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Abstract

The assessment and prediction of a subject’s current and future risk of devel-
oping neurodegenerative diseases like Alzheimer’s disease is of great interest
in both the design of clinical trials as well as in clinical decision making.
Exploring the longitudinal trajectory of markers related to neurodegenera-
tion is an important task when selecting subjects for treatment in trials and
the clinic, in the evaluation of early disease indicators and the monitoring of
disease progression. Given that there is substantial intersubject variability,
models that attempt to describe marker trajectories for a whole popula-
tion will likely lack specificity for the representation of individual patients.
Therefore, we argue here that individualized models provide a more accurate
alternative that can be used for tasks such as population stratification and a
subject-specific prognosis. In the work presented here, mixed effects model-
ing is used to derive a global and individual marker trajectories for a training
population. Test subject (new patient) specific models are then instantiated
using a stratified “marker signature” that defines a subpopulation of similar
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cases within the training database. From this subpopulation, personalized
models of the expected trajectory of several markers are subsequently es-
timated for unseen patients. These patient specific models of markers are
shown to provide better predictions of time-to-conversion to Alzheimer’s dis-
ease than population based models.

Keywords: Longitudinal modeling, Alzheimer’s disease, AD markers,
subject stratification.

1. Introduction

Alzheimer’s disease had a world wide prevalence of around 26.6 million
reported cases by 2006, with predictions suggesting an increase to about 100
million by 2050 [6]. Preliminary evidence suggests that intervention to slow
the progression of the disease is likely to be most effective in early stages of the
disease [44]. Recent clinical trials successfully employ enrichment strategies
with multiple markers (e.g. [43]) and a recent post-hoc analysis of the Roche
Gantenerumab study showed a treatment effect in a subpopulation that was
identified through a longitudinal mixed effects model [27]. Advances in early
diagnosis (and treatment) have the potential to make a huge impact on the
overall well-being of the population, and reduce the burden to caregivers,
family members and health systems.

Current research into modeling Alzheimer’s disease markers has led to
an increased understanding of the underlying pathophysiology of the dis-
ease. Recently, the view on AD diagnosis has shifted from seeing subjects
as being healthy or diseased, to a more dynamic process in which clinical
and pathological markers gradually begin to change before current diagno-
sis criteria are met and continue to do so over time. Exploring the lon-
gitudinal trajectory of Alzheimer’s disease related markers is an important
task in the evaluation of early indicators of the disease, patient selection for
trials, monitoring disease progression, and validating proposed progression
models. Detailed studies into early state longitudinal Alzheimer’s disease
marker trajectory dynamics, using data-driven methods, have the potential
to aid the effort in the development of measures that can accurately and ro-
bustly quantify indications of the disease, even before its presymtomatic and
preclinal stages. Previously, hypothetical [23, 24] and experimental models
[13, 14, 50, 10, 20, 7, 25, 41, 21, 4, 5, 1, 12, 15, 53] of disease progression based
on Alzheimer’s disease markers, such as cerebrospinal fluid (CSF), imaging



and cognitive markers have been proposed.

Estimating the current progress of patients along the disease trajectory
has been the focus of many studies in this field. Recently, several approaches
that regard the disease progression trajectory as a continuous process have
been developed [13, 14, 50, 10, 20, 7, 25, 41, 21, 4, 5, 1, 12]. Many of the pro-
posed frameworks rely on modeling cognitive scores such as the mini mental
state examination (MMSE), Alzheimer’s disease assessment scale (ADAS),
clinical dementia rating sum of boxes (CDRSB), or Rey’s audio visual learn-
ing test (RAVLT) among others, as surrogate measures of disease progression.
Doody et al. [13] proposed the use of MMSE scores to compute an initial
preprogression rate (rate of initial decline prior to first physician visit) used
to classify subjects as slow, intermediate or rapid progressors. Using this es-
timated preprogression rate, Doody et al. [14] tested the predicted survival
rate of subjects and their performance on cognition, function and behavior
over time. Yang et al. [50] proposed an exponential model of ADAS scores
and used this to estimate the disease duration and current pathological stage
of a patient. Similarly, Delor et al. [10] computed a disease onset time by
adjusting subjects according to CDRSB score. Ito et al. [20] developed a
model to describe the longitudinal response in ADAS score, where the rate of
progression was found to increase with baseline severity, age and/or ApoE-e4
genotype status.

As noted in the theoretical model proposed by Jack et al. [23, 24], cog-
nitive markers are especially relevant for the advanced stages of the disease,
but less sensitive at earlier stages. In this regard, modeling frameworks that
employ different types of Alzheimer’s disease markers have also been put for-
ward. Caroli et al. [7] tested the hypothetical model of marker dynamics pro-
posed by Jack et al. [24] on real data. Using CSF Af 142, tau, hippocampal
volume, and fludeoxyglucose-PET markers, it was shown that when individ-
ual values were Z-transformed and plotted against ADAS scores, a sigmoid
model could be used to describe the population time course of markers. Jedy-
nak et al. [25] proposed a statistical methodology using multiple Alzheimer’s
disease markers, which produces an Alzheimer’s disease progression score for
each patient and each time point in the database. Schmidt-Richberg et al.
[41] proposed an approach to estimate typical trajectories of several markers
over the full course of the disease to estimate current disease progress and
disease progression rate.

Mixed effect modeling offers an appealing alternative to model generation,
as it permits the incorporation of unseen subject specific random effects. To



this end, Ito and Hutmacher [21] proposed the use of a longitudinal non-linear
mixed effects model to predict the CDRSB time course, which is used to esti-
mate the median time for clinically worsening (defined by several thresholds
in change of CDRSB) and to determine clinical endpoints to use in therapeu-
tic trials. Bernal-Rusiel et al. [4, 5] proposed spatio-temporal linear mixed
effects modeling for mass-univariate analysis of longitudinal neuroimaging
data. Adak et al. [1] calculated rates of cognitive decline using hierarchical
mixed effects models in which each subject is assumed to have a linear tra-
jectory of cognitive decline. Donohue et al. [12] used self-modeling regression
to simultaneously estimate pathological timing and long-term growth curves.
Recently, Schiratti et al. [22] proposed a generative statistical (nonlinear
mixed-effects) model for longitudinal data, described in a univariate Rie-
mannian manifold setting, to estimate an average disease progression model,
subject-specific time shifts and acceleration factors.

