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Abstract  14 

This paper presents an advanced stochastic analytical framework to quantify the 15 

benefits of smart electric vehicles (EVs) and heat pumps (HPs) on the carbon emission 16 

and the integration cost of renewable energy sources (RES) in the future UK electricity 17 

system. The typical operating patterns of EVs/HPs as well as the potential flexibility to 18 

perform demand shifting and frequency response are sourced from recent UK trials. A 19 

comprehensive range of case studies across several future UK scenarios suggest that 20 

smart EVs/HPs could deliver measurable carbon reductions by enabling a more 21 

efficient operation of the electricity system, while at the same time making the 22 

integration of electrified transport and heating demand significantly less carbon 23 

intensive. The second set of case studies establish that smart EVs/HPs have 24 

significant potential to support cost-efficient RES integration by reducing: a) RES 25 

balancing cost, b) cost of required back-up generation capacity, and c) cost of 26 

additional low-carbon capacity required to offset lower fuel efficiency and curtailed RES 27 

output while achieving the same emission target. Frequency response provision from 28 

EVs/HPs could significantly enhance both the carbon benefit and the RES integration 29 

benefit of smart EVs/HPs. 30 

 31 

1. Introduction 32 

Rapid expansion of Renewable Energy Sources (RES) is expected to make a key 33 

contribution to electricity system decarbonisation. However, high penetration of 34 
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intermittent RES will increase the requirements for various reserve and frequency 35 

response services, leading to reduced carbon benefit and increased balancing cost. 36 

Moreover, large amount of additional generation capacity is required to provide “RES 37 

firming” for system security reasons, which causes additional costs associated with 38 

RES integration.  39 

At the same time, the electrification of transport through electric vehicles (EVs) and 40 

heating systems through heat pumps (HPs) is seen as another key policy measure to 41 

further reduce the use of fossil fuel in energy supply and hence reduce carbon 42 

emissions. However, as demonstrated in the Low Carbon London (LCL) trials [1] [2], 43 

this electrification may lead to an increase in peak demand that is disproportionately 44 

higher than the increase in energy consumption, which could increase the 45 

requirements for additional generation and network capacity with low utilisation levels 46 

[3]. Furthermore, as the demand associated with EVs/HPs concentrated during the 47 

periods of peak demand, it is going to be supplied by high-emission peaking plants, 48 

leading to a degradation of the system carbon performance. 49 

On the other hand, there exists significant flexibility in temporal patterns of EVs [4] and 50 

HPs [5], providing an opportunity to utilising demand-side response (DSR) solutions 51 

facilitated by inherent storage capabilities present in EV batteries and thermal storage 52 

associated with buildings heated by HPs. Smart EVs and HPs could not only reduce 53 

the required generation/network capacity [3] and the incremental carbon emissions 54 

driven by EVs and HPs, but also facilitate the integration of RES through energy 55 

arbitrage [6] [7] and ancillary service provision [4] [8]. In this context, this paper focuses 56 

on analysing and quantifying the implications of deploying smart EVs and HPs for the 57 

carbon emissions and RES integration cost within the UK electricity system. Therefore, 58 

the key specific objectives of this paper can be summarized as: 59 

1. Analyse the benefits of smart EVs/HPs trialled in LCL in reducing carbon emissions 60 

in a broader UK electricity system. 61 

2. Quantify the economic benefits of carbon savings from smart EVs/HPs in terms of 62 

lower requirements to invest in zero-carbon generation capacity in order to achieve 63 

the same carbon emission target. 64 

3. Analyse the benefits of smart EVs/HPs in reducing system integration cost of RES, 65 

including balancing cost associated with RES intermittency and investment cost 66 

associated with back-up capacity to ensure system security. 67 

The impact of smart EVs/HPs is investigated for three future system development 68 

scenarios, with particular emphasis on different possible evolution trajectories of RES 69 
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capacity. The key link between the technology-specific, bottom-up LCL trials and 70 

system-level studies presented in this paper is the effective shape of electricity demand 71 

