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A Generic Hybrid Model for the Simulation of
Three-dimensional Bulk Elastodynamics for Use in

Non-Destructive Evaluation
W. Choi, E. A. Skelton, J. Pettit, M. J. S. Lowe and R. V. Craster

Abstract—A three-dimensional generic hybrid model is devel-
oped for the simulation of elastic waves in applications in Non-
Destructive Evaluation that efficiently links different solution
strategies but, crucially, is independent of the particular schemes
employed. This is an important step forward in facilitating rapid
and accurate large-scale simulations and this advances thetwo-
dimensional generic hybrid methodology recently developed by
the authors. The hybrid model provides an efficient and effective
tool for creating highly accurate simulations that model the
wave propagation and scattering, enabling the interpretation of
inspection data; the new methodology is verified against other
numerical simulations. Furthermore, its deployment to simulate
wave reflection from side-drilled holes, comparing the results with
experimental measurements, provides a realistic demonstration
as well as further validation.

Index Terms—Nondestructive evaluation, Simulation, Hybrid
model, Elastic wave

I. I NTRODUCTION

Ultrasonic inspection is economic, versatile and safe, and
is widely used across a broad range of industries. Its usage is
expanding as new inspection capabilities are emerging together
with advancing requirements for the inspection of safety-
critical components. As this demand increases and applications
broaden, there is a consequent increase in complexity for in-
spection procedures. Accurately, and rapidly, simulatingsuch
inspection procedures is of considerable benefit to estimate or
confirm inspection results, to validate proposed inspections,
and, as a result, to increase confidence in ultrasonic Non-
Destructive Evaluation (NDE).

In ultrasonic NDE the measurement and modelling of wave
scattering from discontinuities is essential when trying to
detect or size cracks in engineering structures. While the
problem is fundamentally an inverse one, to identify and inter-
pret defects from measured signals, the practical deployment
of NDE uses forward calculations and simulations as the
basis to make the interpretations. There are numerous existing
techniques to model this scattering, each with some relative
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advantage or disadvantage, and the current state-of-the-art is
reviewed and then how the hybrid methodology is positioned
within this existing landscape is illustrated.

Modelling wave scattering phenomena using analytical tech-
niques yields physical interpretation and meaningful represen-
tations; these techniques deliver results reliably, although such
models are typically limited to cracks with well-defined planar
or regular geometries. Semi-analytic techniques based upon
limitations in frequency such as the Kirchhoff approximation
[1], the Geometric Theory of Diffraction (GTD) [2], and
Physical Theory of Diffraction (PTD) [3] are also popular and
widely used in NDE [4], [5]: These have the advantage that
irregular geometries can then be considered. However, there
are difficulties dealing with wave behaviour with respect to
defects described by rough or complex geometries.

Numerical modelling tools such as the Finite Element (FE)
method are naturally appealing in this context and have also
been developed for simulating ultrasonic waves in NDE, for
example [6]–[9]. In contrast to analytic methods, numerical
tools are particularly good at modelling irregular geometries
and thus widely used in practical applications to deal with
ultrasonic waves in real complex structures. However the FE
modelling of such geometries requires highly resolved meshes
that increase the relative number of elements and consequently
the computational burden increases dramatically. In addition,
if the ultrasonic wave travels a long distance, it often requires
very large domains to be treated, and further worsen this issue
by increasing the number of nodes. Unfortunately, simulating
an infinite domain by truncation to a finite computational do-
main introduces further complications by requiring a boundary
condition, or absorbing region, to avoid unwanted reflection
from the artificially introduced boundaries, and typicallythis
is modelled by a wave-absorbing layer [10]. To simulate an
infinite medium, the truncated finite region is surrounded by
an absorbing layer and, annoyingly often, the size of this
absorbing region is larger than the main domain. The efficiency
of these absorbing layer methods has been investigated and
improved by many researchers [11]–[15], but FE methods still
experience computational difficulties due to sheer model size,
particularly in three dimensions.

Each of these techniques has some advantage or disadvan-
tage, so it is attractive to try to maximise efficiency by devel-
oping hybrid methods that combine the best aspects of these
different modelling techniques. FE and analytic methods, for
example, have different merits and so researchers have com-
bined them to generate more efficient tools for estimating wave
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propagation and scattering. Many hybrid methods have been
successfully developed [8], [16]–[18], but they are primarily
for particular techniques or processes. Thus the methods need
to be modified in order to have the flexibility to be rapidly
and easily applied to different techniques and problems. To
overcome this, and to generate a flexible methodology, a
generic hybrid method (in two-dimensions) has been devel-
oped by the authors’ research team at Imperial College [19],
that allows one to connect two different techniques using a
hybrid interface that is independent of the techniques to be
linked. The flexibility is important when using commerical FE
codes, that are certified for particular industrial uses, asthere is
no access to the source code: all numerical examples presented
here are generated with ABAQUS [20] as an example FE code.

The advantages of the hybrid approach come to the fore in
three-dimensional (3D) problems, but it is not straightforward
to extend the 2D generic hybrid model to 3D. Technical
challenges arise that must be overcome and they are considered
within this article. Verification of the model is also presented
by detailed comparison of simulations with alternative numeri-
cal results, and a realistic demonstration with further validation
by comparison with experimental measurements on a realistic
industrial example.

In this paper, firstly the basic background of the 3D hybrid
method is introduced, and methodologies of the hybrid inter-
face and its application to numerical FE model are described
in Section III. Comprehensive numerical verification and ex-
perimental validation then follows in sections IV and V. Then
some concluding remarks are drawn together in section VI.

II. BACKGROUND

Recently, a generic hybrid method has been developed for
ultrasonic NDE problems [19] that allows separately modelled
regions to be linked, independent of the modelling procedures
used in either domain. The concept will be briefly introduced
here, but for full details see [19].