Modeling disease progression not as a continuous process but as discrete
stages has also been suggested by some authors. Fonteijn et al. [15] proposed
the use of an event-based model to determine the order in which markers
become abnormal in familiar Alzheimer’s and Huntington’s disease, to sub-
sequently assign a subject to one of several discrete disease stages. The
event-based model was later reformulated and extended by Young et al. [53]
for the use in sporadic Alzheimer’s disease. However, discretizing the dis-
ease progression trajectory is a strong assumption that most likely leads to
an over-simplification of the problem and does not allow a time to event
prediction. To this end, Jack and Holtzman [23] argue that accurate time-
dependent models of Alzheimer’s disease markers must be incorporated into
diagnosis criteria.

Some of the drawbacks of the mentioned approaches are their reliance
on modeling whole populations without considering data grouping and/or
that they offer no trivial way to make predictions about the future disease
trajectory of unseen, individual subjects. Given that there is substantial in-
tersubject variability in populations, a model that sets to describe a whole
population could provide a sub-optimal representation. Modeling the be-
havior of a subject’s marker using an instantiated subpopulation of similar
cases might produce a more realistic patient-specific trajectory model. The
approach proposed here draws inspiration from and builds upon the meth-
ods previously discussed. However, it differs from previous work in that
patient specific models are instantiated using a relevant “marker signature”
that defines a subpopulation of similar cases in a training database. This
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allows to estimate patient specific models (based on an instantiated subpop-
ulation) for each of the markers calculated. The proposed concept of the
“marker signature” defines a feature space in which similarities between sub-
jects’ marker trajectories can be calculated. The “marker signature” differs
for each marker and for each parameter in the parametric modeling function
used. The motivation behind the proposed approach stems from noting that
in many areas (such as clinical trials) patient stratification offers increased
observational power to studies. A description of the validation data used and
details into the framework proposed here are given in Section 2, experimental
results are provided in Section 3, and finally Section 4 offers a discussion on
the implications, strengths and weaknesses of the proposed framework.

2. Materials and methods
2.1. Data

Data used in this work was obtained from the Alzheimer’s disease neu-
roimaging initiative (ADNI) database. ADNI is a large-scale multi-site study
that aims at analysing markers from cognitive tests, blood tests, tests of
CSF, and MRI/PET imaging with regard to their ability to characterize the
progression of Alzheimer’s disease. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions and private cor-
porations. Subjects have been recruited from over 50 sites across the U.S.
and Canada. To date, ADNI in its three studies (ADNI-1, -GO and -2) has
recruited over 1500 adults, aged between 55 and 90 years, to participate in
the study. Here, the subset of subjects enrolled in either ADNI-1, ADNI-GO
or ADNI-2, that have at least four different time point samples and convert
to Alzheimer’s disease or MCI (mild cognitive impairment) during the study
are considered (as of 19/02/2015). A different number of samples from each
subject and markers are available, e.g. not all available time points contain
all cognitive or imaging information (features). 78 subjects that reverted to a
less severe disease label during the study were excluded. In total, there were
1153 subjects with at least four time points (6407 individual entries). From
these subjects, 216 (1309 samples) converted to Alzheimer’s disease, includ-
ing 10 subjects that started as CN for which time-to-conversion to AD was
used for alignment (points prior to MCI conversion were also aligned accord-
ing to AD conversion), 39 (252 samples) converted from CN (cognitive nor-
mal) to MCI (excluding subjects that start as CN and convert to Alzheimer’s
disease) and had available all markers at all time points. Henceforth, these
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groups of subjects will be called MCI-AD and CN-MCI converters, respec-
tively. Evaluations were carried out for the 216 MCI-AD converters, using
models trained either with only the MCI-AD converter group or with a larger
set that combined MCI-AD and CN-MCI groups into a temporally aligned
CN-MCI-AD converter set. This set had an average follow up time of ~45
months, with a maximum and minimum of 96 and 18 months, respectively.
Markers considered in this work can be divided into two categories: cognitive
(or functional), and structural imaging, with the latter further subdivided
into volumetric, manifold learning and grading. A summary of the avail-
able samples for each markers is given in Table 1 while the available range
for each marker/population is given in Table 2. Further details about the
markers considered here are specified as follows.

Cognitive markers. ADNI participating subjects were asked to perform a
battery of cognitive tests at each visit during the study. The direct total
score of each of these tests was used here as a marker. Cognitive tests in-
cluded in this work comprise MMSE, ADAS11, ADAS13, functional activities
questionnaire (FAQ), CDRSB and RAVLT. As noted before, not all results
were available at every visit due to unspecified reasons. Thus, the number of
available subjects for mixed effects modeling of a specific marker varied from
48-49 (with 332-339 samples) for the CN-MCI conversion group and from
264-269 (with 1697-1740 samples) for the MCI-AD group.

Volumetric. Magnetic resonance (MR) images were segmented into anatomi-
cal regions using multi-atlas label propagation with expectation-maximization
(MALPEM) [29]. Here, 30 atlases® segmented into 134 anatomical regions
were transformed to an unsegmented image space using non-rigid registra-
tion [38, 19]. Individual atlas label maps were then transformed to the un-
segmented image space using the calculated transformations and a nearest
neighbor interpolation scheme. The propagated atlas label maps were then
fused into a consensus probabilistic segmentation using a local weighting ap-
proach. Further refinement using a method that exploits image intensities
in an expectation-maximization framework was carried out. From the 134
anatomical structures, all cortical volumes were combined into left and right
cortex, while ventricular volumes were combined into a single value. Follow-

3Brain atlases corresponding to manual expert segmentations provided by Neuromor-
phometrics, Inc. (http://Neuromorphometrics.com)



ing suggestions made in the literature [25, 53, 12, 1], a subset of structures
consisting of the ventricles, left and right cortex, amygdala, and hippocam-
pus (seven in total), were selected as markers for further analysis. The total
number of training subjects available was 41 (with 264 samples) for the CN-
MCI model and 224 (with 1379 samples) for the MCI-AD model.

