
 

Abstract— Objective: Functional parcellation of the cerebral 

cortex is variable across different subjects or between cognitive 

states. Ignoring individual - or state - dependent variations in the 

functional parcellation may lead to inaccurate representations of 

individual functional connectivity, limiting the precision of 

interpretations of differences in individual connectivity profiles. 

However, it is difficult to infer the individual-level variations due 

to the relatively low robustness of methods for parcellation of 

individual subjects. Methods: We propose a method called “joint 

K-means” to robustly parcellate the cerebral cortex using 

functional magnetic resonance imaging (fMRI) data for contrasts 

between two states or subjects that intended to characterize 

variance in individual functional parcellations. The key idea of the 

proposed method is to jointly infer parcellations in contrasted 

datasets by iterative descent, while constraining the similarity of 

the two pathways in searches for local minima to reduce spurious 

variations. Results: Parcellations of resting-state fMRI datasets 

from the Human Connectome Project show that the similarity of 

parcellations for an individual subject studied on two sessions is 

greater than that between different subjects. Differences in 

parcellations between subjects are non-uniformly distributed 

across the cerebral cortex, with clusters of higher variance in the 

prefrontal, lateral temporal and occipito-parietal cortices. This 

pattern is reproducible across sessions, between groups and using 

different numbers of parcels. Conclusion: The individual-level 

variations inferred by the proposed method are plausible and 

consistent with the previously reported functional connectivity 

variability. Significance: The proposed method is a promising tool 

for investigating relationships between the cerebral functional 

organization and behavioral differences. 

Index Terms— Clustering, functional connectivity, functional 

parcellation, individual-level variations, K-means 

 

I. INTRODUCTION 

HE human cerebral cortex can be parcellated into 

cytoarchitectonically distinct areas that have distinct 
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functional specializations [1-2], which often are defined as 

nodes in brain network models of cognitive processing [3-6]. 

This cortical functional parcellation varies substantially across 

different individuals [7-9]. Nevertheless, approaches to 

defining these are still under development or in early validation 

stages; neuroimaging studies of brain networks typically still 

address parcellation at a group level [10], ignoring explicit 

representations of individual-level variations in parcellations. 

Individual functional parcellations are important for 

understanding human variation and pathology; inappropriate 

parcellations have a major impact on functional connectivity 

inference [11]. Use of group averaged parcellation templates 

may lead to inaccurate representations of functional 

connectivity for an individual [12], limiting the precision of 

interpretations of differences in individual connectivity profiles 

[13-17]. In such instances, it can be difficult to distinguish 

between differences in inferred connectivity arising from true 

differences in connectivity between brain regions or from 

differences in accuracy of representativeness of the functional 

parcellation template.  

Current approaches to functional parcellations of the cerebral 

cortex using fMRI [18] can be grouped into two classes of 

methods. The first class includes hard parcellations, in which 

each vertex belongs to exactly one parcel. The methods for this 

class are mainly originated from boundary detection [19-22] 

and various clustering techniques, such as K-means [23-24], 

spectral clustering [25-26], hierarchical clustering [27] or 

model-based clustering [28-31]. The second class includes soft 

parcellations, in which a vertex can belong to more than one 

parcel. The methods for this class are mainly based on matrix 

factorization [32-34].  

From the perspective of machine learning, all these methods 

mathematically formulate the parcellation task as an 

unsupervised learning problem which aims at inferring a 

function from unlabeled data. Compared with supervised 

learning, such as regression and classification, unsupervised 

learning tasks lack direct measures of success [35], which 

usually lowers their robustness. In addition, many unsupervised 

learning problems are NP-hard. Heuristic strategies have to be 

applied to greedily find a local minimum, which may further 

decrease the robustness.  

Therefore, differences in inferred functional parcellations 

not only arise from inherent neurobiological differences, but 

also significantly caused from noise, parameter choices and 

initializations. If the variations are calculated by directly 

comparing individual parcellations, such false positive 
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variations may be found.  

Recent studies addressed this problem in different ways. The 

most straightforward has been to acquire more fMRI data. To 

generate an individual functional parcellation, Laumann et al. 

accumulated 14 hours of resting-state fMRI data from one 

individual over more than a year [36]. A second approach is to 

introduce additional prior knowledge on the functional 

parcellation. Dhillon et al. proposed an individual sparse PCA 

with spatial anatomical priors [33]. Gordon et al. developed a 

procedure to match each cortical vertex in each subject to a 

group averaged parcellation template using the similarity of 

connectivity profiles [8]. Wang et al. designed another group 

template matching method based on the similarity of BOLD 

signals, in which the template is updated with each iteration [9]. 

Prior knowledge increases the robustness of the parcellation 

methods, but further research regarding methods for adapting 

the strength of the prior constraints is needed, especially in 

application intended to discover variations for which 

correspondences to a normative template are uncertain or 

themselves the focus of study. 

Here we propose a method called “joint K-means”. Our 

method only requires typical fMRI scan time and is intended to 

be used in the contrast of two states or subjects. No additional 

prior knowledge, such as anatomical atlases or group averaged 

parcellation template, is needed. The key idea of our method is 

to jointly infer two contrasted parcellations by iterative descent, 

while constraining the similarity of the two pathways in 

searches for local minima to reduce spurious variations. Our 

method is based on the K-means algorithm, which is an 

effective, simple and widely used clustering algorithm [37].  

Given a set of points, the aim of the K-means algorithm is to 

find a clustering assignment that minimizes the total squared 

error between any point and the centroid of its associated 

cluster. For the joint K-means, its aim is to find two contrasted 

clustering assignments that minimize the weighted summation 

of the total squared error and the differences between the two 

clustering assignments. The penalty on the differences is 

intended to reduce spurious variations and is weighted by a 

regularization parameter 𝜆. The regularization parameter 𝜆 can 

be tuned automatically. It is set to the minimal value that 

guarantees the generated parcellations of the original fMRI 

dataset and its circular block bootstrapped datasets that are 

similar. We report an evaluation of this method using 

resting-state fMRI datasets from the Human Connectome 

Project [38-39]. The results demonstrate test-retest reliability of 

the parcellations estimated from the two different fMRI 

sessions acquired from each subject and describe the 

reproducibility of inter-subject variance found across sessions, 

between groups and using different numbers of parcels. 

II. METHODS 

Our method assumes that fMRI data are acquired with 𝑁 

vertices and 𝑇 time points, which are represented by a data 

matrix 𝑋𝑁×𝑇. The nth row of the data matrix 𝑋 is denoted as a 

vector 𝑥𝑛
𝑡𝑟 , which is also called the nth data point. This 

represents the time series of blood-oxygen-level dependent 

(BOLD) signals of the nth vertex on the cerebral cortex. The 

symbol (∙)𝑡𝑟 denotes the transpose of a vector or a matrix. For a 

given number of parcels 𝐾 (defined in advance), a parcellation 

of the 𝑁 vertices can be represented by a collection of sets 𝐶 =
{𝑐𝑘|𝑘 ∈ [1: 𝐾]}, where 1: 𝐾 indicates all integers from 1 to 𝐾. 

The kth set 𝑐𝑘 includes all indexes of the points in the kth parcel. 