A pulse-echo NDE setup as, for example, shown in Fig. 1(a)
is modelled with the source and defect located within two
separate small domains as shown in Fig. 1(b). For the displace-
ment potential of a compressional wave,φ, travelling from
the Source domain (Region 1) to the Defect domain (Region
2), the two regions are linked via an integral formula in the
frequency domain,

φ(r2) =

∫

S1

[φ(r1)∇Gφ(r2|r1)−Gφ(r2|r1)∇φ(r1)] · ndS1

(1)
whereGφ(r2|r1) is the Green’s function as in Eq. (5),r1
and r2 are position vectors of points on the boundary of
the Source domain (Region 1),S1, and points in the Defect
domain (Region 2), respectively, andn is the normal to the
Source domain boundary. The physical quantities in Region
2 such as displacement and stress are readily calculated from
the potential, which will be explained in the next section. An
alternative approach to link the two regions via an integral
formula could be to use tensor Green’s functions, as in say Eq.
(4.77) of [21] in which the displacement at Region 2 could also
be computed directly from displacement and stress at Region

(a)

(b)

Fig. 1: Generic hybrid concept for the simulation of ultrasonic pulse-
echo NDE; (a) illustration of the NDE setup, (b) Hybrid modelusing
a Source domain and a Defect domain to account for the complexity
of the transduction and scattering respectively, while thepropagation
of the waves between these domains is handled by the equations of
the analytic model

1; both approaches should produce identical results. In this
work we consider isotropic elastic media, which enables the
necessary domain-linking to be based on appropriate Greens
functions written in terms of displacement potentials, andwe
have chosen this option. For the general case of anisotropic
elastic media, the problem could be formulated instead in
terms of tensor Greens functions that directly link stresses
and displacements, and we would expect this to require similar
computational resource. For time domain prediction, the Fast
Fourier Transform (FFT) and inverse FFT (IFFT) techniques
are used within the hybrid interface. Wave reflection from the
defect travelling back to the source domain (or elsewhere) is
determined using the identical process but from the Defect to
the Source domain.

The implementation of the hybrid interface depends solely
on the linking of field quantities at the exterior boundariesof
any chosen local domains. This can be the Source and Defect
domains, as in the example in Fig. 1(b), or could include
others: for example it is straightforward to model the detection
of scattered waves at a receiver location that is separated from
the transmitter, such as in a pitch-catch NDE setup. Within
each of these domains there is no restriction of the choice of
modelling technique, provided it can deliver and receive the
field quantities at the exterior of the domain. Here we use
the FE technique within the domains, to take advantage of its
superior capability to model the complexity of the behaviour
at the transducer and at the defect, but in principle any other
technique that is appropriate for the local behaviour could
be used. We also choose to use a commercially available FE
code for these domains, which provides the advantage that the
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hybrid model can be accessible immediately to NDE modellers
who may be restricted in their choice of modelling tools. This
is frequently the case in industry where decisions concerning
licensing or qualification approval can be very limiting. The
possibility to use any appropriate local model also allows such
users to take advantage of their familiarity and developed skills
for their specific codes.

An important characteristic of the local domain is that the
exterior boundary itself must not affect the calculations.When
using FE modelling, this means that it is necessary to allow
waves to radiate from the domain without interacting with
the boundary. As discussed earlier, there are well-developed
techniques to deal with unwanted reflections from artificially
introduced boundaries. Here, in keeping with our motivation
to open the methodology to a wide range of both academic
and industrial modellers, we use an absorbing region that is
easily implemented using the standard features of commercial
FE codes [14].

III. A GENERIC WAVE PROPAGATOR IN THREE DIMENSIONS

A. Linking scheme

For the hybrid interface described here, displacement po-
tentials and their derivatives are assumed to be known on the
boundary of Region 1 and we work with those potentials rather
than directly with the stresses and displacements. For a 3D
wave field, the longitudinal potentialφ is a scalar function
whilst the shear potential, in contrast to a 2D problem, is
a vector quantityψ = (ψ, χ, η), with its three components
representing shear polarization in three orthogonal directions.
In general this results in 4 potentials to represent the 3
components of the displacement; this is over-determined and to
remove any ambiguity a gauge condition,∇·ψ = 0, is required
[22]. For notational convenience dimensionless variablesare
used in the following analysis. Thus lengths are scaled with
some lengthh appropriate to the geometry, times are scaled
with h/CT , frequencies are scaled withCT /h and stresses
with the Lamé coefficientµ = ρC2

T . The dimensionless
displacements follow from the potentials using

u = ∇φ+∇×ψ, (2)

and the potentials satisfy the homogeneous Helmholz equa-
tions,

∇2φ+ ω2γ2φ = 0, (3)

∇2ψ + ω2ψ = 0, ∇2χ+ ω2χ = 0, and∇2η + ω2η = 0, (4)

whereγ = CT /CL, the ratio of the shear and compressional
wavespeeds.

Given the potentials and their derivatives on the boundary
of Region 1 (the Source domain in Fig. 1(b)), the potential of
the incident P-wave fieldφ, for example, is determined on the
boundary of Region 2 (the Defect domain in Fig. 1(b)), as in
Eq. (1), in which the Green’s function for the compressional
potential in 3D is

Gφ(r2|r1) =
1

4π

e−i(ωγ|r2−r1|)

|r2 − r1|
. (5)

The other components of the potentials are similarly calcu-
lated, all using the same single Green’s function based on the
shear wave speed. Hence

Gψ(r2|r1) = Gχ(r2|r1) = Gη(r2|r1) =
1

4π

e−i(ω|r2−r1|)

|r2 − r1|
.

