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ABSTRACT

In this paper, we propose a minimum mean square error spectral
estimator for clean speech spectral amplitudes that uses a Kalman
filter to model the temporal dynamics of the spectral amplitudes in
the modulation domain. Using a two-parameter Gamma distribution
to model the prior distribution of the speech spectral amplitudes, we
derive closed form expressions for the posterior mean and variance
of the spectral amplitudes as well as for the associated update step
of the Kalman filter. The performance of the proposed algorithm
is evaluated on the TIMIT core test set using the perceptual evalua-
tion of speech quality (PESQ) measure and segmental SNR measure
and is shown to give a consistent improvement over a wide range of
SNRs when compared to competitive algorithms.

Index Terms— speech enhancement, modulation domain Kalman
filter, minimum mean-square error (MMSE) estimator

1. INTRODUCTION

Over several decades, numerous speech enhancement algorithms
have been proposed. Among the most popular are those such as
[1, 2, 3] which apply a variable gain in the short time Fourier trans-
form (STFT) domain to estimate the spectral amplitudes of the
clean speech. Although these STFT-domain enhancement algo-
rithms often improve the signal-to-noise ratio (SNR) dramatically,
the temporal dynamics of the speech spectral amplitudes are not
incorporated into the derivation of the estimator. There is evidence,
however, that significant information in speech is carried by the
modulation of spectral envelopes in addition to the envelopes them-
selves [4, 5]. Spectral modulation-domain processing has been used
in speech recognition [6, 7], in speech intelligibility metrics [8, 9]
and in speech enhancement [10, 11, 12]. In one such enhancement
algorithm [12], the temporal envelope of the amplitude spectrum
of the noisy speech is processed separately in each subband by a
Kalman filter (KF) in order to obtain the spectral amplitudes of the
enhanced speech. This modulation-domain KF combines the esti-
mated dynamics of the speech spectral amplitudes with the observed
noisy speech amplitudes to give an minimum mean square error
(MMSE) estimate of the amplitude spectrum of the clean speech,
under the assumption that the spectral amplitudes of both the clean
speech and the noise are Gaussian distributed.

In this paper, we propose an MMSE spectral amplitude estima-
tor under the assumption that the speech amplitudes follow a gen-
eralized Gamma distribution [13]. The advantage of the proposed
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estimator over previously proposed spectral amplitude estimators
[2, 13, 14] is that it incorporates temporal continuity into the MMSE
estimator by the use of the KF and that it uses a Gamma prior which
is a more appropriate model for the speech spectral amplitudes than
a Gaussian prior [11].

2. SIGNAL MODEL AND KALMAN FILTER

We assume an additive model in the STFT domain in which, for
frequency bin & of frame n,

Yn,k = Xn,k + Wn,k (1)

where X and W denote the complex-valued STFT coefficients of
the clean speech and the noise respectively. Since each frequency
bin is processed independently within our algorithm, we omit the
frequency index, k, in the remainder of this paper. We denote the
spectral amplitudes as: |Xn| = An, |Yn| = R, and |W,,| = N,.
The prediction model we assume for the clean speech spectral am-
plitudes is

ap, =Fp1an_14+Vva (2)

where a, = [An -+ A,_py1]7 is the p-dimensional state vec-
tor and v, denotes the zero-mean prediction residual with co-
variance matrix Q.. The (p X p) transition matrix has the form
F, = I_bz(;) }, where b,, = [b1 - - - bp}T is the vector of linear
prediction (LPC) coefficients for the speech spectral amplitudes in
frame n. Our model differs from that used in [12] in two respects:
we treat the noise and speech as additive in the complex STFT
domain rather than in the spectral amplitude domain and we use a
generalized Gamma prior for the speech amplitudes rather than a
Gaussian prior.

