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Abstract— This paper presents an intelligent sewing sys-
tem for personalized stent graft manufacturing, a challenging
sewing task that is currently performed manually. Inspired by
medical suturing robots, we have adopted a single-sided sewing
technique using a curved needle to perform the task of sewing
stents onto fabric. A motorized surgical needle driver was
attached to a 7 d.o.f robot arm to manipulate the needle with a
second robot controlling the position of the mandrel. A learning-
from-demonstration approach was used to program the robot
to sew stents onto fabric. The demonstrated sewing skill was
segmented to several phases, each of which was encoded with
a Gaussian Mixture Model. Generalized sewing movements
were then generated from these models and were used for task
execution. During execution, a stereo vision system was adopted
to guide the robots to adjust the learnt movements according
to the needle pose. Two experiments are presented here with
this system and the results show that our system can robustly
perform the sewing task as well as adapt to various needle
poses. The accuracy of the sewing system was within 2mm.

I. INTRODUCTION

Sewing is a delicate and laborious task. Though recent
developments in robotics have brought changes to the sewing
industry, some conventional hand stitches remain difficult to
automate. The objective of our study is to automate sewing
by teaching robots to create hand stitches. In particular, we
focus on the task of sewing stents onto fabric for personalized
stent graft manufacturing.

A stent graft is a tubular structure composed of fabric
supported by a metal mesh called stent. It is commonly used
during endovascular interventions for the reinforcement of
the vessel wall in the presence of aneurysms. For stent grafts
located near side branches, such as the renal arteries off the
aorta, customisation to the patient anatomy is required, with
fenestrations (openings) on the graft body to maintain the
patency of these branches to vital organs. They often come
at a significant cost in addition to a long manufacturing
process; this is mainly due to the intensive manual crafts-
manship involved in the process. As a consequence, patients
are more likely to be subject to complications. Improved
manufacturing of personalised stent grafts is therefore a
critical unmet clinical demand and we are pursuing a robot-
assisted manufacturing approach. This study focuses on the
key process of sewing the stents onto a fabric tube, i.e. the
graft. This is a challenging task for a robot, as hand sewing
involves dexterous manipulation of the needle and complex
bimanual motions. The stitching demands high accuracy and
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Fig. 1: The proposed robot sewing system for personalized stent
graft manufacturing.

the fabric deformation must be handled in order to maintain
the stitch quality. For this purpose, a robotic system is
proposed in order to automate the hand sewing required
during the stent graft manufacturing process (Figure 1).

The main body of research has been in automated sewing
for the textile industry. Intelligent robotic systems with multi-
sensor feedback have been built to work in conjunction with
traditional sewing machines. Important topics in this field
include bimanual robotic sewing [10], fabric tension control,
and seam tracking [20], [21]. To cope with environmental
changes during the sewing process, various control strategies
have been implemented, such as a fuzzy logic controller [9],
a hybrid position/force control [10], or a leader/follower
control strategy [19]. In addition, extensive research has been
carried out on the design of sewing heads that are capable
of sewing from a single side of the fabric, differing from
conventional sewing requiring mechanisms at both sides
of the fabric. These designs allow for sewing on a 3D
surface. For example, KSL Keilmann (Lorsch, Germany) has
developed various 3D stitching systems incorporating single-
sided sewing heads onto KUKA manipulators for sewing
fabric-reinforced structures of aircraft parts. However, these
machines are designed for sewing large and heavy objects
and are not suitable for delicate sewing for small objects
with non uniform shapes.

As robotic assisted systems emerge in the field of min-
imally invasive surgery, automated suturing tasks are also
widely investigated, providing the advantages of speed and
accuracy. Medical suturing has two main tasks: tissue pierc-
ing and knot tying. For each task, procedural planning
is performed according to well-established manual suture
techniques [7], [8], [14] or by learning the skills from
expert demonstrations [13], [16], [24]. Needle trajectories



Fig. 2: Hardware designs. Top: (1) Needle driver A; (2) Robot
1; (3) Needle driver B; (4) Mandrel; (5) Robot 2. Bottom left:
mandrel design (diameter 3.7cm). Bottom right: motorized needle
driver design.

are also optimized, taking into account constraints in mini-
mally invasive surgery, such as reducing tissue damage, port
positioning, and surgical robot kinematics [15], [22].

