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Abstract
The temperature dependence of the density, dynamic viscosity and ionic conductivity of

several deep eutectic solvents (DESs) containing ammonium-based salts and hydrogen

bond donvnors (polyol type) are investigated. The temperature-dependent electrolyte vis-

cosity as a function of molar conductivity is correlated by means of Walden’s rule. The oxi-

dation of ferrocene (Fc/Fc+) and reduction of cobaltocenium (Cc+/Cc) at different

temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in

DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhe-

nius-type relation to give activation energies for the diffusion of redox couples at different

temperatures. The temperature dependence of the measured conductivities of DES1 and

DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the

Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature

range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calcu-

lated at different temperatures by means of a logarithmic analysis. The glycerol-based

DES (DES5) appears suitable for further testing in electrochemical energy storage

devices.

Introduction
In the probe for new types of green solvents, deep eutectic solvents (DESs) as alternative
media to ionic liquids (ILs), have received recent attention [1–3]. DESs share many notable
properties of conventional ILs such as inherent conductivity, negligible vapor pressure,
wide electrochemical potential windows, high thermal stability, non-flammability and
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outstanding solvation potential [4–6]. When their constituents are chosen wisely, DESs are
environmentally friendly, biodegradable, and non-toxic. In addition, DESs can be prepared
simply at low cost [7–9]. A variety of practical industrial applications of DESs have already
been reported, e.g., as solvents for electrodeposition [10–12], catalysts or solvents for a range
of chemical and enzymatic reactions [13,14], solvents for extractions [15–17] and co-solvents
in inorganic[18] and organic [19,20] syntheses, as well as in bio-catalysis [21–23]. The most
common form of DESs are those composed of quaternary salts (ammonium or phospho-
nium) with an organic compound (such as an alcohol, acid, amine or amide) which is a
hydrogen bond donor (HBD) able to form a bond with the anion of the salt. Some DESs also
consist of metal halides or hydrated halides that form a complex with ammonium or phos-
phonium salts. DESs melt and freeze at lower temperatures than the constituting compo-
nents [24–29].

Ferrocene/ferrocenium (Fc/Fc+) or cobaltocenium/cobaltocene (Cc+/Cc) redox couples—
common metallocenes—are reversible in most non-aqueous solutions and have been investi-
gated as candidates for internal references in various ILs [30–34]. Quasi-reference electrodes
(QREs) with electrochemically reversible couples, such as Fc/Fc+ or Cc+/Cc have also been
used for the development of reference potential scales in ILs [35,36]. The electrochemical oxi-
dation of ferrocene to the mono-cation ferrocenium, has been investigated in numerous
organic solvents at different temperatures. Crooks and Bard [37] measured electrochemical
parameters of the Fc/Fc+ in acetonitrile at a temperature range of 298 to 573 K, including
supercritical conditions. Tsierkezos [38] investigated the voltammetric behavior of the Fc/Fc+

couple over a range of temperatures in eight different organic solvents. Wang et al. [39] used
voltammetric data to infer diffusion coefficients of both Fc and Fc+ as a function of tempera-
ture in acetonitrile systems. Despite all this, there are few reports on the diffusions and kinetics
for the Fc/Fc+ couple in ILs. Rogers et al. [33] examined in detail the voltammetry of the Fc/Fc+

and Cc+/Cc couples over a wide range of temperatures and concentrations in several ILs. Mat-
sumiya et al. [40] studied the temperature dependencies of the diffusion coefficients and rate
kinetics of Fc/Fc+ in the quaternary ammonium cation and bis(trifluoromethanesulfone) imide
anion type ionic liquid using an I−/I3− reference electrode. Weaver et al. [41] investigated the
electrochemistry of ferrocene-functionalized phosphonium ILs at a temperature range of 289
to 353 K. Compton et al. [42] reported that the diffusion coefficients of Fc in a pure IL is more
temperature dependent than that observed in a CO2-saturated IL, therefore the activation
energy of diffusion of Fc in the IL was approximately halved when the liquid was saturated
with CO2. There was concern, however, regarding the fact that the Fc/Fc

+ process displayed
irregular electrochemical behavior in some ILs at different temperatures [42]. In fact, Guo et al.
[43] reported that Fc molecules could diffuse faster even at lower temperatures if ILs were satu-
rated with CO2 at elevated pressures beyond approximately 3 MPa. Taylor et al. [44] deter-
mined the diffusion coefficients for Fc derivates in five ILs as a function of temperature and the
data revealed a disobedience to the Stokes–Einstein equation. However, no systematic study is
available on the effects of varying temperatures on the Fc/Fc+ oxidation and Cc+/Cc reduction
processes in DESs.

A DES performs the dual role of electrolyte and solvent and hence represents a different
kind of medium for electrochemical applications. Herein, we report electrochemical data
obtained by means of cyclic voltammetry and chronoamperometry using DESs based on qua-
ternary ammonium salts and polyol hydrogen bond donors over a range of temperatures.
Also the effect of temperature on the physicochemical properties of the studied DESs is
examined.
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Materials and Method

Preparation and characterization of DESs
In this work, 6 DESs based on two ammonium salts were prepared. Choline chloride
(C5H14ClNO) and N,N-diethylenethanol ammonium chloride (C6H16ClNO) as quaternary
ammonium salts as well as triethylene glycol (C6H14O4), glycerol (C3H8O3) and ethylene glycol
(C2H6O2) as hydrogen bond donors were obtained from Merck Chemicals (Germany) with
high purity (� 98%) and were used as-received. All starting chemicals were stored in an inert
glove box (Innovative Technology, Pure LabHE, USA) purged with argon (oxygen-free). The
water mass fraction of the chemicals (as per the manufacturer's guide) was<10−3%. Table 1
lists the DESs studied in the present work. The DESs were formed according to the preparation
method described earlier [8–11]. In brief, two components were mixed in the argon-filled glove
box (having oxygen and water contents lower than 1 ppm), in the proportions indicated in
Table 1, at 348 K, 300 rpm agitation and atmospheric pressure until a homogeneous, colorless
liquid formed. The time of the mixing process was about 3–5 h. The densities of the synthesized
DESs at various temperatures were determined using a DMA 4100 Density Meter (Anton Paar,
Austria) with three replicates for each reading (having an uncertainty of ± 0.00008 g•cm-3).
The density of water (degassed and distilled) was measured at 298 K and compared with the
corresponding values in density tables, to adjust the density meter for accuracy. The results
exhibited a difference of ± 0.00005 g•cm-3 which showed good accuracy.

The viscosities of the DESs were obtained by averaging at least three to five measurements,
using a Brookfield DV-II + Pro EXTRA instrument. The uncertainty in viscosity measure-
ments did not exceed ±1% of the measured values in this study. The conductivities were deter-
mined using a DZS-708 Multi-parameter analyzer, which was calibrated using a 0.001 M
standard solution of KCl (Merck).

Electrochemical measurements
The electrochemical experiments of all Fc and Cc+ solutions were studied in a standard three-
compartment glass cell, consisting of a 3 mm diameter Glassy Carbon (GC) or 20 μm diameter
platinum working electrode, while Ag wire (pre-treated as described in the literature) [45] and
Pt. wire were used as the quasi-reference and counter electrodes, respectively. Working

Table 1. Physicochemical properties of polyol-based DESs.

