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Nomenclature

D(t) Instantaneous drag, N

e(t) Normal acceleration tracking error, ms−2

Ẽ Dimensionless specific total energy

f Dimensionless convective flux

F̂ Aerodynamic force vector, N

g Acceleration due to gravity, ms−2

Gm System gain margin, dB

G∗m System gain margin lower bound, dB

Iyy Second mass moment of inertia on pitch axis, kgm2

J Cost function

∇Ĵ Computed gradient

∇J True gradient

KA Acceleration loop controller gain

KDC DC controller gain

KR Pitch rate loop controller gain

lr Characteristic length of tail fin

L Lift force, N

m Mass, m

M Pitching moment, Nm

n Normal vector of each face

nS Normal surface vector

N Number of design variables

q Pitch rate, rads−1

r(t) Reference trajectory

s Surface coordinate

S Baseline surface

S′ Perturbed surface
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Si Cell surface area of ith cell, m2

u(t) Controller inputs

V Missile speed, ms−1

Ṽ Dimensionless fluid velocity vector

Vi Cell volume of ith cell, m3

w Cost function weighting constant

WI Integral loop controller gain

xa(t) “Slow” system states

xb(t) Controller states

X Shape deformation variable

z(t) “Fast” system states

z̄(t) Quasi-steady solution of z(t)

zh,i(t)Volume averaged solution of z(t)

α Angle of attack, rad

δ Achieved fin deflection, rad

δc Commanded fin deflection, rad

δ̇max Maximum fin deflection rate, rads−1

δz Fin deflection rate, rads−1

γ Noise parameter

γf Flight path angle, rad

γs Ratio of specific heats

ε Time-scale constant

ε Interpolation mapping error

ζa Actuator damping ratio

ζc Controller damping ratio

η Normal acceleration, ms−2

ηc Commanded normal acceleration, ms−2

θad Design variables utilizing the adjoint method
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θf Design variables of the “fast” states

θf,U Upper bound for design variables of the “fast” states

θf,L Lower bound for design variables of the “fast” states

θk Design variables at iteration k of optimizer

θls Design variables utilizing least squares finite difference

θs Design variables of the “slow” states

θs,U Upper bound for design variables of the “slow” states

θs,L Lower bound for design variables of the “slow” states

ρ̃ Dimensionless density of fluid

τc Controller rise time, s

Φ Additive noise

ωa Actuator undamped natural frequency, Hz

ωcr Controller open-loop crossover frequency, Hz

I. Introduction

The sequential and compartmentalized design of controlled systems is widely practiced despite

the potential for better overall system designs by considering the plant and controller as a combined

multidisciplinary optimization (MDO) problem. This is primarily attributable to the increased

computational burden of MDO relative to the sequential alternative.

A wide range of (MDO) techniques exists [? ], and can be classified as static or dynamic. The

differentiation between the two is the concept of time. In static MDO, the main objective is system

optimization under steady-state conditions, whereas central to dynamic MDO is the evolution of the

system states. The optimization metric for dynamic systems can be an integral over a time period

or Mayer-type term (e.g. mass) and is used to capture the dynamic system’s performance. However,

utilization of time-varying high fidelity numerical models poses a higher computational barrier than

static models. It is for this same reason that, within the computational fluid dynamics (CFD) com-

munity, static properties such as lift and drag are routine computations, while dynamic properties
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like stability and control derivatives are not [? ]. Even then, the computation requirements of static

CFD solutions are not trivial.

While the benefits of high-fidelity modeling, such as CFD simulations are self-evident, one of

the main barriers for their adoption in optimization is the combined computational requirements

of evaluating and optimizing the design. Generally speaking, the computational requirements of

simulation grow proportionally to the number of design variables. For optimization methods that

use finite differences, much of the computation time is taken in the calculation of gradients. Finite

differencing requires at least N + 1 simulations for a problem with N design variables.

It was this problem with the computational cost of calculating the gradient that inspired Jame-

son to apply the adjoint method to CFD shape optimization [? ] and demonstrate that gradient

information could be retrieved with just two simulations regardless of the number of design vari-

ables. In CFD shape optimization problems, the two simulations are a primal system of partial

differential equations (PDEs) representing the flow of the fluid, and an adjoint system derived from

the primal system. There are two main derivations of the adjoint system, namely the continuous

adjoint and discrete adjoint method, which differ only in the order in which the discretization and

differentiation are performed. In either case, the gradients produced have been found to be the same

when the discretization is sufficiently refined [? ]. The adjoint method was first applied to single

static operating conditions, and has since been extended to multi-point [? ] and dynamic operating

conditions [? ].

A limitation of the continuous adjoint method is that it cannot handle design changes over

sharp-edged geometries. Consider a simple example of the sensitivity of the lift of a supersonic fin.

Figure 1 shows the gradient surface of the cost function with respect to deformation of the wing

span calculated using finite differences and the continuous adjoint method. Comparing the two

methods, it can be seen that the gradients are not only of incorrect magnitude, but also of opposing

sign. Gradient filtering and surrogate models have been proposed [? ] to manage the inaccuracy

problem.

The main advantage of the discrete adjoint method is that the derivation of the adjoint system

can be automated via application of reverse-mode automatic differentiation. Automatic differentia-
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Fig. 1: Comparison of the gradient of the lift coefficient with respect to wing span calculated via

the adjoint method and finite differences

tion relies on either source-code transformation or operator overloading. The discrete adjoint does

not suffer from the limitations of the continuous adjoint method for sharp geometry. Practically

speaking however, automatic differentiation suffers from a trade off between execution speed and

memory consumption [? ], and still requires some level of user interaction for the generated code to

be computationally efficient [? ]. Also, it is rare for multidisciplinary optimization problems to be

programmed within the same simulator or in the same programming language. In the usual case,
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specialized simulators are coupled together in a co-design environment. This limits the applicability

of the discrete adjoint method for multidisciplinary optimization problems and it is the reason it is

not pursued here.