Vision plays a key role in the achievement of a fully
automated suturing task. To position the needle to the target
point, both the needle posture and the target suturing plane
posture are required. Iyer et al. [6] proposed a single-arm,
single-camera system auto-suturing system, in which the area
being sutured on was marked by round markers. In their
method, the monocular pose measurement algorithm [12]
was used for estimating the needle posture. Staub et al. [23]
introduced the use of a 3D stereo system with visual servoing
to improve the accuracy in aligning the needle with the target
stitching point. Recently, an auto-suturing system with 2D
camera guidance and a motorized Endo 360 suturing device
was presented [11]. In this work, a method was presented
to track the incision contour and automatically distributed
equally-spaced stitches along the incision. Because of the
nature of suturing tasks, all of these works used curved
needles to perform single-sided sewing.

Inspired by these medical sewing approaches, we have
developed a sewing system that makes use of surgical needle
drivers and a curved needle. The use of a curved needle
allows us to perform single-sided sewing, which simplifies
the sewing system design (detailed in Section II). The
proposed system is shown in Figure 1 and has three main
components: 1) personalized stent graft sewing hardware
design, including a mechanism to constrain the fabric (a
mandrel) and a motorized surgical needle driver; 2) an easy-
to-use interface to program the sewing skill (learning-from-
demonstration) and 3) a vision system to guide the sewing
and maintain stitch quality.

Compared to conventional sewing machines, our approach

Fig. 3: A custom made stent graft with maximum diameter is 3.5
cm. Note that some stents are inside the graft and some are outside.

is more versatile. It benefits both from the flexibility of a
medical suturing system and the stability of an engineered
environment. It allows us to robotically sew stent grafts with
patient specific designs, which are all currently hand-sewn
(Figure 3). To the best of our knowledge, our system is the
first autonomous single-sided sewing system that can create
hand stitches for manufacturing. The main contribution of
this work is threefold:

1) A dual arm robot sewing system that adaptively repli-
cates hand stitches using visual information, in a hy-
brid programming by demonstration and programming
by customized hardware design framework;

2) A robust needle pose estimation algorithm with shape
and pose prior;

3) A novel hardware design (mandrel) to handle fabric
deformation.

This paper presents the proposed system and is organized
as follows. Section II describes our system, the hardware
designs, and the software components. Section III shows the
experiments conducted using this system and presents the
results, followed by the discussion and conclusions in Section
IV.

II. SYSTEM OVERVIEW

Our proposed sewing system for personalized stent graft
manufacturing is shown in Figure 2. This system consists of
two KUKA LWR 7 d.o.f robots: one (Robot 1) mounted with
a motorized surgical needle driver (Needle Driver A) and the
other (Robot 2) mounted with a 3D printed mandrel. The two
robots play different roles in the task. Robot 1 is in charge
of stitching: it delivers the needle to the stitching location
and performs the stitches. Its motion is learnt from human
demonstration and is cyclic. Robot 2 controls the sewing
location: it places the mandrel at the pose required such that
Robot 1 can stitch at the same location under its local frame.
Another motorized surgical needle driver (Needle Driver B)
is fixed next to the mandrel to re-grip the needle. The needle
used is a 1/2 circular needle with 1cm diameter. A stereo
vision system (two Logitech C930E cameras) is used to
guide the sewing motion and to maintain stitch quality. The
needle pose is tracked during the task and the learnt robot
stitching motions are then amended online according to the
current needle pose. In the following sections, we describe
each component of the system in detail.



A. Hardware Designs

1) Motorized Needle Driver: The fabric tubes used in
stent grafts cannot be flattened into a single layer and
hence conventional techniques of sewing a flat piece fabric
are not applicable. A curved needle was used here with
two motorized needle drivers as this allows for single-sided
sewing and enhanced manipulation of needle. These needle
drivers are widely used in laparoscopic surgery and are
specially designed to firmly grasp the needle. DC motors
are used to motorize the needle drivers, allowing the robot
to control them. Figure 2 shows the motorized needle driver
design. This design has two sets of slots: a pair of linear
guiding slots, lying along the handles of the needle driver,
and a circular constraint slot, coaxial with the needle driver.
Therefore the motor rotation is mapped to the opening and
closing movements of the needle driver. Bearings are used
to reduce the friction of the pins moving in the slots.

