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Abstract—Price-based management of distributed energy 

resources (DER) within microgrids is gaining continuously 
grounds due to scalability and pri vacy limitations of centralized 

architectures. However, the concentration of flexible loads’ 

response to the lowest-priced periods yields inefficient solutions. 

A previously proposed measure imposing a flexibility restriction 
on flexible loads might raise acceptability and feasibility concerns 

by the users. This paper develops a novel, fully price-based 

approach where this hard restriction is replaced by a soft, non-

linear price signal. This signal is customized to the operating 

properties of the different flexible load types by penalizing the 
square of the demand and the duration of cycle delay of loads 

with continuously adjustable power levels and deferrable cycles 

respectively. This approach is shown to produce more efficient 

solutions than the flexibility restriction measure, for both types of 

loads. For the latter type, randomization of the non-linear prices 
brings additional benefits, especially in low operating diversity 

cases. These contributions are supported by case studies on a 

microgrid test system, with electric vehicles and wet appliances 

used as representative examples of the above flexible load types. 

 
Index Terms—Dual decomposition, flexible loads, microgrids, 

price-based management, randomization. 

NOMENCLATURE 

A. Distributed Microgrid Management Mechanism 

  Index of iterations 

     Length of time period in hours 

    Index and set of time periods 

    Index and set of network nodes 

    Index and set of network lines  

    Index and set of DER in the microgrid  

   Set of DER in the microgrid connected at node   

      Cost / disutility function of DER   
   Feasible operation domain of DER   

  
     

 Vector of active power injections     
     

 of DER   at 

time period   and iteration   

  
     

 Vector of reactive power in jections     
     

 of DER   at 

time period   and iteration   

  
      Vector of active power injections     

     
 at node  , time 

period   and iteration   

  
      Vector of react ive power injections     

     
 at node  , 

time period   and iteration   
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 Vector of active power imbalances     
   

 at node  , time 

period   and iteration   

  
   

 Vector of reactive power imbalances     
   

 at node  , 

time period   and iteration   

  
  Vector of voltage magnitudes     

  at node  , time 

period   and iteration   
  

  Vector of voltage angles     
  at node  , time period   

and iteration   

    
    Apparent power flow leaving the reference sending 

node on line   and time period   
    
    Apparent power flow reaching the reference receiving 

node on line   and time period   

     Minimum and maximum allowable voltage magnitude 

   Thermal capacity of line   
  
  Vector of active power prices     

  at node  , time 

period   and iteration   

  
  Vector of reactive power prices     

  at node  , time 

period   and iteration   

B. Flexible Loads’ Price Response Sub-Problems 

  
   Active power demand of EV at time period   

     Maximum charging rate of EV 

   Energy in EV battery at the end of time period   

     Minimum energy level in EV battery 

     Maximum energy level in EV battery 

  
   Energy requirements of EV for driving purposes at 

time period   

    Charging efficiency of EV battery 

    Set of time periods that EV is connected to the grid 

     Power factor of EV charg ing 

  Index of steps of the WA cycle 

  
   Active power demand at step   of the WA cycle 

     Duration of WA cycle  

     Activation time period of WA cycle 

    Initiat ion time period of WA cycle  

     Latest termination time period of WA cycle 

     Maximum delay limit of WA cycle  

     Power factor of WA  

I. INTRODUCTION 

A. Motivation 

fundamental feature of the emerg ing Smart Grid concept 

involves the integration of a large number of s mall-scale 

distributed energy resources (DER), including various types 

of flexible loads, distributed generators and energy storage 

units, in distribution networks. Microgrids are generally  
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defined as clusters of such DER at different voltage levels of 

distribution networks, operated as a single autonomous entity, 

either interconnected or isolated from the main grid [1]. A 

principal functionality of the microgrid is the optimal act ive 

and reactive power management of its DER in order to satisfy 

economic and technical objectives and constraints of both 

individual DER and the microgrid as a whole.  

Under the traditional centralized management paradigm [2], 

the local controllers (LC) of DER submit their economic and 

technical parameters to the microgrid central controller 

(MGCC), and the latter solves a global AC optimal power 

flow (OPF) problem and realizes the optimal solution by 

sending according dispatch signals to the LC. Such centralized 

approaches however yield communication and computational 

scalability limitations, as they involve transmission of a large 

number of complex operational parameters  to the MGCC and 

they require the latter to solve an optimization problem with a 

vast number of decision variables and constraints . 

Furthermore, they raise privacy concerns by the DER owners 

who are not generally willing to disclose private informat ion 

and be directly controlled by external entities  [3]. 

In view of these challenges, an alternative management  

approach is required, optimally coord inating DER without 

knowledge of their specific properties by a central entity. 

Following dual decomposition principles [4], authors in [5] 

present a distributed, price-based management architecture, 

involving a two-level iterative process. At the local level, 

individual DER solve independently their own economic 

surplus maximizat ion problems for given nodal active and 

reactive power prices. At the global level, the central 

coordinator updates these prices in an effort to drive DER 

responses to the optimal global solution. In [6], this approach 

is extended to a mult iple time -period framework to capture the 

inter-temporal operational properties of different DER.  

