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Abstract. This paper reports a new automatic algorithm to estimate
the misregistration in a quantitative manner. A random regression forest
is constructed, predicting the local registration error. The forest is built
using local and modality independent features related to the registra-
tion precision, the transformation model and intensity-based similarity
after registration. The forest is trained and tested using manually anno-
tated corresponding points between pairs of chest CT scans. The results
show that the mean absolute error of regression is 0.72 ± 0.96 mm and
the accuracy of classification in three classes (correct, poor and wrong
registration) is 93.4%, comparing favorably to a competing method. In
conclusion, a method was proposed that for the first time shows the fea-
sibility of automatic registration assessment by means of regression, and
promising results were obtained.
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mation, regression forests

1 Introduction

Most image registration methods do not provide insights about the quality of
their results and devolve this difficult task to human experts, which is very time-
consuming. Automatic evaluation of registration reduces the time of manual as-
sessment and can provide information about the registration uncertainty. Having
the error of registration is useful to refine the registration, either automatically
or with the feedback of human experts. Even if refinement is not possible, infor-
mation about the registration quality can help decide if subsequent processing
is meaningful, and visualizing the error can be helpful in medical applications
before making a clinical decision.

Several methods have been suggested to estimate the registration accuracy,
such as exploitation of the Bayesian posterior distribution [1] or based on the
consistency of multiple registrations [2]. In the stochastic approaches Kybic [3]
computed the registration uncertainty by performing multiple registrations with
bootstrapping on the cost function samples to generate a set of registration
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solutions. He found a correlation between the variation of the 2D translational
parameters and the true registration error but the method is not tested for
3D non-rigid registration with much more transform parameters. Hub et al. [4]
estimated the uncertainty by perturbing the B-spline grid with random values
and check whether or not the local SSD changed. The drawback of this approach
is that it is not efficient in homogeneous areas. In 2013, they applied the same
perturbation for the Demons algorithm and showed that the variance of the
deformation vector field (DVF) is related to the registration error [5]. However,
an exhaustive experiment is needed to find large registration errors.

In this paper we turn our attention to methods capable of learning the regis-
tration error. This has the advantage that multiple features related to registra-
tion uncertainty can be exploited and combined in a single framework. Muenzing
et al. [6] classified the registration quality into three categories (wrong, poor and
correct), and reported that it was not possible to successfully build a regressor.
All their features were intensity-based, except for the Jacobian of the transform
parameters. In this paper, instead of formulating uncertainty estimation as a
classification problem, we formulate it as a regression problem, enabling a con-
tinuous prediction of registration accuracy. To the best of our knowledge, there
is only one paper that takes a similar approach [7], but it was only tested on syn-
thetically deformed images. We explore several modality independent features
(some of them new) related to registration precision, the estimated transfor-
mation and the image similarity after registration, and their contribution to
the regression performance. The proposed framework can be used in combina-
tion with any registration paradigm, i.e. does not depend on specifics such as a
Bayesian formulation, and can already be used for pairwise registration.

2 Methods

2.1 System overview

A block diagram of the proposed algorithm is shown in Fig. 1. The inputs of
the system are a fixed IF and a moving image IM . We use a limited number of
so-called mother features, from which much more features are generated using
a pooling technique. A regression forest (RF) is then trained from the feature
pool to predict local registration error. One class of features is derived from the
registration, or from a set of sub-registrations. The other class is derived from
the intensities of the fixed and deformed moving images. Details are given in
Section 2.2.

Mathematically, the registration problems is formulated as an optimization
problem in which the cost function C is minimized with respect to T :

T̂ = arg min
T
C
(
T ; IF , IM

)
, (1)

where T denotes the transformation. The minimization is solved by an iterative
optimization method embedded in a multi-resolution setting. A registration can
be initialized by an initial transform T ini.
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Fig. 1: A block diagram of the proposed algorithm.

