (line) and 95% credible interval 
(shaded area) shown. 
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Figure 4.26: Model fits from model 1 (single reporting rate) and model 2 (age-dependent reporting 
rate) fitted to cumulative incidence data from Sri Lanka (Kulatilaka et al. [200] and Anker et al. [183]).  
95% exact confidence interval around data points, posterior median (line) and 95% credible interval 
(shaded area) shown. 

 

 

 

Figure 4.27: Model fits from model 1 (single reporting rate) and model 2 (age-dependent reporting 
rate) fitted to cumulative incidence data from Taiwan (Lin et al. [186]).  95% exact confidence 
intervals around data points, posterior median (line) and 95% credible intervals (shaded area) shown. 
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Figure 4.28: Model fits from model 1 (single reporting rate) and model 2 (age-dependent reporting 
rate) fitted to cumulative incidence data from Thailand (Limkittikul et al. [201] and Wichmann et al. 
[193]).  95% exact confidence intervals around data points, posterior median (line) and 95% credible 
interval (shaded area) shown. 

 

 

 

Figure 4.29: Model fits from model 1 (single reporting rate) and model 2 (age-dependent reporting 
rate) fitted to cumulative incidence data from Vietnam (Cuong et al. [189]).  95% exact confidence 
intervals around data points, posterior median (line) and 95% credible interval (shaded area) shown. 
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Estimates of R0i varied according to the assumptions made regarding host immunity. 

Assuming only primary and secondary infections are infectious (assumption 2) gave up to 

two-fold higher estimates than assuming tertiary and quaternary infections are also 

infectious (Figure 4.3 and Figure 4.16). This is consistent with our previous results analysing 

seroprevalence data ([174] and chapters 2 and 3). Some force of infection estimates in 

Cambodia were very high, perhaps a result of the active surveillance undertaken as part of 

the study by Vong et al. [192]. There was greatest variation in dengue transmission intensity 

in Asia (Table 4.4 - Table 4.7). The baseline reporting rate (), which is defined as the 

probability of detecting a secondary infection, was 10% (range: 1% - 79%) and 16% (range: 

1%-55%) when fitted to yearly and cumulative incidence data respectively assuming a single 

reporting rate for all ages. When we allowed for age-dependent reporting rates, estimates 

of   increased to between 26% - 33% and 13% - 37% when fitted to yearly and cumulative 

incidence data respectively. Figure 4.30 shows the dataset-specific estimates of the baseline 

reporting rate (  , y , and o ) and the probability of detecting a primary ( 1 ) case relative 

to the baseline reporting rate, and the probability of detecting a tertiary/quaternary ( 3 ) 

case relative to a primary case by model type. The median probability of detecting a primary 

case relative to a secondary case was consistently low at less than 25% for the majority of 

data sets and models. However, the credible intervals for some 1  estimates were wide. The 

data proved uninformative about the contribution of post-secondary infections to disease 

incidence, as our estimates of 3  reflected the prior distribution assumed for that parameter 

(uniform from 0 to 1). 

When we allowed for reporting rates to vary by age, we found that the median probability 

that a secondary infection was detected was higher in older compared with younger 

individuals (Figure 4.30). However, stratifying parameter estimates by country, when o  

was higher than y  the corresponding estimate of the age threshold at which reporting 

rates changed ( thresholdA ) were high (Figure 4.31, Table 4.5 and Table 4.7). In such cases the 

reporting rate y  applied to the majority of age groups and the estimated values were 

comparable to the corresponding baseline reporting rates estimated from the model 

variants which did not incorporate age-dependent reporting. 
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Figure 4.30: Boxplots of estimated reporting rates by model type : A) model 1A, B) model 1B, C) 
model 2A and D) model 2B. Each point represents the posterior median estimate for one dataset. ρ, 
ρ Y, ρ O = baseline reporting rate or probability of detecting a secondary infection for all ages, 
individuals younger than threshold age, and individuals older than the threshold age respectively. γ₁ 
= probability of detecting a primary infection relative to a secondary infection, and γ₃ = probability of 
detecting a tertiary/quaternary infection relative to a primary infection. Model 1a and 1b were fitted 
to yearly and cumulative incidence data respectively assuming a non-age dependent reporting rate, 
while model 2a and 2b were fitted to yearly and cumulative incidence data respectively assuming an 
age-dependent reporting rate. 
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Figure 4.31: Comparison of baseline reporting rates (, Y, O ) and estimated age (years) at which 
reporting rates change (Athreshold) by model. A) model with single reporting rate fitted to yearly 
incidence data, B) model with single reporting rate fitted to cumulative incidence data, C) model 
with age-dependent reporting rate fitted to yearly incidence data, and D) model with age-dependent 
reporting rate fitted to cumulative incidence data. Each point represents the posterior median 
estimate for one dataset. 

 

The baseline reporting rates (  ) varied substantially by country (Figure 4.31), likely 

reflecting differences in healthcare seeking behaviour and surveillance. Generally, estimated 

reporting rates in the Americas were higher than in South East Asia, with Singapore having 

the highest rate within SE Asia. Reporting rates also varied within each country depending 

on survey year or survey region, which may reflect differences in local healthcare systems or 

changes in public awareness after epidemics. Estimates from Cambodia were high due to 

the active surveillance employed during that study (Vong et al. 2006-2008 [192]). The 



Page 163 of 228 
 

estimated age at which reporting rates changed was consistently lower in South East Asia 

(Cambodia, Laos, Sri Lanka, and the Philippines – except Singapore) than in the Americas 

(Brazil and Puerto Rico). Comparing models fitted to yearly incidence and cumulative 

incidence data, model 2 provided a better fit to the data 62% and 59% of the time 

respectively as assessed by the DIC (Table 4.8 and Table 4.9). 

 

Table 4.8: Summary DIC comparison of model fits to yearly incidence data. Models 1 (single 
reporting rate) and 2 (age-dependent reporting rate) fitted to yearly incidence data. Smaller DIC for 
each dataset is highlighted in bold where the difference is greater than 5. 

  Author [Ref] Year # serotypes Country DIC 

    Model 1 Model 2 

Cordeiro [191] 1995 2 Brazil 35710 35703 

 1996 2 80771 80769 

 1997 2 115423 115414 

 1998 2 186560 186511 

 1999 2 128229 128227 

 2000 3 101163 101163 

 2001 3 62048 62035 

 2002 3 418449 418448 

 2003 3 95070 94633 

 2004 3 23166 23163 

 2005 3 47099 47095 

 2006 3 68804 68797 

Penna [178] 2001 4 27771 28830 

 2002 4 13788 17822 

 2003 4 20633 20681 

 2004 4 3032 10996 

 2005 4 16643 16998 

 2006 4 15566 15592 

Vong [192] 2006 4 Cambodia 41711 41710 

 2007 4 221410 221390 

 2008 4 68562 68544 

Wichmann [193] 2006 4 65 65 

 2007 4 1088 1087 

Anker [183] 2000 4 Laos 2104 2055 

 2001 4 7257 6585 

 2002 4 16365 15530 

 2003 4 34578 32495 

 2004 4 6557 4009 

 2005 4 10482 9734 

 2006 4 11876 10165 

Khampapongpane [195] 2010 4 64888 67566 

Prasith [194] 2010 4 45456 44129 

Anker [194] 1998 4 Philippines 67732 65607 

 1999 4 18300 11191 

 2001 4 47633 47674 
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Table 4.8 continued (2/2). 