2) Mandrel: The mandrel is a 3D printed hollow cylinder
to support the fabric and the stents. The shape of the mandrel
is optimized together with the fabric tube to fit each patient’s
anatomy. Stents can be sewn either inside or outside the
fabric tube, according to the stent graft design. For stents
inside, the grooves at the outer surface of the mandrel are
used for fixing them. Slots are opened on the mandrel at
the positions of stitches and allow for the needle to pierce
through and sew the stent onto the fabric. For outside stents,
the mandrel design is the same as before but the stents
are loaded outside the fabric and fixed by string rings.
Figure 2 shows a basic mandrel. Patient specific mandrels
with bifurcations and fenestrations are designed based on
the same principles, with different grooves and fabric tube
shapes.

The mandrel movement controlled by Robot 2 is computed
according to the mandrel design. After completion of one
stitch, the mandrel is moved to align the next sewing slot
with the Robot 1 trained piercing position (Section II B).
The location of each sewing slot can be obtained from the
mandrel CAD file and therefore the trajectory of Robot 2 can
be programmed beforehand to cooperate with Robot 1. The
personalization and manufacturing process of the fabric tube
and the mandrel are out of the scope of this paper; however,
regardless of the design of the mandrel, the stitching motions
of Robot 1 are the same and the cooperation of the two robots
remains in the same way.

B. Learning sewing from human demonstration

Personalized stent grafts are mostly hand sewn; automat-
ing the process is difficult due to different patient anatomies.
We tackle the problem with a dual arm system and by
dividing the programming between two robots. While the
personalized mandrel motion controlled by Robot 2 is pro-
grammed according to the mandrel design as explained in
the previous section, the hand sewing motion of Robot 1 is
learned from human demonstration.

1) Human Demonstration of Stitching: The first step is
to recode the stitching motions from human demonstrations.

The motion of finishing one stitch is called a stitching cycle.
Figure 4 illustrates the motion steps in one stitching cycle.

At the beginning of the task, Needle Driver A firmly grips
the needle end (Step a). Starting from an initial position,
Needle Driver A approaches the mandrel and pierces the
needle into the fabric (Step b). When the tip of the curved
needle pierces out from the fabric, Needle Driver A releases
the needle end (Step c). The needle stucks in the fabric with
the same pose. Needle Driver A re-grips the needle at its tip
and pulls it out from the fabric (Step d). Once the needle
is completely out (Step e), Needle Driver A hands it over
to Needle Driver B (Step f) and then moves to re-grip the
needle end (Step g). Needle Driver A then moves back to the
starting position and hence finishes a full stitching cycle. The
mandrel then brings the next slot to the stitching location.

For all these steps, the task demonstrations were provided
to the robots through the use of kinesthetic teaching. Robot
1 was put into gravity compensation mode and physically
moved by the human demonstrator. Opening and closing of
the needle driver was controlled by an electronic foot pedal.
When grasped by a needle driver, the needle will not slip
when interacting with the fabric as the motor of the needle
driver provided a large enough torque for stability. Needle
slippage could occur when the needle was released and re-
gripped (Steps c and f) and this was compensated for by the
vision system described in Section II C.

At the beginning of each demonstration, the needle was
placed in the same pose relative to the needle driver; we refer
to this pose as the ideal piercing pose. At Step e after the
needle is completely pulled out from the fabric, the needle
pose was adjusted to facilitate handing over to Needle Driver
B; we refer to this pose as the ideal hand over pose. In the
rest of the paper, we refer to both of these poses as the
ideal pose. These ideal poses were first recorded under the
needle driver frame and then transferred to the camera frame
via hand eye calibration. This information is used 1) as the
priors of needle pose estimation (Section II C) and 2) to
generate adaptive robot motion online (Section II D).

All trajectories were recorded in 6 d.o.f with Euler angles
{α,β ,θ} representing the orientation and {x,y,z} represent-
ing the robot end effector position (i.e. the needle driver
positions) at the frequency of 100Hz. When the needle driver
is gripping the needle, an object centric approach of learning
was taken. This is to say, the motion of the object, i.e. the
needle, was learned rather than the movement of the robot.
In our task, the needle movements for each stitching cycle
should be exactly the same so that the quality of the sewing
is maintained. This object centric approach allows for the
generation of adaptive robot motions to perform the same
stitch under different conditions, such as different needle
poses. When the needle is released, the robot movements
were learned such that it approaches the needle tip in the
pose necessary to grip it firmly. To enable this, the stitch
motions must be segmented into different phases.