DESs Formulae Molar
ratio

Mw (g
mol-1)

ρ (g
cm-3)

η (mPa s) σ (mS
cm-1)

Salt HBDa

DES1 C5H14ClNO(Choline chloride) C6H14O4(Triethylene
glycol)

1:3 147.52 1.28 164 1.78

DES2 C5H14ClNO(Choline chloride) C3H8O3(Glycerol) 1:2 107.93 1.19 322b 0.65 b

DES3 C5H14ClNO(Choline chloride) C2H6O2(Ethylene glycol) 1:2 87.92 1.11 66 b 5.26 b

DES4 (C2H5)2NCH2CH2OH.HCl (N,N-diethylenethanol
ammonium chloride)

C6H14O4(Triethylene
glycol)

1:3 151.03 1.25 229 1.24

DES5 (C2H5)2NCH2CH2OH.HCl (N,N-diethylenethanol
ammonium chloride)

C3H8O3(Glycerol) 1:2 112.60 1.17 577 b 0.25 b

DES6 (C2H5)2NCH2CH2OH.HCl (N,N-diethylenethanol
ammonium chloride)

C2H6O2(Ethylene glycol) 1:2 92.59 1.10 58 b 5.72 b

aHBD = Hydrogen Bond Donor
bdata from ref. 44

doi:10.1371/journal.pone.0144235.t001
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electrodes were carefully polished with 0.3 μm alumina paste (Wirth Buehler) and ultrasoni-
cally rinsed in acetone. All electrochemical measurements were carried out using a computer-
controlled í-Autolab potentiostat (PGSTAT302N). A Faraday cage was also employed to mini-
mize electrochemical noise, which in turn was placed in the argon-filled glove box. The anodic
and cathodic limits of each DES were arbitrarily specified as the potential at which the current
density reached higher than 0.2 mA cm-2.

Results and Discussion

Synthesis and physicochemical properties of DESs
DESs prepared by mixing two different quaternary ammonium salts with different polyol
HBDs (that have the ability to form a complex with the halide anions of the quaternary ammo-
nium salts) [45] and their fundamental physicochemical properties including density, viscosity
and conductivity were examined. The results are reported in Table 1.

The densities of DESs were measured over the temperature range of 298 to 368 K at atmo-
spheric pressure. The difference in density could be attributed to a different molecular arrange-
ment or packing of the DES. For the DESs, the density was found to decrease linearly with
temperature as shown in Fig 1. Such results would be expected since, as temperature increases,
substances (at constant pressure) become less dense due to thermal expansion. The density val-
ues were compared to those reported in the literature [46–48] and found to be in good agree-
ment. The following equation fits the experimental data for the densities (ρ) of the DESs very
well over the entire temperature range:

r ¼ AT þ B ð1Þ
Where T is the absolute temperature while A and B are empirical constants that depend on the
type of DES. As displayed in Table 1, DES1 has a higher density than its other counter parts
due to a higher intermolecular packing of the compound’s denser structure. The density of eth-
ylene glycol based DESs were found to be slightly less than those of other polyol-based
counterparts.

The viscosity is a very important parameter in electrochemical studies due to its strong
effect on the rate of mass transport within the solution. It significantly influences the diffusion
of species, which are dissolved or dispersed in an ionic liquid. The viscosity can be influenced
by various parameters such as the relative capacity to form hydrogen bonds, anionic species,
size, higher alkalinity, van der Waals forces and cation size [49]. The viscosity is generally
affected by the interaction of the salt with the HBD, and their ability to coordinate. Fig 2(a)
indicates that, as the temperature increases from 298 to 368 K, the viscosity of the DESs
decrease due to the higher mobility of ions. DESs with the glycerol HBD exhibits higher viscos-
ities than other polyol based DESs, resulting in lower conductivities. Moreover, choline chlo-
ride based DESs [50] show lower viscosities in comparison to diethylenethanol ammonium
chloride based DESs, and the value at 298 K follows the order:DES5>DES2>DES4>
DES1>DES3>DES6.

The temperature dependency of the viscosity (η) for the DESs and the profiles are fitted to
the Arrhenius equation (Eq (2)), which describes the temperature dependence for non-associ-
ating electrolytes [51], as depicted in Fig 2(b).

ln Z ¼ ln Z
0
þ EZ

RT
ð2Þ

Where T is the temperature in Kelvin, η is the viscosity, Eη is the activation energy, η0 is a con-
stant and R is the universal gas constant. The value of Eη, η0 and sums of square errors are
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tabulated in Table 2. The regression correlation coefficients have values higher than 0.99 show-
ing a reasonably good fit.

Fig 3(a) illustrates the temperature dependence of ionic conductivity (the most important
property of electrolyte materials) for the DESs. Conductivity of DESs generally increase signifi-
cantly as the temperature rises due to the ions moving faster at higher temperatures as a conse-
quence of lower viscosities (of the neat DESs). The conductivity of the salts—ethylene glycol
DESs (DES3, DES6)–show higher values in comparison to other polyol based DESs. Consider-
ing the hole theory for transport in molten salts, an Arrhenius equation (Eq (3)) was obtained
for the temperature-dependence of the electrical conductivity (σ), which can be written as
[52,53]:

ln s ¼ ln s0þ
Es

RT
ð3Þ

Where T is the absolute temperature, σ0 is a constant and Eσ is the activation energy for con-
duction. Consequently, from Eq (3), Eσ, σ0 and sums of square errors are tabulated in Table 2.
Fig 3(b) reveals that in the case of the studied DESs, a linear relationship exists between T-1 and

Fig 1. Dependence of densities (ρ) on temperature for polyol based DESs.

doi:10.1371/journal.pone.0144235.g001
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Fig 2. Dynamic viscosity (η) of polyol based DESs as a function of temperature; (b) Arrhenius plot of viscosity (η) for the polyol based DESs.

doi:10.1371/journal.pone.0144235.g002
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ln σ except DES1 and DES2, as predicted by the Arrhenius equation. The relation between ln
(σ) and 1/T are well explained by a linear model with a correlation coefficient, R2, of more than
0.99 which indicates that the variation of electrical conductivity with temperature follows an
Arrhenius model. However, the curvature of ln(σ) as a function of (1/T) in Fig 3(b), for DES1
and DES2 exhibit non-linear trends. Hence, for these two particular DESs, the Vogel–Tam-
man–Fulcher (VTF) was used to determine the temperature dependence of conductivity
according to the following equation [54]:

s ¼ s0 exp
�Bs

T� T0

� �
ð4Þ

Where σ0, T0 and Bσ are fitting parameters. In Fig 3(c), the variation of ln (σ) versus 1/(T-T0) is
plotted. The best fit values for σ0 (mS cm-1), Bσ (K) and T0 (K) are given in Table 3. T0 is sup-
posed to have a close relationship with glass-transition temperature, and σ0 and Bσ are usually
associated with several carrier ions and activation energies, respectively [55].