 

  

Author Year # serotypes Country DIC  

    Model 1 Model 2 

Anker [194] 2002 4 Philippines 32395 32374 

 2003 4 57113 53741 

 2004 4 44004 44018 

 2005 3 64390 64353 

Rigau-Perez [198] 1994 3 Puerto 
Rico 

100776 100727 

 1995 3 6127 6128 

 1996 3 5393 5396 

 1997 4 6742 6747 

Ramos [196] 2006 4 409 409 

Sharp [173] 2007 4 48497 48514 

Tomashek [197] 2010 4 14076 14014 

Anker [194] 1999 4 Singapore 1041 785 

 2000 4 725 474 

 2001 4 1879 690 

 2002 4 3013 917 

 2003 4 3719 1133 

 2004 4 8270 7606 

 2005 4 13714 13514 

Koh [199] 2005 4 41122 41121 

Ler [185] 2005 4 50174 50175 

 2007 4 29440 29440 

Anker [183] 1996 4 Sri Lanka 2279 1967 

 1997 4 1621 1621 

 1998 4 1980 2210 

 1999 4 2350 1800 

 2000 4 4605 3594 

 2001 4 4422 4672 

 2002 4 4509 3736 

 2003 4 2426 2425 

 2004 4 5722 1706 

 2005 4 1763 1738 

Kulatilaka [200] 1997 4  3124 3138 

Limkittikul [201] 2000 4 Thailand 58282 59755 

 2001 4 450738 451213 

 2002 4 371748 376250 

 2003 4 206304 214588 

 2004 4 124400 133462 

 2005 4 157060 159895 

 2006 4 156750 160942 

 2007 4 225396 225623 

 2008 4 318403 318907 

 2009 4 190752 206441 

 2010 4 430542 430608 

Wichmann [193] 2006 4 64 64 

 2007 4 227 228 

Bangkok [186] 2000 4 22938 22939 

Ratchaburi [186] 2000 4 5624 5624 

Rayong [186] 2010 4 8259 8236 

Ghouth [202] 2010 3 Yemen 3582 3576 
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Table 4.9: Summary DIC comparison of model fits to cumulative incidence data.  Models 1 (single 
reporting rate) and 2 (age-dependent reporting rate) fitted to cumulative incidence data. Smaller DIC 
for each dataset is highlighted in bold where the difference is greater than 5. 

  Author Year Country Model 1 Model 2 

Cordeiro [191] 1995/01 

Brazil 

710366 710318 

 
2002/06 652964 652966 

Cardoso [181] 2000/09 8670 8671 

Penna [178] 2001/06 111819 111696 

Vong [192] 2006/08 
Cambodia 

111870 111861 

Wichmann [193] 2006/07 64 64 

Luo [190] 1978/88 

China 

25826 25826 

 1989/99 23810 24861 

 2000/09 8823 8818 

Guo [90] 2005/11 6914 6895 

Anker [183] 2000/06 Laos 90188 58722 

Hammond [184] 1995/97 Nicaragua 2358 2335 

Anker [183] 1998/05 Philippines 332153 331296 

Rigau-Perez [198] 1994 
Puerto Rico 

100773 100697 

 
1995/97 18219 18231 

Anker [183] 1999/05 
Singapore 

32360 26429 

Ler [185] 2005/07 80303 80304 

Anker [183] 1996/05 Sri Lanka 33110 29570 

Lin [186] 2003/09 Taiwan 8458 8434 

Limkittikul [201] 2000/10 
Thailand 

2775619 2775687 

Wichmann [193] 2006/07 292 289 

Cuong [189] 1998/09 Vietnam 117807 117801 
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4.3.4 Comparison of Estimates Obtained from Seroprevalence and Incidence 

data. 

We used weighted regression to compare the force of infection estimates obtained from 

age-stratified seroprevalence data to cumulative incidence data. Estimates obtained from 

the model fitted to the cumulative incidence data assuming a single reporting rate (Model 

1B) were comparable to force of infection estimates from seroprevalence data. The majority 

of the total force of infection ( total ) estimates from incidence data (calculated by 

multiplying the serotype-specific force of infection by the number of serotypes in 

circulation) were comparable for both models to those obtained from seroprevalence data 

when total  was smaller than ~0.1 with greater uncertainty as force of infection increases 

(Figure 4.32). 

 

 

Figure 4.32: Comparison of weighted deming regression of force of infection estimates by country 
from cumulative incidence data and seroprevalence data for A) model 1B (non-age dependent 
reporting) and B) model 2B (age-dependent reporting rate). Each point is weighted depending on the 
error in both serology and incidence estimates, represented by the size of circles (larger circles 
indicating greater weight). See Table 4.1 for summary of matched datasets. 

 

In two of the three locations in Thailand where region and time matching seroprevalence 

and incidence data were available [187], the force of infection estimates obtained from the 

models fitted to incidence data and serology data had overlapping 95% credible intervals. In 
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Ratchaburi the estimate obtained from seroprevalence data was smaller than that from 

incidence data (Figure 4.33).  

 

 

Figure 4.33: Comparison of force of infection estimates derived from incidence data and 
seroprevalence data.  Comparison of posterior median estimates and 95% CrI of the total force of 
infection from Models 1 (single reporting rate) and 2 (age-dependent reporting rate) fitted to 
incidence data and model A (as described in [174]) to age-stratified seroprevalence data from 
Thailand where incidence and serology data were available from the same year and location . 

 

4.3.5 Regression Analysis 

Multiple regression analysis was conducted to explore the relationship between estimated 

dengue transmission intensity and the covariates summarised in Table 4.10. Figure 4.34 

summarises the analysis results. The multiple regression with all 7 predictors produced 

R2=0.40. Absolute latitude (distance from the equator) and GDP per capita (USD) were both 

negatively associated with the force of infection (p=0.03 and p=0.01 respectively). The 

remaining predictors were not associated with the outcome variable. 
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Figure 4.34: Scatterplots showing the relationship between estimated force of infection, and 
demographic and environmental covariates. A) absolute latitude, B) average maximum temperature, 
C) sample size, D) population size of study region, E) whether the study was conducted in an urban 
or rural setting, F) GDP per capita (USD), and G) lab confirmation. Each point represents an estimate 
for a single year. 
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Table 4.10: Weighted multiple regression results 

Variable Correlation with   Coefficients (95% CI) p-value 

Intercept - 3.19x10-2 

(3.01x10-3 – 6.08x10-2) 

0.03 

Absolute latitude -0.16 -1.07x10-3 

(-2.05x10-3 – 8.38x10-5) 

0.03 

Average maximum temperature 0.31 -5.23x10-4 

(-1.36x10-3 – 3.51x10-4) 

0.23 

Sample size -0.22 4.80x10-11 

(-4.09x10-10 – 5.05x10-10) 

0.83 

Population size of study region -0.07 9.94x10-11 

(-3.13x10-10 – 5.12x10-10) 

0.62 

Urban/Rural^ 0.13 2.29x10-3 

(-2.72x10-3 – 7.29x10-3) 

0.36 

GDP per capita (USD) -0.29 -7.89x10-7 

(-1.40x10-6 – -1.75x10-7) 

0.01 

Laboratory confirmation* 0.06 1.59x10-2 

(-5.07x10-3 – 3.69x10-2) 

0.13 

^coded as 1=urban, 0=rural, 3=both. *coded as 0=no, 1=yes.  
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4.4 Discussion 

From a literature search we selected 23 papers reporting age-stratified case notification 

data in 13 countries from 1978-2010. When reported incidence data were split into yearly 

notifications, this gave a total of 96 survey years. For each dataset we estimated dengue 

transmission intensity as quantified by the force of infection ( i ) and the basic reproduction 

number (R0i). The total force of infection ( total ) estimated from cumulative incidence data 

were compared with previous   estimates from seroprevalence data.  

The incidence models presented in this chapter provide a method for estimating dengue 

transmission intensity in areas where seroprevalence data are not available. Force of 

infection estimates and corresponding basic reproduction numbers varied widely across and 

within countries as expected, highlighting the heterogeneous nature of dengue transmission 

spatially and temporally. The majority of our R0i estimates ranged from 1 to 5, similar to our 

estimates obtained from seroprevalence data [174]. As for our serology-based estimates, 

force of infection estimates were generally higher in South East Asia than for Latin America.  

Since we had no serotype-specific notification data, we assumed that all serotypes were 

equally transmissible. If serotype-specific notification data were available, a serotype-

specific force of infection might be estimated.  

Generally model 2 provided a better fit to yearly incidence (62% of the time) and cumulative 

incidence data (59% of the time) as assessed by the DIC. However if the data were age-

stratified more finely we predict that model 2 would perform better consistently since it 

allows for age-dependent reporting rates. 

Due to the lack of incidence and serology data collected in the same year and region, we 

matched incidence and serology datasets according to the year or study region (Table 4.1). 

While overall estimates from incidence data were comparable with those derived from 

seroprevalence data, it would nonetheless be beneficial to validate this model with multiple 

incidence and serology datasets collected simultaneously in the same geographical location. 

