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Abstract: Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-28 

meter- to kilometer-wavelength dunes—bedforms of two distinct size modes. Observations from 29 

the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that 30 

Mars hosts a third stable wind-driven bedform with meter-scale wavelengths. These bedforms are 31 

spatially uniform in size, and typically have asymmetric profiles with angle-of-repose lee slopes 32 

and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures 33 

resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars 34 

instead form by wind due to the higher kinematic viscosity of the low-density atmosphere. A 35 

reevaluation of the wind-deposited strata in the Burns formation (< ~3.7 Ga) identifies potential 36 

wind-drag ripple stratification formed under a thin atmosphere.  37 

One Sentence Summary: Distinct from terrestrial wind-driven bedforms, stable meter-scale 38 

ripples on Mars likely result from fluid drag in a low-density atmosphere. 39 

 40 

Bedforms are repeating topographic forms on a granular surface that arise because of 41 

interactions between the sediment bed, sediment transport, and fluid flow (1). Bedforms typically 42 



manifest as ripples or dunes made of sand mobilized by air or water. They create spatial patterns 43 

that are recognizable on the surfaces of Venus, Earth, Mars, Titan, and comet 67P (e.g., 2, 3), and 44 

leave stratified sedimentary deposits. Because their morphology depends on formation 45 

mechanisms (4-6), bedforms are a primary means to reconstruct active and ancient atmospheric 46 

and hydrologic conditions.   47 

Wind-driven (eolian) bedforms on Earth display two distinct scales: decimeter-wavelength 48 

sand ripples, and hundred-meter- to kilometer-wavelength dunes (4, 7) (Fig. 1A). Grain-impact 49 

processes are thought to dominate the formation of wind ripples, whereas dune formation involves 50 

an aerodynamic instability (e.g., 6). Orbital observations of Mars also show the superposition of 51 

two distinct scales of active bedforms (Fig. 1B and S3) (8). Dunes form at a similar wavelength as 52 

on Earth; however, dunes are ubiquitously mantled with bedforms 1-5 m in wavelength (hereafter 53 

referred to as large martian ripples) (9). 54 

Large martian ripples were thought to have a similar origin to decimeter-wavelength eolian 55 

impact ripples on Earth, but to be larger on Mars due to differences in saltation (ballistic hopping 56 

of grains) (e.g., 6). An implicit assumption under this hypothesis is that small wind ripples should 57 

not coexist with large martian ripples. Until recently, the spatial coexistence of three scales of 58 

bedforms could not be tested because the resolution of orbital imagery is too coarse 59 

(25-50 cm/pixel with High Resolution Imaging Experiment (HiRISE) images (10)) to detect 60 

decimeter-scale ripples, and rovers had not visited active dune fields – only sand sheets and coarse-61 

grained ripples (e.g., 11, 12, 13). Observations made by the Curiosity rover (14) at an active dune 62 

field (the “Bagnold Dune Field”) (15) in Gale crater now show that large martian ripples are not 63 

simply larger versions of decimeter-scale wind ripples seen on Earth. Rather, we observe 64 

decimeter-scale ripples superimposed on larger, meter-scale ripples, which are in turn 65 



superimposed on dunes (Fig. 1 and S2). Thus, two stable ripple-scale bedforms coexist on Mars, 66 

and are both superimposed on dunes, in contrast to the single scale of superimposed terrestrial 67 

ripples.  68 

Mast Camera (Mastcam (14)) images collected by Curiosity indicate that large martian 69 

ripples have morphologies unlike eolian impact ripples. Terrestrial impact ripples have straight 70 

crestlines created by lateral grain splash (16), and relatively subdued profiles (17). In contrast, the 71 

large ripples of the Bagnold Dune Field have sinuous crest lines and asymmetric topographic 72 

profiles with distinct upwind (stoss) and downwind (lee) slope angles. Furthermore, the stoss 73 

slopes of the large ripples are mantled by small-scale ripples with a wavelength range of ~ 5-12 cm, 74 

which, based on their straight crestline, we interpret as impact ripples similar to those of Earth 75 

(Fig. 1C and D). This interpretation is consistent with recent numerical modeling which predicts 76 

that martian impact ripples should have decimeter-scale wavelengths (18). By contrast, the crests 77 

of the large ripples are sharp and give way downslope to angle-of-repose slip faces (slopes dipping 78 

~30 degrees downwind; Fig. S5A) marked by the presence of grainflows – small avalanche 79 

deposits (Fig. 1D), indicating recent activity. The presence of grainfall (i.e., sand that settles out 80 

on the lee slope) and deflected impact ripples on the lee slope indicates aerodynamic influence of 81 

the large ripples contemporaneous with small-ripple migration (Fig. 1D).  82 

We compiled a comprehensive multiscale dataset of eolian bedform wavelengths on Mars 83 

by combining remote measurements from eleven martian sites (Fig. S1; Tables S1 and S2), with 84 

rover measurements from stereo imagery in Gale crater (Fig. S5) (7). Our statistical analysis 85 

confirms that Mars has an additional bedform-wavelength mode, and that meter-scale ripples are 86 

absent in terrestrial eolian landscapes (Fig. 2; Table S3) (7). 87 



Large martian ripples are not simply small dunes because they maintain a stable size, 88 

whereas meter-wavelength dunes, which are rare on Earth, grow as they translate downwind (6) 89 

(Fig. S3 vs S4). Large martian ripples mantled with impact ripples also cannot be explained as 90 

large versions of terrestrial impact ripples forming by large saltation (18, 19); no existing model 91 

can reproduce the coexistence and coevolution of two scales of impact ripples (e.g., 20) 92 

(supplementary online text). Moreover, the large ripple morphology differs significantly from 93 

impact ripples. An alternative interpretation of the large ripples is that they are coarse-grained 94 

ripples (e.g., 21). However, images from the Mars Hand Lens Imager (MAHLI (14)) show well-95 

sorted large ripples up the dune’s stoss slopes (Fig. 1E), with very fine to medium sand and no 96 

significant grain-size differences between the small and large ripples (Fig. 1E and F). Thus, neither 97 

the impact nor coarse-grained hypotheses readily explain the coexistence of two distinct 98 

equilibrium scales of active ripples composed of similar sediment size.  99 

Their stable size, sinuous crests, and asymmetric profiles with avalanche faces make the 100 

large martian ripples morphologically similar to terrestrial subaqueous current ripples (Fig. S6), 101 

also called fluid-drag ripples (22) (supplementary online text). If the large martian ripples form 102 

aerodynamically (i.e., wind-drag ripples (4, 23)), then theory developed for current ripples should 103 

predict their scale once adjusted for martian conditions. Decades of flume experiments (e.g., 24-104 

25) have led to scaling relations for current ripples (e.g., 25-26). Following the theoretical 105 

framework of (25), we cast ripple size data in terms of the dimensionless current ripple wavelength, 106 