From the measured ionic conductivity σ (S m-1), the values of the molar conductivity Λ (m2

S mol−1) were calculated using Λ = (M σ) /ρ, whereM and ρ are the respective equivalent
weight and density of the DES. Solvent-free ionic liquids usually can be well illustrated by cor-
relating the molar conductivity with temperature-dependent fluidity according to the modified
Walden’s rule [56] using a qualitative approach [57]:

L Za ¼ C ð5Þ
Where α is the slope of the line in the Walden plot, which reflects decoupling of the ions, and C
(Walden product) is a temperature-dependent constant. This scheme is specifically appropriate
in ILs [57], because it is a useful measure for examining ion pairing in electrolytes, and supplies
the basis for comprehending the relationship between conductivity and viscosity. Fig 4 shows
the Walden plot {ln(equivalent conductivity} versus ln{1/η)} over a temperature range of 298–
368 K. The position of the ideal line is established using dilute aqueous KCl solutions in Fig 4,
in which the system is known to be fully dissociated and to have ions of equal mobility. All
DESs lie below the “ideal”Walden line. The deviations of the Walden plot of these DESs from
the ideal line show an increased electrostatic interaction between the ammonium salts and the
hydrogen bond donors.

Electrochemical stability
The electrochemical stability is one of the most important characteristics to be identified for
electrolytes and solvents used in electrochemical applications. Electrochemical stability is
dependent on the type of electrodes, the measurement situation, and the references employed.

Table 2. Regression Parameters for viscosity and conductivity of polyol-based DESs.

DESs η0/ mPa s Eη/ kJ mol-1 SSEη σo/mS cm-1 Eσ/kJ mol-1 SSEσ

DES1 1.85 20.68 0.036 10.02 23.97 0.068

DES2 2.59 22.55 0.066 15.44 38.48 0.197

DES3 4.47 20.46 0.035 10.56 21.61 0.097

DES4 1.08 21.30 0.028 11.13 25.70 0.102

DES5 2.80 23.96 0.034 16.03 40.72 0.160

DES6 5.69 19.00 0.054 8.88 17.52 0.046

SS = Sum of Squares

doi:10.1371/journal.pone.0144235.t002
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Fig 3. (a) Dependence of specific conductivity (σ) on temperature for the DESs; (b) Arrhenius plot of
specific conductivity (σ) for the polyol based DESs; and (c) VTF plot of ionic conducticity for DES1
and DES2.

doi:10.1371/journal.pone.0144235.g003
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The arbitrary current cut-off used to define the onset of redox processes (typically between 0.1
and 1.0 mA cm−2) may not be strictly electrochemically determined. This difficulty is further
combined in the case of ILs due to their sensitivity to air, water, and other impurities [58]. The
cathodic stability of DESs is mainly determined by the potential at which the reduction of the
cations (salts) takes place, while the anodic stability is measured where oxidation of the anions

Table 3. The VTF equation parameters of the ionic conductivity for DES1 and DES2.

DESs T0/ K σ0 /mS cm-1 Bσ /(K) R2 a

DES1 232 78 249 0.9994

DES2 212 435 557 0.9987

a Correlation Coefficient

doi:10.1371/journal.pone.0144235.t003

Fig 4. Walden plots for the polyol based DESs, where Λ is the molar conductivity and η-1 is the fluidity. The dotted line indicates the data for a dilute
aqueous KCl solution to fix the position of the ideal Walden line.

doi:10.1371/journal.pone.0144235.g004
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(HBDs) is expected to occur. For particular applications (e.g., super-capacitors), it is the overall
potential window that matters, while in other applications, the actual anodic and cathodic lim-
its associated to some reference is the restricting factor. The limiting reduction and oxidation
potentials of the DESs are analyzed by performing cyclic voltammetry using a GC working
electrode and a Pt. microelectrode at ambient temperature and at a scan rate of 0.1 V s-1, as
shown in Fig 5(a) and 5(b) where the limiting current density reaches 0.2 mA cm−2.

The potential window of studied DESs, determined from the difference in potentials, is
found to be similar on the GC electrode vs. Ag/AgQRE and has a wider potential range as com-
pared to previously tested DESs [59]. In addition, the cathodic potential on the Pt. electrode
(Fig 5a) is observed to decrease for the DESs in the order ofDES1>DES2>DES3 when using
the choline chloride salt. However, for DESs made with the diethylenethanol ammonium chlo-
ride salt the cathodic potential values are similar. Such variations are not seen for the anodic
potential [45].

Temperature dependence of the voltammetric data for Fc/Fc+ and Cc+/
Cc in DESs
Initially, in order to compare electrochemical parameters obtained in DESs as a function of
temperature, it is essential to use either a reference electrode of a familiar potential against a
standard reference electrode, or refer all data to a procedure whose reversible potential is pre-
sumed to be independent of the DESs. The oxidation of Fc is prevalently used to provide an
internal potential scale standard in voltammetric studies [30–33]. Bond et al. have demon-
strated that the reduction of Cc+ provides a broadly practical reference scale in both ILs and
organic solvents [60,61]. In these DESs, Fc and Cc+ exhibit a reversible one-electron process.

½FcðC5H5Þ2� , ½FcðC5H5Þ2�þ þ e� ð6Þ

½CoðC5H5Þ2�þ þ e� , ½CoðC5H5Þ2� ð7Þ

Figs 6(a) and 7(a) indicate typical cyclic voltammograms for oxidation of Fc and reduction
of Cc+ in DES1, respectively, which were obtained from individually prepared 10 mM solutions
in the temperature range of 298–348 K. The voltammetric data of Fc and Cc+ is summarized in
Table 4. Fc and Cc+ exhibited reversible reactions in all of the investigated DESs [45]. The
anodic and cathodic peak currents had increased substantially with increasing temperature for
oxidation of Fc and reduction of Cc+, respectively {Figs 6(a) and 7(a)}. The peak potential sepa-
ration (ΔEp) was found to be in the range between 0.064–0.103 V for Fc and 0.073–0.103 V for
Cc+ (Table 4). It was observed in all cases that ΔEp decreased with increasing temperature and
this at least partly reflected the faster electron kinetics. For DESs, the ΔEp was found to be
higher than the theoretical value (ΔEp = 0.059 V), attributing to the effect of either slow hetero-
geneous electron transfer kinetics or the enhanced impact of Ohmic drop as was previously
described by other researchers [32,34,36,41]. Reversible kinetics was assumed for both Fc and
Cc+ following a similar presumption from work reported in the literature [38,40,62]. In addi-
tion, the half wave potential (E1/2) of the redox couples (vs. Ag/AgQRE) was determined
according to the following equation

E1=2 ¼ EPA �
DEp

2
ð8Þ

Significant drifts in potential were initially observed for the AgQRE wire dipped directly in
DESs, including electroactive compounds. However, separation of the Ag wire immersed in
DESs from the bulk solution by means of a glass frit reduced this effect. The E1/2 data increased
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Fig 5. (a) Electrochemical stability of polyol-based DESs using GC working electrode; (b) Electrochemical stability obtained using Pt.
microelectrode.

doi:10.1371/journal.pone.0144235.g005
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Fig 6. Cyclic voltammetry for the reduction of Cc+ in the polyol-based DESs at varying temperatures of: (i) 298 K, (ii) 308 K, (iii) 318 K, (iv) 328 K, (v)
338 K and (vi) 348 K, at 100 mV s-1. (b) Double potential step chronoamperometry measured on the same system across the Cc+/Cc at temperatures of 298,
308, 318, 338 and 348 K.

doi:10.1371/journal.pone.0144235.g006
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Fig 7. Cyclic voltammetry for the oxidation of Fc in polyol-based DESs at varying temperatures of: (i) 298 K, (ii) 308 K, (iii) 318 K, (iv) 328 K and (v)
338 K, at 100 mV s-1. (b) Double potential step chronoamperometry measured on the same system across the Fc/Fc+ at temperatures of 298, 308, 318 and
338 K.

doi:10.1371/journal.pone.0144235.g007
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proportionately with temperature. Moreover, the E1/2 values changed significantly for different
DESs at a given temperature. It was demonstrated that E1/2 shifted toward more negative
potentials for the oxidation of Fc, and to more positive potentials for the reduction of Cc+ in
DESs. The shift of E1/2 could be illustrated by the donor-acceptor Lewis-type interactions as
discussed elsewhere [63].