Manifold learning. Manifold learning features from MR images have been
shown to contain valuable information about disease severity and progres-
sion [18, 16, 17, 49]. Here, the aim is to learn the underlying low-dimensional
manifold that best represents the population. This is achieved in three steps:
First, a region of interest (ROI) relevant to disease progression is learned us-
ing sparse regression [16]. Second, local binary patterns (LBP) are extracted
from the ROI to transform MR intensities to a higher-dimensional binary
space. Finally, Laplacian Eigenmaps [3] is used to learn a low-dimensional
manifold, where the k-neighborhood graph is constrained to allow only one
instance per subject into each neighborhood [17]. The manifold is chosen
to have two dimensions (D1 and D2). Data points in this two-dimensional
manifold follow an approximately quadratic distribution. With this in mind,
a third feature P_D1D2 was obtained via a perpendicular projection of the
points in R? to a fitted quadratic curve. Manifold features were computed
for 1063 subjects (5679 images) with at least four visits, out which 41 (264
images) and 224 (1379 images) were CN-MCI and MCI-AD converters, re-
spectively.

Grading. The goal of grading features [9, 47, 46] is the scoring of a test
subject by estimating its similarity to different training subjects. There are
two main steps in their calculation: ROI learning using sparse regression as
described in [18], and disease label propagation from training to test subjects.
The relation between training population and test subject is modeled using
elastic-net regression. Given the ROI intensities of a test subject X, € RF*!
and n training subjects X, € R**", the grading score g; of the test subject
can be calculated by minimizing the following cost function [46]:

& =min X, ~ Xeal2 + Aol + 3% lo
g =S5 i) /S0 dal))

Here, & are coding coefficients for the test subject and [; is the disease label
for the jth training subject. CN and Alzheimer’s disease subjects were used



’ Population \ Marker \ N S bl. age Follow-up ‘

MMSE 49 339 76.35 (5.17)  61.95 (28.07; 24/96)
ADAS11 ” 7 K 7
ADASI13 K 338 7 K
CDRSB 48 332  76.19 (5.09) 62.50 (28.11; 24/96)
FAQ " 334 K 7
CN-MCT RAVLT 49 337 76.35 (5.17)  61.95 (28.07; 24/96)
Volumetric | 41 264 76.03 (5.05) 58.24 (27.44; 24/96)
Manifold " K K 7
Grading 7 7 7 7
ALL 39 252 76.03 (4.83) 59.69 (27.32; 24/96)
MMSE 268 1737 73.93 (7.12) 47.66 (24.45; 18/108)
ADAS11 266 1723 73.94 (7.14) 47.75 (24.59; 18/108)
ADASI13 264 1697 73.91 (7.15) 47.48 (24.57; 18/108)
CDRSB 268 1736 74.02 (7.11) 47.71 (24.48; 18/108)
MCLAD FAQ 269 1740 74.06 (7.06) 47.87 (24.40; 18/108)
RAVLT 261 1673 73.89 (7.06) 46.83 (24.14; 18/108)
Volumetric | 224 1379 73.73 (7.27)  44.87 (23.16; 18/96)
Manifold K K 7 7
Grading 7 7 ” 7
ALL 216 1309 73.88 (7.13)  44.25 (23.03; 18/96)

Table 1: Summary of all available markers, where IN represents the number of available
subjects, S the number of samples, bl. age is the mean (+ standard deviation) age of
subjects at baseline in years and Follow-up is the mean (+ standard deviation; maximum
/ minimum) follow-up time in months. The row named ALL refers to the subset of subject
and samples for which all markers were available. Volumetric, manifold and grading
markers are grouped as they all have the same amount of subjects and samples available.

for training, where their corresponding [; was set to 1 or —1, respectively.
Disease label propagation was constrained to allow only one time point per
subject. Stability selection re-sampling [18] was employed to reduce sam-
pling bias and increase robustness. Images were registered to MNI152 space
using free form deformations [38] with different control point spacings (affine,
20mm, 10mm, 5mm and 2.5mm) and grading scores for each of these were
used as features for the subsequent analysis. The number of subjects avail-
able was the same as for the manifold features.

2.2. Methods

Given a set of markers, extracted from multiple subjects at several time
points, the aim is to derive subject specific marker models that in turn can



Marker CN-MCI MCI-AD

Max 95% 50% 5% Min Max 95% 50% 5% Min
MMSE 30 30 29 26 24 30 29.65 25 16 0
ADASI11 24.67 14 7 2.67 1 70 32.12 14.67 6.33 0
ADAS13 33 21 11 4.33 2 85 45 24 11.33 0
CDRSB 4.5 2 0 0 0 18 10 3 0.5 0
FAQ 14 6 0 0 0 30 26 9 0 0
RAVLT 65 56 38 24 12 71 40 25 11 0
P_D1D2 0.65 0.21 -0.09 -0.29 -0.38 0.93 0.61 0.04 -0.16 -0.36
D1 0.24 0.16 -0.05 -0.16 -0.22 0.44 0.29 0.08 -0.09 -0.21
D2 0.48 0.15 -0.03 -0.16 -0.18 0.74 0.42 -0.06 -0.18 -0.27
Hip. Left 4034 3711 3019 2350 2037 4133 3469 2621 1881 1365
Hip. Right 4213 3992 3246 2533 2095 4478 3688 2778 2008 644
Amy. Left 1540 1403 1042 728 303 1517 1242 976 560 302
Amy. Right 1635 1423 1093 649 536 1748 1300 947 589 244
Cor. Left 311140 296430 252290 215410 199730 332650 298130 250570 202800 145770
Cor. Right 306820 294080 255710 215130 184400 328830 298060 249520 203820 157770
Ventricles 122030 89020 51320 22970 12680 188120 116260 57000 28480 13380
G 2.5mm 0.95 0.84 0.19 -0.36 -0.87 0.99 0.61 -0.36 -0.83 -0.99
G 5mm 0.97 0.88 0.35 -0.66 -0.85 0.96 0.65 -0.39 -0.87 -0.98
G 10mm 0.95 0.81 0.29 -0.65 -0.94 0.92 0.67 -0.35 -0.84 -0.98
G 20mm 0.86 0.73 0.25 -0.56 -0.74 0.97 0.67 -0.19 -0.78 -0.98
G lin 0.91 0.76 0.29 -0.34 -0.61 0.89 0.60 -0.19 -0.77 -0.96

Table 2: Marker value range and percentiles of data distribution according to population.
Cognitive, manifold and grading markers are unitless values, while volumetric markers are
given in mm3.