** u
 


  (where   is ripple wavelength,  is kinematic fluid viscosity, *u  is bed shear velocity, 107 

and */ u  is proportional to the viscous sublayer thickness (25)) is a function of the parameter 108 

*Re p   (where Re p  is particle Reynolds number and *  is Shields stress (Fig. S7; supplementary 109 



online text)). These dimensionless variables provide a complete description of ripple-size scaling 110 

that accounts for fluid and grain properties, and gravity. A large database of current ripple 111 

wavelengths (25), updated here to include results from high viscosity fluids (24), illustrates that 112 
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(Fig. 3). To compare the predictions of fluid-drag ripple-wavelengths to the large martian ripples, 114 

we calculated *Re p   and *  for all compiled martian bedforms (7) (supplementary online text). 115 

Results show that wind-drag ripples on Mars are predicted to be much larger than the decimeter-116 

scale impact ripples due to the high kinematic viscosity in Mars’ low-density atmosphere; 117 

furthermore, the wavelength of the large martian ripples is consistent with fluid-drag theory (Fig. 118 

3) across a range of elevations with different atmospheric density (Fig. S10).  119 

Because wind-drag ripples are predicted to be smaller in thicker atmospheres, identification 120 

of these bedforms in ancient sedimentary rocks (e.g., 28) offers the potential to reconstruct 121 

atmospheric loss and the global drying of Mars (e.g., 29). Migration of bedforms produces cross-122 

stratification in sedimentary rocks, which can be used to determine their original three-dimensional 123 

geometry. Based on morphology and scale, and using a kinematic model (30) (Fig. 4), we expect 124 

sinuous wind-drag ripples formed under present-day martian atmospheric conditions (32) to form 125 

decimeter-thick trough-cross-sets, grouped into larger sets formed by overall migration of the dune 126 

(supplementary online text). Large-ripple stratification should be distinct from that of compound 127 

wind dunes or coarse-grained ripples because compound dunes do not maintain a persistently 128 

stable size in the down-dip direction (e.g., Fig. S3 vs S4) and typically form thicker cross-sets, and 129 

coarse-grained ripples leave recognizable coarse grained lags. Stratification from the large ripples 130 

might also resemble that of subaqueous ripples and dunes. However, identification of distinctive 131 



wind-ripple strata (inversely-graded, millimeter-thick continuous layers (33)) coexisting with both 132 

decimeter-scale cross-sets and meter-scale dune troughs would enable the definitive interpretation 133 

of an eolian origin, whereas other contextual support, such as fluvial bar sets, desiccation cracks, 134 

and soft-sediment deformation, would characterize wet environments (e.g., 28). 135 

Candidate wind-drag ripples were observed by the Opportunity rover at Cape St. Mary, 136 

Victoria crater, in the Burns formation (Fig. 4; supplementary online text) (34), and were 137 

recognized as abnormally sinuous and large eolian ripples at the time. There, repeated 10-20 cm 138 

thick trough cross-sets are bounded by meter-scale dune troughs. The morphology, scale, 139 

contextual relationship to distinctly larger bounding surfaces, and apparent high deposition rate 140 

(34) all support the hypothesis that this stratification was formed by wind-drag ripples. The wind-141 

drag ripple hypothesis therefore indicates a substantially thinned martian atmosphere during 142 

deposition of the Late Noachian-Early Hesperian Burns formation (Fig. S10) (35). This 143 

interpretation supports models for atmospheric loss based on carbon isotope calculations (e.g., 29). 144 

The implied paleo-hydrology does not conflict with recent observations from Gale crater (36) since 145 

the absolute ages of both sequences are highly uncertain, and is also consistent with centimeter-146 

scale trough cross-strata in sulfate-rich sands in the lower Burns formation (28). The latter indicate 147 

shallow subaqueous flows discharged from melt or groundwater as brines of high ionic strength 148 

due to highly soluble sand grains (26, 37, 38), rather than sourced from meteoric precipitation 149 

under a denser atmosphere. Thus, whereas aqueous activity can be local and sourced from the 150 

subsurface (39), widespread shifts in wind-drag ripple size can indicate global changes in 151 

atmospheric density, and should prove an important geological indicator of the drying of Mars 152 

(Fig. S8 and S9).  153 
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Fig. 1. Eolian bedforms on Earth and Mars. (A) Dunes and ripples at Oceano Dunes, California, 275 

United States (35.094960 N, -120.623476 E) (B-F) dune in the Bagnold Dune Field, Gale crater, 276 

Mars, as shown from (B) HiRISE image (ESP_035917_1755) and (C-F) the Curiosity rover. 277 

(C) Mastcam mosaic (mcam05410, sol 1192) showing small and large ripples on the dune. 278 

(D) Mastcam image (mcam05600, sol 1221) of large ripples with superimposed small ripples. 279 

(E) MAHLI 25 cm-standoff image (1223MH0005550010403094C00, sol 1223), ~1 m off-frame 280 

of (D) in the direction of the dot-and-arrow. (F) 5 cm-standoff image 281 

(1223MH0005560010403097C00, sol 1223) of the crest of a large ripple. 282 

 283 

Fig. 2. Distinct modes of eolian bedforms on Earth and Mars. Bedform wavelength distribution 284 

on (A) Earth (n = 1473), (B) Mars from orbit (n = 2430; shaded area below limit of detection), and 285 

(C) the Curiosity rover (n = 44; shaded area constrained by perspective from the ground) (7). 286 

 287 

Fig. 3. Scaling of fluid-drag ripples. Dimensionless bedform wavelength as a function of particle 288 

Reynolds number, Re p , and Shields stress, * , quantities that control fluid-drag ripple size (25) 289 

(current ripples in blue circles, theory in black line). In contrast to martian dunes (pink squares) 290 

and small martian ripples (orange triangles), large martian ripples (red diamonds, n = 7280, 291 

measured over 36 locations globally including our measurements (7) and those of (27); red star 292 

indicate rover measurements at Gale crater) match fluid-drag ripple theory. Symbols are means 293 

and error bars represent standard deviations at a given measurement site; error bars are smaller 294 

than marker size where not shown. 295 

  296 



Fig. 4. Candidate wind-drag ripple stratification on Mars. (A) Mars Exploration Rover 297 

Panoramic Camera (31) image (P2441, sol 1212) of Cape St Mary outcrop, Victoria crater, Mars. 298 

White box shows location of (B) decimeter-scale trough cross-strata, and (C) interpretation of 299 

stratal features from (B). (D) Uninterpreted (top) and interpreted (bottom) stratification produced 300 

by geometric modeling of compound bedforms (30). Yellow lines represent surfaces scoured by 301 

dune troughs, red lines represent erosional surfaces produced by migration of wind-drag ripples, 302 

and blue lines indicate wind-drag ripple cross-stratification. 303 
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Materials and Methods 
 
