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Abstract Spectrally resolved measurements of the
Earth’s reflected shortwave (RSW) and outgoing
longwave radiation (OLR) at the top of the atmosphere
intrinsically contain the imprints of a multitude of cli-
mate relevant parameters. Here, we review the progress
made in directly using such observations to diagnose
and attribute change within the Earth system over the
past four decades. We show how changes associated
with perturbations such as increasing greenhouse gases
are expected to be manifested across the spectrum and
illustrate the enhanced discriminatory power that spec-
tral resolution provides over broadband radiation mea-
surements. Advances in formal detection and attribution
techniques and in the design of climate model evalua-
tion exercises employing spectrally resolved data are
highlighted. We illustrate how spectral observations
have been used to provide insight into key climate feed-
back processes and quantify multi-year variability but
also indicate potential barriers to further progress.
Suggestions for future research priorities in this area
are provided.

Keywords Reflected shortwave and outgoing longwave
radiation . Radiative forcing and feedback signatures . Natural
variability . Detection and attribution of climate change

Introduction

The balance between net incoming solar radiation and outgo-
ing terrestrial radiation at the top of the Earth’s atmosphere
(TOA) fundamentally drives our climate system.
Perturbations to this balance, either as a result of natural var-
iability or anthropogenic activity, ultimately result in either a
heating or cooling of the Earth system such that measurements
of the Earth’s radiation budget (ERB) at the TOA are essential
in order to understand how our climate is evolving with time.

Broadband, spectrally integrated measurements of the solar
radiation reflected by the Earth (reflected shortwave, RSW)
and outgoing longwave radiation (OLR) emitted by the Earth
have been made by a variety of satellite sensors for over four
decades (Fig. 1a and Table 1). Despite the limited lifetimes of
individual satellite missions, changes in measurement tech-
niques and uncertainties in instrument calibration resulting
in some controversy regarding the absolute level of the vari-
ous components at any given time [9, 10], these observations
have had a major impact on our understanding of, and ability
to model, our climate system [11–14]. However, there is a
caveat: broadband measurements effectively integrate all the
energy across the shortwave or longwave spectrum which
may mask signatures associated with particular climate pro-
cesses due to compensating effects [15].

In contrast, spectrally resolved measurements of the outgo-
ing radiation can be used to identify and monitor the effects of
many different processes [16, 17]. This is not surprising since
satellite observations of the reflected and emitted radiation in
different wavelength bands across the RSW and OLR spec-
trum are routinely used to retrieve many geophysical param-
eters from surface temperature to cloud optical properties.
However, whilst the potential for the simultaneous detection
and attribution of climate change using direct observations of
the spectrally resolved OLR has been recognised for some
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time [18], it is only relatively recently, with the advent of
multi-year hyperspectral measurements (Fig. 1b and Table 2)
and advanced computing capabilities, that significant progress
has been made in illustrating the power of these observations.
Recently, researchers have also begun to utilise hyperspectral
RSW measurements in detection and attribution studies and
exciting progress has beenmade in combining the information
contained within the OLR and RSW regimes [27•]. This re-
view paper summarises these new advances, setting them in
the context of previous work and considers future develop-
ments in the area. Whilst we note the contribution that the
long-term availability of stable hyperspectral measurements
has undoubtedly made and will continue to make to our ability
to derive key climate variables such as temperature, carbon
dioxide and water vapour [28–30], with recent studies dem-
onstrating how well such retrievals map to the observed radi-
ance trends [31], our focus in this article is on the direct use of
the observed radiances in climate change research.

Early Work: the 1980s

Concern in the late 1970s regarding the potential impact of
increases in atmospheric CO2 on the Earth’s climate saw a
number of scientific papers devoted to detecting a clear,
CO2 induced signal in variables including surface tem-
perature [32, 33], ice cover [34] and sea level rise [35].
The difficulty in attributing the response of the chosen

variable to a specific cause given the natural variability
of, and confounding factors within, the climate system
was a common theme in these studies. In their work,
Madden and Ramanathan mooted the possibility of
using spectrally resolved satellite observations of the
ERB to provide this attribution, suggesting that whilst
increasing CO2 should reduce the outgoing energy with-
in its absorption bands, the expected associated surface
heating should enhance emission within more transpar-
ent regions of the spectrum. Should this surface heating
trigger feedbacks such as changes in cloud amount, the
RSW energy would also change.