be used to estimate a subject’s current and future disease “state”. Subjects
considered in the proposed framework exhibit worsening in terms of their
clinical label (called “converters”) at some point during the data collection
study (see Section 2.1 for data description). Furthermore, all subjects’ mark-
ers are aligned with respect to the time at which conversion (clinical wors-
ening) occurred as described in Section 2.2.1. In the work presented here,
there are two groups of subjects: MCI-AD and CN-MCI converters. How-
ever, a general model that includes subjects from both of these groups, called
CN-MCI-AD, is also explored (see Section 2.2.1). Mixed effect modeling is
used to derive a training population’s global and individual marker trajecto-
ries (see Section 2.2.2). The main objective here is to derive individualized
models for patients not present during training. From the proposed frame-
work, three types of models are derived: 1) the resulting population model
(popMod) from the mixed effects modeling (fixed effects), 2) an instantiated
model based on similar cases (nnMod), and 3) the “real” model (realMod),
which is the model fitted to each subject in the mixed effects modeling frame-
work (fixed + random effects). Models realMod and popMod are a result of
the mixed effects modeling, while nnMod is an estimated model according
to Section 2.2.3. Generally, given a new patient, not present during training,
only the general population model popMod is available for prediction as the
individualized realMod is unavailable. The aim is therefore to examine if the
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Figure 1: Overview of the proposed framework.

Temporal alignment

estimated nnMod is a better approximation to the realMod than the popMod
in a validation setting, thus providing an individualized model based on a
relevant subpopulation. Figure 1 shows an illustrated diagram of the three
main steps of the proposed framework.

2.2.1. Temporal alignment of markers

The proposed framework relies on the temporal alignment of markers with
respect to the conversion to a more severe disease label (clinical worsening).
However, due to the temporal limitations of most population studies, it is of-
ten difficult to observe subjects progressing through the complete Alzheimer’s
disease trajectory. It is more often the case that in population studies sub-
jects progress from CN to MCI or from MCI to Alzheimer’s disease. Gener-
ally, a different model is needed to explain each of these two phases due to
the lack of a consistent temporal alignment. With this in mind, an extended
disease trajectory model can be learned by combining the CN-MCI and MCI-
AD groups via finding a temporal group alignment variable. Cross-sectional
variance of markers generally increases as markers measurements move fur-
ther along the disease trajectory. Hence, group alignment can be achieved
using the cross-sectional variance distribution similarity of both groups in an
overlapping disease stage region. This region of overlap is assumed to occur
before MCI subjects converts to Alzheimer’s disease and after CN subjects
have converted to MCI.

Quantile regression models the relation between a set of predictor vari-
ables and specific quantiles of the measured variable. It specifies changes in
the quantiles of the measurements and can be used to infer the cross-sectional
variance distribution of the measured variable. The need for quantile curves
arises when measurements are strongly dependent on some covariate, e.g. po-
sition along the disease trajectory, so that the reference range changes with
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the covariate [8]. Whereas standard linear regression techniques summarize
the average relationship between a set of regressors and the measurements
based on the conditional mean function, quantile regression considers the
relationship between the regressors and measurements using the conditional
median function, where the median is the 50th percentile, or quantile ¢, of
the empirical distribution.

Assuming that the distribution of the measurements is not normal but can
be normalized via the Box-Cox power transform, then the LMS [8] method
(named after the three parameters of the Box-Cox power transform: A, the
mean 4 and the coefficient of variation o) can be used to obtain the quantile
curves, and hence the conditional cross-sectional distributions of the mea-
surements. Furthermore, a modified version of the LMS method, that uses
the Yeo-Johnson [52] power transform as in [51] to allow the handling of
non-positive marker values, can be used to induce Gaussianity in the gener-
ally non-Gaussian marker distribution data and obtain the conditional cross-
sectional distributions. In the same way as in [41], the conditional cross-
sectional distributions, obtained from the modified LMS method [51], for
each of the groups (CN-MCI and MCI-AD) can be used for the temporal
alignment of markers. The area under the curve of the conditional distribu-
tions of the markers at each time (after within-group temporal alignment)
are used as goodness of fit, and its maximization determines the temporal
shift between the CN-MCI and MCI-AD subject groups. Figure 2 illustrates
the conditional distribution matching process used for temporal alignment,
where the variance of conditional cross-sectional distributions are illustrated
as the three colored lines, with the middle line representing the mean and
the outer lines the distributions variance. Figure 2 (a) illustrates how the
conditional distribution variance of both groups varies in relation to the time
of conversion. These two groups, each aligned to its respective point of con-
version (CN-MCI or MCI-AD), can be matched by finding the best matching
between the cross-sectional distributions as in Figure 2 (b), to ultimately de-
fine the optimal time shift between the points of conversion as in Figure 2

(c).

2.2.2. Mixed effects modeling

Modeling Alzheimer’s disease marker relations in longitudinal data re-
mains a challenge. On the one hand, it could be assumed that all measure-
ments are drawn independently from the same general population, however,
some measurements are grouped (e.g. longitudinally by subject) and there-
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Figure 2: Variance matching and temporal group alignment process. The X- and Y-
axis represent time and marker measumerment, respectively. Colored curves represent
the variance distribution of the temporally aligned marker values, dotted vertical lines
represent group transition to a more severe disease state and the dashed vertical lines
indicate the optimal variance matching point. (a) Groups aligned with respect to transition
to a more severe disease state. (b) Search for optimal variance matching point. (c¢) Groups
temporarily aligned at optimal time shift.

fore not independent. On the other hand, individual models could be fitted
to each subject, treating same subject measurements as dependent, while as-
suming independence from the rest of the population. This, however, ignores
the fact that subjects themselves belong to a population. Mixed effects mod-
eling attempts to reconcile these model design schemes by combining fixed
and random effects, where effects are considered variables that form part of
the model parameters. Fixed effects are assumed to represent those param-
eters that are the same for the whole population and amount to traditional
regression modeling, where a single model describes the population’s behav-
ior. Random effects are group (subject) dependent random variables, which
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are modeled as additional error terms and determine the deviation of individ-
ual subjects from the population’s model. Generally, a mixed effects model
that belongs to the jth observation of the ith individual can be written as
[31]

yij = f(ixij) + €5, (2)
where y;; is the jth response of the ith subject, x;; is the predictor vector for
the jth response on the ith subject, f(-) is a model function, ¢; a parameter
vector of length r, and ¢;; is simplified as a normally distributed noise term.

