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Abstract 

Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of 

eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a 

variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a 

major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin 

complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and 

dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule 

plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early 

endosome movements towards the microtubule minus ends. The physical interaction between 

dynein and early endosome requires the dynactin complex, and in particular, its p25 component. 

The FTS-Hook-FHIP (FHF) complex links dynein-dynactin to early endosomes, and within the 

FHF complex, Hook interacts with dynein-dynactin, and Hook-early endosome interaction 

depends on FHIP and FTS.  
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Introduction 

Eukaryotic cells engulf material via endocytosis, a process of internalizing portions of the cell’s 

plasma membrane and taking in nutrients [1-5]. Endocytic vesicles fuse with early endosomes, 

a class of organelles in which endocytic cargos are sorted into different cellular compartments to 

undergo eventually either degradation or recycling back to the plasma membrane [6, 7]. In 

filamentous fungi and metazoan cells, early endosomes undergo microtubule-dependent 

movements [6, 8]. These movements are particularly robust in elongated fungal hyphae, making 

filamentous fungi excellent systems for studying the underlying mechanisms [8-10]. In this 

review, we will discuss the mechanism of early endosome transport in filamentous fungi, which 

is microtubule-based and requires the molecular motors, cytoplasmic dynein and kinesin-3. The 

dynein regulators dynactin and LIS1 are also critical for the transport [9-12]. We will review the 

current mechanistic understanding of these proteins. We will discuss in detail the functions of 

these dynein regulators in fungal early endosome movement including their roles in the 

microtubule-plus-end accumulation of dynein, dynein-early endosome interaction and dynein-

microtubule interaction. Finally, we will discuss how early endosomes are attached to dynein via 

an adaptor complex Hook-FTS-FHIP [13-15].  

Cytoplasmic dynein and kinesin-3 drive bidirectional movements of early endosomes 

In a typical eukaryotic cell during interphase, microtubules are polarized such that their minus-

ends are embedded in microtubule-organizing centers (MTOC) near the nucleus and their 

dynamic plus ends extend toward the cell periphery [16-20]. Cytoplasmic dynein, a minus-end-

directed microtubule-based motor, drives the movements of a variety of cargoes from cell 

periphery towards the cell center [6, 12, 21-23]. In the hyphae of fungal organisms such as 

Aspergillus nidulans and Ustilago maydis, microtubules in the hyphal tip region are polarized 

such that their plus ends extend toward the apical dome cortex and their minus ends are at the 

spindle-pole body, the main MTOC in fungi (Figure 1) [24-33]. Cytoplasmic dynein and the plus-
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end-directed kinesin-3 drive bi-directional movements of early endosomes in fungi and 

metazoan [6, 34-36]. In U. maydis and A. nidulans, kinesin-3 drives early endosome movements 

toward the hyphal tip, whereas dynein drives them away from the hyphal tip, and therefore, an 

abnormal accumulation of early endosomes at the hyphal tip can be seen in mutants defective 

in dynein function [25, 26, 37-41]. Kinesin-3 dependent early endosome movement has also 

been found in Neurospora crassa [42]. 

In A. nidulans and N. crassa, there is a strong enrichment of proteins involved in endocytosis at 

a collar right behind the hyphal tip [5, 43-46]. However, despite this preferential localization of 

the endocytosis machinery close to the hyphal tip, it has been observed using the dye FM4-64 

that endocytosis occurs along the hyphae [47]. Presumably the primary endocytic vesicles fuse 

with Rab5 (RabA and RabB in A. nidulans)-positive early endosomes that undergo bidirectional 

movements [37, 48, 49]. Early-endosome movement driven by dynein is normally associated 

with early endosome maturation into Rab7 (RabS of A. nidulans)-positive late endosomes that 

are located away from the hyphal tip [49]. However, early endosome maturation into late 

endosomes, as indicated by the appearance of RabS-positive endosomes, can still occur at the 

hyphal tip in cells defective in dynein function [49]. This result indicates that the failure of 

dynein-driven early endosome movement does not inhibit early endosome maturation per se. 