Developing this suggestion, Kiehl simulated changes in
clear-sky spectrally resolved OLR in the strong 15-μm
(667 cm−1) band for a doubling of atmospheric CO2 [36].
His work investigated the impact of both CO2 increases alone
and when considered in concert with the associated tropo-
spheric and stratospheric temperature response. In isolation,
CO2 increases result in enhanced absorption across the band,
shifting the emitting level seen from space to higher in the
atmosphere. At band centre, this shift is to higher levels in
the stratosphere where temperature increases with height, in-
creasing the emission to space. Conversely, in the band wings,
the shift occurs within the troposphere where temperature
decreases with height, reducing the outgoing radiation. The
result is a cooling of the stratosphere and warming of the
troposphere and surface. Hence, when the temperature re-
sponse to a CO2 increase is included, the CO2-only changes
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Fig. 1 a Examples of some of the
key satellite observations of RSW
and OLR over the past five
decades. b As (a) for spectral
RSWand OLR. Note that narrow-
band, spectrally non-continuous
measurements are not included. In
each case, the name of the satellite
on which the instrument flew or is
currently flying is provided in
brackets. Arrows indicate the
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in OLR are mediated and, in the centre of the band, change
sign. Charlock extended Kiehl’s study to a wider spectral
range, including the 4.3-μm (2325 cm−1) CO2 band and in-
corporating the atmospheric humidity response to the CO2

doubling [37]. His results confirmed Kiehl’s findings but also
showed that clear-sky emission to space within the atmospher-
ic window (8–12μm; ∼800–1250 cm−1) would be expected to
increase. Whilst these early results were obtained using radi-
ative transfer codes and atmospheric realisations that would
now be considered far from state-of-the-art, the basic findings
remain true (Fig. 2).

ATopic Revisited: 1990s–Early 2000s

Despite their promise, these theoretical studies did not imme-
diately spark huge interest in the use of spectrally resolved
OLR to detect and attribute climate change. Indeed, it was
not until the mid-1990s that interest in the topic was revived,
principally due to the re-evaluation of observations from the
InfraRed Interferometer Spectrometer (IRIS-D) by Goody and
co-workers at CalTech. IRIS-D, on the Nimbus-4 meteorolog-
ical satellite, measured the Earth’s outgoing longwave spec-
trum from April 1970 to January 1971 [19]. Spanning the
range 400–1600 cm−1 (6.25–25 μm) with a nominal spectral

resolution of 2.8 cm−1, observations from the instrument had
previously been used to provide insight into the spatio-
temporal distribution of variables such as methane and cirrus
cloud [38, 39]. Motivated both by the prospect of long-term
hyperspectral measurements from the proposed Atmospheric
InfraRed Sounder (AIRS) and the development of mathemat-
ical techniques to optimise fingerprints of climate change [40],
Goody used the IRIS-D measurements to estimate the
‘weather noise’ or short-term variability of the Earth’s
OLR spectrum. Combining these estimates with simulat-
ed ‘climate forcing’ signals due to, for example, a dou-
bling of CO2 or an increase in incoming solar flux, he
introduced the concepts of spectral selectivity and sen-
sitivity. The former term relates to the ability to distin-
guish between forcings, the latter, the time needed for a
signal to emerge from background noise [18].

Whilst this study indicated that in certain regions of the
spectrum a distinct change signal could be identified and at-
tributed to a particular forcing with reasonable confidence, the
authors acknowledged that the work was designed more to
stimulate further discussion than give definitive answers re-
garding the most promising detection strategy. The CalTech
group continued to refine their approach whilst championing
the use of well-calibrated, accurate, spectrally resolved OLR
measurements to test climate model performance [41–43].