 
S1. Bedform compilation  
 

Wavelength data was compiled for Earth and Mars (from orbit and from the ground), and 
plotted as a Probability Density Function (PDF) to highlight the distribution of bedform 
wavelengths across all scales. The PDFs were calculated using the kernel density method (40), 
allowing for the identification of discrete modes. Because the terrestrial dataset was compiled from 
several studies and our own field and aerial measurements (Section S1.1), the relative heights of 
the ripple and dune modes do not perfectly reflect the area-weighted relative frequency of ripples 
and dunes. Nevertheless, the natural scale of terrestrial bedforms is well-known and is such that 
there are orders of magnitude more ripples than dunes per unit surface area. While we did not 
count the entire population of dunes, transverse eolian ridges (TARs, after the alternative spelling 
“Transverse Aeolian Ridges”), and ripples across the martian dune fields from orbit, a counting 
technique was designed to give a fair representation of the density of bedforms per unit surface 
area (Section S1.2), such that the relative heights of peaks in the martian orbital PDF (Fig. 2B) 
give a fair representation of the relative frequencies of the different bedforms. All bedforms were 
measured from the rover dataset, such that Fig. 2C displays relative peak heights that accurately 
represent the relative density of small and large ripples per unit land area. 
 
 

S1.1. Earth 
 

Wavelength data for terrestrial impact ripples and sand dunes was compiled from the 
published literature (4, 41-44), and aerial and field measurements from (i) White Sands National 
Monument, New Mexico, United States, (ii) Algodones Dunes, California, United States, and (iii) 
the Oceano Dunes, California, United States. Our dataset is available online in a “comma separated 
value” (.csv) file. Dune wavelength data was collected using aerial photographs and satellite 
images in geographic information system (GIS) software. Measurements were made using the 
methods of (44). Crestline wavelength measurements were manually digitized by creating line 
features perpendicular between crestlines. Ripple crestline measurements were made in the field 
using a tape measure stretched perpendicularly across ripple crestlines.  
 
 

S1.2. Mars: Orbital measurements 
 

The active migration of large ripples and dunes has been observed and quantified in many 
locations on Mars (8, 15, 45-49). Eleven dune fields (Fig. S1) were selected for analysis based on 
location at a range of latitudes and elevations on Mars (Table 1). These dune fields host a wide 
variety of bedform scales that include the range of orbitally recognized bedforms on Mars – large 
ripples, TARs, and dunes. These classifications were discerned visibly from High Resolution 
Imaging Science Experiment (HiRISE (10)) imagery (25-50 cm/pixel) based upon prior 
descriptions of ripples, TARs, and dunes (e.g., 48). 

Within each dune field a Region of Interest (ROI) that contained at least one dune with 
superimposed ripples and adjacent Transverse Aeolian Ridges (TARs) was selected. Ripple, TAR, 



and dune wavelengths were analyzed from HiRISE imagery using ArcGIS software (50). HiRISE 
images have a spatial resolution of > 0.25 m, which allows bedforms ~1 m in size to be resolved. 
In order to obtain a reasonable statistical representation of ripple and TAR wavelengths, 100 points 
were randomly distributed within the ROI using the ArcGIS Create Random Points tool (Methods 
found at http://resources.arcgis.com/en/help/main/10.2/index.html#//00170000002r000000). 
Where the point fell on a ripple or TAR, which was determined visually, two wavelength 
measurements were made between the bedform on which the point fell and the adjacent bedform 
crestlines. If a point did not fall on a bedform, no measurement was made. Dune wavelength 
measurements were made by measuring from crest to crest for a range of dune sizes within the 
dune field. For each measurement made, a visual interpretation of the type of bedform was noted 
either as a ripple, TAR, or dune (Table 2). Ripples measured within the Bagnold Dune Field were 
only digitized from High Dune and Namib Dune (e.g., Fig. S2 and S3), both of which were visited 
by the Curiosity rover. The ROI for the Bagnold Dune Field is small because it only includes these 
two dunes. 

The rationale for selecting random points was to reduce bias in the wavelength 
measurements that might artificially influence the wavelength distribution of ripples and dunes. 
Because most ripple wavelength variability occurs by position on the dune (48, 51) rather than 
across the dune field, a relatively small ROI was generated to ensure that a high density of 
wavelength measurements was distributed across a small number of dunes. Visual inspection of 
the random point locations confirmed that the points were distributed among the different slopes 
of the dune and inter-dune areas, and captured a representative sample of ripple and TAR 
wavelengths. Any systematic differences in ripple or TAR size is averaged out by this technique. 
Because only a few dunes are contained within a small ROI, the wavelengths of a range of dunes 
within the dune field containing the ROI, but outside of the ROI, were measured. Our measured 
distributions of ripple, TAR, and dune wavelengths falls within the typical range reported by 
previous studies, which used similar manual digitization methods and automated methods (15, 47, 
51). Bedforms, as measured from orbital data, which cannot distinguish sub-meter bedforms, show 
two main modes corresponding to meter-wavelength large ripples and hundreds-of-meter 
wavelength dunes (Fig. 2B).  

The dataset from (27) is added to our compilation. The elevation values reported in (27) 
were measured with respect to the Mars Reconnaissance Orbiter reference ellipsoid. These values 
were corrected to represent elevation with respect to the geoid for consistency with our 
measurements from MOLA. 

 
 

S1.3. Mars: Rover measurements 
 

The Mars Science Laboratory Curiosity rover visited the Bagnold Dune Field (Fig. S2) and 
imaged ripples along its traverse. Digital elevation models and orthorectified images were built 
from Mastcam stereo images (mcam05372, sol 1184). Topographic profiles (Fig. S5C-D) were 
measured across the scenes in directions perpendicular to the bedform crest lines, detrended with 
an order two polynomial, and averaged using a sliding window over 25 points (i.e., a 2.5-cm 
moving-average, Fig. S5E). Detrended, smoothed profiles were then compared to the original 
Mastcam frames to ensure that the measured wavelengths corresponded to actual bedforms. 
Results are shown in Fig. 2C. In order to be able to resolve the small ripples, the distance between 
the rover and the target had to be such that the maximum frame of a Mastcam image was about 



~1.5 m wide, a perspective that limited the observation of large ripples and dunes from the ground. 
Despite these limitations, we were able to measure the wavelengths of both small and large ripples 
from the ground. The wavelength of all bedforms were measured within each Mastcam frame. The 
mode corresponding to the large ripples (Fig. 2C) strongly overlaps with the mode of large ripples 
as measured from orbit (Fig. 2B).  

Grain sizes were estimated by measuring the intermediate axis of grains from MAHLI 
images of undisturbed and disturbed surfaces (i.e., grains sitting at and below the surface, 
respectively), based on the MAHLI pixel size corresponding to the stand-off distance of each given 
image. Measured grain sizes correspond to very fine (62-125 μm) to medium sand (250-500 μm). 
The highest resolution MAHLI image (1241MH0005720010403583C00, sol 1241) could not 
resolve grains below ~30 μm. 
 