Calculation of Diffusional Activation Energies for Fc and Cc+

The diffusion coefficient, D, of both the Fc/Fc+ and Cc+/Cc redox couples in DESs at different
temperatures were determined through analysis of double chronoamperometric measurements
conducted at Pt. microelectrodes. The technique was undertaken using a sample time of 0.01 s.
After pre-treatment by holding the potential at a point corresponding to zero Faradaic current
for 20 s, the potential was stepped from 0 to +0.60 V (oxidation of Fc to Fc+) and -0.40 to -1 V
(reduction of Cc+ to Cc), and the current was calculated for 5 s. The potential was then stepped

Table 4. The electrochemical characteristics for Fc/Fc+ and Cc+/Cc with different operating temperature.

DESs T/K Fc/Fc+ Cc+/Cc

jpa/mA cm-2 jpc /mA cm-2 Epa/V Epc/V ΔEp /V E1/2 /V jpa/mA cm-2 jpc/mA cm-2 Epa/V Epc /V ΔEp /V E1/2/V

DES1 298 0.012 -0.009 0.401 0.300 0.101 0.350 0.089 -0.104 -0.659 -0.759 0.100 -0.709

308 0.017 -0.012 0.375 0.282 0.093 0.328 0.097 -0.129 -0.659 -0.758 0.099 -0.708

318 0.021 -0.015 0.360 0.275 0.085 0.317 0.107 -0.154 -0.649 -0.749 0.100 -0.699

328 0.025 -0.016 0.350 0.269 0.081 0.309 0.136 -0.201 -0.639 -0.738 0.099 -0.688

338 0.028 -0.018 0.341 0. 265 0.076 0.303 0.145 -0.232 -0.619 -0.718 0.099 -0.668

DES2 298 0.029 -0.021 0.413 0.332 0.081 0.372 0.126 -0.143 -0.628 -0.723 0.095 -0.675

308 0.035 -0.022 0.402 0.322 0.080 0.362 0.132 -0.162 -0.618 -0.710 0.092 -0.664

318 0.040 -0.024 0.389 0.314 0.075 0.351 0.140 -0.187 -0.599 -0.685 0.086 -0.642

328 0.043 -0.025 0.380 0.306 0.074 0.343 0.148 -0.231 -0.587 -0.666 0.079 -0.626

338 0.047 -0.027 0.372 0.301 0.071 0.336 0.156 -0.259 -0.581 -0.654 0.073 -0.617

DES3 298 0.089 -0.075 0.425 0.322 0.103 0.373 0.079 -0.086 -0.672 -0.765 0.093 -0.718

308 0.093 -0.076 0.417 0.321 0.096 0.369 0.087 -0.097 -0.665 -0.757 0.092 -0.711

318 0.98 -0.079 0.411 0.319 0.092 0.365 0.096 -0.126 -0.654 -0.746 0.092 -0.700

328 0.104 -0.083 0.400 0.314 0.086 0.357 0.111 -0.147 -0.643 -0.732 0.089 -0.687

338 0.111 -0.086 0.388 0.306 0.082 0.347 0.124 -0.162 -0.631 -0.717 0.086 -0.674

DES4 298 0.021 -0.016 0.418 0.320 0.098 0.369 0.142 -0.171 -0.636 -0.738 0.102 -0.687

308 0.026 -0.019 0.411 0.318 0.093 0.380 0.148 -0.183 -0.624 -0.722 0.098 -0.673

318 0.031 -0.021 0.401 0.316 0.085 0.373 0.153 -0.192 -0.615 -0.711 0.096 -0.663

328 0.035 -0.024 0.393 0.313 0.080 0.362 0.158 -0.221 -0.602 -0.694 0.092 -0.648

338 0.038 -0.027 0.385 0.311 0.074 0.358 0.162 -0.245 -0.586 -0.673 0.087 -0.629

DES5 298 0.054 -0.045 0.421 0.334 0.087 0.377 0.107 -0.125 -0.661 -0.757 0.096 -0.709

308 0.062 -0.048 0.416 0.330 0.086 0.373 0.116 -0.138 -0.653 -0.747 0.094 -0.700

318 0.067 -0.052 0.406 0.323 0.083 0.364 0.124 -0.159 -0.642 -0.732 0.090 -0.687

328 0.075 -0.055 0.395 0.313 0.082 0.354 0.132 -0.182 -0.633 -0.717 0.084 -0.675

338 0.081 -0.059 0.388 0.309 0.079 0.348 0.141 -0.218 -0.618 -0.698 0.080 -0.658

DES6 298 0.064 0.059 0.434 0.345 0.089 0.389 0.091 -0.118 -0.652 -0.753 0.101 -0.702

308 0.071 0.061 0.421 0.339 0.082 0.380 0.096 -0.129 -0.648 -0.746 0.098 -0.697

318 0.079 0.063 0.411 0.336 0.075 0.373 0.098 -0.138 -0.640 -0.733 0.093 -0.686

328 0.088 0.066 0.398 0.327 0.071 0.362 0.103 -0.156 -0.635 -0.725 0.090 -0.680

338 0.096 0.069 0.390 0.326 0.064 0.358 0.105 -0.188 -0.628 -0.716 0.088 -0.672

doi:10.1371/journal.pone.0144235.t004
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back to 0 (reduction of Fc+ to Fc) and -0.40 V (oxidation of Cc to Cc+), and the current
response was calculated for a further 5 s. The nonlinear curve fitting function in Origin 7.0
(MicroCal Software Inc.) following the approximation made by Shoup and Szabo [64] was
used to fit the first potential step experimental data. The equations used in this approximation
{Eqs (9)–(11)} describing the current response to within 0.6% over the entire time range is
given below:

I ¼ �4nFDcrdf ðtÞ ð9Þ

f ðtÞ ¼ 0:7854þ 0:8863t�1=2 þ 0:2146 expð�0:7823t�1=2Þ ð10Þ

t ¼ 4Dt
r2d

ð11Þ

Here, rd represents the radius of the microdisk electrode, D is the diffusion coefficient, F is
the Faraday constant, c is the bulk concentration of the electro-active species, n is the number
of electrons transferred, and t is the time. Figs 6(b) and 7(b) show the best theoretical fit (O) to
the experimental double potential step chronoamperograms (-) for the Fc/Fc+ and Cc+/Cc
redox couples at 293, 298, 303, 308, 313, and 318 K in DES1. The limiting currents of the first
step incline regularly and the trend of the second step becomes slightly less steep as the temper-
ature increases in both Fc and Cc+. It is reasonably established that DFc and DCc

+ improves
with increasing temperature in all six DESs (Table 5). The D of the electroactive species have
been analyzed in terms of the Arrhenius exponential function of the temperature following the
Eq (12).