Table 1 Characteristics of broadband instruments highlighted in Fig. 1a

Instrument name Spectral range Spatial resolution
(at nadir) (km)

Temporal coverage (launch date to end of
instrument operation)

Earth Radiation Budget (ERB) [1, 2] Broadband OLR and RSW
SWand IR channels

500a

150a
June 1975–October 1978 (Nimbus-6)
October 1978–October 1987 (Nimbus-7)

Earth Radiation Budget Experiment
(ERBE) [3]

Broadband
OLR and RSW

40a October 1984–February 1990 (Scanner)
October 1984–August 1999 (Non-scanner)b

Clouds and the Earth’s Radiant Energy
System (CERES) [4]

Broadband
OLR and RSW
IR window channel

10
20

November 1997–September 1998 (TRMM)c

December 1999–present (Terra)
April 2002–present (Aqua)
October 2011–present (NPP)

Geostationary Earth Radiation Budget
(GERB) [5]

Broadband
OLR and RSW

50 August 2002–April 2007 (Meteosat-8)
December 2005–January 2013 (Meteosat-9)
July 2012–present (Meteosat-10)d

Scanner for Radiation Budget
(ScaRaB) [6–8]

Broadband
OLR and RSW
Visible and IR window

channels

60
41
40

January 1994–March 1995 (Meteor)
July 1998–March 1999 (Resurs 01–4)
October 2011–present (Megha-Tropiques)e

Apart from the exceptions noted below, all instruments have global coverage
a The quoted spatial resolution corresponds to the analysed ERB data from the scanning, narrow field of view channels on the relevant satellites, coarser
resolution is provided by the wide field of view non-scanner measurements
b The non-scanner instrument on the ERBS satellite viewed the region 60–60° N/S
c CERES on TRMM viewed the region 40–40° N/S
d GERB fluxes are produced for the region 60–60° N/S and E/W. Note that although GERB-3 on Meteosat-10 is the operational
instrument, both GERB-1 and GERB-2 are still functioning
e ScaRaB on Megha-Tropiques views the region 20–20° N/S
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Working with other experts, they brought these ideas
together, to propose a climate observing system capable
of providing benchmark observations for rigorously test-
ing climate model output [44, 45]. Their vision was to
establish a system that gave global coverage, measuring
quantities that had the information content required to
enable scientists to reduce the uncertainty which existed
(and still exists) in projections of future climate, with a
demonstrable absolute accuracy and precision that
would mean that the measurements could be trusted in
perpetuity [46, 47]. Their proposed solution involved
the space-based measurement of spectrally resolved ther-
mal infrared radiation and atmospheric refractivity, the
latter employing satellites within the Global Positioning
System (GPS) network.

Inspired by this work, UK researchers were also
questioning how observations of the OLR spectrum could be
applied to the problem of climatic change. Slingo and Webb
used output from the Hadley Centre climate model to simulate
the expected clear-sky changes in spectral OLR between 1860
and 2040 in order to examine the signature of climatic re-
sponse to greenhouse gas forcing [48]. One of their key find-
ings was the very small changes seen in regions sensitive to
mid and upper tropospheric water vapour. These arose be-
cause of the propensity of the model to conserve tropospheric
relative humidity with time, a signature of positive water va-
pour feedback. In conjunction, a series of papers by Harries

and co-workers investigated the potential of developing
spatio-spectral detection fingerprints based on the availability
of multi-decadal records from narrow-band radiometers,
utilising the simulation results to test their approach [49–51].
The papers highlighted the difficulty of constructing consis-
tent, long-term time series from the operational records and
the need to better characterise natural variability in order to
assess the significance of any model-observation discrepancy.

Whilst model simulations provided an indication of the
expected change in spectrally resolved OLR, the absence of
a suitable multi-year observational record with which to con-
front these simulations was a barrier to progress. This situation
would change in the early 2000s, but prior to this, the few
missions designed to measure the OLR spectrum tended, like
IRIS-D, to operate for short periods of time (Fig. 1b).
Nonetheless, recognising that over a multi-decadal time gap
certain forcing signatures should be imprinted in the OLR
spectrum, Harries et al. conducted a comparison of clear-sky
observations from IRIS-D with those taken almost 30 years
later from the Interferometric Monitor for Greenhouse Gases
(IMG) [52]. Their findings, re-plotted here in Fig. 3, provided
the first observational evidence of the impact of increases in
well-mixed greenhouse gases on the OLR spectrum.
Subsequent analyses of the temporal and spatial sampling
characteristics of the IRIS-D and IMG datasets [53] and of
the expected inter-annual variability in the radiation spectrum
[54] confirmed that these records alone could not be expected

Table 2 Characteristics of spectrally resolved instruments highlighted in Fig. 1b

Instrument name Spectral range Spectral resolution Spatial resolution
(at nadir) ( km)

Temporal coverage (launch
date to end of instrument
operation)

