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Abstract. A fundamental problem in game theory is the possibility of reaching equi-

librium outcomes with undesirable properties, e.g., inefficiency. The economics literature

abounds with models that attempt to modify games in order to avoid such undesirable

properties, for example through the use of subsidies and taxation, or by allowing players

to undergo a bargaining phase before their decision. In this paper, we consider the effect

of such transformations in Boolean games with costs, where players control propositional

variables that they can set to true or false, and are primarily motivated to seek the sat-

isfaction of some goal formula, while secondarily motivated to minimise the costs of their

actions. We adopt (pure) preparation sets (prep sets) as our basic solution concept. A

preparation set is a set of outcomes that contains for every player at least one best re-

sponse to every outcome in the set. Prep sets are well-suited to the analysis of Boolean

games, because we can naturally represent prep sets as propositional formulas, which in

turn allows us to refer to prep formulas. The preference structure of Boolean games with

costs makes it possible to distinguish between hard and soft prep sets. The hard prep sets

of a game are sets of valuations that would be prep sets in that game no matter what the

cost function of the game was. The properties defined by hard prep sets typically relate

to goal-seeking behaviour, and as such these properties cannot be eliminated from games

by, for example, taxation or subsidies. In contrast, soft prep sets can be eliminated by

an appropriate system of incentives. Besides considering what can happen in a game by

unrestricted manipulation of players’ cost function, we also investigate several mechanisms

that allow groups of players to form coalitions and eliminate undesirable outcomes from

the game, even when taxes or subsidies are not a possibility.

Keywords: Boolean games, set-valued solutions concepts, preparation sets, Nash equilib-

rium, externalities, coalition formation

1. Introduction

A fundamental problem in the theory of games is that a game may contain
equilibria with undesirable properties. To take a famous example, in the
Prisoner’s Dilemma the unique pure strategy Nash equilibrium – mutual
defection – is the only outcome of the game that is not Pareto optimal, and
it is, moreover, strictly worse for both players than the alternative outcome
of mutual cooperation. From an external perspective, mechanisms can be
devised to incentivise the players to play certain actions, e.g., by means of
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subsidies, or to disincentivise them to do so, e.g., by imposing taxes. Such
mechanisms thus modify the game. Likewise, the situation may allow for
various ways in which the players themselves can modify the game they are
playing, e.g., by making agreements, transferring money to one another, or
joining forces in coalitions to their mutual benefit. Both solutions have been
studied in the economic literature since its early stages [7, 6, 14, 18].

Boolean games (of the form studied in [20, 17]) represent an important
domain for investigating these issues, because preferences in such games have
a special structure: players are primarily motivated to achieve a goal and
they are only secondarily motivated to minimise the cost of actions required
to achieve that goal. In particular, it is assumed that a player will always
prefer to achieve her goal than otherwise. Such so-called quasi-dichotomous
preferences, besides inducing nonstandard properties in game play [17], are
quite natural in many application domains for multi-agent systems. For
example, consider a robot programmed to perform a particular task in an
automated warehouse. Operating the robot involves energy consumption,
which we might want to minimise, but at the same time we do not want to
compromise the successful execution of the task. In other words, we primar-
ily want the robot to successfully carry out the task, and only secondarily to
minimise its energy consumption. Given such preference structures, it turns
out there are limits on the way such a game can be manipulated. A player
cannot be incentivised to choose a course of action that would not lead to
his goal to be satisfied over a course of action that would.

The possibility of manipulating Boolean games with costs in order to
eliminate undesirable Nash equilibria was studied by Wooldridge et al. [20],
who considered the possibility of introducing taxation schemes to influence
the behaviour of players towards or against certain outcomes, and by Tur-
rini [17], who considered the possibility of a pre-play bargaining phase for
such games. While the present paper is also concerned with manipulating
Boolean games with costs, it extends previous work in three key respects.

• First, we adopt as our basic analytical solution concept the notion of
a preparation set (“prep set”). Introduced by Voorneveld [19], a prep
set is a set of game outcomes that contains for every player at least
one best response to every outcome in the set. As preparation is a
set-valued solution concept, we find prep sets to be well-suited to the
analysis of Boolean games.1 In particular, because propositional formulas
characterise sets of outcomes, we can naturally use propositional formulas

1We thank an anonymous reviewer for drawing our attention to Voorneveld’s paper.
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to characterise prep sets themselves. We thus refer to “prep formulas”
to mean propositional formulas that denote prep sets.

• Second, we investigate prep sets that are immune to manipulation by
cost-based incentives. We refer to a hard prep set as a prep set that will
be present in the game no matter what the cost function of the game is.
Hard prep sets are important because they cannot be eliminated from
the game through taxation schemes or by other ways of manipulating
the cost structure of the game. In contrast, a soft prep set is a prep
set that is present in a game for some cost functions, but not all. Given
the correspondence between propositional formulas and sets of outcomes,
we find it natural to refer to hard formulas and soft formulas, with the
obvious interpretations. Clearly, the presence of hard prep sets with un-
desirable properties would be bad news: no cost incentives would be able
to tempt players away from such prep sets. But, dually, hard prep sets
with desirable properties are good news, as their achievement does not
depend on the availability of material resources. We will see that when
hard formulas are satisfied at only one outcome, what we call hard equi-
libria, these outcomes satisfy desirable properties from the point of view
of society. The terminology of hard and soft equilibria was introduced
by Harrenstein et al. [10]. Here we extend and generalise that work.

• Third, we turn to the issue of managing these sets of outcomes, using
ideas from the economics literature [18, 7, 6, 14, 13]. We first consider
the possibility of groups of players engineering side-payments so as to
motivate another player to act in a way that is beneficial to the group.
This is the idea of (a group of) players encouraging another player to
increase the positive externalities or reduce the negative externalities it
induces [7, 14, 13]. Second, we study the possibility of a player taking
into account the undesirable consequences his choices have for others by
merging that player with some of the other players. This is one way
of what is known in the economics literature as internalising externali-
ties [18, 6]. We investigate how such a mechanism can affect the set of
rational states of a game. In particular, we show that by allowing players
to merge in coalitions hard formulas might be eliminated.

We begin, in the following section, with an introduction to the basic game
model we work with in the remainder of the paper.
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2. Boolean Games with Costs

Boolean games are based on propositional logic, and have a natural com-
putational interpretation, which is highly relevant to the multi-agent sys-
tems domain (see, e.g., [11, 3, 5, 9, 20, 17]). In this paper, we use the
Boolean games model with cost functions, in which the players have quasi-
dichotomous preferences, as in [20]. Thus, each player is primarily interested
in satisfying a goal, which is expressed by a Boolean formula; this goal for-
mula classifies each outcome as either desirable or undesirable. Costs form
a secondary concern for players: between two outcomes that either both
satisfy or both fail to satisfy the player’s goal, the player will prefer the
outcome that minimises costs.

Let B = {>,⊥} be the set of Boolean truth values, with “>” being
truth and “⊥” being falsity. Let, furthermore, Φ = {p, q, . . .} be a fixed,
finite, and non-empty vocabulary of Boolean variables and L the set of well-
formed formulas of propositional logic over Φ with the conventional Boolean
operators (“∧”, “∨”, “→”, “↔”, “¬”) as well as the truth constants “>”
and “⊥”. A valuation is a function v : Φ → B, assigning truth or falsity
to every Boolean variable. Where v is a valuation and ϕ is a propositional
formula, we write v |= ϕ to mean that ϕ is true under, or satisfied by,
valuation v, where the satisfaction relation “|=” is defined in the standard
way. Let V denote the set of all valuations over Φ. If a formula ϕ is satisfied
by at least one valuation, we say that ϕ is satisfiable. If ϕ is satisfied at
every valuation, ϕ is said to be a tautology.

We will frequently exploit the fact that a propositional formula corre-
sponds to a set of valuations, its truth set. Where ϕ is a propositional
formula, we denote by ϕG the set of valuations that satisfy it. We frequently
find it convenient to refer to formulas as if they were sets of valuations,
and to sets of valuations as if they were formulas, understanding by this
terminology that we are referring to the relationship above.

The games we consider are populated by a set N = {1, . . . , n} of agents,
the players of the game. Each agent i ∈ N is assumed to have a goal, which
is characterised by an L-formula γi. Every agent i ∈ N , moreover, controls
a (possibly empty) subset Φi of the overall set of Boolean variables. By
“control”, we mean that i has the unique ability within the game to set the
value (either > or ⊥) of each variable p ∈ Φi. We will require that Φ1, . . . ,Φn

forms a partition of Φ, i.e., Φi ∩ Φj = ∅ for i 6= j and Φ1 ∪ · · · ∪ Φn = Φ.
A choice for agent i ∈ N is defined by a function vi : Φi → B, i.e., an
allocation of truth or falsity to all the variables under i’s control. Let Vi
denote the set of choices for agent i.
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An outcome ~v = (v1, . . . , vn) in V1 × · · · × Vn is a collection of choices,
one for each agent. Clearly, every outcome uniquely defines a valuation, and
we will abuse notation by treating outcomes as valuations and valuations as
outcomes. So, for example, we will write ~v |= ϕ to mean that the valua-
tion defined by outcome ~v satisfies formula ϕ. We let ~V denote the set of
outcomes. Where ~v = (v1, . . . , vi−1, vi, vi+1, . . . , vn) and v′i ∈ Vi, we write
(~v−i, v

′
i) for the outcome (v1, . . . , vi−1, v

′
i, vi+1, . . . , vn).