Thus, although endosome maturation is essential for fungal growth and defects in endosome 

maturation cause severe inhibition in colony growth [48, 49], mutants impaired in dynein-driven 

early endosome movement can form relatively healthy colonies, making it possible for using 

them for imaging and biochemical studies. While the functional significance of bi-directional 

transport is not fully understood, it has been shown recently that RNA molecules, signaling 

proteins and ribosomes can hitchhike on motile early endosomes to be distributed in hyphae, 

which may be particularly critical for growth of fungi with relatively long hyphae such as U. 

maydis [50-52].  
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The direction of early endosome transport is controlled by kinesin-3 and dynein but the detailed 

mechanisms behind this control may differ in different fungi. In U. maydis, the direction seems to 

depend mainly on whether dynein is bound to the early endosome. While there are multiple 

(about 4-5) kinesin-3 molecules on an early endosome moving toward the plus end, binding of a 

single dynein molecule seems sufficient to switch direction [53]. As a result, while kinesin-3 can 

be seen on early endosomes moving by dynein towards the minus end, dynein has never been 

seen to be associated with an early endosome that undergoes plus-end-directed movement 

[53]. Thus, it seems that in U. maydis, either dynein always overpowers kinesin-3 or kinesin-3 is 

turned off during the minus-end-directed movement. In A. nidulans, however, dynein on plus-

end-directed early endosomes was observed [26], suggesting that either kinesin-3 is capable of 

overpowering dynein or dynein could also be regulated to be in an inactive state on the same 

cargo. How these motors are coordinated is a question of general interest in the motor field that 

needs to be further studied.  

Accumulation of dynein at microtubule plus ends is important for early endosome 

movement 

Although dynein is a minus-end-directed motor, it accumulates at microtubule plus ends with a 

variety of plus-end tracking proteins (+TIPs) including CLIP-170, EB1 and the dynein regulator 

dynactin [18-20, 54]. Accumulation of GFP-labeled cytoplasmic dynein at both the growing and 

shrinking microtubule plus ends was first demonstrated in A. nidulans where dynein heavy chain 

molecules form motile comet-like structures near the hyphal tip [24, 55]. In A. nidulans, this 

accumulation depends on the plus-end-directed kinesin-1 [56]. Kinesin-1 is also required for 

dynein’s plus-end accumulation in U. maydis and C. elegans neurons [25, 57]. The functional 

significance of the plus-end accumulation of dynein in fungal early endosome movement was 

first demonstrated in U. maydis where majority of early endosomes undergoing plus-end-

directed movement were found to switch direction at the microtubule plus-end [25]. Most 
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significantly, while kinesin-1 is not required for activating dynein ATPase activity [39], loss of 

kinesin-1 causes early endosomes to abnormally accumulate at the hyphal tip, which is similar 

to what occurs in mutants defective in dynein function [25, 26, 37-39]. These results suggest 

that accumulation of dynein molecules at microtubule plus ends might increase the opportunity 

for an early endosome to interact with a dynein motor. In U. maydis, dynein molecules at the 

plus ends can be seen to move away and meet the early endosomes as they are being 

transported to the plus end by kinesin-3, thereby reversing the direction of early endosome 

movement [53]. In addition, a 50% decrease in the plus-end accumulation of dynein led to an 

increase in the number of early endosomes that fall off the microtubule tracks, suggesting that 

dynein at the plus end captures early endosomes that are transported to the plus end by 

kinesin-3 [58].  

Mutations in the motor and tail domains of dynein heavy chain affect early endosome 

movement 

Cytoplasmic dynein is a multi-subunit complex that consists of two heavy chain motors (HCs, 

~500 kDa each) associated with intermediate chains (ICs, ~74 kDa), light intermediate chains 

(LICs, 50-60 kDa) and light chains (LCs, 8 kDa, 14 kDa and 22 kDa) [59, 60] (Figure 2). The 

cytoplasmic dynein we discuss in this review is cytoplasmic dynein 1. However, studies on 

axonemal dynein and cytoplasmic dynein 2, which is required for intraflagellar transport, have 

also provided insights into dynein motor mechanism [61, 62]. The dynein heavy chain (HC) 

contains an N-terminal tail that is required for intra-dynein subunit interactions and a C-terminal 

motor unit, which contains six AAA (ATPase associated with cellular activities) domains 

organized into a ring-like structure and the microtubule-binding stalk emerges from AAA4 

(Figure 2) [61-67]. AAA1 is the major site of ATP hydrolysis [68], and other AAA sites play 

regulatory roles [12, 69-73]. The conformational change during the ATPase cycle at the first 

AAA domain is transmitted to the microtubule-binding stalk to cause the power stroke, which 
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involves a change in the orientation of the linker located adjacent to the first AAA domain 

(Figure 2) [61, 62, 65]. 