The parameter vector ¢; can be split in fixed and random effects and be
written as

¢.=A;8+Bb;, b;~N(O0, UZD)7 (3)

where 3 is a p-vector of parameters corresponding to the fixed effects, b; is
the 7th subject’s g-vector of random effects, A; and B; are r x p and r X ¢
design matrices, and 02D is the covariance matrix. If design matrices A;
and B; are identity matrices I, all model parameters have associated random
effects and the same fixed effects apply to the whole population. Here, the
predictor (dependent) and the target (independent) variables z;; and y;;, re-
spectively, contain the marker measurements and the time-to-conversion of
the jth observation (time point) of the ith subject. Additionally, covariance
matrix D and design matrices A; and B; from Equation 3 are considered
identity matrices for simplicity. A more sophisticated choice of design matri-
ces A; and B; can be used to add covariates to the model, such as ApoE-e4
genotype. Furthermore, design matrices A; and B, can also be made to be
dependent on both ¢ and j to include subject- and visit-specific such as age
or education. Equation 2 can represent either linear or non-linear models by
changing the parametric modeling function f(-), which should be determined
by the underling disease progression process being modeled.

Types of parametric models. As mentioned, markers considered in this work
can be divided into cognitive, volumetric, manifold learning and grading. For
a description of each marker type (see Section 2.1).

Theoretically, long-term physiological and psychological marker models
have been hypothesized to follow a sigmoid shape [23]. Experimental evi-
dence also suggests that linear models do not sufficiently portrait cognitive or
functional decline in disease progression [40, 35, 45]. In this work, sigmoidal
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curves were used to describe cognitive and functional decline, as this is a well
accepted practice [45, 2, 32]. Sigmoidal models also offer the advantage of
fixing the lower and upper model’s asymptotes to the scale’s limits of indi-
vidual markers, such that model predictions do not fall outside this bounded
scale. Some evidence also suggests a sigmoidal pattern, with an acceleration
phase during the early stages of the disease and deceleration at later stages,
for the dynamic behavior of cortical thinning and hippocampal volume loss
(39, 7]. However, in [30, 12, 41] little evidence of acceleration, that would
suggest a non-linear effect, in structural brain atrophy rates was observed.
In this work we use a linear function to model the dynamic changes of struc-
tural MR volumetric markers. In principle, the dynamic behavior of machine
learning derived markers is less well understood, and generally depends on
the algorithm and parameter choices. Here, two types of markers fall into
this category: manifold learning and grading features. For these, parametric
model choices were made empirically, where sigmoid and quadratic models
were used for manifold learning features, while sigmoid models were used for
grading features.

Model selection for each marker was driven by observations made in the
literature previously discussed. Other parametric model choices were con-
sidered for each , e.g. Gompertz [48] or Richards [37] in addition to those
already mentioned, but were ultimately empirically rejected.

2.2.3. Model personalization

Using mixed effects modeling, individual (realMod) and population (pop-
Mod) models can be obtained for a training dataset of subjects and their
respective markers. Given an unseen subject with one (or more) time points
and at least one measured marker, the objective is to estimate its current
“state” and predict its future behavior along the disease trajectory. This is
achieved by estimating the subject’s current time-to-conversion and modeling
the corresponding progression path (nnMod).

Some markers might be more closely associated with each other than
others. Therefore, it stands to reason that choosing a relevant set of markers,
the “marker signature”, to determine subject similarity, and hence define an
instantiated subpopulation of similar cases for parameter estimation, can
play an important role. Here, the correlation coefficient between all training
subjects’ realMod models parameters and all markers is used to find those
markers that are best correlated with the change in specific marker model
parameters. At training time, these coefficients are used to choose the top
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Figure 3: Model instantiation. First row: Example of model estimation from nearest
neighbors based on marker signature. Second row: Example of model estimation from
nearest neighbors based on marker change over time.

(available) markers to define a “marker signature” (specific to each parameter
of each marker), which in turn is used to measure similarity between a test
subject and the training set to find the most similar cases. Figure 3 (top
row) illustrates the process of estimating a progression model for an unseen
subject for one marker using its marker signature. That is, given a marker
(or several) measured at a specific time in a test subject, its position along
the disease trajectory and the trajectory that this subject will follow are both
unknown (Figure 3 top left). The trajectories of training subjects (fitted to
observed data) that are found to have a similar “marker signature” (specific
to the marker in question) to the previously unseen test subject (and its set
of measured markers) are combined in order to estimate a trajectory (Figure
3 top right).

In principle, the obtained “marker signature” might be a good way to
approximate the current disease “state”, under the assumption that if all
Alzheimer’s disease markers are similar, the disease state might be similar.
However, this is not necessarily the case for disease progression speed esti-
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mation (e.g. the slope in a linear model). If more than one time point is
available, test subject instantiation can also take into account marker change
between visits to find subjects that experienced similar change over a sim-
ilar time period. Here, a marker ( is measured at time points ¢, and t;,
where the time difference between measurements is A,,. Nearest neighbors
are selected as those training models that given marker measurements [,
and (3, produce a measurement time difference A; similar to A,. On the
other hand, nearest neighbors can also be selected as those training models
that, given time difference A;, produce marker values similar to 3, and .
Figure 3 (bottom row) illustrates the process of subpopulation instantiation
based on marker change. This means that given an AD marker measured at
two (or more) time points in a test subject, with its current position along
the disease trajectory unknown (Figure 3 bottom left), the information given
by marker change and time difference between time points can be leveraged
to find trajectories that behave in a similar fashion and combined in order
to estimate a trajectory (Figure 3 bottom right). Both of these measures
(marker signature and speed) are normalized and combined to find a test
subject’s nearest neighbors and estimate its markers’ progression models.