 
 S1.4. Statistical Significance 
 

In order to test that the terrestrial and martian bedform-wavelength distributions are 
statistically distinct (Fig. 2A vs. 2B and 2A vs. 2C), we conducted a series of 1000 two-sample 
Kolmogorov-Smirnov statistical tests for each pair of distributions. Each distribution was first 
subsampled to a sample size of n = 40 using a Metropolis-Hastings algorithm. The null hypothesis 
“the two samples were drawn from the same distributions” was rejected at the 95% confidence 
level in > 99% of cases for Earth vs. Mars orbital and Mars rover datasets, respectively. 

To further characterize the statistical similarity of individual modes, we (i) subsampled the 
probability distributions (n = 40) using a Metropolis-Hastings algorithm, (ii) calculated kernel 
density of the subsampled distributions (40), and (iii) identified their modes through a local-
maxima-detection routine. This procedure was completed 10 times for each dataset to build a 
distribution of each individual mode – small terrestrial ripples, terrestrial dunes, large martian 
ripples from orbit, martian dunes from orbit, small martian ripples from the ground, and large 
martian ripples from the ground. We then conducted a two-sample Kolmogorov-Smirnov test for 
each individual pair (p-values reported in Table S3). Importantly, the two highest p-values occur 
in comparisons of terrestrial impact ripples to small martian ripples, and of terrestrial dunes to 
martian dunes. 

 
 
S1.5. Additional evidence in favor of the wind-drag hypothesis 

  
Alternative hypotheses for the formation of the large martian ripples are that they are 

instead (i) TARs, (ii) compound dunes, (iii) coarse-grained ripples, or (iv) impact ripples. 
The occurrence of a small fraction of bedforms tens of meters in wavelength (Fig. 2B) is 

the signature of TARs (48, 51, 52). TARs may form as a result of coarse-grain armoring, giant 
saltation trajectories, or deposition of dust transported in suspension (52-55), and are distinct from 
the large ripples in activity and morphology: (i) activity of TARs has not been detected (46, 56), 
(ii) their wavelengths are generally larger and more widely distributed (e.g., Table S2), (iii) they 
have symmetric topographic profiles (54), and (iv) they tend to have a much higher albedo than 
the dark, active, mafic sands. Thus, the large martian ripples are distinct from TARs. 

As seen in Fig. S3, the bedforms on the stoss of the large dunes do not grow in size as they 
migrate up the stoss slope, unlike small compound dunes on Earth (Fig. S4). It was shown that, in 



places, the wavelength of the large martian ripples may weakly increase or decrease upslope due 
to local variations in grain size or wind speed (57), although no consistent increase in height and 
wavelength upslope is observed, contrary to terrestrial compound dunes (43). Thus, the large 
martian ripples are distinct from compound dunes.  

It is important to evaluate whether the large ripples are composed of coarse grains, which 
are expected to produce meter-wavelength ripples, known as megaripples or granule ripples, 
without the need for the wind-drag mechanism. Coarse-grained ripples on Earth typically form in 
grains larger than about a millimeter up to several centimeters (e.g., 12, 21, 58, 59). Such coarse-
grained ripples were observed on Mars by the Spirit rover at “El Dorado” in Gusev crater (60), 
and by the Curiosity rover at the base of the stoss slope of “High Dune” in Gale crater, as expected 
at the upwind margin of a dune field (61). The vast majority of large martian ripples, however, 
appear distinct from megaripples in that surface armoring from large grains does not appear to play 
a role in their formation. In contrast, the armored megaripples at the base of High Dune are 
expected because the observed ripples sit at the upwind, trailing margin of the dune field (22, 23) 
and at the change in slope from the inter-dune area to the stoss slope. The upwind margin 
concentrates coarse grains, and the abrupt increase in slope onto the stoss side limits the upslope 
transport of the coarsest grains, which results in a lag deposit. However, the armored ripples give 
way to well-sorted ripples of very fine to medium sand up the stoss slope toward the dune crest 
with the morphologic features we described for large ripples (e.g., Fig. 1D and E). Another 
observation that suggests that coarse grains are not responsible for the formation of the large 
ripples is that these bedforms cover the majority of imaged eolian dunes on Mars, which would 
require a mechanism that promotes the creation of lag regardless of initial grain-size 
distributions.  In other words, the well-sorted sand that is expected to comprise the dunes, 
especially on dune lee faces and in the middle of a dune field far from the source area, would have 
a lag surface or coarse crest. Rather, as lag deposits, coarse-grained ripples should only occupy a 
fraction of a dune field, consistent with observations of large martian ripples juxtaposed to what 
are likely true coarse-grained ripples in several locations on Mars (51). Thus, large martian ripples 
are distinct from coarse-grained ripples. 

The last alternative hypothesis is that the large martian ripples are impact ripples. In order 
to be a viable hypothesis, an impact mechanism has to (i) be able to generate meter-scale ripples, 
(ii) allow for two stable and active scales of impact-ripples, and (iii) reproduce the observed 
morphologies. While some numerical models are able to produce meter-scale impact ripples, they 
require wind shear velocities at or above the fluid threshold for saltation (e.g., 19). Other modeling 
studies that are able to reproduce transport hysteresis, i.e., to recreate the lowered impact threshold 
relative to the fluid threshold, predict the formation of decimeter-scale impact ripples for shear 
velocities above the impact threshold but below the fluid threshold (e.g., 18), more consistent with 
our observations of decimeter-scale ripples. However, none of the published models are able to 
reproduce two superimposed scales of active impact ripples that are stable under the same wind 
conditions. An experimental study (20) showed that equilibrated impact ripples subjected to a 
change in wind conditions either adjust their wavelength if the wind perturbation is large, or adjust 
their height. Thus, two different wavelengths could possibly be observed together, but one of the 
two bedform populations would have to be relict. In our case, the relict bedform would necessarily 
be the large ripples, otherwise, their migration would quickly rework and erase the decimeter-scale 
ripples. However, observations that large ripples migrate seasonally (49), that grainflows onlap 
onto small ripples, and that the small ripples do not rework the crest of large ripples (e.g., Fig. 1C), 
each illustrate that both scales of ripples are actively forming and migrating at the same time, under 



similar wind conditions. Finally, the observed morphologies are inconsistent with an impact 
mechanism. Terrestrial impact ripples have straight crests due to lateral grain splash. Although 
large ripples migrating down the sloped flanks of martian dunes appear to have relatively straighter 
crests (Fig. S3), their relative two-dimensionality arises from gravity-driven, along-crest transport 
(16), and large ripples migrating up the stoss slopes of their host dunes are clearly sinuous. 
Furthermore, the impact mechanism does not promote the formation of angle-of-repose slip faces 
that extend from ripple brink to base as observed in some large martian ripples. Rather, impact 
ripples typically show short near-angle of repose slopes at the brink, which quickly give way 
downslope to lower angled slopes (17, 58).  