3. PROPOSED ESTIMATOR DESCRIPTION

A block diagram of the proposed algorithm is shown in Fig. 1.
The noisy speech, y(¢) is converted to the time-frequency do-
main, Rn,keje”’k, using the STFT [15]. In order to perform LPC
modelling in the modulation domain, the noise power spectrum is
estimated using, for example, [16] or [17], and the speech is passed
through a conventional MMSE enhancer [3] to reduce the effects of
the noise on the modelling. Following this, the sequence of spec-
tral amplitudes in each frequency bin is divided into overlapping
modulation frames. Autocorrelation LPC [18] is performed on each
modulation frame to determine the coefficients, b,,, and thence the
transition matrix F',, in (2).
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Fig. 1. Block diagram of the proposed Kalman Filter MMSE esti-
mator.

3.1. Kalman filter prediction step

From the time update model (2), we obtain the KF prediction equa-
tions

Anjn—1 = anlan—l\n—l (3)

P =FuaPy 1 1 FE 4 4+ Qu, )

where a,,|,,_1 and P, |,,_; denote respectively the a priori estimates
of the amplitude state vector and of the corresponding covariance
matrix at time n, and a,,_1|,—1 denotes the a posteriori estimate of
the state vector at time n — 1. The first element of the state vector,
an|n—1, corresponds to the spectral amplitude in the current frame,
Ap|n—1, and so its a priori mean and variance are given by

/J«n\nfl = E(An‘Rn—l) - dTan\nfl (5)
fo\nfl = Var(Anernfl) = CTPn\nflCa (6)

where R,,—1 represents the observed speech amplitudes up to time
n—1landc=[10..0]".

3.2. Kalman Filter MMSE update model

In this section, we describe the KF MMSE update step which de-
termines an updated state estimate by combining the predicted state
vector and covariance, the estimated noise and the observed spec-
tral amplitude. Within the update step, we model the prior speech
amplitude A, —1 using a 2-parameter Gamma distribution

2q2n 1 a?

Bi’YnF (’Yn) eXp ( 53) ) (7)
where I'(+) is the Gamma function. The distribution is obtained
by setting ¢ = 2 in the generalized Gamma distribution given in
[19], and the two parameters, [3,, and -y, are chosen to match the
mean /i, and variance o2 of the predicted amplitude from (5) and
(6). Examples of the probability density functions from (7) with
variance, 02 = 1 and means, W, in the range 0.5 to 8 are shown
in Fig. 2, from which it can be seen that the distribution in (7) is
sufficiently flexible to model the outcome of the prediction over a
wide range of p, /op.

At frame 7, the mean and variance of the Gamma distribution in
(7) can be expressed in terms of /3, and ., [19] as

p(an|Rn-1) =

Fig. 2. Curves of Gamma probability density function for (7) with
variance o = 1 and different means.
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Fig. 3. The curve of ¢ versus A, where 0 < ¢ = arctan(y) < 2
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We need to solve the non-linear equation (10) to determine -y,
from the value of A, which can be calculated from i1 and
ai‘nﬂ and satisfies 0 < A, < 1. Instead of dealing with , di-
rectly, it is convenient to set ¢, = arctan(vy,) where ¢, lies in
the range 0 < ¢» < 7. The solid line in Fig. 3 shows the func-
tion ¢, (A). We can approximate this function well with a low-order
polynomial that is constrained to pass through the points (0, 0) and
(1, ) and in the experiments in Sec. 4.1 we use the quartic approx-
imation

P(N) = —0.1640\" + 2.3612)% — 1.2182A% + 0.5918)

which is shown with asterisks in Fig. 3. Given A,, we can use this
polynomial to obtain ¢, and thence =y, by the inverse transform
Yn = tan(¢n).

3.3. Derivation of estimator

The MMSE estimate of A,, is given by the conditional expectation

o o]

tnjn = E(An|Rn) = /anp(an|7€n)dan (11)
0



Using Bayes rule, the conditional probability is expressed as

p(anRn) = p(an|yn, Rn-1)

_ IOQWP (yn|an, ¢n7 Rnfl) p (an7 ¢n|Rnfl) d¢n
P (Yn|Rn-1)

12)

where ¢,, is the realization of the random variable ®,, which rep-
resents the phase of the clean speech. Because Y,, is conditionally
independent of R,,—1 given a,, and ¢n, (12) becomes
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0 p (ynla'ru ¢n)p (a’m ¢n|Rn71) d¢n
p(yn|Rn—l)