When playing a Boolean game, the primary aim of an agent i will be
to choose an assignment of values for the variables Φi under her control so
as to satisfy her goal γi. The difficulty is that γi may contain variables
controlled by other agents j 6= i, who will also be trying to choose values
for their variables Φj so as to get their goals satisfied. As their goals in
turn may be dependent on the variables in Φi, they may have to take into
account how player i will act when making their choice. And so on. In
our setting, moreover, outcomes are associated with costs to the players.
Minimising these costs is another important, but secondary, concern to the
players. Thus, if an agent has multiple ways of getting her goal achieved,
then she will prefer to choose one that minimises hers costs, whereas, if an
agent cannot get her goal achieved, then she simply chooses to minimise his
costs.

To capture these preferences, we introduce two types of cost function:
global cost functions and local cost functions. The former associate with each
outcome a cost for each of the players, whereas the latter associate costs with
setting propositional variables to one of the two truth-values. Formally, we
define a global cost function as a function

c : N × ~V → Q≥,

which associates each player i and each outcome ~v with a non-negative
rational number, intuitively representing the amount by which player i is
taxed when ~v is the outcome of the game. We also write ci(~v) for c(i, ~v).
Wooldridge et al. [20] assumed a natural additive (and more concise) model
for costs given by local cost functions of the form

ĉ : Φ× B→ Q≥.

Intuitively, ĉ(p, b) is the marginal cost of assigning the value b ∈ B to vari-
able p ∈ Φ. Given this definition, we can extend the local cost function ĉ to
outcomes ~v = (v1, . . . , vn), as follows:

ĉ(i, ~v) =
∑
p∈Φi

ĉ(p, vi(p)).
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Notice that this model implies that the cost a player incurs only depends
on the choice that this player makes. With a slight abuse of notation, we
therefore also write ĉi(vi) for ĉ(i, ~v) where ~v = (v1, . . . , vn) and ĉ is induced
by a local cost function. Observe that every local cost function defines a
global cost function, but not necessarily the other way round. In particular,
the local costs for a player i will be the same for any two outcomes ~v =
(v1, . . . , vn) and ~v′ = (v′1, . . . , v

′
n) whenever vi = v′i. This need not be the

case for global cost functions.
We now introduce the utility functions that model the players’ prefer-

ences. Let µi denote the cost of the most expensive outcome for agent i, i.e.,

µi = max
~v∈~V

ui(~v).

The utility to agent i of an outcome ~v is then defined as follows:

ui(~v) =

{
1 + µi − ci(~v) if ~v |= γi,

−ci(~v) otherwise.

Thus, utility to agent i will range from 1+µi (for an outcome in which i gets
his goal achieved at the lowest cost) down to −µi (for outcomes with the
highest cost to i in which i’s goal is not satisfied). It is worth observing that
the expression 1+µi is merely used to ensure that the valuations satisfying i’s
goal are guaranteed to get a higher utility than the ones which do not. In
other words the construction of our utility function is only meant to encode
an ordinal preference relation among outcomes. The following observation
illustrates this.

Observation 1. Let i be an agent, ci a cost function, and γi a goal formula.
For each pair of outcomes ~v and ~v′, we have that ui(~v) > ui(~v

′) if and only
if either (i) both ~v′ |= ¬γi and ~v |= γi, or (ii) both ~v′ |= γi if and only if
~v |= γi and ci(~v

′) > ci(~v).

Formally, a Boolean game (with costs) is then given by a structure

G = (N,Φ, c, (γi)i∈N , (Φi)i∈N ),

where N = {1, . . . , n} is a set of agents, Φ = {p, q, . . .} is a finite set of
Boolean variables, c is a (global or local) cost function, γi ∈ L is the goal of
agent i ∈ N , and Φ1, . . . ,Φn is a partition of Φ over N , with the intended
interpretation that Φi is the set of Boolean variables under the unique control
of i ∈ N . For a propositional logic formula ϕ, we indicate with ϕG the truth
set of ϕ in Boolean game G, i.e., the set of outcomes v that satisfy ϕ.
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q q̄
1,3 −

p 2, 3, 3 1, 4, 2

1,2,3 2

p̄ 3, 1, 1 3, 2, 3

r

q q̄
1, 3 1,2,3

p 0, 1, 6 2, 2, 2

3 2, 3

p̄ 3, 2, 3 1, 4, 1

r̄

Figure 1. A three-player game, in which player 1 controls p and chooses rows, player 2
controls q and chooses columns, and player 3 controls r and chooses matrices. The figures
in the top right corners of the cells indicate the players that have their goals satisfied in
the respective outcome. The three figures x, y, z in the centre of each cell denote the costs
to player 1, player 2, and player 3, respectively.

Boolean games represent games in strategic form, with choices of play-
ers as their actions and the utility function as defined above representing
their preferences. Accordingly, standard game-theoretic solution concepts
are available for the analysis of Boolean games [15]. We first recall the no-
tion of Nash equilibrium. An outcome ~v = (v1, . . . , vn) is a (pure) Nash
equilibrium if for all agents i ∈ N , there is no v′i ∈ Vi such that

ui(~v−i, v
′
i) > ui(~v).

Let ne(G) denote the set of all Nash equilibria of the game G. Let us now
consider an example.

Example 2. Consider the Boolean game with N = {1, 2, 3}, Φ1 = {p}, Φ2 =
{q}, and Φ3 = {r}. The goals of the players are given by γ1 = (r∧q)∨(p∧¬r),
γ2 = (r → ¬p)∧ (q → r), and γ3 = r → q. Here, as in the further examples,
we will refer to the outcome satisfying p ∧ ¬q ∧ r as pq̄r and for the other
outcomes likewise. We adopt a similar notational convention for choices of
players, writing, for instance, p̄ for the choice of the player controlling p to
set p to false. Figure 1 gives graphical representation of this game and also
specifies the cost function.

This game has two Nash equilibria, namely pqr and pq̄r̄. In the latter,
all players achieve their goals, whereas in pqr player 2 fails to get her goal
satisfied. If player 2 and player 3 choose to set q and r to true respectively,
player 1 could choose an action that satisfies not only his goal but also those
of players 1 and 3 – e.g., setting p to false – he will not rationally do so:
by setting p to true he would achieve his goal at a lower cost. It could be
argued that the equilibrium pqr is socially undesirable, because there is an
alternative outcome of the game in which all players’s goals are satisfied.



8 Harrenstein, Turrini, Wooldridge

This paper is concerned with formulas representing more or less desirable
properties in a game situation. In our logical setting, properties correspond
to sets of outcomes. It makes therefore good sense to generalise the point-
valued notion of Nash equilibrium, which applies to single outcomes, to a
set-valued solution concept. In the context of game theory, point-valued con-
cepts like Nash equilibrium may appear to be predominant. While making
their case for set-valued solution concepts, however, Duwfenberg et al. [8]
note in passing that in the early stages of game theory set-valued concept
were actually prevailing [8, page 120, footnote 6]. One main advantage of
set-valued concepts is that their existence is generally guaranteed, even in
absence of randomised strategies.2 This chimes well with the literature on
Boolean games, where usually only pure strategies are considered. Special
mention in this context deserve Basu and Weibull’s CURB sets, which are
defined as sets of outcomes that contain for every player all best response to
every outcome in the set [2]. CURB sets combine the guaranteed existence
of (mixed) Nash equilibrium with the stability of strict Nash equilibrium.
In this paper, we adopt Voorneveld’s notion of prep sets, where prep stands
for “preparation” [19]. A prep sets is defined as CURB sets, be it that a
prep set only needs to contain one best response of every player to every
outcome it contains. As such “the minimal prep notion can be seen as a set-
valued extension of the pure Nash equilibrium concept” [19, page 407]. As
we will see, this feature makes them especially suitable for the purposes of
this paper. Although prep sets were originally defined for settings in which
players can randomise over their choices, we restrict our attention to pure
(non-randomised) prep sets.

First, we say for an agent i that a choice v′i ∈ Vi is a best response to
an outcome ~v ∈ V if for all v′′i ∈ Vi,

ui(~v−i, v
′
i) ≥ ui(~v−i, v′′i ).

The set of best responses of a player i to an outcome ~v, we denote by BRi(~v).
Notice that an outcome ~v = (v1, . . . , vn) is a Nash equilibrium if and only
if vi is a best response to ~v for all players i. Then, a (pure) prep set is
a non-empty set of outcomes X ⊆ ~V such that for every outcome ~v ∈ X
and every agent i, there is a best response v′i ∈ BRi(~v) of i to ~v such that
(~v−i, v

′
i) ∈ X, i.e.,

{(~v−i, v′i) : BRi(~v)} ∩X 6= ∅.

2Norde et al. [8] show that Nash equilibrium is the only point-valued solution concept
for strategic games whose existence is guaranteed, is consistent with utility maximising
behaviour, and satisfies consistency, an intriguing property (also see [1, pages 478-479]).
This result has sparked new interest in set-valued concepts among game theorists.
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We let prep(G) denote the set of all prep sets of the game G. If ϕ is a
propositional formula such that ϕG ∈ prep(G), then we say that ϕ is a prep
formula, since its satisfying valuations characterise a prep set. Given this, we
will frequently abuse notation by writing ϕ ∈ prep(G) for ϕG ∈ prep(G).

There is an obvious connection between pure prep sets and the (pure)
Nash equilibria of a Boolean game: the set of pure Nash equilibria coincide
with the singleton prep sets. This is in line with Voorneveld’s original notion
and is reflected in the following lemma.

Lemma 3. Let ~v = (v1, . . . , vn) be an outcome of game G. Then,

~v ∈ ne(G) if and only if {~v} ∈ prep(G).

Proof. First assume that ~v ∈ ne(G) and consider {~v} along with an arbi-
trary player i. By definition of Nash equilibrium, vi is a best response to ~v
and, obviously, (~v−i, vi) ∈ {~v}.

For the opposite direction, assume that {~v} is a prep set and consider an
arbitrary player i. As vi is the only choice v′i for i such that (~v−i, v

′
i) ∈ {~v},

it follows that vi is a best response to ~v. We may conclude that ~v is a Nash
equilibrium in G.