 
 

S2. Calculation of *Re p �  and *� for the Earth and Mars eolian ripples data 
 

 In order to estimate the particle Reynolds number, *Re p
u D
�

�  (in which *u  is the shear 

velocity, D  is the grain size, and �  is the kinematic viscosity of the fluid), and Shields stress, 
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RgD
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�  is the submerged reduced density of the sediment, s�  and f�  

are the sediment grain and fluid densities, and g  is the acceleration of gravity), for the formation 
of bedforms on Earth and Mars, typical bed shear velocities, atmospheric densities and viscosities, 
and grain densities and sizes need to be constrained. 
 
 

S2.1. Earth 
 

In order to compare fluid-drag theory to observed terrestrial ripples, we use the dataset of 
(4) for grain size and ripple wavelength. We estimated shear velocity through the impact threshold 
shear velocity, Earth

*itu , from grain size, D , based on a fit to field data from (62-65) compiled in (6),  
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� 	 � 	
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We assumed a constant atmospheric density of 1.27f� �  kg/m3, a kinematic viscosity of 
51.4 10� �� �  m2/s, an acceleration of gravity of 9.81g �  m/s2, and a quartz density for the grains 

of 2650s� �  kg/m3. 
Figure S7 illustrates that the range of wavelengths covered by terrestrial eolian ripples 

overlaps with the fluid-drag ripple predictions, such that wind-driven fluid-drag ripples (or “wind-
drag ripples”) may in fact occur on Earth (e.g. as suggested by (4, 23)), but are rarely recognized, 
possibly because their sizes should be similar to impact ripples. This overlap in scales between 
impact and fluid-drag eolian ripples is not expected on Mars, however.  

 
 

 



 S2.2. Mars 
 

Most sand transport on Mars likely occurs close to the threshold bed shear velocity required 
to sustain saltation (66), a value referred to as the impact threshold velocity, *itu . On Earth, the 
impact threshold is typically 80% of the fluid threshold value, while on Mars, the impact threshold 
is thought to be up to an order of magnitude lower than the fluid threshold (e.g., 6). In order to 
compare the measured wavelength of martian eolian bedforms to predictions from fluid-drag 
theory (Fig. 3), we set the wind shear velocity to be equal to the impact threshold (i.e., *u  = *itu ), 
which is a function of atmospheric pressure, temperature, and grain size. 

We calculated impact threshold bed shear velocity, Mars
*itu , from grain diameter, D , surface 

pressure, p , and temperature, T , from the best fit relationship derived by (66), 
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We consequently needed to estimate D , p , and T . The Opportunity rover measured sizes 
of mafic sand particle grains of ~ 50-150 μm at Eagle crater (67), while Spirit measured coarser 
grain sizes, up to ~ 200-300 μm at El Dorado (11). Grain sizes measured by Curiosity at the Namib 
Dune are typically ~ 200-300 μm (Fig. 1F). We thus assumed a grain size value of 200 μm. Note 
that the robustness of the match between the data and the scaling predictions are nearly 
independent of grain size. We estimated pressure from the elevation, z , of ripple wavelength 
measurements assuming a constant atmospheric scale height 

 � 	( ) 610Pa exp
11.2km

zp z �
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 �
,  (S3) 

consistent with the atmospheric entry profiles of the Mars Exploration Rover missions (32). We 
further assume an isothermal atmosphere of 227T �  K, a thermal profile suggested by the 
atmospheric entry profiles of (32) within the range of elevations covered by the ripple wavelengths 
measurements. The results are not particularly sensitive to the lapse rate we use to calculate ( );T z  

the R2 value of the fit for � 	
1

3
** Re p� ��  when the martian large ripple data are included ranges 

from 0.9295 to 0.9312 with lapse rates of 0 (isothermal atmosphere, (32)) to -3.7 K/km, a value 
consistent with the Viking Lander 1 measurements (68).  

We estimated atmospheric density at the elevation of the ripples through the ideal gas law 
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( )f
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where 
2COM is the molar mass of carbon dioxide, and r is the ideal gas constant. We estimated the 

kinematic viscosity of the atmosphere at elevation z  through 
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where the dynamic viscosity of the atmosphere is assumed to be constant and equal to
610.8 10� �� �  Pa.s. Finally, reduced gravity was calculated by setting 3.78g �  m/s2 and 

assuming a basaltic density for the grains ( 2900s� �  kg/m3).  
  



Supplementary Text 
 
 
S3. Current ripples: Scaling from flume experiments 
 

A morphologic characteristic of subaqueous ripples is their often asymmetrical topographic 
profile (e.g., Fig. S6). They typically have gentle slopes upstream of a sharp ripple crest, and a 
near-angle-of-repose slip face downstream. They are often sinuous, and their crest-to-crest 
wavelength varies with flow and grain properties.  

We build on the data compilation of (25), who compiled flume experiment data from (69-
72), which comprise experiments with sand and glass beads of sizes ranging from 105 to 260 μm, 
where the fluid was either water or glycerine and water solutions. The analysis in (25) collapsed 
the ripple wavelength data into a parameter space 
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�  is the particle Reynolds number, and 
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is the Shields stress (Section S2). Nondimensionalization allows for the same information to be 
recast in multiple non-unique ways, depending on the preferred dimensionless variables.  Here we 
chose to recast the variables of YX  and YY  of (25) into  a more intuitive coordinate system 
following more recent work on bedform stability (22, 26, 73).  Thus, we operated the following 
mapping on the data compilation: 
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where *(Re , *)p � �  reflects our new coordinate system. The ordinate *�  is analogous to a 
nondimensional wavelength, where the normalization factor is proportional to the thickness of the 
viscous sublayer, consistent with previous theory (74-76). Based on limited data at low values of 

*Re p � , (25) hypothesized that *�  was a constant at low *Re p � , i.e., that ripple wavelength 
was proportional to the thickness of the viscous sublayer. We expanded the parameter space by 
adding the data of (24), which was previously analyzed as analogs to ripples formed by viscous 
brines on Mars (26). The data from (24) was extracted from their Tables 5-10 (pp. 124-129). The 
experiments used silt sizes of about 21 to 115 μm and water-sucrose solutions with kinematic 
viscosities ranging from 6x10-7 to 1.05x10-5 m2/s to explore very small particle Reynolds numbers 
and thick viscous sublayers.  