Model averaging. Once a new patient’s nearest neighbors (similar cases in the
database) have been found, individual realMod models from that subpopu-
lation have to be combined to form the personalized nnMod model of the
patient. Averaging the subpopulation models to estimate a nnMod for the
new patient seems like a natural choice. However, several individual curves
of the same type and their arithmetic mean do not necessarily maintain the
same form. That is, the arithmetic mean of several curves functions does
not necessarily follow a sigmoid shape. Here, the assumption that individ-
ual models should behave in the same way as the mean population model is
made, and hence averaging several individual curves should result in a curve
of the same type. Mathematically, the validity of this assumption can be
ensured as follows [36]: Suppose that a marker is modeled by an arbitrary
function,

y=Ff(¢.x)+e (4)

where y represents the markers evolution, z represents time, and ¢ are the
model parameters. Then, n individuals belonging to this population can be
modeled as
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vi = f(¢i,x), i=11,2,...,n]. (5)

If ¥ is considered to represent the mean marker value at time x, then

j= =3 I )

Parameters of individual curves can be expressed as deviations from the mean
model in an analogous way as the random effects in a mixed effects model,
and thus can be written as ¢; = ¢+1p;. Here ¢ are the parameters’ values of
the mean curve and 1p; are constants’ associated to the deviation from such
curve, therefore an individual’s model can be written as

f(@i,x) = (& + i ). (7)

Expanding Equation 7 by a Taylor’s series expansion,

PB4 i) = () + Sy o (W2F) + (®)

where f§ = a ¢n . Any new individual’s model can be estimated and expressed
as a series expansion, where the first term is a function of the same form as
all the other represented curves (if n = 1, then ¢, = 0and ¢ = ¢1). The first
term of Equation 8 represents the mean curve, while the remaining terms
express the individual divergence from the mean curve. Averaging n such
curves can be expressed as

(9)

As mentioned before, the underlying assumption in this work is that all indi-
vidual trajectories (of a specific marker) are represented by the same model as
the population (albeit with different parameters). Therefore, if an estimated
nnMod model is to be of the same form as realMod and popMod (training
models), then only the first term of Equation 9 should be considered. There-
fore, averaging several curves is approximated as finding the mean of their
parameters.

= 1@+ [ ()
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3. Experiments and results

3.1. Model training

Linear and non-linear mixed effects models were trained using MATLAB
R2014a nimefit and nimefitsa, respectively. In these functions, mixed and
random effects parameter estimates that maximize a likelihood function are
sought. Here, the predictor (dependent) and the target (independent) vari-
ables x;; and y;;, respectively, contain the marker measurements and the
time-to-conversion of the jth observation (time point) of the ith subject.
Additionally, design matrices A; and B; from Equation 3 are considered
identity matrices for simplicity.

Non-linear mixed effects model estimation is based on stochastic approx-
imation version of expectation-maximization (SAEM) algorithm [11]. The
SAEM algorithm with simulated annealing [28] theoretically ensures con-
vergence close to a global maximum. Therefore, parameter estimates can
slightly vary from run to run depending on the exact initial parameter es-
timates. Following the suggested analysis done in [26], the mean parameter
estimates from 10 different (successful) runs (with different initial parame-
ters) are used.

As mentioned, linear models were used for volumetric markers, where
random effects were considered in both the slope and offset. Sigmoid models,
used for cognitive and grading markers, had their lower and upper asymptotes
fixed at the limits of the corresponding cognitive test and to -1 and 1 for
the grading markers. Therefore, only random effects associated with the
curvature and inflection point were considered. D1 from the manifold markers
was also modeled as a sigmoid function, where additionally random effects
were considered for the upper and lower asymptotes as there is no theoretical
lower or upper bound of the manifold coordinates. Finally, D2 and P_D1D2
from the manifold were modeled as quadratic functions with random effects
considered in the linear and quadratic coefficients.

Using the LMS method the conditional distributions of each marker at
each time (after temporal alignment) were used to determine the tempo-
ral shift between CN-MCI and MCI-AD subject groups. It must be noted
that this procedure failed in the case of CDRSB and FAQ markers, as a
large portion of marker samples clustered at zero (in the CN-MCI converter
subject group). Therefore, these models were omitted from the group shift
calculation. CN-MCI conversion was estimated to occur approximately 59
months before MCI-AD conversion. Comparable results (of ~61 months)
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Figure 4: Time-adjusted CDRSB score values of CN-MCI converters, MCI-AD converters

and CN-MCI-AD (after temporal alignment).

cially added to aid visualization of the cognitive scores.

A small amount random noise was artifi-

were found by Schmidt-Richberg [41], where the same technique but a dif-
ferent set of subjects and markers was used. Figure 4 shows some examples
of the resulting CN-MCI, MCI-AD and CN-MCI-AD subject groups. Figure
5 displays the resulting popMod, nnMod and realMod models for an exam-
ple subject from the mixed effects modeling and model personalization for
the CDRSB, grading feature, ventricles and D1 markers. Additionally, the
measured marker values for the example subject are overlaid as connected

arrows.
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Figure 5: Marker value distribution after time alignment (with respect to time-to-
conversion to AD) for CDRSB, patch-based grading, ventricles and D1 (best seen in color).
Same color markers indicate same subject. The black curve refers to the fitted mixed ef-
fect population model. Vertical red line indicates time of conversion (zero). The red solid
curve indicates the “real” fitted mixed effects model for a particular subject. The dashed
red curve indicates the estimated nnMod. Arrows connect the measured marker values.

3.2. Parameter exploration

There are two main tuning parameters in the proposed framework, the
size of the “marker signature” (the amount of markers that will form part
of it) and the number of nearest neighbors sought during subpopulation in-
stantiation to estimate a test subject’s nnMod model. Two metrics were
explored while varying these parameters: time-to-conversion estimate mean
absolute error (Figure 6 top row) and accuracy of the predicted time-to-
conversion to detect pre-AD instances less than 24 months from conversion
(Figure 6 bottom row). Figure 6 shows the exploration of these tuning pa-
rameters using both described metrics with both previously discussed groups
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of subjects, MCI-AD and CN-MCI-AD. Given the information provided by
Figure 6, tuning parameters were chosen as to provide a good compromise
between these two metrics, with the “marker signature” size set to 15 and
the number of nearest neighbors set to 10. Both MCI-AD and CN-MCI-AD
subject groups’ models produce relatively similar results. In Figure 6 top
row it can be observed that the optimal “marker signature” sizes for the
MCI-AD and CN-MCI-AD populations are between 30-40 and 5-15 markers,
respectively. A close inspection of the prefered “marker signature” composi-
tion reveled that this varied depending on the choice of population (MCI-AD
or CN-MCI-AD). “Marker signature” composition is determined by the cor-
relation coefficient between model parameters of the analysed marker and
the measured values of the rest of the markers. There are different amount
of samples in either population (1309 and 1561) and hence correlation co-
efficients vary between them. It was observed that marker preference in
the CN-MCI-AD model tended to favor markers usually associated with AD
progression, therefore generating more compact “marker signatures”.