However, this mechanism is not guaranteed to reach a 

feasible solution, with respect to nodal power balance 

constraints, if the DER surplus maximization problems are not 

strictly convex. Strict convexity does not realistically hold for 

flexib le loads, the objective of which is the minimization of 

their payment, mathematically expressed through a linear -non 

strictly convex- objective function. 

In an effort to address this complication, authors in [7] 

outline a heuristic approach; after each iteration, generators’ 

production and loads’ consumption is increased or decreased 

according to a predetermined prio rity list until power balance 

constraints are satisfied. However, details on how such 

priority adjustments should be formed to avoid violat ion of the 

operating constraints of DER and achieve near-optimal 

solutions, are not provided. Authors in [8] calculate after each 

iteration the average of the DER responses in all prev ious 

iterations (primal averaging), and show asymptotic 

convergence of these averages to a feasible and optimal 

solution in the limit of iterat ions approaching infinity. Despite 

the theoretical significance of this contribution, the interest in 

practical applications lies in termination in a finite and 

acceptable (in terms of communication and computational 

requirements) number of iterat ions, which the primal 

averaging technique cannot guarantee [9]. 

This infeasibility complication is resolved in [10] by fixing  

the price responses of such non strictly convex DER for part 

of the coordination process, where iterations are carried out 

with the strictly convex DER only. However, the same paper 

has also demonstrated that an optimality challenge emerges. 

Flexib le loads’ response is discontinuously concentrated at the 

lowest-priced periods of the coordination horizon, creating 

significant new demand peaks and thus yielding inefficient 

solutions. In order to address this challenge, the authors 

proposed the perturbation of the flexible loads’ response 

through a relative flexibility restriction. In [10] where flexible 

loads with continuously adjustable power levels are 

considered, this flexib ility restriction is formed as a maximum 

power demand limit. In [11], the authors propose a flexibility 

restriction for flexible loads whose operating constraints do 

not allow the continuous adjustment of their power demand 

levels but the deferral of their fixed operation cycles, in the 

form of a maximum cycle delay limit. 

Imposing a flexib ility restriction however may not be 

deemed acceptable by the users of flexible loads, as they may 

consider it as a direct intervention of an external entity in the 

control of their assets. Furthermore, depending on the size of 

this restriction and the properties of the loads, the satisfaction 

of their operating constraints could become infeasible; this 

could be the case for example, if the restricted maximum 

power demand limit of a load is lower than its total energy 

requirements divided by the time it is connected to the grid 

and can acquire this energy. 

B. Contributions 

Driven by these acceptability and feasibility challenges, this 

paper develops a novel, fully price -based approach to tackle 

the flexible demand response concentration effect, where the 

hard flexibility restriction is replaced by a soft, non-linear 

price signal, penalizing the extent of flexib ility utilized by the 

flexib le loads. This signal is customized to the particular 

operating characteristics of the different flexib le load types, by 

penalizing the square of the power demand and the duration of 

the cycle delay of continuously adjustable and deferrable cycle 

loads respectively.  

Beyond tackling the above acceptability and feasibility  

challenges, this non-linear pricing approach is demonstrated to 

outperform the flexibility restriction approach of [10] in  

flattening the total demand profile and thus producing high 

quality solutions, for both types of loads. For deferrable cycle 

loads, it is shown that employment of uniform flexibility 

restrictions or non-linear prices is not sufficient in achieving 

efficient solutions, especially if the operating diversity of these 

loads is low. In order to deal with such cases, a simple 

approach for the randomization of the non-linear prices is 

proposed. These contributions are supported by case studies 

on a microgrid test system, with smart charg ing electric 

vehicles (EV) and wet appliances (WA) with delay 

functionality used as representative examples of the two above 

flexib le load types, and different scenarios investigated 

regarding their penetration, flexib ility and diversity. 
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C. Paper Structure 

The rest of this paper is organized as follows. Section II 

outlines the distributed microgrid management mechanism 

developed in [10]. Section III formulates the price response 

sub-problems of the two examined flexible demand 

technologies. Section IV details the proposed non-linear and 

randomized pricing approaches. Case studies and illustrative 

results and presented in Section V. Finally, Sect ion VI 

discusses conclusions and future extensions of this work. 

II. DISTRIBUTED MICROGRID MANAGEMENT MECHANISM 

The microgrid management problem is formulated as a 

social welfare maximization p roblem (1), assuming that    

constitutes a cost function if DER   is a generator and a 

disutility function if DER   is a load. Th is problem is subject 

to the nodal active (2) and reactive (3) power balance 

constraints, the voltage (4) and thermal (5)-(6) limits of the 

distribution network, and the indiv idual operational constraints 

of the DER (7). As in [10], the responsible entity for microgrid  

management is termed microgrid market operator (MGMO). 
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The primal problem (1)-(7) is solved indirectly by solving 

its Lagrangian dual problem (8), where   is the dual function 

and   is the Lagrangian function (9) of the problem, derived 

by relaxing constraints (2) and (3) through Lagrangian 

multip lier vectors    and    respectively. 
 