Various A. nidulans dynein HC mutations were found to affect early endosome movement. In an 

AAA1 mutant that is defective in ATP hydrolysis, dynein molecules are still enriched at the 

microtubule plus ends, but early endosomes are blocked at the hyphal tip [39]. Besides driving 

early endosome movement, cytoplasmic dynein is well known to be important for the migration 

of nuclei towards the hyphal tip to allow even nuclear distribution of the multiple nuclei along 

hyphae [74-76]. The mechanism of nuclear distribution in filamentous fungi is not fully 

understood but appears to involve the role of dynein in regulating the dynamics of microtubules 

[24, 74, 77-80]. Interestingly, a recent screen for organelle distribution mutants in A. nidulans 

has identified two dynein HC mutations, in AAA1 and AAA3 respectively, which are more 

detrimental to early endosome migration than to nuclear migration [41]. Since analogous 

mutations in budding yeast dynein HC cause a significant reduction in the speed of dynein 

movement, these results indicate that a normal level of dynein motor activity is more crucial for 

early endosome movement than for nuclear migration [41]. In a different screen, a HC tail 

mutation was found to be important for both early endosome movement and nuclear distribution 

but did not seem to affect dynein complex assembly or dynein-dynactin interaction [40]. While 

the mechanism of this tail mutation is unclear, the importance of the dynein tail in dynein motor 

function has been recognized in other systems as well [81-86].  Given that the HC motor 

domains may be regulated and given the recent model that dynactin and cargo-adaptors bound 

to the dynein tail may modulate the function of the motor domain [87][183], it seems possible 

that the tail mutation may affect the proper tail-mediated modulation of dynein motor function.  

The dynactin complex and its role in early endosome transport 
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The dynactin complex is important for almost all of the in vivo functions of cytoplasmic dynein 

[11]. It was initially discovered as a complex required for in vitro vesicle transport by dynein, and 

its major subunit p150 was identified as a dynein-associated peptide homologous to the 

Drosophila Glued protein (Hence this subunit was named p150Glued) [88-90]. As demonstrated 

by in vitro experiments, p150Glued (p150 here) binds directly to the dynein IC (Figure 2) [91-93]. 

The structure of the vertebrate dynactin complex has been studied [94-96] [183]. Within the 

dynactin complex, eight Arp1 (actin-related protein 1) subunits and one beta-actin form an actin-

like mini-filament of 37 nm [96] [182-183] (Figure 2). The p150Glued subunit, dynamitin (p50) and 

the p24 subunit form a shoulder/sidearm complex [11]. One end of the Arp1 filament is capped 

by the barbed-end capping proteins, and the other end binds to the pointed-end complex 

consisting of an actin-related protein Arp11, p62 and two other small subunits, p25 and p27 [97]. 

In A. nidulans, loss of Arp11 or p62 significantly reduces the amount of Arp1 as judged by p150-

pull-down assays, and a similar result was also obtained in mammalian cells, suggesting that 

these two pointed-end proteins are important for the integrity of the dynactin complex [98, 99].   

Dynactin has been implicated in targeting dynein to microtubule plus ends, in recruiting dynein 

to membranous cargoes and in enhancing dynein processivity (the ability to move along a 

microtubule for a long distance without falling off the track) [55, 98, 100-106]. Purified vertebrate 

dynactin enhances dynein processivity in vitro and the N-terminal microtubule-binding domain of 

p150 is implicated in this function [101, 107, 108]. In addition, dynein processivity is also 

supported by other mechanisms [109, 110]. Purified mammalian dynein is much less processive 

than yeast dynein in single-molecule motility assays in vitro, and adding dynactin and BICD2, a 

cargo adapter that enhances dynein-dynactin interaction, dramatically enhances dynein 

processivity [111, 112]. The dynactin complex has also been implicated in recruiting dynein to 

membranous cargoes, and the physical interaction between Arp1 and beta III spectrin provided 

the initial support for this notion [113, 114]. However, current data suggest that dynein may be 
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recruited to membranous cargoes via different mechanisms, some of which involve dynactin but 

others involve the direct binding between a cargo adapter and a component of the dynein 

complex [22, 98, 100, 105, 115-120]. 

In mammalian cells and filamentous fungi, dynactin is critical for dynein-mediated early 

endosome movement [25, 36]. In filamentous fungi, dynactin plays at least two different roles. 

First, it is required for the plus-end accumulation of dynein [55, 56], and second, it is required for 

the physical interaction between dynein and early endosomes [105]. One important role of 

dynactin is in promoting the accumulation of dynein at the microtubule plus end, a notion 

supported by evidence in A. nidulans, U. maydis and mammalian cells [25, 26, 55, 56, 58, 99, 

103, 104]. In A. nidulans, this function of dynactin requires the microtubule-binding ability of 

p150 [104]. Dynactin itself is also found to accumulate at the microtubule plus ends in cultured 

cells of higher eukaryotes and in fungal hyphae. This localization is relevant for the loading of 

dynein cargoes [54, 121]. In A. nidulans, the plus-end localization of dynactin, like that of 

dynein, also requires kinesin-1 [56, 104]. In addition, the microtubule-binding ability of p150 is 

critical for the plus-end accumulation of dynactin itself [104]. It is not clear whether dynein and 

dynactin are transported by kinesin-1 toward the plus end as a complex or if they are 

transported separately. However, it is likely that dynactin enhances the interaction between 

dynein and microtubules, thereby facilitating its transport towards the plus end by kinesin-1.  