(6)
Thus computationally only two separate Green’s functions are
required to be evaluated and stored. Regions 1 and 2 can in
general be any shape but here, for simplicity of exposition,it is
assumed that they are both cuboids whose edges are parallel
to the x, y or z axes. Determining the potentials, and their
gradients, on the boundary is straightforward as they are found
using the potential-displacement relations and the stress-strain
constitutive relations of an elastic material.

B. Cases defined by displacements and stresses

The input to, and output from, the hybrid interface can be
either displacements or stresses or both, these being the typical
outputs of many commercial numerical simulation tools. In
this paper it is assumed that both displacements and stresses
are available to be input to the hybrid interface and that both
are required to be calculated on the Region 2 boundary as the
output, but the output could be in any other format obtained
from the potentials there. With displacement and/or stress
input and/or output the hybrid process consists of three steps:
firstly, to obtain the potentials and their normal derivatives
from the available data on the Region 1 boundary, secondly to
implement the integral equation to calculate potentials onthe
Region 2 boundary, as described above, and thirdly to calculate
the output displacements and/or stresses on the Region 2
boundary from the available values of potentials there. For
reference, the equations of motion are listed in dimensionless
form in Appendix A. Making use of these dimensionless
variables the additional first and third steps are described
below:

1) Potentials and their normal derivatives on the Region 1
boundary: The P-wave potentialφ is obtained by taking the
divergence of Eq. (2), using the Helmholtz Eq (3) to replace
∇2φ, and Eqs. (23) – (25) to rewrite the∇ · u term in terms
of the dimensionless stressesτ (see Appendix A for details):

φ =
τxx + τyy + τzz
ω2(4γ2 − 3)

. (7)

Similarly, expressions for the shear potentials are obtained by
taking the curl of Eq. (2) and using the Helmholtz Eqs. (4):

ψ =
1

ω2

(

∂uz
∂y

−
∂uy
∂z

)

, χ =
1

ω2

(

∂ux
∂z

−
∂uz
∂x

)

,

and η =
1

ω2

(

∂uy
∂x

−
∂ux
∂y

)

. (8)

However, in order to make use only of values on the boundary
any normal derivatives are eliminated using the shear stress
definitions (26) – (28). For example, on the constantx plane
surfaces of the cuboid, for which derivatives with respect to y
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andz are available:

ψ =
1

ω2

(

∂uz
∂y

−
∂uy
∂z

)

, χ =
1

ω2

(

2
∂ux
∂z

− τxz

)

,

and η =
1

ω2

(

τxy − 2
∂ux
∂y

)

. (9)

The shear potentials on the other surfaces of the cuboid are
derived in a similar manner and, for reference, are listed as
Eq. (29) and (30) in Appendix. B.

Normal derivatives of the potentials are also required. For
the P-wave potentialφ, Eq. (7) is formally differentiated and
Eqs. (20) – (28) are used to eliminate the normal derivatives
in favour of appropriate tangential derivatives. For example,
on the constantx surfaces of the cuboid the normal derivative
is ∂φ/∂x which is evaluated from the values on the surface
as

∂φ

∂x
=

−1

ω2

(

∂τxy
∂y

+
∂τxz
∂z

− 2

(

∂2ux
∂y2

+
∂2ux
∂z2

)

− ω2ux

)

.

(10)
Similarly, the normal derivatives of the shear potentials are
obtained on the constantx surface as

∂ψ

∂x
=

1

ω2

(

∂τxz
∂y

−
∂τxy
∂z

)

, (11)

∂χ

∂x
=

1

ω2

(

ω2uz +
∂τyz
∂y

+
∂τxx
∂z

+ 2
∂2uz
∂z2

)

, (12)

∂η

∂x
=

−1

ω2

(

ω2uy +
∂τyz
∂z

+
∂τxx
∂y

+ 2
∂2uy
∂y2

)

. (13)

Normal derivatives of potentials on surfaces of constanty and
z can also be obtained in the same manner, and expressions
for them are presented as Eqs. (31) – (38) in Appendix B.

2) Displacements and stresses on the Region 2 boundary:
The integral equations (such as Eq. (1)) can, in theory,
estimate the potentials anywhere outside Region 1, and thus
displacements and stresses on the boundary of Region 2 are
calculated from the potentials and their derivatives. In case
that only displacement input is required for the numerical
simulation on Region 2, the displacement can be obtained
from the values of the potentials on, and near, Region 2 by
numerical approximation of the first derivatives in Eq. (2).
However, it may be preferred to use force as excitation to
the simulation, as in Section V.C, and, in this case, stresses
on the region boundary can be used as the excitation, which
are defined in terms of first derivatives of displacements or,
as in the present method, in terms of the second derivatives
of potentials. On the planar surfaces of the Region 2 bound-
ary, the in-plane derivatives are approximated numerically to
high order by using more points. For the derivatives in the
normal direction, only points on one parallel plane inside
the boundary and one parallel plane outside the boundary
are evaluated, in order to keep the problem to a manageable
size. However, more than three points would be required
for higher order approximations. Thus, it is convenient to
replace normal derivatives by appropriate tangential derivatives
wherever possible, as described in the next paragraph. The
spacing between the parallel planes can however be made

small to ensure the accuracy of the approximation for any
remaining normal derivatives.