seen by large-scale generation for different deployment levels of trialled EVs/HPs, as 72 

well as the potential to provide flexibility to the system, in particular load shifting and 73 

ancillary services. Unlike in previous published work [9] [10] where the operating 74 

patterns were inferred from those associated with conventional vehicles and heating 75 

systems, the uncontrolled charging and heating patterns assumed in this paper are 76 

based on measured populations, while modelling the ability of smart EVs/HPs to shift 77 

demand and provide frequency response has been updated based on insights from 78 

LCL trials.  79 

Given that the uncertainty and limited inertia capability of RES are expected to be a 80 

major driver for escalating system emission and integration cost, the performance of 81 

the system is analysed using the Advanced Stochastic Unit Commitment (ASUC) 82 

model. One of the key advantages of ASUC when compared with deterministic 83 

generation scheduling models used in other studies [11] [12], is that it is able to 84 

dynamically allocate energy arbitrage and ancillary service provision by EVs and HPs 85 

depending on the conditions in the system. Moreover, unlike the simplified assumption 86 

on frequency response requirements typically used in other studies [4] [9] [13], the 87 

ASUC model is capable of explicitly quantifying the inertia-dependent frequency 88 

response requirements. Therefore, the impact of reduced system inertia driven by 89 

large-scale RES deployment on the benefits of frequency response provision from 90 

EVs/HPs is explicitly evaluated for the first time. The proposed model has been shown 91 

to be particularly suitable to analyse the benefits of flexibility provided by energy 92 

storage [14] and DSR [15] in systems with high penetration of RES.  93 

 94 

2. Characteristics of EVs/HPs demand and their potential to provide flexibility 95 

In this section we provide an overview of EVs/HPs investigated in LCL trials and 96 

specify their key characteristics with respect to the flexibility associated with them. 97 

 98 

2.1 Electric vehicles 99 

A detailed description of EV trials conducted in LCL is given in [16]. The trial included 100 

72 residential and 54 commercial vehicles and monitored their charging at both home 101 

or office charging points, as well as around 400 public charging stations. The report 102 

quantified some of the key parameters of EV demand relevant for network planning 103 

and system analysis such as typical demand profiles and diversified peak demand for a 104 

given number of EVs. 105 
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As an illustration, the fully diversified average and peak day demand profiles for 106 

residential EV users are shown in Figure 1. The average profile represents the 107 

charging demand for an average day, while the peak profile has been obtained by 108 

extrapolating the diversity characteristic of EV peak demand towards a very large 109 

number of vehicles, where the trials have shown that coincidence factor* approaches 110 

20% [16]. Given that the typical (non-diversified) charging power for a single residential 111 

charging point was around 3.5 kW, this resulted in a diversified peak EV demand of 112 

0.7 kW. This information has been used to calibrate annual hourly demand profiles 113 

from [13] and use those profiles as an input into the ASUC model used for this study. 114 

Reference [16] has further assessed the flexibility of EV demand, i.e. how much of EV 115 

charging demand may be shifted in time in order to support the electricity system but 116 

without compromising the ability of the EV users to make their intended journeys. The 117 

analysis of smart charging in [16] suggested that between 70% and 100% of EV 118 

demand can be shifted away from peak hours. This analysis included the driving 119 

patterns of EV users, so that the estimation of their flexibility ensured that all of the 120 

users’ journeys can be completed despite temporal shifting of charging demand (i.e. 121 

the users’ mobility requirements are not compromised as the result of smart charging). 122 

