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Abstract: Bacterial infection of the lower respiratory tract in chronic obstructive pulmonary 

disease (COPD) patients is common both in stable patients and during acute exacerbations. The 

most frequent bacteria detected in COPD patients is Haemophilus influenzae, and it appears 

this organism is uniquely adapted to exploit immune deficiencies associated with COPD and to 

establish persistent infection in the lower respiratory tract. The presence of bacteria in the lower 

respiratory tract in stable COPD is termed colonization; however, there is increasing evidence 

that this is not an innocuous phenomenon but is associated with airway inflammation, increased 

symptoms, and increased risk for exacerbations. In this review, we discuss host immunity that 

offers protection against H. influenzae and how disturbance of these mechanisms, combined 

with pathogen mechanisms of immune evasion, promote persistence of H. influenzae in the 

lower airways in COPD. In addition, we examine the role of H. influenzae in COPD exacerba-

tions, as well as interactions between H. influenzae and respiratory virus infections, and review 

the role of treatments and their effect on COPD outcomes. This review focuses predominantly 

on data derived from human studies but will refer to animal studies where they contribute to 

understanding the disease in humans.

Keywords: chronic obstructive pulmonary disease, Haemophilus influenzae, nontypeable 

Haemophilus influenzae, respiratory viruses, vaccination

COPD overview
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and 

is the fourth leading cause of mortality worldwide.1 Conservative estimates sug-

gest a 10% prevalence in the general population, but among heavy smokers, this 

figure increases to almost 50%.2 The clinical course of COPD is characterized by a 

progressive decline in lung function, accompanied by worsening exercise tolerance 

and health status. The pathological hallmark of COPD is an abnormal inflammatory 

response in the airways and alveoli. The principal abnormalities in airways are the 

presence of an inflammatory cellular infiltrate and remodeling that thickens the airway 

wall, thereby reducing the airway diameter and increasing resistance to flow.2 In the 

lung parenchyma, COPD is characterized by prominent inflammatory infiltrates in the 

alveolar walls, destruction of alveoli, and enlargement of air spaces. Cigarette smoking 

is a predominant etiological factor in the development of COPD, but other factors such 

as burning biomass fuels for cooking and heating are important causes, particularly 

in developing countries. Although exposure to cigarette smoke/biomass smoke is 

required for the development of COPD, disease progression and airway inflammation 

persist even after smoking cessation.3 Therefore, other factors contribute to persistence 
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of inflammation and progression of the disease. One such 

factor is respiratory infection, with both bacterial and viral 

infections implicated in contributing to the pathogenesis of 

COPD.4,5 Bacteria are commonly detected in COPD, with 

the most common organism isolated being Haemophilus 

influenzae in most studies. The chronic clinical course of 

COPD is punctuated by periods of increased symptoms, 

termed acute exacerbations,6 which have both short- and 

long-term adverse effects in COPD patients. They have 

immediate effects resulting in considerable morbidity and 

mortality in COPD and are a major cause of excess health 

care costs, as they often result in unscheduled health care vis-

its, treatment costs, and hospitalizations. Exacerbations also 

have long-term effects, as frequent exacerbations are associ-

ated with more rapid decline in lung function, airway and 

systemic inflammation, and impaired quality of life.7–9 

Approximately half of all COPD exacerbations are associ-

ated with bacterial infections, and as is the case in stable 

COPD, the most common bacteria detected is H. influenzae.10 

Therefore, H. influenzae may have a major pathogenic role 

both in stable COPD and in COPD exacerbations and has 

been the focus of much research interest.

H. influenzae: bacteriology
H. influenzae is a pleomorphic Gram-negative coccobacillus 

that is isolated exclusively from humans, predominantly from 

the respiratory tract. It is a member of the Pasteurellaceae 

family and is capable of growing either aerobically or 

anaerobically,11 and strains are divided into two groups 

on the basis of the presence of a polysaccharide capsule. 