Stresses are calculated at points on the surface of a cuboid
as follows: for constantx surfaces, the three stressesτxx, τyy
andτzz in Eqs. (23) – (25) are rewritten in terms of∇ · u to
formally remove∂ux/∂x terms and then, after making use of
Eq. (3), they are expressed using only tangential derivatives
as,

τxx = −ω2φ− 2

(

∂uy
∂y

+
∂uz
∂z

)

, (14)

τyy = −ω2γ2(γ−2 − 2)φ+ 2
∂uy
∂y

, (15)

τzz = −ω2γ2(γ−2 − 2)φ+ 2
∂uz
∂z

, (16)

where the displacement derivatives are calculated by differen-
tiating Eq. (2). The shear stress componentτxy is obtained
by substituting Eq. (2) into Eqs. (26) – (28) and eliminating
the second derivatives with respect tox of χ and η using
Helmholtz equation (4),

τxy = 2
∂2φ

∂x∂y
+

(

2
∂2

∂y2
+

∂2

∂z2
+ ω2

)

η +
∂2ψ

∂x∂z
−

∂2χ

∂y∂z
.

(17)
The remaining first order derivatives with respect tox are
evaluated numerically. The other stresses are obtained in the
similar manner:

τxz = 2
∂2φ

∂x∂z
+

∂2η

∂y∂z
−

(

∂2

∂y2
+ 2

∂2

∂z2
+ ω2

)

χ−
∂2ψ

∂x∂y
,

(18)

τyz = 2
∂2φ

∂y∂z
−

∂2η

∂x∂z
+

(

∂2

∂z2
−

∂2

∂y2

)

ψ +
∂2χ

∂x∂y
. (19)

Displacements and stresses on the surfaces with constanty
and z can be obtained in a similar manner, and expressions
for them are given as Eqs. (39) – (51) in Appendix C.

IV. N UMERICAL VERIFICATION

In this section we report a numerical verification of the
3D hybrid method using FE models in two local domains,
although noting, as discussed earlier, that any modelling tools
could be chosen to be linked using the hybrid method. We
chose here an example of the reflection of a shear wave from
a planar crack. The shear wave was generated at a point in
the Source domain and the crack was modelled in the Defect
domain. By keeping a modest separation between the source
and the crack, it was also possible, separately, to perform a
single FE simulation of the whole process, thus enabling the
numerical verification.

The procedure for the hybrid method is: 1) to simulate
the generation of the wave field in the Source domain, 2) to
estimate the resulting wave as it is incident on the Defect
domain using the hybrid interface (the forward process), 3)to
simulate reflection from the defect, 4) to estimate the reflected
wave returning to the source location using the hybrid interface
(the backward process). For the purpose of detailed verifica-
tion, these forward and backward processes are demonstrated
separately in the following subsections. The full process will
later be validated as a whole against experiment.
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For the forward process of the hybrid model, the incident
wave field was taken from the boundary of the source box
and then estimated on the exterior (excitation plane) of the
defect box; similarly, for the backward process, the reflected
wave field was estimated at the receiver based on the scattered
signal on the boundary of the defect box. Here we use ”box”
to refer to the cuboid at the exterior of the region of interest of
each domain; the domains were larger than this because they
contained absorbing material outside the region of interest.

The reference case to which the hybrid simulation was
compared was a highly resolved large FE model including
both the source and the defect. The incident and the reflected
time signals were monitored at locations within this model that
corresponded to the boxes of the hybrid model; we refer to
these as the Source and Defect Monitoring Cuboids (SMC and
DMC) respectively. We call this model, including both source
and defect, the ‘Full FE’ model, and the monitored signal was
the reference against which we tested the corresponding hybrid
simulation.

This problem has been modelled at an arbitrary scale, but
since the material is perfectly elastic the identical results can
be obtained at any chosen consistent scale of distance and
frequency. Therefore, the results here are scaled to dimensions
and frequencies that are relevant for cases of interest to non
destructive evaluation. According to this scale, a domain of
dimension 60 by 48 by 48 mm is selected, and two models
are considered, one without a crack and the other including a
smooth flat square crack of dimension 3.2 by 3.2 mm. Fig. 2
shows the geometry of the domain and the location of the
crack. The models were set up using the ABAQUS [20]
CAE. The model without the crack was used for the forward
simulation while the model with the crack was used for the
backward simulation. The domain was regularly meshed with
linear hexahedral elements (C4D8R in ABAQUS) of nominal
size 0.2 mm (≈ λS/16 at the center frequency of the signal).
The outside of the domain was filled with absorbing layers
[14], and the thickness of the absorbing region was selectedto
be approximately 18 mm≈ 3λL, resulting in over 90% of the
calculation volume being occupied by the absorbing region.
A point source of Hanning-windowed 5-cycle toneburst of 1
MHz centre frequency was used for the shear wave excitation.
The rectangular crack was facing the excitation point which
was 12 mm (≈ 4λS) from the crack, and was created by
disconnecting elements so that it had no volume. Aluminium
(Young’s modulus 71GPa, density 2700 kg/m3 and Poisson
ratio 0.33) was used for the material. The SMC surrounded
the point source and each of its six surfaces was 6 mm× 6
mm in size, and the DMC was the same size, surrounding the
centre of the rectangular crack as shown in Fig. 2.

The linking process was conducted at a set of frequency
points, then Fast Fourier Transforms (FFT) and Inverse Fast
Fourier Transforms (IFFT) were used to calculate the time-
domain signals. Thus, a frequency region of interest had to be
selected, for which the range 0.2 - 1.8 MHz was chosen for
the following examples, covering the main lobe near 1 MHz
and two side lobes on both sides of the main lobe.