Figure S7 shows the data of (24, 25) plotted in the new coordinate system, and indicates 
that dimensionless wavelength, from both datasets, increases with *Re p � , inconsistent with the 
constant dimensionless wavelength hypothesized by (25). Because the former study did not 
distinguish between ripples and dunes, we filtered the sandy bedforms by overlaying the data on 
the bed stability diagram of (26), which itself is a compilation from (22, 73). The bedform stability 
diagram is a well-accepted phase space that incorporates thousands of observations, and allows 
one to distinguish ripples from dunes and lower and upper plane bed regimes. The stability diagram 



itself can be cast in terms of Re p  and *� , which allows the ripples in our data compilation to be 
segregated from other bed states. The best fit power law relationship to the flume data of (24, 25) 
for current ripples is 

 � 	0.34
2

** 2450 Re    (R =0.7414)p� �� .  (S7) 

The best fit exponent of 0.34 is very close to the rational number 1/3. When the exponent is forced 
to be equal to 1/3, the best fit relationship to the flume data becomes 

 � 	
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3 2
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The relationship in Eq. S8 implies that 
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Equation S9 is in agreement with the predictions of (1, 26, 77-78) that the wavelength of ripples 
should scale with kinematic viscosity to the power 2/3. Moreover, most flume experiments suggest 
that there is a weak correlation between ripple spacing and grain size (e.g., 75, 79). Equation S9 
also predicts that ripple wavelength decreases with reduced gravity and transport stage—
relationships that are in agreement with flume data (77).  
 
 
S4. Paleoatmospheric reconstruction from martian outcrops 
 
 

S4.1. Technique 
 
The geometry of cross-stratification in sedimentary rocks is a function of the morphology 

of bedforms, their migration direction, and the rate of net sediment accumulation. In order to 
anticipate the stratigraphic signature of wind-drag ripples, we employed an algorithm that uses 
dozens of two-dimensional sine functions to simulate morphology of bedform assemblages, and 
then moves that evolving morphology through hundreds of steps through time (30). To model the 
martian large ripples, we began with the input values used for Figure 65 of (30), changed the 
superimposed bedforms from dunes to large ripples by reducing their height and wavelength, 
increased the migration speed of the superimposed large ripples relative to the main dunes as is 
physically reasonable for smaller bedforms, adjusted the migration direction of the large ripples 
from directly downslope to obliquely downslope, selected an outcrop orientation through the 
stratification that most closely reproduced the observed outcrop, and decreased the density of lines 
in the image to keep them from bleeding together. Results from this modeling exercise suggest 
that wind-drag ripple cross-stratification would occur in trough cross-sets with preserved foresets 
bounded by erosional surfaces associated to the wind-drag ripples, themselves bounded by dune-
trough scour surfaces. 

Theoretical and empirical studies show that subaqueous ripples and dunes, even in the case 
of zero net deposition, produce cross-sets with thicknesses up to half of the original bedform 
height, and lengths about half of the original bedform wavelength (80-82). Consequently, a 30 cm 
high wind-drag ripple could produce a ~15 cm thick cross-set if typical subaqueous preservation 
ratios hold. Transverse eolian dunes typically preserve less than 10% of the total bedform height 



(83), although this ratio may be much higher for superimposed dunes, up to 100%. In the following, 
we illustrate how the ripple wavelength scaling relationship can be used to reconstruct the paleo-
atmospheric density from measurements of cross-set thicknesses within the Stimson formation at 
the Apikuni Mountain section at Marias Pass (Fig. S8), Gale crater (Fig. S9). 

In order to reconstruct atmospheric density from the thickness of cross-sets, one needs to 
(i) estimate bedform height from the set thicknesses by assuming a preservation ratio, (ii) estimate 
bedform wavelength from bedform height, and (iii) solve for atmospheric density based on 
bedform wavelength using a best fit to our scaling relationship.  

In order to place an upper bound on paleo-atmospheric density, we assume a preservation 
ratio of 100%. Thus, 10-20 cm-thick cross-sets such as those observed at Apikuni Mountain by 
Curiosity must have been created by the migration of wind-drag ripples with heights of at least 
~10-20 cm. Subaqueous and eolian ripples and dunes have height-to-wavelength ratios ranging 
from ~0.01 to ~0.1 (e.g., 75, 84, 85). To estimate a conservative upper bound on paleo-atmospheric 
density, we assume a height-to-wavelength ratio of 0.1, i.e.,  

 0.1�
�
� ,  (S10) 

where �  is the ripple height. Thus, the observed cross-sets must to have been created by wind-
drag ripples of wavelengths greater than 1 m. Finally, to take into account the scatter associated 
with measured wavelengths of wind-drag ripple on Mars, we fit the experimental flume data 
combined with the martian wind-drag ripple measurements. We find the best fit to be 
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with a coefficient of determination R2=0.89, a relationship that is virtually undistinguishable from 
the best fit relationship resulting from the terrestrial data alone (Eq. S8). The 2777 factor has a 
95% confidence interval of 2615 to 2948.  

Fig. S10 shows how the predicted wavelength �  of wind-drag ripples from Eq. S11 varies 
with atmospheric density, and that measured wavelengths of modern large ripples roughly follow 
the predictions. Fig. S10 was generated assuming a grain size of 200 μm, grain density of 2900 
kg/m3, atmospheric dynamic viscosity of 10.8×10-6 Pa.s, gravitational acceleration of 3.78 m/s2. 
Bed shear velocity was assumed to be equal to the impact threshold and calculated as a function 
of atmospheric density following the semi-analytical formulation of (66) (all parameter values are 
summarized in a supplementary “.csv” file). Different atmospheric densities are found under 
modern conditions due to the wide range in elevation over which bedform-wavelength 
measurements were made. The ripple measurements of (27) were made in the light-toned dusty 
Tharsis region, while our dataset was acquired over dark mafic sand dune fields. Both datasets 
show a consistent decrease of ripple wavelength as a function of atmospheric density, but are offset 
from one another. The offset between the two datasets might arise from: (i) model assumptions 
that are inexact, e.g., wind shear velocities may not be at the threshold value for transport; (ii) 
differences in particle size and density, e.g., coarse low-density dust aggregates which may be 
representative of the bed on the Tharsis Montes (27) would form smaller ripples than in mafic 
sand; (iii) an easier detection of smaller ripples in light-toned material due to a higher contrast 
between the shadows cast by ripple crests and the bed, such that measurements in dark mafic sands 
are skewed to slightly larger wavelengths. Most large ripples observed in situ by the Curiosity 
rover at Gale crater have wavelengths closer to ~ 1.5 meter (Figs. 3 and S10). Bed shear velocities 



are likely to be increasingly larger than the impact threshold as atmospheric density increases, an 
effect that is not taken into account in this formulation. Conversely, while the wavelength of large 
ripples is expected to increase with elevation, we expect ripples to cease forming at the elevation 
at which atmospheric density becomes too low to generate winds that surpass the impact threshold. 
However, large ripples are observed up to the top of Olympus Mons, suggesting that such a 
threshold in atmospheric density is not reached at the surface of Mars.   