Following [2], the observation noise is assumed to be complex Gaus-
sian distributed with variance v2 = E(N?2) leading to the observa-
tion prior model

1 1 '¢TL 2
Ponlans ) = Lz ep{ =l — @™ P} a9

n

Under the assumption of the statistical models previously defined
and assuming that the phase components and amplitude components,
®,, and A,,, are independent, we can now calculate a closed-form
expression for the estimator (11) using [20, Eq. 6.631, 9.201.1,
9.220.2]
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where M is the confluent hypergeometric function [21], and

— E(A37,|yn71) _ p’i\nfl +0—3L\n71

Vi Vi

R
’ C’n = I/2

n

én

are the a priori SNR and a posteriori SNR respectively. The variance
of the posterior estimate is given by

Tain =E (A% Ru, én) — (E(An|Ra, én))’
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3.4. Update of state vector

The final step is to update the entire state vector and the associated
covariance matrix, a,|, and P, ,. In order to decorrelate the cur-
rent observation from the rest of the state vector, we decompose the
covariance matrix P, _1 as

Pn\n—l = Uilnil gz
gn G, ’

where g, is a (p — 1)-dimensional vector. We now transform the
state vector as

Zp|n—1 = Hnan\nfl

a7

1 o”
using the transformation matrix H,, = —_&n I } The
Tnln—1

covariance matrix, Uy, _1, of the transformed state vector z,|,_1
is given by

Un\n—l =E (Zn\n—lzZ‘nfl) = HnPn\n—ng

a? oT
_ nln—1 T )
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We see that the first element of z,,|,,_ is equal to fir,,—1 and un-
correlated with any of the other elements and is therefore distributed
as N (fnjn—1, Ui\nf 1)- Using the posterior mean and variance from

(15) and (16) and ¢ = [10... O}T, we can update the transformed
mean vector and covariance matrix as

Zp|n = Zp|n—1 + (,u‘n\n - ,un\nfl)c

2 2 T
Un\n = Un|n—1 + (O-n\n - Un|n71) cc .

Inverting the transformation in (17), we obtain, after some alge-
braic manipulation, the following update equations

An|n = An|n—1 + (,U/n\n - ,U/'n\n—l) J;‘i_lpmn—lc (18)

Pn\n = Pn\nfl + (Oi\no—;‘i_l - 1) U;|3L_1Pn|n71CCTPn|n71-
19)

In this section we have derived the update equations for the KF.
For each acoustic frame of noisy speech, we first use (3) and (4)
to calculate the a priori state vector a,,|,—; and the corresponding
covariance P, _1, and solve (10) to find ~y,,. We then use (15) and
(16) to calculate the a posteriori estimate of the amplitude and the
corresponding variance respectively. Finally, the KF state vector and
its covariance matrix are updated using (18) and (19).

4. IMPLEMENTATION AND EVALUATION

4.1. Implementation of algorithm

In this section, we compare the performance of the proposed KF
based MMSE (KMMSE) estimator with five other algorithms: (i)
logMMSE - the baseline log-amplitude MMSE enhancer from
[3, 22]; (ii)) pMMSE - the perceptually motivated MMSE estimator
from [23, 22] using a weighted Euclidean distortion measure with
a power exponent of p = —1; (iii) ModSub — the modulation-
domain spectral subtraction from [11]; (iv) MDKF - the version
of the modulation-domain Kalman filter from [12] that extracts the
modulation-domain LPC coefficients from enhanced speech (using
the logMMSE algorithm [3, 22]); (v) KFMMSEI - an intermediate
version of our proposed algorithm that assumes the speech and noise
add in the STFT amplitude domain rather than the complex STFT
domain (i.e. replacing (1) with | Yy x| = | Xn.k| + |Wh,k|). The pa-
rameters of all the algorithms were chosen to optimize performance
on a subset of the training set of the TIMIT database [24]. We have
used an acoustic frame length of 32 ms with a 4 ms increment which
gives a 250 Hz sampling frequency in the modulation domain. The
speech LPC models are determined from a modulation frame of
duration 128 ms (32 acoustic frames) with a 16 ms frame increment
and the model orders in both the KMMSE and MDKF algorithms
are [ = 2. In the experiments, we use the core test set from the
TIMIT database which contains 16 male and 8 female speakers
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Fig. 4. Average segmental SNR of enhanced speech speech after
processing by four algorithms plotted against the global SNR of the
input speech corrupted by additive car noise (left) and street noise