Fig. 2: Geometry for the numerical example of reflection of a shear
wave from a planar crack

A. Forward propagator

In this first step, the hybrid method was used to estimate
wave propagation from the point source in the forward process,
for which incident wave propagation, in the defect domain,
but without a crack, was simulated so that there was no
reflection. Displacements and stresses were monitored at nodes
on the SMC shown in Fig. 3(a), for input to the hybrid
interface, and also at the DMC shown in Fig. 3(b), for
comparison. Displacementsuin at nodes on the DMC were
estimated separately via the hybrid interface, based on the
SMC monitored signal. Fig. 4 shows the incident waves at
a node on the DMC, predicted using the hybrid interface and
the Full FE result and normalized by the incident amplitude
at the source point. They agree well with each other in both
the time and frequency domains, although for the first and the
last lobe in Fig. 4(b) there is some small (note this is shown
on a logarithmic scale) disagreement since they are out of the
chosen frequency range for the FFT/IFFT.

(a) (b)

Fig. 3: Cross-sectional view of Full FE model for forward process,
showing (a) wave shortly after being generated, just leaving the SMC,
and (b) wave sometime later, passing over the DMC. This is the
example without the defect present, so there is no scattering yet. The
cross-section is a horizontal plane cut through the middle of the Full
FE model. The polarisation of the shear wave is such that its motion
is in the Y direction.

B. Backward propagator

For the backward process, the simulation was repeated but
now with the crack in the Defect domain, and displacements
and stresses were again monitored at nodes on the SMC and
DMC in the Full FE model. The total displacement includes
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Fig. 4: Y direction displacement at an arbitrary point on DMC (a)
in the time domain (b) in the frequency domain from Full FE (solid
line) and Hybrid (dashed line) models. The time domain results are
indistinguishable on this scale, while the frequency domain results
show observable differences only outside the frequency range of the
calculations.

the components of the incident and reflected wave fields,
utot = uin + uref, as is seen in illustration in Fig. 5(a).
However, only the reflected wave is required to be fed into
the hybrid interface and thus the reflected field was calculated
asuref = utot−uin using the results from the model without
a defect in the previous section.

The estimated reflection at an arbitrary point on the SMC
is shown in Fig. 6. In both the time and frequency domains,
only the reflected field is shown for the hybrid method, while
the signal from the Full FE model also includes the incident
wave component. Accordingly, the hybrid model correctly
shows zero displacement in the first part of the time record,
corresponding to the incident signal on its way towards the
crack, while the Full FE model shows its highest amplitude
here. At a later time, corresponding to the reflected signal,both
models show good agreement. There is a small but observable
difference between the full FE and the hybrid results in Fig.
6(a), which is due to spatial and time discretization and will
be explained in Section. V-C.

V. EXPERIMENTAL VALIDATION

For an experimental validation we have chosen the reflection
of a compression wave from a Side Drilled Hole (SDH).

(a) (b)

Fig. 5: Cross-sectional view of Full FE model for the backward
propagation study, shown on same cross-section as in Fig. 3.Now,
in (a), the wave reflected from the crack can be seen shortly after
reflection, just as it crosses the DMC, and in (b) it can be seen
sometime later passing into the SMC.
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Fig. 6: Y direction displacement at an arbitrary point on SMC (a) in
the time domain (b) in the frequency domain from Full FE (solid line)
and Hybrid (dashed line) models. Only the reflected signal isshown
for the Hybrid method, while the signal from the Full FE model
also includes the incident wave component. This is why the Hybrid
result shows zero displacement in the first part of the time record
(a), corresponding to the incidence of the wave before reaching the
defect, while both models agree well later in time when the reflected
signal arrives.

Whereas this is a geometrically simple case compared to the
complex defects that might be modelled using the hybrid
method, it is an interesting and relevant one because the
SDH is widely used to obtain quantifiable reference signals in
ultrasonic NDE inspection. In this section, the three casesof
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experiment, large FE model, and Hybrid method are described
and the results are then compared.

A. Experiment

A 60 mm-thick stainless steel test block was selected for
this experiment, having four 3-mm SDHs located at 5, 15, 25
and 45 mm from the transducer, as shown in Fig. 7. A 0.5-
inch (12.5-mm) circular broadband transducer with a nominal
centre frequency of 2.25MHz (GE MSWQC (SE0599)), was
used to generate a compression wave, and it was excited by
applying a short-time voltage pulse to the piezoelectric crystal.
The pulse width of the DC voltage was equal to the duration
(222ns) of half a cycle at the centre frequency. The data was
acquired using a FMC Micropulse manufactured by PeakNDT,
with the pulse-echo time history acquired through a single
channel. The time history was recorded at lateral locations
along the top of the block from 0mm to 66mm, at 1 mm
increments, and each time record was digitised at a sampling
frequency of 10MHz. This ensured thorough coverage of the
test block, with data that was acquired in a practical time
period.

Upon examining the response from the back wall, it was
found that the centre frequency of the transducer was 2.6MHz,
differing, as is common in practice, from the nominal speci-
fication of 2.25MHz; accordingly the simulations that follow
were made using a centre frequency of 2.6MHz.

The setup for the ultrasonic test is shown in the schematic
diagram in Fig. 7(a), and the reflections from the four SDHs
and the backwall are seen from the “B-scan” in Fig. 7(b); in
this plot thex axis shows the lateral position of the transducer
on the top of the block, the y axis shows the distance of
propagation calculated from the time record according to the
known wave speed, and the grey scale shows the amplitude of
the signal. The wave speed that was used for that calculation
was based on the material properties of stainless steel: density
8000 Kg/m3, Young’s modulus 200 GPa, and Poisson ratio
0.3.

(a) (b)

Fig. 7: Side Drilled Hole (SDH) Experiment, (a) schematic diagram
of the experiment and (b) B-scan signal in the experiment showing
reflections from SDHs at 5, 15, 25, and 45 mm. Dashed line shows
where the input waveform is extracted for simulations

B. Full FE model

A domain including both the transducer and the SDH was
modelled for comparison, in which all the wave propagation
and reflections were simulated using only one FE model. This
used a quarter-symmetric model as shown in Fig. 8 in order
to reduce the size of the domain. The quarter symmetry is
justified because the transducer, the SDH and the wave field
possess this symmetry. In order to achieve this, thex and
z direction displacements were set to be zero at thex = 0
and z = 0 plane, respectively. The term “Full FE” model
will be used for this quarter model throughout this paper, to
distinguish it from the hybrid model.