Similarly to the force of infection estimates obtained from seroprevalence data (chapters 2 

and 3), weighted multiple regression was conducted to explore the relationship between 

the estimated forces of infection and various potential predictors. We fitted the single 
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reporting rate model to cumulative incidence data where possible. Distance from the 

equator and GDP per capita (USD) were negatively associated with the force of infection 

(p=0.03 and p=0.01 respectively). This is somewhat consistent with the results from the 

multiple regression in the previous chapter where these two covariates were weakly 

associated with the force of infection. However, whether the study was conducted in an 

urban or rural environment was not associated with transmission intensity unlike the 

estimates obtained from seroprevalence studies. This is likely due to many of the studies 

reporting dengue cases at the national level. Ideally we would have explored the 

associations using a meta-regression, allowing for the between trial variance. However 

again, we could not calculate sampling variances from our data since our variable of interest 

– the force of infection is in itself a model output. 

Generally, estimated reporting rates (  ) in the Americas were higher than those in South 

East Asia with Singapore having the highest rate within South East Asia, consistent with their 

well-established dengue surveillance program [205]. Reporting rate estimates for Cambodia 

were very high compared with the rest of South East Asia, presumably due to the active 

surveillance employed during the study which collected the data [192]. Reporting rate 

estimates also varied within each country depending on survey year or survey region 

reflecting variation in healthcare and surveillance systems [53]. Reporting rates are also 

likely to change in response to recent or current epidemics which affect public awareness of 

dengue thus affecting healthcare seeking behaviour [206]. Additionally, in an epidemic year 

clinicians may preferentially diagnose a febrile illness as dengue without laboratory testing 

[50].  

For models 2A and 2B we hypothesised that severity or disease reporting differed by age 

group and estimated age-dependent reporting rates ( y  and o ) and  the age at which 

reporting rates changed ( thresholdA ). Allowing reporting rates to vary with age in this manner 

generally provided a better fit to the data broken down by survey year (model 2A) and 

cumulative data (model 2B), as assessed by the DIC. In the Americas the threshold age at 

which reporting rates changed was high (over 50 years of age) and so the majority of age 

groups had the same reporting rate ( y ) – effectively equivalent to assuming the same 

reporting rate for all ages (i.e. model 1). In contrast, the estimated age at which reporting 
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rates changed was generally much younger in South East Asia, with the reporting rate in 

younger individuals ( y ) estimated as slightly higher than that of older individuals ( o ). 

This is consistent with dengue tending to be viewed as a paediatric infection in South East 

Asia (and thus perhaps less likely to  be diagnosed in adults), but being widely accepted as a 

disease affecting all ages in the Americas [6]. Yet with the rapidly changing demographics in 

Thailand (lower birth and death rates) increasing the average age of DHF, reporting rates in 

adult age groups may increasing in coming years in such contexts. In contrast to our finding 

of higher estimated reporting rates in children, there is some evidence that the risk that a 

dengue infection is symptomatic increases with age [95,205]. However, the higher reporting 

rates we estimate for children in South East Asia may reflect parents being more likely to 

seek healthcare for a child than for an adult, or clinicians being more likely to diagnose 

dengue in children. Importantly estimating the age at which reporting rates changed 

( thresholdA ) was limited by the age aggregation used in each study, therefore for surveys with 

few age groups this estimated threshold should be treated with caution. 

Since the majority of notified dengue cases are diagnosed as secondary dengue infections 

[3,4,20,122,173], we assumed that the probability of detecting a primary case would be 

smaller than the probability of detecting a secondary case, and that the probability of 

detecting a tertiary/quaternary case would be smaller than the probability of detecting a 

primary case ( 3 1     ). The probability of detecting a primary case was consistently low 

relative to a secondary case (Figure 4.30) at less than 50%, the majority being under 25%. 

However, we were not able to estimate the probability of detecting a tertiary/quaternary 

case (relative to a primary case) from the available data. A prospective cohort study in 

Nicaragua found that the proportion of inapparent to symptomatic infection did not differ 

according to whether an individual had a primary, secondary, or tertiary infection [207]. 

Overall, the impact of cross-immunity and the contribution of tertiary and quaternary 

infections to onward transmission are still not well quantified. While there is evidence that 

tertiary and quaternary infections occur [25,28], there is little quantitative data on the 

infectiousness or severity of such infections relative to primary and secondary infections. 

Additionally, clinically apparent tertiary or quaternary infections are not routinely reported, 

nor can they be tested for retrospectively [25]. Wikramaratna et al. showed that tertiary 
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and quaternary infections allows for the high seroprevalence at very young ages observed in 

Haiti [29] and Nicaragua [30] better than when assuming complete protection after two 

heterologous infections [25].  

Since the majority of dengue infections are mild or asymptomatic, even sensitive healthcare 

systems can substantially underestimate true rates of infection even for the supposedly 

more severe secondary infections, as shown by the low baseline reporting rates [122,123]. 

Furthermore, dengue has a wide spectrum of clinical manifestations making it difficult to 

accurately diagnose in the first instance [52]. Although incidence data are the most 

abundant form of data available on dengue transmission, surveillance systems and reporting 

procedures are not standardised within or across countries making it very difficult to reliably 

compare estimates [52]. Laboratory capacity and general public health infrastructure and 

surveillance systems vary widely and there is often no integration between private and 

public health sectors. With such variable data it is very difficult to estimate dengue burden 

(or transmission intensity) consistently. Since non-serotype specific serological (IgG) surveys 

are relatively inexpensive to collect, it would be beneficial for such seroprevalence data to 

be collected routinely. Such data would provide better baseline estimates of overall 

transmission intensity against which incidence based-estimates could be calibrated to assess 

changes in transmission and identify weaknesses in surveillance systems.  
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5 Estimating the global burden of dengue and the impact of control 

measures 

In this chapter I present methods to estimate the global burden of dengue. Data on the 

probability of dengue occurrence is used in conjunction with the force of infection estimates 

I estimated in chapters 2, 3, and 4. The incidence model developed in chapter 4 is then used 

to estimate the global burden of dengue. The potential impact of novel control measures 

such as the release of Wolbachia infected mosquitoes was explored.  The work in this 

chapter was conducted in collaboration with Dr. Oliver Brady and Prof. Simon Hay 

(University of Oxford) who shared the probability of dengue occurrence data, and Dr. Wes 

Hinsley (Imperial College London) who coded the model in Java. 

5.1 Introduction 

Recent estimates of the global distribution of dengue have refined our understanding of the 

burden of dengue disease, but remain ambiguous. In particular, Bhatt et al.’s estimate of 

390 million dengue infections per year (and 96 million apparent infections) is three times 

higher than previous official World Health Organisation (WHO) estimates, with India 

accounting for 34% of that total [108]. Motivated by previous work on malaria, the Bhatt et 

al. analysis relied on correlating their geographic niche-modelling based estimates of 

dengue presence with burden estimates derived from serological surveys. They built a 

boosted regression tree (BRT) statistical model of dengue transmission risk using an 

extensive database of geo-located dengue occurrence records, a global evidence-based 

consensus map of dengue in 2010 [208], and incorporated covariates known to affect 

dengue transmission such as rainfall and temperature. They then mapped the probability of 

occurrence (PO) or risk of dengue infection globally for each 5km x 5km pixel. This was 

further combined with serological cohort studies looking at dengue sero-incidence to build a 

non-parametric Bayesian hierarchical model to predict the number of inapparent and 

clinically apparent dengue infections [108]. One weakness of this analysis is that infection 

incidence was not bounded by population birth rates. Furthermore, unlike malaria, the 

number of dengue infections an individual can acquire in their lifetime is finite (up to four), 

yet in the Bhatt et al. analysis individuals were allowed to have an infinite number of 

dengue infections in their lifetime.  
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Obtaining robust estimates of the geographic variation in average dengue transmission 

intensity – as quantified by the basic reproduction number, 0R , of each serotype – is key to 

improving the reliability of burden estimates. In addition, a quantitative understanding of 

variation in transmission intensity is essential in assessing the likely impact of interventions 

such as a vaccine [60,61] or novel vector control measures such as Wolbachia infected 

mosquitoes [70,74,110]. Given the highly heterogeneous nature of dengue transmission, 

age-stratified seroprevalence surveys (preferably serotyped) with high spatial resolution 

provides the best estimates of dengue transmission intensity ([174] and chapters 2 and 3). I 

have also shown previously that force of infection ( ) estimates from age-stratified 

notification data can provide estimates comparable to   estimates from serological data 

(chapter 4). However, in areas where dengue is not reported, or areas where dengue is not 

thought to be endemic, such data are harder to collect. Hence if the presence-absence data 

can be reliably translated into quantitative measures of dengue burden - such as   and 0R , 

then more robust estimates can be made.  