Equivalently, a parcellation can be represented by a binary 

matrix 𝑃𝑁×𝐾. If the element in the nth row and kth column of the 

parcellation matrix 𝑃 is one, it means that the nth vertex belongs 

to the kth parcel in this parcellation. For two contrasted 

parcellations over a same vertex set, a vertex is called a 

variation if the indexes of the parcels that this vertex belongs to 

in the two parcellations are different. In this paper, a parcel and 

a parcellation are also called a cluster and a clustering 

assignment, respectively. We focus on hard parcellation, where 

each vertex belongs to exactly one parcel. Moreover, we do not 

impose the spatial contiguous constraint on parcellations, 

which means that there may not be a path between two vertexes 

in a parcel. Although we only consider parcellating cortical 

vertices in this paper, our method can be trivially extended to 

parcellate volumetric voxels.  

A. K-means 

K-means, one of the most popular and simple clustering 

algorithms in data analysis [37], has been used frequently for 

brain parcellation [23][40]. Assume all the 𝑁  data points 

{𝑥𝑛|𝑛 ∈ [1: 𝑁]} are quantitative and the dissimilarity between 

any two points can be measured using squared Euclidean 

distance. Let 𝑐𝑘 be an index set for the kth cluster, and 𝜇𝑘 be the 

mean value of all points associate with the kth cluster. The mean 

value 𝜇𝑘 is also called the centroid of the kth cluster. For the 

clustering assignment 𝐶 = {𝑐𝑘|𝑘 ∈ [1: 𝐾]}, the total squared 

error between any point and its associated mean value is 

defined as 

 

                          𝐽(𝐶) = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖2
2

𝑖∈𝑐𝑘
𝐾
𝑘=1 .                   (1) 

 

The goal of K-means is to find a clustering assignment 𝐶 such 

that the total squared error 𝐽(𝐶) is minimized. It is NP-hard to 

solve this problem [41]. Thus, it is unlikely that polynomial 

time algorithms can be used to solve this problem [42]. The 

K-means algorithm greedily finds a local minimum by iterative 

descent. An iterative greedy algorithm always makes the choice 

that looks best at each step [43]. The sequence of locally 

optimal choices does not necessarily lead to a globally optimal 

result. 

    Let |𝑐𝑘| be the number of the elements of the set 𝑐𝑘. There 

are two major steps of each iteration in K-means (Algorithm 1). 

The first step (Line 3 to Line 6) is to calculate the centroid of 

each cluster based on previous clustering assignment. The 

second step (Line 7 to Line 10) is to assign all points to its 

closest centroid that is calculated in previous step.  There are 

two user-specified parameters for the K-means algorithm: the 

number of cluster 𝐾 and the initialization assignment 𝐶0. The 

number of clusters in the initialization assignment 𝐶0 should be 

equal to 𝐾. The centroids of the initialization 𝐶0 usually are 

chosen to be 𝐾  uniformly random points or 𝐾  heuristically 



random seeds [44]. Because K-means is a greedy algorithm and 

usually finds a local minimum, the initialization assignment 

significantly impacts the outputted clustering assignment [45]. 

Different initialization assignments may lead to different local 

minima.  

B. Joint K-means 

In order to introduce joint K-means, we reform the total 

squared error 𝐽(𝐶)  minimization into a binary optimization 

problem [46]:  

 

   

           𝑚𝑖𝑛𝑃‖𝑋 − 𝑃Ω‖2
2                                                     

 𝑠. 𝑡.  Ω𝑘,: = (𝑃:,𝑘
𝑡𝑟𝑋)/‖𝑃:,𝑘‖

2

2
,      𝑘 ∈ [1: 𝐾]                

 𝑃𝑛,: 𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑛 ∈ [1: 𝑁],

    (2) 

 

where 𝑋 ∈ ℝ𝑁×𝑇  is the data matrix; 𝑃 ∈ {0,1}𝑁×𝐾  is the 

parcellation matrix;  𝑃𝑛,: denotes the nth row of the matrix 𝑃; 

 𝑃:,𝑘  denotes the kth column of the matrix 𝑃 ; Ω ∈ ℝ𝐾×𝑇 

represents all centroids; Ω𝑘,: denotes the kth row of the matrix 

Ω, which is the kth centroid. Because each row of the matrix 𝑃 is 

constrained to be a binary unit vector, exactly one element in 

each row is one and all other elements are zero. This constraint 

makes each point belong to exactly one cluster.  𝑃:,𝑘 indicates 

the membership of the kth cluster. The nth point belongs to the 

kth cluster if and only if the nth element of  𝑃:,𝑘 is one. ‖𝑃:,𝑘‖
2

2
 

counts the number of points in the kth cluster. 𝑃:,𝑘
𝑡𝑟𝑋  adds 

together all points in the kth cluster. Therefore, (𝑃:,𝑘
𝑡𝑟𝑋)/‖𝑃:,𝑘‖

2

2
 

is to calculate the centroid of the kth cluster. 𝑃Ω is a 𝑁 × 𝑇 

dimensional real matrix.  The nth row of the matrix 𝑃Ω is the 

centroid associated with the nth point. Thus, ‖𝑋 − 𝑃Ω‖2
2 is the 

total squared error between any point and its associated 

centroid, which is equivalent to 𝐽(𝐶) in Equation 1. 

The goal of K-means is to solve the binary optimization in 

Equation 2. The parcellation matrix 𝑃 can be easily calculated 

from the clustering assignment 𝐶  outputted by the K-means 

algorithm. Similarly, the clustering assignment 𝐶 can be easily 

derived from the parcellation matrix 𝑃. 

Given two contrasted data matrices 𝑋1  and 𝑋2 , the joint 

K-means aims at clustering the two data matrices 

simultaneously. It tries to explore the inherent common 

structures of the two data matrices while allowing possible 

variations between them. The optimization problem of the joint 

K-means is defined as follows: 

 

      𝑚𝑖𝑛{𝑃1,𝑝2} ∑ ‖𝑋𝑠 − 𝑃𝑠Ω𝑠‖2
2 + 𝜆‖𝑃1 − 𝑃2‖2

22
𝑠=1            

 𝑠. 𝑡.  Ω𝑘,:
𝑠 = ((𝑃:,𝑘

𝑠 )
𝑡𝑟

𝑋𝑠) /‖𝑃:,𝑘
𝑠 ‖

2

2
, 𝑘 ∈ [1: 𝐾], 𝑠 ∈ {1,2}      

      𝑃𝑛,:
𝑠  𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑛 ∈ [1: 𝑁], 𝑠 ∈ {1,2},

(3) 

 

where 𝜆  is a regularization parameter that controls the 

similarity of the two parcellation matrices and definitions of 

𝑋𝑠 , 𝑃𝑠 , Ω𝑠  are identical to those in Equation 2. Comparing 

Equation 3 with Equation 2, the only difference is that a penalty 

on variations between two parcellation matrices is added into 

the loss function. There are two effects of this penalty on 

variations. Data matrices are usually noisy, especially for fMRI 

data. The penalty in Equation 3 may reduce insignificant 

variations due to noises. Moreover, the clustering problem is 

inherently ill-posed and its binary optimization form is NP-hard.  

The algorithm finds a local minimal solution for each data 

matrix by following the corresponding greedy descent pathway. 

The penalty on variations 𝜆‖𝑃1 − 𝑃2‖2
2  in the Equation 3 

forces the two descent pathways to be close to each other; the 

penalty in Equation 3 is intended to reduce spurious variations. 