2.2 Features and pooling

Variation of deformation vector field (stdT ) The initial parameters of
an optimization problem can affect the final solution for many registration
paradigms, especially in areas where the cost function has multiple local minima
or is semi-flat. On the other hand, in cases where the cost function is well-defined,
variations in the initial transformation are expected to have much less effect on
the final registration result. The variation in the final transformation result is
then an intuitive measure for the local registration uncertainty, which is a surro-
gate for the correctness or at least the precision of the registration. A flow chart
of the described feature is given in Fig. 2(a). Consider P randomly generated
transformations T ini

i that are used as initializations of the registration algorithm

from Eq. (1), resulting in P final transformations T̂i. The standard deviation of
those transformations stdT is then used as a mother feature:

T = 1
P

∑
T̂i, stdT = 1

P

√∑
‖T̂i − T ‖

2
. (2)

The random initializations are generated in this work by adding a uniformly
distributed offset to the B-spline coefficients. An example of stdT in a manually
deformed image is available in Fig. 2(b), for illustration purposes we magnified
the imposed deformation field. It is also possible to first perform a registration,
resulting in a transformation T base, and then add random offsets to that (T base+
T offset
i ), which is approximately similar to Hub’s work [5]. Akin to Eq. (2) a

mother feature stdTHub is then derived.
Areas with a small stdT are still potentially areas of low registration quality,

if the difference between T and T base is too large. We then consider the bias
E(T ) as a complementary feature to stdT computed by E(T ) = ‖T base − T ‖.
The mother feature E(THub) is computed similarly.

Coefficient of variation of joint histograms (CVH): Based on the
multiple registration results we can additionally extract information about the
matched intensity patterns of the images. The first step is to calculate the joint
histograms Hi,∀i of the fixed image IF and the deformed moving image IM (T ).
A large variation in the joint histograms implies a large registration error. The
scalar CVH is defined as: CVH = std H/(H + ε). The coefficient of variation is
used to compensate for large differences between the elements of H, and the
constant ε is used to ignore small numbers in the joint histogram. Note that this
feature can also be used in a multi-modality setting, like all our features. An
example of the CVH on a manually deformed image is shown in Fig. 2(c).
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Fig. 2: The registration-based features require multiple registrations

Determinant of Jacobian (Jac): In addition to previous registration-
based features, we also use Jac. Local changes in volume can point to poor
registration quality or discontinuous transformations.

Difference of MIND: Heinrich et al. [8] introduced the Modality Inde-
pendent Neighborhood Descriptor (MIND) to register multimodal images by
comparing similarities between same patches in the fixed and moving image.
The output of this local self-similarity has n features for each voxel, where n
is the size of the search region. The n features is aggregated in a single mother
feature by using the Euclidean distance between MIND of IF and that of IM (T ).
We calculate MIND with two different search regions, see Section 3 for details.

Feature pooling: All features are calculated in a voxel-based fashion. Incor-
porating local information of each feature can reduce discontinuity and improve
interaction with other features. For instance, it is possible to have a high stdT in
homogeneous regions while the difference of MIND is almost zero. On the other
hand, when we have misregistration on the boundaries, the difference of MIND
indicates high dissimilarity while stdT can have a high value only in the nearby
voxels but not exactly on the border. To overcome these problems, the total set
of features is largely increased by generating a pool from the mother features by
calculating averages and maxima over them using differently sized boxes.

2.3 Regression forests

Breiman [9] introduced the random forest by extending bagging and making more
clever averaging of trees. The general idea is to use some weak learners (trees)
and make an efficient combination of them. In contrast to bagging, splitting
of each node is done with a random subset of features which speeds up the
training phase and reduces correlation between trees in the forest, accordingly
decreasing the forest error rate. The reason that we chose the random forest is
that it has the ability to handle data without preprocessing such as rescaling
data, removing outliers and selecting features. Feature importance is measured
over the out-of-bootstrap samples Ω by permuting features, and computing the
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difference between the mean square error (MSE) before and after permutation:

Imp(xi) =
1

Nt

Nt∑
t=1

(
MSE
j∈Ω

(
ŷπij , yj

)
−MSE

j∈Ω

(
ŷj , yj

))
, (3)

where yj is the real value, ŷj the predicted value after the regression, ŷπij
the

predicted value when permuting feature i, and Nt the number of trees.