Here I develop a model to estimate   and 0R  from presence-absence data by regressing 

the force of infection estimates derived from seroprevalence and incidence data from 

previous work (chapters 2-4) on probability of occurrence estimates from the Bhatt et al. 

model [108]. I then use this regression relationship to generate global force of infection and 

R0 estimates at 5 km resolution. This allows me to generate corresponding disease burden 

estimates that constrain the number of lifelong infections an individual can experience. 

Furthermore, I look at the potential impact that control measures, specifically Wolbachia-

infected Aedes aegypti can have on the burden of dengue. 

 

5.2 Methods                                                                                                                                                                                      

5.2.1 Regression of Presence-absence Against Force of Infection 

Global positioning system (GPS) coordinates of age-stratified seroprevalence and incidence 

surveys previously identified were used to extract the probability of dengue occurrence (PO, 

also referred to here as ‘presence-absence data’) from the corresponding latitude and 
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longitude at the same spatial scale as the survey in question [108]. The force of infection for 

each survey was estimated previously ([174] and chapters 2-4).  

A simple linear model (5.1), exponential model (5.2), and power model (5.3) were fitted to 

the force of infection and corresponding presence-absence values using linear least squares 

(linear model) and non-linear least squares (exponential and power model).  

 

Linear Model: 

Since the force of infection should be 0 when the probability of dengue occurrence is also 0, 

we assume that the intercept is (0, 0) and regress through the origin. 

p    (5.1) 

where   is the total force of infection,   is the slope, and p  is the probability of dengue 

occurrence. 

Exponential Model: 

 expa kp       (5.2) 

where   is the total force of infection, a  is the scaling factor, p  is the probability of 

dengue occurrence, and k  is the exponent. 

Power Model: 

kap    (5.3) 

where   is the total force of infection, a  is the scaling factor, p  is the probability of 

dengue occurrence, and k  is the exponent. 

We chose to use an unweighted regression given the lack of seroprevalence surveys 

available and the inconsistencies in terms of survey design, survey year, and diagnostic test 

([174] and chapters 2-3).  

Since   estimates were available from both seroprevalence surveys (one estimate from the 

IgG model (chapters 2 and 3) and incidence data (two estimates from two model variants 1b 
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and 2b as described in chapter 4)), the   estimates used in equation (5.1)-(5.3) were either 

from; (i) seroprevalence surveys only, (ii) or were a combined estimate from seroprevalence 

surveys and incidence data model 1b, (iii) or seroprevalence surveys and incidence data 

model 1b. The strength of association between   and PO (combinations i – iii) was assessed 

by a pseudo R-squared (R2) statistic and the non-linear regression correlation coefficient. 

The best model was then selected to estimate the force of infection across the globe. All 

models were fitted in the R Statistical Package [159]. 

Comparing goodness of fit 

The 2R  statistic was calculated by; 
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y  is the mean y-value. 

The 95% confidence region was calculated for the two parameters a  and k  according to 

Beale’s criterion using the R package nlstools [209,210]. 5000 parameter sets were randomly 

sampled from this region and used to calculate the burden of dengue. The maximum and 

minimum burden from the 5000 sets represents the uncertainty around the estimated 

dengue burden. 
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5.2.2 Mapping the Estimated Burden of Dengue 

The best fitting model was then used to map the predicted  , serotype-specific basic 

reproduction number  0iR , and the burden of dengue (number of dengue infections) 

across the globe. The global presence-absence data for each 5x5km pixel were generated as 

described in Bhatt et al. [108]. The force of infection at any 5km by 5km area was estimated 

by transforming the presence-absence data of each pixel into a force of infection estimate 

using equation (5.1), (5.2), or (5.3). From this, 0iR  and the expected number of dengue cases 

could be estimated as described in sections 5.2.3 and 5.2.4. All mapping and burden 

estimates were done in Java. 

5.2.3 Estimating the Basic Reproduction Number  

Using   values estimated from the power model, 0iR  were calculated under two different 

assumptions in keeping with previous chapters. Under assumption 1, we assumed that there 

was no cross-protection between different serotypes, and that individuals can be infected 

up to four times. Under assumption 2, we assumed that individuals acquired protective 

immunity after the second heterologous infection. The population age-structure of each 

country were taken from the 2010 United Nations (UN) world population estimates [128]. 

A) 0iR  calculation assumption 1 – individuals can be infected 4 times. 

The basic reproduction number for a single serotype is given by: 

0

0

1
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(5.4) 

where  f a  is the proportion of the population aged a  , and  iz a  is the proportion of 

the population seropositive calculated by: 
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n
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
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(5.5) 

where n  is the number of serotypes in circulation. 
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Substituting (5.5) into (5.4): 
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(5.7) 

 

B) 0iR  calculation assumption 2 – individuals become immune after two infections: 

The basic reproduction number for a single serotype is given by: 
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(5.8) 

where  f a  is the proportion of the population in age group a , n  is the number of 

serotypes in circulation,  x a  is the proportion of the population seronegative at age a  

given by: 
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   expx a a    (5.9) 

and  z a  is the proportion of the population seropositive for a single serotype at age a  

given by:   
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(5.10) 

Integrating between ages 1a  and 2a  gives: 
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(5.11) 

 

5.2.4 Calculating the Expected Number of Cases 

The expected number of cases in each age group can be calculated from the estimated force 

of infection (equation (5.1)-(5.3)), the population density of a country, and the weighted 

sum of primary to quaternary infections (chapter 4, equations (4.1) – (4.5)). The population 

density for each pixel was taken from the Global Rural-Urban Mapping Project [211] and 

age-structure from the UN Population Estimates [128]. 
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The expected number of cases is given by: 

        1 1 2 2 3 3 4 4
i

i

i

n
C w I a w I a w I a w I a
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   

, 
 (5.12) 

where in  is the number of individuals in age group i , iwidth  is the width of that age-group, 

and 1 4w w  are the relative weights, or the probability of detecting a primary to quaternary 

infections respectively. The total number of expected cases over the entire population is 

simply: 

ii
Total C .  (5.13) 

 

5.2.5 Incorporating Temporary Cross-immunity 

For 0iR  calculated above (equations (5.7) and (5.11)), we assumed dengue transmission was 

at endemic equilibrium. However, to investigate the effect that temporary cross-immunity 

may have on dengue burden (as quantified by 0iR ), we allowed for short-term cross-

immunity against the remaining serotypes following infection with one serotype. 

The proportion of the population who are infectious at age a ,  Y a  is given by: 
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(5.14) 

where  S a  is the survival function – the probability of surviving until age a . We assumed 

an exponential survival function 
ae 

 where   is the mortality rate.   is the recovery rate 

or the rate at which individuals leave the infectious compartment – note that the movement 

out of the infectious compartment occurs relative to when an individual was infected.  I a  

is the weighted sum of primary to quaternary infection incidences which are identical to 

those equations in chapter 4 for calculating dengue incidence. However the limits of 

integration have been adjusted to take into account the period of temporary cross immunity 

(in years) given by d . The lower limit was reset to 0 if a d  was negative. To look at the 

impact of the duration of temporary cross-immunity after infection with one serotype, the 

duration of immunity was varied between 6 months to 2 years [21–24] under the three 

scenarios described in Table 5.1. 
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The serotype-specific basic reproduction number can then be calculated by 
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(5.15) 

where   is the force of infection,  f a  is the proportion of the population aged a , n  is 

the number of serotypes in circulation, and  I a  is the weighted sum of primary to 

quaternary infection incidence (chapter 4 equation (4.5)). If there are fewer than 4 

serotypes in circulation, the equations change as described in chapter 4. 

 

5.2.6 Estimating the Global Burden of Dengue Under Different Reporting 

Scenarios 

Changing the probability of detecting dengue infection 

The expected burden of dengue was calculated under several different scenarios. The 

weights 1 4w w  (equation (5.12)) were varied to reflect the probability of detecting a 

primary – quaternary infection (Table 5.1). In scenario 1 we assumed that all infections are 

reported which is the equivalent to the total number of infections. In contrast, in scenario 3 

the best estimates of the probability of detecting a primary – quaternary infection were 

used [60,61]. This reflects the number of apparent infections. 