The computational requirements for global optimization techniques tend to be much higher

than local techniques and this is because they require many more design evaluations in order to find

the global optimum. Partial convergence of the CFD solver was utilized in a global optimization

framework in order to speed up convergence to the optimal solution to a level comparable to gradient

based methods [? ]. However, global techniques do not scale well with the increase in design variables

and cannot be used indiscriminately [? ? ].

The motivation of this research is to develop an MDO framework for supersonic missiles that

provides guarantees that the solution is optimal in some sense and allows arbitrary shapes to be

incorporated into the design, while at the same time reducing the computational burden associated

with high-fidelity model optimization. In order to provide the computational speed up, a number of

properties of the system are necessary. Primarily, the system should display time-scale separation

between the slow rigid body and fast flow field states. This allows for use of static CFD simulations

in place of more costly dynamic CFD simulations.

The design optimization of a tail-fin controlled missile with a fixed controller architecture will

be used throughout as a motivating example. The components of the model are shown in Figure 2.

The design problem is posed as a nested optimization problem [? ]. The design parameters are the

Steady
CFD

Rigid
body &
controller

Cost
θf F̂

θs

r(t)

xa(t)

u(t)

J

Fig. 2: Dynamic plant model

shape of the missile θf and controller tuning parameters θs. Partitioning of the design variables

will be made apparent in the following sections. Static CFD simulations are utilized to generate the

aerodynamic forces F̂. Based on some reference trajectory r(t) the rigid body and controller model

determines the evolution of the system states xa(t) and controller inputs u(t) over some finite time,
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which is then used to calculate the cost function, J .

II. Dynamic Model

Consider a dynamic system model,

ẋa(t) = fa(xa(t),xb(t), z(t),u(t), ε) (1a)

ẋb(t) = fb(xa(t),xb(t), z(t), r(t),θs, ε) (1b)

ε
∂z(t)

∂t
= fz(xa(t), z(t),

∂z(t)

∂x
,
∂z(t)

∂y
,
∂z(t)

∂z
,

∂2z(t)

∂x2
,
∂2z(t)

∂xy
, . . . ,

∂2z(t)

∂z2
, . . . ,u(t), x, y, z,θf , ε) (1c)

where ε > 0 is constant; xa(t) and z(t) respectively represent the plant states subject to controller

input u(t). The states z(t) are related by a partial differential equation in spatial dimensions x , y

and z. The controller states are represented by xb(t) with reference trajectory r(t).

Property 1. The control input u(t) := g(xa(t),xb(t), z(t), r(t),θs) is designed such that (1a)–(1b)

is asymptotically stable about a nominal reference trajectory r(t), uniform in z(t).

If the system described by (1c) is asymptotically stable and there is time-scale separation

between the coupled system {xa(t),xb(t)} and z(t), then ε is small, and the coupled system is

approximated by,

ẋa(t) = fa(xa(t),xb(t),F(xa(t),u(t),θf ),u(t), 0) (2a)

ẋb(t) = fb(xa(t),xb(t),F(xa(t),u(t),θf ), r(t),θs, 0) (2b)

0 = fz(xa(t), z(t),
∂z(t)

∂x
,
∂z(t)

∂y
,
∂z(t)

∂z
,

∂2z(t)

∂x2
,
∂2z(t)

∂xy
, . . . ,

∂2z(t)

∂z2
, . . . ,u(t), x, y, z,θf , 0) (2c)

Let the solution of (2a) and (2b) be defined as x̄a(t) and x̄b(t) respectively and let z̄(t) :=

F(x̄a(t),u(t),θf ) be the quasi-steady solution of z(t).

Property 2. The time scale separation parameter ε in (1c) is sufficiently small such that

xa(t)− x̄a(t) = O(ε) (3)

xb(t)− x̄b(t) = O(ε) (4)
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holds uniformly for all t. Furthermore, given an ε there exists a tb > 0 such that

z(t)− z̄(t) = O(ε) (5)

holds for t > tb.

Singular perturbation theory has been previously applied to non-linear ordinary differential

equation (ODE) systems [? ] to separate the time scales of slow ODEs and fast ODEs. It will be

shown that in the context of a supersonic missile model, where a coupled rigid body dynamics (ODE

system) and a steady CFD model (PDE system) are utilized, that a similar time scale approximation

can be made. To this end, the time scale separation parameter ε will be derived for the nominal

operating conditions of supersonic flight and this will show that Property 2 is indeed a reasonable

approximation.

A closed form solution for the map F(·, ·, ·) is typically not available and so must be approx-

imated by numerical simulations. Surrogate models can be employed and a simple method is to

introduce an interpolation scheme to approximate F(·, ·, ·) over all values of xa(t) and u(t).

Property 3. For any ε > 0, there is an interpolated mapping F̂(·, ·, ·) where

∥∥∥F̂(xa(t),u(t),θf )− F(xa(t),u(t),θf )
∥∥∥ < ε, ∀xa(t),u(t). (6)

The variable ε in Property 3 is a measure of the approximation error of the aerodynamic map.