In A. nidulans, dynactin is also required for the interaction between dynein and early 

endosomes, with crucial involvement of the p25 subunit [105]. p25 is not present in yeasts, 

where dynein has not been implicated in moving vesicles [97, 122]. As first shown in N. crassa, 

p25 is not required for dynein-mediated nuclear migration, a process that requires other core 

dynactin components, but it is required for vesicle transport [123, 124]. In filamentous fungi and 

mammalian cells, p25 is only required for a subset of dynactin functions including early 

endosome transport [98, 105, 123]. In A. nidulans, either loss of p25 or Arp1 downregulation 
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causes marked reduction in the dynein-early endosome interaction [105]. Because the integrity 

of Arp1 in the dynactin complex is not obviously affected by loss of p25, the effect of p25 loss on 

the dynein-early endosome interaction appears specific. This idea is consistent with the results 

obtained from mammalian cells where the p25/p27 subunits are not critical for the overall 

integrity of the dynactin complex but are required for enhancing the physical interaction between 

dynein and membranous cargoes [98].  

LIS1 and its role in early endosome transport 

LIS1 is a WD-repeat-containing protein that regulates dynein function mainly by causing dynein 

to bind tightly to microtubules, without affecting dynein’s ATPase activity [125-128]. One 

interesting difference between dynactin and LIS1 is that LIS1 but not dynactin is present in 

cilia/flagella, and thus, LIS1 may be a ubiquitous dynein regulator that regulates the function of 

not only cytoplasmic dynein but also axonemal dynein [129, 130]. The Lis1 gene was originally 

cloned as a causal gene for lissencephaly, a human brain developmental disorder characterized 

by defective neuronal migration [131]. In A. nidulans, loss-of-function mutations of the LIS1 

homolog NudF were found to cause the same nuclear-distribution defect as that caused by 

dynein deficiency, and NudF was placed in the dynein pathway by double mutant analysis [132, 

133]. The LIS1 homolog Pac1 in the budding yeast was also found to be a protein in the dynein 

pathway [134]. Pac1 is required for dynein localization to the microtubule plus ends [135, 136]. 

The physical interactions and the functional connection between LIS1 and dynein have been 

detected in higher eukaryotes also [137-142]. While AAA1 was initially thought to be the binding 

site for LIS1 in mammalian cells [143], recent EM studies showed convincingly that Pac1/Lis1 

binds to AAA4, which is located next to the stalk that leads to the microtubule-binding domain 

[125, 144]. Interestingly, although genetic data indicate that Lis1 plays a positive role in dynein 

function, neither mammalian LIS1 nor Pac1/Lis1 functions as a dynein activator in vitro, but 

rather clamps dynein on microtubules and stops it from moving in vitro [125, 127]. 
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Mechanistically, this inhibitory effect could be caused by Pac1/Lis1 occupying the site on dynein 

where the linker, an important mechanical element of dynein, normally moves to during the 

mechanic cycle of dynein [144], and presumably, without the proper movement of the linker, the 

dynein-microtubule interaction is maintained at a high-affinity state.   

LIS1 interacts with the coiled-coil protein NudE (Ro11 in N. crassa), which was identified as a 

multi-copy suppressor of a nudF mutant in A. nidulans [145, 146]. In higher eukaryotes, NudE 

and the NudE-like protein Nudel contain dynein-binding sites, and the N-terminus of dynein 

intermediate chain implicated in binding p150 is also involved in binding NudE/Nudel [147-152].  

NudE/Nudel participate in dynein function by recruiting LIS1 to dynein, and together, 

NudE/Nudel and LIS1 are able to enhance dynein motor function under heavy-load conditions 

[126]. Experimental evidence also suggested that NudE/Nudel relieves dynein inhibition in an in 

vitro microtubule-sliding assay [127], but this notion does not seem to be consistent with data in 

A. nidulans, S. cerevisiae and Xenopus egg extracts where overexpression of LIS1 homologs 

suppress the defect caused by loss of NudE [145, 152, 153].  In the case of S. cerevisiae 

dynein, NudE is required for recruiting LIS1 to dynein but does not play a role in relieving 

Pac1/LIS1 inhibition in vitro [125]. Interestingly, recent work also implicated the dynactin 

complex and the small GTPase Rab6 in relieving LIS1 inhibition, and showed that loss-of LIS1 

negatively affect dynein-dynactin interaction, suggesting that these dynein regulators may have 

interconnected functions [152, 154].   