3 Experiments and results

Materials and ground truth: In this study, the SPREAD database [10] has
been used, which has 21 pairs of 3D lung CT images. The dimension of the images
is about 446× 315× 129 with an average voxel size of 0.781× 0.781× 2.5 mm.
Patients are within the range of 49 to 78 years old and for each patient a base-
line image and a follow-up image (after 30 months) are available in which 100
well-distributed corresponding landmarks are selected semi-automatically on dis-
tinctive locations [11]. The residual Euclidean distance after registration between
the corresponding points can be seen as the accuracy of the registration.

However, 100 training samples for each pair are not enough to reliably train
the regression forest. To obtain more training samples, we include voxels in a
small local neighborhood of the annotated points. We assume that the regis-
tration error is equal to the error at the landmark, which seems reasonable for
smooth transformations and within a small region. The neighborhood size is
chosen as 10.153 × 10.153 × 7.5 mm, which is approximately equivalent to the
final grid space of the B-spline registration.

The main programming language is MATLAB 2015a, while feature pooling is
implemented in C++ and the regression forest is computed using the scikit-learn
package of Python. All registrations are performed by elastix [12].

Evaluation and experimental setup: To evaluate the proposed algorithm,
the mean absolute error (MAE) between the real registration error yi and es-
timated one ŷi is calculated by MAE = 1

n

∑n
i=1 |ŷi − yi|. We also reported the

MAEi in three bins with respect to yi [0, 3), [3, 6) and [6,∞) mm, corresponding
to correct, poor and wrong registration [6]. It is possible to classify the ŷi based
on these bins and calculate the total accuracy (Acc) and accuracy in each bin
(Acci). We employ k-fold cross validation, using k = 10, splitting the data in 15
image pairs for training and the remaining 6 pairs for testing.

Parameters of features and pooling: The feature stdT is computed using
P = 20 initializations T ini

i , which are constructed randomly using a uniform dis-
tribution in the range [−2, 2] mm. P was chosen sufficiently large, such that the
overall standard deviation of the resulting transformations did not change con-
siderably, as shown in Fig. 3(a). For the registrations, we used three resolutions
of 500 iterations each, with a final B-spline grid spacing of [10, 10, 10] mm. The
cost function is mutual information, which is optimized by adaptive stochastic
gradient descent [12]. In CVH Eq. we set ε to 100 in order to ignore small set of
voxels. stdTHub is calculated with the same settings except that one resolution
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Fig. 3: Tuning some of the parameters. The selected ones are indicated by red.

Table 1: Regression results for the several feature pools
MAE MAE1 MAE2 MAE3 Acc Acc1 Acc2 Acc3

stdT 0.76± 1.03 0.56± 0.47 2.29± 1.31 4.29± 2.84 93.0 95.1 33.2 65.8

stdTHub 0.84± 1.25 0.59± 0.53 2.15± 1.14 6.28± 2.61 91.5 94.0 29.4 54.1
CVH 0.90± 1.42 0.61± 0.67 2.42± 0.94 7.05± 2.81 90.8 92.5 21.0 29.4
MINDsp 0.73± 1.05 0.54± 0.50 1.81± 0.99 4.83± 2.67 93.0 95.6 40.0 66.0
MIND3 0.74± 1.06 0.53± 0.43 2.08± 1.20 4.83± 2.78 93.0 95.5 36.2 62.9
E(T ) 0.85± 1.25 0.63± 0.70 2.13± 0.98 5.36± 3.08 91.4 94.3 27.7 48.9