Keeping this error small depends on the characteristics of the function as well as the approximation

scheme being utilized. If Properties 1–2 are satisfied, then the model in the optimization framework

can be approximated by (2). Note that open-loop trajectories that are designed such that Property 1

holds can also be considered. If Property 3 is satisfied, for example via sufficient sampling, then the

interpolated mapping F̂(·, ·, ·) can be used in place of F(·, ·, ·). These three properties are important

in enabling accurate modeling of the missile system.
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Application to a Supersonic Missile

An example of a dynamic system represented by (1a)-(1c) is a controlled missile undergoing

pitch motion, so that

ẋa(t) =



α̇

q̇

δ̇

δ̇z


=



−L(α,δ)+mg cos γf
mV + q

M(α,δ)
Iyy

δz

ω2
aδ − 2ζaωaδz + ω2

aδc


, (7)

where, α is the angle of attack, γf is the flight path angle, q is the pitch rate, L is the lift force, M is

the pitching moment, m is the mass, V is the missile speed, Iyy is the second mass moment of inertia

on the pitch axis and g is gravity. The fin actuators are modeled with second order dynamics, where,

δc is the commanded fin deflection input, δ is the achieved fin deflection, δz is the fin deflection rate,

ζa is the damping ratio and ωa is the undamped natural frequency of the actuator. The normal

acceleration for the missile is

η =
V (q − α̇)

cosα
, (8)

and this is the system output that is to track r(t). It is required that the commanded input,

u(t) = δc, be subject to a control law such that Property 1 is satisfied. To that end, a three-loop

autopilot is utilized as the controller [? ], although any other stabilizing controller such as a tuned

proportional integral (PI) controller could be chosen. The dynamic equations for the controller are

ẋb(t) = −q +KA(−η +KDCηc), (9)

where r(t) = ηc is the reference normal acceleration, KA and KDC are controller gains. The output

of the controller (and input u(t) into the plant) is the commanded fin deflection

δc = −KRq +WIxb(t), (10)

where KR and WI are two more controller gains. Suitable selection of KA, KDC , KR and WI is

required to satisfy Property 1 as described in Zarchan [? ].

Now define

ε :=
δ̇maxlr
V

, (11)
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where lr represents the characteristic length of the fin and δ̇max is the maximum fin deflection rate.

The CFD model in this example is described by the dimensionless Euler equations, that is

ε
∂z

∂t
= −∇̃ · f , (12)

where z =
[
ρ̃ ρ̃Ṽ ρ̃Ẽ

]T
, with ρ̃ := ρ

ρr
representing the dimensionless density of the fluid, Ṽ :=

1
V [v1 v2 v3]

T is the dimensionless fluid velocity vector and Ẽ := E
V 2 is the dimensionless specific

total energy. The divergence operator ∇̃ := δ̇maxlr∇ and the dimensionless convective flux is

f := [f1 f2 f3]
T with

fi =


ρ̃ṽi

ρ̃ṽiṼ + p̃δi

ρ̃ṽi(Ẽ + p̃
ρ̃ )

 , (13)

where ṽi := vi
V , δi = [δi1 δi2 δi3]

T is a vector of Kronecker delta functions and the dimensionless

pressure is given by

p̃ =
ρ(γs − 1)

ρrV 2

(
E − 1

2
||V||22

)
(14)

and γs is the ratio of specific heats.

For supersonic flight conditions the pitching and actuator states are an order of magnitude

slower than those in the flow field. In other co-simulation papers of supersonic systems utilizing

CFD and rigid body dynamics models [? ? ], time-scale separation is assumed. We show here

through the time scale parameter, ε , that this approximation is valid. Assuming a nominal speed of

Mach 2 for the flow (V = 680 ms−1) and the maximum actuator fin rate is δ̇max = 100 rads−1 and

lr = 0.33 m, then ε = 0.05. This indicates that O(ε) is bounded on the order of 10−2 and therefore

the approximation from Property 2 is good.

An iterative time-marching CFD solver is used to calculate the aerodynamic maps. In order to

find an approximate solution to the partial differential equations, application of spatial discretiza-

tion, such as the finite volume method, to (12) is necessary. This results in a coupled system of

ODEs, where for each discretised cell i

dzh,i
dt

= − 1

Vi

∫
Si

f .ndS, (15)
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where zh,i(t) is the volume averaged solution of z(t) for each cell, Vi is the cell volume, n is the

surface normal vector for each face and Si is the total cell surface area. The iterative solver is used

to time-march the equations in (15) to the steady state solution.

In order to populate the maps of the aerodynamic forces, for each missile shape design candidate,

θf , steady state CFD simulations for a series of missile poses are evaluated. That is,

F̂(α, δ,θf ) = [D(α, δ,θf ) L(α, δ,θf ) MY (α, δ,θf )]
T
. (16)

As stated in Property 3, the chosen interpolation scheme necessarily effects the approximation

error. Missile pitch axis aerodynamic maps are typically quite linear, thus a linear interpolation

scheme with relatively few sampling points may be used. For this missile model, it was found that

four to five equidistant sampling points for each α and δ was sufficient to keep the approximation

error, ε, small.

III. Framework Overview

The optimization framework is shown in Figure 3. The framework consists of an inner and outer

optimization loop. This two-level optimization strategy is used to separate the design variables that

rely on the computationally intensive CFD simulations from those that do not; with the aim of

minimizing the overall optimization time.

The inner optimization problem considers only the design parameters associated with the slow

states xa(t) and xb(t), where the design variables of the fast states z(t) are held constant. The

optimal design variables in the inner loop are given by

θ∗s(θf ) = arg min
θs

J(θs,θf )

subject to gin(θs) ≥ 0 and

hin(θs) = 0

(17)

where J is a cost function, gin(·) and hin(·) are, respectively, inequality and equality constraints.