Fig. 8: Schematic of the “Full FE” model that was used to simulate
the compression wave reflection from the SDH, including representa-
tion of both the transducer and the SDH. As can be seen by the region
shown in the figure, it was possible to make use of an economy of
quarter symmetry in order to reduce the spatial domain of themodel.

The stainless steel test block was modelled using density
8000 Kg/m3, Young’s modulus 200 GPa, and Poisson ratio
0.3, and meshed by linear hexahedron elements (C4D8R in
ABAQUS) of nominal length 0.1 mm (≈ λL/22). Three
separate full FE models with the SDH at a distance of 15,
25, and 45 mm, respectively, were simulated with sections
of up to 10.8× 10.8 × 55.3 mm3 domain size. The region
near the SDH was meshed by sweeping free surface meshes
along the axis of the hole, but the other regions were regularly
meshed using ABAQUS CAE. For the exterior absorbing
region, a recently-developed variant of the absorbing regions
method, called Stiffness Reduction Method (SRM) [15], was
implemented, which enabled the thickness of the absorbing
material to be reduced to 1.5λL. The circular transducer
was simulated by a quarter-circular piston, and thus nodes
within a 6.4 mm radius on a plane were selected, to all of
which an identical excitation waveform was applied. The time
signal at the receiver was obtained by averaging they direction
displacement at the nodes on the piston.

In general, it is difficult to obtain the actual waveform
of the input signal used in an experiment for use as input
to the simulation. For this simulation, the reflection from
the backwall (see Fig. 7) of the test block was measured,
corresponding to the location shown by the dashed line in
part (b) of the figure. Its time trace was used for the input
waveform of the simulation, after removing its DC offset,
and this is shown in Fig. 9(a). An ideal toneburst should
show approximate symmetry in the time domain, such as the
incident signal in Fig. 6(a), but this signal shows a relatively
steep rise at the start of the signal; this can be seen more
clearly by looking at the signal envelope (Hilbert transform)
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in Fig. 9(b). This sharp rise includes energy over a larger
frequency range than would be expected from the ideal narrow
band toneburst considered earlier, and this required a relatively
wide range of frequency to be covered by the simulations, as
will be shown shortly.
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Fig. 9: Waveforms (a) in the time domain and (b) their envelopes
(Hilbert transform). The dashed line, taken from the measurements
at the dashed line in Fig. 7(b) of the B-scan experiment, has been
modified for input to the simulation by setting the DC offset to zero.
The signal thus modified is shown by the solid line.

C. Hybrid estimation

For the Hybrid simulations, reflection from SDHs at 15 and
25 mm distance were simulated with two physically separated
FE models, the Source and Defect domains, that were linked
by the 3D Hybrid interface. Fig. 10 shows a schematic diagram
of the two FE models. The Source domain of 21.6× 8.8 ×
21.6 mm3 was regularly meshed for simulating the transducer
excitation, and the absorbing regions were again deployed
using the SRM method. Nodes within a 12.8 mm diameter in
the middle of the plane perpendicular to they direction were
selected for the piston excitation. Inside the Source domain,
an imaginary SMC surrounds the piston, 13.8× 1 × 13.8
mm3, and displacements at nodes on the SMC were monitored
for use in the Hybrid link. In this model, for simplicity, only
displacements on the SMC surface closest to the SDH were
fed into the Hybrid interface, and thus the displacement on
the other surfaces did not have an effect on the forward
estimates. The frequency region of interest was selected to
cover amplitudes larger than 5 % of the maximum amplitude
in the frequency domain, and, as discussed ealier, this was
necessary over a relatively wide frequency range to cover the
bandwidth of the transducer. The frequency range that was
covered was from about 0.5 to 4.5 MHz.

The Defect domain of 11.8× 11.8 × 21.6 mm3 was
modelled for reflection from the SDH. Similar to the quarter
FE model, sweep and regular meshes were used for this
model. An imaginary DMC of 4× 4 × 13.8 mm3 was
located in the center of the domain in order to monitor the
time signal. Since the model has a hole through the surfaces
normal to thez direction, the signal from these two surfaces
was not considered in the backward Hybrid process. In order
to simulate the incident wave from the Source domain, an
excitation plane was located 0.3 mm behind the DMC in they
direction. By calculating only the longitudinal potentialin the
Hybrid method, only longitudinal waves were considered. One

Fig. 10: Schematic diagram for Hybrid method, Source and Defect
FE models.

of the main advantages of the Hybrid method is that different
wave types can be separated in this way.

The hybrid and full FE results are compared in Fig. 11(a)
for the case of the SDH at 15 mm depth, showing the time
record of the amplitude of the signal at the transducer. The first
part of the signal is the incident wave, which is represented
completely by the full FE model, but is absent, as expected,
from the hybrid model. The later part of the signal is the
reflection from the SDH. The figure shows good agreement
of the shape of the waveform, but the reflected signal in the
hybrid model arrives slightly earlier than that in the full FE
model. There is a good reason for this, which is the difference
in wave speed in the open space between the transducer and the
SDH. Whereas the hybrid model can assume the correct speed
of bulk compression waves in the steel, the full FE model
introduces an error because of its imprecise simulation of the
speed of the wave over this distance. Explicit time domain
simulation of waves incurs a speed error that is a function
of the time step and element size [23], [24]. For this case
the mesh density and timestep can be used to estimate the
error [25], giving a value of about 0.5% delay at the centre
frequency. Fig. 11(b) shows that compensation of the time by
this percentage brings the signals into line. Thus the hybrid
model has represented an improved solution in this respect in
comparison to the full FE model.