        
                 

      
        

              
   (8) 

 

Inner minimization subject to: (4)-(7) 
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The dual problem (8) is decomposed to independent sub-

problems -one corresponding to each DER (10) and one 

corresponding to the distribution network (11) (assumed that 

is solved by the MGMO)- coordinated iteratively by a    and 

   update until   is maximized. Th is decomposition scheme 

yields a two-level market-based management mechanis m, with 

the elements of    and    representing active and reactive 

power prices respectively, at each node and time period. At 

the local level and for g iven prices, the LC of each DER      

solves independently their surplus maximization problem (10) 

and the MGMO solves  independently the congestion surplus 

maximization problem (11). At the global level, the MGMO 

updates the prices in an effort  to gradually maximize  ; sub-

gradient [6]-[8] or cutting-plane algorithms [12] are employed 

in the majority of relevant works for th is update. 
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Subject to: (4)-(6) (11) 
 

The optimal solution of the dual p roblem    is guaranteed 

to coincide with the optimal solution of the primal problem    

and satisfy the relaxed constraints (2)-(3), only if the DER 

sub-problems (10) are strictly convex [5]-[6]. In [10]-[11], we 

identified non strict convexit ies in the sub-problems of both 

continuously adjustable and deferrable cycle loads, associated 

with their linear payment minimization objective function and 

-specifically for the latter type- their discrete operation 

domain. In [10], we demonstrated through simple examples 

that the above iterative mechanism cannot generally satisfy the 

power balance constraints (2)-(3) due to these non strict 

convexit ies, irrespectively of the multip liers’ update algorithm 

employed and the number of iterat ions executed. 

In order to resolve this infeasibility complication, we 

proposed the management mechanis m illustrated in Fig. 1 

[10]. In the external loop, the LC of all DER determine their 

price responses by solving their sub-problems, and the 

MGMO solves the network sub-problem, evaluates  , and  

updates    and    to gradually maximize  . In the internal 

loop, the responses of the flexib le loads are fixed to their 

respective values at the latest external iteration, and iterat ions 

are carried out with the strictly convex DER only. This simple 

technique eliminates the effect of the flexib le loads’ non-

strict-convexit ies, and therefore allows the internal loop to 

reach a solution satisfying the power balance constraints , at 

which point it is terminated. 
 

 
Fig. 1.  Flowchart of distributed microgrid management mechanism 
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The feasible primal solution    produced at the external 

iteration   is not guaranteed to be optimal. However, a 

quantitative indication of its optimality is provided by the 

weak duality theorem [4], according to which any dual 

solution    satisfies      . Given that      , the 

optimality of    is indicated by the relative duality gap (   ) 

(12) [12], which constitutes an upper bound of the distance 

between    and   . The proposed mechanis m is terminated 

when the     of the minimum availab le    is lower than a 

pre-determined tolerance   or a maximum number of external 

iterations   has been carried out. 
 

                          (12) 

III. PRICE RESPONSE SUB-PROBLEMS OF FLEXIBLE LOADS 

Two types of flexib le loads are examined, both requiring an 

amount of energy over a temporal interval specified by their 

users. For the first type, the power demand level can be 

continuously adjusted up to a maximum rate. Smart charging 

EV [13], which need to obtain the energy required for the 

desired journeys over the interval they are connected to the 

grid, are employed as a representative example of this type. 

 The operation of the second type is based on the execution 

of user-called cycles which comprise a sequence of phases 

occurring at a fixed order with generally fixed duration and 

fixed power demand, that cannot be altered; their flexibility 

involves the deferability of these cycles up to a maximum 

delay limit set by their users. WA (e.g. dishwashers and 

washing machines) with delay functionality [14] constitute a 

representative example of this type. 

A. EV with Smart Charging Capability 

Assuming a constant, uncontrollable power factor, the EV 

price response sub-problem is fo rmulated as: 
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Constraint (14) expresses the energy balance in the EV 

battery. Constraint (15) corresponds to the battery’s maximum 

depth of discharge and state of charge ratings. Constraints 

(16)-(17) represent the limit of the battery’s power input, 

which depends on the maximum charging rate of the battery 

and on whether the EV is connected to the grid. The EV 

demand redistributing ability is spread beyond the temporal 

horizon of the microgrid management problem; for the sake of 

simplicity, the battery energy content at the start and the end 

of the horizon are assumed equal (18). 

B. WA with Delay Functionality 

Without loss of generality, each WA is assumed to be 

activated by its users once during the temporal horizon of the 

problem. Also assuming a constant, uncontrollable power 

factor, the WA price response sub-problem is fo rmulated as: 
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Subject to: 
 

                     (20) 
 

where                          (21) 
 

Constraints (20)-(21) express the users’ requirements; the 

cycle cannot be initiated before the activation time of the 

appliance (since users need to load and switch on the 

appliance before the latter initiates its cycle) and cannot be 

terminated after the latest time desired by the users. In order to 

capture out-of-horizon effects, a periodic continuation is 

assumed, implying that the WA assume           and 

          and the demand of WA migrating towards / away  

from period       is added to / subtracted fro m the total 

demand at period  . 