The constraints gin(·) includes bound constraints on the design variables and hin(·) includes the slow

system dynamics (2a) and (2b). The outer optimization problem considers the design parameters

associated with the fast states z(t) and with the restriction θs = θ∗s(θf ). The optimal design
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variables of the outer loop are given by,

θ∗f = arg min
θf

J(θ∗s(θf ),θf )

subject to θf,L ≥ θf ≥ θf,U

hout(θf ) = 0

(18)

where J is a cost function, θf,L and θf,U are, respectively, the upper and lower bound constraints

on the design variables and hout(·) are equality constraints that include the fast system dynamics

(2c). Note that the framework can only handle inequality bound constraints in the outer loop.

Let the shape variables θf := (θls,θad), where θls represents the variables whose gradients are

calculated via least squares finite differencing and θad represents the variables whose gradients are

calculated via the adjoint method. Details of each component of the framework are described in the

Outer
optimiser

Steady
CFD

Rigid
body &
controller

Cost &
Gradient

Inner
optimiser

Adjoint
CFD

Inner loop

θls

θad

θad

F̂

θs

xa(t) u(t)

J
∂J
∂θs

∂J
∂F̂

∂J
∂θad

∂J
∂θls

Fig. 3: Optimization framework for the missile design problem

following subsections.

A. Cost Function and Design Variables

The cost function is a scalar quantity used to measure system performance. The design variables

are the inputs to the optimizer that affect the value of the cost. A gradient-based optimization

algorithm is able to find a local optimum if the cost and constraint functions are differentiable and

if a local optimum exists. The design variables have been partitioned based on whether or not

they directly affect the CFD simulations. Clearly, the shape design variables θf directly affect the
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CFD simulations and the controller parameters θs do not. Partitioning of the design variables in

the optimization framework should result in a reduction in the overall simulation time by avoiding

extra CFD evaluations (e.g. during a line search).

Application to a Supersonic Missile

For the tail-fin controlled missile example, one possible cost function is a combination of the

normal acceleration tracking error and aerodynamic drag measured over a finite time, that is,

J =

∫ T

0

e(t)2dt+ w

∫ T

0

D(t)2dt, (19)

where e(t) is the missile’s normal acceleration tracking error; D(t) is the instantaneous drag and

w is a weighting constant that is used to tune to relative weighting on each component of the cost

function. The test scenario chosen subjects the missile to track step changes in normal acceleration.

While it cannot be claimed that this particular cost function and test scenario represents all desired

performance characteristics and operating conditions, it does implicitly capture the trade off between

the maneuverability and range.

This study will consider two types of variables. First are shape design variables, represented

by deformations away from a base design. Figure 4 shows the geometry of the tail fin missile,

and Figures 5 and 6 show the CFD meshes and the associated deformation vectors. Each shape

deformation variable locally deforms the shape via a free-form deformation (FFD) algorithm [? ].

The second type of design variables are the control parameters. The three-loop autopilot has been

3d

16d

14.667d

d

d

2d
3

4d
3

Fig. 4: Tail-fin controlled missile geometry
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Fig. 5: Body mesh and shape deformation design variables

Fig. 6: Body mesh and shape deformation design variables

chosen as the controller. This autopilot has four gain variables, but rather than tuning each of

these gains, Zarchan’s tuning method [? ] is utilized. Three controller characteristic parameters are

specified in the tuning method, namely the rise time τc, damping ratio ζc and open-loop crossover

frequency ωcr. Let θls := [X1 X2 X3 X10 X11]T and θad := [X4 X5 · · · X9] be the vectors of shape

deformation variables, and let θs := [τc ζc ωcr]
T be the vector of characteristic parameters for the

control tuning method.

Figure 7 shows the cost function with respect to the nose tip geometry deformation. Figure 8
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Fig. 7: Continuity of cost function with respect to nose tip geometry design variable

shows the cost function with respect to two of the controller parameters τc and ζc with ωcr held

constant. Figure 7 shows that the cost function is continuously differentiable with respect to the
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Fig. 8: Continuity of cost function with respect to controller parameters, τc and ζc

geometry design variables. It can also be seen from Figure 8 that the cost function is continuously

differentiable within the stable region of the controller. It is assumed that the design variables are

constrained within the limits of where the cost function is continuous.
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B. Inner Optimization

The rigid body dynamics model and controller model, respectively (2a) and (2b), the design

variables θs and cost function J can be cast as a constrained optimization problem of the form

(17). An optimizer can then be used to find the optimum point with respect to the design variables

related to the slow states. While the problem here has been set up to optimize only the controller

design variables, that is, parameters in the controller (2b), the inner loop is also able to optimize

other plant parameters from the slow dynamic model (2a).

Application to a Supersonic Missile

The inner loop takes a given missile geometry and optimizes the controller characteristic param-

eters. If the plant constraints affected by the outer loop optimization are to be dealt with explicitly

by the controller, for example if model predictive control is utilized, then this may require additional

information to be passed between the inner and outer loops.

In the example presented here, MATLAB’s[1] sequential quadratic program (SQP) solver is

utilized to find the optimal tuning parameters. As the computational requirement for the inner loop

does not require CFD simulations, the gradient is simply calculated using finite differences. With

this tuning method, there are no stability guarantees when optimizing the controller parameters

and this can lead to critically stable or unstable closed-loop behavior. The cost function surface is

shown in Figure 8 and it can be seen that the lowest cost region is also adjacent to the unstable

region (represented as a high cost region) which violates the smoothness assumption required for

gradient-based optimization. A method to overcome this problem is to model the dynamic system

as a linear system and to specify a lower bound on the gain margin. Lines of constant gain margin

have been overlaid on the cost function surface. The constraints on the inner optimization are then

the dynamic equations (7) and (9) and the bounds
−θs + θs,U

θs − θs,L

Gm −G∗m

 ≥ 0, (20)

where θs,L, θs,U are lower and upper bounds on the design variables, Gm is the gain margin and
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G∗m is the gain margin lower bound.