 

Table 5.1: Different scenarios under which the burden of dengue was calculated. 

*Under assumption 1, individuals can be infected up to four times. Under assumption 2 individuals 
develop protective immunity after their second infection. 

  

Scenario  Assumption* 
1w  2w  3w  4w  

1 Perfect reporting, maximum burden 1 1 1 1 1 

  2 1 1 0 0 

2 Only secondary cases are observed 1 0 1 0 0 

  2 0 1 0 0 

3 Best estimates of proportion of cases observed 1 0.25 0.5 0.1 0.1 

  2 0.25 0.5 0 0 
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5.3 Results 

5.3.1 Linear and Non-linear Regression 

Although the simple linear regression had similar correlation coefficients to the non-linear 

models (Table 5.2-Table 5.4), the 2R values were much smaller, and the model failed to 

capture the high force of infection at higher values of the probability of occurrence (Figure 

5.1).  

Table 5.2: Parameter estimates of the simple linear model and corresponding R2 values. 

^Model 1b: incidence model with single reporting rate fitted to cumulative incidence data. Model 2b: 
incidence model with age-dependent reporting rate fitted to cumulative incidence data as described in chapter 
4. 

 

 

 

Figure 5.1: Linear regression of probability of occurrence on force of infection. Points show the data, 
the solid line shows the line of best fit, and the shaded area shows the 95% CI. A) Seroprevalence 
surveys results only, B) seroprevalence survey and incidence model 1b results, and C) 
seroprevalence and incidence model 2b results. 

 

The non-linear regression correlation coefficient and 2R  of the exponential and power 

model were similar for all three combinations (Table 5.3 and Table 5.4). Since the force of 

infection could not be 0 when the probability of dengue occurrence was 0 with the 

exponential model, the power model was chosen for subsequent analysis. The best fitting 

Combinations   (95% CI) Correlation 
Coefficient 

2R  Fig 

Serology 0.108 (0.078-0.139) 0.59 0.35 Figure 5.1a 

Serology + Incidence Model 
1b^ 

0.105 (0.082-0.128) 0.52 0.27 Figure 5.1b 

Serology + Incidence Model 
2b^ 

0.102 (0.076-0.128) 0.52 0.27 Figure 5.1c 
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power model as assessed by 2R  and the non-linear regression correlation coefficient was 

when only the force of infection estimates from seroprevalence surveys were used with 

corresponding presence-absence values (Table 5.4 and Figure 5.3). Therefore all subsequent 

calculations were based on Figure 5.3a. The parameter sets randomly sampled from the 

95% confidence region of the two parameters ( a  and k ) from which the 95% CI were 

calculated are shown in Figure 5.4. 

 

Table 5.3: Parameter estimates of the exponential model and corresponding 
2R  values. 

*Non-linear least squares correlation coefficient. ^Model 1b: incidence model with single reporting rate fitted 

to cumulative incidence data. Model 2b: incidence model with age-dependent reporting rate fitted to 

cumulative incidence data as described in chapter 4. 

 

 

Figure 5.2: Non-linear exponential model regression of probability of occurrence on force of 
infection. Points show the data, the solid line shows the line of best fit, and the shaded area shows 
the 95% CI. A) Seroprevalence surveys results only, B) seroprevalence survey and incidence model 1b 
results, and C) seroprevalence and incidence model 2b results. 

 

 

Combinations Parameter values (95% CI) 2R  Correlation 
Coefficient* 

Fig. 

 a  k     

Serology 0.001 
(0.00002-0.009) 

5.47 
(2.68-9.55) 

0.44 0.67 Figure 5.2a 

Serology + Incidence Model 
1b^ 

0.005 
(0.001-0.022) 

3.36 
(1.63-5.55) 

0.30 0.55 Figure 5.2b 

Serology + Incidence Model 
2b^ 

0.004 
(0.0003-0.027) 

3.61 
(1.48-6.15) 

0.25 0.50 Figure 5.2c 
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Table 5.4: Parameter estimates of the power model and corresponding R2 values. 

*Non-linear least squares correlation coefficient. ^Model 1b: incidence model with single reporting rate fitted 
to cumulative incidence data. Model 2b: incidence model with age-dependent reporting rate fitted to 
cumulative incidence data as described in chapter 4. 

 

 

Figure 5.3: Non-linear power model regression of probability of occurrence on force of infection. 
Points show the data, the solid line shows the line of best fit, and the shaded area shows the 95% CI. 
A) Seroprevalence surveys results only, B) seroprevalence survey and incidence model 1b results, 
and C) seroprevalence and incidence model 2b results. 

 

For all combinations shown above (Figure 5.3), the power model captured the gradual 

increase in   with increasing PO up to a PO of ~0.7. However the model was unable to 

capture the wide variation in   for PO values above 0.7.  

 

Combinations Parameter values (95% CI) 2R  Correlation 
Coefficient* 

Fig. 

 a  k     

Serology 0.161 
(0.125-0.211) 

4.852 
(2.408-8.410) 

0.44 0.66 Figure 5.3a 

Serology + Incidence Model 1b^ 0.132 
(0.107-0.166) 

2.834 
(1.370-4.599) 

0.30 0.54 Figure 5.3b 

Serology + Incidence Model 2b^ 0.131 
(0.101-0.171) 

3.014 
(1.154-5.140) 

0.25 0.50 Figure 5.3c 
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Figure 5.4: Minimum convex polygon of 5000 parameter sets randomly sampled from the 95% 
confidence region of the two parameters of the power function fitted to seroprevalence survey 
results only (Fig. 5.1a). 

 

5.3.2 The estimated annual global burden of dengue 

The maximum estimated annual global burden (scenario 1 - perfect reporting, maximum 

burden) based on the 2010 population was 109 million (95% CI: 80 M – 147 M) under the 

assumption that all countries had four serotypes in circulation and that individuals could be 

infected up to four times. When we assumed that individuals were immune after two 

infections the burden decreased to 75 million (95% CI: 56 M – 104 M). Under our most 

realistic assumptions about the relative contribution of primary – quaternary infections to 

observed cases (scenario 3) and using the reported number of serotypes for each country 

where available, the estimated observed case burden was 28 million (95% CI: 21 M – 39 M), 

decreasing to 25 million (95% CI: 19 M – 35 M) when assuming immunity after two 

infections. Table 5.5 lists the burden estimates under the three scenarios tested. 
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Table 5.5: Global burden estimates and 95% CI under different assumptions. 

Scenario* Assumption^ Serotypes¯ Burden** 95% CI 

1 1 Fixed (4) 108,000,000 79,700,000 – 147,000,000 

 1 Free 102,000,000 75,100,000 – 139,000,000 

 2 Fixed (4) 74,800,000 56,000,000 – 104,000,000 

 2 Free 71,600,000 53,600,000 – 99,100,000 

2 1 Fixed (4) 31,900,000 23,800,000 – 44,300,000 

 1 Free 28,900,000 21,600,000 – 40,200,000 

 2 Fixed (4) 31,900,000 23,800,000 – 44,300,000 

 2 Free 28,900,000 21,600,000 – 40,200,000 

3 1 Fixed (4) 30,100,000 22,300,000 – 41,300,000 

 1 Free 28,200,000 20,900,000 – 38,800,000 

 2 Fixed (4) 26,700,000 19,900,000 – 37,000,000 

 2 Free 25,100,000 18,800,000 – 34,800,000 
*See Table 5.1. ^Assumption 1: individuals can be infected up to four times, assumption 2: individuals are 
immune after their second infection. ¯Fixed: the number of serotypes in circulation in each country is fixed to 4. 
Free: reported number of serotypes used. **Shown to three significant figures. 