IV. MEASURES AGAINST DEMAND RESPONSE 

CONCENTRATION 

Although the mechanism of Fig . 1 is guaranteed to produce 

feasible solutions   , the same does not apply on their 

optimality. As demonstrated in [10]-[11], flexible loads’ 

response is discontinuously concentrated at the time periods 

with the lowest prices at   due to their non-strict-convexities, 

creating significant new demand peaks and thus yielding 

inefficient solutions. 

A. Flexibility Restriction 

Driven by the observation that the size of this concentration 

effect is enhanced when the loads’ flexibility extent is higher, 

we previously proposed the application of a relative flexibility 

restriction  , which represents the fraction of available 

flexib ility that can be utilized by the loads [10]-[11]. For loads 

with continuously adjustable power levels,   represents their 

maximum power limit as a fraction of the respective nominal 

one. Given that a larger power limit enables such loads to 

acquire larger proportion of their energy requirements at the 

lowest-priced period, the application of   tends to limit h igh 

demand levels from each load. For s mart charging EV, the 

introduction of   transforms constraint (16) to (22): 
 

    
       

   ,        (22) 
 

For loads with deferrable cycles, a different approach is 

required, since their power demand levels are fixed and cannot 

be modified;   represents the maximum cycle delay limit as a 

fraction of the respective limit set by the users  [11]. Given that 

the delay limit determines the range of the time window 

within which these loads can execute their cycles, and that 

different loads are characterized by different activation times, 

the application of   tends to limit the number of loads that can 

execute their cycles at the same low-priced periods. For WA 

with delay functionality, the introduction of   transforms 

constraint (20) to (23): 
 

                       (23) 
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B. Non-Linear Pricing 

Imposing such flexib ility restrictions may not be deemed 

acceptable by the users of the flexible loads, as they may 

consider it as a direct intervention of an external entity in the 

control of their assets. Furthermore, depending on the value of 

  and the properties of the loads, the satisfaction of their 

operating constraints could be threatened. For a smart-

charging EV for example, if                        
   

  
 , then its response sub-problem becomes in feasible.  

In order to circumvent these challenges, the alternative 

approach proposed in this paper replaces this hard flexibility 

restriction by a soft non-linear price signal  , effect ively 

penalizing the extent of flexib ility utilized by the loads.  

For loads with continuously adjustable power,   penalizes 

the square of the power demand and thus indirectly limits high 

demand levels from each load. Such a quadratic price follows 

the inclining block rate pricing concept [15], accord ing to 

which the marginal price increases with the size of the 

consumed quantity. For smart charging EV, the introduction 

of   transforms their objective function (13) to (24): 
 

      
   

                       
  

        
       (24) 

 

Apart from the above acceptability and feasibility  

advantages, quadratic pricing exhib its an optimality advantage 

over the flexib ility restriction approach. With the latter, the 

response sub-problem remains linear and thus the solution 

always involves demand equal to the new maximum power 

limit at the periods with the lowest prices. With the former 

approach on the other hand, the objective function becomes 

quadratic, the optimal response can admit a larger number of 

values in the interior of the feasible operation domain, and 

thus a better total demand flattening effect can be achieved.  

This is clarified through a single-node, three-hour example, 

where the microgrid includes inflexib le demand      
         , a generator with quadratic cost function, and a 

continuously adjustable flexib le load with total energy 

requirements        and maximum power         . 

The optimal solution of the microgrid management problem 

involves             for the flexib le load, leading to a 

completely flattened total demand profile               . 

Assuming that the linear prices at a specific external 

iteration of the distributed management mechanis m are 

              , it can be observed that the flexib ility 

restriction approach cannot realize such a response from the 

flexib le load, irrespectively of the value of        . For 

example ,        gives            ,       gives 

                 ,       gives             and 

      gives                . The above response could 

only be achieved if time-specific flexib ility restrictions were 

allowed (with values        and        ). However, the 

complexity o f setting suitable time-specific values would  be 

dramat ically h igher. On the other hand, the proposed quadratic 

pricing approach can realize the above response without such 

complexity, with a unifo rm quadratic price            . 

For loads with deferrable cycles,   penalizes the duration of 

the cycle delay, and given that different loads are 

characterized by different activation times, it indirect ly limits 

the number of loads that can execute their cycles at the same 

periods. For WA with delay  functionality, the introduction of 

  transforms their objective function (19) to (25): 
 

   
       

   
       

  
       

                   

   

    +         (25) 
 

According to the above discussion, a critical assumption for 

the effectiveness of both flexibility restriction and non-linear 

pricing approaches in the case of loads with deferrab le cycles 

is that different loads exhib it different activation times . As 

such operating diversity gets lower, the performance of both 

above approaches gets worse. This can be better understood 

by considering the extreme example where all deferrab le cycle 

loads at a specific node have identical operating parameters. In  

this case, irrespectively of the value of   or  , all loads will 

initiate their cycle at the same time period and the 

concentration effect cannot be avoided. 