C. Outer Optimization

The system model (2), the design variables θf and cost function J can be cast as a constrained

optimization problem of the form (18). An optimizer can then be used to find the optimal point

with respect to the design variables related to the fast states.

The calculation of the cost function and its gradients can be computationally costly. One

method to mitigate computational load is to consider the use of noisy simulation models. Note

that simulations do not have noise in the physical sense; however errors arising from the numerical

approximation of solutions can be treated as noise. The simulation model is then coupled with a

optimizer that can tolerate noise while still providing certain guarantees with regards to the optimal

solution.

Let the error of the computed gradient of the cost function be modeled as additive noise, that

is,

∇Ĵ(θ, γ) = ∇J(θ) + Φ(γ) (21)

where ∇Ĵ(θ, γ) is the computed (approximate) gradient, ∇J(θ) is the true (analytical) gradient,

and Φ(γ) is the additive error.

Property 4. There exists an error parameter γ > 0, such that Φ(γ)→ 0 as γ →∞.

With iterative solvers, the computational time typically increases with γ. Thus, the parameter

γ can be used to control the fidelity of the computed gradient. Let successive design iterations be

found by an update law of the gradient based optimizer

θk+1 = f(∇Ĵ(θk, γk)), (22)

where θk is the design variables and γk is the error parameter at iteration k of the optimizer.

Property 5. Φ(γk)→ 0 as k →∞, so that the iterates of the design variables, θk → θ∗, where θ∗

is an optimal solution.

If the gradient of the cost function satisfies Property 4 and the optimizer is set up with an error

control mechanism that satisfies Property 5, then the noise of the gradient will approach zero with
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Fig. 9: Residual error of CFD solver

increasing iterations of the optimizer and the optimizer will converge to the vicinity of the optimal

solution.

Application to a Supersonic Missile

The missile example utilizes an iterative CFD solver to calculate the map of aerodynamic forces.

Within the solver, the residual error is used as a metric of the closeness of the approximate solution

to the true solution and terminates the solver when the error drops below a certain threshold.

Figure 9 shows the residual error against the CFD solver iterations. It can be seen that after 10

solver iterations, the residual error decreases. One of the inputs for calculating the gradient of

the cost function is the map of aerodynamic forces, and so the additive error Φ(γ) in Property 4 is

modeled by the residual error of the CFD solver. The number of CFD iterations then corresponds to

the parameter γ. In the context of the optimizer, as the optimization progresses the CFD iteration

requires to be run to γ CFD iterations. Note that there still exists an error between the PDE solution

and the spatially discretised ODE solution and that this error tends to zero as the discretization

approaches the limit. This is known as the consistency property of the solver and with Property 4

only the closeness of the partially converged numerical solution to the ODE solution (and not the

PDE solution) can be guaranteed.

A candidate optimizer that satisfies Property 5 is the implicit filtering algorithm [? ]. Implicit
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filtering is a variation of the bound-constrained coordinate search (or direct search) optimization

method. Like coordinate search methods, implicit filtering samples points on a predefined stencil,

however the algorithm then uses the sampled information to build a local model of the cost function.

The local model provides gradient information for a line search algorithm. In this paper, the implicit

filtering algorithm was modified to neglect sampling in θs. Gradient information is found using the

adjoint method instead. The modified algorithm is given in the Appendix.

D. Gradient Calculation

There are a number of methods to calculate the gradient of a cost function and the computational

efficiency will depend on the application as well as the optimizer. For computationally expensive

CFD simulations, careful consideration must be given to the chosen gradient method.

Ideally, the gradient for all design variables should be found via the adjoint method, which

represents the state of the art. However, this is not always possible, as shown in Figure 1 for sharp

edged geometry variables. In this paper, two candidate gradient methods are utilized, namely the

continuous adjoint method and least squares finite difference (LSFD). Further information regarding

their derivation can be found in the Appendix.

Consider the surface of the aerodynamic body shown in Figure 10. Let S represent the baseline

surface and S′ be the deformation of the surface at coordinate s. The surface and its deformation

S

S′

s

nS

δSnS

Fig. 10: Surface properties

is considered to be smooth if the following property is satisfied.

Property 6. A normal vector nS(s) is well defined at s such that

S′ = {s+ δS(s)nS(s), s ∈ S} (23)

represents the deformed smooth surface.
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If Property 6 is satisfied, which will be true for all design variables defined over smooth surfaces,

then the adjoint method is applicable. Otherwise another gradient method will be required.

Application to a Supersonic Missile

Table 1 shows the gradient of the lift coefficient cost function with respect to a selection of

tail fin design variables calculated using LSFD, the continuous adjoint method and with the central

finite difference method as a benchmark for comparison. The total computational time and number

of CFD simulations for each method is also shown. Note that 12 design variables are evaluated

which results in 24 simulations for both the LSFD and central finite difference method. It can be