In U. maydis and A. nidulans, loss of LIS1/NudF causes a defect in dynein-mediated early 

endosome transport, indicating that LIS1 is positively required for early endosome movement. 

However, in A. nidulans loss of NudF/LIS1 does not have any apparent effect on dynein 

ATPase activity [39], and dynein molecules can be seen to move with a normal speed in live 

hyphae of a ∆nudF mutant [26]. Nevertheless, dynein’s interaction with microtubules is 

weakened upon down-regulation of NudF expression [39], consistent with the in vitro data that 
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LIS1 enhances dynein-microtubule interaction [125-127]. It is likely that the LIS1-mediated 

enhancement of the dynein-microtubule interaction is a major function of LIS1 in early 

endosome movement. Just like dynein and dynactin, NudF/LIS1 itself also accumulates at 

microtubule plus ends, and the +TIP ClipA (Clip-170 in A. nidulans) and NudE play a redundant 

role in this accumulation [27]. Interestingly, in both U. maydis and A. nidulans, unlike dynein and 

dynactin, which are associated with early endosomes moving towards the minus-end, LIS1 was 

only seen to associate with a very low percentage of early endosomes that are moving with 

dynein, as if LIS1 is released from the early endosome (and presumably off the dynein complex) 

very soon after the minus-end-directed movement starts [25, 26]. In A. nidulans, while there is a 

significant decrease in the frequency of dynein-mediated early endosome transport in the ∆nudF 

mutant, the speed of transport is not significantly different from that in wild type cells [26]. Based 

on these results, it has been proposed that LIS1 functions as an initiation factor for dynein-

mediated early endosome movement [26].  

Exactly how LIS1 helps dynein to initiate the movements of early endosomes in filamentous 

fungi still requires further study. In comparison, the mechanism of LIS1 action in S. cerevisiae is 

better understood because Pac1/LIS1 is clearly required for the microtubule-plus end 

accumulation of dynein, and as plus-end dynein gets delivered to the cell cortex, where it can be 

anchored to pull astral microtubules, loss of Pac1 prevents dynein from being targeted to the 

site of its action [135, 136, 155, 156]. However, LIS1 does not seem to be required for the 

microtubule plus-end accumulation of dynein in A. nidulans or U. maydis as plus-end dynein 

comets are present upon loss of LIS1 [25, 26, 39, 56]. Upon loss of NudF/LIS1 in A. nidulans, 

both plus-end comets and a cloud of GFP-dynein appear at the hyphal tip, which was originally 

interpreted as dynein falling off the microtubule ends [56]. Later, because early endosomes 

were also seen to accumulate at the hyphal tip, this hyphal-tip cloud of GFP-dynein was 

interpreted as dynein-endosome co-localization [39]. However, results from a more recent study 
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indicate that the dynein cloud present at the hyphal tip of ∆nudF/Lis1 hyphae is unlikely to 

represent co-localization between dynein and early endosomes, suggesting that NudF/Lis1 may 

be required for dynein-early endosome interaction [26]. Further experiments will be needed to 

determine if loss of LIS1 results in the failure of dynein to physically bind its cargo at the 

microtubule plus end or the failure of cargo-bound dynein to initiate its movement without falling 

off the microtubule track.  

LIS1 in non-polarized mammalian cells does play an important role in the plus-end accumulation 

of dynein, which is similar to what happens in the budding yeast but differs from the situation in 

filamentous fungi [103]. However, it should also be noted that similar to the situation in 

filamentous fungi but in contrast to that in budding yeast, the plus-end localization of dynein in 

mammalian cells also requires dynactin [103]. In highly polarized neurons, LIS1 is not only 

important for the initiation of vesicle movement from the distal region but also important for 

movement in the middle region, which differs from the roles of the +TIP Clip-170 and the 

microtubule-binding region of p150 dynactin, which are only required for transport initiation at 

the distal region [157]. It should also be pointed out that in some cell types LIS1 seems to be 

only important for moving heavy cargoes but in other systems LIS1 is also required for moving 

small ones [157-162]. Despite these discrepancies, it has been well agreed that LIS1 is 

positively required for enhancing dynein-microtubule interaction both in vitro and in vivo, which 

may be the key for explaining the requirement for LIS1 in different experimental systems.  