InfraRed Interferometer Spectrometer
(IRIS-D) [19]

400–1600 cm−1 2.8 cm−1 100 April 1970–January 1971

Spectrometer/Interferometer of the
German Democratic Republic
(SI-GDR) [20]

400–1600 cm−1 5.0 cm−1 23 June 1977–September 1977
(Meteor-28)
January 1979–June 1979
(Meteor-29)

Interferometric Monitor for
Greenhouse Gases (IMG) [21]

650–3000 cm−1

(3 contiguous bands)
0.1 to 0.25 cm−1,

varying with band
8 October 1996–June 1997

Scanning Imaging Absorption
Spectrometer for Atmospheric
Cartography (SCIAMACHY) [22]

240–2380 nm
(3 non-contiguous
bands)

0.22–1.48 nm 30 × 240 March 2002–May 2012

Atmospheric Infrared Sounder
(AIRS) [23]

650–2665 cm−1

(3 non-contiguous
bands)

0.4–2.1 cm−1,
varying with band

13.5 May 2002–present

Infrared Atmospheric Sounding
Instrument (IASI) [24]

645–2760 cm−1

(3 contiguous bands)
0.5 cm−1 12 June 2007–present

(MetOp-A)
September 2012–present
(MetOp-B)

Cross-track Infrared Sounder
(CrIS) [25]

650–2550 cm−1

(3 non-contiguous
bands)

0.625–2.5 cm−1,
varying with band
and operational mode

14 October 2011–present

All nominally have global coverage although note that spectra actually available from the GDR-SI instruments are very limited in both spatial and
temporal coverage [26]
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to yield insight into the response of the climate system to the
forcing due primarily to their short duration and the sampling
of IMG in particular.

Recent Developments: 2000–Present

Since early 2000, significant progress has been made in
our ability to monitor changes in spectral OLR and use
this information to test climate models. The launch of
AIRS aboard the Aqua satellite in 2002, and the subse-
quent longevity of the instrument, has meant that re-
searchers have finally had the opportunity to test the
evolution of the OLR spectrum as simulated by climate
models against sustained hyperspectral measurements. In
concert, rigorous approaches have been developed to
identify the spectral fingerprints of change and evaluate
the timescales on which these will emerge given con-
founding factors such as natural variability and instru-
ment calibration uncertainty [55]. These efforts have led
to initiatives to develop a new category of ‘climate
change’ satellite missions. Principal amongst these is
the Climate Absolute Radiance and Refractory
Observatory (CLARREO). Selected as a Tier-1 NASA
Decadal Survey mission in 2007 [56], CLARREO

objectives include the provision of in-orbit absolutely
calibrated spectral radiances, spanning the longwave
and shortwave domains, in concert with GPS radio oc-
cultation measurements.

Insights from AIRS

Huang and Yung were perhaps the first to use AIRS observa-
tions to directly evaluate the variability of the OLR spectrum
[57]. They used Empirical Orthogonal Function (EOF) anal-
ysis of the AIRS observations to investigate the modes of
spectral variability in different climate zones. Although
employing only 1 month of data, the authors showed that on
this timescale whilst the contrast between cloud top and sur-
face temperature was the dominant factor in driving variabil-
ity, the patterns and ordering of the modes varied with zone.

The publication was the first in a series using AIRS to
evaluate the performance of variants of the Geophysical
Fluid Dynamics Laboratory general circulation model
(GFDL). Huang et al. performed a detailed comparison of a
year of AIRS observations with simulated global mean radi-
ance spectra over the global oceans [58]. The comparison was
able to diagnose biases in the model temperature and moisture
fields and, more critically, demonstrate that the effects of these
biases could compensate such that they would not be apparent

a

b

Fig. 2 a Global, annual average
spectrally resolved OLR as
simulated by MODTRAN5 using
CCSM3 output for selected years
during the twenty-first century
under the SRES A2 scenario.
b Change in OLR relative to year
2000. Regions of influence of key
greenhouse gases are indicated
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in a comparison with broadband flux observations.
Comparisons byHuang et al. between GFDL simulations over
the tropical oceans and clear-sky spectrally resolved flux spec-
tra derived from AIRS and the Clouds and the Earth’s Radiant
Energy System (CERES) broadband radiometer yielded sim-
ilar findings [59] (Fig. 4). The studies also showed that incor-
porating extra dimensions beyond the spectral to the
observation-model comparison added significant discrimina-
tory power. For example, temporal-spatial behaviour was
exploited to identify day-night model-observation biases con-
sistent with an incorrect phasing of model convection over the
Indian Ocean and Indonesian warm pool [58]. Similarly,
Huang et al. were able to suggest a dynamical cause for the
discrepancies seen in the water vapour absorption bands by
spatially and seasonally decomposing their results [59].