(right). The algorithm acronyms are defined in the text.
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Fig. 5. Average PESQ quality of enhanced speech after processing
by four algorithms plotted against the global SNR of the input speech
corrupted by additive car noise (left) and street nose (right).

each reading 8 distinct sentences (totalling 192 sentences) and the
speech is corrupted by the noise from the RSG-10 database [25] and
the ITU-T test signals database [26] at —10, —5,0, 5,10 and 15dB
global SNR. A Hamming window is used in the STFT analysis and
synthesis and the noise power spectrum, 1/7217 - 1S estimated using the
algorithm from [17] as implemented in [22]. It is possible for the
algorithm to lock up with fi,,|, = 0; to prevent this, we impose the
constraint vy, > 0.5 in (10).

4.2. Performance evaluations

The performance of the algorithms is evaluated using both segmen-
tal SNR (segSNR) and the perceptual evaluation of speech quality
(PESQ) measure defined in ITU-T P.862. All the measured val-
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Fig. 6. Box plot of the PESQ scores for noisy speech processed by
six enhancement algorithms. The plots show the median, interquar-
tile range and extreme values from 2376 speech+noise combinations.
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Fig. 7. Box plot showing the difference in PESQ score between com-
peting algorithms and the proposed algorithm, KMMSE for 2376
speech+noise combinations.

ues shown are averages over the 192 sentences in the TIMIT core
test set. Figure 4 shows the average segSNR of speech enghanced
by the proposed algorithm (KMMSE) as well as by the logMMSE,
pMMSE and MDKF algorithms. The left and right plots respectively
show results for car noise [25] and street noise [26]. We see that for
car noise, which is predominantly low frequency, pMMSE gives the
best segSNR especially at poor SNRs where it is approximately 2
dB better than KMMSE, the next best algorithm. For street noise
however, which has a broader spectrum, the situation is reversed and
the KMMSE algorithm has the best performance especially at SNRs
above 5 dB. Figure 5 shows the corresponding average PESQ scores
for car noise (left plot) and street noise (right plot). We see that, with
this measure, the KMMSE algorithm clearly has the highest perfor-
mance. For car noise, the PESQ score from the KMMSE algorithm
is approximately 0.2 better than that of the other algorithms at SNRs
below 5 dB while for street noise, the corresponding figure is 0.15.
These differences correspond to SNR improvements of 4 dB and 2.5
dB respectively. To assess the robustness to noise type, we have eval-
uated the algorithms using twelve different noise types from [25]
with the average SNR for each noise type chosen to give a mean
PESQ score of 2.0 for the noisy speech. In Fig. 6, the solid lines
show the median, the boxes the interquartile range and the whiskers
the extreme PESQ values for the 198 x 12 speech-plus-noise com-
binations. Figure 7 shows box plots of the difference in PESQ score
between competing algorithms and KMMSE. We see that in all cases
the entire box lies below the axis line; this indicates that KMMSE
results in an improvement for an overwhelming majority of speech-
plus-noise combinations. The KMMSEI box plot demonstrates the
small but consistent benefit of using an additive model in the com-
plex STFT domain rather than the amplitude domain.

5. CONCLUSION

In this paper we have proposed an MMSE spectral amplitude estima-
tor based on a modulation domain Kalman filter. The novel MMSE
estimator incorporates a model of the temporal dynamics of spec-
tral amplitudes within each frequency bin by using a Kalman filter.
We have shown how the parameters of the speech prior model can
be estimated from the predicted state vector from the Kalman filter,
and used to calculate the estimator in the update step. The proposed
algorithm gives a consistent improvement in PESQ over all the com-
petitive algorithms demonstrating that PESQ can be improved by
about 0.2 over the baseline logMMSE enhancer for a wide range of
SNRs.
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