Encapsulated strains are reactive with typing antisera 

(typeable), whereas unencapsulated strains are nonreac-

tive (nontypeable H. influenzae [NTHi]). Six encapsulated 

serotypes (a–f) have been identified and account for the 

majority of invasive Haemophilus infections such as sep-

ticemia, pneumonia, and meningitis. NTHi, in contrast, 

rarely causes invasive disease but commonly colonizes the 

upper respiratory tract and can cause mucosal infections in 

both children and adults. The vast majority of Haemophilus 

strains isolated from the respiratory tract in COPD patients 

are NTHi. H. influenzae is a common commensal of the 

upper respiratory tract, with 20% of children colonized in 

the first year of life and up to 50% colonized by age 5 years.12 

Disease caused by NTHi is predominantly by contiguous 

spread from the nasopharynx to adjacent structures such as 

sinuses, the middle ear, and trachea. In contrast to the fre-

quent detection of H. influenzae in the upper respiratory tract, 

lower respiratory tract colonization appears rare in healthy 

individuals. In 70 healthy subjects from six different studies 

undergoing bronchoscopy, H. influenzae was detected in 

only 4%.13 Two subsequent studies that were not included in 

this analysis have been published more recently. In the first,  

H. influenzae was not detected in any of 26 healthy individu-

als undergoing bronchoscopy during anesthesia for elective 

surgery.14 In the second, H. influenzae was isolated in two 

(13.3%) of 15 healthy subjects who had never smoked, but 

in zero of 20 exsmokers.15 Therefore, from these results, the 

true prevalence of lower respiratory tract colonization with  

H. influenzae in healthy individuals is unclear, but it is undoubt-

edly lower than that in the upper respiratory tract. These 

studies were small, and therefore it is difficult to draw con-

clusions from them regarding the prevalence of H. influenzae  

colonization in the general population. Discrepancies in 

detection rates between studies are likely to be related to 

differences in characteristics of the populations studied, such 

as age, sex, smoking history, and so on, and further studies 

with greater numbers of participants are required.

Methods to detect H. influenzae
For many years, the standard method for detection of 

H. influenzae in respiratory samples was growth on 

culture plates and identif ication using morphological 

characteristics and growth requirements. However, cul-

ture has a number of drawbacks, including difficulty in 

distinguishing H. influenzae from other bacterial species, 

such as Haemophilus haemolyticus and Haemophilus 

parainfluenzae, as well as low sensitivity. H. influenzae 

possesses the ability to persist in biofilms and within host 

cells, and organisms in these niches may not be detected 

using culture of airway samples such as sputum, bronchial 

wash, and bronchoalveolar lavage.16 Culture-independent 

techniques based on detection and amplification of nucleic 

acid sequences using polymerase chain reaction (PCR) have 

been developed during the past 2 decades to detect pathogens 

such as H. influenzae. Protein D is a highly conserved surface 

lipoprotein present in all encapsulated and nonencapsulated 

H. influenzae strains,17 making its gene (hpd) an attractive 

target for the development of a PCR assay. An hpd real-time 

PCR assay can detect both encapsulated H. influenzae and 

NTHi strains with high sensitivity and specificity.18 Studies 

comparing bacterial detection rates using culture and PCR 

have consistently demonstrated greater sensitivity with PCR. 

Detection rates of H. influenzae in nasopharyngeal swabs 

collected from healthy individuals are 2.5–3 times greater 

with PCR compared with culture.19,20 As will be described 

in the following section, this has also been reported in 
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COPD patients. However even with PCR, distinguishing 

H. influenzae from other species such as H. haemolyticus 

can be difficult,21 and more sophisticated techniques such as 

proteomic profiling may be required.22 More recently, newer 

techniques have been developed based on the sequenc-

ing of the 16S gene encoding bacterial ribosomal RNA. 

The 16S gene contains invariant regions used for priming 

the sequencing reaction and variable regions that permit 

genus- and species-level identification. High-throughput 

sequencing and sorting of the amplicons generated enables 

the identification of entire microbial communities. These 

techniques have revealed the presence of a respiratory 

“microbiome,” even in the respiratory tracts of healthy indi-

viduals, and overturned the previous dogma that the lower 

airways are sterile in health.23 Initial studies have revealed 

that the genus Proteobacteria that includes Haemophilus 

is overrepresented in the airways of subjects with asthma 

and COPD compared with in healthy individuals.24 Further 

studies of the respiratory microbiome are likely to radically 

change our understanding of the role of bacteria such as 

H. influenzae in both health and disease.

The epidemiology of H. influenzae  
in COPD
It is well established that bacteria are often present in the 

lower airways in patients with stable COPD, although 

colonization rates vary between different studies and are 

affected by factors such as disease severity, treatments 

used, and sampling methods used. A pooled analysis of 

studies using bronchoscopic sampling reported that poten-

tially pathogenic organisms were present in 29% of stable 

COPD patients,13 and studies using sputum have reported 

that potentially pathogenic organisms are present in up to 

half of COPD patients.25–27 The most common organisms 

detected in COPD patients are consistently H. influenzae, 

Streptococcus pneumoniae, and Moraxella catarrhalis, 

with H. influenzae accounting for around half of all isolates 

in the airways of COPD patients.13,25–27 However, the true 

prevalence of infection with H. influenzae in COPD may 

be underestimated by studies using culture for bacterial 

detection. In a longitudinal study over the course of 7 years, 

Murphy et  al reported frequent episodes when sputum 

cultures were negative that were preceded and followed by 

positive cultures with the same strains of H. influenzae, and 

strain-specific H. influenzae DNA was detected in some of 

the sputum samples that had negative cultures.28 Other studies 

using PCR have confirmed higher detection rates compared 

with culture alone in COPD,29–31 with H. influenzae detected 

in 60% of sputum samples using PCR compared with only 

30% using culture.31

Bacteria can be detected in sputum in 50%–60% 

of COPD patients during acute exacerbations, and 

H. influenzae is consistently among the most common bac-

teria reported.10,13,32 As discussed previously, even this may 

be an underestimate because of the limitations of culture. In 

a study of 15 chronic bronchitis patients with acute respira-

tory failure, NTHi was detected in only one bronchial wash 

specimen, whereas using in situ hybridization, intracellular 

NTHi was present in 13 (86.7%) of 15 bronchial biopsies.14 

Sequencing studies have revealed that Proteobacteria are 

a key component of the respiratory microbiome in COPD 

exacerbations.33, 34

Therefore, although it is clear that lower respiratory 

tract infection with H. influenzae is much more prevalent in 

COPD patients compared with healthy individuals, the exact 

prevalence remains to be determined and is highly dependent 

on the diagnostic method used.