Variable Adjoint LSFD Central FD Smooth

X5 -0.2519 -0.2903 -0.2909 Yes

X7 -0.2296 -0.2598 -0.2600 Yes

X9 -0.1621 -0.1868 -0.1875 Yes

X10 -0.01852 0.08832 0.08803 No

X11 0.1048 0.2141 0.2123 No

Time (min) 3.79 19.69 101.1

No. of

simulations 2 24 24

Table 1: Comparison of gradients for tail fin geometry calculated using various methods

seen that the continuous adjoint method is the fastest method requiring only two CFD simulations,

but is not applicable for design variables over sharp geometries. LSFD is applicable for all design

variables and is also faster than the central finite difference method. Note that the speed up for

the LSFD method is due to error control of the CFD iterations (i.e. the parameter γ), while the

speed up for the adjoint method is due to both the nature of the method being independent of

the number of design variables as well as the use of error control. The adjoint method is utilized

for design variables θad defined over smooth surfaces (i.e. tail fin profile), and LSFD is utilized for

design variables θls defined over sharp edges (i.e. nose tip and tail fin planform).
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E. Convergence

Properties 1–3 relate to the plant model and controller, and satisfaction thereof implies that

the approximation as slow and fast dynamics sufficiently resemble the real dynamical system. It

has been shown that the design problem can be stated as a nested co-design optimization problem.

It has also been shown that the cost function is differentiable which is a necessary condition for the

deployment of gradient based optimizers. Properties 4 and 5 relate to the tolerance of the optimizer

to inaccurate gradients. Lastly, Property 6 dictates if the adjoint method is suitable for the gradient

calculation. If all above hold, then the optimization framework will converge to the vicinity of a

minimum of the cost function.

The rate of convergence and accuracy of the solution will depend of the noise characteristics of

Φ(γ), on the update law f(·) of the optimizer and the relationship between the iterate k and param-

eter γ. If Φ(γ) is small or if it decays quickly with increasing γ, then the computed gradient is more

accurate. Similarly, if the update law f(·) has a higher tolerance for inaccuracy in the gradient, then

the optimizer will approach the minimum more quickly. In particular, the optimizer may converge

to the solution without necessarily requiring γ to be large, resulting in faster computation of the

gradient and also the overall optimization process. However, no claim is made that this proposed

framework is always faster than other gradient-based approaches, only that in practice it has been

observed to be faster for the given missile example.

IV. Results

Two examples[2] will be presented in this section. The first is a tail fin planform optimization

with the focus on the computational cost of the proposed framework. The relationship between

controlling the error in computing the gradient and the convergence rate will be discussed. The

second example optimizes the missile tail fin’s planform and profile and also the nose geometry.

The adjoint method is utilized for the gradient calculation for a subset of design variables. The

computational advantage of utilizing gradients derived from the adjoint method in this framework

is also highlighted. The missile model is initialized with zero normal acceleration with zero angle of

attack at a freestream speed of Mach 2. A reference test case of a 10g positive and negative step
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change in commanded acceleration over a 3 second period is used, and fin deflection is saturated

at 10 degrees. The cost function is taken from (19) and measures the integrated error between the

achieved and commanded normal acceleration along with the integrated aerodynamic drag. The

weighting parameter of the cost function is set to w = 5 × 10−6. The cost function is normalized

according to

J̄ =
J

J0
× 100(%) (24)

where J0 is the cost of the initial design.

A. Tail fin planform optimization

In this example, the design variables are the tail-fin leading edge and wing span (X10 and X11

in Figure 6). The aerodynamic data for the missile body are taken directly from DATCOM since

there is no deformation over the body. CFD simulations of the tail fin at δ = 0◦, 2.5◦, 5◦, 7.5◦, 10◦

are conducted. The control parameters are also optimized by the inner loop. Three optimization

runs are conducted. In the first run, the residual error is controlled by γ = k and increases the CFD

iterations over successive implicit filtering optimizer iterations (i.e. run with error control). In the

second case, the CFD iterations are fixed so that the CFD simulation is considered fully converged

and the residual error is small (i.e. run without error control). In the third case, MATLAB’s interior

point solver (which utilizes finite differencing) has been included for comparison. In the example,

all three runs converged to the same optimal design.

Table 2 shows the optimized control parameters for the initial and final shape, that is, the

control parameters after the inner-loop optimization. There is very little change to the optimal

controller parameters, which suggests that the control parameters do not influence the cost function

in this example.

Shape τc ζc ωcr

Original 0.1165 1.7664 105

Optimized 0.1158 1.7626 105

Table 2: Optimal control parameters for original and optimized tail fin planform shape
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The original and optimized tail fin shape are shown in Figure 11. It can be seen that the

optimal planform shape favors a shorter wingspan and also a smaller wing sweep, which results in

a low aspect ratio fin. A low aspect ratio result with control parameters that did not vary by much

suggests that the optimization was only able to minimize the drag component of the cost function.
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Fig. 11: Original and optimized shape of tail fin

Figure 12 shows the reduction in the normalized cost function against the computational time.

It is noted that the reduction in the cost function is less than 1% and this suggests that the tail

fin planform design variables are only very loosely related to the cost function for this example.

The figure shows that implicit filtering with error control approaches the minimum in about 60%

of the total time when compared to the interior point algorithm, and about 40% of the total time

when compared to implicit filtering without error control. This result shows that if the properties

of model and framework hold, then there is a computational advantage for using error control for

optimization.

B. Nose, tail-fin planform and profile optimization

In this example, the nose and tail fin geometries are optimized. (X1 to X3 in Figure 5 and

X4 to X11 in Figure 6). CFD simulations are required for both the missile body and tail fin. For

the nose, CFD simulations are conducted at α = 0◦, 4◦, 8◦, 12◦, 16◦, and for the tail fin, they are

conducted at δ = 0◦, 4◦, 8◦, 12◦. The gradients for the nose and tail fin planform design variables
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Fig. 12: Implicit filtering comparison with and without error control

are calculated using least squares finite differencing, while the gradients for the tail fin profile design

variables are calculated using the adjoint method.