Function of Hook in dynein-mediated early endosome transport 

Recently, two fungal Hook proteins, HookA in A. nidulans and Hok1 in U. maydis, have been 

found to serve as early endosomal adapters for dynein [13, 15]. In addition, Hok1 has also been 

implicated in recruiting kinesin-3 to early endosomes, suggesting that Hook may play a role as a 

scaffold protein that co-ordinates the functions of dynein and kinesin-3 motors on the same 
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cargo [13, 22]. The prototype Hook protein was initially identified in Drosophila, and it is required 

for the proper formation or stabilization of multivesicular bodies in the endocytic pathway [163-

165]. There are three Hook proteins in mammalian cells, Hook1, Hook2 and Hook3, which play 

different cellular roles. Hook1 is involved in sperm head morphogenesis [166], and it is required 

for endosome sorting of non-clathrin cargo in a microtubule-dependent fashion [167].  Hook2 is 

involved in centrosome function, aggresome formation and primary cilium morphogenesis [168-

170], and Hook3 is associated with Golgi [171]. All the Hook proteins contain an N-terminal 

domain implicated in microtubule-binding, an extended central coiled-coil domain implicated in 

homodimerization, and a divergent C-terminal domain implicated in organelle association [171, 

172]. Besides the three hook proteins, a novel Hook-Related Protein (HkRP) family has also 

been identified. These HkRPs have a domain organization similar to the Hook proteins, but they 

are larger in size [173]. Overexpression of C-terminal domain of HkRP1 affects distribution of 

the early endosome marker sorting-nexin 1 but not the early endosome antigen-1 (EEA1), 

suggesting that HkRP1 may only affect the tubulation of early endosome subdomains [173]. 

Interestingly, the C. elegans Hook homolog Zyg-12 has been implicated in linking dynein to 

nuclear membrane to ensure the connection between the centrosome and the nucleus [174].  

Both HookA in A. nidulans and Hok1 in U. maydis were identified in genetic screens for mutants 

defective in early endosome distribution. In A. nidulans, this screen was aimed at mutants that 

are specifically defective in dynein-early endosome interaction, and thus, the selection of the 

original hookA mutant was based on the normal dynein-localization to the microtubule plus-ends 

and dynein-mediated nuclear distribution in the mutant [15]. Both HookA and Hok1 associate 

with early endosomes, and this association depends on their respective C-terminal cargo-

binding sites [13, 15]. As shown by pull-down assays, HookA interacts with dynein-dynactin. 

However, the interaction between microtubules and HookA in the absence of bound dynein-

dynactin was undetectable [15]. The A. nidulans HookA-dynein-dynactin interaction depends on 
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the N-terminal part of HookA as evidenced by pull-down assays [15], and live cell imaging in U. 

maydis showed that the N-terminal part of Hok1 free from early endosomes can co-migrate with 

dynein in vivo [13]. Upon loss of HookA or Hok1, dynein-early endosome interaction is 

significantly weakened as judged by pull-down assays in A. nidulans or by cell imaging of U. 

maydis [13, 15]. These results support the idea that Hook proteins serve as early endosome 

adapters for dynein. The physical interaction between Hook and dynein-dynactin has also been 

shown subsequently in mammalian cells [111]. Recently, it has been shown that while isolated 

mammalian dynein is almost completely non-mobile in single-molecule assays, adding cargo 

adapters such as BICD2 significantly enhances dynein-processivity, and Hook3 has also been 

implicated in a similar function [111]. Thus, it is possible that besides serving as cargo adapter, 

Hook proteins may also be involved in activating dynein as in the case of BICD2 [111]. 

However, it should be pointed out that in U. maydis, dynein molecules can be seen to move 

away processively from the microtubule plus ends in the absence of Hok1 [13], arguing against 

the idea that fungal Hook proteins are required for activating the dynein motor.  

U. maydis Hok1 is also important for recruiting kinesin-3, but without Hok1, there is still one 

kinesin-3 molecule on early endosome, which might be able to move early endosomes in the 

∆Hok1 mutant to the hyphal tip [13]. In wild type hyphae, when an early endosome reaches the 

microtubule plus end at the hyphal tip, the bound kinesin-3 molecules seem to detach from it 

right before dynein binds to this early endosome [13], which then recruits more kinesin-3 

molecules during dynein-mediated movement [13]. Whether Hook is involved in this transient 

release of kinesin-3 before dynein binding deserves further study.  

Exactly how Hook interacts with dynein-dynactin remains an important question. Based on yeast 

two-hybrid data it was initially proposed that the putative microtubule-binding domain at the N-

terminus of the C. elegans Hook homolog, Zyg-12, binds to a dynein light intermediate chain 

[174], but this two-hybrid interaction has never been confirmed by biochemical data. Our 
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biochemical experiments showed that HookA without its C-terminal early endosome-binding 

region pulls down both dynein and dynactin, and while dynein is required for HookA to pull-down 

dynactin, dynactin is also required for HookA to pull-down dynein [15]. Thus, only the tripartite 

super-complex involving HookA-dynein-dynactin is stably formed. Importantly, the HookA-

dynein-dynactin interaction requires p25, a component of dynactin whose absence does not 

significantly affect the overall integrity of dynactin, suggesting that p25 is specifically required for 

the formation of the tripartite complex [15]. However, whether p25 directly binds HookA is still 

unclear. 