D ¼ Do expð
�ED

RT
Þ ð12Þ

Where D0 is a constant corresponding to the hypothetical diffusion coefficient at infinite tem-
perature, and ED is the diffusional activation energy of the electroactive species.

Plot of lnD against 1/T resulted in a straight line, and from the slope the activation energy
for diffusion, ED, was determined, as shown in Fig 8(a) and 8(b) (least-squares correlation coef-
ficient, R2> 0.99 for Fc and Cc+). The calculated ED for each sample is summarized in Table 6,
which compares well with the value determined for the Eη in DESs and corresponds well to
that observed in the literature for ILs [33]. The activation energies increased systematically
with increasing viscosity in DESs. A slight deviation for activation energies of DCc+ is observed,
which may be due to impeded diffusion of the reduced species as a result of stronger solvation
by the DES.

Effect of temperature on kinetic electron transfer
The cyclic voltammetric data have been further analyzed for the evaluation of the heteroge-
neous electron transfer rate constant (k0) of the Fc/Fc+ and Cc+/Cc redox couples according to
the electrochemical absolute rate relation adapted from Nicholson’s method [65]. This is based
on the variation of peak potential separation (ΔEp) between the forward and the reverse scans
of the cyclic voltammogram for a simple one electron transfer process [41,66,67]. It is impor-
tant to note that these values are only apparent, and are susceptible to errors resulting from
charging currents and ohmic polarization, which can cause an overstatement of the rate con-
stant. The rate constants of Fc and Cc+ increase with temperature, and Fig 8(a) and 8(b) display
an Arrhenius relationship for the obtained k0 values for Fc in DES1 and Cc+ for DES5, respec-
tively. Nearly identical slopes are established for D and k0 in the Arrhenius plots for selected
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DESs. From these plots, the activation energy of rate constants for Fc and Cc+ are determined,
which are listed in Table 6.

Conclusions
The effect of temperature on the measured physicochemical and electrochemical properties of
the studied DESs has been discussed in detail. The activation energies for viscosity (Eη) and
conductivity (Eσ) for each DES were calculated from the slopes of the Arrhenius plots. The
temperature dependence of the measured conductivities did not exhibit linear behavior in the
Arrhenius equation for DES1 and DES2, but it could be well described by the VTF model. The
D and k0 values tended to increase with the rise of temperature in DESs. The applicability of
the Arrhenius law was verified by examining the temperature dependencies of D and k0. The
trends of electrochemically derived activation energy (ED) from chronoamperometric evalua-
tions of DESs were found to be related with Eη and Eσ in the order of:DES5>DES2>

Table 5. Kinetic parameters and diffusion coefficients for Fc/Fc+ and Cc+/Cc in DESs at various temperatures.

DESs T/K DFc/ cm
2 s-1 DCc

+ / cm2 s-1 k0Fc / cm s-1 k0Cc+ / cm s-1

DES1 298 1.71×10−8(±0.06) 0.65×10−8(±0.08) 2.49×10−4(±0.08) 1.96×10−4(±0.05)

308 2.30×10−8(±0.03) 1.06×10−8(±0.07) 3.53×10−4(±0.07) 3.61×10−4(±0.06)

318 2.93×10−8(±0.05) 1.52×10−8(±0.04) 4.65×10−4(±0.08) 5.80×10−4(±0.06)

328 3.54×10−8(±0.08) 2.04×10−8(±0.06) 5.79×10−4(±0.09) 8.83×10−4(±0.05)

338 4.23×10−8(±0.04) 2.63×10−8(±0.03) 7.12×10−4(±0.05) 1.25×10−3(±0.04)

DES2 298 4.02×10−9(±0.05) 3.26×10−9(±0.04) 2.20×10−4(±0.06) 1.92×10−4(±0.03)

308 4.77×10−9(±0.05) 4.12×10−9(±0.07) 3.44×10−4(±0.07) 3.00×10−4(±0.08)

318 5.46×10−9(±0.09) 4.98×10−9(±0.05) 4.73×10−4(±0.04) 4.16×10−4(±0.07)

328 6.08×10−9(±0.06) 5.88×10−9(±0.08) 5.94×10−4(±0.04) 5.48×10−4(±0.08)

338 6.86×10−9(±0.08) 6.88×10−9(±0.07) 7.89×10−4±(0.06) 7.23×10−4(±0.05)

DES3 298 3.10×10−8(±0.07) 2.22×10−8(±0.05) 3.08×10−4(±0.05) 2.68×10−4(±0.06)

308 3.48×10−8(±0.02) 2.60×10−8(±0.09) 5.99×10−4(±0.05) 5.37×10−4(±0.07)

318 3.94×10−8(±0.04) 3.06×10−8(±0.02) 1.16×10−3(±0.08) 1.07×10−3(±0.03)

328 4.38×10−8(±0.05) 3.56×10−8(±0.06) 2.21×10−3(±0.06) 2.11×10−3(±0.06)

338 4.92×10−8(±0.04) 4.11×10−8(±0.06) 4.73×10−3(±0.07) 3.96×10−3(±0.07)

DES4 298 4.41×10−9(±0.04) 3.60×10−9(±0.06) 2.31×10−4(±0.04) 2.15×10−4(±0.05)

308 5.66×10−9(±0.09) 4.95×10−9(±0.07) 2.96×10−4(±0.07) 2.63×10−4(±0.06)

318 6.85×10−9(±0.07) 6.37×10−9(±0.05) 3.59×10−4(±0.06) 3.13×10−4(±0.06)

328 7.83×10−9(±0.04) 7.68×10−9(±0.08) 4.07×10−4(±0.05) 3.56×10−4(±0.08)

338 9.00×10−9(±0.09) 9.22×10−9(±0.04) 4.61×10−4(±0.07) 4.01×10−4(±0.08)

DES5 298 3.23×10−9(±0.03) 3.33×10−9(±0.03) 1.68×10−4(±0.07) 1.63×10−4(±0.06)

308 4.14×10−9(±0.06) 4.43×10−9(±0.08) 2.51×10−4(±0.04) 2.42×10−4(±0.04)

318 5.37×10−9(±0.07) 5.53×10−9(±0.06) 3.54×10−4(±0.05) 3.29×10−4(±0.03)

328 6.65×10−9(±0.02) 6.71×10−9(±0.08) 4.70×10−4(±0.08) 4.35×10−4(±0.07)

338 8.26×10−9(±0.04) 7.83×10−9(±0.05) 6.32×10−4(±0.06) 5.47×10−4(±0.06)

DES6 298 3.29×10−8(±0.05) 2.89×10−8(±0.04) 5.44×10−4(±0.08) 4.35×10−4(±0.09)

308 3.65×10−8(±0.04) 3.38×10−8(±0.04) 6.58×10−4(±0.07) 5.56×10−4(±0.08)

318 3.99×10−8(±0.09) 3.84×10−8(±0.07) 7.69×10−4(±0.04) 6.85×10−4(±0.07)

328 4.38×10−8(±0.06) 4.25×10−8(±0.05) 9.23×10−4(±0.05) 8.13×10−4(±0.06)

338 4.82×10−8(±0.07) 4.84×10−8(±0.06) 1.14×10−3(±0.06) 1.02×10−3(±0.08)

Error bars calculated from the standard deviation from four experimental repetitions.

doi:10.1371/journal.pone.0144235.t005
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Fig 8. Dependence of diffusion and rate constant on temperature using Arrhenius rule for Fc (a) and Cc+ (b) redox couples.

doi:10.1371/journal.pone.0144235.g008
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DES4>DES1>DES3>DES6. In addition, ΔEp was reduced while E1/2 values shifted
towards more negative potentials for oxidation of Fc and more positive potentials for reduction
of Cc+ in DESs with the enhancement in temperature.