Two optimization cases are presented. Firstly, only the nose and the tail fin planform are

optimized, that is, the design variables utilizing the adjoint method are omitted. Secondly, the

nose, tail fin planform and profile are optimized. The result of the optimized nose and planform

shape are the same for both cases and is shown in Figure 13. Note that the body of the missile, i.e.

between 1.4m and 3.6m, has been omitted in the diagram so that differences in the nose and tail fin

shape is more easily observable. It can be seen that the shape of the optimized nose is sharper and

that the shape of the optimized tail fin is the same as the optimized result in the previous example.

In order to compare the profile shape, cross-sections through the tail fin are shown in Figures 14 and

15. The cross-sections are uniformly spaced and are labeled with increasing numbers to indicate the

distance away from the missile body. Figure 14 shows the profile shape where only the planform has

been optimized. Figure 15 shows the tail-fin where the planform and profile have been optimized.

It can be seen that the height of the profile has been optimized such that it is almost uniform, but

with a slight bulge in the middle of the fin. Note that the height of the tail fin profile is not at the

lower limits set in the optimizer, and this suggests that there is a trade-off between maneuverability

and aerodynamic drag for the profile design variables.

Table 3 shows that the controller parameters have changed from the original, and unlike in the
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Fig. 14: Cross sections of planform optimized tail fin shape (i.e. the chord shown here has not

changed). The cross sections are labeled 1-5 as they move uniformly away from the missile body.

previous example, this means that the geometry variables and controller parameters are coupled.

The normalized cost function versus the total optimization time are shown in Figure 16. By

optimizing the nose and tail-fin planform, there is an 11% reduction in the cost function relative

to the original design. Including the tail fin profile yields an additional 4% improvement. This

is an interesting result, as there is a marked improvement to the cost, yet the changes to the tail

fin profile are small relative to the entire missile (the deformation of the tail fin is of two orders

of magnitude smaller compared to the total length of the missile). On the computational aspect,
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Fig. 15: Cross sections of planform and profile optimized tail fin shape. The cross sections are

labeled 1-5 as they move uniformly away from the missile body.

Shape τc ζc ωcr

Original 0.0804 1.4759 105

Nose & planform 0.0854 1.5176 105

Nose, planform 0.0850 1.5136 105

& profile

Table 3: Optimal control parameters for original and optimized nose & fin shapes

the number of design variables utilizing the adjoint method is more than twice that of the other

geometry variables, yet the optimization time is not significantly increased. It can be seen that it is

better to utilize the adjoint method where possible, that is, for design variables where Property 6 is

satisfied. Indeed, one of the benefits of the optimization framework is that the designer need not be

too worried about the computational effort when adding geometry design variables. Together with

the flexibility of choosing the gradient method and the tolerance to noise in the optimizer means

that this framework could lead to unexpected improvements in the optimized design.
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Fig. 16: Total optimization time of nose and fin

V. Conclusions

A framework for the optimization of a controlled aerodynamic system has been developed and it

has been shown to successfully optimize a missile’s shape and control design parameters. Two of the

system’s properties are exploited in order to perform efficient dynamic MDO. Firstly, the time-scales

of the system are identified and a nested co-design optimization architecture is deployed. Secondly,

surrogate models are utilized in estimating the aerodynamic maps as well as the cost function to

reduce the computational burden of CFD simulations. This framework has provided flexibility in

the setup of the optimization problem, where various methods for the gradient calculation can be

incorporated. It is also less restrictive than the discrete adjoint method, as it allows coupling of

various specialized simulators (including closed source simulators).

It has been shown that controlling the error of the gradient computed by the optimizer leads

to a speed up in the optimization time. This is particularly useful when utilizing computationally

expensive models such as CFD simulations. Examples provided in the paper show that the frame-

work is particularly useful in the optimization of supersonic vehicle shapes and is capable of dealing

with both sharp and smooth geometry design parameters.

To improve the fidelity of the model, more representative fluid flow equations can be imple-

mented in the CFD solver, such as the Reynolds-averaged Navier-Stokes (RANS) equations with

an associated turbulence model. Convexity is a property of the optimization metric and if the opti-
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mization surface is non-convex, a multi-start approach can also be used to increase the likelihood of

finding the global optimum. Other candidate systems that satisfy the necessary system properties

can be applied to the framework. For example, an electromagnetic system where the shapes of

the rotors and stators are optimized has a similar time-scale separation between the electrical and

mechanical states. They also rely on electromagnetic field simulations that are computationally

intensive. Such systems are natural candidates for this optimization framework.

Appendix

The gradient methods and the implicit filtering optimization algorithm presented here are not

new methods, but are reproduced here for the reader’s convenience.

A. Least squares finite difference method[? ]

The least squares finite difference method calculates the gradient based on a linear least squares

fit of sampled points. Let V = {v1, . . . ,vK} be the stencil search directions. For a central differ-

encing stencil, the search directions are V = {IN ,−IN} and K = 2N . To calculate the gradient,

the cost function is evaluated at some point θls in the design space and points on the stencil

S(θls, h,V) = {Z|Z = θls + hvk, 1 ≤ k ≤ K}, where h is the finite difference step size. This gives

the gradient

dJ

dθls
=

1

h
δJ(θls, h,V)V†, (25)

where

δJ(θls, h,V) =



J(θls + hv1)− J(θls)

J(θls + hv2)− J(θls)

...