 

The estimated burden, probability of dengue occurrence, force of infection, and basic 

reproduction number were mapped for every 5x5km pixel globally. Figure 5.5 shows these 

estimates for scenario 3 using the reported number of serotypes for each country under the 

assumption that individuals can be infected up to four times. As expected the burden was 

highest in South East Asia with heterogeneity within countries. Country-specific estimates of 

dengue burden (scenario 3 and using the reported number of serotypes) were then 

compared to the inapparent and apparent dengue infection estimates by Bhatt et al. and 

the WHO estimates where available [108]. Figure 5.6 to Figure 5.9 show that our estimates 

are consistently lower than the apparent dengue infection estimates made by Bhatt et al. 

and are generally more consistent with the reported WHO cases. Table 5.6 compares 

average 0R  values by country estimated here with previously estimated values of 0R

(chapters 2-4), and published values. 
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Table 5.6: Comparison of R0 estimates to previously published estimates by country. 

*Range given for assumption 1: individuals can be infected 4 times, and assumption 2: immune after 2 

infections. 

Country Estimated average 

0R  in 2010* 

Range of previously estimated point 

estimates of 0R  from Serology and 

Incidence Models (ch. 2- 5) 

Published 0R

estimates  

Ref 

Brazil 1.97 – 2.11 1.09 – 2.48 1.6 – 2.5 [119,174] 

   3.6 – 12.9 [212] 

   2 – 103 [118] 

   2.3 - 11 [114] 

   0.28 – 5.04  [213] 

   2 – 3.3 [167] 

Cambodia 1.56 – 1.62 2.01 – 3.40   

Costa Rica 1.85 – 1.92 1.87 – 2.77  [174] 

China 0 – 0.32 1.19 – 3.53   

Cuba 3.09 – 3.50 1.14 – 1.52  [174] 

Dominican Republic 2.88 – 3.03 1.84 – 2.67  [174] 

El Salvador 2.26 – 2.41 1.82 – 2.67  [174] 

French Polynesia 3.50 – 3.95 3.73 – 6.90  [174] 

Haiti 1.64 – 1.71 3.67 – 6.32   

India 1.73 – 1.82 1.01  [174] 

Indonesia 2.45 – 2.65 1.89 – 2.81  [174] 

Laos 1.25 – 1.27 1.13 – 2.56  [174] 

Mayotte 1.21 – 1.24 1.06 – 1.07  [174] 

Mexico 1.19 – 1.25 1.23 – 1.40 1.3 – 2.4 [174,214] 

   1.1 – 1.3 [115] 

   1.9 [215] 

   1.9 – 2.4 [167] 

Nicaragua 1.86 – 1.96 1.06 – 6.42  [174] 

Pakistan 1.07 – 1.11 1.05 – 1.34  [174] 

Papua New Guinea 0.80 – 0.82 2.55 – 4.11  [174] 

Peru 0.98 – 1.02 1.11 – 2.94 1.76 (0.83-4.46) [117,174] 

Philippines 2.18 – 2.32 1.04 – 1.05 2.1 – 3.9 [167] 

Puerto Rico 3.87 – 4.42 1.57 – 2.86 1.2 – 2.7 [167] 

Singapore 4.33 – 5.11 1.21 – 2.05 3.9 – 4.7 [174,216] 

Sri Lanka 2.64 – 2.89 1.03 – 9.86  [174] 

Thailand 2.21 – 2.42 2.16 – 4.26 4 – 6 or 8 [104,174] 
  1.81 – 3.33 5.2 – 6.7 [121,174] 

   3.3 (3.1-3.4) [165] 

   3.2 (2.7-3.3) [165] 

   1.9 – 2.3 [217] 

   2.2 – 5.2 [167] 

USA 0.05 – 0.05 1.08 – 1.12  [174] 

Vietnam 1.98 – 2.11 2.02 – 3.62 1.25 – 1.75 [155] 

   5 – 7  [218] 

   3 [219] 

   2 – 3 [167] 
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Figure 5.5: Global A) probability of dengue occurrence, B) force of infection, C) R0, and D) observed 
dengue cases in 2010 at 5x5km spatial resolution. Results are mapped for scenario 3 assuming 
individuals can be infected up to 4 times and using the reported number of serotypes for each 
country. The upper limit shown in panels C and D are fixed at 3 and 1500 respectively. 
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Figure 5.6: Comparisons of the estimated burden of dengue in Africa to estimates from Bhatt et al. 
[108] and where reported, the WHO.  Here only estimates from scenario 3 are presented under 
assumption 1 (individuals can have up to 4 infections) using the reported number of serotypes for 
each country. Points represent the posterior median estimate, and the lines the 95% CrI. 
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Figure 5.7: Comparisons of the estimated burden of dengue in the Americas to estimates from Bhatt 
et al. [108] and where reported, the WHO. Here only estimates from scenario 3 are presented under 
assumption 1 (individuals can have up to 4 infections) using the reported number of serotypes for 
each country. Points represent the posterior median estimate, and the lines the 95% CrI. 
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Figure 5.8: Comparisons of the estimated burden of dengue in Asia to estimates from Bhatt et al. 
[108] and where reported, the WHO. Here only estimates from scenario 3 are presented under 
assumption 1 (individuals can have up to 4 infections) using the reported number of serotypes for 
each country. Points represent the posterior median estimate, and the lines the 95% CrI. 
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Figure 5.9: Comparisons of the estimated burden of dengue in Europe and Oceania to estimates 
from Bhatt et al. [108] and where reported, the WHO. Here only estimates from scenario 3 are 
presented under assumption 1 (individuals can have up to 4 infections) using the reported number 
of serotypes for each country. Points represent the posterior median estimate, and the lines the 95% 
CrI. 

 

To look at the impact of the duration of temporary cross-immunity after infection with one 

serotype, the duration of immunity was varied from 6 months to 2 years [21–24] . As 

expected the reduction in the number of cases was greater when the duration of immunity 

was longer under all scenarios. Although the percentage reduction in cases was minimal 

when allowing for temporary cross-immunity compared to no cross-immunity post-infection, 

reduction in terms of absolute number of cases was still substantial (Table 5.7). 
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Table 5.7: Estimated global burden of disease (and 95% CI) with and without temporary cross 
immunity using reported number of serotypes 

*See Table 5.1. ^Assumption 1: individuals can be infected up to four times, assumption 2: individuals are 
immune after their second infection **Shown to three significant figures.

Scenario* Assumption^ Burden with No 

Temporary Cross-

Immunity** (95% CI) 

Burden with Temporary Cross Immunity** (95% CI) 

   6 months 2 years 

1 1 102,000,000 

(75,100,000 – 

139,000,000) 

101,000,000 

(74,400,000-

137,000,000) 

98,700,000 

(72,400,000-

134,000,000) 

2 71,600,000 

(53,600,000 – 99,100,000) 

71,500,000 

(53,500,000-98,800,000) 

71,000,000 

(53,100,000-98,100,000) 

3 1 28,200,000 

(20,900,000 – 38,800,000) 

28,100,000 

(20,800,000-38,500,000) 

27,600,000 

(20,500,000-37,900,000) 

2 25,100,000 

(18,800,000 – 34,800,000) 

25,100,000 

(18,700,000-34,700,000) 

24,800,000 

(18,500,000-34,300,000) 
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5.4 Discussion 

Using the global evidence consensus of dengue occurrence and subsequent dengue 

infection risk map [108] we estimated the force of infection, basic reproduction number, 

and apparent dengue cases at high spatial resolution. Dengue transmission was spatially 

highly heterogeneous both between and within countries. Force of infection estimates from 

seroprevalence surveys (chapters 2 and 3) rather than incidence data (chapter 4) resulted in 

the best fitting power model when regressed on the probability of dengue occurrence as 

assessed by 2R  and the non-linear regression correlation coefficient. Seroprevalence 

datasets where the estimated force of infection corresponded to a PO below 25% were not 

available. At a PO of 25% the power model was able to capture the low force of infection 

gradually increasing up to a PO of 70%. However above 70% it is very difficult to capture the 

wide variation in the force of infection (Figure 5.3) due to dengue endemicity at this 

probability. Consequently in the resulting burden maps, the same   is mapped for the same 

PO values. Therefore PO are unable to differentiate between different areas of high 

transmission – for example Singapore and Malaysia. However this regression produced 

more realistic estimates of dengue burden compared to the Bhatt et al. model where they 

regressed dengue incidence data on the PO (Figure 5.10). Their model predicted close to 

10% infection rate per year at a high PO, and the infection rate declined slowly with 

decreasing PO. The lack of demographic constraints (such as birth rates) and allowing 

individuals to have an unlimited number of infections during their lifetime led to 

unrealistically high estimates of 390 million dengue infections and 96 million symptomatic 

cases per year [108].  