However, this challenge is partially addressed with the non-

linear pric ing approach, as the optimal response of loads 

connected to different nodes can be diversified due to the 

different correlation between the size of linear price 

differentials and the delay price  . Th is is clarified  through a 

two-node, two-hour example, where inflexib le demand at the 

two nodes A and B is   
   

         and   
   

        . 

6 and 12 identical WA are connected to nodes A and B 

respectively, each characterized by       ,   
      , 

       and       ; in other words each WA can carry 

out their cycle either at     or    . 

Assuming that the linear prices at a specific external 

iteration of the distributed management mechanis m are 

              and              , it can be observed 

that if the distributed management mechanism employs the 

flexib ility restriction approach it can only either: i) allow all 

WA to shift to the hour with the lowest linear price     

(with    ), y ield ing a total demand profile of      
           o r ii) do not allow this shift  (with    ), 

yielding a total demand profile of              . If the 

proposed delay pricing approach is employed with       , 

the WA of node A will be incentivized to execute their cycle 

at    , given that the cost of shifting (  ) is higher than the 

benefit of shifting to the lowest-priced     (  ). On  the 

other hand, the WA of node B will shift  their cycle to     as 

the relevant benefit (  ) is higher than the relevant cost. This 

diversified response among the two nodes yields a completely  

flattened demand profile                which  

corresponds to the optimal solution of the problem.  

C. Randomized Non-Linear Pricing 

Based on authors’ studies, the extent of deferrable cycle 

loads’ response diversification achieved with uniform non -

linear pricing, due to the analyzed effect of d ifferentiated price 

variations at the different nodes, is not generally sufficient to 

tackle the demand concentration effect, especially in cases 

with low operating diversity of such loads. Therefore, it has 

been deemed necessary to introduce an additional degree of 
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diversity in their response by diversifying the non-linear prices 

 . Since the MGMO does not have any information on the 

parameters of the flexible loads to drive the specifics of such 

diversificat ion, a randomizat ion approach is proposed. 

A vector   is derived by a random number generator, the 

size of which is equal to the number of loads in the microgrid  

and its elements    take random values following the standard 

normal d istribution (normal distribution with zero  mean and 

unity standard deviation). The randomised non-linear price 

  
     transmitted to the LC of each of the loads   is given by 

(26), where    and   denote respectively the mean value and 

standard deviation of the distribution of non-linear prices. 
 

  
               (26) 

D.Tuning Measures’ Parameters 

As quantitatively demonstrated in Section V, relat ively  

large values of   and relat ively s mall values of   and   may 

not sufficiently limit the loads’ flexib ility to concentrate their 

demand at the lowest-priced periods, while  relatively s mall 

values of   and relat ively large values of   and   may  limit 

excessively their flexib ility and thus prevent them from 

shaving the peaks and filling the off-peak valleys of the 

inflexible demand profile.  

Suitable values of  ,   and   should be employed to 

achieve an effective trade-off between these two effects, 

leading to a flatter demand profile and a more efficient 

solution. As demonstrated in Section V, such suitable values 

will depend on the correlation between the characteristics of 

the flexible loads population (number, nominal flexib ility and 

diversity) and the temporal variation of inflexib le demand. For 

a certain inflexib le demand profile, a larger number and 

flexib ility and a lower diversity of the flexible loads 

population generally result in a smaller value of the most 

suitable   and a larger value of the most suitable   and  . 

According to the approach proposed in [10], the MGMO 

applies a set                  ,                   

or          
                 (based on sub-Section IV-

C, each element of the last set is a vector of randomized prices 

submitted to the different loads, and corresponding to a value 

   of the standard deviation) to the flexible loads at each 

external iteration of the distributed management mechanis m, 

in order to heuristically  search for a suitable value of  ,   or   

respectively. The LC of these loads solve their modified price 

response sub-problems for each element of the set, and for 

their (fixed) response corresponding to each element, the 

MGMO carries out iterations with the strictly convex DER to 

calculate   alternative feasible solutions   
  of the primal 

problem. In real implementations, it is envisaged that after 

gaining some experience, the MGMO will be able to guide the 

search for an efficient solution without the need to try out a 

large number of  ,   and   values. 

In cases where the microgrid includes both loads with 

continuously adjustable power levels and loads with deferrable 

cycles, application of either identical or differentiated between 

the two types,  ,   and   values can be conceived. As 

quantitatively demonstrated in Section V, the latter approach 

expands the space of the heuristic search leading to higher 

quality solutions, at the cost of more complex tuning of the 

differentiated parameters. 

V.CASE STUDIES  

A. Description of Case Studies 

Case studies are carried out on a microgrid test system 

proposed in [16] (Fig. 2). A day-ahead horizon with hourly 

resolution is considered for the microgrid management 

problem. The microgrid contains six micro-generators with 

quadratic cost functions, the parameters of which are given in  

[3]. It is assumed that the main grid cannot absorb but can 

supply power to the microgrid, with the relevant quadratic cost 

function parameters also given in [3]. Furthermore, the cost 

function associated with demand curtailment is assumed 10 

times higher than the cost function of the most expensive 

micro -generator. 
 