Acknowledgments
The authors are grateful for the financial support from the High Impact Research Grant (UM.
C/HIR/MOHE/ENG/18) in Malaysia (Ministry of Higher Education).

Author Contributions
Conceived and designed the experiments: MHC NSAM FM IA. Performed the experiments:
LB NSAM. Analyzed the data: MHC LB NSAMMAH FMNB. Contributed reagents/materi-
als/analysis tools: MAH IA NB. Wrote the paper: LB MHC NSAM NB IA FM.

References
1. Zhao H, Baker GA. Ionic liquids and deep eutectic solvents for biodiesel synthesis: A review. Journal of

Chemical Technology & Biotechnology 2012; 88: 3–12.

2. Zhang Q, De Oliveira Vigier K, Royer S, Jerome F. Deep eutectic solvents: Syntheses, properties and
applications. Chemical Society Reviews 2012; 41: 7108–7146. doi: 10.1039/c2cs35178a PMID:
22806597

3. Chakrabarti MH, Brandon NP, HashimMA, Mjalli FS, AlNashef IM, Bahadori L, et al. Cyclic voltammetry
of iron (III) acetylacetonate in quaternary ammonium and phosphonium based deep eutectic solvents.
International Journal of Electrochemical Science 2013; 8: 9652–9676.

4. Rub C, Konig B. Low melting mixtures in organic synthesis—an alternative to ionic liquids? Green
Chemistry 2012; 14: 2969–2982.

5. Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH. Natural deep eutectic solvents as new
potential media for green technology. Analytica Chimica Acta 2013; 766: 61–68. doi: 10.1016/j.aca.
2012.12.019 PMID: 23427801

6. Chakrabarti M, Brandon N, Mjalli F, Bahadori L, Al Nashef I, Hashim MA, et al. Cyclic voltammetry of
metallic acetylacetonate salts in quaternary ammonium and phosphonium based deep eutectic sol-
vents. Journal of Solution Chemistry 2013; 42: 2329–2341.

7. Tang B, Row K. Recent developments in deep eutectic solvents in chemical sciences. Monatshefte fur
Chemie—Chemical Monthly 2013; 144: 1427–1454.

8. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. Deep eutectic solvents formed between
choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American
Chemical Society 2004; 126: 9142–9147. PMID: 15264850

9. Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chemical
Review 2014; 114: 11060–11082.

10. Abbott AP, El Ttaib K, Ryder KS, Smith EL. Electrodeposition of nickel using eutectic based ionic liq-
uids. Transactions of the Institute of Metal Finishing 2008; 86: 234–240.

11. Chakrabarti MH, Manan NSA, Brandon NP, Maher RC, Mjalli FS, AlNashef IM, Hajimolana SA, Hashim
MA, Hussain MA, Nir D. One-pot electrochemical gram-scale synthesis of graphene using deep eutec-
tic solvents and acetonitrile. Chemical Engineering Journal 2015; 274: 213–223.

Table 6. Activation energies of the diffusion coefficients and rate constants for Fc/Fc+ and Cc+/Cc in studied DESs.

DESs ED(Fc)/ kJ mol-1 ED(Cc
+)/ kJ mol-1 EK

0(Fc)/ kJ mol-1 EK
0(Cc+)/ kJ mol-1

DES1 22.82 21.97 21.81 26.62

DES2 27.01 28.52 25.20 30.33

DES3 21.65 21.04 19.63 20.57

DES4 24.73 25.50 22.18 28.02

DES5 29.68 30.88 27.51 36.29

DES6 20.08 17.57 15.15 17.44

doi:10.1371/journal.pone.0144235.t006

Electrochemical Characteristics of Metallocene Derivatives in DESs

PLOSONE | DOI:10.1371/journal.pone.0144235 December 7, 2015 18 / 21

http://dx.doi.org/10.1039/c2cs35178a
http://www.ncbi.nlm.nih.gov/pubmed/22806597
http://dx.doi.org/10.1016/j.aca.2012.12.019
http://dx.doi.org/10.1016/j.aca.2012.12.019
http://www.ncbi.nlm.nih.gov/pubmed/23427801
http://www.ncbi.nlm.nih.gov/pubmed/15264850


12. Abbott AP, Ttaib KE, Frisch G, Ryder KS, Weston D. The electrodeposition of silver composites using
deep eutectic solvents. Physical Chemistry Chemical Physics 2012; 14: 2443–2449. doi: 10.1039/
c2cp23712a PMID: 22249451

13. Hu S, Zhang Z, Zhou Y, Song J, Fan H, Han B. Direct conversion of inulin to 5-hydroxymethylfurfural in
biorenewable ionic liquids. Green Chemistry 2009; 11: 873–877.

14. Serrano MC, Gutierrez MC, Jimenez R, Ferrer ML, Monte Fd. Synthesis of novel lidocaine-releasing
poly(diol-co-citrate) elastomers by using deep eutectic solvents. Chemical Communications 2012; 48:
579–581. doi: 10.1039/c1cc15284j PMID: 22109350

15. Shahbaz K, Mjalli FS, H A. M, AlNashef IM. Using deep eutectic solvents for the removal of glycerol
from palm oil-based biodiesel. Journal of Applied Sciences 2010; 10: 3349–3354.

16. Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E. Extraction of glycerol from biodiesel into a
eutectic based ionic liquid. Green Chemistry 2007; 9: 868–872.

17. Hayyan M, Mjalli FS, Hashim MA, AlNashef IM. A novel technique for separating glycerine from palm
oil-based biodiesel using ionic liquids. Fuel Processing Technology 2010; 91: 116–120.

18. Abbott AP, Capper G, Davies DL, McKenzie KJ, Obi SU. Solubility of metal oxides in deep eutectic sol-
vents based on choline chloride. Journal of Chemical & Engineering Data 2006; 51: 1280–1282.

19. Abbott AP, Bell TJ, Handa S, Stoddart B. O-acetylation of cellulose and monosaccharides using a zinc
based ionic liquid. Green Chemistry 2005; 7: 705–707.

20. Zhang Z-H, Zhang X-N, Mo L-P, Li Y-X, Ma F-P. Catalyst-free synthesis of quinazoline derivatives
using low melting sugar-urea-salt mixture as a solvent. Green Chemistry 2012; 14: 1502–1506.