By a similar argument, it can easily be appreciated that every subset of
Nash equilibria of a game also constitutes a prep set, although the implica-
tion in the opposite direction does not hold. As we see in the next example,
a prep set need not even contain a single Nash equilibrium.

Example 4. Consider again the game of Example 2 and let us now con-
centrate on prep sets. We saw above that pqr and pq̄r̄ are Nash equilibria,
and by Lemma 3, both {pqr} and {pq̄r̄} are prep sets. Trivially, the set of
all outcomes is a prep set, and thus > is a prep formula. The game con-
tains many other prep sets. For instance, both {pqr, p̄qr} and {pq̄r̄, p̄q̄r̄}
are, whereas {pq̄r̄, pqr̄} is not. To see the latter, observe that player 3’s best
response at pqr̄ would be to set r to true: that would result in pqr, which
lies outside {pq̄r̄, pqr̄} but satisfies his goal at a lower cost. In this game,
all prep sets contain a Nash equilibrium. This, however, is not necessarily
the case. Consider for instance the three-player game depicted in Figure 2,
which has one Nash equilibria, namely, p̄q̄r̄s̄. Nevertheless, p ∧ s – repre-
senting {pqrs, pq̄rs, pqr̄s, pq̄r̄s} – is also a prep set but does not contain the
equilibrium p̄q̄r̄s̄.
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r r̄
2, 3 1, 3

pq 2, 1, 3 3, 3, 4

1, 2, 3 2, 3

pq̄ 1, 3, 3 1, 2, 3

1, 2, 3 2

p̄q 5, 1, 2 1, 3, 4

2 2

p̄q̄ 6, 5, 2 4, 6, 5

s

r r̄
2 −

pq 3, 2, 4 2, 2, 5

2 2

pq̄ 1, 4, 4 3, 2, 2

2, 3 2

p̄q 2, 2, 1 2, 4, 3

1, 2, 3 2

p̄q̄ 1, 5, 1 2, 3, 4

s̄

Figure 2. A three-player game (notational conventions as in Figure 1). Here p ∧ s is a
prep formula but none of its satisfying outcomes, pqrs, pqr̄s, pq̄rs, and pq̄r̄s, is a Nash
equilibrium. Despite p ∧ s being soft, it is not eliminable via side-payments.

3. The Robustness of Prep Sets under Costs

Recall that an agent’s preferences are driven by two components: the pri-
mary one is her goal γi, the secondary one is cost minimisation. It is impor-
tant to emphasise once more that cost minimisation is strictly secondary to
goal achievement: an agent will always prefer an outcome that satisfies her
goal over one that does not, irrespective of what the cost implications are.

In this section, we show that the fact that there are two distinct drivers
behind an agent’s preferences gives a two-tier structure to the rational out-
comes of Boolean games. Specifically, we distinguish between hard and soft
prep sets. Informally, a hard prep set is one from which rational agents
cannot escape, in the sense that, no matter what the cost function is, every
best reply to an outcome in the set will lead to an outcome in the set. If
we think of prep sets as formulas, then a hard formula is one in which every
rational deviation from an outcome satisfying the formula will simply lead
to another outcome satisfying the formula.

In contrast, a soft prep set is one whose presence in a game is contingent
upon the cost function of the game. As a consequence, if a formula is soft,
then it can potentially be eliminated from the game if it is viewed as unde-
sirable – e.g., through taxes [18, page 656] – or introduced to the game by
providing appropriate incentives, if it is seen as desirable. To formalise this
intuition, we first need some more notation.
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3.1. Hard and Soft Prep Sets

Given a game G with cost function c, we denote by Gc
′

the game obtained
from G by replacing c with cost function c′. Thus, in Gc

′
, the primary drivers

behind each player’s preferences, i.e., goal achievement, remain the same as
in G, but the secondary drivers, i.e., cost reduction, may be different.

In the discussion that follows, the zero cost function c0 will be im-
portant. This is the cost function that assigns cost 0 to all players in all
outcomes. Thus, in a game G with cost function c0, which we will also de-
note by G0, players are indifferent between outcomes on the basis of costs:
the only driver for an agent is to achieve his goal.

We now define the set init(G) of initial prep sets (briefly initial sets)
of a game G to consist of the prep sets of the game G0, i.e.,

init(G) = prep(G0).

The reason for singling out this set and giving it its name is illustrated by
the following lemma.

Lemma 5. For every game G, prep(G) ⊆ init(G).

Proof. Consider an arbitrary game G with cost function c along with an
arbitrary set X ⊆ ~V . Assume that X /∈ prep(G0). Then, there is some
outcome ~v ∈ X and some player i such that (~v−i, v

′
i) /∈ X for all best

responses v′i of i to ~v in G0, that is, u0i (~v) < u0i (~v−i, v
′
i). As in G0 all

costs are zero, it follows that (~v−i, v
′′
i ) 6|= γi for all choices v′′i such that

(~v−i, v
′′
i ) ∈ X. Moreover, as the set of best responses is always non-empty,

we also have (~v−i, v
′
i) |= γi for some choice v′i ∈ Vi with (~v−i, v

′
i) /∈ X. For G,

this means that (~v−i, v
′′
i ) /∈ X for all best responses v′′i of i to ~v−i and,

hence X /∈ prep(G).

Thus, the game G0 contains the maximal set of prep sets with respect to G
and all possible cost functions for G. In particular, if for some formula ϕ
we have ϕG 6∈ prep(G0), then there is no possibility of introducing ϕ to G
by imposing a cost function. Marginal costs defined within cost functions c
serve to eliminate prep sets from a game G0.

We can now define the hard prep sets of a game G. Formally, the set
of hard prep sets of game G are those sets of outcomes that are prep no
matter what cost function we assign to the game, i.e.,

hard(G) =
⋂

c:N×~V→Q≥

prep(Gc).
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hard(G) ⊆ prep(G) ⊆ init(G)

⊆ ⊆

present(G) ⊆ soft(G)

⊆

absent(G)

Figure 3. Containment relations between types of formulas.

Thus, if X ∈ hard(G), then X is a set of valuations that is “immune” to
any cost considerations, because no matter what we do to the cost function
of G, X will remain a prep set in the game.

In contrast, a soft prep set is one that is present in a game for some
assignment of costs in the game, but is absent for some other assignment of
costs. We can thus think of soft prep sets as being the “malleable” part of
a game: it is these sets that we can eliminate from or introduce to games.
Formally, soft(G) denotes the set of soft prep sets of G, i.e.,

soft(G) = init(G) \ hard(G).

To understand this definition, recall that init(G) is the maximal set of prep
sets that could be present in a game. Note that a set of outcomes can be a
soft prep set in a game without actually being a prep set in that game – but
it will, however, be a prep set for the game with another cost function. For
this reason, we will distinguish between soft prep sets that are present and
those that are absent in a game.

Thus, we let present(G) denote the set of soft prep sets of G that are
present in G, and let absent(G) denote the set of soft prep sets that are
not present in G, i.e.,

present(G) = prep(G) \ hard(G),

absent(G) = soft(G) \ present(G).

Figure 3 illustrates the containment relations between these sets of sets;
these all follow directly from the definitions presented above together with
Lemma 5. We extend this terminology to single outcomes. Thus an out-
come ~v is said to be initial, hard, soft, and present if {~v} is a hard, soft,
absent, and present prep set, respectively. On basis of Lemma 3, we also
refer to initial, hard, soft, and present outcomes as hard, soft, present, and
absent equilibria. With a slight abuse of notation we will sometimes omit
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braces when dealing with outcomes and write, e.g., ~v ∈ prep(G) instead of
{~v} ∈ prep(G).

As we did earlier, we also find it useful to refer to initial, hard, soft, and
present formulas. Thus, when we say a formula ϕ is in hard we mean that
the set of outcomes satisfying ϕ is a hard prep set and write ϕ ∈ hard(G)
for ϕG ∈ hard(G). We adopt similar terminological conventions for initial,
soft, and present formulas. Let us see an example.

Example 6. Consider again the game in Figure 1. There are several for-
mulas of interest in this game. Consider for instance ¬q∧¬r, which, notice,
is insensitive to the choice of the row player. This formula is hard, and the
reason is that all best replies that players have to outcomes in this set never
leave the set itself. For player 1 we only need to inspect outcomes satisfying
¬q ∧ ¬r. His best response to both p̄q̄r̄ and pq̄r̄ is setting p to true, either
leading to pq̄r̄, which is contained in the truth set of ¬q ∧ ¬r. For players 2
and 3, it suffices to observe that both of them have their goal achieved in all
outcomes satisfying ¬q∧¬r, and that, if either of them were to deviate from
any of these outcomes, a state would be reached that does not satisfy her
goal. This means that, no matter what the cost function is, the best response
of either 2 or 3 to any outcome satisfying ¬q ∧ ¬r is the choice defined by
the outcome itself. Notice that this would not be true if 2 and 3 were acting
as a coalition, as they could reach for instance outcome p̄rq from outcome
p̄r̄q̄. In this example, all hard formulas are equivalent to either p ∧ ¬q ∧ ¬r
or ¬q ∧ r.

Another interesting formula is p ∧ (q ↔ r). This formula is satisfied
only at two outcomes, which happen to be the only two Nash equilibria in the
game, viz., pqr and pq̄r̄. A closer inspection reveals that the former is soft
and present, whereas the latter is hard. Therefore, the formula as a whole is
soft and present, as we could act on the first equilibrium and eliminate it.

There are many initial formulas. Clearly ¬p∧ q∧ r is an initial formula,
as p̄qr is an initial equilibrium achieved by the empty cost function c0. Still,
p̄qr is not an equilibrium in the game itself. Thus, ¬p ∧ q ∧ r is an absent
formula. Not all formulas, however, are initial. For instance, every formula
consistent with ¬p ∧ q ∧ ¬r but not with ¬p ∧ ¬q ∧ ¬r cannot be initial,
as player 2 will always deviate from the outcome satisfying the first to the
outcome satisfying the second.