The regularization parameter 𝜆 is adjustable. 

It is clear that Equation 2 can be reduced to Equation 3 by 

letting the regularization parameter 𝜆 be zero. Thus, both the 

problem in Equation 3 and that in Equation 2 are NP-hard. The 

joint K-means algorithm finds local minima for the problem in 

Equation 3 by greedy descent. 

Similar to K-means, there are two major steps of each 

iteration in joint K-means (Algorithm 2). The first step (Line 3 

to Line 9) is to calculate the centroid of each cluster for each 

data matrix based on previous clustering assignments. The 

second step (Line 10 to Line 21) is to assign each point to a 

cluster. Unlike Algorithm 1, Algorithm 2 does not always 

assign a point to its closest centroid. Instead, there are two 

options. The first option (Line 11 and Line 12) is to 

independently assign cluster labels to the two corresponding 

points in the two data matrix. The two cluster labels may be 

different. The second option (Line 13) is to give the two 

corresponding points same cluster labels. The square error of 

the first choice is always smaller than or equal to that of the 

second choice. According to Line 14 to Line 20 in Algorithm 2, 

the second option is chosen if the error difference between the 

two options is smaller than or equal to 2𝜆 . Based on the 

clustering assignments 𝐶1  and 𝐶2 , the parcellation matrices 

and variations between the two contrasted parcellations can be 

easily calculated.  

The joint K-means algorithm can be regarded as a hard 

expectation–maximization algorithm. The first step is the 

expectation step. Based on the currently estimated parcellation 

matrices 𝑃1  and 𝑃2  (i.e., 𝐶1 and 𝐶2  in Algorithm 2), the first 

step is to estimate the centroid matrices Ω1  and  Ω2  (i.e. 

{𝜇𝑘
𝑠 |𝑘 ∈ [1: 𝐾], 𝑠 ∈ {1,2}}  in Algorithm 2) according to the 

Algorithm 1. K-means. 

Input: the data {𝑥𝑛|𝑛 ∈ [1: 𝑁]}, the number of clusters 𝐾, 

and an initialization assignment 𝐶0 

Output: the clustering assignment 𝐶 

1 𝐶 = 𝐶0  

2 do 
3     for 𝑘 = 1: 𝐾 

4         𝜇𝑘 ← (∑ 𝑥𝑖𝑖∈𝑐𝑘
)/|𝑐𝑘| 

5         𝑐𝑘 ← ∅ 
6     end for 

7 for 𝑛 = 1: 𝑁 

8         𝑙 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘‖𝑥𝑛 − 𝜇𝑘‖2
2 

9         𝑐𝑙 ← 𝑐𝑙⋃{𝑛} 
10      end for 
11 until 𝐶 stabilizes 

 
 



second line in Equation 3. The second step is the maximization 

step. Based on the currently estimated centroid matrices Ω1 and 

Ω2, the second step involves finding new parcellation matrices 

𝑃1 and 𝑃2 that minimize the loss function in Equation 3. 

The time complexity of the joint K-means algorithm is 

similar to that of the K-means algorithm. For each iteration, the 

required computation proportional to 𝑂(𝐾𝑁) . For a typical 

fMRI dataset, the joint K-means usually terminates within 100 

iterations.  

C. Tuning the Regularization Parameter 

Comparing with the K-means algorithm, the joint K-means 

algorithm introduces the regularization parameter 𝜆  as an 

adjustable parameter.  This subsection presents a method for 

automatically selecting an appropriate regularization parameter 

𝜆 from fMRI data. 

The regularization parameter 𝜆  controls the number of 

variations on parcellation matrices for the two contrasted data 

matrices. The two contrasted parcellation matrices from the 

joint K-means algorithm are identical if the regularization 

parameter 𝜆 is large enough. The two contrasted parcellation 

matrices from joint K-means algorithm are identical to the 

corresponding parcellation matrices independently estimated 

by the K-means algorithm if the regularization parameter 𝜆 is 

zero. An appropriate regularization parameter 𝜆  should 

eliminate spurious variations due to noises or low robustness, 

while maintaining real variations arising with changes inherent 

in the data. 

We assume that the number of variations on parcellation 

matrices should be very small if the two contrasted data 

matrices are generated from an identical model and the noise is 

low, e.g., the number of variations in parcellations should be 

small if the data matrices are generated from same subject 

acquired under same conditions. 

Given a data matrix, another data matrix can be resampled 

from the original data matrix. We assume the original data 

matrix and the resampled data matrix approximately follow a 

similar distribution, and then find the minimal value of the 

regularization parameter 𝜆 that produces a sufficiently small 

number of variations in the two parcellations. Because brain 

parcellation using fMRI data is the targeted application of the 

joint K-means algorithm, each row of a data matrix is regarded 

as a time series. The temporal dependences should be preserved 

during resampling. Thus, we use the circular block bootstrap 

technique [47]. The efficiency of the circular block bootstrap 

(Algorithm 3) in replicating the distribution of spatial 

correlation has been demonstrated by previous studies [48][24].  

Algorithm 3 generates a data matrix whose dimensions are 

identical to the original data matrix. The function 𝑟𝑎𝑛𝑑𝑖(𝑇) 

generates a uniformly random integer between 1 and 𝑇. The 

function 𝑔𝑒𝑜𝑟𝑛𝑑(𝑝)  generates random numbers from a 

geometric distribution with success probability 𝑝. Algorithm 3 

samples several blocks with various starting points and lengths. 

Line 3 in Algorithm 3 samples a start point for a block 

uniformly random between 1 and 𝑇. Line 4 in Algorithm 3 

generates the length of this block, which follows a geometric 

distribution with success probability 𝑝 . Line 5 shortens the 

block length if it is too long. Line 6 to Line 8 stack the data in 

this block into the bootstrapped data matrix. Line 7 aligns the 

data circularly, so that a block falling at the end of the time 

series continues into the beginning. The only user-specified 

parameter for the circular block bootstrap is the success 

probability 𝑝, which controls the lengths of blocks. The mean 

length of blocks is (1 − 𝑝)/𝑝. It has been reported that the 

relationships between fMRI time series can be robustly 

identified roughly from 30 to 60 seconds in conventional 

acquisitions [49]. Thus, we recommend setting the success 

probability 𝑝 be between 0.0164 and 0.0323. 

The circular block bootstrap procedure is assumed to 

Algorithm 2. Joint K-means. 