Host immunity and immune evasion 
in H. influenzae infection
H. influenzae commonly colonizes the nasopharynx and 

causes upper respiratory tract disease in healthy individu-

als, but infection of the lower airways is rare because of 

host immune responses that prevent spread to the lower 

respiratory tract. In contrast, H. influenzae is commonly 

found in the lower airways of patients with COPD, imply-

ing that mucosal host immune mechanisms are impaired. 

H. influenzae possesses a number of mechanisms to avoid 

or neutralize host immune responses, and therefore it is 

likely that the combination of pathogen immune evasion and 

impaired host immunity combine to promote lower airway 

infection in COPD.

Host immunity to H. influenzae  
in healthy individuals
Structural components
The structural integrity of the respiratory tract is vital 

to preventing infection with inhaled microorganisms. 

Important mechanisms including an intact respiratory 

epithelium, mucus production, and mucociliary clearance 

via the action of cilia and cough act to prevent infection with 

respiratory pathogens such as H. influenzae.4,11 The impor-

tance of these mechanisms in host defense is highlighted 

by high rates of H. influenzae infection in conditions such 

as cystic fibrosis35 and immotile cilia syndromes36 that are 

characterized by abnormal mucociliary function.
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Cellular immunity
Immune cells such as neutrophils and alveolar macrophages 

are present in large numbers in the airways and consti-

tute a first line of defense against respiratory pathogens. 

Macrophages recognize microorganisms via the presence 

of surface receptors such as toll-like receptors leading to 

phagocytosis, microbicidal killing, and initiation of immune 

responses.11 A key component of the NTHi cell wall is lipo

oligosaccharide, which is recognized by toll-like receptor 4, 

leading to macrophage activation and phagocytosis,37 and the 

membrane protein P2, recognized by toll-like receptor 2.38,39 

P6 is a specific trigger of macrophage activation, with secre-

tion of interleukin 8 (IL-8) and tumor necrosis factor α being 

key effectors of P6-induced macrophage responses.40

Complement and immunoglobulin A
The complement system is an essential part of the innate 

immune system, and activation of complement results in 

protein activation and deposition on the surface of patho-

gens, resulting in opsonization and phagocytosis. Invading 

pathogens activate complement either through antibody 

binding (classical pathway) or spontaneously via the 

alternative pathway.41 Although complement is not present 

in the healthy human respiratory tract, after infection and 

inflammation, the permeability of the mucosa increases 

and plasma, including complement proteins, enters the 

airway lumen.42,43 Immunoglobulin A (IgA) is the main 

element of the humoral immune response that provides 

protection against microbial antigens at mucosal surfaces, 

including the lung. Mucosal IgA can bind to bacteria and 

prevent mucosal attachment and facilitate cytotoxicity.44 

The importance of complement and IgA in host defense 

against pathogens is illustrated by the increased suscep-

tibility to bacterial infections, including H. influenzae, 

seen in patients with complement def iciencies and 

hypogammaglobulinemia.45,46

Adaptive immunity
The adaptive immune response consists of humoral (B-cell-

mediated) and cellular (T-cell-mediated) immunity.4,47 

Hypogammaglobulinemia is a risk factor for systemic infec-

tion by NTHi, illustrating the importance of antibodies.48 

T-helper cells and cytotoxic T lymphocytes contribute by 

producing interferon γ,4 which enhances the macrophage-

induced killing of NTHi.49 Cytotoxic T cells and natural 

killer cells may be particularly important in the control of 

intracellular pathogens,50 and there is evidence that impaired 

T-helper responses to H. influenzae contribute to the failure 

to eradicate intracellular infection,49 resulting in chronic 

airway infection.47

Structural changes
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Figure 1 Interactions between chronic obstructive pulmonary disease (COPD), virus infection, and persistent infection with Haemophilus influenzae. Structural changes in 
the airways and impaired innate and acquired immunity in COPD are exploited by H. influenzae, leading to failure to eradicate the organism and persistent infection. Virus 
infections may also cause epithelial damage and immune suppression and may favor persistent infection. Persistent infection with H. influenzae enhances airway inflammation 
and may contribute to disease progression in COPD.
Abbreviations: ↑, increased; ↓, decreased.
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Mechanisms of immune evasion  
by H. influenzae
Phase variation and antigenic change
H. influenzae has the ability to lose or gain cell structures, 