Based on this, we estimate that up to 80% of EV demand could be shifted away to 123 

other times of day while supporting the same journey patterns. This flexibility parameter 124 

is used as input into the ASUC model in order to allow it to make optimal scheduling 125 

decisions on when flexible EVs should be charged from the system operation 126 

perspective. 127 

 128 
Figure 1 Average and peak EV charging demand profiles from LCL trials 129 

 130 

                                                
*
 The coincidence factor is defined as the ratio between the maximum instantaneous demand of 
a group of customers and the sum of their individual maximum demands. It is the inverse of the 
diversity factor. 
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The analysis has shown that the charging can typically be delayed by several hours 131 

when shifted away from the peak towards the night hours, as illustrated in Figure 2, 132 

which has been taken from [16]. 133 

 134 

 135 
Figure 2 Uncontrolled and optimised charging profile for a residential EV sample 136 

superimposed on baseline residential demand 137 
 138 

2.2 Heat pumps 139 

LCL trials also involved the monitoring of residential heat pumps, as described in 140 

Report B4 [2], however due to a smaller sample size the trial results were only used to 141 

calibrate the likely non-diversified peak of residential heat pump load. In order to 142 

construct a fully diversified profile of national-level HP demand, we used inputs from 143 

previous studies [17] [18] [19]. All of these assumed a gradual improvement in building 144 

insulation levels, and estimated the hourly profiles based on representative 145 

temperature fluctuations for the UK. The diversified peak day demand for an average 146 

household with heat pump heating is shown in Figure 3 for illustration. 147 

We further assumed that flexible HP operation would be possible if they were fitted 148 

together with heat storage. Based on the findings of [17] and [20], we assumed that for 149 

the heat storage size in the order of 10% of peak day heating energy demand, the peak 150 

HP demand can be reduced by 35% through using the storage and shifting HP demand 151 

into other times of day†. Although the potential flexibility of HP demand would generally 152 

vary among different customers depending on their consumption, heat storage size, 153 

insulation levels or temperature settings, in this paper the aggregate heat storage has 154 

been considered to be available to support system operation. 155 

                                                
†
 In [19] this assumption resulted in a hot water tank of about 140 litres per average household.   
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 156 
Figure 3 Peak (cold winter) day HP demand profile used in the analysis 157 

 158 

3. Modelling approach and scenario assumptions 159 

This section describes the modelling methodology applied to assess the impact of 160 

smart EVs/HPs on the carbon emission and RES integration cost in the future UK 161 

electricity system. It also presents the  scenarios that are used in the case studies. 162 

 163 
Figure 4 Schematic illustration of ASUC tool 164 

3.1 Methodology 165 

The Advanced Stochastic Unit Commitment (ASUC) model [21] with inertia-dependent 166 

frequency response requirements is implemented in order to assess the benefits of 167 

smart EVs/HPs. Figure 4 provides a schematic illustration of the key components of the 168 

tool. RES realisations, RES forecast errors, system demand and generator outages are 169 

synthesised from appropriate statistical models and used to generate scenario tree of 170 

the net demand. The scenario tree is then fed into the cost minimization scheduling 171 

model, and then a set of feasible control decisions is obtained for each node on the 172 

tree, such that the expected total operating cost is minimised. Because the actual 173 
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realisation will differ from all the scenarios in the tree, the scheduling is performed 174 

using rolling planning, in which only the here-and-now decisions are fixed, and all 175 

subsequent decisions discarded. For this reason, the full tree, extending to 24 hours 176 

ahead, is solved at every time step. Key outputs of the model include the optimal 177 

commitment and dispatch decisions, volume of renewable output that needs to be 178 

curtailed as well as the corresponding emissions from the electricity system. 179 

By performing two simulations that differ in only one aspect, for example with inflexible 180 

operation versa with smart operation of EVs/HPs, we analyse the changes in system 181 

operation and carbon emissions so that the benefits of smart operation of EVs/HPs can 182 

be quantified. The simulations are carried out over a year time horizon in order to 183 

capture the variations in system demand, RES generation as well as EVs/HPs demand. 184 

 185 
Figure 5 Schematic of a typical scenario tree in SUC 186 

 187 
3.1.1 Scenario Tree 188 

The unit commitment (UC) and economic dispatch (ED) are solved over a scenario tree 189 

(Figure 5). Quantile-based scenario selection method is adopted in the modelling 190 

framework. This method is developed in [22] by constructing and weighting scenario 191 

trees based on user-defined quantiles of the forecast error distribution. The normalized 192 