The game in Figure 2 also has a number prep formulas – for instance p∧
s, ¬(p ∨ s) – none of which, however, is hard. This does not mean that
all formulas are initial. For instance r → s is not: no matter which cost
function player 2 will want to deviate from pqr̄s̄ to pqrs̄ by setting r to >.
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The concept of a hard formula is defined with respect to all (global)
cost functions. The following lemma, however, shows that one only needs
to consider the local cost functions to decide whether an outcome is a hard
formula. As the zero cost function c0 can obviously be seen as being induced
by the local cost function that assigns cost zero to every variable, this also
holds for the initial, soft, absent, and present formulas.

Lemma 7. Let G be a game and ϕ be a satisfiable formula. Then, ϕ ∈
hard(G) if and only if ϕ ∈ prep(Gc) for all local cost functions c.

Proof. The “only if”-direction is trivial. For the opposite direction, assume
that ϕ /∈ hard(G). Then there is an outcome ~v ∈ ϕG, a player i, and a cost
function c such that (~v−i, v

′
i) /∈ ϕG for all best responses v′ of i to ~v in Gc.

We may assume that such a best response v′i to ~v exists. Observe that ~v |= γi
then implies that (~v−i, v

′
i) |= γi. Now define a local cost function ĉ with ci

such that, for all j ∈ N , p ∈ Φi, and b ∈ {>,⊥},

ĉi(p, b) =

{
0 if v′i(p) = b

1 otherwise.

Then, v′i is i’s single least expensive choice. It is now not hard to see that v′i
is the unique best response of i to ~v in Gĉ. Since (~v−i, v

′
i) /∈ ϕG, it follows

that ~v /∈ hard(Gĉ).

The initial formulas of a game can be determined by inspecting the prep
formulas in the corresponding game with the zero cost function c0. We find
that, when the formula we want to know the hardness of is given, we can
likewise restrict our attention to one particular cost function. To see this, let
cϕ be the cost function that assigns to every player i and every outcome ~v
cost 1 if v satisfies ϕ and assigns 0 otherwise, that is,

cϕi (~v) =

{
1 if ~v |= ϕ,

0 otherwise.

Then, we have the following proposition.

Proposition 8. Let G be a game and ϕ a satisfiable formula. Then ϕ ∈
hard(G) if and only if ϕ ∈ prep(Gc

ϕ
).

Proof. The “only if”-direction follows directly from the definition of hard
formulas. The proof for the opposite direction is by contraposition. Assume
that ϕ 6∈ hard(G). This means that there exists a cost function c such



Hard and Soft Preparation Sets 15

that ϕ 6∈ prep(Gc). Hence, there is some outcome ~v with ~v |= ϕ and some
player i such that (~v−i, v

′
i) 6|= ϕ for all best responses v′i of i to ~v in Gc.

Observe that we may assume the existence of such a best response, which
we will denote by v∗i . We distinguish two cases: (i) (~v−i, v

′′
i ) 6|= γi for all

v′′i ∈ Vi, or (ii) (~v−i, v
′′
i ) |= γi for some v′′i ∈ Vi.

First assume that case (i) obtains. Then, the best responses of i to ~v
in Gc

ϕ
are given by {v′′i ∈ Vi : (~v, v′′i ) 6|= ϕ}. This is immediate by the defini-

tion of cϕ and the fact that (~v−i, v
∗
i ) 6|= ϕ. If, on the other hand, (ii) holds,

then (~v−i, v
∗
i ) |= γi. Now again by the definition of cϕ and the fact that v∗i

exists, the best responses of i to ~v in Gc
ϕ

are given by {v′′i ∈ Vi : (~v−i, v
′′
i ) |=

¬ϕ∧γi}. In either case, we may conclude that ϕ /∈ prep(Gc
ϕ
), as desired.

3.2. Characterising Hard and Soft Formulas

Whether a set of outcomes are prep in a given game may well depend on the
associated cost function. We find, however, that the sets of initial and hard
formulas of a game can be characterised solely in terms of valuations and
goal formulas without making reference to cost functions. In this sense, our
characterisations could be said to be of a purely logical nature. On basis of
their very definitions, it also follows that similar characterisations can also
be obtained for soft, present, and absent formulas.

First, we characterise what it means for a formula to be an initial prep
set of a game.

Proposition 9. Let G be a game and ϕ a satisfiable formula. Then, ϕ ∈
init(G) if and only if for all players i ∈ N , all outcomes ~v ∈ ϕG,

(~v−i, v
′
i) |= γi ∧ ¬ϕ for some v′i ∈ Vi implies (~v−i, v

′′
i ) |= γi ∧ ϕ for some v′′i ∈ Vi.

Proof. For the “only if”-direction assume for contraposition that there is
a an outcome ~v ∈ ϕG, a player i ∈ N , and a choice v′i ∈ Vi such that
(~v−i, v

′
i) |= γi ∧¬ϕ whereas (~v−i, v

′′
i ) |= γi ∧ ϕ for no v′′i ∈ Vi. It follows that

(~v−i, v
∗
i ) 6|= ϕ for all best responses v∗i of i to ~v in G0. Hence, ϕ /∈ prep(G0),

that is, ϕ /∈ init(G) either.
For the opposite direction, assume, again for contraposition, that ϕ /∈

init(G), that is, ϕ /∈ prep(G0). Accordingly, there is an outcome ~v and
a player i such that ~v |= ϕ and (~v−i, wi) 6|= ϕ for all best responses wi
of i to ~v in G0. As in G0 costs are everywhere equal and players are only
interested in satisfying their goal, there is a best response v′i of i to ~v in G0

with (~v−i, v
′
i) |= γi ∧ ¬ϕ, whereas for all choices v′′i ∈ Vi with (~v−i, v

′
i) |= ϕ

we have (~v−i, v
′′
i ) 6|= γi. Hence, (~v−i, v

′′
i ) |= γi ∧ ϕ for no choice v′′i ∈ Vi, as

desired.
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For some formulas it is easy to see whether they are hard or not in a
given game. For instance, > is a hard formula in every game. For other
cases the task of identifying the hard formulas requires considerably more
effort. The following proposition helps in this task, by establishing a purely
logical characterisation of hard formulas in Boolean games.

Proposition 10. Let G be a game and ϕ a satisfiable formula. Then,
ϕ ∈ hard(G) if and only if for all ~v ∈ ϕG, all players i ∈ N , and all v′i ∈ Vi,
the following two conditions are satisfied:

(i) (~v−i, v
′′
i ) 6|= γi for all v′′i ∈ Vi implies (~v−i, v

′
i) |= ϕ,

(ii) (~v−i, v
′
i) |= γi implies (~v−i, v

′
i) |= ϕ.

Proof. The “only if”-direction is by contraposition. Assume that for some
~v ∈ ϕG, some player i and some v′i ∈ Vi either (i′) (~v−i, v

′′
i ) 6|= γi for all

v′′i ∈ Vi and (~v−i, v
′
i) 6|= ϕ, or (ii′) both (~v−i, v

′
i) |= γi and (~v−i, v

′
i) 6|= ϕ.

Define ĉ as the local cost function with ci such that for all p ∈ Φi and
b ∈ {⊥,>},

ĉi(p, b) =

{
0 if v′i(p) = b

1 otherwise.

Thus, v′i is the strictly cheapest choice for i under ĉ, that is, ĉi(~v−i, v
′
i) >

ĉi(~v−i, v
′′
i ) for all v′′i ∈ Vi \ {v′i}. Both in case (i′) and in case (ii′), choice v′i

is the unique best response of i to ~v under ĉ. As (~v−i, v
′
i) 6|= ϕ, we obtain in

either case that ϕ /∈ prep(Gĉ) and subsequently that ϕ /∈ hard(G).

For the “if”-direction, assume that for all ~v ∈ ϕG, all players i, and all
vi ∈ Vi both (i) and (ii) are satisfied. Let c be an arbitrary cost function; we
show that ϕ ∈ prep(Gc). To this end, consider an arbitrary outcome ~v with
~v |= ϕ, an arbitrary player i, and an arbitrary choice v′i ∈ Vi such that v′i is
a best response of i to ~v. If (~v−i, v

′
i) 6|= γi, it follows that (~v−i, v

′′
i ) 6|= γi for

all v′′i ∈ Vi and, with condition (i), that (~v−i, v
′
i) |= ϕ. On the other hand,

if (~v−i, v
′
i) |= γi, condition (ii) yields (~v−i, v

′
i) |= ϕ. In either case, we find

that (~v−i, v
′
i) ∈ ϕG

c
. Hence, ϕ ∈ prep(Gc), as desired.

Condition (i) says that if a player cannot satisfy his goal from some outcome,
then a hard formula should be consistent with all his actions. Condition (ii)
says that the formula must comprise all players’ deviations to states satis-
fying his goal. Let us explain the result further. Consider a formula that is
hard and an outcome satisfying it. If this outcome does not satisfy a goal
of a player, and there was an action of his that would allow a deviation to
a valuation not satisfying the formula while leaving the actions of the other
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players unchanged, then it would be easy to find a cost function making such
deviation profitable for the player. This is the reason why we need condi-
tion (i). If instead the outcome does satisfy the goal of a player, all outcomes
which do should also satisfy the formula. If some outcome did satisfy the
goal but not the formula, then we would again be able to make this outcome
the most profitable deviation. This is why we need condition (ii).