Input: the data {𝑥𝑛
𝑠|𝑛 ∈ [1: 𝑁], 𝑠 ∈ {1,2}}, the number of 

clusters 𝐾 , the regularization parameter 𝜆 , and an 

initialization assignment 𝐶0 

Output: two contrasted clustering assignments 𝐶1 and 𝐶2 

1 𝐶1 = 𝐶0  

2 𝐶2 = 𝐶0  
3 do 
4     for 𝑘 = 1: 𝐾 

5         for 𝑠 = 1: 2 
6             𝜇𝑘

𝑠 ← (∑ 𝑥𝑖
𝑠

𝑖∈𝑐𝑘
𝑠 ) /|𝑐𝑘

𝑠| 

7             𝑐𝑘
𝑠 ← ∅ 

8         end for 

9     end for 

10 for 𝑛 = 1: 𝑁 

11         𝑙1 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘‖𝑥𝑛
1 − 𝜇𝑘

1‖2
2 

12         𝑙2 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘‖𝑥𝑛
2 − 𝜇𝑘

2‖2
2  

13         𝑙∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘 ∑ ‖𝑥𝑛
𝑠 − 𝜇𝑘

𝑠 ‖2
22

𝑠=1   

14         if ∑ ‖𝑥𝑛
𝑠 − 𝜇𝑙∗

𝑠 ‖
2

22
𝑠=1 − ∑ ‖𝑥𝑛

𝑠 − 𝜇𝑙𝑠
𝑠 ‖

2

22
𝑠=1 ≤ 2𝜆 

15             𝑐𝑙∗
1 ← 𝑐𝑙∗

1 ⋃{𝑛} 

16             𝑐𝑙∗
2 ← 𝑐𝑙∗

2 ⋃{𝑛} 

17         else 

18             𝑐𝑙1
1 ← 𝑐𝑙1

1 ⋃{𝑛}  

19             𝑐𝑙2
2 ← 𝑐𝑙2

2 ⋃{𝑛}  

20         end if 

21      end for 
22 until 𝐶1 and 𝐶2 stabilize 

 

 

Algorithm 3. Circular Block Bootstrap. 

Input: the data {𝑥𝑛,𝑡|𝑛 ∈ [1: 𝑁], 𝑡 ∈ [1: 𝑇]} , the success 

probability 𝑝 

Output: the bootstrapped data  {�̂�𝑛,𝑡|𝑛 ∈ [1: 𝑁], 𝑡 ∈ [1: 𝑇]} 

1 𝑐 ← 0  

2 while 𝑐 < 𝑇 
3     𝜂 ← 𝑟𝑎𝑛𝑑𝑖(𝑇)   
4     𝜅 ← 𝑔𝑒𝑜𝑟𝑛𝑑(𝑝) 

5     𝜅 ← min (𝜅, 𝑇 − 𝑐)  

6 for 𝑛 = 1: 𝑁 

7         �̂�𝑛,(𝑐+1):(𝑐+𝜅) ← 𝑥𝑛,(𝜂 𝑚𝑜𝑑 𝑇)+1:((𝜂+𝜅−1) 𝑚𝑜𝑑 𝑇)+1 

8      end for 
9 𝑐 ← 𝑐 +  𝜅  

10 end 

 

 



generate data with the same distribution as the original data. 

However, the bootstrap procedure can generate “outliers” that 

are very different from the original data. Thus, there should be 

some variations between the two parcellations derived from the 

original and bootstrapped data matrices. It is recommended that 

a threshold 𝛧 for bootstrap variations is set to a value of about 

0.1% of the number of data points 𝑁, but not 0. This value is an 

empirical estimation on the number of the outliers caused by 

the bootstrap procedure.  

Our aim is to find the minimal value of the regularization 

parameter 𝜆 such that the number of variations on parcellations 

between original and bootstrapped data matrices is smaller than 

𝛧. The exact relationship between the regularization parameter 

𝜆 and the number of bootstrap variations calculated by the joint 

K-means algorithm is still unknown. Given the number of 

bootstrap variations 𝛧, we only heuristically estimate a value of 

the regularization parameter 𝜆 (Algorithm 4). 

Algorithm 4 is similar to Algorithm 2. However, input for 

Algorithm 4 does not require the regularization parameter 𝜆, 

but the number of bootstrap variations 𝑍 . The output of 

Algorithm 4 is an estimated value of the regularization 

parameter 𝜆. There are three major steps of each iteration in 

Algorithm 4. The first step (Line 4 to Line 9) is to calculate the 

centroid of each cluster for each data matrix based on previous 

clustering assignments.  The second step (Line 10 to Line 19) is 

to estimate a value of the regularization parameter 𝜆 based on 

the squared errors under two different conditions. One 

condition (Line 12 to Line 13) is that two corresponding points 

for the two data matrices can be assigned with different cluster 

labels. The other condition (Line 14) is that the cluster labels 

for two corresponding points have to be identical. The list Θ 

records the error differences between the two conditions for all 

points. The list Θ is then sorted in a descend order and the 

regularization parameter 𝜆 is set to 0.5 multiples the (𝛧 + 1)th 

element in the list Θ. This value of the regularization parameter 

𝜆 ensures that there are Ζ bootstrap variations in this iteration. 

Using this estimated value of the regularization parameter 𝜆, 

the third step (Line 20 to Line 31) is to assign each point to a 

cluster, which is identical to the second step in Algorithm 2. 

Unlike Algorithm 2, the three major steps are only iterated 

twice, which was found empirically to be sufficient for finding 

an appropriate value of the regularization parameter 𝜆. It is 

noteworthy that Algorithm 4 is just a greedy algorithm. The 

regularization parameter 𝜆 estimated by Algorithm 4 does not 

necessarily yield Ζ bootstrap variations in the joint K-means 

algorithm. However, the number of bootstrap variations is close 

to 𝑍. 

D. The Pipeline 

This subsection introduces a pipeline (Fig.1) for parcellation 

cerebral cortices into several functional areas using fMRI 

datasets and for discovering individual-level variations 

between these functional parcellations. 

The input data for this pipeline include two contrasted data 

Algorithm 4. Regularization parameter estimation. 

Input: the data {𝑥𝑛
𝑠|𝑛 ∈ [1: 𝑁], 𝑠 ∈ {1,2}}, the number of 

clusters 𝐾, an initialization assignment 𝐶0, and the number 

of bootstrap variations 𝛧 

Output: the regularization parameter 𝜆 

1 𝐶1 = 𝐶0  
2 𝐶2 = 𝐶0  
3 for 𝑟 = 1: 2 

4     for 𝑘 = 1: 𝐾 

5         for 𝑠 = 1: 2 

6             𝜇𝑘
𝑠 ← (∑ 𝑥𝑖

𝑠
𝑖∈𝑐𝑘

𝑠 ) /|𝑐𝑘
𝑠| 

7             𝑐𝑘
𝑠 ← ∅ 

8         end for 

9     end for 

10     Θ ← ∅ 
11 for 𝑛 = 1: 𝑁 

12         𝑙1 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘‖𝑥𝑛
1 − 𝜇𝑘

1‖2
2 

13         𝑙2 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘‖𝑥𝑛
2 − 𝜇𝑘

2‖2
2  

14         𝑙∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘 ∑ ‖𝑥𝑛
𝑠 − 𝜇𝑘

𝑠 ‖2
22

𝑠=1   

15         𝜃 ← ∑ ‖𝑥𝑛
𝑠 − 𝜇𝑙∗

𝑠 ‖
2

22
𝑠=1 − ∑ ‖𝑥𝑛

𝑠 − 𝜇𝑙𝑠
𝑠 ‖

2

22
𝑠=1  

16         Θ ← Θ ∪ {𝜃} 

17     end 

18     Θ ← 𝑠𝑜𝑟𝑡(Θ, descend) 