It has been shown previously that all three human Hook proteins have been found as 

components of the FTS/Hook/FHIP (FHF) complex, which contains two additional proteins, 

Fused Toes (FTS), a variant E2 ubiquitin-conjugating enzyme domain-containing protein and 

the FTS- and Hook-Interacting Protein called FHIP [172]. The FHF complex was initially 

discovered during the search for FTS-binding proteins, and it has been found that the C-termini 

of Hook1 and Hook3 interact with FTS [172]. The FHF complex interacts with the components of 

the homotypic vesicular protein-sorting (HOPS) complex, which is recruited to late endosomes 

[172]. In U. maydis, Hok1 physically associates with the FTS and FHIP proteins in pull-down 

assays, indicating that the FHF complex is conserved from lower to higher eukaryotic systems 

[13]. In A. nidulans, the genetic screen on early-endosome distribution mutants that identified 

the HookA gene also identified the gene encoding FhipA (FHIP in A. nidulans) [14]. Functions of 

FhipA and FtsA (FTS in A. nidulans) have been studied using deletion mutants of these genes, 

and loss of either FhipA or FtsA causes a defect in early endosome distribution, although the 

loss of FhipA produces a more severe defect than that produced by FtsA based on the 

percentage of hyphal tips with an abnormal accumulation of early endosomes [14]. Imaging 

analyses suggest that HookA-early endosome association requires FhipA and FtsA, and that 

FtsA-early endosome association also requires FhipA and HookA [14]. However, FhipA-early 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



	
   17 

endosome association occurs in the absence of HookA or FtsA, although the protein level of 

FhipA is significantly decreased in the absence of these partners [14]. Thus, while the formation 

of the FHIP-Hook-FTS complex is important for Hook to interact with early endosomes, FHIP 

appears to be more directly linked to early endosomes than either FTS or Hook.  

 

Exactly how the FHF complex interacts with early endosomes is unclear, and since FHIP does 

not contain any membrane-spanning domain, it is likely that other proteins on early endosomes 

are required for its early-endosome interaction. RabB, an ortholog of Rab5, and some of its 

recruited proteins, are likely to be required. Rab GTPases have been implicated in recruiting 

motor proteins to organelles; for example, Rab7 is important for recruiting dynein to late 

endosomes/lysosomes [100, 118, 119]. Rab5 is an early-endosome-specific Rab GTPase [175, 

176], and the Drosophila Hook has recently been implicated as a Rab5 effector [177]. In A. 

nidulans, there are two Rab5 paralogs, RabA and RabB, both of which localize to early 

endosomes [48]. Interestingly, while early endosomes move normally in the ∆rabA mutant, early 

endosomes are completely static in the ∆rabB mutant [48], suggesting a role of RabB in motor 

recruitment. RabB (Rab5) recruits to early endosome the CORVET complex (CORVET: Rab5 

effector class C core vacuole/endosome-tethering) [48, 178]. This complex is important for early 

endosome fusion, which serves to increase the surface area of early endosomes to facilitate 

formation of late endosomes/multivesicular bodies [179]. CORVET contains six Vps proteins of 

which four are also components of the homotypic vesicular protein-sorting (HOPS) complex on 

late endosomes [48, 178]. Interestingly, the human FTS-Hook-FHIP complex interacts with 

Vps18, a component shared by CORVET and HOPS [172], suggesting that a similar component 

in fungi may recruit the FTS-Hook-FHIP complex to early endosomes. 
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Conclusions 

 

Early endosomes are a major class of cytoplasmic dynein cargoes in many cell types. Their 

robust movements in filamentous fungi have made these organisms ideally suited for studying 

their transport mechanisms. Our current knowledge of fungal early endosome motility has been 

mainly gained from studies in A. nidulans and U. maydis. In both systems, dynein and kinesin-3 

are the early endosome-bound motors that power the bi-directional movements of these 

organelles. Cytoplasmic dynein accumulates at the microtubule plus ends near the hyphal tip, 

an early endosome-loading site for minus-end-directed transport, and the plus-end 

accumulation of dynein requires kinesin-1 as well as the dynactin complex. The dynactin 

complex plays at least two important roles in dynein-mediated early endosome transport: 1) the 

plus-end accumulation of dynein and 2) the physical interaction between dynein and early 

endosomes. Specifically, the 150 subunit of dynactin, especially its N-terminal microtubule-

binding site, is important for dynein to accumulate at the microtubule plus end, and the p25 

protein of dynactin is required for the physical interaction between dynein and early endosomes. 