3.3. Time-to-conversion estimation

Disease progress or state estimation is of great interest to Alzheimer’s dis-
ease researchers, clinicians and caregivers. Identifying subjects at greatest
risk of progressing on a clinical endpoint is relevant in trial design. How-
ever, information about the current disease state of a subject and its future
trajectory is generally unknown and needs to be estimated. Here, time-to-
conversion is used as a surrogate measure of the current disease state. Esti-
mating the time-to-conversion with respect to Alzheimer’s disease diagnosis
is the main goal here, and two different sets of subjects groups can be used to
train the mixed effects models: The MCI-AD conversion group and the CN-
MCI-AD group. Time-to-conversion is estimated by finding similar cases of
a test subject in the training set, averaging the models of those similar cases
to estimate the test subject’s individual model, and finally using this model
to estimated time-to-conversion (see Section 2.2.3). Three types of model are
considered and compared here to make predictions: popMod, derived from
the mixed effects modeling (fixed effects), nnMod, based on nearest neigh-
bors (or similar cases), and realMod, again from the mixed effects modeling
(fixed + random effects).

Considering that each subject has four or more time points, two scenarios
are explored: Cross-sectional estimation, where each instance of the test
subject is treated independently to estimate its “current” disease state; and
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Figure 6: Marker signature size and number of nearest neighbors tuning parameter ex-
ploration. Top row: time-to-conversion evaluation. Bottom row: accuracy to detect
conversion within 24 months. Left column: using MCI-AD models. Right column: using
CN-MCI-AD models.

longitudinal estimation, where one (or more) of the subject’s instances is used
to estimate its current and future disease states. A leave-one-out experiment
was carried out where each subject was removed from the training set and
treated as an unseen subject. Table 3 details the results of cross-sectional and
longitudinal time-to-conversion estimation using models from all available
“core” markers. What are referred here as core markers (see in Table 2) are:
Cognitive (MMSE, CDRSB, ADAS11, ADAS13, FAQ and RAVL), manifold
(P_D1D2, D1 and D2), volumetric (left and right hippocampus, amygdala
and cortex, and ventricles) and grading (using linearly and FFD aligned
images at 20, 10, 5 and 2.5 mm). The rest of the markers that make the
complete pool from which the “marker signature” can be built consists of
the remaining 134 volumetric features and up to 20 manifold dimensions
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’ Model | Experiment \ popMod nnMod realMod ‘

Cross-sectional 12.6 (12.0)*T

MCI-AD Longitudinal (1 tp) . 129 (11.9)*f
Core markers Longitudinal (2 tp) 196 (150" 447 (12.3)*f 55 (58)

Longitudinal (3 tp) 12.3 (12.1)*

Cross-sectional 13.4 (12.1)*T

CN-MCI-AD | Longitudinal (1 tp) . 128 (11.3)*
Core markers Longitudinal (2 tp) 205 (15:5)" 157 (11.9)* 55(58)

Longitudinal (3 tp) 12.2 (11.8)*

Cross-sectional 13.3 (12.5)*

MCI-AD Longitudinal (1 tp) 13.6 (12.5)*T
No cprsB/MMsE | Longitudinal (2 tp) | 21.1 (16.2)*  13.6 (12.9)*T 5.7 (6.2)

Longitudinal (3 tp) 13.0 (12.8)*T

Cross-sectional 14.1 (12.1)*T

CN-MCI-AD | Longitudinal (1 tp) 134 (11.9)*
No cprsB/MMsE | Longitudinal (2 tp) | 22.1 (16.7)* 13.6 (12.4)*T 5.8 (6.2)

Longitudinal (3 tp) 13.2 (12.3)*T

Table 3: Cross-sectional and longitudinal (tp: time point) time-to-conversion estima-
tion mean absolute error (standard deviation in parenthesis) of popMod, nnMod and
realMod using MCI-AD and CN-MCI-AD models. Statistical significance (p<0.001) us-
ing a Wilcoxon signed rank test between MCI-AD and CN-MCI-AD indicated by *, and
between using all core markers and without CDRSB/MMSE by 1.

(as in [41]). In the cross-sectional experiment, estimations for all instances
using each type of model (popMod, nnMod and realMod) were made. Here,
each marker (and each model type) produces an estimate on the current
time-to-conversion, then the predictions from all core markers are averared
to give a final estimate. For longitudinal estimation, the baseline visit of
each subject was used as the current state in order to find its corresponding
nnMod model. Subsequent visits were estimated based on the nnMod model
found for the baseline visit. Here, model parameters related to the offset
of the current disease state are estimated based on the nearest neighbors
according to its “marker signature”. Model parameters associated with the
slope or curvature of the model are estimated based on the nearest neighbors
according to two criteria: marker and temporal goodness of fit (see Section
2.2.3). In the same way as in the cross-sectional experiment, each type of
model (popMod, nnMod and realMod) and core marker produces an estimate
for every instance on the current time-to-conversion, and predictions from all
core markers are averared to give a final estimate.
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Since diagnosis in the ADNI protocol is mainly based on MMSE and CDR,
and these scores are implicitly used for temporal alignment of the training
subjects, there is a potential bias in the results (marked as “Core markers”)
presented in Table 3. To this end, results excluding these two scores (marked
as “No CDRSB/MMSE”) are also presented in Table 3. On average, there
was an observed decrease in time-to-conversion prediction accuracy between
using all core markers and excluding MMSE and CDRSB in the MCI-AD
and CN-MCI-AD converter groups of 0.76 and 0.88 months, respectively.
The interpretation of this difference needs to disentangle the bias effect from
information lost due to the use of less data. To this end, experiments remov-
ing any other two cognitive scores (not related to the temporal alignment)
produce on average a decline in accuracy of about 0.41 and 0.48 months for
MCI-AD and CN-MCI-AD, respectively. Additionally, a statistical compar-
ison, using a Wilcoxon signed rank test, of the results found that 70% of
these were not statistically significant (p<0.001). These results seem to sug-
gest that values reported in Table 3 could be overestimated by 0.4 months
on average while at the same time few of these differences were found to be
statistically significant.

Figure 7 shows the error distribution histogram for the longitudinal exper-
iment using one time point. Here, it can be seen that the estimated nnMod
models perform better than the average population popMod model in the -30
to 30 month range (closer to the best case scenario of the realMod model),
however, they perform worse outside this range. On average, using MCI-
AD models, instead of the extended CN-MCI-AD models, produces better
results, however, the use of the extended models improves substantially the
performance of nnMod for times before -30 months, although at the price
of slightly worse results for times after -30. As the data is not uniformly
distributed it must be noted that there are far less data points available out-
side the -30 to 30 month range (see numbers on top of bars in Figure 7) and
therefore could be less reliable.