Page 196 of 228 
 

 

Figure 5.10: Bayesian modelled relationship between the probability of occurrence and incidence for 
inapparent and apparent number of infections. Reproduced from Bhatt et al. [108]. The data are the 
points, the bold lines are the medians and the envelopes are the 0.25, 0.5 and 0.95 credible intervals 
centred on the median displayed with progressively lighter shades.  

 

In endemic countries the actual force of infection can fluctuate widely year on year and this 

dynamic cannot be captured by either the power model nor the probability of dengue 

occurrence [28,189]. Thus PO data are generally only useful in marginal settings. 

Additionally, the calculation of the PO itself relies heavily on notification data, however the 

lack of reported cases does not equate to the lack of dengue transmission. Therefore in 

ongoing work, we are now directly regressing independent force of infection estimates on 

environmental covariates, such as temperature, humidity, and rainfall, in endemic settings. 

The maximum annual burden estimated was 102 million infections (95% CI: 75.1 M – 139 M) 

assuming individuals can be infected four times, or 72 million infections (95% CI: 54 M – 99 

M) assuming individuals develop protective immunity after two heterologous infections. The 

apparent infection burden estimated was 28 million cases (95% CI: 21 M – 39 M) and 25 

million cases (95% CI: 19 M – 35 M) under the same two assumptions (Table 5.7). The 

maximum burden estimates are three times smaller than those estimated by Bhatt et al.: a 

total of 390 million infections (95% CrI 284 M – 528 M) and 96 million apparent infections 

(95% CrI 67 M – 136 M) using the same data on probability of dengue occurrence [108].  

Figure 5.6 - Figure 5.9 also show consistently lower estimates for every country with our 

estimates being closer (where reported) to the WHO estimates. Analogous to malaria 

modelling, Bhatt et al. have allowed individuals to have an infinite number of dengue 
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infections during their lifetime [108]. This is indeed a valid assumption for non-immunising 

infections such as malaria [220]. However as an acute immunising infection, the number of 

dengue infections an individual can acquire is finite (maximum of 4 infections, one for each 

serotype) [4,221]. This has therefore resulted in a significant discrepancy in the two dengue 

burden estimates. However a recent study analysing serotype-specific seroprevalence data 

collected from longitudinal cohort studies in Peru have suggested that protection from 

homologous re-infection may be incomplete in some circumstances for DENV-2 [19]. 

However it is not known whether an individual with a homologous re-infection is also then 

infectious and can contribute to onwards transmission. Comparing the average estimated 

0R  by country, my estimates are generally consistent with 0R  values previously estimated 

or published (Table 5.6). The slight discrepancy arises as our estimates are a weighted 

average of the 0R  values in each country, whereas published basic reproduction numbers 

or 0R  estimated from incidence or seroprevalence data are often site-specific, highlighting 

the heterogeneity in dengue transmission at small spatial scales. 

Spatial information on the distribution of dengue burden is essential for the allocation of 

correct resources, and the planning and evaluation of targeted control programmes. Thus 

these maps can help identify areas where dengue transmission is high and therefore may 

benefit the most from interventions.  

The estimated duration of short-term cross-protection varies widely from 4 months to 9 

years [21], 5–12 months [22], 2 years [23], and 1–3 years [24]. However whether this 

protects against infection or just against clinically apparent disease, i.e. the individual may 

still be infectious is unknown. Therefore individuals may still contribute to onward 

transmission [23,25,26] and it is now known that asymptomatic humans can be infectious to 

mosquitoes despite their lower average viremia [27]. Inclusion of temporary cross-immunity 

decreased the burden of dengue as expected (Table 5.7). This is consistent with previous 

studies where a short interval between primary and secondary infection was associated 

with protection against clinical disease i.e. infection occurred during the period of cross-

protection. Predictably when the duration of cross-immunity was increased, there was a 

corresponding decrease in the overall burden of dengue. Additionally under assumption 2 

where we assumed that individuals develop protective immunity after two heterologous 
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infections, the impact of temporary cross-immunity was unsurprisingly smaller than when 

assuming individuals could be infected up to four times. However our model is unable to 

capture the more detailed temporal aspects of cross-protection since it does not take into 

account the actual time between infection events which will determine whether a second 

infection results in immunity, asymptomatic infection, or severe apparent infection. 

There are a number of additional limitations to these results, primarily in the initial 

estimation of the force of infection from the probability of dengue occurrence (Figure 5.3). 

Only 37 datasets were used in the regression with surveys being conducted between 1980 

and 2010 with few contemporary surveys, which is not a true representation of dengue 

transmission in 2010 which I was trying to estimate. The corresponding 2R  values were also 

fairly low. Additionally the surveys were inconsistent in terms of survey design and 

diagnostic test (chapters 2 and 3, [174]). As highlighted in chapters 2 and 3, it would be 

beneficial if countries were to conduct more affordable IgG serosurveys yearly which could 

be matched to local notification data for validation. 

Nevertheless this method utilises the majority of the currently available data on dengue 

transmission from the evidence-based consensus and environmental covariates informing 

the probability of dengue occurrence statistics, to seroprevalence surveys conducted at a 

more local level. The high spatial resolution at which dengue burden can be quantified in 

multiple ways – the force of infection, basic reproduction number, and the number of 

apparent and inapparent cases will be highly beneficial in identifying and targeting control 

measures to key areas of high dengue transmission. 
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6 Discussion 

The main motivation behind this thesis has been to refine the baseline estimates of dengue 

transmissibility, quantified by the force of infection ( )  or the basic reproduction number 

0( )R , given the currently available data. I additionally assessed how comparable force of 

infection estimates obtained from incidence data  inc  were with those derived from 

serological data  sero . Finally using the force of infection estimated from these data, I 

mapped the estimated burden of dengue disease globally and considered the impact that 

novel control measures may have. 

 

6.1 Summary of Findings 

In chapter 2 and previously published work [174], I estimated the   and 0R  from age-

stratified non-serotype specific seroprevalence data identified from a literature search. I 

fitted simple catalytic models to these mostly IgG data and found that the estimates of the 

serotype specific 0iR  varied according to the assumptions made regarding host immunity. 

When I assumed that two heterologous infections were sufficient for complete immunity 

(assumption 2), the estimates of 0iR  were up to two-fold higher compared to when I 

assumed that quaternary infections were required for complete immunity (assumption 1). I 

additionally fitted a catalytic model to 7 years’ worth of cross-sectional data from Managua, 

Nicaragua [30,140] which allowed for the force of infection to vary sinusoidally over time 

and to change at a (fitted) age threshold. I also identified a general paucity of 

seroprevalence surveys, particularly of serotype-specific data and cohort data. 

In chapter 3 and previously published work [174], I estimated serotype-specific dengue 

force of infection ( )i  from serotype-specific PRNT seroprevalence data. For comparison 

purposes, I fitted a simple catalytic model that tracked individuals from a seronegative to 

seropositive state (model A described in chapter 2) to the same PRNT data. I defined 

individuals with PRNT titres below the detection limit for all four dengue serotypes as 

seronegative and individuals with at least one PRNT titre over the detection limit as 

seropositive. The resulting force of infection estimates generated using model A were 

consistent with the sum of the individual serotype-specific λ estimates obtained from the 



Page 200 of 228 
 

full PRNT datasets. This showed that while PRNT data provided more information, the less 

expensive ELISA-based assays could still provide reasonable baseline estimates of overall 

transmission intensity. 

In chapter 4, I collated age-stratified incidence data from the literature and fitted catalytic 

models to estimate the force of infection and basic reproduction number. To assess the 

level of under-reporting of dengue disease, I then compared   estimates derived from 

seroprevalence data (chapters 2 and 3) to estimates derived from incidence data. In 

addition, I estimated the relative contribution of primary to quaternary infections to the 

observed burden of dengue disease incidence. For the three locations in Thailand where 

region and time matching seroprevalence and incidence data were available, the   

estimates obtained from the models fitted to incidence data were generally comparable to 

those estimated from seroprevalence data. I showed that the contribution of primary 

infections to the observed burden of dengue was consistently low (<25% relative to 

secondary infections), while the contribution of tertiary infections was inconclusive. 