19     𝜆 ←  max{0.5 × Θ(Ζ + 1), 𝜆} 
20     for 𝑛 = 1: 𝑁 

21         𝑙1 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘‖𝑥𝑛
1 − 𝜇𝑘

1‖2
2 

22         𝑙2 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘‖𝑥𝑛
2 − 𝜇𝑘

2‖2
2 

23         𝑙∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘 ∑ ‖𝑥𝑛
𝑠 − 𝜇𝑘

𝑠 ‖2
22

𝑠=1  

24         if ∑ ‖𝑥𝑛
𝑠 − 𝜇𝑙∗

𝑠 ‖
2

22
𝑠=1 − ∑ ‖𝑥𝑛

𝑠 − 𝜇𝑙𝑠
𝑠 ‖

2

22
𝑠=1 ≤ 2𝜆 

25             𝑐𝑙∗
1 ← 𝑐𝑙∗

1 ⋃{𝑛} 

26             𝑐𝑙∗
2 ← 𝑐𝑙∗

2 ⋃{𝑛} 

27         else 

28             𝑐𝑙1
1 ← 𝑐𝑙1

1 ⋃{𝑛} 

29             𝑐𝑙2
2 ← 𝑐𝑙2

2 ⋃{𝑛}  

30         end if 

31      end for 
32 end 

 

 

 
Fig. 1. Overview of the pipeline.  



matrices and a spatial relationship matrix. The two contrasted 

data matrices are denoted as 𝑋1 and 𝑋2 respectively, each row 

of which is the BOLD signals for a vertex. Typically, each data 

matrix is an fMRI session for one subject. There may be several 

runs in each session. The two contrasted data matrices can be 

from two states of one subject or two subjects. The spatial 

relationship matrix is denoted as Γ, which is symmetric and 

binary. If the element in the ith row and jth column of the spatial 

relationship matrix Γ is one, it means that the ith and the jth 

vertex are spatially connected to each other. The spatial 

relationship matrix Γ is optional. It is used to boost the speed of 

initialization assignment generation. There are four input 

parameters for this pipeline: the number of parcels 𝐾 , the 

success probability 𝑝, the number of bootstrap variations 𝑍, and 

the resampling number 𝜏. 

The output of this pipeline is two contrasted parcellations 

matrix, 𝑃1 and 𝑃2. The variations between these two contrasted 

parcellations can be calculated easily from the two contrasted 

parcellation matrices. As this pipeline is only based on 

individual data (not on group average data or group-level 

prior), it provides direct estimates of individual-level variations 

in functional parcellations. 

There are three steps in this pipeline: estimating the 

regularization parameter, generating the initialization 

assignment, and generating functional parcellations and 

variations.  

This pipeline firstly estimates a value of regularization 

parameter 𝜆 for each data matrix separately. For a data matrix 

𝑋𝑠, Algorithm 3 is used to resample a data matrix �̂�𝑠 using the 

inputted success probability 𝑝  and the number of bootstrap 

variations Ζ. The each row of data matrices, 𝑋𝑠  and �̂�𝑠 , are 

normalized to a unit vector with zero mean. If there are several 

runs in a session, the data in each run are normalized separately. 

For simplicity, the normalized matrices are still denoted as 𝑋𝑠 

and �̂�𝑠. Afterwards, the data matrices 𝑋𝑠 and �̂�𝑠 are stacked 

horizontally into one matrix [𝑋𝑠, �̂�𝑠].  

Spatially constrained hierarchical clustering [27][50] with 

Ward’s linkage rules [51] is applied to the stacked data matrix  

[𝑋𝑠, �̂�𝑠]  and the spatial relationship matrix Γ  to generate 𝐾 

parcels. This parcellation is then used as an initialization 

assignment for Algorithm 2 (Joint K-means) to cluster the data 

matrices  𝑋𝑠 and �̂�𝑠 with the regularization parameter 𝜆 set to 

positive infinity. This estimated parcellation by Algorithm 2 is 

used as the initialization assignment for Algorithm 4. At this 

point, Algorithm 4 is applied to the two data matrices 𝑋𝑠 and 

�̂�𝑠, the initialization assignment estimated previously and the 

inputted number of bootstrap variations Ζ. Algorithm 4 outputs 

an estimated value of regularization parameter 𝜆 . This 

bootstrap process is executed 𝜏 times to generate 𝜏 values of 

the regularization parameter 𝜆. We regard the 95th percentile of 

the 𝜏  values as an appropriate value of the regularization 

parameter 𝜆 for the data matrix 𝑋𝑠, which is denoted as �̂�𝑠. 

This pipeline then generates an initialization assignment for 

joint K-means. The original data matrices 𝑋1  and 𝑋2  are 

normalized and stacked horizontally into one matrix [𝑋1, 𝑋2]. 

Similar to the previous step, spatially constrained hierarchical 

clustering [27][50] with Ward’s linkage rules [51] is applied to 

the stacked data matrix [𝑋1, 𝑋2] and the spatial relationship 

matrix Γ to generate 𝐾 parcels. This parcellation is then used as 

an initialization assignment for Algorithm 2 (joint K-means) to 

cluster the data matrix 𝑋1  and 𝑋2  with the regularization 

parameter 𝜆 set to positive infinity. The estimated parcellation 

is used as the initialization assignment for next step, which is 

denoted as �̂�0. 

This pipeline finally generates functional parcellations and 

their corresponding variations using Algorithm 2 (Joint 

K-means). The data matrices for Algorithm 2 are normalized 

𝑋1 and 𝑋2. The number of clusters 𝐾 is given in advance. The 

regularization parameter is set to 𝑚𝑎𝑥{�̂�1, �̂�2}, estimated by the 

first step of this pipeline. The initialization assignment is set to 

�̂�0, which is generated by the second step of this pipeline. The 

output of the third step is the output of this pipeline. 

E. Discussion 

Compared with the standard K-means algorithm, the joint 

K-means algorithm can significantly increase the robustness to 

noises and initialization assignments. Given two data matrices 

𝑋1 and 𝑋2, the standard approach would be to independently 

infer the clustering assignment for each data matrix using the 

K-means algorithm. The K-means algorithm is executed twice, 

one for the matrix 𝑋1 and the other for the matrix 𝑋2. Even if 

the initialization assignments for the two executions are 

identical and the the data matrices,  𝑋1 and 𝑋2, are similar to 

each other, the two inferred clustering assignments from the 

two executions can be very different because the two descent 

pathways of the two executions of the K-means algorithm can 

bifurcate due to minor differences between the data matrices, 

leading to two completely different local minima. However, for 

the joint K-means algorithm, minor differences between the 

data matrices are ignored because of the penalty term in 

Equation 3. Only major differences between the data matrices 

lead to variations in final clustering assignments. The 

regularization parameter 𝜆  controls the strength of the 

differences that are ignored. 

In the Wang’s method [9], spurious variations were reduced 

using a group averaged parcellation template. This template did 

not only include the initialization assignment, but also the 

pre-estimated inter-subject variability in functional 

connectivity and temporal signal-to-noise ratio (SNR) [9]. The 

role of the information on inter-subject variability and SNR is 

similar to penalty term in Equation 3, which reduces the effects 

of minor differences in data. In theory, results from this method 

are impacted by the template (i.e., the initialization assignment 

and variability). The applicability of the template may be 

confounded by large “true” inter-subject variability, which may 

be difficult to infer in advance or to generalize from one group 

to another group or one state to another state. In contrast, the 

inter-subject variability information is not required by the joint 

K-means algorithm. 