RES level is assumed to follow a Gaussian AR(2) process with half-hourly timestep, 193 

which is then transformed into a non-Gaussian RES output with a range from zero to 194 

the installed capacity of RES fleet [22]. The probability distribution of outages is derived 195 

by using the Capacity Outage Probability Table (COPT). The cumulative distribution 196 

function (CDF) 𝐶(𝑥; 𝑛)  of the net demand is the total system demand minus the 197 

convolution of the probability distribution function (PDF) of realized RES production 198 

with the negative cumulative nodal COPT in each of the nodes of the scenario tree. 199 

The 𝑞𝑡ℎ quantile of the net demand distribution can be calculated as 𝑥: 𝐶(𝑥; 𝑛) = 𝑞 by 200 

using a numerical root-finding algorithm. The nodal probability 𝜋(𝑛) is obtained using 201 

the trapezium rule [22]. More scenarios would lead to a better representation of system 202 

uncertainty and therefore more efficient operation of the system. However, large 203 
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amount of scenarios would also cause a significant computational burden. Nine 204 

scenarios are selected in this study, which is shown to be a good balance between 205 

accuracy and computational time in [22]. 206 

 207 

3.1.2 Advanced Stochastic Unit Commitment (ASUC) model 208 

The objective of the stochastic scheduling is to minimize the expected operation cost: 209 

∑ 𝜋(𝑛) (∑ 𝐶𝑔(𝑛) + ∆𝜏(𝑛)(𝑐𝐿𝑆𝑃𝐿𝑆(𝑛))

𝑔𝜖𝐺

)                                     

𝑛∈𝑁

(1) 

subject to the system-level constraints, including load balance constraint and frequency 210 

response constraints; local constraints for thermal units, such as minimum and 211 

maximum generation, commitment time, minimum up and down times, ramping rates, 212 

fast frequency response provision, as well as for storage units; details on these 213 

constraints and the equations describing generation costs are presented in [21].  214 

A generic demand-side response model is adopted to describe smart EVs/HPs. 215 

Constraints associated with smart operation of EVs/HPs are modelled as: a) Total 216 

shifted energy (2); b) Maximum percentage of demand can be shifted in/out in each 217 

hour (3); c) Maximum/minimum amount of total shifted energy (4); d) Daily balancing of 218 

energy shifting (5); e) Maximum frequency response capability (6)-(7). 219 

𝐸(𝑛) = 𝐸(𝑎(𝑛)) + 𝑃𝑐(𝑛) − 𝐻𝑖𝑛𝑡(𝑛)                                         (2) 

(1 − 𝜆)𝐻𝑖𝑛𝑡(𝑛) ≤ 𝑃𝑐(𝑛) ≤ (1 + 𝜆)𝐻𝑖𝑛𝑡(𝑛)                                  (3) 

𝐸𝑚𝑖𝑛 ≤ 𝐸(𝑛) ≤ 𝐸𝑚𝑎𝑥                                                             (4) 

𝐸(𝑛) = 0 𝑖𝑓 𝑡(𝑛) = 0                                                            (5) 

0 ≤ 𝑅(𝑛) ≤ 𝛽𝑚𝑎𝑥 𝐻𝑖𝑛𝑡(𝑛)                                                       (6) 

  𝑅𝑠(𝑛) ≤ (𝑃𝑐(𝑛) − (1 − 𝜆)𝐻𝑖𝑛𝑡(𝑛))                                            (7) 220 

where 𝐻𝑖𝑛𝑡(𝑛) is defined as unmodified demand for EVs or HPs, 𝐸(𝑛) is total shifted 221 

demand, 𝜆 is the elasticity of EVs/HPs demand, 𝐸𝑚𝑖𝑛/𝐸𝑚𝑎𝑥 is the minimum/maximum 222 

amount of the shifted demand, 𝑡(𝑛)   is the time corresponding to node n, 𝑅(𝑛)  is 223 

frequency response provision from EVs/HPs, 𝛽𝑚𝑎𝑥  is the maximum percentage of 224 