thereby allowing it to evade host immune responses, par-

ticularly antibody-mediated immunity. This property is 

called phase variation and has been reported for a number of 

different components of H. influenzae, including adhesins, 

pili, and lipooligosaccharide.51,52 Furthermore, some strains 

of H. influenzae undergo permanent changes in the amino 

acid sequences of important immunogenic surface proteins 

such as P2 and P5 in a manner reminiscent of antigenic drift 

in influenza viruses.53 There is evidence that phase variation 

may contribute to persistent infection in COPD, as it has been 

reported that serial isolates of H. influenzae from patients 

with COPD demonstrate decreased levels of HMW1 and 

HMW2 in association with persistence.54

Intracellular growth/biofilms
H. influenzae exhibits a number of different growth strategies 

that promote survival, including intracellular growth and the 

formation of biofilms.52 Biofilms are microbial communities 

that are encased within a matrix and can be found in a num-

ber of environments, including the human respiratory tract. 

Biofilms are believed to confer protection from a number 

of immune mechanisms such as antimicrobial peptides and 

antibodies, as well as from antibiotics, thereby promoting 

survival and persistence. There is evidence from both human 

studies and animal models that H. influenzae forms biofilms, 

which is likely to be an important mechanism in promot-

ing persistent infection in the human respiratory tract.55–58 

Although H. influenzae is predominantly an extracellular 

pathogen, there is evidence it is able to enter cells of the 

respiratory tract. H. influenzae has been detected in epithelial 

cells,59,60 adenoidal tissue,61,62 and monocytes/macrophages.63 

As is the case for biofilm formation, intracellular growth 

may offer H. influenzae protection from antibody-mediated 

immune responses and antibiotics, and therefore may be 

another important mechanism of persistent infection.64 As 

discussed previously, both biofilms and intracellular growth 

may also contribute to underdetection of H. influenzae using 

sputum culture.

Complement/IgA
Complement and IgA are important mechanisms of host pro-

tection against H. influenzae. Some strains of H. influenzae 

demonstrate reduced susceptibility to complement, and 

although the exact mechanisms of this are unknown, a number 

of factors including lipooligosaccharide and surface proteins 

P2 and P5 are believed to contribute.41 In addition, it has been 

demonstrated that NTHi can acquire host complement inhibi-

tors such as vitronectin,65,66 and factor H.67 NTHi can also 

secrete proteases that cleave the main IgA subclass IgA1,68 

thus offering protection against IgA-mediated cytotoxicity.

Metabolic adaptations
In addition to changes to structural components, organisms 

in the human respiratory tract may undergo adaptations in 

metabolic pathways to survive in a hostile environment with 

limited nutrients, low pH, and high levels of reactive oxygen 

species. Such adaptations adopted by H. influenzae include 

production of urease,69 antioxidants,70 and proteins involved 

in iron and heme metabolism.71 There is evidence that upregu-

lation of these metabolic pathways is related to the ability of 

NTHi strains to survive in the respiratory tract.72–74

Mechanisms of H. influenzae  
infection in COPD
There are a number of structural and functional changes in the 

airways of COPD patients that compromise host immunity to 

respiratory pathogens. H. influenzae has developed a number 

of mechanisms to evade host immune responses, many of 

which are already impaired in COPD. Therefore, among 

respiratory pathogens, H. influenzae appears to be uniquely 

adapted to exploit the already-impaired host immunity in 

COPD and establish persistent infection.

Bacterial adhesion
The first step in establishing infection in the respiratory tract 

by a pathogen is adhesion to the respiratory epithelium. 

H. influenzae possesses a number of cell surface proteins 

and structures that facilitate adhesion to respiratory mucosal 

surfaces. These include the presence of pili (rodlike projections 

present on a small subset of strains75) and a number of surface 

proteins that facilitate adhesion. The membrane proteins P2 

and P5 facilitate binding of the bacteria to mucus,38 and the 

adhesins HMW1, HMW2, protein E, and protein F bind to 

epithelial cells and extracellular matrix proteins.76–78 Protein D 

is a highly conserved 42 kDa surface lipoprotein identified in 

all strains of H. influenzae. The activity of protein D as a viru-

lence factor is as a glycerophosphodiesterase that promotes 

adherence of NTHi to airway epithelial cells and internaliza-

tion by macrophages63 and impairs ciliary function.79–81 The 

airways in COPD patients are characterized by damaged 

epithelium, mucous hypersecretion, and reductions in cilia 

numbers and function. Therefore, this combination of exposed 
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extracellular matrix, excess mucus, and impaired mucociliary 

clearance provides an ideal environment for the adhesion and 

subsequent growth of H. influenzae. Strains of H. influenzae 

isolated from COPD patients are more likely to express adhe-

sion molecules such as HMW.82

Cellular and humoral immunity
Inflammatory cells in the airways such as neutrophils and 

macrophages are increased in COPD, which would be 

expected to result in more effective clearance of inhaled 

pathogens. However, the opposite is the case, as the function 

of these immune cells is impaired. Several studies have dem-

onstrated that phagocytosis of H. influenzae and production 

of cytokines by macrophages is impaired in COPD.40,83–86 

Impaired production of cytokines by macrophages in 

response to H. influenzae has been related to exacerbation 

frequency in COPD patients.83 As discussed previously, sur-

vival of H. influenzae has been documented in macrophages87 

and epithelial cells,88 and intracellular H. influenzae is more 

common in patients with chronic bronchitis compared with 

in healthy subjects.14 Therefore, impaired macrophage 

responses to NTHi may promote intracellular survival, but 

further studies are required to prove this conclusively.