Comparisons of model-observed spectral cloud-radiative forc-
ing by the same authors illustrated marked discrepancies with-
in specific cloud regimes that were not seen when results were
averaged over larger spatial domains [60].

Focusing more on factors related to climate sensitivity,
Huang and Ramaswamy investigated the spectral variation
in the super greenhouse effect (SGE) as manifested in AIRS
and GFDL [61]. The SGE phenomenon, essentially a strong
anti-correlation between sea surface temperature (SST) and
OLR within the tropics, has a strong regional pattern, tending
to occur as zones transition between ascent and descent due to
the seasonal shift of the Hadley circulation [62]. Analysis of
observed and modelled OLR spectra in SGE regions demon-
strated the ability to identify compensating errors not only in
the mean model spectrum but also in the responses of cloud
and the water vapour vertical distribution to a changing SST.

Feedbacks

The AIRS studies indicated the power of using spectral obser-
vations to directly test climate model performance, but tech-
niques to formally discriminate between different feedbacks
and unambiguously detect change using radiance spectra
needed development. Recognising this, Leroy et al. derived
feedback signals due to temperature and water vapour changes
realised by an ensemble of the World Climate Research
Programme’s Coupled Model Intercomparison Project phase
3 (CMIP3) climate models under a particular emissions sce-
nario [63]. They showed an optimal detection technique, in-
corporating uncertainty in the spectral shape of the feedback
signals, could be used to distinguish different signals. They
also noted the dominant role of inter-annual variability in de-
termining the accuracy with which a particular feedback could
be identified given a 20-year record length.

Although this study provided a framework, the calculations
were limited to clear-sky conditions. Using a doubled CO2

climate model simulation, Huang et al. extended the work to
separate feedbacks due to temperature, water vapour and, cru-
cially, cloud, in different vertical layers [16]. Key findings
related to the similarity between certain feedback signals
(Fig. 5) and the impact of uncertainties in the spectral shape
of a given fingerprint. Whilst tropospheric temperature and
water vapour feedbacks were unambiguously detected for
the particular model and forcing scenario considered,
distinguishing between cloud and surface temperature feed-
back signals was difficult. The authors used their results to
make the case for auxiliary observations that could help
resolve the ambiguity. They highlighted the potential of
shortwave spectral reflectance to separate low cloud
from surface temperature response and the use of GPS
radio occultation measurements to disentangle atmo-
spheric temperature and humidity responses, innovations
promised by the CLARREO mission.

a

b

c

Fig. 3 Examples of IRIS and IMG observed and simulated spectra for a
3-month average (April–June) over selected regions. a Observed IRIS
and IMG clear-sky brightness temperature spectra for the central Pacific
(10° N–10° S, 130° W–180° W). b Top, observed difference spectrum
taken from (a); middle, simulated central Pacific difference spectrum,
displaced by –5 K; bottom, observed difference spectrum for ‘near-
global’ case (60° N–60° S), displaced by –10 K. c component of
simulated spectrum due to trace gas changes only. ‘Brightness
temperature’ is the equivalent blackbody temperature. (Taken from
Harries et al. [52])
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Unlocking Information from the RSW Spectrum

The previous sections highlight the relatively large body of
work concerned with discerning climate forcing and feedback
processes directly from OLR spectral radiances. Analogous
efforts utilising the shortwave spectrum are less well-devel-
oped. However, the realisation that the two regions contain
complementary information regarding key feedback process-
es, particularly those involving cloud, coupled with the avail-
ability of hyperspectral observations of RSW, has motivated a
number of recent studies. Roberts et al. used reflected spectral
radiances from the Scanning Imaging Absorption
Spectrometer for Atmospheric Cartography (SCIAMACHY)
to quantify and attribute the variability in the hyperspectral
observations covering the ultraviolet (0.3 μm) through to the
near infrared (1.75 μm) [64]. Employing principal component
analysis (PCA) techniques similar to those employed in OLR