Fig. 12 shows a comparison between the time records for
the experimental, the full FE and the hybrid results with SDHs
at 15 mm and 25 mm. The arrival time of the signal is
expressed in distances based on the assumed wave speed. The
amplitudes and the distances are normalized by the maximum
amplitude and its location of backwall reflection, and the
signals have been rectified, as is usual in industrial practice.
The signal shapes are also well matched, now revealing
additional content in the trailing part of the waveform that
is characteristic of reflections from cylindrical holes andis
quite different from the reflection from a flat face (compare
with Fig. 9(b)). However there is a significant discrepancy
in amplitude between simulations and experiment. There are
several experimental uncertainties that could account forthis
but were not quantified, including the pressure profile across
the face of the transducer, the quality of acoustic coupling
between the transducer and the sample, and the registrationof
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Fig. 11: Received signal at the transducer (a) before and (b) after the
compensation

the lateral position of the transducer with respect to the SDHs.
Finally, the computation times are compared in Table I.

Before discussing these it is important to understand that the
purpose of the present paper is to enable a more efficient
methodology, indeed a methodology that enables cases to be
modelled that are simply not possible in full FE. Therefore
the examples that we show here are primarily to illustrate the
fact that the hybrid model costs the same computing resource
for any chosen distance between transducer and defect, while
the costs for a full FE model would increase sharply with
increasing separation distance. Currently most of the examples
here do not show reduced cost but we expect this to be
achieved by future implementations, and we discuss the issues
relating to this at the end of this section.

The times for the Full FE simulations are calculated by
multiplying by 4 the time for the quarter simulation shown
in Fig. 8 for comparison with the hybrid model shown in
Fig.11, and the computation times in the hybrid model are
shown for the two FE simulations for source and defect and
the hybrid interface. The full FE and the hybrid simulation
for 15 mm and 25 mm are executed on an identical machine
and the time for 60 mm is estimated based on the 15 mm and
25 mm results. We also include an estimate for a case with a
finer mesh. This is realistic for simulations of scattering from
complex defects, such as rough cracks, for which we typically
use a mesh refinement of 30 elements per wavelength [15].
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Fig. 12: Time records (“A-scans”) from experimental measurement
and the corresponding simulations using the Full FE and hybrid
models for SDHs at distances of a) 15mm and b) 25mm. Thex
axis is mapped to equivalent distance from the transducer, using the
assumed wave speed. Amplitudes and distances are normalized by
the ones from the backwall at 60mm.

We have estimated the costs based on that level of refinement.
As can be seen in the table, whereas the computation times
for Full FE at a given mesh refinement increase with the
distances, those for the hybrid method do not increase since,
in the hybrid method, the size of the FE domains and the
calculation labour in the interface remain the same. Therefore,
the hybrid model is more advantageous when the propagation
distance is larger. In most of the hybrid results, calculation
using the hybrid interface takes more time than Full FE does,
but this is because the interface is coded using a high-level
computer language, MATLAB, and is also not optimised for
the hybrid calculation. However, when it is coded with a
compiled language, for example C or Fortran, and optimised,
then the total computation time will be significantly smaller.
It was not the intention of this article to demonstrate such
an optimised code, but rather to present the methodology
for the approach; clearly there is much more that can be
done subsequently by way of bespoke coding to speed up the
calculation in an implementation developed for this specific
real use in industry. These time comparisons do not yet fully
show the advantages available using the hybrid model, and it
is important to recognise the context. Firstly, in order to be
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Full FE
hybrid

FE Interface total
15 mm 640 60 2000 2060
25 mm 860 60 2000 2060
60 mm 1700 60 2000 2060

60 mm (fine mesh) 7080 250 2800 3050

TABLE I: Recorded and estimated computation times in minutes.

able to validate the hybrid model, the cases that have been
simulated have deliberately used short propagation distances,
so that it is possible to run the full model. However in real
applications, such as the simulation of the NDE of small
complex defects in thick-section components, it is often not
possible to run the full model at all because of the limits of
the computer memory. Therefore, in addition to the efficiency
benefit for long distances that is shown in Table 1, there is
also the consideration of what is actually possible to model
and what is not. Secondly, there is much research interest in
developing schemes to reduce the volume of the absorbing
regions; when improvements are made to this they will make
a substantial impact on reducing the calculation time of the
hybrid solution.

VI. CONCLUSIONS

A 3D generic hybrid method has been developed for simulat-
ing 3D ultrasonic NDE inspection, which is a more realistic
and practical modelling environment than 2D. The generality
of our Hybrid method is that it can be applied to a wide range
of NDE problems without modifying the simulation tools to be
linked. The linking process has been described as well as the
methodologies for its numerical implementation. Longitudinal
scalar potential and shear vector potentials were defined,
and the gauge condition, was used for deriving equations
for the method. Examples of the hybrid link were presented
assuming that displacements and stresses are typical outputs of
candidate simulation schemes that might be used in the local
domains that are to be linked. A verification of the 3D hybrid
interface was executed by comparing with FE results, and the
forward and backward estimates show good agreement with
the FE results. The hybrid method was also compared with
experiments with side drilled holes, demonstrating its practical
use, and again showing good performance. It has been shown
to be robust, including with respect to numerical errors such
as the wave speed over long propagation distances which is
adversely influenced in full FE modelling of large domains.