In addition to compromised macrophage function, 

T lymphocyte cell responses to H. influenzae in COPD are 

also impaired.89 Again, this may have clinical implications, as 

robust T-cell responses to the surface P6 lipoprotein are asso-

ciated with a reduced risk for exacerbations.90 A recent paper 

reported that numbers of T regulatory cells are increased in 

COPD patients.91 Moreover T regulatory cells from COPD 

patients suppressed P6-specific T-cell proliferation to a 

greater extent than T regulatory cells from healthy controls; 

therefore, this may be an important mechanism of reduced 

effector T-cell responses to H. influenzae. Variations in anti-

genic components of the organism, including the membrane 

outer proteins P2 and P592, 93 and the immunoglobulin A1 

protease,94 may contribute to immune evasion and reduced 

host immunity.

There is evidence that IgA secretion is impaired in 

COPD95 and that reduced levels of Haemophilus-specific IgA 

may be related to chronic infection with H. influenzae.96,97

Inflammatory responses  
and H. influenzae in stable COPD
The presence of bacteria in the lower respiratory tract in 

stable COPD patients is termed colonization, but there is 

increasing evidence that this is not a benign phenomenon 

but is associated with adverse outcomes. Bacterial infection 

in stable COPD is associated with increased airways and 

systemic inflammation,98 more frequent exacerbations,27 

and poorer health status.15,99 Therefore, chronic infection or 

persistent infection may be more accurate descriptions than 

colonization.100 Whether all bacterial species have adverse 

effects is unknown, as few studies have examined the role 

of specific bacteria such as H. influenzae. Data from animal 

models have suggested that NTHi can induce both inflamma-

tory and structural changes in the lungs. Chronic instillation 

of NTHi in mice induced an inflammatory infiltrate similar to 

that seen in COPD, with increases in inflammatory cytokines 

and cells (neutrophils, macrophages, and CD8+ T cells) and 

airway collagen deposition.101 When exposed to both cigarette 

smoke and NTHi, mice developed structural changes typical 

of COPD, including emphysema, lung inflammation, and 

goblet cell metaplasia in both large and small airways.102

Human studies have reported that H. influenzae is associ-

ated with higher sputum levels of inflammatory mediators 

such as neutrophils, IL-1β, IL-12, IL-8, tumor necrosis factor 

α, and matrix metalloprotease 9.97,98,103,104 Moreover, COPD 

patients colonized with NTHi reported worse health status 

compared with noncolonized patients, and these effects were 

not seen in patients colonized with other bacteria.98 There-

fore, the presence of H. influenzae in the lower airways of 

COPD patients is associated with increased inflammation 

and poorer health status. Whether the increases in inflamma-

tory mediators contribute to long-term structural changes, 

as has been reported in animal studies, is unknown, but it is 

an important area for further research. Further studies also 

are needed to determine the effects of persistent infection 

with H. influenzae on other outcomes such as exacerbations, 

disease progression, and even mortality.

H. influenzae and COPD 
exacerbations
H. influenzae is frequently detected in airway samples col-

lected from COPD patients during exacerbations,10 but this 

does not prove causation, as the organism may have been 

present when the patient was clinically stable. Studies com-

paring bacterial detection in stable and exacerbated patients 

have generally reported higher rates of bacterial infection 

in COPD exacerbations.10,29,105,106 Therefore, H. influenzae 

infection can result in either chronic infection or acute 

exacerbation. The mechanisms that determine the outcome of 

infection are poorly understood but are likely to involve both 

pathogen and host factors.