21. Dominguez de Maria P, Maugeri Z: Ionic liquids in biotransformations. From proof-of-concept to emerg-
ing deep-eutectic-solvents. Current Opinion in Chemical Biology; 15: 220–225. doi: 10.1016/j.cbpa.
2010.11.008 PMID: 21112808

22. Lindberg D, de la Fuente RevengaM,Widersten M. Deep eutectic solvents (dess) are viable cosolvents
for enzyme-catalyzed epoxide hydrolysis. Journal of Biotechnology 2010; 147: 169–171. doi: 10.1016/
j.jbiotec.2010.04.011 PMID: 20438773

23. Gorke J, Srienc F, Kazlauskas R. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for
biocatalysis. Biotechnology and Bioprocess Engineering 2010; 15: 40–53.

24. Carriazo D, SerranoMC, Gutierrez MC, Ferrer ML, del Monte F. Deep-eutectic solvents playing multiple
roles in the synthesis of polymers and related materials. Chemical Society Reviews 2012; 41: 4996–
5014. doi: 10.1039/c2cs15353j PMID: 22695767

25. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chlo-
ride/urea mixtures. Chemical Communications 2003: 70–71.

26. Maugeri Z, Dominguez de Maria P. Novel choline-chloride-based deep-eutectic-solvents with renew-
able hydrogen bond donors: Levulinic acid and sugar-based polyols. RSC Advances 2012; 2: 421–
425.

27. Ilgen F, Konig B. Organic reactions in low melting mixtures based on carbohydrates and l-carnitine-a
comparison. Green Chemistry 2009; 11: 848–854.

28. Abbott AP, Capper G, Gray S. Design of improved deep eutectic solvents using hole theory. Chem-
PhysChem 2006; 7: 803–806. PMID: 16596609

29. KareemMA, Mjalli FS, Hashim MA, AlNashef IM: Phosphonium-based ionic liquids analogues and
their physical properties. Journal of Chemical & Engineering Data 2010; 55: 4632–4637.

30. Waligora L, Lewandowski A, Gritzner G. Electrochemical studies of four organometallic redox couples
as possible reference redox systems in 1-ethyl-3-methylimidazolium tetrafluoroborate. Electrochimica
Acta 2009; 54: 1414–1419.

31. Hultgren VM, Mariotti AWA, Bond AM,Wedd AG. Reference potential calibration and voltammetry at
macrodisk electrodes of metallocene derivatives in the ionic liquid [bmim][pf6]. Analytical Chemistry
2002; 74: 3151–3156. PMID: 12141676

32. Zhao C, Burrell G, Torriero AAJ, Separovic F, Dunlop NF, MacFarlane DR, et al. Electrochemistry of
room temperature protic ionic liquids. The Journal of Physical Chemistry B 2008; 112: 6923–6936. doi:
10.1021/jp711804j PMID: 18489145

33. Rogers EI, Silvester DS, Poole DL, Aldous L, Hardacre C, Compton RG. Voltammetric characterization
of the ferrocene|ferrocenium and cobaltocenium|cobaltocene redox couples in RTILs. The Journal of
Physical Chemistry C 2008; 112: 2729–2735.

34. Sukardi SK, Zhang J, Burgar I, Horne MD, Hollenkamp AF, MacFarlane DR, et al. Prospects for a
widely applicable reference potential scale in ionic liquids based on ideal reversible reduction of the
cobaltocenium cation. Electrochemistry Communications 2008; 10: 250–254.

Electrochemical Characteristics of Metallocene Derivatives in DESs

PLOSONE | DOI:10.1371/journal.pone.0144235 December 7, 2015 19 / 21

http://dx.doi.org/10.1039/c2cp23712a
http://dx.doi.org/10.1039/c2cp23712a
http://www.ncbi.nlm.nih.gov/pubmed/22249451
http://dx.doi.org/10.1039/c1cc15284j
http://www.ncbi.nlm.nih.gov/pubmed/22109350
http://dx.doi.org/10.1016/j.cbpa.2010.11.008
http://dx.doi.org/10.1016/j.cbpa.2010.11.008
http://www.ncbi.nlm.nih.gov/pubmed/21112808
http://dx.doi.org/10.1016/j.jbiotec.2010.04.011
http://dx.doi.org/10.1016/j.jbiotec.2010.04.011
http://www.ncbi.nlm.nih.gov/pubmed/20438773
http://dx.doi.org/10.1039/c2cs15353j
http://www.ncbi.nlm.nih.gov/pubmed/22695767
http://www.ncbi.nlm.nih.gov/pubmed/16596609
http://www.ncbi.nlm.nih.gov/pubmed/12141676
http://dx.doi.org/10.1021/jp711804j
http://www.ncbi.nlm.nih.gov/pubmed/18489145


35. Torriero AAJ, Sunarso J, Howlett PC. Critical evaluation of reference systems for voltammetric mea-
surements in ionic liquids. Electrochimica Acta 2012; 82: 60–68.

36. Zhang J, Bond AM. Conditions required to achieve the apparent equivalence of adhered solid- and
solution-phase voltammetry for ferrocene and other redox-active solids in ionic liquids. Analytical
Chemistry 2003; 75: 2694–2702. PMID: 12948138

37. Crooks RM, Bard AJ. Electrochemistry in near-critical and supercritical fluids: Part VI. The electrochem-
istry of ferrocene and phenazine in acetonitrile between 25 and 300°c. Journal of Electroanalytical
Chemistry and Interfacial Electrochemistry 1988; 243: 117–131.

38. Tsierkezos N. Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature
range from 248.15 to 298.15 k. Journal of Solution Chemistry 2007; 36: 289–302.

39. Wang Y, Rogers EI, Compton RG. Themeasurement of the diffusion coefficients of ferrocene and ferro-
cenium and their temperature dependence in acetonitrile using double potential step microdisk elec-
trode chronoamperometry. Journal of Electroanalytical Chemistry 2010; 648: 15–19.

40. Matsumiya M, Terazono M, Tokuraku K. Temperature dependence of kinetics and diffusion coefficients
for ferrocene/ferricenium in ammonium-imide ionic liquids. Electrochimica Acta 2006; 51: 1178–1183.

41. Weaver JEF, Breadner D, Deng F, Ramjee B, Ragogna PJ, Murray RW. Electrochemistry of ferrocene-
functionalized phosphonium ionic liquids. The Journal of Physical Chemistry C 2011; 115: 19379–
19385.

42. Barrosse-Antle LE, Hardacre C, Compton RG. Voltammetric currents in room temperature ionic liquids
can reflect solutes other than the electroactive species and are influenced by carbon dioxide. The Jour-
nal of Physical Chemistry B 2009; 113: 2805–2809. doi: 10.1021/jp810926u PMID: 19243203

43. Guo Y, Kanakubo M, Kodama D, Nanjo H. Chronoamperometric determination of diffusion coefficients
of ferrocene in ionic liquids mixed with co2 at high pressures. Journal of Electroanalytical Chemistry
2010; 639: 109–115.

44. Taylor AW, Licence P, Abbott AP. Non-classical diffusion in ionic liquids. Physical Chemistry Chemical
Physics 2011; 13, 10147–10154. doi: 10.1039/c1cp20373h PMID: 21526251

45. Bahadori L, Abdul Manan NS, Chakrabarti MH, HashimMA, Mjalli FS, AlNashef IM, et al. The electro-
chemical behaviour of ferrocene in deep eutectic solvents based on quaternary ammonium and phos-
phonium salts. Physical Chemistry Chemical Physics 2013; 15: 1707–1714. doi: 10.1039/c2cp43077k
PMID: 23247115

46. Shahbaz K, Baroutian S, Mjalli FS, Hashim MA, AlNashef IM. Densities of ammonium and phospho-
nium based deep eutectic solvents: Prediction using artificial intelligence and group contribution tech-
niques. Thermochimica Acta 2012; 527: 59–66.