APPENDIX A
EQUATIONS OF MOTION

For completeness, the equations of motion are presented.
For clarity of exposition here, avoiding unnecessary constants
in the analysis, dimensionless variables are used in which
physical lengths are scaled relative to a chosen lengthh of
the geometry, velocities are scaled relative toCT , the shear
wave speed, time is scaled relative toh/CT , and stressesσ are
scaled relative to a Lamé coefficientµ(= ρC2

T ) of the material
whose density isρ. Hence, in dimensionless variables, with
no external force, for time-harmonic elastic motion we can

write the equations of motion in terms of displacementsu and
stressesτ(= σ/µ),

−ω2ux =
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

, (20)

−ω2uy =
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

, (21)

−ω2uz =
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

, (22)

τxx = γ−2 ∂ux
∂x

+ (γ−2 − 2)
∂uy
∂y

+ (γ−2 − 2)
∂uz
∂z

, (23)

τyy = (γ−2 − 2)
∂ux
∂x

+ γ−2 ∂uy
∂y

+ (γ−2 − 2)
∂uz
∂z

, (24)

τzz = (γ−2 − 2)
∂ux
∂x

+ (γ−2 − 2)
∂uy
∂y

+ γ−2 ∂uz
∂z

, (25)

τxy =
∂uy
∂x

+
∂ux
∂y

, (26)

τxz =
∂ux
∂z

+
∂uz
∂x

, (27)

τyz =
∂uy
∂z

+
∂uz
∂y

. (28)

APPENDIX B
POTENTIALS ON REGION 1

Potentials on the boundary can be expressed as

ψ =
1

ω2

(

τyz − 2
∂uy
∂z

)

, χ =
1

ω2

(

∂ux
∂z

−
∂uz
∂x

)

,

andη =
1

ω2

(

2
∂uy
∂x

− τxy

)

on y = constant (29)

ψ =
1

ω2

(

2
∂uz
∂y

− τyz

)

, χ =
1

ω2

(

τxz − 2
∂uz
∂x

)

,

andη =
1

ω2

(

∂uy
∂x

−
∂ux
∂y

)

on z = constant. (30)

Normal derivatives of the potentials on the boundary can be
expressed on constanty surfaces as

∂φ

∂y
=

−1

ω2

(

∂τxy
∂x

+
∂τyz
∂z

− 2

(

∂2uy
∂x2

+
∂2uy
∂z2

)

− ω2uy

)

,

(31)
∂ψ

∂y
=

−1

ω2

(

ω2uz +
∂τxz
∂x

+
∂τyy
∂z

+ 2
∂2uz
∂z2

)

, (32)

∂χ

∂y
=

1

ω2

(

∂τxy
∂z

−
∂τyz
∂x

)

, (33)

∂η

∂y
=

1

ω2

(

ω2ux +
∂τxz
∂z

+
∂τyy
∂x

+ 2
∂2ux
∂x2

)

, (34)

and on constantz surfaces as

∂φ

∂z
=

−1

ω2

(

∂τxz
∂x

+
∂τyz
∂y

− 2

(

∂2uz
∂x2

+
∂2uz
∂y2

)

− ω2uz

)

,

(35)
∂ψ

∂z
=

1

ω2

(

ω2uy +
∂τxy
∂x

+
∂τzz
∂y

+ 2
∂2uy
∂y2

)

, (36)
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∂χ

∂z
=

−1

ω2

(

ω2ux +
∂τxy
∂y

+
∂τzz
∂x

+ 2
∂2ux
∂x2

)

, (37)

∂η

∂z
=

1

ω2

(

∂τyz
∂x

−
∂τxz
∂y

)

. (38)

APPENDIX C
STRESSES ONREGION 2

On constanty surfaces, using Eqs. (23) – (25) and (2),

τxx = −ω2γ2(γ−2 − 2)φ+ 2
∂ux
∂x

, (39)

τyy = −ω2φ− 2

(

∂ux
∂x

+
∂uz
∂z

)

, (40)

τzz = −ω2γ2(γ−2 − 2)φ+ 2
∂uz
∂z

, (41)

in which, for example,

∂ux
∂x

=
∂2φ

∂x2
+

∂2η

∂x∂y
−

∂2χ

∂x∂z
, (42)

and

τxy = 2
∂2φ

∂x∂y
−

(

2
∂2

∂x2
+

∂2

∂z2
+ ω2

)

η +
∂2ψ

∂x∂z
−

∂2χ

∂y∂z
,

(43)

τxz = 2
∂2φ

∂x∂z
+

∂2η

∂y∂z
+

(

∂2

∂x2
−

∂2

∂z2

)

χ−
∂2ψ

∂x∂y
, (44)

τyz = 2
∂2φ

∂y∂z
−

∂2η

∂x∂z
+

(

∂2

∂x2
+ 2

∂2

∂z2
+ ω2

)

ψ +
∂2χ

∂x∂y
.

(45)
Similarly, on constantz surfaces,

τxx = −ω2γ2(γ−2 − 2)φ+ 2
∂ux
∂x

, (46)

τyy = −ω2γ2(γ−2 − 2)φ+ 2
∂uy
∂y

, (47)

τzz = −ω2φ− 2

(

∂ux
∂x

+
∂uy
∂y

)

, (48)

τxy = 2
∂2φ

∂x∂y
+

(

∂2

∂y2
−

∂2

∂x2

)

η +
∂2ψ

∂x∂z
−

∂2χ

∂y∂z
, (49)

τxz = 2
∂2φ

∂x∂z
+

∂2η

∂y∂z
+

(

2
∂2

∂x2
+

∂2

∂y2
+ ω2

)

χ−
∂2ψ

∂x∂y
,

(50)

τyz = 2
∂2φ

∂y∂z
−

∂2η

∂x∂z
−

(

∂2

∂x2
+ 2

∂2

∂y2
+ ω2

)

ψ +
∂2χ

∂x∂y
.

(51)
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