Exposure to new strains of NTHi to which the host has 

no preexisting immunity is one mechanism that may underlie 
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the occurrence of acute exacerbations. Sethi et al carried out 

molecular typing on bacteria isolated from sputum samples 

from COPD patients collected when stable and during exacer-

bations over the course of 56 months. Isolation of H. influen-

zae using culture alone was not associated with exacerbations, 

but detection of a new strain was associated with increased 

risk for exacerbation.107 An exacerbation was diagnosed in 

33% of visits at which a new bacterial strain was isolated 

compared with 15.4% of visits at which no new strain was 

present. Therefore, the majority of new strain acquisitions 

did not result in exacerbation, and other mechanisms must 

contribute. It was subsequently recognized that some strains 

of H. influenzae were actually H. haemolyticus species.108 

When the results of the study were reanalyzed with the exclu-

sion of H. haemolyticus, the association between acquisition 

of a new strain of H. influenzae and acute exacerbations was 

stronger.108 In another study from this group, an immune 

response to homologous H. influenzae occurred after 61% 

of exacerbations with newly acquired strains compared with 

21.2% of exacerbations with preexisting strains.109

Factors relating to pathogen-related characteristics 

have been less well defined, but one study has reported a 

different genetic profile in strains associated with exacerba-

tions compared with strains associated with asymptomatic 

chronic infection.110 Moreover, strains isolated from COPD 

patients during an exacerbation elicited greater inflammatory 

responses in mice and in vitro models compared with colo-

nizing strains,111 although another study failed to replicate 

these findings.112 Therefore, it is likely there are complex 

interactions between host immunity and the pathogenicity 

of the infecting strain of H. influenzae that determine the 

outcomes of infection.

Respiratory viruses  
and Haemophilus influenzae
Other external factors may influence the interactions between 

host and H. influenzae; one such factor is infection with a 

respiratory virus. A relationship between influenza infection 

and H. influenzae pneumonia has long been recognized,113 

and in fact, H. influenzae derives its name from the origi-

nal mistaken belief that it was the causative organism of 

influenza. Synergism between the two organisms has been 

demonstrated in animal models.114 Respiratory virus infection 

can be detected in up to 40% of COPD exacerbations,115 and 

therefore virus infections in patients with chronic bacterial 

infection and concurrent virus/bacterial coinfections may be 

a relatively common occurrence. Data from in vitro studies 

and animal studies have suggested a number of potential 

mechanisms whereby virus and bacterial infections may 

interact. Mice infected with rhinovirus show impaired 

clearance of NTHi, which is related to impaired production 

of chemokines by both epithelial cells and macrophages 

in response to bacterial infection.116 Impaired chemokine 

responses to bacterial products in macrophages infected 

with rhinovirus have also been reported.117 Virus infection 

may also have effects on the airway epithelium that promote 

bacterial infection. Rhinovirus infection of epithelial cells 

in vitro disrupts the airway epithelial barrier, resulting in 

increased transmigration of NTHi across the epithelial bar-

rier.118 In addition, rhinovirus infection increases expression 

of adhesion molecules on the surface of epithelial cells and 

enhances bacterial adhesion,119,120 and this effect has also 

been reported for other respiratory viruses.121 Whether these 

mechanisms are relevant in vivo is not known. Rhinovirus 

infection did not increase expression of the receptor platelet 

activating receptor in vivo in bronchial biopsies in COPD 

patients.122

Few studies have examined the role of concurrent virus-

bacteria coinfection in COPD exacerbations. Those that 

are available have reported detection rates of between 12% 

and 25%.10,30 A study examining infection with respiratory 

viruses and H. influenzae found evidence of coinfection in 

only 9% of exacerbations.123 Our group has examined the 

relationship between viral and bacterial infections in COPD 

patients, using experimental rhinovirus infection as a model 

of COPD exacerbation.124 In COPD subjects infected with 

rhinovirus, secondary bacterial infections occurred in 60%, 

with H. influenzae the predominant organism (46% of bacte-

rial isolates). The peak of virus infection occurred on day 5 

postinoculation, whereas the peak of bacterial infection 

occurred later, on day 15. Therefore, studies in naturally 

occurring exacerbations in which a sample is collected at 

a single point are likely to underestimate the frequency of 

coinfections, as our data demonstrate that bacterial infection 

occurs up to 10 days after the initial viral infection. This was 

confirmed by two studies that carried out sequential sampling 

during COPD exacerbations. In one study, samples were 

collected at the onset of exacerbation and again 5–7 days 

later.125 In 19% of COPD exacerbations, a virus and bacteria 

were detected at exacerbation onset, but 36% of exacerba-

tions in which a virus was detected on day 1 developed 

bacterial infection in the next 7 days. The commonest virus/

bacteria combination was rhinovirus/H. influenzae; 78% of 

exacerbations in which H. influenzae was detected were pre-

ceded by symptoms of an upper respiratory tract infection. 

In the second study, COPD exacerbations associated with 
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rhinovirus infection had bacteria detected in 73% of second 

samples collected 14 days later.126 Again, H. influenzae was 

the most frequent bacterial isolate. In both experimental124 

and natural infections,106 virus infection is associated with 

higher bacterial loads.

Participants who developed secondary bacterial infection 

after experimental rhinovirus infection had lower airway 

levels of the antimicrobial peptides elafin and secretory 

leukoprotease inhibitor,124 suggesting another mechanism 

whereby virus infections may impair antibacterial immune 

responses.