Propositions 9 and 10 provide purely logical characterisations: the char-
acterising conditions are expressed in terms of valuations and goal formulas
but cost functions are not referred to. Recall that the soft, absent, and
present formulas are defined on the basis of the sets of initial and hard for-
mulas using the customary set-theoretic constructs. Accordingly, similarly
logical characterisations of soft, absent, and present formulas can straightfor-
wardly be obtained by combining the characterisations provided by Propo-
sitions 9 and 10.

Characterising Hard and Soft Equilibria We have already seen that
Nash equilibria are prep sets. Accordingly, Propositions 9 and 10 can also
be used to characterise initial and hard equilibria. The results in this section
follow as corollaries, but we find that the characterisations are simpler and
also provide more conceptual insight into the nature of hard equilibria. First,
we given the result for initial equilibria.

Corollary 11. Let ~v be an outcome of a game G. Then, ~v ∈ init(G) if
and only if for all players i ∈ N and all v′i ∈ Vi,

v′i 6= vi and (~v−i, v
′
i) |= γi together imply ~v |= γi.

Proof. By virtue of Lemma 3 and Proposition 9, it suffices to show that,
if ϕG is a singleton, for all ~v ∈ ϕG, all players i, and all vi ∈ Vi, the following
two conditions are equivalent:

(A1) v′i 6= vi and (~v−i, v
′
i) |= γi together imply ~v |= γi,

(A2) (~v−i, v
′
i) |= γi ∧ ¬ϕ implies (~v−i, v

′′
i ) |= γi ∧ ϕ for some v′′i ∈ Vi.

Observe that ϕ = {~v}. First assume (A1) as well as that (~v−i, v
′
i) |= γi∧¬ϕ.

Then, (~v−i, v
′
i) /∈ ϕG. Therefore, v′i 6= vi. Moreover, (~v−i, v

′
i) |= γi. By (A1),

then ~v |= γi. Hence, there is some v′′i ∈ Vi with (~v−i, v
′′
i ) |= γi ∧ ϕ.

For the opposite direction, assume (A2) as well as that v′i 6= vi and
(~v−i, v

′
i) |= γi. Then, (~v−i, v

′
i) |= γi ∧ ¬ϕ. By (A2), also (~v−i, v

′′
i ) |= γi ∧ ϕ

for some v′′i ∈ Vi. As (~v−i, v
′′
i ) |= ϕ, we have that v′′i = vi. Therefore, also

~v |= γi, as desired.



18 Harrenstein, Turrini, Wooldridge

Also for hard equilibria we find a neat logical characterisation.

Corollary 12. Let ~v = (v1, . . . , vi, . . . , vn) be an outcome of a game G.
Then, ~v ∈ hard(G) if and only if for all players i and all choices v′i ∈ Vi
with v′i 6= vi, both ~v |= γi and (~v−i, v

′
i) 6|= γi.

Proof. Consider an arbitrary outcome ~v and assume that ϕG = {~v}. By
virtue of Lemma 3 and Proposition 10, it suffices to show that conditions

(i) (~v−i, v
′′
i ) 6|= γi for all v′′i ∈ Vi implies (~v−i, v

′
i) |= ϕ, and

(ii) (~v−i, v
′
i) |= γi implies (~v−i, v

′
i) |= ϕ

are satisfied for all players i and all v′i ∈ Vi if and only if for all players i, all
choices v′i with v′i 6= vi both ~v |= γi and (~v−i, v

′
i) 6|= γi hold.

To this end, first assume that for all players i, all choices v′i with v′i 6= vi
both ~v |= γi and (~v−i, v

′
i) 6|= γi. Consider an arbitrary player i along with an

arbitrary choice v′i ∈ Vi and assume, for contraposition, that (~v−i, v
′
i) 6|= ϕ.

Then, v′i 6= vi. Therefore, (~v−i, v
′
i) 6|= γi. This yields (ii). Moreover, ~v |= γi.

Hence, (~v−i, v
′′
i ) |= γi for some v′′i ∈ Vi. It follows that (i) is satisfied as well.

For the opposite direction, assume that for all players i and all v′i ∈ Vi
both (i) and (ii) hold. Let i be an arbitrary player and v′i an arbitrary
choice for i such that v′i 6= vi. As ϕG = {~v}, it immediately follows that
(~v−i, v

′
i) 6|= ϕ. By virtue of the contrapositive of (ii), we may conclude that

(~v−i, v
′
i) 6|= γi. Moreover, the contrapositive of (i) yields (~v−i, v

′′
i ) |= γi for

some v′′i ∈ Vi. By the above (~v−i, v
′
i) 6|= γi for all v′i with v′i 6= vi. Hence

v′′i = vi and we may conclude that ~v |= γi.

The significance of Corollary 12 may not be immediately apparent. We
argue, however, that it is a positive result rather than a negative one. Hard
equilibria cannot be eliminated from games through cost functions, and so
the presence of hard equilibria with undesirable properties would be bad
news indeed. But Corollary 12 establishes that, first, hard equilibria are
rare in games, in the sense that the condition required for their presence is
very strong; and second, where they are present, hard equilibria in fact have
properties that can be viewed as very desirable: all players have their goals
achieved. Thus, hard equilibria can be understood as maximising qualitative
social welfare [20].

4. Externalities in Boolean Games

In this section, we will see how the concepts we introduced above can be
used to understand and manage externalities in Boolean games. The term
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“externality” in economics is used to refer to a situation where the actions
of one agent can affect the well-being of one or more other agents [18]. An
example of (negative) externality is a factory discharging industrial efflu-
ent into a river upstream of a fish farm, thereby reducing the quality and
quantity of the fish that the farm can produce. An example of (positive)
externality is a honey producer keeping bee hives in a field that happens to
be close to an orchard [14, 13]: the orchard owner benefits from the presence
of the bees, who pollinate the apple trees.

There are two standard approaches in economics to deal with external-
ities. The first is to allow players to provide monetary compensation, or
side-payments, to encourage or discourage certain actions to be taken. In
the example of the beekeeper and the apple grower, if side-payments are
allowed, the apple grower will compensate the beekeeper for his positive ex-
ternality, provided the beekeeper is effectively able to prevent his bees from
pollinating the apple trees [13]. Economic theorists like Coase, Meade, and
Maskin have studied under what conditions this possibility allows efficient
outcomes to be reached [7, 14, 13, 12]. The second approach to dealing with
externalities is to have players internalise externalities, that is, to somehow
incentivise them to take externalities into consideration when they make
their choices. In the factory-fish farm example, above, if we merge the fish
farm and factory into a single company, then it is in this company’s own
interest to take into account the negative effects of the pollution it causes.
As such, merging players can be seen as one way to internalise externalities.

Neither of these approaches is always realisable in practice, e.g., due to
the absence of communication channels among the parties involved or the
lack of appropriate legislation. It is, however, interesting to study the many
cases in which they are.

In Boolean games, externalities arise from the fact that the satisfaction
of one player’s goal can depend on the choices made by the other players. By
choosing a particular valuation, a player can either help or hinder other play-
ers achieving their goals. In the next section we adapt the two approaches
described above to the framework of Boolean games.

The main question we focus on is the extent to which prep sets, charac-
terised by propositional formulas, can be eliminated from games. That is,
suppose we have a game G and formula ϕ such that ϕ ∈ prep(G). Then,
is there a mechanism (either side payments or merging, as discussed above)
which results in a game G′ such that ϕ 6∈ prep(G′)? It is important to note
that the problem of eliminating a certain formula ϕ from a game in this
sense reduces to the possibility of eliminating one of the outcomes satisfying
it, by means of an outcome not satisfying it. That is, for ϕ to fail to be a
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prep set, we only need to introduce a deviation to an outcome outside the
set of outcomes denoted by ϕ.

4.1. Side-payments

In this section, we investigate what groups of players can achieve if, before
the game starts, they are allowed to make binding offers to their fellow coali-
tion members to persuade them to play designated strategies. Turrini [17]
studied a preplay phase preceding a Boolean game as a second game taking
place before the actual game starts. Our approach here is different: given a
Boolean game, we focus on the ability of coalitions to engineer side-payments
in order to escape unsatisfactory (sets of) outcomes. The question we are
especially interested in is which formulas – hard or soft – can be eliminated
from the game in this manner. Consider, for example, the game in Fig-
ure 1. There, player 2 does not have her goal achieved in the equilibrium
outcome pqr, but she could incentivise player 1 to set p to false by offering
him compensation for the additional costs he incurs if he were to do so.

Following [12, 17], we formalise side-payments by means of so-called
transfer functions, i.e., functions of the form

τ : N ×N × ~V → Q≥.

Intuitively, τ(i, j, ~v) is the compensation player j receives from player i for
the costs j incurs at outcome ~v. Thus, after the transfer, player i’s cost at ~v
is increased by τ(i, j, ~v), whereas player j’s cost at the same outcome is de-
creased by the same amount. Accordingly, τ(i, j, ~v) > τ(j, i, ~v) whenever the
compensation i receives from j is smaller than the compensation j receives
from i.

We say that a transfer function τ only involves coalition C if all
transfers to and from players not in C are zero at all outcomes, that is, if
for all players i ∈ N and j ∈ N \ C and all outcomes ~v,

τ(i, j, ~v) = τ(j, i, ~v) = 0.

Furthermore, we let τi(~v) abbreviate the term∑
j∈N

τ(j, i, ~v)−
∑
j∈N

τ(i, j, ~v),

i.e., the net transfer received by player i under τ . It is important to observe
that every transfer to a player means an equally large transfer from the other
player. Therefore, each transfer τ(i, j, ~v) occurs once (negatively) in τi(~v)
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and once (positively) in τj(~v). In particular, if τ only involves C, we have
for every outcome ~v that

∑
i∈C τi(~v) = 0 and, hence,∑
i∈C

c(~v) =
∑
i∈C

cτ (~v).