47. Leron RB, Soriano AN, Li M-H. Densities and refractive indices of the deep eutectic solvents (choline
chloride+ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from
298.15 to 333.15k. Journal of the Taiwan Institute of Chemical Engineers 2012; 43: 551–557.

48. Leron RB, Wong DSH, Li M-H. Densities of a deep eutectic solvent based on choline chloride and glyc-
erol and its aqueous mixtures at elevated pressures. Fluid Phase Equilibria 2012; 335: 32–38.

49. Bandres I, Alcalde R, Lafuente C, Atilhan M, Aparicio S. On the viscosity of pyridinium based ionic liq-
uids: An experimental and computational study. The Journal of Physical Chemistry B 2011; 115:
12499–12513. doi: 10.1021/jp203433u PMID: 21942824

50. Ciocirlan O, Iulian O, Croitoru O: Effect of temperature on the physico-chemical properties of three ionic
liquids containing choline chloride. Rev Chim Bucharest 2010; 61: 721–723.

51. Bonhote P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conduc-
tive ambient-temperature molten salts. Inorganic Chemistry 1996; 35: 1168–1178. PMID: 11666305

52. Vila J, Franjo C, Pico JM, Varela L, Cabeza O. Temperature behavior of the electrical conductivity of
emim-based ionic liquids in liquid and solid states Portugaliae Electrochimica Acta 2007; 25: 163–172.

53. Mamlouk M, Ocon P, Scott K.Preparation and characterization of polybenzimidzaole/diethylamine
hydrogen sulphate for medium temperature proton exchange membrane fuel cells. Journal of Power
Sources 2014; 245: 915–926.

54. Vila J, Gines P, Pico JM, Franjo C, Jimenez E, Varela LM, Cabeza O. Temperature dependence of the
electrical conductivity in EMIM-based ionic liquids: evidence of Vogel–Tamman–Fulcher behavior.Fluid
Phase Equilibria 2006; 242: 141–146.

55. Hayamizu K, Tsuzuki S, Seki S, Ohno Y, Miyashiro H, Kobayashi Y. Quaternary ammonium room-tem-
perature ionic liquid including an oxygen atom in side chain/lithium salt binary electrolytes: ionic con-
ductivity and 1H, 7Li, and 19F NMR studies on diffusion coefficients and local motions.The Journal of
Physical Chemistry B 2008; 112:1189–1197 doi: 10.1021/jp077714h PMID: 18179199

56. Bockris JOM, Reddy AKN. Modern Electrochemistry: Ionics. 2nd ed. Plenum Press, New York, 1998.

Electrochemical Characteristics of Metallocene Derivatives in DESs

PLOSONE | DOI:10.1371/journal.pone.0144235 December 7, 2015 20 / 21

http://www.ncbi.nlm.nih.gov/pubmed/12948138
http://dx.doi.org/10.1021/jp810926u
http://www.ncbi.nlm.nih.gov/pubmed/19243203
http://dx.doi.org/10.1039/c1cp20373h
http://www.ncbi.nlm.nih.gov/pubmed/21526251
http://dx.doi.org/10.1039/c2cp43077k
http://www.ncbi.nlm.nih.gov/pubmed/23247115
http://dx.doi.org/10.1021/jp203433u
http://www.ncbi.nlm.nih.gov/pubmed/21942824
http://www.ncbi.nlm.nih.gov/pubmed/11666305
http://dx.doi.org/10.1021/jp077714h
http://www.ncbi.nlm.nih.gov/pubmed/18179199


57. MacFarlane DR, Forsyth M, Izgorodina EI, Abbott AP, Annat G, Fraser K. On the concept of ionicity in
ionic liquids. Physical Chemistry Chemical Physics 2009; 11: 4962–4967. doi: 10.1039/b900201d
PMID: 19562126

58. Ong SP, Andreussi O, Wu Y, Marzari N, Ceder G. Electrochemical windows of room-temperature ionic
liquids frommolecular dynamics and density functional theory calculations. Chemistry of Materials
2011; 23: 2979–2986.

59. Bahadori L, Chakrabarti MH, Mjalli FS, AlNashef IM, Manan NSA, HashimMA. Physicochemical prop-
erties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organo-
metallic reference redox systems. Electrochimica Acta 2013; 113: 205–211.

60. Shiddiky MJA, Torriero AAJ, Zhao C, Burgar I, Kennedy G, Bond AM. Nonadditivity of faradaic currents
and modification of capacitance currents in the voltammetry of mixtures of ferrocene and the cobaltoce-
nium cation in protic and aprotic ionic liquids. Journal of the American Chemical Society 2009; 131:
7976–7989. doi: 10.1021/ja8092295 PMID: 19507901

61. Stojanovic RS, Bond AM. Examination of conditions under which the reduction of the cobaltocenium
cation can be used as a standard voltammetric reference process in organic and aqueous solvents.
Analytical Chemistry 1993; 65: 56–64.

62. Torriero AAJ, Siriwardana AI, Bond AM, Burgar IM, Dunlop NF, Deacon GB, et al. Physical and electro-
chemical properties of thioether-functionalized ionic liquids. The Journal of Physical Chemistry B 2009;
113: 11222–11231. doi: 10.1021/jp9046769 PMID: 19627093

63. Keita B, Bouaziz D, Nadjo L. Solvent effects on the redox potentials of potassium 12tungstosilicate and
18 tungstodiphosphate. Journal of The Electrochemical Society 1988; 135: 87–91.

64. Shoup D, Szabo A. Chronoamperometric current at finite disk electrodes. Journal of Electroanalytical
Chemistry and Interfacial Electrochemistry 1982; 140: 237–245.

65. Nicholson RS. Theory and application of cyclic voltammetry for measurement of electrode reaction
kinetics. Analytical Chemistry 1965; 37: 1351–1355.

66. Kim DY, Yang JC, Kim HW, Swain GM. Heterogeneous electron-transfer rate constants for ferrocene
and ferrocene carboxylic acid at boron-doped diamond electrodes in a room temperature ionic liquid.
Electrochimica Acta 2013; 94: 49–56.

67. Pan Y, ClelandWE, Hussey CL. Heterogeneous electron transfer kinetics and diffusion of ferrocene/
ferrocenium in bis(trifluoromethylsulfonyl)imide-based ionic liquids. Journal of the Electrochemical
Society 2013; 159: F125–F133.

Electrochemical Characteristics of Metallocene Derivatives in DESs

PLOSONE | DOI:10.1371/journal.pone.0144235 December 7, 2015 21 / 21

http://dx.doi.org/10.1039/b900201d
http://www.ncbi.nlm.nih.gov/pubmed/19562126
http://dx.doi.org/10.1021/ja8092295
http://www.ncbi.nlm.nih.gov/pubmed/19507901
http://dx.doi.org/10.1021/jp9046769
http://www.ncbi.nlm.nih.gov/pubmed/19627093