EVs/HPs demand that could contribute to frequency response. 225 

 226 

3.1.3 Advantages of ASUC model in analysing the benefits of smart EVs and HPs 227 

The ASUC model is capable of dynamically scheduling spinning and standing reserve 228 

in the system to ensure that a given level of security of supply is maintained at 229 

minimum cost.  Therefore, operating reserve requirements are endogenously optimised 230 

within the model. Since smart EVs/HPs can contribute to reserve provision, optimal 231 
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scheduling of various types of reserve is critical to understand the impact of smart EVs 232 

/HPs on the system operation. At the same time, stochastic scheduling also enables to 233 

optimally split the capacity of EVs and HPs between energy arbitrage and ancillary 234 

service provision under different system conditions.  235 

Furthermore, the ASUC model considers the required level of frequency response in 236 

the system, taking into account the effect of reduced system inertia at high RES 237 

penetrations. Given that intermittent RES is expected to gradually replace conventional 238 

generation, the aggregated inertia in the system provided by rotating synchronous 239 

machines will decrease, requiring more frequency response to maintain the frequency 240 

within the statutory limits. If the required frequency response is provided only by part-241 

loaded plants, this may lead to RES curtailment and lower operating efficiency of 242 

conventional plants, eventually increasing carbon emission and RES integration cost. It 243 

is therefore important to consider this effect when quantifying the benefits of frequency 244 

response provision from smart EVs/HPs. Figure 6 illustrates the frequency response 245 

requirements for varying levels of load and RES generation in the future UK system. 246 

 247 
Figure 6 Inertia-dependent frequency response requirements 248 

 249 
3.2 Scenarios for carbon impact assessment of future UK electricity system 250 

In this paper we use two scenarios for 2030 from a recent report on synergies and 251 

conflicts in the use of DSR [23], Green World (GW) and Slow Progression (SP), 252 

including the associated generation capacities and demand profiles. Demand data also 253 

includes the assumptions on electrification of transport and heating demand, as 254 

specified in the following sections. The 2050 scenario used in the study is based on a 255 

High Renewable (HR) scenario from DECC Carbon Plan [24], with fluctuations of 256 

hourly demand constructed as in [14]. The assumed generation capacity in the UK 257 

system in 2030 and 2050 is presented in Figure 7.  258 
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(a) 2030 Green World (GW) (b) 2030 Slow Progression (SP) 

 
(C) 2050 High Renewable (HR) 

Figure 7 Generation capacity mix for different UK system scenarios in 2030 and 2050 259 
Generation capacity in 2030 GW scenario is about 140 GW, of which 72.8 GW is RES 260 

generation (56.9 GW of wind and 15.8 GW of PV). Total installed capacity in 2030 SP 261 

scenario is around 104 GW, of which 41.7 GW is RES generation (34.4 GW of wind 262 

and 6.1 GW of PV). In the 2050 HR scenario there is 226 GW of installed generation, 263 

42% of which is contributed by RES capacity. The penetration of RES with respect to 264 

meeting annual electricity demand is 31%, 47% and 54% in 2030 SP, 2030 GW and 265 

2050 HR, respectively. 266 

The demand assumptions are shown in Table 1. The base demand (excluding EVs and 267 

HPs demand) is the same for 2030 GW and 2030 SP scenarios, with the annual 268 

consumption of 344 TWh and peak demand of 59.1 GW. The EVs and HPs demand on 269 

the other hand is much higher in the GW scenario. The base demand increases 270 

moderately in 2050 HR scenario, however, the EVs and HPs demand increases more 271 

than twice compared with the 2030 GW scenario. Whereas Section 2 illustrated the 272 

typical EV and HP demand profiles for residential users, the EV and HP demand 273 

figures in Table 1 included both residential and commercial sectors. 274 

Table 1 Demand Information for the UK system in 2030 and 2050 275 

 
Annual Demand Annual EV demand Annual HP demand 

2030 Green World (GW) 344 TWh 18 TWh 53 TWh 
2030 Slow Progression (SP) 344 TWh 6.6 TWh 24.9 TWh 
2050 High Renewable (HR) 374 TWh 42.7 TWh 110 TWh 