 
Fig. 2.  Microgrid test system 

Different scenarios are investigated regarding the 

penetration, flexib ility and diversity of smart-charg ing EV and 

WA with delay functionality in the microgrid. Three EV 

penetration scenarios (low-LP, medium-MP, high-HP) are 

examined, with the respective number of EV g iven in Table I. 

The total number of EV in each scenario is spread to the 

different nodes, proportionally to their peak inflexible 

demand. Furthermore, three EV flexibility scenarios (low-LF, 

medium-MF, high- HF) are examined, corresponding to 

different EV maximum power charging rates  (Table I). The 

values of the rest of EV parameters are given in Table II. 
 

TABLE I 
EV SCENARIOS 

 Low Medium High 
Penetration (EV number) 17 34 51 

Flexibility (    ) 1kW 3kW 6kW 
 

TABLE II 
EV AND WA PARAMETERS 

EV WA 

Parameter Value 
Parameter 

Value 

    {1,..,8,19...,24} DW WM 
   

  
   7.12kWh      2 2 

     3kWh   
   0.56kW 0.78kW 

     15kWh   
   0.63kW 0.11kW 

    0.93      0.9 0.9 

     0.9    
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Two different types of WA are considered, namely 

dishwashers (DW) and washing machines (WM), with the 

demand profiles of their cycles given in Table II [14]. Three 

flexib ility scenarios (low-LF, medium-MF, h igh-HF) are 

examined, corresponding to different maximum delay limits 

set by the users (Table III). Furthermore, three diversity 

scenarios (low-LD, medium-MD, high-HD) are examined 

(Table III). In the HD scenario, the total number of WA in the 

microgrid (320) is  equally divided to DW and WM and their 

activation times are diversified according to European 

consumers’ surveys [14]. In the MD scenario, the microgrid  

includes only DW with activation times diversified according 

to [14], while in the LD scenario the microgrid  includes only 

DW, all activated at the same hour (    ). The total number 

of DW and WM in each scenario is spread to the different 

nodes, proportionally to their peak inflexib le demand. 
 

TABLE III 

WA SCENARIOS 

 Low Medium High 
Flexibility (    ) 5h 10h 15h 

Diversity 
Only DW, 

uniform      
Only DW, 

diversified      
DW and WM, 
diversified      

 

The distributed management mechanism, in combination 

with the three measures against demand response 

concentration, was implemented in MATLAB, and the case 

studies were carried out on a desktop computer with a 

3.33GHz processor and 12GB of RAM. In every case, the 

multip liers    and    were initialized to their optimal values 

in the case where no flexib le loads are included in the 

microgrid. The penalty-bundle algorithm of [10] was 

employed for updating the multip liers. The termination 

parameters of the mechanis m were set to     ,     , 

and in every case the relative duality gap termination criterion 

was satisfied (reached a value below 1%) before reaching the 

maximum number of external iterat ions . The maximum 

computation time required for a single case was 387s. 

Suitable values   ,    and    of the flexib ility restriction, 

non-linear price and standard deviation in each case have been 

determined by heuristically trying out a range of values , 

according to the discussion in Section IV-D. Specifically, the 

trialled  values of   ranged from     to   with a step of    , 

and the values of   and   ranged from   to   with a step of 

   . In the case of randomized non-linear pricing, the most 

suitable value of the uniform non-linear price was employed 

as the mean value of the distribution of non-linear prices. 

B. Analysis of Cases with Flexible EV 

Fig. 3 illustrates the benefits of the three measures in terms 

of total cost reduction (with respect to the case where no 

measure is applied i.e. only the linear prices    and    are 

used for coordinating the EV) for different values of their 

parameters  ,   and  , in the medium penetration – h igh 

flexib ility scenario. Very large values of   and very small 

values of   do not sufficiently limit the EVs’ flexibility to 

concentrate their demand at the lowest-priced periods, while  

very small values of   and very large values of   limit 

excessively their flexib ility and thus prevent them from 

shaving the peaks and filling the off-peak valleys of the 

inflexible demand profile. The most suitable values of these 

parameters achieve an effective trade-off between these two 

effects, and the highest benefits; these are        and 

       for this scenario. In the case of EV, randomizat ion of 

the non-linear prices does not bring additional benefits and the 

most suitable value of the standard deviation is     . 

 
Fig. 3.  Benefits of demand response concentration measures for different 
values of  ,   and   in medium penetration – high flexibility EV scenario 

Table IV presents the most suitable values   ,    and    of 

the parameters of the three measures, as well as their benefits, 

for each of the examined scenarios. As the penetration and 

flexib ility of EV is enhanced, the size and the cost 

implications of the new peaks created in the case without 

measures are significantly aggravated; as a result, the benefits 

of flexib ility restriction and non-linear pricing are increased. 