We restrict our attention to admissible transfer functions, i.e., transfer
functions such that τi(~v) ≤ ci(~v) for all players i and all outcomes ~v. In
words, at no outcome the amount of what a player receives from others
minus what he gives to them can exceed his cost. Thus, the cost a player
incurs at an outcome cannot be overcompensated, i.e., it cannot end up
being negative as result of preplay negotiation. For instance, if player i’s
cost ci(~v) = 3 and player j is the only other player in the game, then it
cannot be that τ(j, i, ~v) = 5 and τ(i, j, ~v) = 1. This restriction is of a
purely technical nature and preserves the quasi-dichotomous character of the
preferences in games transformed by transfer functions.3 For similar purely
technical reasons, we will restrict our attention to games with positive cost
functions, i.e., cost functions that assigns at all outcomes a strictly positive
cost to every player.

Thus, a transfer function transforms the cost function of a Boolean game.
Let τ be a transfer function. For G a Boolean game with cost function c,
we then define cτ as the cost function such that, for all players i and all
outcomes ~v,4

cτi (~v) = ci(~v)− τi(~v).

The utility function of player i in game G with cost function cτ we will
henceforth denote by uτi . To avoid cluttered notation, we also denote the
game Gc

τ
by Gτ and the set of best responses of i to ~v in Gτ by BRτ

i (~v).
We are particularly interested in formulas that can be eliminated by

groups of players making side-payments to one another and also have a mu-
tual interest in doing so. First, however, we make the following observation.

Proposition 13. Let G be a game with at least two players and with a global
and positive cost function c and ϕ a satisfiable formula. Then, ϕ ∈ prep(Gτ )
for all transfer functions τ if and only if ϕ ∈ hard(G).

Proof. First observe that cτ is a properly defined cost function for every
transfer function τ . The “if”-direction then follows immediately from the

3One could also assume a base level of unavoidable costs and model rewards (as distin-
guished from reparations) as compensation beyond this level.

4Transfer functions τ can be applied to both local and global cost functions c. However,
if c is a local cost function, it is not necessarily the case that cτ is as well.
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definition of hard equilibria. For the opposite direction assume that ϕ /∈
hard(G). Then, by Proposition 10, there is some outcome ~v, some player i
and some choice v′i such that either (i′) (~v−i, v

′′
i ) 6|= γi for all v′′i ∈ Vi and

(~v−i, v
′
i) 6|= ϕ, or (ii′) both (~v−i, v

′
i) |= γi and (~v−i, v

′
i) 6|= ϕ. Let j be a

player distinct from i and define the transfer function τ such that for all
players k, k′ and all outcomes ~w,

τ(k, k′, ~w) =

{
ci(~v−i, v

′
i) if k = j, k′ = i, and ~w = (~v−i, v

′
i),

0 otherwise.

Having assumed positive cost functions, it follows that v′i is the unique best
response of i to ~v in Gτ if (i′) as well as if (ii′). Hence, ϕ /∈ prep(Gτ ), as
desired.

To illustrate this result, consider once more the game depicted in Fig-
ure 2. We saw p ∧ s is a prep formula but not a hard one. By virtue
of Proposition 13, there are transfer functions that render p ∧ s non-prep.
Still, none of these appear to be particularly attractive for the coalition in-
volved. The transfer function τ with τ(2, 1, 41

2), for instance, would make p̄q
player 1’s unique best response to pq̄r, but if 1 were to deviate in this way,
player 2 would be worse off after transfers than she was before. Observe
that the situation would not improve if player 3 were to join the coalition. It
can readily be appreciated that there are similar concerns with every other
transfer function and no coalition can come to a mutually profitable under-
standing on how to divide costs so as to eliminate p ∧ s. In the remainder
of this section we will therefore restrict our attention to the elimination of
prep formulas via transfer functions that are beneficial to all members of the
coalition involved.

Thus, intuitively, a formula ϕ can be eliminated via side-payments if
there exists some outcome ~v satisfying ϕ along with some coalition that
can engineer a mutually beneficial transfer scheme that induces one of its
members i to only play actions leading to outcomes not satisfying ϕ by
compensating i for any additional costs if i does so. There are different ways
of formally defining this. We adopt the following concept, which compares
the set X of outcomes (~v−i, v

′′
i ) satisfying ϕ that can be reached by i playing

a best response to ~v in the original game with the set Y outcomes that
are reached by i playing a best response after having been compensated:
all coalition members should prefer all outcomes in Y after transfer to any
outcome in X before.

Formally, a formula ϕ can be eliminated via side-payments, if there
is a coalition C ⊆ N , a transfer function τ only involving C, an outcome ~v,
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a player i ∈ C, such that for all v′ ∈ BRτ
i (~v) and for all v′′i ∈ BRi(~v) with

(~v−i, v
′′
i ) ∈ ϕG:

(C1) (~v−i, v
′
i) /∈ ϕG, and

(C2) uτj (~v−i, v
′
i) > uj(~v−i, v

′′
i ) for all j ∈ C.

We also say that under the circumstances specified thus, coalition blocks
formula ϕ and, when ϕG consists of a single outcome ~v, also that C blocks ~v.
Condition (C1) ensures that all of i’s best responses after transfers have
taken place lead to outcomes outside ϕG, while condition (C2) guarantees
that all players in C are better off in any of the outcomes that may arise
if i best-responses to ~v after transfers have taken place than they were in
any of the outcomes that ensues if i best-responses to ~v before. Intuitively,
this concept incorporates the idea of a blocking coalition that engineers a
transfer scheme such that the resulting set of best responses of one of its
members becomes more attractive to all than the original one.

We illustrate these definitions by means of two examples. The first one
concentrates on elimination of equilibria by side-payments, whereas the sec-
ond also deals with the more general case of eliminating formulas.

Example 14. Consider once more the game in Figure 1. At outcome pqr,
which, recall, is an equilibrium, player 2’s goal is not satisfied, whereas it is
at p̄qr. Let τ be such that

τ(i, j, ~v) =

{
x if i = 2, j = 1, and ~v = p̄qr,

0 otherwise.

Then, τ would incentivise player 1 to deviate to p̄qr provided that x > 1.
Moreover, player 2 would prefer to make any such transfer in order to satisfy
her goal. Accordingly, {1, 2} is a coalition blocking the outcome pqr in set
{pqr}. In a similar way, player 1 might want to induce player 3 to deviate
to outcome pqr̄. That, however, would require compensating player 3 for
the additional costs of 3 that player 3 incurs at pqr̄. Player 1, having his
goals achieved at both pqr and pqr̄, however, is not prepared to do so, as
his marginal gain in costs (before transfer) would only be 2. Still, player 2
would also like to see player 3 deviate to pqr̄. Moreover, together players 1
and 2 can compensate player 3 sufficiently for him to do so. For instance,
this could be achieved by the transfer function τ ′, defined as

τ ′(i, j, ~v) =

{
13

4 if i ∈ {1, 2}, j = 3, and ~v = pqr̄,

0 otherwise.
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Accordingly, {1, 2, 3} is also a coalition blocking outcome pqr. We may there-
fore conclude that pqr is not eliminable by side-payments.

Example 15. Consider the game in Figure 2. We have already argued that
the soft prep formula p ∧ s is not eliminable by side-payments. Now con-
sider the formula ¬(p ∨ s), which is also prep. There are various ways in
which ¬(p ∨ s) can be eliminated by side-payments. For instance, at p̄qrs̄
player 3 plays a best response and, in order to have his goal achieved, 1 would
be prepared to compensate 3 with any amount required. Similarly, player 3
plays a best response at p̄qr̄s̄ and 1 and 2 can induce him to set s to true by
compensating him each with 3

4 at p̄qr̄s.
Finally, consider the outcomes p̄qr̄s̄ and p̄q̄r̄s̄. At both of these out-

comes, 1 plays a best response and all members of a blocking coalition will
have to be better off for every new best response they engineer for 1 than at
either of them. Thus, although 2 could induce 1 to move from p̄qr̄s̄ to pq̄r̄s̄
by compensating him with, say 11

2 at the latter outcome, this would not make
her better off with respect to p̄q̄r̄s̄. All three players together, however, form
a blocking coalition against ¬(p∨ q) as witnessed by the transfer function τ ′′

defined as

τ ′′(i, j, ~v) =

{
3
4 if i ∈ {2, 3}, j = 1, and ~v = p̄qr̄s̄,

0 otherwise.

We now move towards a characterisation of formulas that can be elimi-
nated by side-payments. Before doing so, however, we first make the follow-
ing observation. If a formula ϕ fails to be prep, there is some outcome v,
player i and v′i ∈ Vi such that v |= ϕ, (~v−i, v

′
i) |= ¬ϕ, ui(~v−i, v

′
i) > ui(~v)

and uτi (~v−i, v
′
i) ≥ uτi (~v−i, v

′′
i ) for all v′′i ∈ Vi. Then ϕ is eliminable by the

singleton coalition {i} via the trivial transfer function for which all transfers
between all players at all outcomes are zero.

Observation 16. Let ϕ be an formula that is not prep in a game G. Then, ϕ
is eliminable via side-payments.

Thus, there is a class of formulas that can never be eliminated via side-
payments – the hard formulas – as well as a class of outcomes that can
always be eliminated via side-payments – the formulas that are not prep.
There may, however, very well be formulas in a game that do not belong to
either of these classes: the present equilibria. Together with Proposition 13
and Observation 16, the following result establishes a full characterisation
of all formulas that are eliminable via side-payments in a game. Notice that
this characterisation makes no reference to transfer functions.
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Proposition 17. Let ϕ a present prep formula in Boolean game G with a
positive cost function c. Then ϕ is eliminable via side-payments if and only
if there is a coalition C ⊆ N , an outcome ~v ∈ ~V , a player i ∈ N , and a
choice v′i ∈ Vi such that,

(i) (~v−i, v
′
i) 6|= ϕ,

(ii) for all j ∈ C and v′′i ∈ BRi(~v) with (~v−i, v
′′
i ) |= ϕ, if (~v−i, v

′′
i ) |= γj then (~v−i, v

′
i) |= γj,

(iii)
∑
j∈C

cj(~v−i, v
′
i) <

∑
j∈C

inf
~w∈Xj

cj(~w),

where, for every j ∈ C,

Xj =
{

(~v−i, wi) ∈ ϕG : wi ∈ BRi(~v) and if (~v−i, v
′
i) |= γj then (~v−i, wi) |= γj

}
.