2) Motion Segmentation: With all the collected training
data (sewing trajectories), each trajectory was segmented to
reflect the different phases of sewing and learn each phase
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Fig. 4: Steps in one stitching cycle. a) Needle approaching fabric. b) Needle piercing the fabric. c) Needle rotating around the stent. d)
Needle Driver A releasing the needle end and going to grip the needle head. e) Needle exits the fabric, approaching Needle Driver B.
f) Needle Driver B gripping the needle in the middle, Needle Driver A releasing the needle. g) Needle Driver A gripping needle end,
Needle Driver B releasing the needle.

TABLE I: Motion primitives of stitching

Motion
Primitives

Steps in
Figure 6

Needle Driver
A status

Needle Driver
B status

Needle status

1. a, b Closed Closed With A

2. c Open Closed With mandrel

3. d Closed Closed With A

4. e Closed Open With A

5. f Open Closed With B

6. g Closed Open With A

independently. This segmentation was performed based on
the relation between the needle and its driver: attached or de-
tached. When the needle was attached to the driver, we took
the object centric approach and learned the needle movement
so that the needle can repeat this for stitching. When the
needle was detached from the driver, the needle driver
trajectory was learned in order to reach the proper location
to re-grip the needle. Therefore, we use the status of the
needle driver (opened or closed) to segment the trajectories.
Table I shows the segments and their corresponding status. To
align the data across different demonstrations, Dynamic Time
Warping (DTW) [1] was applied. Each segment was then
learned as a primitive movement and encoded by a Gaussian
Mixture Model (GMM) [3] .

3) Learning of Motion Primitives: After segmentation of
the data to a set of motion primitives, a model Ω was used
to encode each primitive. Each primitive was represented
in seven dimensions: one temporal value {t} and a six d.o.f
posture value h= {x,y,z,α,β ,θ}. A joint distribution p{t,h |
Ω} was built by using a GMM. The GMM was used because
of its ability to encode non-linear data and its robustness in
extracting constraints from noisy data [2], [5], [18].

With N Gaussian components, the joint distribution p was
represented as:

p(t,h |Ω) =
N

∑
n=1

πn pn (t,h | µn,Σn) (1)

where πn, µn, Σn and pn is the prior of the n-th Gaussian
component, the corresponding mean, covariance, and the

conditional probability density, respectively.
For the n-th Gaussian component, the mean and covariance

µn, Σn are defined as:

µn =

(
µt,n
µh,n

)
Σn =

(
Σtt,n Σth,n
Σht,n Σhh,n

)
(2)

Each motion primitive was encoded by one GMM. Before
building the model, the training data was normalised to zero
mean and variance of one. Initialized by using the K means,
the values of µ and Σ were estimated by the Expectation
Maximization algorithm.

A smooth generalized trajectory was extracted using Gaus-
sian Mixture Regression (GMR). With the i-th motion prim-
itive model Ωi, a temporal value t was used to query the
trajectory h at each time step. At a specific time step t̂
the GMR estimated the conditional expectation value of the
posture ĥ as µ̂h with variance Σ̂h:

µ̂h =
N

∑
n=1

βn (t̂) µ̂h,n Σ̂hh =
N

∑
n=1

βn (t̂)
2

Σ̂hh,n (3)

where

µ̂h,n = µh,n +Σth,n(Σtt,n)
−1(t̂−µh,n) (4)

Σ̂hh,n = Σhh,n−Σht,n(Σtt,n)
−1

Σth,n (5)

and
βn (t̂) =

πn p(t̂|µt,n,Σtt,n)

∑
N
n=1 πn p(t̂|µt,n,Σtt,n)

(6)

C. Vision System

At the beginning of each stitch, the needle is gripped by
the needle driver with a similar pose as the ideal piercing
pose. After a few stitching cycles, there is a high chance that
the needle pose, with respect to the needle driver, will deviate
from its initial pose (Fig. 6). As the deviation accumulates,
it can affect the quality of the stitches, e.g. an incorrect
stitching location, and may even lead to task failure, e.g.
the needle does not pierce the fabric. The learnt robot end
effector (i.e. Needle Driver A) trajectory has to adapt to



changes in the needle pose in order to ensure the stitch
quality. To tackle this problem, a stereo vision system was
used to monitor the needle pose. Adaptive robot movements
were then generated accordingly.