studies, they showed that for all of the cases studied, six com-
ponents or fewer explain over 95 % of the variance in the
SCIAMACHY spectra. Perhaps more interestingly, they were
able to relate specific PCs to variations in cloud, water vapour,
vegetation and sea ice. An alternative approach to characterise
variability was proposed by Jin et al. who derived spectral
radiative kernels to explore the sensitivity of the RSW spec-
trum to perturbations of individual parameters such as water
vapour, aerosol optical depth and cloud properties. They
found, at low-mid latitudes, interannual variability in the
RSW spectrum was generally dominated by variability in
cloud amount and optical depth [65]. At higher latitudes, snow
and sea ice played a more important role. Whilst these
effects dominate at wavelengths below ∼1.3 μm, the
impact of water vapour and cloud height variability is
manifested within the strong water vapour absorption
bands across the RSW spectrum.

Fig. 4 a Annual mean broadband clear-sky OLR (in W m−2) over the
tropical oceans simulated by AM2 (Atmospheric GCM, GFDL) for 2004.
b Difference between the AM2-simulated and AIRS inferred broadband
clear-sky OLR. c, d As (a) and (b) but for the spectral flux over the
combined bands of 0–560 and 1400–2200 cm−1. e–h As (c) and (d) but

for the spectral ranges of 560–800 and 990–1070 cm−1, respectively. Note
the changing scales associated with each panel. Both the sign and spatial
distribution of the simulated versus observed differences in the spectrally
integrated OLR can change when compared with equivalent differences
in selected spectral bands. (Adapted from Huang et al. [59])
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Focusing more on longer-term signals of change that might
be expected to emerge in the RSW spectrum as the Earth’s
climate evolves, Feldman et al. pioneered the idea of applying
techniques usually employed in the planning of missions or
Observing System Simulation Experiments (OSSEs), to cli-
mate model output [17]. Coupling CMIP3 simulation results
from Community Climate System Model 3 (CCSM3) with
radiative transfer modelling across the shortwave domain
and applying statistical detection techniques, Feldman et al.
were able to determine, as a function of wavelength and zonal
band, when the reflectance trend associated with a particular
climate model simulation would emerge from the underlying
‘natural’ variability, or the ‘time-to-change-detection’ [66].
Focusing on simulations employing the Special Report on
Emissions Scenarios (SRES) A2 emission scenario [67], they
found that across much of the spectrum, for both clear and all-

sky conditions, trends tended to emerge earlier in spectrally
resolved reflectances than in broadband albedo (Fig. 6).
Typically, signals were faster to emerge at low-mid latitudes
compared to higher latitudes, with underlying variability due
to cloud accounting for an increase in detection time between
the clear and all-sky cases.

Bringing It Together: a Pan-Spectral Approach
and the Question of Natural Variability

Following up on their initial OSSE work, Feldman et al.
exploited CMIP3 runs of CCSM3 at a variety of spatial
resolutions to investigate whether pan-spectral informa-
tion, incorporating both the RSW and longwave re-
gimes, could discriminate between models exhibiting
different climate sensitivities [68]. In the context of
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Fig. 5 Examples of the spectral signatures associated with different
climate parameter perturbations as realised in a double CO2 experiment
using the Canadian Centre for Climate Model Analysis model. Blue
curves show the all-sky global mean normalised spectral radiance
change (δRN) due to the change seen in CO2, surface temperature,
tropospheric temperature, stratospheric temperature, tropospheric
humidity, stratospheric humidity and lower, middle and upper

tropospheric cloud. Red curves represent the spatial standard deviation
in the δRN values across the globe and can be interpreted as a measure of
the ‘noise’ in the change signal. Strong similarities in the spectral shape of
δRN can clearly be seen in the temperature and low cloud panels (blue
curves) indicating the difficulty associated with separating these
responses from each other. (Taken from Huang et al. [16])
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the study goal, to distinguish between models showing
different low cloud and sea ice feedback strengths, the
RSW domain was shown to have greater sensitivity al-
though the longwave window region between 8 and
12 μm also showed promising discriminatory ability.
More recent work using output from the HadGEM2-ES
and MIROC5 models to simulate multi-decadal spectral
trends for a given climate change scenario reiterates the
potential of pan-spectral information [27•]. Differences
between the two models are apparent in both the RSW
and longwave spectral domains (Fig. 7). To fully exploit
the spectral dimension requires an understanding of the
processes which affect the response at different wave-
lengths (by, for example, constructing pan-spectral radi-
ative kernels). However, using information contained in

both the solar and outgoing longwave regimes simulta-
neously has the potential to enable feedback processes
that appear degenerate when considering either regime
in isolation [16, 65] to be distinguished from one
another.