The obvious drawback of the joint K-means algorithm is that 

it can only be used for comparing two data matrices. Another 

potential drawback is that it might be difficult to combine the 

two estimated regularization parameters �̂�1  and �̂�2  if the 

corresponding data matrices 𝑋1  and 𝑋2  are acquired using 

different protocols. In this paper, we implicitly assume that the 

two contrasted data matrices are acquired using similar 

protocols, so that the two estimated regularization parameters 

�̂�1 and �̂�2 are close to each other and can be combined using 

𝑚𝑎𝑥{�̂�1, �̂�2}. Without this assumption, e.g., one data matrix has 

2400 frames in 30 minutes and the other matrix has 280 frames 

in 5 minutes, the two estimated parameters may be very 

different from each other. It is unclear whether the maximum of 

the two estimated parameters are still a good choice. 

F. Possible Extensions 

Although this paper only focuses on discovering 

individual-level variations between two contrasted functional 

parcellations, the proposed method can be extended to define 

variations between multiple functional parcellations. Given a 

set of data matrices {𝑋𝑠|𝑠 ∈ [1: 𝑆]} , Equation 3 can be 

extended as follows: 

 

         𝑚𝑖𝑛{𝑝𝑠} ∑ ‖𝑋𝑠 − 𝑃𝑠Ω𝑠‖2
2 +𝑆

𝑠=1 ∑ 𝜆𝑠‖𝑃𝑠 − �̅�‖2
2𝑆

𝑠=1         

 𝑠. 𝑡.  Ω𝑘,:
𝑠 = ((𝑃:,𝑘

𝑠 )
𝑡𝑟

𝑋𝑠) /‖𝑃:,𝑘
𝑠 ‖

2

2
, 𝑘 ∈ [1: 𝐾], 𝑠 ∈ [1: 𝑆]      

       𝑃𝑛,:
𝑠  𝑖𝑠 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑛 ∈ [1: 𝑁], , 𝑠 ∈ [1: 𝑆],

(4) 

 

where 𝜆𝑠 is the regularization parameter for the data matrix 𝑋𝑠; 

�̅�  is the average parcellation. Because it is computationally 

expensive to compare the parcellations for every pair of data 

matrices, the average parcellation �̅� is introduced.  

   Algorithm 5 is designed to greedily find a local minimum for 

the problem in Equation 4 using an iterative strategy, which is 

an extension of Algorithm 2. The symbol 𝑙𝑎𝑏𝑒𝑙(𝐶, 𝑛) 

represents the cluster label of the nth  data point in the clustering 

assignment 𝐶. There are three major steps in Algorithm 5. The 

first step (Line 6 to Line 11) is to calculate the centroid of each 

cluster based on previous clustering assignment. The second 

step (Line 12 to Line 22) assigns all points to a centroid.  A 

point is assigned to the closest centroid or the corresponding 

centroid defined in the current average parcellation. The third 

step (Line 23 to Line 29) is to update the average parcellation 

by weighted vote. 

The joint K-means algorithm can be further extended to 

compute variations between different groups, e.g., a healthy 

and a disease state, in which case, there should be two average 

parcellations in Equation 4.  However, the extended algorithm 

is memory expensive, because all data matrices are involved in 

each iteration. For example, the size of one session resting-state 

data from the Human Connectome Project is about 800MB. For 

20 subjects, it costs about 16GB for storing the data. The total 

memory requirement for computation is approximately doubled. 

If the memory in a machine cannot store all data matrices, some 

data matrices have to be transferred between memory and hard 

disk in each iteration. The typical bandwidth of hard disks is 

only about 1% to 10% of memory.   

Spectral clustering is an alternative method that has been 

used for brain parcellation [25-26][50]. This method is based 

on a similarity matrix, each element of which measures the 

similarity of a pair of vertices. The spatial constraint can be 

easily integrated in this matrix by forcing the similarity 

between any disconnected vertices to be zero. The first 𝐾 

eigenvectors of the unnormalized or normalized Laplacian of 

the similarity matrix are computed and used as feature vectors 

for vertices. The K-means algorithm is then applied to these 

feature vectors. The joint K-means algorithm can be directly 

replace the K-means algorithm for comparing two similarity 

matrices. 

III.  CASE STUDY 

A. Datasets and Preprocessing 

Algorithm 5. Joint K-means for multiple data matrices. 

Input: the data {𝑥𝑛
𝑠|𝑛 ∈ [1: 𝑁], 𝑠 ∈ [1: 𝑆]}, the number of 

clusters 𝐾 , the regularization parameters {𝜆𝑠|𝑠 ∈ [1: 𝑆]} , 

and an initialization assignment 𝐶0 

Output: the clustering assignments {𝐶𝑠|𝑠 ∈ [1: 𝑆]} 

1 for  𝑠 = 1: 𝑆 

2     𝐶𝑠 = 𝐶0  
3 end 

4 𝐶̅ = 𝐶0  
5 do 
6     for 𝑘 = 1: 𝐾 

7         for 𝑠 = 1: 𝑆 
8             𝜇𝑘

𝑠 ← (∑ 𝑥𝑖
𝑠

𝑖∈𝑐𝑘
𝑠 ) /|𝑐𝑘

𝑠| 

9             𝑐𝑘
𝑠 ← ∅ 

10         end for 

11     end for 

12 for 𝑛 = 1: 𝑁 
13     𝑙 ̅ ← 𝑙𝑎𝑏𝑒𝑙(𝐶̅, 𝑛)  
14     for 𝑠 = 1: 𝑆 

15             𝑙 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘‖𝑥𝑛
𝑠 − 𝜇𝑘

𝑠 ‖2
2 

16             if ‖𝑥𝑛
𝑠 − 𝜇𝑙 ̅

𝑠‖
2

2
− ‖𝑥𝑛

𝑠 − 𝜇𝑙
𝑠‖2

2 ≤ 2𝜆𝑠 

17                 𝑐𝑙 ̅
𝑠 ← 𝑐𝑙 ̅

𝑠⋃{𝑛} 

18             else 

19                 𝑐 𝑙
𝑠 ← 𝑐 𝑙

𝑠⋃{𝑛}  

20             end if 

21         end for 

22     end for 
23     for 𝑘 = 1: 𝐾 
24         𝑐�̅� ← ∅ 

25     end for 

26     for 𝑛 = 1: 𝑁 

27         𝑙 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑘 ∑ 𝜆𝑠|𝑙𝑎𝑏𝑒𝑙(𝐶𝑠, 𝑛) == 𝑘|𝑆
𝑠=1  

28         𝑐�̅� = 𝑐�̅�⋃{𝑛} 

29      end for 

30 until {𝐶𝑠|𝑠 ∈ [1: 𝑆]} stabilize 

 
 



Resting-state fMRI datasets from by the Human Connectome 

Project [38-39] were used for demonstration of the proposed 

method. These datasets were called “40 Unrelated Subjects” by 

the Human Connectome Project, which were publicly available 

at http://www.humanconnectome.org/. These datasets were 

generated from 38 unrelated subjects. All these subjects were 

healthy and their ages were between 22 and 35. There were 21 

females and 17 males. To allow an independent test the 

reproducibility of the variations in the parcellation, the 38 

subjects were divided into two groups. All subjects were sorted 

in an ascending order according to their identities. The first, 

group A, included the first 19 subjects; while the second, group 

B, included the others. The subjects’ ages in both groups ranged 

from 22 to 35. There were 10 females in group A and 11 

females in group B.  