Proof. First assume that ϕG is eliminable via side-payments. Then, there
is a coalition C ⊆ N , a transfer function τ only involving C, an outcome ~v,
a player i ∈ C, such that for all v′ ∈ BRτ

i (~v−i) and for all v′′i ∈ BRi(~v−i)
with (~v−i, v

′
i) ∈ ϕG both (C1) and (C2) hold, that is, (~v−i, v

′
i) /∈ ϕG, and

uτj (~v−i, v
′
i) > uj(~v−i, v

′′
i ) for all j ∈ C. Let v′i ∈ BRτ

i (~v). We may assume
that v′i exists. Through (C1) we immediately obtain (i), that is, (~v−i, v

′
i) /∈

ϕG. Consider an arbitrary j ∈ C and equally arbitrary v′′i ∈ BRi(~v−i) with
(~v−i, v

′′
i ) |= ϕ. By virtue of (C2), it moreover follows that uτj (~v−i, v

′
i) >

uj(~v−i, v
′′
i ). Therefore, (~v−i, v

′′
i ) |= γj implies (~v−i, v

′
i) |= γj , and (ii) follows.

For (iii), consider an arbitrary (~v−i, wi) ∈ Xj . Then, (~v−i, wi) |= γj if
and only if (~v−i, v

′
i) |= γj . Again by (C2), we have cτj (~v−i, v

′
i) < cj(~v−i, wi).

Having chosen (~v−i, wi) arbitrarily, furthermore, cτj (~v−i, v
′
i) < inf ~w∈Xj cj(~w).

Hence, ∑
j∈C

cτj (~v−i, v
′
i) <

∑
j∈C

inf
~w∈Xj

cj(~w).

As τ only involves C, also
∑

j∈C c
τ
j (~v−i, v

′
i) =

∑
j∈C cj(~v−i, v

′
i). Therefore,∑

j∈C
cj(~v−i, v

′
i) <

∑
j∈C

inf
~w∈Xj

cj(~w).

For the opposite direction, assume that there is a coalition C ⊆ N , an
outcome ~v, a player i, and a choice v′i for which (i), (ii), and (iii) hold.
For ease of notation, let c∗k = inf ~w∈Xk ck(~w) for every k ∈ C. Notice that
without loss of generality we may assume that C maximises the difference∑

j∈C inf ~w∈Xj cj(~w) −
∑

j∈C cj(~v−i, v
′
i), that is, cj(~v, v

′
i) < c∗j for all j ∈
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C \ {i}.5 Consider an arbitrary ~w ∈ Xi. By (ii), then (~v−i, v
′
i) |= γi if

and only if ~w |= γi. Therefore, 0 < ci(~w) ≤ ci(~v−i, v
′
i). Moreover, with ~w

having been chosen arbitrarily, also 0 < c∗i ≤ ci(~v−i, v
′
i). Thus, i needs to

be compensated with at least ci(~v−i, v
′
i) − c∗i at (~v−i, v

′
i) for v′i to become a

best response of i to ~v, and slightly more to become the only one. Notice
that (iii) can be rewritten as

ci(~v−i, v
′
i)− c∗i (~w) <

∑
j∈C\{i}

c∗j −
∑

j∈C\{i}

cj(~v−i, v
′
i).

Therefore, there is some real r ∈ R with 0 < r ≤ c∗i such that

ci(~v−i, v
′
i)− c∗i + r <

∑
j∈C\{i}

c∗j −
∑

j∈C\{i}

cj(~v−i, v
′
i).

Now, define the transfer function τ such that, for every j ∈ C \ {i},

τ(j, i, (~v−i, v
′
i)) =

c∗j − cj(~v−i, v′i)∑
k∈C\{i}(c

∗
k − ck(~v−i, v′i))

(ci(~v−i, v
′
i)− c∗i + r),

and τ(k, k′, ~w) = 0 if either k /∈ C \{i}, k 6= i, or ~w 6= (~v−i, v
′
i). As r ≤ c∗i , we

find that τ is admissible. Moreover, cτi (~v−i, v
′
i) = c∗i − r. As uτi (~w) = ui(~w)

for all ~w 6= (~v−i, v
′
i), it follows that BRτ

i (~v) = {v′i}. Moreover, for all j ∈ C
we have cτj (~v−i, v

′
i) < c∗j . By (ii), it follows that uτj (~v−i, v

′
i) > uj(~v−i, v

′′
i )

for all v′′ ∈ BRi(~v) with (~v−i, v
′′
i ) ∈ ϕG and j ∈ C. As by (ii), finally,

(~v−i, v
′
i) /∈ ϕG, we may conclude that C blocks ϕG and, therefore, that ϕ is

eliminable by side-payments, as desired.

Sufficient and necessary conditions for a present equilibrium to be elim-
inable via side-payments follow of course immediately from Proposition 17,
but we find that they can be formulated much more concisely.

Corollary 18. Let ~v be a present equilibrium of a Boolean game G with
a positive global cost function c. Then, ~v is eliminable via side-payments if
and only if there is a coalition C, a player i ∈ C, and a choice v′i ∈ Vi such
that the following two conditions hold:

(I) ~v |= γj implies (~v−i, v
′
i) |= γj for all j ∈ C,

(II) if (~v−i, v
′
i) |= γj implies ~v |= γj for all j ∈ C, then

∑
j∈C

cj(~v−i, v
′
i) <

∑
j∈C

cj(~v).

5Also recall that inf(∅) = +∞. This covers the case in which there is some j ∈ C with
(~v−i, v

′
i) |= γj but (~v−i, v

′′
i ) 6|= γj for all v′′i ∈ BRi(~v) with (~v−i, v

′′
i ) |= ϕ.
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q q̄
1, 3 3

p 4, 3, 3 1, 5, 2

− 1, 2, 3

p̄ 2, 3, 1 3, 2, 2

r

q q̄
2 2, 3

p 1, 1, 3 3, 1, 2

1, 2, 3 −

p̄ 1, 3, 1 1, 1, 1

r̄

Figure 4. A three-player game illustrating coalition merging (notational conventions as in
Figure 1)

Proof. Let ϕG = {~v}. Let furthermore C be a coalition, i be a player in C,
and v′i ∈ Vi. We show that the conditions (I) and (II) are equivalent to the
conditions (i), (ii), and (iii) in Proposition 17.

First assume that (I) and (II) hold. For contradiction, also assume that
(~v−i, v

′
i) |= ϕ. Then, v′i = vi. It follows that the antecedent of (II) is

satisfied and its consequent then gives the contradiction. Thus (i) is satisfied.
Observe furthermore that we may assume that ϕ is a present formula and
hence that the conditions on v′′i in the antecedent of (ii) imply that v′′i = vi.
Thus, (ii) follows immediately from (I). Finally, observe that under our
assumptions, either Xj = ∅ or Xj = {~v} for all j ∈ C. If the former holds
for some j ∈ C, it follows that inf ~w∈Xj cj(~w) = +∞, which immediately
yields (iii). Otherwise, for all j ∈ C we have that (~v−i, v

′
i) |= γj implies

~v |= γj as well as that inf ~w∈Xj cj(~w) = cj(~v). Now (iii) follows from (II).

For the opposite direction, assume (i), (ii), and (iii) hold. As we may
assume that ϕ is a present formula, both vi ∈ BRi(~v) and ~v |= ϕ. Thus, (I)
follows from (ii). Finally, assume that (~v−i, v

′
i) |= γj implies ~v |= γj for

all j ∈ C. Then, Xj = {~v} for all j ∈ C, and (II) follows from (iii).

4.2. Coalition merging

In this section, we explore the idea of internalising externalities by forming
large enough coalitions to eliminate the potential interference among the
players in a Boolean game. In particular, we consider the extent to which
we can facilitate positive externalities and eliminate negative externalities
by merging players.

Just as we do when imposing taxation schemes on games or by allowing
coalitions to make side-payments, by merging players we can transform the
structure of the game. In particular, we can modify its original equilibria.
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qr qr̄ q̄r q̄r̄
1 − − d(C)

p 4, 6 1, 4 1, 7 3, 3

− 1, d(C) 1, d(C) −

p̄ 2, 4 1, 4 3, 4 1, 2

Figure 5. The reduced game resulting from the game in Figure 4 by merging players 2
and 3 into one player d(C) (notational conventions as in Figure 1)

To explore the properties of coalition merging, we need to establish some
notational conventions first.

Let G = (N,Φ, c, (γi)i∈N , (Φi)i∈N ) be a Boolean game and C a subset
of players in G. We denote by GC the game obtained from G by merging
the players in C into a single player. In this context merging the players
in C means that the coalition C operates as a single player d(C) aiming to
satisfy all its members’ goals at the same time, while controlling all their
variables simultaneously. The costs incurred by C are then the joint costs
of C. Formally,

GC = (N ′,Φ, c′, (γ′i)i∈N ′ , (Φ
′
i)i∈N ′),

where N ′ = (N \ C) ∪ {d(C)} for some d(C) /∈ N , and

Φ′d(C) =
⋃
j∈C

Φj γ′d(C) =
∧
i∈C

γi.