Clearly, a model needs to accurately capture natural vari-
ability to reliably inform on when a climate change signal
might be detectable. In the RSW domain, attempts have been
made to compare the variabil i ty diagnosed from
SCIAMACHY with that captured by the CCSM3 OSSE sim-
ulations. Roberts et al. used a PCA approach to show that, for
selected observation rich months, the two data sets share a
large fraction of their spectral variability. This suggests that
the OSSE is adequately capturing the spectral variability of the
early twenty-first century as observed by SCIAMACHY [69].

a b

c d

Fig. 6 a Time when the reflectance trend emerges from the underlying
‘natural’ variability (‘time-to-change-detection’) as a function of
wavelength and zonal band as realised in MODTRAN5 simulations of
twenty-first century nadir clear-sky reflectance using output from the
CCSM3 model under the SRES A2 scenario. b As (a) but white

regions show where detection times are the same or faster using
spectrally integrated broadband albedo. c As (a) for all-sky conditions.
d As (b) for all-sky conditions. The approach used to derive each panel
follows that described in Feldman et al. [66]
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Jin et al., focusing on interannual variability over relatively
large spatial domains, showed the normalised OSSE and
SCIAMACHY reflectance variabilities are both typically less
than 1 % across the RSW spectrum for all regions considered.
Their work also highlighted a reduction in inter-annual vari-
ability as spatial and temporal averaging scale increases, with
a reduction of ∼50 % when moving from monthly to annual
averages [70•].

Similar work assessing the variability manifested in the
OSSE simulations in the longwave regime has not yet been
formally reported. However, there are studies providing in-
sight into short-term variability using observations from
AIRS and more recently from the Infrared Atmospheric
Sounding Interferometer (IASI). Using IASI data, Brindley
et al. found interannual variability reduces across the

longwave spectrum as spatial scale increases but the rate of
reduction varies with spectral region [71•]. As scale increases,
variability across the atmospheric window, most sensitive to
surface temperature and cloud, reduces relatively rapidly, but
the reduction in variability is smaller for spectral regions sen-
sitive to mid-upper troposphere temperature and water vapour
(Fig. 8). At the global scale, interannual variability across the
entire spectrum is less than 0.17 mWm−2 cm sr−1, reducing to
0.05 mW m−2 cm sr−1 in the window. A similar magnitude of
spectral interannual variability had previously been reported
from an analysis of AIRS data, but the spectral shape of the
variability was markedly different [72]. The quality of recent
radiance inter-comparisonsmade betweenAIRS, IASI and the
Cross-Track Infrared Sounder (CrIS) suggests that this differ-
ence is most likely due to the different periods considered by

Fig. 7 Pan-spectral all-sky
decadal trends in shortwave
reflectance and longwave
radiance for the HadGEM2-ES
and MIROC5 models under the
IPCC AR5 RCP8.5 scenario over
the period 2005–2035 averaged
over the Arctic (70–90° N,
0–100° E) (top) and the tropical
western Pacific (10° S–10° N,
100–150° E) (bottom). (Taken
from Feldman et al. [27•])
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the two analyses [73]. However, it would be interesting to
carry out a similar study over a common period to confirm
that this is indeed the case.

Conclusions and Future Directions

The work highlighted in this review article illustrates the prog-
ress that has been made in measuring and interpreting the
outgoing energy spectrum of the Earth across both the short-
wave and longwave domains over the last five decades. A key
advance concerns the direct use of spectral observations to
quantitatively evaluate climate models. These comparisons
have identified inadequacies in climate model representations
of processes relating to the response of cloud, water vapour
and temperature that could not be diagnosed from broadband,
spectrally integrated measurements because of compensating
effects across the spectrum. As such, they provide an illustra-
tion of why such measurements could prove invaluable in
reducing the uncertainty range that is currently associated with
projections of future climate change [74].