For each subject, the resting-sate fMRI data were acquired 

over four runs, each of 14 minutes and 33 seconds (including 

1200 whole brain frames). The four acquisition runs were 

acquired in two independent imaging sessions conducted on 

sequential days. Within each session, the oblique axial 

acquisition of one run was with phase encoding in a right-to-left 

direction; phase encoding in a left-to-right direction was used 

for the other run. The HCP scanning protocol was approved by 

the local Institutional Review Board at Washington University 

in St. Louis. 

The functional images were acquired using a gradient-echo 

EPI sequence with the following parameters: repetition time 

(TR) = 720ms, echo time (TE) = 33.1ms, flip angle = 52o, FOV 

= 208×180mm, slice thickness = 2.0mm, 72 slices. The data 

was preprocessed using FSL [52], FreeSurfer [53] and 

Connectome Workbench [54]. Individual images were 

registered to a group-average surface template using 

multimodal surface matching algorithm [55-56] applied with 

“cortical folding only” mode. The data were de-noised using 

the ICA-FIX method [57-58].  

The CIFTI gray ordinates data [59] were used, but 

subcortical areas were discarded in our experiments. The 

exclusion of subcortical areas does not significantly impact the 

results, because the similarity of two vertices in this paper was 

calculated using the Euclidean distance between the normalized 

BOLD signals of these two vertices. It can be easily proved that 

the Euclidean distance of normalized vectors and their Pearson 

correlation coefficient are equivalent and related by a liner 

transformation. It has been demonstrated that the 

correlation-based measure and the connectivity-based measure 

perform similarly [27]. 

The left and right cerebral hemispheres were processed 

independently. Vertices without BOLD signals were discarded. 

29,696 and 29,716 vertices were found for the left and right 

cerebral hemispheres, respectively. Considering that the total 

number of human neocortical areas was estimated to be about 

150 to 200 per hemisphere [60] and the resting-state BOLD 

signals may not distinguish all cortical areas, three different 

numbers of parcels have been tried, which were 100, 150 and 

200 for each cerebral hemisphere (i.e. 200, 300 and 400 parcels 

for the whole cerebral cortex). To estimate the regularization 

parameter 𝜆, the success probability 𝑝, the number of bootstrap 

variations 𝑍 , and the number of resampling 𝜏  were set to 

0.0164, 297 and 20. Thus, mean length of blocks was 60 (about 

43.65 seconds); and there were approximate 0.1% of the total 

vertices were variations using original and bootstrapped fMRI 

datasets. The spatial relationship matrix was generated 

according to two Human Connectome Project defined 

group-average R440 surface files: 

Q1-Q6_R440.L.inflated.32k_fs_LR.surf.gii and 

Q1-Q6_R440.R.inflated.32k_fs_LR.surf.gii. 

Pairs of contrasted parcellations were inferred using two 

types of pairwise (i.e. intra-subject and inter-subject) datasets; 

their variations were calculated by directly comparing the two 

contrasted parcellations. There were 19 pairs of intra-subject 

parcellations in each group, which were inferred in the contrast 

of session 1 and session 2 datasets acquired from same subjects. 

There were 171 pairs of inter-subject parcellations for each 

session in each group, which were inferred in the contrast of 

session 1 or session 2 datasets acquired from two different 

subjects. Each dataset was parcellated several times in different 

contrasted pairs; these parcellations for the dataset may not be 

same. 

B. Demonstrations of parcellations and their variations 

 The intra-subject example was in the contrast of the session 

1 and session 2 datasets acquired from a subject (Fig. 2a). For 

the left hemisphere, there were 1187 variations, which 

accounted for 4.0% of the vertices; for the right hemisphere, 

there were 1422 variations, which accounts for 4.8% of the 

vertices. The inter-subject example was in the contrast of the 

session 1 datasets acquired from two subjects (Fig. 2b). 

Approximately 24% of the vertices (7017 and 7244 on the left 

and right hemispheres respectively) showed variation between 

the two subjects. The number of inter-subject variations thus 

was approximate 5.5 times greater of that found within a 

 
 

Fig. 2. Intra-subject and inter-subject demonstrations of functional 

parcellations and the corresponding variations. The number of parcels in each 

of the left and right cerebral hemispheres is 150.  



subject with these examples. The inter-subject variations were 

more heterogeneous than intra-subject variations, clustering in 

regions of prefrontal, lateral temporal and occipito-parietal 

cortices.  

Sizes of parcels varied about 2 orders of magnitude (Fig. 3), 

which was consistent with previous estimation [60]. The largest 

parcel size in these parcellations was 2355; the smallest one 

was 29. Most of parcels included less than 1000 vertices. The 

sizes of about half of the parcels were between 50 and 150.  

C. Test-retest Reliability 

The Dice [61] and Jaccard [62] coefficients were used to 

measure the similarity between contrasted parcellations. Given 

two sets 𝐴  and 𝐵 , the Dice coefficient between two sets is 

defined as follows: 

 

                            𝐷𝑖𝑐𝑒 = 2|𝐴 ∩ 𝐵|/(|𝐴| + |𝐵|),                  (5) 

 

where |∙| indicates the number of elements in a set, while the 

Jaccard coefficient is defined as: 

 

                              𝐽𝑎𝑐𝑐𝑎𝑟𝑑 = |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵|.                   (6) 

 

Higher Dice and Jaccard coefficients are found with more  

similar parcels. A summary Dice (or Jaccard) coefficient 

between two parcellations was defined as the arithmetic mean 

of all Dice (or Jaccard) coefficients between matched parcels.  

The average Dice coefficients for contrasted intra-subject 

parcellations were significantly higher than those for contrasted 

inter-subject parcellations (Fig. 4). For group A, the 

intra-subject Dice coefficients were 94.1% ± 2.2% (𝑚𝑒𝑎𝑛 ±
s. d. ) for the left hemisphere and 94.3% ± 2.0% for the right 

hemisphere, while the inter-subject Dice coefficients were 

73.5% ± 3.2% for the left hemisphere and 74.4% ± 3.0% for 

the right hemisphere. This observation was reproduced in group 

B. The intra-subject Dice coefficients were 94.3% ± 2.6% for 

the left hemisphere and 94.3% ± 2.5%  for the right 

hemisphere; the inter-subject Dice coefficients were 75.3% ±
3.3% for the left hemisphere and 74.9% ± 3.2% for the right 

hemisphere. Moreover, the differences between intra-subject 

Jaccard coefficients and inter-subject Jaccard coefficients were 

even higher (approximately 27%). Together, these results 

suggest that the proposed method has a high test-retest 

reliability and sufficient sensitivity to detect inter-subject 

variance. 

The minimal intra-subject Dice coefficient (85.4%) was 

higher than the maximal inter-subject Dice coefficient (83.4%); 

and the minimal intra-subject Jaccard coefficient (76.0%) was 

higher than the maximal inter-subject Jaccard coefficient 

(73.6%). The differences between intra- and inter-subject 

variances suggest the proposed method can be used to identify 

whether two resting-state fMRI datasets are from a same 

subject.  

D. Intra- and Inter-subject Variations 

The value of a vertex in a variation map indicated the 

probability of this vertex being a variation. For example, if the 

value of a vertex in an intra-subject map was 0.26 (≈ 5/19), 

this vertex belonged to different parcels for 5 intra-subject pairs 

of contrasted fMRI datasets; if the value of a vertex in an 

inter-subject map was 0.26 (≈ 45/171), this vertex belonged 

to different parcels for 45 inter-subject pairs of contrasted fMRI 

datasets.  