In the proposed system, the needle was first detected in
each stereo image using the needle detection algorithm pro-
posed in [17]. For this purpose, a feature image, i.e. IH , based
on the analysis of the eigenvalues of the Hessian matrix [25]
was computed to enhance curvilinear structures in the image.
Assuming that a calibrated imaging system was available,
the 3D points of the needle’s model defined by its ideal
pose were projected in the image plane. This was performed
in order to include prior information of the shape of the
needle in the detection algorithm to make it more robust.
Although the ideal pose of the needle was usually different
from its true one due to slippage, it still represented a good
estimate of the needle pose. Thus, small straight segments
were detected in IH , and only segments that were close to
the projected needle and were of similar orientation were
considered as parts of the needle. Finally, these segments
were combined in order to create a continuous curve that
represented the detected needle in the images. To improve the
detection of the needle, the needle driver was also detected
in the images using color-base segmentation in HSV space.
This allowed for the reduction of false positive detection of
needle segments which were mainly caused by the presence
of the needle driver.

3D reconstruction of the needle was performed by trian-
gulating the detected needle points of the stereo image pairs.
However, in the current setup, a section of the needle was
occluded in the images due to the presence of the needle
driver. To overcome the occlusion and to estimate the new
needle pose, a discretization of the reconstructed needle
and the needle defined by the ideal pose was performed.
Starting from the needle tip, points were sampled along the
needle shape at a distance equal to the arch length of 1mm
generating a set of equidistant 3D points, defined by Nide for
the ideal and Nest for the reconstructed needle, respectively.
Finally, a rigid transformation T est

ide that best mapped the
two set of points Nide and Nest , i.e. the new needle pose,
was calculated using singular value decomposition (SVD).
Calibration of the stereo camera was performed by using
the OpenCV library1. The camera frame was registered to
the robot frame by hand-eye calibration. This needle pose
estimation algorithm is summarized in Algorithm 1.

D. Online Adaptive Motion Generation

In order to sew continuously, the needle posture was
examined at two key points of each stitching cycle: after
re-gripping the needle tip (Motion Primitive 3) and after re-
gripping the needle end (Motion Primitive 6). The motion
primitives after these two examinations (Primitive 1 and 4
in Table I were then adapted to the new needle posture. The
robot end effector adaptive posture ĤEE at each time step t
was computed as:

1http://opencv.org/

Algorithm 1 Needle Pose Estimation
Input: Rectified left and right images from stereo camera (Il , Ir), camera

parameters, ideal needle pose in camera frame (Nide), 3D point model
of needle (M)

Output: Current needle pose displacement (T est
ide ) w.r.t ideal pose

1: Extract feature images IH from Il and Ir

2: Project M to IH

3: Detect plausible needle segments in IH

4: Construct needle shape by combining the segments
5: Needle driver detection by color-based segmentation
6: Refine needle shape by incorporating needle driver
7: 3D needle shape (Nest ) reconstruction using triangulation of stereo

images
8: Compute rigid transformation T est

ide between Nest and Nide using SVD

ĤEE (t) = HEE (t) ·T EE
ide ·T est

ide (t) ·T EE
ide
−1

(7)

where HEE (t) represented the robot end effector posture at
time t in the learnt trajectory and T EE

ide the ideal needle
pose with respect to the robot end effector during task
demonstrations. With this equation, the adaptive motion was
computed without re-learning or optimization.

III. EXPERIMENTS AND RESULTS

A. Learning

Three sets of demonstrations were provided to the sys-
tem. All demonstrations started from the same position and
stitches performed on the same slot on the mandrel, with the
needle piercing and exiting the fabric at the same spots. After
data processing, the demonstrations were segmented into the
six motion primitives as described in Table I. Needle pose
estimation was implemented before Motion Primitives 1 and
4. The trajectories of these two primitives are recomputed
according to the result of the needle pose estimations.