Considering our future climate, this article has highlighted
that whilst the potential of directly using spectrally resolved
measurements to diagnose and attribute changes in climate
forcing and feedbacks has been recognised for over 40 years,
it is only relatively recently that hyperspectral measurements
have been of sufficient quality and duration to begin to quan-
tify the observed variability in the reflected shortwave and
outgoing longwave spectrum over annual timescales and lon-
ger. Such assessments are crucial, as they provide insight into
when specific signatures associated with, for example, expect-
ed changes in greenhouse gases, aerosol or cloud might be
expected to emerge from this ‘natural’ variability. Moreover,
with careful consideration of instrument sampling character-
istics, these data can be used to evaluate whether our current
generation of current climate and earth systemmodels are able
to capture the observed spectral variability. It should be noted
that the effort required to transform climate model output such
that it can be directly compared with the observed metrics
(radiance, reflectance, etc.) is not trivial [27•]. Nonetheless,
similar ‘satellite simulators’ have already been developed for
active and narrow-band passive instruments [75] and have

a

b

Fig. 8 a Standard deviation in 10° zonal, annual mean all-sky brightness
temperature spectra derived from IASI for the northern hemisphere for the
period 2008–2012. b As (a) but for the global mean spectra. Note the
change in scale between (a) and (b). Variability in the atmospheric
window (∼800–1250 cm−1, excluding the ozone band centred at
1040 cm−1) reduces more rapidly with spatial scale than in the

wavelength region between 700 and 750 cm−1 (sensitive on these time
scales to variations in upper tropospheric temperature) and at
wavenumbers greater than 1250 cm−1 (sensitive to variations in
mid-upper tropospheric temperature and water vapour). (Adapted
from Brindley et al. [71•])
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been used to investigate the ability of a variety of different
climate models to correctly capture the seasonality associated
with different cloud regimes [76] and to diagnose the reasons
for specific common climate model biases [77]. We advocate
that developing this capability further for hyperspectral obser-
vations should be a high priority. Such an effort would be
particularly timely given current and planned future instru-
mentation (e.g. AIRS, IASI, CrIS, IASI-NG [78]) and could
potentially incorporate developments in our ability to perform
fast, accurate, high spectral resolution radiative transfer calcu-
lations [79] whilst retaining consistency with assumptions
made internally within the relevant models [80].

Aligned with the need for the development of suitable tools
to directly exploit the information contained in pan-spectral
observations, there must also be recognition that, whilst the
current generations of hyperspectral instruments are providing
observations of unprecedented quality, they were not designed
specifically for climate change monitoring. Indeed, we would
contend that there is currently no hyperspectral instrument in
space that possesses the level of in-orbit, SI traceable calibra-
tion or sampling characteristics needed to provide a bench-
mark record of the true climate state. Efforts are ongoing to
rectify this situation via, for example, the CLARREO [81••]
and Traceable Radiometry Underpinning Solar and Terrestrial
Studies (TRUTHS) initiatives [82]. A CLARREO Pathfinder
mission is scheduled for launch in 2020 on-board the
International Space Station with the goal to demonstrate the
target in-orbit calibration accuracy across the RSW domain,
and efforts continue to secure funding for the full mission
(currently scheduled for launch no earlier than 2023).
Implementation of missions with such benchmarking ca-
pability is key to understanding discrepancies between
contemporaneous measurements from different instru-
ments and, more critically, to being able to make robust
claims concerning real spectral changes that have oc-
curred between observing periods when the instrumental
record is not continuous in time [83].

Finally, we would also note what we consider to be a major
missing piece in our understanding of the response of the
Earth’s energy budget to climate change. Although in the
global mean, approximately half of the Earth’s OLR is located
at wavelengths greater than ∼15 μm, within the so-called far-
infrared (FIR) [84], the region has never been measured spec-
trally, in its entirety, from space. The FIR is highly sensitive to
mid-upper tropospheric water vapour and to cirrus cloud, both
of which critically influence the Earth’s radiative budget and
climate sensitivity [74]. Moreover, very recent work has sug-
gested that the FIR may have a more important role than
previously recognised in modulating high-latitude climate re-
sponse and future change [85, 86]. We suggest that future
missions capable of providing spectrally resolved measure-
ments across this regionwould ensure we can have confidence
we are correctly characterising the full OLR spectrum across

the complete range of Earth scenes and address a long-
standing shortcoming in our observational capabilities.
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