E(THub) 0.82± 1.17 0.58± 0.47 2.22± 1.13 5.72± 2.76 91.9 94.2 29.1 68.2
Jac 0.91± 1.43 0.62± 0.61 2.26± 0.86 7.37± 2.86 90.4 92.4 13.8 24.8

All 0.74± 1.00 0.55± 0.45 2.03± 0.98 4.46± 2.69 93.1 95.5 34.6 57.1
All-Pooled 0.72± 0.96 0.54± 0.46 2.00± 1.08 4.01± 2.66 93.4 95.8 38.9 69.7

is used. The MIND feature is calculated using a [3×3×3] region as suggested by
[8] and also compared with a sparse patch including 82 voxels inside a [7×7×3]
box, which is physically more isotropic for our data.

After computing the mother features, average and maximum pooling is per-
formed with box sizes of [2, 4, 6, ..., 60] mm. As a result, for each mother feature
we obtain a pool of 60 features: 30 from box averages and 30 from box maxima.

Parameters of the regression forest: The RF is trained on 50 trees with
a maximum depth of D, while at least 5 samples remain in the leaf nodes. At
each splitting node, f features are randomly selected from the pool (f = 10 for
each single feature; f = 2 for ’All’; f = 20 for ’All-pooled’). The parameter D is
optimized within the range of [3, 100] by comparing the MAE. From the results
in Fig. 3(b), we selected D = 9 for the remainder of this paper.

Results: RFs are trained for each single mother feature independently and
for the combination of all features with or without feature pooling. Table 1 gives
the results in terms of regression MAE and classification accuracy. The two
MIND-based features have similar regression performance, but the sparse patch
shows better classification accuracy in especially the second and third bin. We
therefore included the sparse patch MIND in the total feature pool. From Table
1 it can be seen that for the intensity-based features the best performance is
obtained from MIND, for the registration-based features from stdT , and that
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Fig. 5: Real (y) vs predicted (ŷ) registration error for the combined feature pool.

the joint feature pool performs better than any single feature. The feature im-
portance, see Eq. (3), is displayed in Fig. 4. It confirms that stdT and MIND
are the features contributing most to the RF performance, followed by CVH.
The result of the complete pool is detailed in Fig. 5(a) which shows the real
against the predicted error, sorted from small to large. In Fig. 5(b) we grouped
the real errors in the three bins, each showing a box plot of the predicted errors.
Intuitively, a smaller overlap between the boxes represents a better regression.

4 Conclusion and discussion

In this paper we proposed a method based on random forests to regress regis-
tration accuracy from registration-based as well as intensity-based features. We
introduced the variation in registration result from differences in initialization
(stdT ) as a feature, which showed higher feature importance and regression and
classification performance than an existing variant of it. The proposed feature
CVH measuring joint intensity variation also contributed to the regression per-
formance, and can be calculated from the stdT results without much additional
computation. The combination of those features with several others, using a box-
based pooling technique, yielded best overall performance. With a mean overall
regression error of 0.72 ± 0.96 mm and a classification accuracy of 93.4% we con-
clude that the proposed method is very promising for the a posteriori assessment
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of local registration error. In future work, we will include additional information
such as the variation of T in [x, y, z] separately and estimate the error in each
direction. In the current experiment, the number of samples in the second and
third bin (poor and wrong) is considerably less than the number of samples in
the first bin. We will therefore add poor registration results to the training set,
thereby hopefully improving the regression results, especially in the second bin.
A post-processing technique such as smoothing or majority voting over a neigh-
borhood potentially also improves regression accuracy. One of the advantages
of the proposed method is that all employed features are modality independent,
and allow for parallel (GPU) computation. In the future, we will therefore test
the algorithm on multi-modality data. Extra advantages are that additional fea-
tures can be trivially included in the framework, that our method is compatible
with any registration method, can already work in pairwise registration.
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