 
 

S4.2. Cape St. Mary, Victoria crater 
 

The Opportunity rover observed centimeter-scale trough cross-stratification in sandstones 
of the Burns formation at Eagle and Erebus craters (Fig. 4) (28, 86, 87), which were interpreted as 
the signature of subaqueous ripples in a wet inter-dune environment. The fluvial hypothesis was 
favored to an eolian origin on the basis of (i) the three-dimensional geometry of the cross-sets, 
(ii) their scale, and (iii) their paleo-environmental context. These cross-strata are found in sulfate-
rich sands of high solubility (27), suggesting that shallow subaqueous flows discharged from melt 
or groundwater as brines of high ionic strength (26, 37, 38), rather than sourced from meteoric 
precipitation under a denser atmosphere. We note that in the absence of additional context (grain 
size and sedimentary structures like soft-sediment deformation and/or desiccation cracks), the 
interpretation of the small-scale trough cross-sets is non-unique because they could represent the 
signature of wind-drag ripples formed in a denser atmosphere. However, independent evidence 
suggesting wet depositional conditions supports the original interpretation (86, 87). In contrast, 
later along its traverse, the Opportunity rover found ~10-20 cm-thick cross-sets superimposed on 
high angle foresets on the south face of the Cape St Mary outcrop at Victoria crater (34) (Fig. 4). 
This cross-stratification was interpreted as the signature of out-of-phase sinuous eolian bedforms, 
stratigraphically above the Endurance and Erebus craters sections; in this location, no evidence of 
originally wet conditions was observed. The 10-20 cm-thick trough cross-sets of Cape St Mary 
have the scale and geometry we infer to be representative of wind-drag ripple cross-sets formed 
under conditions similar to present-day Mars. Martian impact ripples are too small to produce the 
observed set thicknesses. The observed geometry arises from the migration of smaller bedforms 
across the lee slope of a larger, host bedform. Coarse-grained ripples migrate slower than adjacent 
dunes, and their migration would likely not form repeated sets suggesting high deposition rates 
like those observed in Fig. 4B. Grains have not been directly observed at Victoria crater, but were 
constrained to be of medium-sand size or finer in other sections of the Burns formation (28). Thus, 
the decimeter-scale trough cross-strata of Cape St. Mary are reasonably interpreted as wind-drag 
ripple stratification.   

The lower bound on the wavelengths of wind-drag ripple we inferred from the thickness of 
cross-sets at Cape St. Mary in Victoria crater is highlighted with a red dashed line in Fig. S10. 
Based on our observations, the scaling relationship indicates that the martian atmosphere had a 
density of < ~0.02 kg/m3, and thus overlaps with the range in modern atmospheric densities at the 
surface of Mars (~ 0.002-0.023 kg/m3; gray box). For comparison, under an atmosphere of Earth-
like density, wind-drag ripples would have predicted wavelengths of about 12 cm, heights of about 
1.2 cm, and thus would form cross-sets < 1.2 cm thick assuming the same preservation and height-
to-wavelength ratios.  

 
 



S4.3. Other candidates wind-drag ripple cross-stratification 
 

Other potential occurrences of wind-drag ripple cross-stratification in the martian 
geological record were observed by the Mars Exploration Rover Spirit, but were not recognized 
as such at the time. Decimeter-thick cross-sets were observed as Spirit explored the Home Plate 
layered plateau in Gusev crater (e.g., 88). Two interpretations were proposed for the upper Home 
Plate stratigraphy. A lower unit was thought to be a fallout sedimentary deposit from an explosive 
volcanic eruption based on its poorly sorted grains, poorly stratified bedding, and the presence of 
an out-sized clast interpreted as a ballistic volcanic bomb. However, two competing hypotheses 
were proposed for the upper unit which contains large-scale trough cross-sets of locally well-
rounded and well-sorted sand; these were suggested to either result from sand waves associated 
with the base surge or, alternatively, to be unconformably overlying eolian deposits (89). The base-
surge interpretation was favored on the basis of a single bedform with a preserved stoss face (88). 
Indeed, the preservation of complete bedforms is rare in the terrestrial eolian rock record (e.g., 83) 
owing to generally low aggradation rates of eolian dune deposits. Nevertheless, wind-drag ripples 
are several orders of magnitude smaller than their host dunes, and by analogy to terrestrial 
superimposed dunes may aggrade at rates that are high enough to produce steep angles of climb. 
Textural similarity between the high degree of roundness and sorting of the sandstone grains, and 
those grains of the modern eolian deposits (“El Dorado”) adjacent to the Home Plate outcrop 
(Figure 6 of (88)) further supports the eolian interpretation for the upper unit of the Home Plate 
stratigraphy.  

Candidate wind-drag ripple cross-stratification was also observed by Curiosity at Marias 
Pass in the Stimson formation (Fig. S8 and S9). There, the observed 10-20 cm set-thicknesses are 
consistent with a substantially thinned martian atmosphere by the time of Stimson deposition (Fig. 
S10). The wind-drag ripple interpretation of trough cross-sets at Cape St. Mary is supported by 
(i) the paleo-environmental context of the outcrop, (ii) the geometry and scale of the cross-sets, 
and (iii) the coexistence of two distinct scales of cross-sets. In contrast, the candidate cross-strata 
observed at Home Plate, Gusev crater, and in the Stimson formation at Apikuni Mountain, Gale 
crater, do not display two distinct scales of cross-sets. 

Finally, wind-drag ripples might exist on other planetary bodies in the Solar system, and 
could be recognized through their distinct morphologies and relatively large sizes on low-
atmospheric-density bodies. 

  



Supplementary Figures 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S1. Orbital survey of bedform wavelength. Locations of bedform wavelength 
measurements overlain on Mars Orbiter Laser Altimeter (MOLA) color-coded topography. 
Location numbers correspond to those listed in Tables S1 and S2. 
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Fig. S2. Bedforms of the Bagnold Dune Field, Gale crater, Mars, near Curiosity’s traverse. 
(A) HiRISE context map of the Bagnold Dunes (ESP_035917_1755). Dot-and-arrows show rover 
location and viewing direction of (B) stoss face of High Dune (mcam05301, sol 1169), (C) stoss 
face of Namib Dune (mcam05392, sol 1190), and (D) secondary lee face of Namib Dune 
(mcam05496, sol 1200). 
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Fig. S3. Curiosity at Namib Dune, Gale crater, Mars. (A) HiRISE image (ESP_044172_1755, 
29 Dec. 2015/sol 1207) of Namib Dune, Gale crater. Fig. S2D is a panoramic view from the rover 
location shown in (A). (B) HiRISE image (ESP_038214_1875) of larger dunes at Nili Patera 
showing that the large ripples do not grow in size up the stoss of their host dune, contrary to 
compound dunes on Earth (e.g., Fig. S4). Dune in (B) is about the same size as the dune shown in 
Fig. S4.  
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Fig. S4. Compound dunes on Earth. Compound dunes growing upslope of their host dune, 
Rub’al Khali, Saudi Arabia. Illumination is from the SE (source: Google Earth; 
22.298299 N,  54.172680 E). 
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Fig. S5. Rover measurements. (A) Digital elevation model (DEM) built from the Mastcam stereo 
pair mcam05418 (sol 1194) with elevation color-coded. White line indicates location of the 
profiles shown in (B). (B) Topographic profile across a large ripple. Red line represents a linear 
fit to the angle-of-repose slip face of the large ripple. (C) DEM built from the Mastcam stereo pair 
mcam05372 (sol 1184) with elevation color-coded. White line indicates location of the profiles 
shown in (D). (D) Example topographic profile across small ripples. Red line represents a second 
order polynomial fit used to calculate (E) a corresponding detrended profile. The blue line 
represents a detrended profile that was smoothed using a 25-point (i.e., 2.5 cm window) moving-
average to facilitate bedform identification.  
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Fig. S6 Current ripples on Earth. Subaqueous ripples in fine-to-medium sand, in a modern 
stream near the Canyon de Chelly, Arizona, United States (approximately 36.13 N, -109.46 E). 
Flow is from the top right corner.  
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Fig. S7 Fluid-drag theory. Flume data and eolian impact ripples compilation recast in terms of 