The dynein-binding protein LIS1 is also critical for dynein-mediated early endosome movement 

in both U. maydis and A. nidulans and its mechanism still needs further study. An interesting 

observation is that unlike dynactin, which remains associated with dynein-driven early 

endosomes, LIS1 does not co-localize with these moving early endosomes. Thus, LIS1 is 

unlikely to be required for maintaining the interaction between dynein and early endosomes or 

the motility of dynein-bound early endosomes after movement has started. Finally, the Hook-

FTS-FHIP complex has been found to mediate the physical interaction between dynein-dynactin 

and early endosomes. These proteins are associated with early endosomes independently of 

dynein. Hook is responsible for interacting with dynein-dynactin, and p25 is required for this 

interaction. However, it is not clear whether this interaction is direct or mediated by other 

unknown components. FTS and FHIP associate with the C-terminal cargo-binding site of Hook, 
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and they are both required for Hook-early endosome interaction. It appears that FHIP is more 

directly bound to early endosome than FTS and HOOK, but how it interacts with early 

endosomes still needs to be defined.  

 

In summary, recent work in filamentous fungi has identified the basic machinery for dynein-

mediated early endosome movement, but important questions remain. Filamentous fungi are, in 

general, not only excellent genetic systems but also well suited for live cell imagining of 

membrane trafficking, and in addition, their rapid growth facilitates biochemical analysis. With 

the availability of fungal genome sequences and newly developed tools for genome 

manipulation [180, 181], insights on the detailed mechanism of early endosome motility should 

continue to emerge from studies using filamentous fungi as experimental systems.  
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Figure legends: 

Figure 1 A schematic diagram showing microtubule organization in multinucleated fungi such 

as A. nidulans. Blue circles: nuclei. Blue lines: microtubules. Red circles: Spindle-Pole Bodies. A 

microtubule plus end is labeled as “+” and minus end as “-“. In the middle of hyphae, 

microtubules are of mixed polarity, but in a region close to the hyphal tip, the microtubule plus 

ends face the hyphal apex. 

Figure 2 Schematic diagrams of the cytoplasmic dynein complex and the dynactin complex. (A) 

The dynein complex. This diagram was modified from [59]. The dynein heavy chain motor (HC) 

and other subunits, including the intermediate chain (IC), light intermediate chain (LIC) and 

three families of light chains (Rob1, Tctex1, LC8) are shown. (B) Different domains of the dynein 

heavy chain. This diagram was modified from [66]. Each heavy chain (HC) contains the N-

terminal tail and the C-terminal motor unit with six AAA domains (marked 1-6) that are 

organized in a ring-like structure. The linker is an important mechanical element connected to 

AAA1. The coiled-coil stalk extends out from AAA4 and leads to the microtubule-binding 

domain. The buttress is a coiled-coil hairpin that extends out of AAA5 and contacts the stalk. (C) 

A simplified diagram of dynein-dynactin when the two complexes are together. The dynactin 

complex is a modified from a previous publication [11]. The interaction between the dynein IC 

and p150 dynactin is shown, but the recently identified interaction between the HC tail and Arp1 

is not drawn in this diagram [183]. 

Figure 3 Hook-dynein-dynactin interaction requires the N-terminal region but not the C-terminal 

cargo-binding domain of Hook. Here we present data obtained from A. nidulans Hook (HookA) 

to show this point. (Left) A diagram of HookA, ∆C-HookA, ∆C1-HookA and ∆N-HookA. Red box: 

N-terminal region; Blue boxes: coiled-coil domains; Brown box: the C-terminal domain. The 

functions of the N- and C-terminus are indicated at the bottom. Note that in the ∆C1 mutant, 13 
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aa at the end of the third coiled-coil are deleted, which disrupts the function of the C-terminal 

domain in early endosome binding. (Right) The dynein HC, the p150 subunit of dynactin and 

NudF/LIS1 (a dynein-binding protein) were pulled down with HookA-GFP, which requires the N-

terminus but not the C-terminus of HookA. This figure was modified from [15]. 

 

Figure 4 Model showing the FTS-Hook-FHIP complex linking dynein-dynactin to early 

endosomes. Hook (blue, depicted as a dimer [172]) interacts with dynein-dynactin complexes 

[13, 15], but the mechanism of the interaction is not clear (indicated by “??”). The C-terminus of 

Hook interacts with FTS (brown) [172]. FHIP (red) is depicted to be most close to early 

endosome [14]. Missing linkers are indicated by “??”.   
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