4. Discussion

In the used ADNI data, subject visits on average occur every ~8.7 months
and conversion is assumed to occur at the midpoint between the last visit
before conversion and the first visit afterwards. Since it is assumed that
conversion could have occurred at any point between these two visits with
equal probability, it should be noted that there is on average an a-priori mean
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Figure 7: Error distribution histogram for the longitudinal experiment using one time
point. X-axis time-to-conversion. Y-axis time-to-conversion estimation mean absolute
error. Top figure MCI-AD group, bottom figure CN-MCI-AD group. Whiskers depict the
standard deviation of the mean absolute error (drawn on top of bars). On top of wiskers the
number of samples available at that time-to-conversion. Symbols on top of wiskers denote
statistical significance (p < 0.05) between MCI-AD and CN-MCI-AD models predicted
error, with * for popMod, 4 for nnMod, 1 for realMod and NA where there was only one
sample. Note that for some time points there were very few samples, and hence a careful
consideration of the statistic results should be given.

absolute error of ~2.18 (8.7/4) due to the exact conversion time uncertainty.
Results presented here should be considered within this context, as this is
the absolute minimum expected error due to the average marker sampling
rate.

Results from Table 3 suggest that adding more time points to the model
estimation process has a very small effect in the overall time-to-conversion es-
timation accuracy. Additionally, it was observed that the inclusion of several
time points generally had a positive effect in the -30 to 30 range, while outside
this range results generally degraded. On close inspection of the estimation
accuracy of each individual marker on its own, the estimated nnMod per-
formed always better that popMod when only one time point was considered
in the model estimation process. These results justify the use of the proposed

25



“marker signature”. Nonetheless, results for the use of several time points
were mixed. In this case, all imaging markers generally benefited from the
extra information provided by the use of several time points in the estimation
process. However, for cognitive features there was no benefit from the use of
several time points in the estimation process. In fact, this proved detrimental
as in this case the estimated nnMods performed worse than the popMod. A
close inspection of the absolute mean individual weighted residuals of models
fitted to cognitive scores reveals that on average they are approximately 30%
higher than those of other markers. Such behavior could be associated with
higher measurement uncertainty (acquisition noise) and therefore estimating
model speed from a couple of (noisy) time points measurements might be
less beneficial.

some potential areas within the current framework that could be further
improved are the model training and how nearest neighbors are selected and
handeled. In the current experiments, no additional covariates were added to
the mixed effects modeling (design matrices A; and B; identity matrices) in
order to keep the modeling as simple as possible. However, the methodology
permits adding additional subject-specific covariates to the models through
design matrices A; and B;, or subject- and visit-specific covariates through
A;; and B;;. Such covariates could include age, ApoE-e4 genotype or edu-
cation, all of which were shown to be covariates of the rate of Alzheimer’s
disease progression [20]. Additionally, some of the markers considered here
have a fixed range of possible values, data at the extremes of these markers
could be censored during the model training phase [21] in order to improve
model fitting. In the work proposed here, the nearest neighbor estimation
(Section 2.2.3) does not take into account subject distance for other than
to determine neighborhood membership. A simple way of including subject
distance information would be to find the weighted average, according to
distance, rather than the mean of the parameters. Furthermore, there are
two types of neighbors considered here, e.g. from “marker signature” for
cross-sectional estimation and from marker “speed” to incorporate longitu-
dinal information. In the current form both of these were treated with equal
importance. These could be treated differently, e.g. by weighing parameters,
however at the cost of including additional tuning parameters. More complex
methods for finding and combining nearest neighbors could be used.

A shortcoming of parametric mixed effects modeling is the implicit tra-
jectory shape assumption being made, where not only the population is as-
sumed to follow a very specific parametric model, but that also individuals
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follow the same type of parametric model. Generally, this assumption is not
straightforward (or maybe even impossible) to verify in individuals’ curves.
However, such assumption also ensures compactness and interpretability of
the estimated models and hence is usually tolerated (albeit some work fo-
cuses on using non-parametric models [12, 42, 41] for population AD marker
modeling). In the work proposed here and in a similar way as in mixed effects
modeling, when estimating the trajectory of an unseen test subject, the as-
sumption (with its associated caveats) is also made that it should follow the
same type of parametric model. The (seemingly) over simplification of the
mean curve Taylor expansion from Equation 9 ensures model compactness,
interpretability and that test subjects can be easily embedded in the mixed
effects model parameter space.

In general, longitudinal modeling of populations markers requires some
sort of temporal alignment of subjects. Such temporal alignment can be ei-
ther approximated from clinical data (e.g. from clinical diagnosis [41], from
cognitive score [21] or in special cases from familial history [15]) or estimated
from the data (e.g. modeling a time-shift as random effect [22], using pre-
defined sequences of marker abnormality [53] or iteratively from long-term
progression curves and subject-specific linear random effects [12]). More-
over, methods that rely on clinical variables for grouping in their analysis
can be said to also implicitly use such grouping as a rough form of temporal
alignment [4, 5].

Diagnosis of AD is notoriously challenging and conclusive confirmation
can only be obtained with histopathologic evidence, therefore the current
diagnosis of possible/probable AD [33, 34] is prone to misdiagnosis. The
presented approach relies on a clinical diagnosis for temporal pre-alignment,
and therefore is also susceptible to errors introduced due to potential misdi-
agnosis in the data.

One of the main limitations in the presented validation is the bias intro-
duced in the subject inclusion criteria. Here, subjects are only included if
conversion to a more severe state of the disease (CN-MCI or MCI-AD) occurs
within the (ADNI) study. This reduces the number of available subjects for
modeling and more importantly introduces a bias to subjects that progress
faster along the disease trajectory. That is, it ignores subjects that might
convert but are progressing on the disease trajectory at a slower pace, and
hence conversion might fall beyond the study’s time frame. As mentioned
before and as noted by Donohue et al. [12], this limitation is introduced due
to a lack of an obvious biological “time zero” in Alzheimer’s disease. Here,
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time-to-conversion is used to align subjects, however a more sophisticated
alignment in time framework could be used to include those subjects that
have thus far not converted.
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