dimensionless wavelength *u  and *Re p  (4, 24, 25).  The red dashed line is the best fit 

power law to all current-ripple data of (24, 25). The black line is the best fit power law to all current 
ripple data of (24, 25) using the rationale exponent of 1/3.  
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Fig. S8. Location of the Apikuni Mountain outcrop, Gale crater, Mars. Context map (HiRISE 
color mosaic, location shown in inset; image credit: JPL-Caltech/University of Arizona) with 
Curiosity rover traverse overlain (white line) near the Apikuni Mountain section at Marias Pass, 
Gale Crater, Mars. White circles represent rover locations by sol (adjacent numbers). The green 
dot indicates location of Fig. S9. Gale crater (inset) is about 150-155 km in diameter. 
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Fig. S9. Trough cross-stratification in the Apikuni Mountain section of the Stimson 
formation, Gale crater, Mars. (A) Mastcam image (mcam04395, sol 993) of decimeter-scale 
trough cross-stratification in the Apikuni Mountain section of the Stimson formation, near Marias 
Pass, Gale Crater. (B) Interpretation of cross-set geometry overlain on Mastcam image from (A). 
(C) Uninterpreted stratal features from (B) alone, and (D) interpretation of stratal features from 
(A). (E) Sketch of expected preserved stratification produced by wind-drag ripples generated using 
the algorithm of (30), and (F) corresponding interpreted stratigraphy. Thick red lines represent 
erosional surfaces produced by the migration of scours in front of wind-drag ripple lee faces. Thin 
blue lines indicate wind-drag ripple foreset cross-stratification.  
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Fig. S10. Wavelength of wind-drag ripples on Mars as a function of atmospheric density. 
Predicted wavelength of wind-drag ripples as a function of atmospheric density (black line). Gray 
circles (27), squares (this study, orbital) and the star (this study, in situ at Gale crater) represent 
measured modern large ripples on Mars. Vertical error bars show ± 1۷ on the wavelength 
measurements at each given site; horizontal error bars correspond to typical diurnal and seasonal 
variations in surface atmospheric density of ± 30% the mean value (consistent with measurements 
at Gale crater, e.g., http://www.jpl.nasa.gov/news/news.php?release=2016-128). The gray box 
outlines the range in modern atmospheric densities at the surface of Mars, which vary as a function 
of elevation. The red horizontal line corresponds to the minimum possible ripple wavelength of 
1 m inferred from cross-strata at Cape St. Mary in Victoria crater, and Apikuni Mountain in Gale 
crater; the vertical red line is the corresponding upper bound on paleo-atmospheric density for 1 m 
wavelength wind-drag ripples. 
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Supplementary Tables 
 

Area 
# 

Image Name 
 

Latitude 
(degrees) 

 

Longitude 
(degrees 

East) 
 

Elevation 
(m) 

Pixel 
Scale 
(cm) 

Location 
 

1 ESP_027864_2295 48.905 29.27 -5684.52 30.8 Acidalia Mensa 
2 ESP_018854_1755 -4.586 137.392 -4424.172 27.1 Gale crater 
3 ESP_034909_1755 -4.5 297.183 -2560.32 26.7 Juventae Chasma 
4 ESP_025042_1375 -42.362 42.037 -457.2 25.2 SE of Yaonis Regio 
5 ESP_011421_1300 -49.484 34.847 -108.204 25.6 Hellespontus 
6 ESP_041987_1340 -45.422 38.83 121.92 25.2 Proctor crater 
7 ESP_011909_1320 -47.786 30.689 533.4 50.7 SE of Proctor crater 
8 ESP_024502_1305 -49.041 27.224 672.084 50.6 SW of Proctor crater 
9 PSP_001970_1655 -14.235 306.735 -4700 26.6 Coprates Chasma 
10 ESP_018011_2565 76.182 95.406 -4300 31.7 North Polar erg 
11 ESP_039955_1875 7.167 67.751 682.1424 27.9 S of Nili Patera 

Table S1. Orbital survey of Martian bedforms: Measurement locations. Location and 
resolution of analyzed Mars bedforms from HiRISE observations. 
  



 
Area 

# 

Surface 
area  

(km2) 

Dunes TARs Ripples Total number 

of bedforms Wavelength 

�  (m) 

N Wavelength 

�  (m) 

N Wavelength 

�  (m) 

N 

1 1.003 131±57 118 5.2±1.8 30 2.2±0.5 116 162 

2 0.041 151±67 44 7.0±2.2 33 2.1±0.6 212 168 

3 2.210 235±99 60 16.1±7.8 96 3.0±0.6 62 212 

4 1.210 199±75 55 8.8±5.6 12 3.5±0.8 130 153 

5 1.214 441±264 49 17.8±14.1 80 3.3±0.9 66 159 

6 1.229 334±173 31 7.6±3.1 36 3.1±0.9 136 180 

7 1.994 573±263 83 10.3±4.0 40 3.1±0.8 138 195 

8 1.118 515±189 14 8.3±4.4 40 3.6±0.9 98 141 

9 1.504 264±83 31 - - 2.6±0.5 96 96 

10 0.911 248±124 113 - - 2.5±0.4 104 104 

11 1.041 324±111 165 - - 3.4±0.8 142 181 

Table S2. Orbital survey of Martian bedforms: Results. Average measured bedform 
wavelengths (±1σ). N refers to the number of bedforms belonging to each category. 
  



 Mars, orbit Mars, rover 
large ripples dunes small ripples large ripples 

Earth ripples 3.3×10-5 6.1×10-5 3.1×10-2 1.2×10-4 
dunes 3.3×10-5 2.6×10-3 1.89×10-5 1.2×10-4 

Table S3. Statistical analysis of bedform-wavelength distributions. P-values of the two-sample 
Kolmogorov-Smirnov test applied to individual subsampled modes from the three datasets. 
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