In the experimental rhinovirus model, no subjects had 

bacteria detected by sputum culture at baseline before 

inoculation with rhinovirus; however, using sequencing 

techniques to analyze the bacterial microbiome, bacterial 

DNA could be detected. We further examined whether virus 

infection had an effect on the respiratory microbiome. After 

virus infection, there was a 16% increase in the number 

of proteobacterial sequences on day 15 postinoculation.33 

Within the Proteobacteria phylum, there was a 21% increase 

in the average relative abundance of H. influenzae. At day 

42 postinoculation, H. influenzae remained elevated com-

pared with baseline, despite no organisms being detected 

by culture at this point. Therefore, this is the first in vivo 

evidence that a virus infection can induce a profound and 

prolonged change in the bacterial microbiome in the lungs 

and that there appears to be a specific interaction between 

rhinovirus and H. influenzae. The subjects included in the 

experimental infection studies had GOLD stage II COPD, 

had negative baseline sputum cultures, were not using 

inhaled corticosteroids, and had few previous exacerba-

tions. In patients with more severe COPD with positive 

sputum cultures, the effect of virus infection on the bacterial 

microbiome may be even more pronounced. This holds out 

the prospect that treating or preventing viral infections may 

also reduce secondary bacterial infections and excessive 

antibiotic use.

Most research has focused on bacterial infections occur-

ring after initial virus infection. However, chronic bacterial 

infection may also influence host responses to respiratory virus 

infections. H. influenzae infection of human epithelial cells 

potentiates cytokine responses and increases virus binding 

after subsequent rhinovirus infection.127 There are as yet no data 

investigating whether chronic bacterial infection influences 

responses to virus infection in vivo in COPD. The presence 

of bacteria in the lower airways is associated with increased 

exacerbations, and increased susceptibility to virus infection 

may be one mechanism mediating this effect, but further 

studies are needed to investigate this. Potential mechanisms 

of interactions between COPD, Haemophilus influenzae and 

respiratory virus infection are summarized in Figure 1.

Therapies
In view of the evidence that persistent H. influenzae 

infection is associated with adverse outcomes in COPD, 

treating H. influenzae holds out the possibility of clinical ben-

efit in COPD patients. Current anti-inflammatory therapies in 

COPD such as inhaled corticosteroids are not very effective. 

As H. influenzae infection is associated with greater airway 

inflammation in COPD, eradication of H. influenzae may have 

an anti-inflammatory effect. In this review, we focus on two 

interventions that are specifically relevant to Haemophilus 

influenzae infection: vaccination and long-term antibiotics.

Vaccination
Because of the significant mortality associated with invasive 

capsulated H. influenzae type b (Hib) disease in infants 

and children, conjugate Hib vaccines were developed that 

induce bactericidal antibodies to the capsular polysaccharide 

polyribitol ribose phosphate. Conjugation of polyribitol ribose 

phosphate to a carrier protein promotes antibody responses 

in infants younger than 2 years.128 After introduction of the 

conjugate Hib vaccine in the United States, the incidence 

of invasive H. influenzae disease has decreased by 99%, 

reaching less than one case per 100,000 children younger 

than 5 years.128 A vaccine for nontypeable H. influenzae  

is attractive because of its role in persistent infection and 

exacerbations in COPD. However, developing such a vaccine 

is likely to prove more challenging than was the case with Hib 

in view of the extensive antigenic variation among membrane 

proteins, lipopolysaccharides, and secreted virulence factors 

displayed by NTHi. Protein P2 is the major immunogenic 

outer membrane protein of NTHi and a target for human bac-

tericidal immune responses. However, the extracellular por-

tions of P2 demonstrate a high degree of sequence variability 

among strains, and antibodies that develop after a COPD 

exacerbation are highly strain-specific and do not prevent 

infection with different strains.109 Point mutations of genes 

coding for P2 or exchange of genes between strains coloniz-

ing the respiratory tract contribute to immune evasion and 

bacterial persistence in the respiratory tract.93,129 Therefore, 

although a P2 vaccine candidate has shown correlates with 

immune protection in animal models,130 it is likely to be a 

poor target in humans.

Protein D is a highly conserved surface lipoprotein 

identified in all strains of H. influenzae. Rats vaccinated 

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of COPD 2014:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1127

Haemophilus influenzae in COPD

with protein D have been shown to clear NTHi more effec-

tively than controls in middle ear and pulmonary clearance 

models.131 In a chinchilla model of otitis media, protein D 

vaccination conferred a 34% protection against development 

of  NTHI-induced otitis media.132 Children acquire serum 

antibodies to protein D within the first 2–3 years of life, and 

vaccination with a pneumococcal vaccine conjugated with 

H. influenzae protein D has been shown to induce high cir-

culating levels of antibodies and a 35.5% reduction in otitis 

media caused by NTHi.133 Hawdon et al also demonstrated 

that serum immunoglobulin G antibodies to protein D were 

significantly reduced in adults with COPD when compared 

with healthy, age-matched controls.134 Therefore, on the basis 

of these observations, protein D-containing vaccines may 

be a possible candidate for providing defense against NTHi 

in COPD, but no clinical trials with candidate vaccines are 

yet available.