For all j /∈ C, we have Φ′j = Φj and γ′j = γj . The cost function c′ is such
that, for all outcomes ~v and all players i ∈ N ′,

c′i(~v) =

{∑
j∈C cj(~v) if i = d(C),

ci(~v) otherwise.

In words, the cost function of player i in the updated game GC yields, at
each outcome, the sum of costs of all members of coalition C at that outcome,
if player i is the player d(C), i.e., if player i is the result of the merging of
coalition C. Otherwise, it leaves the costs for player i unchanged. We refer
to GC as a reduced game, and the game G from which GC is derived as the
original game. Some features of coalition merging are presented most clearly
by focussing on the elimination of equilibria, as in the following example.
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Example 19. Consider the game depicted in Figure 4, where player 1 is able
to choose values for p, player 2 for q, and player 3 for r. The original game
has three Nash equilibria, viz., the outcomes pqr, p̄q̄r, and p̄qr̄, the latter
two of which are hard. By merging all players into one, only p̄qr̄ remains
as an equilibrium. It satisfies all players’ goals and, hence also d(N)’s. Al-
though outcome p̄q̄r does this as well, it does so at a considerably higher cost
to d(N), viz., 7 versus 5. This shows that coalition merging can eliminate
hard equilibria as well as the hardness of equilibria: both p̄q̄r and pqr̄ are
soft equilibria in GN .

Now, consider the (soft) equilibrium pqr. Observe that this equilibrium
cannot be eliminated via side-payments. Player 1 will have part nor parcel in
any blocking coalition. Player 3 cannot be incentivised to deviate to pqr̄ nor
would he be willing to compensate player 2 sufficiently if she were to deviate
to pq̄r. Observe, however, that, if player 2 and 3 were to merge, as depicted
in Figure 5, they could deviate to pq̄r̄, benefitting both players.

Example 19 illustrates several interesting properties of coalition merging.
First and foremost, it shows that it can lead to hard formulas of the original
game being removed as prep sets from the reduced game.

Observation 20. Coalition merging does not preserve hard formulas, i.e.,
there are games G, formulas ϕ, and coalitions C such that ϕ ∈ hard(G)
and ϕ /∈ prep(GC).

In the extreme case in which all players are merged into one coalition,
we find that the conditions for a hard equilibrium in game G to be preserved
as a hard equilibrium in GN are very restrictive indeed. This is shown by
the following result, which is an immediate consequence of Corollaries 12
and 11 and the observation that in GN there is only one player, d(N) = N ,
that V = ~V = Vd(N), and that (~v−d(N), v

′
d(N)) = v′d(N).

Corollary 21. Let G be a game and ~v an outcome. Then, ~v is an ini-
tial equilibrium in GN if and only if

∧
i∈N γi being satisfiable implies ~v |=∧

i∈N γi. Moreover, ~v is a hard equilibrium in GN if and only if ~v is the
unique outcome in G such that ~v |= γi for all i ∈ N .

Proof. The result follows immediately by translating the characterising
conditions for initial and hard equilibria – see Corollary 12 and Corollary 11,
respectively – to the special case of GN .

For general formulas, the situation is only slightly more complicated and
the logical concepts of a tautology and a formula being satisfiable can be
employed to obtain suitable characterisations.
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Proposition 22. Let G be a game and ϕ a satisfiable formula. Then,

(i) ϕ ∈ init(GN ) if and only if
∧
i∈N γi ∧¬ϕ being satisfiable implies that∧

i∈N γi ∧ ϕ is satisfiable as well.

(ii) ϕ ∈ hard(GN ) if and only if
∧
i∈N γi → ϕ is a tautology and either∧

i∈N γi is satisfiable or ϕ is a tautology.

Proof. Both (i) and (ii) follow almost immediately from Proposition 9
and 10. For GN the characterising condition for initial equilibria in Propo-
sition 9 reduces to:

v′ |= γd(N) ∧ ¬ϕ for some v ∈ V implies v′′ |= γd(N) ∧ ϕ for some v′′ ∈ V .

Recall that γd(N) =
∧
i∈N γi. This yields (i).

For (ii), observe that in GN the characterisation of hard formula in
Proposition 10 reduces to that for all v′ ∈ V both (i′) if v′′i 6|= γd(N) for all
v′′ ∈ V , then v′ |= ϕ, and (ii′) if v′i |= γi, then v′i |= ϕ. This is equivalent to
the conjunction of (i′′) if v′′i |= γd(N) for some v′′ ∈ V or v′ |= ϕ for all v′ ∈ V ,
and (ii′′) for all v′ ∈ V , if v′i |= γi, then v′i |= ϕ. Recall that γd(N) =

∧
i∈N γi

and the result straightforwardly follows.

The operation GC applied to an original game G is well defined for every
coalition C. One might, however, consider only the classes of games where
a certain group of players have compatible objectives. We will say that a
group of players C are compatible if they have mutually consistent goals, i.e.,
the formula

∧
i∈C γi is satisfiable. We believe that focusing on coalitions that

have compatible goals – and even impose compatibility as a requirement for
coalition merging – is a desirable and intuitive feature. While we leave a
thorough exploration of goal-compatible coalition merging to future work,
we state the following result.

Corollary 23. Let G be a game in which the players’ goals are compatible
and ϕ a satisfiable formula. Then,

(i) ϕ ∈ init(GN ) if and only if
∧
i∈N γi ∧ ϕ is satisfiable,

(ii) ϕ ∈ hard(GN ) if and only if
∧
i∈N γi → ϕ is a tautology.

Proof. The result is obtained immediately from Proposition 22 through
some elementary truth-functional reasoning about satisfiability in proposi-
tional logic.

We furthermore find that the equilibria and prep sets of GN have some
desirable properties if the players goals are compatible.
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Proposition 24. Let G be a game in which the players’ goals are compatible
and ϕ ∈ prep(GN ). Then, there is some outcome ~v ∈ ϕG with ~v |=

∧
i∈N γi.

Consequently, ~v |=
∧
i∈N γi for every ~v ∈ ne(GN ).

Proof. We may assume that there is some valuation v with v |=
∧
i∈N γi.

Moreover, v = vd(N) ∈ Vd(N). As prep sets are non-empty, we may also
assume that there is some outcome ~v′ with ~v′ |= ϕ. As ϕ ∈ prep(GN ),
there is some v′′d(N) ∈ BRd(N)(~v

′) such that (~v′−d(N), v
′′
d(N)) |= ϕ. Then,

ud(C)(~v
′
−d(N), v

′′
d(N)) ≥ ud(N)(~v

′
−d(N), vd(N)). Observe that (~v′−d(N), vd(N)) =

vd(N). Hence, (~v′−d(N), v
′′
d(N)) |=

∧
i∈N γi as well (otherwise v′′d(N) would not

be a best response). Recall that (~v′−d(N), v
′′
d(N)) |= ϕ and the result follows.

Observe by the above that if ϕG = {~v}, also ~v |=
∧
i∈N γi. The second

part then follows immediately from Lemma 3.

Finally, we focus on the relation of equilibrium eliminability via coali-
tion merging and via side-payments. Observation 14, together with Propo-
sition 13 immediately shows that coalition merging can eliminate equilibria
that cannot be eliminated via side-payments.

Observation 25. There are games with formulas that can be eliminated by
merging coalitions but not by side-payments.

Thus, one might suspect that formulas that can be eliminated via side-
payments can also be eliminated by merging coalitions. Example 26 shows
that this is not the case.

Example 26. Consider again the game in Figure 4, but now assume that
in p̄q̄r only player 1 achieves his goal and in p̄qr̄ only players 1 and 3 theirs.
Then, outcome p̄q̄r̄ is an equilibrium, be it one in which none of the players’
goals is satisfied. Clearly, this outcome can eliminated via side-payments.
In fact, every non-singleton coalition is blocking outcome p̄q̄r̄ and contains
players who are prepared to compensate fully the costs incurred by some
player deviating from p̄q̄r̄. However, no matter how you merge coalitions,
outcome p̄q̄r̄ will remain a Nash equilibrium in the reduced game due to its
low costs.

Thus, we can make the following final observation, showing that side-
payments and coalition merging are complementary tools to eliminate un-
desirable properties in Boolean Games.

Observation 27. There are games with formulas that can be eliminated via
side-payments but not by merging coalitions.
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5. Summary

The problems of eliminating undesirable properties of an interaction while
facilitating desirable ones are fundamental in economics and multi-agent
systems. By focussing on Boolean games with costs, in which players have
quasi-dichotomous preferences, Harrenstein et al. [10] we were able to distin-
guish between hard and soft equilibria in games, i.e., outcomes that are Nash
equilibria irrespective of the cost function and those that may or may not
be Nash equilibria, depending on the cost function. We extended this work
to prep sets, a set-valued solution concept originally proposed by Voorn-
eveld [19]. A set of outcomes is prep if it contains for each player at least
one best response to every outcome in the set. We thus came to consider
hard and soft prep sets, which are defined for sets of outcomes in an anal-
ogous way as hard and soft equilibria are for single outcomes. We studied
techniques by which undesirable properties can be eliminated, i.e., ways in
which the game can be modified so that these outcomes are no longer sta-
ble: coalitions making side-payments and merging coalitions. We found that
these two ways behave quite differently. In particular, even though by coali-
tion merging hard formulas may get eliminated, coalition merging is not
stronger than side-payments: there may be formulas that can be eliminated
via side-payments but not via coalition merging.

We note that our notion of an externality is very closely related to the
notion of dependence in Boolean games as studied by Bonzon et al [4] and
Sauro and Villata [16]. Intuitively, a player i is dependent on a player j
if there is some situation in which j can act in such a way as to obtain a
better or worse outcome for i. Formally, a player i is said to be dependent
on a player j if there are two valuations v1 and v2 differing only in the values
assigned to the variables controlled by j, such that either i strictly prefers v1

over v2, or i strictly prefers v2 over v1.
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