J(θls + hvK)− J(θls)


(26)

and V† := VT (VVT )−1 is the pseudoinverse of V. Note that a central differencing stencil requires

2N + 1 simulations.
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B. Continuous adjoint method [? ? ? ]

The continuous adjoint method is typically applied to calculate the gradient of static steady-flow

aerodynamic costs such as the lift or drag. In order to calculate costs of dynamic systems, the chain

rule is utilized, where

dJ

dθad
=
∑
k

∂J

∂F̂(xa,k(t),uk(t))

dF̂(xa,k(t),uk(t))

dθad
(27)

and where {xa,k(t),uk(t)} are the k steady-state points over which the interpolated map F̂(·, ·) has

been evaluated. On the right hand side of (27), the first term is the sensitivity of the cost with

respect to the map and the second term is the sensitivity of the map with respect to the design

variables. A straightforward, albeit naive, calculation of the second term in (27) is to calculate the

gradient via the adjoint method for each value in the map F̂(·, ·) over the k points. In the missile

example given in the paper, F̂(·, ·) has three components (see Equation (16)) and so will require a

total of 3k adjoint CFD simulations. The total number of adjoint CFD simulations can be reduced

to k simulations. First note that the lift, drag and pitching moment are a class of functions that

can be written as

F̂ =

∫
S

d · (pnS) ds, (28)

where d is a force projection vector, p is the pressure and nS is the local normal vector on the

surface. Set

d =
∂J

∂F̂(xa,k(t),uk(t))
G, (29)

where the derivatives of J with respect to F̂(xa,k(t), ,uk(t)) are found using finite differences[3] and

each row of G in equation (29) corresponds to the forces and moments in the map F̂(·, ·). For the

tail-fin, where the pose only consists of the fin deflection δ, define

G :=
1

C∞


cos δ sin δ 0

− sin δ cos δ 0

0 0 −(x−x0)
Lref

 , (30)

where C∞ = 1
2V

2ρ2∞Az. ρ∞ is freestream density, Lref is the reference length and Az is the

reference area. Equations (29) and (30) are implemented in (27) so that only k adjoint simulations

are required.
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Now, the derivation of the adjoint method is described. The interpolated map F̂(·, ·) is a function

of the fast states, z, and design variables, θad. By calculus of variations, a change in θad results in

a change in the map,

δF̂ =
∂F̂

∂z
δz +

∂F̂

∂θad
δθad. (31)

It can be expensive to compute variations in the fast states, δz, that is, each variation will require

an additional CFD simulation. The aim of the adjoint approach is to eliminate this term in (31).

Suppose that partial differential equations of the form (2c) is introduced as an equality constraint

R (z,θad) = 0. (32)

The variation in (32) is

δR =

[
∂R

∂z

]
δz +

[
∂R

∂θad

]
δθad = 0. (33)

Equation (31) can be combined with (33) via a Lagrange Multiplier ψ, which gives

δF̂ =
∂F̂

∂z
δz +

∂F̂

∂θad
δθad − ψ

([
∂R

∂z

]
δz +

[
∂R

∂θad

]
δθad

)
=

{
∂F̂

∂z
− ψ

[
∂R

∂z

]}
δz +

{
∂F̂

∂θad
− ψ

[
∂R

∂θad

]}
δθad. (34)

Choose ψ such that

[
∂R

∂z

]
ψ =

∂F̂

∂z
. (35)

Equation (35) is called the adjoint equation. With an appropriately defined flow field and boundary

conditions, this adjoint PDE can be implemented and solved using components of the same code

used to solve (2c).

Substituting (35) into (34) eliminates the term δz. The change in the cost functional is

δF̂ =
dF̂

dθad
δθad, (36)

where the gradient is given by

dF̂

dθad
=

∂F̂

∂θad
− ψ

[
∂R

∂θad

]
. (37)
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Implicit Filtering [? ]

Algorithm 1.

1. Note the upper and lower bounds of all design variables and scale them such that Ω = {θf ∈

RN |0 ≤ θj ≤ 1} for j = {1, 2, . . . , N}. Let the initial design be scaled to θf,0 ∈ Ω. Scale the

cost function J(·) by 1
1.2J(θf,0)

.

2. Let Q be the maximum number of iterations of the algorithm. Let Γ = [γ1, γ2, ..., γQ] be an

error vector to control the error of the computed cost function. It is required from Property

4 that the selection of successive γ values be increasing so that the noise level decrease as the

algorithm proceeds.

3. Initialize the current design point θc = θf,0, the step size h = 0.5, error control γ = γ1, the

Hessian H = I and iteration level k = 1.

4. Let τ > 0 be the termination constant. The value ||τh|| is used to determine when to terminate

the search at each iteration level k.

5. While k ≤ Q:

(a) Evaluate the cost function at J(θc, γ).

(b) Compute the gradient ∇J(θc, γ). The gradient can be calculated, for example, by using

either least squares finite differencing (25) or the adjoint method (27). If least squares

finite differencing is used, then store the value of the cost function at each stencil point

as well.

(c) If ||θc −P(θc −∇J(θc, γ))|| < τh go to step (5f), where P(·) is the projection operator.

(d) Set the line search design point θ+ = θc.

(e) While ||θ+ − P(θ+ −∇J(θ+, γ))|| ≥ τh:

i. Update the model Hessian H using the BFGS quasi-Newton method [? ].

ii. Determine the search direction,

s = −H−1∇J(θ+)
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iii. Perform a backtracking line search

θ+ = P(θ+ − λs), (38)

where λ is initialized as 1 and reduced by a factor of β at each line search iteration.

There exists a maximum number of iterations and if this is exceeded the line search

is said to have failed.

(f) Select the best point, θf,min from the stencil (if least squares finite differencing is used)

or from the successful line search and set θc = θf,min, h = h/2, γ = γk+1 and k = k+ 1.
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