Oral vaccines
An alternative approach to vaccination has been the develop-

ment of oral vaccines using whole killed NTHi. The mecha-

nisms proposed for protection derived from oral vaccines are 

from rodent models, which demonstrated that they stimulated 

T-lymphocytes derived from gut-associated lymphoid tis-

sue to translocate to bronchus-associated lymphoid tissue, 

thereby stimulating the respiratory epithelial host response.135 

A number of studies using oral vaccinations of whole killed 

NTHi vaccine have been published, and analyzed in a recent 

Cochrane review. The reviewers concluded that oral NTHi 

vaccination in patients with recurrent exacerbations of COPD 

did not significantly reduce either the severity or frequency 

of exacerbations.136

A more recent placebo-controlled study using a new 

NTHi preparation (HI-1640V) in 38 COPD patients showed 

no effect on exacerbation frequency but did report reduc-

tions in mean duration of exacerbations, antibiotic use, and 

sputum cultures.137

The oral administration of bacterial lysates to stimulate 

respiratory immune responses has been used in Europe and 

China for many years. The OM-85 BV bacterial extract, 

a lysate of eight pulmonary pathogens including H. influenzae, 

is the most commonly studied.138,139 A systematic review of 

published trials of oral immunization with bacterial extracts 

in COPD concluded that the evidence for a reduction in 

exacerbations was inconclusive, but there is some evidence 

for reduction in exacerbation severity and duration.140 To 

date, oral vaccines have not been included in international 

guidelines for COPD.

Antibiotics
A number of studies have investigated the effects of long-

term or pulsed antibiotics in COPD and have reported that 

long-term use of macrolide antibiotics is associated with a 

reduction in exacerbations.141,142 The largest double-blinded, 

randomized, placebo-controlled trial of azithromycin in COPD 

patients demonstrated an increase in time to first exacerbation, 

reduced exacerbation frequency, and made greater improve-

ment in health-related quality of life in the treatment group.143 

Sputum cultures were not carried out, but nasopharyngeal 

swabs were collected in a subset of patients and showed 

reduced colonization in the treatment group, but increased 

incidence of macrolide-resistant organisms. A study of pulsed 

moxifloxacin also showed a reduction in exacerbations and a 

trend toward a reduction in subjects with bacteria cultured in 

sputum in the treatment group.144 Macrolide antibiotics have a 

number of effects apart from their antibacterial effects, includ-

ing anti-inflammatory and antiviral effects.145 Therefore, the 

mechanisms whereby they reduce exacerbations in COPD are 

unclear. In fact, in those studies in which sputum microbiology 

was examined, antibiotic therapy appeared to have no effect 

on prevalence of positive sputum cultures.141,142 Therefore, 

the beneficial effects of macrolides may be mediated by 

mechanisms other than their antibacterial effects. Concerns 

remain regarding the development of antibiotic resistance 

with long-term use of antibiotics and may limit their use as a 

therapeutic strategy in COPD.146

Conclusion
Bacterial infection is common in COPD, both as persistent 

infection in stable patients and in exacerbated patients. 

The most common bacteria detected in COPD patients is 

H. influenzae, and this organism appears to be uniquely adapted 

to exploit structural and immunological abnormalities in the 

lungs in COPD to establish chronic infection. Persistent infec-

tion has been termed colonization, but there is now a wealth 

of evidence that outcomes are worse in COPD patients with 

chronic bacterial infection. Most studies to date have defined 

the presence or absence of H. influenzae, using sputum cul-

tures, but studies using newer molecular diagnostic methods 

suggest that culture underestimates the true prevalence of H. 

influenzae infections. Moreover, with the advent of the abil-

ity to sequence the entire respiratory microbiome, defining 

infection as either the presence or absence of an organism is 

clearly overly simplistic. Increasingly, concepts such as the 

diversity, richness, evenness, and dominance of bacterial popu-

lations will be used to describe the respiratory microbiome. 

Therefore, current thinking regarding the relationships between 
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H. influenzae and COPD will change radically on the basis of 

these new concepts. This, in turn, will lead to novel therapeutic 

strategies that may be based on particular microbial patterns in 

the airways in individual COPD patients. Eradication or pre-

vention of H. influenzae infection may lead to improved clinical 

outcomes in COPD, and future therapies may include vac-

cination, antimicrobials, augmentation of immune responses, 

or even manipulation of the respiratory microbiome, as has 

already been trialed in the gastrointestinal tract. In addition, 

the recognition of the relationship between respiratory virus 

infection and H. influenzae, coupled with the development of 

antiviral agents, offers the possibility of reducing the burden 

of bacterial infection by treating or preventing respiratory 

virus infections. Current therapies for COPD (inhaled bron-

chodilators and corticosteroids) have only modest effects and 

do not prevent disease progression. New therapies targeting 

H. influenzae offer a novel therapeutic strategy that provides 

the possibility of improving clinical outcomes and modifying 

disease activity in COPD.
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