Such benefits get dramatically higher in the high penetration – 

high flexibility case, as the EV response when no measure is 

applied activates the min imum voltage constraint at node 7 

(exhib iting the highest inflexib le demand and EV number) and 

requires expensive demand curtailment. Furthermore,    and 

   are decreased and increased respectively, as a more 

significant restriction/penalizat ion of EV flexib ility is required 

to avoid the demand concentration effect. As mentioned 

earlier, randomization of the non-linear prices does not bring 

additional benefits and      holds for every scenario. 
 

TABLE IV 
OPTIMAL TUNING AND BENEFITS OF DEMAND RESPONSE CONCENTRATION 

MEASURES IN EV SCENARIOS 

Scenario 
Uniform flexibility 

restriction 

Uniform non-linear 

pricing 

Randomized non-

linear pricing 
    Benefit    Benefit    Benefit 

LP-LF 1 0.00% 0 0.00% 0 0.00% 

LP-MF 0.5 0.23% 0.2 0.25% 0 0.25% 

LP-HF 0.2 0.78% 0.2 0.89% 0 0.89% 

MP-LF 1 0.00% 0.5 0.00% 0 0.00% 

MP-MF 0.4 1.25% 0.5 1.32% 0 1.32% 
MP-HF 0.2 3.59% 0.5 3.76% 0 3.76% 

HP-LF 1 0.00% 1 0.01% 0 0.01% 

HP-MF 0.4 2.65% 1 2.79% 0 2.79% 

HP-HF 0.2 16.28% 1 16.55% 0 16.55% 
 

Fig. 4 illustrates the inflexible active demand profile at node 

7, along with the respective total demand profile in the high 

penetration – medium flexib ility scenario, for the cases where 

no demand response concentration measure is applied, and the 

flexib ility restriction and non-linear pricing measures are 

applied (with the most suitable values of their parameters    

and   ). In the former case, a very  large new peak is created 

by EV response at the hours with the lowest (linear) prices (4-

6). Both measures prevent the creation of this peak and 

efficiently distribute the EV demand across the off-peak 
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valley. For the reason analyzed in Section IV-B, non-linear 

pricing yields a flatter demand profile (Fig. 4) and therefore 

higher total cost reduction benefits (Table IV) than the 

flexib ility restrict ion approach. 

 
Fig. 4.  Active demand profile at node 7 in high penetration – medium 
flexibility EV scenario 

C. Analysis of Cases with Flexible WA 

Fig. 5 illustrates the benefits of the three measures for 

different values of their parameters  ,   and  , in the medium 

diversity – high flexib ility scenario. The most suitable values 

are       ,        and       . In contrast with the EV 

cases, randomization of the non-linear prices brings additional 

benefits for the reason explained in Section IV. 

 
Fig. 5.  Benefits of demand response concentration measures for different 
values of  ,   and   in medium diversity – high flexibility WA scenario 

Fig. 6-7 illustrate the inflexible act ive demand profile of the 

microgrid, along with the respective total demand profile for 

the cases without demand concentration measures , with the 

uniform flexib ility restrict ion measure, and with the uniform 

and randomized non-linear pricing measures (applied with the 

most suitable values of their parameters    ,    and   ). Fig. 6 

refers to the high diversity – high flexibility scenario, while 

Fig. 7 refers to the low diversity – high flexib ility scenario. 

In line with the discussion in Section IV, the uniform 

flexib ility restriction and non-linear pricing approaches 

achieve a relatively effective flattening of the total demand 

profile in the high diversity scenario, and the additional 

benefit of randomizat ion is relatively s mall, yet still visible . 

The results are significantly different in the low diversity 

scenario. Given that all WA are identical, the new peak 

created when no measures are taken is even larger, and the 

uniform flexib ility restriction approach cannot improve at all 

the obtained solution (“No measure” and “Uniform  ” curves 

coincide). Due to the effect of differentiated price variations at 

the different nodes analyzed in Section IV-B, uniform non-

linear pricing reduces the size of the new demand peak. 

Randomized non-linear pricing constitutes the only measure 

than flattens sufficiently the total demand profile and its 

benefit is significantly higher than in the low diversity case. 

 
Fig. 6.  Active demand profile of microgrid in high diversity – high flexibility 
WA scenario 

 
Fig. 7.  Active demand profile of microgrid in low diversity – high flexibility 
WA scenario 

For each diversity scenario, as the flexibility of WA is 

enhanced, the size and the cost implicat ions of the new peaks 

created in the case without measures are significantly 

aggravated, as more WA can execute their cycles at the 

periods with the lowest linear prices; as a result, the benefits 

of the three measures are increased (Table V). For each 

flexib ility scenario, in line with the findings from Fig. 6-7, as 

the diversity of WA is reduced, the benefit of non-linear 

prices’ randomizat ion is enhanced, and the most suitable value 

of the standard deviation is increased. 
 