Finally in chapter 5, I used the results from chapters 2, 3, and 4 to estimate the force of 

infection from the probability of dengue occurrence (presence-absence statistic) across the 

globe at a 5km x 5km spatial resolution [108]. The incidence model developed in chapter 4 

was then used to calculate the global burden of dengue. We estimated the maximum 

annual burden based on the 2010 world population to be 109 million infections (95% CI: 79 

M – 147 M) under the assumption that all countries had four serotypes in circulation and 

that individuals could be infected up to four times.  

 

6.2 Future Work and Limitations 

The major limitation of this work has been the quantity and quality of available age-

stratified data. In particular, serotype-specific seroprevalence data (PRNT data) have been 

sparse, and more importantly the data were outdated with most identified studies 

conducted in the 1980s and 1990s. Although we have shown that IgG data can provide 

robust estimates, with the imminent release of the dengue vaccine (Mexico and the 

Philippines having already approved the use of Dengvaxia® developed by Sanofi Pasteur 

[59]) it is crucial to have detailed baseline data of dengue transmission in all age groups in 



Page 201 of 228 
 

order to accurately assess the impact the introduction of the vaccine may have on disease 

burden at the population level. However, given the cost of large-scale PRNT surveys, 

estimates of dengue force of infection and basic reproduction number could still be greatly 

improved by conducting the less expensive IgG surveys more frequently. 

Although incidence data are abundant, surveillance systems and reporting procedures are 

not standardised within or across countries making it very difficult to reliably compare 

estimates [52]. Laboratory capacity and general public health infrastructure and surveillance 

systems vary widely and there is often no integration between private and public health 

sectors. The WHO collates surveillance data from dengue affected countries via its 

DengueNet system, but the data are not always updated regularly and there can be 

inconsistencies with other sources of national and subnational data such as those from 

WHO regional offices [53]. With such variable data, accurate estimation of the true dengue 

burden is difficult [52]. 

The aggregation of age-groups in datasets affected the accuracy of the resulting estimates. 

Datasets with wide age bands (e.g. 0-5 years, 5-15 years, and 15+ years) were less 

informative than datasets where seroprevalence or cases were presented for every age. 

Estimates could therefore be improved if age-stratified data were reported at a higher 

resolution, or at least in equal age widths (e.g. 5 year age bands). In this thesis I have not 

explicitly looked at the impact of maternal antibodies on estimates of dengue 

transmissibility or disease burden. Recent studies have shown that infant cases (<1 year old) 

can yield information about type-specific disease severity given the presence of maternal 

antibodies, as well as information about transmission within the whole population [222]. 

Throughout my analysis I have either excluded cases in infants to avoid skewed estimates, 

or have been unable to explicitly take them into account due to the aggregation of data in 

the younger age groups. If the same models could be fitted to data from infants, it would be 

interesting to explore whether there are significant differences in dengue transmission in 

infants compared to the general population. However, such data can be difficult to obtain 

since parents can be reluctant to have very young children bled.  

Improvement could also be made to the way 0iR  was calculated in chapters 2, 3, and 4. In 

translating   estimates into estimates of 0iR , I relied on a model which assumed exposure 
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was due to endemic transmission. This meant that all resulting 0iR  estimates were by 

definition greater than one. Clearly this is less appropriate for settings with low 

seroprevalence and incidence such as Texas (USA), where some or all of the seropositivity 

detected is due to imported cases rather than local transmission. The 0iR  calculation could 

therefore be adapted in such situations.  

In chapter 4, I found that the relative contribution of tertiary and quaternary cases could not 

be estimated from incidence data. Although there is evidence that tertiary and quaternary 

infections occur [25,28], there is little quantitative data on the infectiousness or severity of 

such infections relative to primary and secondary infections. Additionally, clinically apparent 

tertiary or quaternary infections are not routinely reported, nor can they be tested for 

retrospectively [25]. Therefore this model could be simplified by assuming all reported cases 

are due to primary and secondary infections only. Furthermore, a recent study analysing 

serotype-specific seroprevalence data collected from longitudinal cohort studies in Peru 

have suggested that protection from homologous re-infection may be incomplete in some 

circumstances for DENV-2 [19]. Therefore some infection events classed as secondary or 

tertiary may actually be due to re-infection with the same serotype. Although the relative 

contribution of such infections to the observed burden of dengue is unknown, they could 

invalidate the assumption that infection with one serotype provides lifelong protection 

against re-infection with the same serotype. This may well impact future dengue vaccine 

formulations.  

Finally in chapter 5, in the initial estimation of the force of infection from the probability of 

dengue occurrence only 37 datasets were used in the regression with surveys being 

conducted between 1980 and 2010 with few contemporary surveys, which cannot be a true 

representation of dengue transmission in 2010 which I was trying to estimate. Additionally 

the surveys were inconsistent in terms of survey design and diagnostic test (chapters 2 and 

3, [174]). As highlighted in chapters 2 and 3, it would be beneficial if countries were to 

conduct more affordable IgG serosurveys yearly which could be matched to local 

notification data for validation. Furthermore, seroprevalence datasets where the estimated 

force of infection corresponded to a probability of dengue occurrence (PO) below 25% were 

not available. Therefore this regression could be improved if more data were available from 
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low-transmission settings. Alternatively a model with a threshold could be fitted where the 

force of infection could vary over a wider ranger above a certain PO (e.g. >75% in endemic 

settings). However the probability of occurrence is a poor predictor of the force of infection 

in high transmission settings. Therefore it cannot distinguish differences in the force of 

infection between different SE Asian countries – e.g. Singapore from Malaysia. Global 

estimates of dengue burden could be best improved by switching from probability of 

occurrence data to more reliable spatially stratified estimates of the force of infection from 

geo-located age-stratified data. Therefore in ongoing work, we are now directly regressing 

independent geo-located force of infection estimates on environmental covariates, such as 

temperature, humidity, and rainfall, in endemic settings. 

6.3 Implications of Research 

The research presented here has focused on refining the baseline estimates of dengue 

transmissibility given the currently published data. With the dengue vaccine due to be rolled 

out, and other novel control methods such as Wolbachia in development, reliable estimates 

of transmission intensity – and of the health burden due to dengue – will be important in 

strategic planning and resource allocation in different contexts. 

This thesis has collated a comprehensive body of age-stratified seroprevalence and 

incidence data since 1980 from across the globe. By fitting the same models to these data I 

have demonstrated the spatio-temporal heterogeneity in dengue transmission. Additionally 

I have evaluated these data under the same assumptions about immunity when estimating 

the basic reproduction number for both seroprevalence and incidence data. This allows a 

more direct comparison of dengue transmission intensity between different regions. 

Reporting standards are highly variable with different diagnostic criteria across regions or 

countries. Consequently the quality, quantity, and the type of data that are collated globally 

cannot be easily standardised. Therefore the work presented in this thesis where I have 

compared   estimates from non-serotype specific (IgG) to serotype-specific (PRNT) 

seroprevalence data and case-notification data to seroprevalence data will provide a basis 

for comparing estimates when the data source and data type might differ. 

Since dengue and other vector-borne infections are spatially highly heterogeneous, 

methods (such as those presented in chapter 5) to resolve heterogeneity in dengue 
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transmission intensity (and thus burden) at a fine spatial resolution will be beneficial for 

identifying and targeting control measures to key areas of high transmission. These tools 

can be used to estimate the effectiveness of intervention strategies in dengue control. Since 

trials and field studies are expensive and difficult to conduct, mathematical modelling is a 

powerful tool to obtain reliable estimates of baseline transmission and estimate the 

reduction in transmission and disease burden to quantify the success of a control program. 

The methods presented in this thesis to estimate the force of infection and basic 

reproduction number from seroprevalence and notification data will also be applicable to 

other acute immunising pathogens – most notably chikungunya and Zika viruses. 

6.4 Conclusions 

With its re-emergence and spread across the globe, dengue now affects more than 100 

countries, causing an estimated 109 million (95% CI: 79 M – 147 M) infections annually. 

However it is only now, in 2015, that a dengue vaccine is being licensed and new control 

methods such as Wolbachia-infected and genetically modified mosquitoes are being actively 

developed and tested [67,73,223]. Robust estimates of baseline dengue transmissibility are 

essential for the assessment and ongoing evaluation of any control measures that may be 

implemented and the work presented here is a significant contribution to such efforts. 
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