The number of Gaussians of each GMM was determined
by using the Bayesian Information Criteria. Figures 5 b,
d, f show the 2D projection of the built model of Motion
Primitives 1-3. It can be seen from the model that the
three primitives have different characteristics. The GMM of
Motion Primitive 1 has large variance at the beginning and
small variance at the end; this is due to the demonstrations
finishing at the same stitch location and making the same
stitch. A small variance means precise motions. For the
same reason, Motion Primitive 2 has small variance both
at the beginning and the end of the motion, while Motion
Primitive 3 has small variance only at the beginning. These
show that the GMM can effectively capture the constraints
at each primitive and hence generate generalized trajectories
for the robot to complete the task.

B. Vision for needle pose estimation

Evaluation of the needle reconstruction algorithm was
performed by estimating the 3D needle reconstruction error.
This metric measured the distance between the reconstructed
3D shape and the ground truth shape of the needle. The
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Fig. 5: Needle driver trajectories of human demonstrations and
the learnt results of Motion Primitives 1-3. Left column: Multi-
ple human demonstration trajectories. Each colour represents one
demonstration. The cylinder represents the top of the mandrel. Right
column: 2D representation of the learnt GMM models. Green lines
are training data and the blue lines are the learnt trajectories. Black
circles represent the 2D Gaussian contours.

ground truth was generated by triangulation of the manually
segmented visible part of the needle in each stereo image.
The 3D needle reconstruction error, i.e. Dist(Ngt ,Nest), be-
tween the estimated needle, Nest , with respect to the ground
truth shape, Ngt , was defined as:

Dist(Ngt ,Nest) =
1

w+ f

(
w

∑
i=1

dmin(Ngt(i),Nest)

+
f

∑
j=1

dmin(Nest( j),Ngt)

)
(8)

where w and f are the cardinality of the set of points of Ngt
and Nest , respectively, and dmin(Ngt(i),Nest) is the Euclidean
distance between the ith point of Ngt to the closest point on
Nest . The distance Dist was also presented in [25].

TABLE II: Needle detection results

Trials 1 2 3 4 5 6 7

Disp from ideal
pose in Z (mm)

0 5 10 0 0 0 0

Disp from ideal
pose in Yaw (deg)

0 0 0 -20 -10 10 20

Error (mm) 0.46 0.50 0.52 0.68 0.56 0.47 0.36

Stitch success Y Y Y N Y Y Y

Seven experiments were conducted to evaluate the accu-
racy of this algorithm. The experiments were carried out
before the needle piercing, as needle piercing affects stitch
quality the most. A set of seven poses were defined where the
variations range between 10mm translation along the direc-
tion of the needle driver, and ±20 yaw rotation, respectively,
with respect to the ideal piercing needle pose. We chose to
vary in these two directions as we found that displacements
along these two directions could largely affect the robot
motions. The mean and standard deviation of the 3D needle
reconstruction error for this experiment was 0.512± 0.097
mm (Table II). This shows the needle reconstruction allows
for robust needle pose estimation and can provide accurate
guidance to the robot autonomous sewing.

C. Autonomous sewing

The result of each needle detection were used to re-
compute a piercing trajectory. With this adaptive trajec-
tory, the robot was commanded to perform a stitch. The
system successfully coped with the needle pose variations
and completed a stitching cycle six times out of the seven
attempts. At each experiment, we measured the displacement
between the desired needle piercing locations and the actual
locations. The largest displacement was less than 2mm. The
only failure that occurred was caused by the joint limit of the
third joint of the robot (±120), which was reached during
the experiment involving a rotation of −20 of the needle.
Figure 6 shows four snapshots of the experiments for four
different poses including the ideal piercing needle pose.

The sewing system was tested by continuously running
three stitching cycles without interruption. Two sets of exper-
iments were run and were both successful. The robot move-
ments of one stitching cycle are shown in Figure 7. After
each needle detection, the current needle pose with respect to
the ideal needle pose (piercing and handover) were recorded.
Table III shows the displacements. As can be seen, the needle
pose varies between each cycle. The robot successfully coped
with these displacements and continuously made stitches on
the fabric. Note that the displacement did not monotonically
increase from one cycle to another, proving that the proposed
system is able to avoid the displacement accumulation and
therefore can continuously execute the sewing task. The
accuracy of the stitch location was again within 2mm. As
for the previous experiments, we calculated the 3D needle
reconstruction error for each needle detection.