TABLE V 
OPTIMAL TUNING AND BENEFITS OF DEMAND RESPONSE CONCENTRATION 

MEASURES IN WA SCENARIOS 

Scenario 
Uniform flexibility 

restriction 

Uniform non-linear 

pricing 

Randomized non-

linear pricing 
    Benefit    Benefit    Benefit 

LD-LF 1 0.00% 0 0.00% 0.5 1.01% 

LD-MF. 1 0.00% 0.1 2.77% 0.3 4.35% 
LD-HF. 1 0.00% 0.1 2.77% 0.3 4.35% 

MD-LF 1 0.00% 0.1 0.08% 0 0.08% 

MD-MF 1 0.00% 0 0.18% 0.2 0.31% 

MD-HF 0.7 0.71% 0.1 0.78% 0.2 1.51% 

HD-LF 1 0.00% 0.1 0.03% 0 0.03% 

HD-MF 1 0.00% 0 0.04% 0.1 0.14% 

HD-HF 0.7 0.80% 0.1 0.94% 0.1 1.17% 
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D.Analysis of Cases with Flexible EV and Flexible WA  

As discussed in Section IV-D, in cases where the microgrid 

includes both loads with continuously adjustable power levels 

and loads with deferrab le cycles , either identical or 

differentiated between the different types,  ,   and   values 

can be applied. Tables VI and VII present the most suitable 

values of the parameters of the three measures, as well as their 

benefits, for each of these two approaches and for different 

scenarios with both EV and WA in the microgrid. The second 

approach expands the space of the heuristic search for high 

quality solutions and thus leads to higher benefits in every 

scenario and for each of the three measures. However, these 

higher benefits come with the higher complexity in tuning the 

differentiated parameters for the different load types. 
 

TABLE VI 

OPTIMAL IDENTICAL TUNING AND BENEFITS OF DEMAND RESPONSE 

CONCENTRATION MEASURES IN EV-WA SCENARIOS 

Scenario 
Uniform flexibility 

restriction 
Uniform non-linear 

pricing 
Randomized non-

linear pricing 
    Benefit    Benefit    Benefit 

LD-LP-LF 1 0% 0 0% 0.2 1.53% 

LD-LP-HF 0.4 10.73% 0.2 11.82% 0.3 14.93% 

LD-HP-LF 1 0% 0.8 0.03% 0.4 6.83% 

LD-HP-HF 0.4 32.14% 0.3 36.27% 0.3 37.92% 

HD-LP-LF 1 0% 0.1 0.02% 0 0.02% 

HD-LP-HF 0.5 4.46% 0.1 4.83% 0.1 5.18% 

HD-HP-LF 1 0% 0 0% 0 0% 

HD-HP-HF 0.2 31.57% 0.4 31.90% 0.3 32.20% 

 
TABLE VII 

OPTIMAL DIFFERENTIATED TUNING AND BENEFITS OF DEMAND RESPONSE 

CONCENTRATION MEASURES IN EV-WA SCENARIOS 

Scenario 
Uniform flexibility 

restriction 

Uniform non-linear 

pricing 

Randomized non-

linear pricing 
    

     
  Benefit    

     
  Benefit    

     
  Benefit 

LD-LP-LF 0.8 1 0.12% 1.8 0 0.15% 0 1.3 1.62% 

LD-LP-HF 0.7 0.5 11.80% 0 0.2 12.10% 0.1 0.4 15.01% 

LD-HP-LF 0.6 1 5.80% 2 0 5.84% 0 1.5 8.42% 

LD-HP-HF 0.5 0.4 35.56% 0.1 0.3 36.56% 0.1 0.5 38.16% 

HD-LP-LF 1 1 0% 0.1 0.1 0.02% 0 0 0.02% 
HD-LP-HF 0.2 0.6 5.07% 1.2 0.1 5.09% 0 0.2 5.32% 

HD-HP-LF 1 1 0% 0.9 0.1 0.04% 0 0 0.04% 

HD-HP-HF 0.2 0.6 32.51% 1.9 0.1 32.58% 0 0.3 32.66% 
 

VI. CONCLUSIONS AND FUTURE WORK 

This paper proposes a novel, fully price-based measure to 

tackle flexib le loads’ response concentration in distributed 

management of DER within microgrids. Apart from the 

traditional linear prices, a non-linear price signal is transmitted 

to these loads, penalizing the extent of flexibility utilized. This 

signal is customized to the operating properties of the different 

flexib le load types, by penalizing the square of the demand 

and the duration of cycle delay for loads with continuously 

adjustable power levels and deferrable cycles respectively. 

 This measure not only addresses the acceptability and 

feasibility limitations of a previously proposed alternative 

measure imposing flexib ility restrict ions on the loads, but is 

also demonstrated to produce more efficient solutions , for both 

types of loads. For the latter type, a simple approach 

randomizing the non-linear prices transmitted to the loads is 

shown to bring additional benefits, especially in cases where 

the operating diversity of these loads is low.  

Future work aims at developing efficient techniques for the 

optimal tuning of the non-linear and randomized pricing 

measures’ parameters, without extensive computational 

requirements. Furthermore, uncertainties associated with 

renewable micro-generators’ outputs and consumers’ 

preferences and requirements affecting the operation of 

flexib le loads, will be incorporated in the microgrid  

management problem and addressed through a stochast ic 

reformulation of the proposed distributed mechanism.  
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