 276 

Representative annual EV and HP demand profiles for the UK are constructed based 277 

on peak demand profiles presented in Section 2, adjusted for the impact of typical 278 
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annual temperature variations on EV and HP consumption, as elaborated in [19] and 279 

[20]. 280 

4. Quantitative assessment of carbon impact of smart EVs and HPs 281 

In this section, the methodology described in Section 3 is applied to quantify the carbon 282 

impact of smart EVs/HPs in 2030 and 2050 UK systems. 283 

 284 

4.1 Approach to quantifying the carbon impact of smart EVs/HPs 285 

The carbon impact of smart EVs/HPs is assessed by comparing the annual system 286 

emissions with and without smart operation of EVs/HPs. Smart EVs/HPs operation can 287 

contribute to carbon emission reduction via three main drivers: (i) improved efficiency 288 

of conventional generation due to less variable net demand with lower peaks; 289 

(ii) reduced need to curtail RES output when there is excess energy in the system, as 290 

the surplus output can be absorbed by smart shifting EVs/HPs demand; and 291 

(iii) reduced need to run part-loaded conventional generation to provide frequency 292 

response, if this can be replaced by the same service provided by smart EVs/HPs. 293 

In cases where it is assumed that EVs/HPs are capable of providing frequency 294 

response (FR), this was assumed to be implemented through rapid disconnection of a 295 

fraction of EVs/HPs demand. The disconnection would not compromise the end user 296 

requirements given the relatively short duration of interrupted charging or HPs 297 

operation and the availability of stored energy in the form of EVs batteries or heat 298 

storage as part of smart HP systems. The analysed cases are summarized in Table 2.  299 

Table 2 Description of Case Studies 300 
  Assumptions 𝜆 𝛽𝑚𝑎𝑥 

1 Non-smart No smartness/flexibility from EVs and HPs 0 0 
2 Smart EV EVs are flexible with low frequency response capability  0 0.05 
3 Smart EV/ FR EVs are flexible with high frequency response capability  80% 0.8 
4 Smart HP HPs are flexible without response capability  0 0 
5 Smart HP/ FR HPs are flexible with high response capability 35% 0.8 

Based on the carbon emissions obtained from the simulation of annual system 301 

operation, the results are presented through three different metrics. Firstly, average 302 

system emission rate is defined as the ratio of total system carbon emission over the 303 

total system demand: 304 

Average system emission rate =
Total system carbon emission

 Total system demand
 

The second metric is the incremental carbon emission, which is the ratio of incremental 305 

carbon emissions driven by adding EVs/HPs demand to the existing electricity demand: 306 

Incremental carbon emission rate =
Carbon emissions driven by  EVs/HPs demand

EVs/HPs demand
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 The third metric is the carbon emission reduction per unit of energy of “smart” demand, 307 

which is calculated as the ratio of total system emission reduction caused by smart 308 

EVs/HPs over the corresponding EVs/HPs demand:  309 

Carbon emission reduction per unit =
Total system emission reduction 

EVs/HPs demand
 

4.2 Carbon benefits of smart EVs/HPs 310 

4.2.1 Average system emissions 311 

Carbon emissions from today’s UK electricity system are around 450 g/kWh.‡ With the 312 

expansion of zero- and low-carbon technologies and retirement of high-emitting plants 313 

such as coal, the grid emissions are expected to reduce substantially. Scenarios 314 

analysed in this paper already reflect the decarbonisation of the electricity system, so 315 

the objective of case studies presented here is to estimate to which extent EVs/HPs 316 

can support an even more ambitious decarbonisation of electricity supply. 317 

In the first step, the annual operation of the system is simulated without any flexibility 318 

contribution from EVs/HPs. As shown in the Non-smart cases in Figure 8, the average 319 

emission rate for the 2030 GW scenario is 115 g/kWh, while due to lower penetration of 320 