The inter-subject variations were more non-uniformly 

distributed across the cerebral cortex than the intra-subject 

variations, clustering in the prefrontal, lateral temporal and 

occipito-parietal cortices for both groups (Fig. 5). These areas 

were correlated with cognitive differences between subjects 

[63-64]. Previous studies [65-66] showed that these areas had 

high inter-subject connectivity variability. These studies on 

connectivity were based on fixed parcellations across all 

subjects without considering possible inter-subject variability 

on parcellations. 

For intra-subject variations, no remarkable and reproducible 

patterns were observed by us. Because there were only two 

fMRI sessions, it is difficult to define the causes of these 

 
Fig. 3. Distribution of parcel sizes. 
  

 
 
Fig. 4. Distributions of the Dice and Jaccard coefficients. The dots indicate the 

mean values, and the two ends of the lines represent the minimal and maximal 

values. 
  



variations. Intra-subject variations may be resulted from 

differences in conscious state between sessions. Other factors, 

e.g. radiofrequency power and distribution, sampling noise or 

differences in physiological states (e.g., respiratory rate), which 

also could contribute to intra-subject variations. Further 

research on this issue is needed. 

A variation map can be reformed into a vector indexed by the 

positions of vertices. The spatial correlation coefficient, which 

was the Pearson correlation coefficient between the two 

reformed vectors, was used to measure the similarity of two 

variation maps. The coefficients for each cerebral hemisphere 

were calculated separately. The correlation coefficients 

between the intra-subject maps of group A and group B were 

0.33 (left) and 0.34 (right). The correlation coefficients 

between the inter-subject maps of group A and group B were 

0.84 (left, session 1), 0.83 (right, session 1), 0.84 (left, session 2) 

and 0.84 (right, session 2).  The correlation coefficients 

between the inter-subject maps for the two session were as high 

as 0.92 for both cortices and groups. These results provided 

support for the high reproducibility of the inter-subject 

variation maps across sessions and groups. 

  The relationship between variations and parcel sizes was 

also investigated using spatial correlation coefficient. The value 

of each vertex in a parcel size map is the average size of the 

parcels that this vertex belonged to. The correlation coefficient 

was estimated between a variation map and its corresponding 

parcel size map. For intra-subject variation maps, the 

coefficients were 0.34 (left, group A) and 0.35 (right, group A), 

0.27(left, group B) and 0.31 (right, group B). For inter-subject 

variation maps, the coefficients were -0.018 (left, group A, 

session 1), 0.22 (right, group A, session 1), -0.034 (left, group 

A, session 2), 0.0047 (right, group A, session 2), 0.0080 (left, 

group B, session 1), 0.054 (right, group B, session 1), -0.0039 

(left, group B, session 2) and 0.010 (right, group B, session 2). 

These results showed that the parcel size might have some 

positive effect on intra-subject variations; but no major effect 

on inter-subject variations was detected.  

E. Different Numbers of Parcels 

Three different numbers of parcels, which were 100, 150 and 

200 for the left hemisphere, were investigated. The 

intra-subject Dice coefficients were higher than the 

inter-subject Dice coefficients (Fig. 6). Both intra-subject and 

inter-subject Dice coefficients increased with the number of 

parcels, which was agreed with the observation in [27]. 

Comparing with intra-subject Dice coefficients, the 

inter-subject Dice coefficients had more obvious increases, 

from 66.5% to 77.8% in group A, and from 69.1% to 79.2% in 

group B. For any fixed number of parcels, the minimal 

intra-subject Dice coefficient was higher than the maximal 

inter-subject Dice coefficient. Similar phenomena were 

observed using the Jaccard coefficient.  

The variation maps with different numbers of parcels 

showed similar patterns (Fig. 7). For all numbers of parcels, the 

inter-subject variations were non-uniformly distributed and 

cluster in the prefrontal, lateral temporal and occipito-parietal 

cortices. Areas of higher variance became smaller increasing 

numbers of parcels. The spatial correlation coefficient was used 

to measure the reproducibility of variation maps. The 

correlation coefficients between intra-subject variation maps 

were 0.58 (100 vs. 150), 0.66 (150 vs. 200) and 0.50 (100 vs. 

200). The correlation coefficients between inter-subject 

variation maps were much higher at 0.96 (100 vs. 150), 0.97 

(150 vs. 200), and 0.91 (100 vs. 200). These results 

demonstrated that the inter-subject variation maps are robust to 

 
Fig. 5. Illustrative intra- and inter-subject variation maps. The maximal value 

in these maps is 0.87. 

 
 

 

Fig. 6. Dice coefficients with different numbers of parcels. 

  



the number of parcels, which is an important user-specified 

parameter in the joint K-means algorithm.  

F. Bootstrapped 𝜆 

The regularization parameter 𝜆  is another important 

parameter in the joint K-means algorithm. Unlike the number 

of parcels that has to be specified by users, a bootstrap 

procedure was designed to automatically find an appropriate 

value of the regularization parameter 𝜆.  

The number of bootstrap variations 𝛧 was set to 0.1% of the 

total number of the vertices (297 for each hemisphere). To 

investigate sensitivity of the bootstrapped regularization 

parameter λ to the number of bootstrap variations 𝛧 , two 

additional values for 𝛧 were used to generate bootstrapped λ for 

the left hemisphere in group A. The two values were 0.05% and 

0.15% of the total number of the vertices (149 and 446, 

respectively, for the left hemisphere). The mean values of the 

bootstrapped λ were 0.00915, 0.0110 and 0.0139 for 149, 297 

and 446, respectively. 

There were 20 bootstrapped values for each session of a 

subject; and the values for each hemisphere were bootstrapped 

independently. Thus, there were 3040 (= 20 × 38 × 2 × 2) 

values in total. The distribution of these values was an 

approximate Gaussian distribution with 0.0082 mean value and 

0.0016 standard deviation (Fig. 8). As described in the methods 

section, the 95th percentile of the bootstrapped values for each 

cortex of each subject was used. The mean and standard 

deviation of these 95th percentiles were 0.011 and 0.0012 

respectively. The low standard deviation suggests that it may be 

appropriate to fix a value of 𝜆 for all subjects in some cases. 

Thus, the total number of resampling can be reduced. 

IV. CONCLUSION 

 Here we have proposed the joint K-means algorithm to 

robustly parcellate the cerebral cortex based on resting-state 

fMRI data from an individual subject studied across two 

sessions or between two subjects.  A Matlab implementation of 

the proposed method is publicly available at 

https://github.com/LNie/JKMeans.  

Parcellations of resting-state fMRI datasets from the Human 

Connectome Project demonstrated that the inferred 

individual-level variations are plausible. The Dice and Jaccard 

coefficients of contrasted intra-subject parcellations were 

higher than those of contrasted inter-subject parcellations, 

suggesting that the proposed method has both a good test-retest 

reliability and sufficient sensitivity to detect between subjects 

differences. Inter-subject variations were distributed 

non-uniformly across the cerebral cortex and similar to 

inter-subject connectivity variability, with apparent clusters of 

higher variance in cortical regions associated with differences 

in cognitive performance between individuals. This 

preliminary observation deserves follow up study.  
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