Fig. 6: Qualitative results of the task execution are shown for four different initial needle positions. Detection of the needle in the images
is reported in the first row (frame of needle: X points downwards, Y points out of paper and Z points to left), while the robot adaptation
during the task execution is shown in the second and third rows. The end of the task is in the last row.

Fig. 7: One stitching cycle of the continuous sewing experiments. The letters at the bottom show their corresponding steps in Figure 4
.

TABLE III: Needle displacements during autonomous sewing. The
needle was detected twice in one cycle: before piercing (P) and
before handing over the needle (H). The detected current needle
pose is compared with the ideal needle pose. The last column shows
the 3D reconstruction errors of each needle detection.

Exp 1
x

(mm)
y

(mm)
z

(mm)
yaw
(deg)

pitch
(deg)

roll
(deg)

Error
(mm)

cycle1 P 0.77 -0.74 -0.69 5.78 4.81 1.31 0.56
H -0.78 -1.58 -0.10 10.64 0.63 7.93 1.70

P -0.26 1.86 -0.80 12.55 -0.13 11.95 0.42
cycle2

H 0.00 1.15 1.37 1.52 -6.16 6.43 1.37

P -0.34 -0.33 1.50 6.45 -8.94 3.92 0.35
cycle3

H -0.54 1.29 1.28 1.84 -6.01 3.34 1.24

Exp 2

P -0.15 -0.57 0.74 1.95 -11.04 -4.21 0.45
cycle1

H -0.20 4.90 4.47 5.43 -7.99 39.37 0.97

P -2.51 -2.98 2.40 11.62 -7.84 12.35 0.79
cycle2

H -0.73 1.33 0.90 6.81 -6.41 7.44 1.51

P 1.24 -1.07 -1.15 10.81 -0.88 5.65 0.84
cycle3

H -0.30 0.81 0.3 1.54 -0.95 -4.20 0.88

IV. DISCUSSION AND CONCLUSION

In this paper a robotic system for sewing stent grafts
is presented. Though inspired by surgical suturing, our
sewing system is an adaptation of suturing techniques to a
manufacturing application and is designed according to the
task requirements and constraints. While automatic suturing
systems focus on handling deformable tissues, our sewing
system focuses on increasing the rigidity of the fabric by
supporting it with a mandrel. In our experiments, we make
an assumption that the fabric on a mandrel does not deform.
According to the experimental results, this turns out to be a
valid assumption. Furthermore, in a surgical suturing task
stitches need to adapt to the medical conditions such as
the width of the fissure. In comparison, our sewing system
concentrates on making the same stitch and maintaining this
stitch quality. To this end, a robust needle pose estimation
algorithm was adopted to guide the robot. Across all our
experiments, the overall mean and standard deviation of the
3D needle reconstruction error was 0.77± 0.41 mm. This
enables the robots to sew in high accuracy.



In manufacturing, users may need to program the robot
without an robot expert and we have shown that a learning
from demonstration approach can be used to program a
robot to perform sewing movements. The robustness of the
method was shown quantitatively by three experiments. We
showed that our system is able to accomplish the sewing
task effectively. The limited workspace caused by the robot
joint limits can be overcome by formulating the task as
bimanual cooperation and optimizing the task priority in the
null space [4].

One important direction of our future work is thread
manipulation. Currently, the thread is manually tightened at
the end of each stitch. Visual tracking of the thread will be
introduced to the system in the future. The system currently
works in an open-loop manner for needle adaptation, i.e.
needle movements are not tracked and corrected in real
time. Though the system is able to work robustly, the stitch
quality has not yet met the medical requirements of a stent
graft. Tracking the needle in real-time and implementing an
enhanced visual servoing algorithm is desired to increase the
sewing accuracy.

The system presented in this paper is a promising initial
study of robot sewing with hand stitches. With the same
system setup, this can be easily extended to create different
hand stitches, including those for fenestration edge finishing
and knot tying. Applications of the presented system and
methods are not limited only to stent graft sewing; it is also
a promising technique for automating robotic suturing.
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