RES and Nuclear, the emission rate in 2030 SP scenario is around 150 g/kWh. The 321 

combination of high penetration of RES, Nuclear and CCS plants in the 2050 HR 322 

scenario leads to a highly decarbonised electricity system with the average emission 323 

rate at around 48 g/kWh. 324 

After establishing the baseline system carbon performance, we proceed to quantify the 325 

carbon benefits of smart EVs/HPs. The results for 2030 GW scenario are presented in 326 

Figure 8 (a). The average system emission rate is reduced by 5 and 8 g/kWh due to 327 

smart EVs and smart HPs, respectively, and this is further reduced by 4 g/kWh and 328 

5 g/kWh if smart EVs/HPs can contribute to frequency response. Although smart EVs 329 

are in general more flexible than smart HPs, the reduction caused by HPs is higher due 330 

to higher volume of HPs demand.  331 

As shown in Figure 8 (b), similar trends are observed in 2030 SP scenario, however 332 

the carbon impact of smart EVs/HPs is less significant, partly due to lower RES 333 

penetration, but also because the penetrations of EVs/HPs are also lower when 334 

compared with 2030 GW scenario.  335 

The carbon impact of smart EVs/HPs in the 2050 HR scenario is illustrated in Figure 8 336 

(c). Although the electricity sector in this scenario is already largely decarbonised, 337 

smart EVs/HPs could effectively further reduce the average emission rate by up to 338 

15 g/kWh. Because of a higher penetration of EVs and HPs than in the two 2030 339 

                                                
‡
 DECC, “2014 Government GHG Conversion Factors for Company Reporting: Methodology 

Paper for Emission Factors”, July 2014. 
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scenarios, the average emission rate could be reduced from 48 g/kWh in the non-smart 340 

case to 38 g/kWh and 36 g/kWh by smart EVs and HPs, respectively. The provision of 341 

frequency response from smart EVs/HPs results in a very small additional carbon 342 

benefits due to the fact that the frequency response in the non-smart case is provided 343 

by low-emitting CCS plants, so the displacement of those, although economically 344 

beneficial, does not yield significant improvements in carbon performance. 345 

 346 
(a) 2030 Green World (GW)                                  (b) 2030 Slow Progression (SP) 347 

 348 
(C) 2050 High Renewable (HR) 349 

Figure 8 Impact of smart EVs and HPs on average system carbon emissions  350 
 351 

4.2.2 Carbon intensity of supplying electrified transport and heat demand 352 

As the transport and heating sector become progressively electrified, additional 353 

electricity demand will need to be supplied by the power system, in particular during 354 

peak time, which may potentially increase the carbon intensity of electricity supply. For 355 

an effective decarbonisation of the overall economy, carbon increases in the electricity 356 

sector should be more than offset by carbon savings from the reduced use of fossil 357 

fuels in transport and heating. Note that in this paper we do not quantify the 358 

implications of reduced carbon emissions in those two sectors but rather focus on the 359 

impact on the electricity sector. Figure 9 shows the weighted average carbon intensity 360 

of the electricity consumed by EVs/HPs. The intensities of EVs/HPs demand have 361 

been found for non-smart, smart and smart/FR cases, by quantifying grid emissions in 362 

each hour during the year and averaging them over the volume of EVs/HPs demand 363 
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while using hourly EVs/HPs demand levels as weighting factors. For each of the cases 364 

included in Figure 9, the average system emissions (as in Figure 8) as vertical error 365 

bars are also presented. 366 

It is observed that the carbon intensity in the non-smart cases is significantly higher 367 

than that in smart operation cases. We further note that the carbon intensity of HPs 368 

demand is consistently higher than average emission rate of the whole system, 369 

regardless of the scenario and the level of smartness. This follows from the fact that 370 

HPs are mostly used during winter when demand is generally higher, requiring the use 371 

of more expensive and more carbon-intensive plants (such as e.g. CCGT and OCGT 372 

units). That is why even when HPs follow smart operation strategies and consequently 373 

reduce total system emissions; their average emission rate is still above the overall 374 

system average. Carbon intensity of EV demand in the non-smart cases is around or 375 

slightly above the average system emissions, but when smart EV charging strategies 376 

are implemented, the emissions associated with EV demand decline rapidly, also 377 

causing a decrease in the total system emissions. 378 

  
(a) 2030 Green World (GW) (b) 2030 Slow Progression (SP) 

 
(C) 2050 High Renewable (HR) 

Figure 9 Carbon emission intensity of supplying EV and HP demand  379 
In particular, under the 2030 GW scenario the carbon emission rate of EV demand is 380 

reduced from 116 to 105 g/kWh by smart charging, and further reduced to around 381 

99 g/kWh in the case with frequency response from EVs. Due to lower relative flexibility 382 

associated with smart HP operation, as well as its seasonal character, the decrease in 383 

the carbon emission rate driven by smart HP operation, when expressed per kWh of 384 
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HP demand, is slower than for smart EVs, but is still able to reduce the emission rate 385 

by 14 g/kWh in the case with frequency response provision. 386 

In the 2030 SP scenario, shown in Figure 9(b), similar trends for carbon emission rates 387 

of EVs/HPs demand are observed as in the 2030 GW scenario. However, due to the 388 

lower penetration of RES and nuclear capacity, the ability of smart EVs and HPs to 389 

reduce carbon emissions is not as pronounced as in the GW scenario. The emission 390 

rate, which already starts from a comparably higher level than in the 2030 GW scenario 391 

(over 150 g/kWh), reduces by only 9 and 5 g/kWh for EVs and HPs demand, 392 

respectively, when fully smart operation is accompanied by FR provision. 393 

Finally, the results presented in Figure 9(c) demonstrate the carbon emission rate of 394 

EVs/HPs demand in 2050 HR scenario. In the non-smart case, the average emission 395 

rate of the whole system is rather low (48 g/kWh), although the carbon emission rate 396 

associated with EV and HP demand is slightly higher (57 and 55 g/kWh, respectively). 397 

Smart operation strategies reduce the carbon intensity to 30 g/kWh for EVs and 398 

38 g/kWh for HPs; both of these figures represent a significant relative reduction from 399 

the non-smart cases. We again observe that smart EVs operation is more effective in 400 

reducing system carbon emissions than smart HPs operation due to the flexibility and 401 

seasonality of HPs demand. 402 

 403 

4.2.3 Avoided emissions per unit of smart EVs/HPs 404 

This section estimates the carbon savings driven by the deployment of smart EVs/HPs 405 

expressed as annual carbon reduction per unit of “smart” demand. As shown in 406 

Figure 10, both EVs and HPs lead to a significant carbon emission reduction per unit 407 

demand. These carbon savings in many cases exceed the average system emissions, 408 

which means that in some cases the carbon impact of smart EVs/HPs is even better 409 

than carbon-neutral, i.e. they are able to create a net offset in carbon emissions per 410 

unit of smart demand. 411 

In general, smart EVs show the most prominent reduction per unit demand, up to 412 

220 g/kWh in the 2030 GW scenario, and 150 g/kWh in the 2030 SP and 2050 HR 413 

scenarios. Due to limited flexibility, smart HPs generate the lower carbon emission 414 

reduction per unit demand, but still could reduce the emissions by around 50-415 

100 g/kWh under different scenarios. 416 
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 417 

(a) 2030 Green World (GW)                                         (b) 2030 Slow Progression (SP) 418 

 419 
(C) 2050 High Renewable (HR) 420 

Figure 10 Carbon emission reduction per unit of “smart” demand 421 
 422 

4.3 Summary of findings 423 

Table 3 provides a summary of the carbon benefits per unit demand for smart EVs/HPs 424 

across proposed scenarios. Our studies on carbon impact of smart EVs/HPs suggest: 425 

1. Carbon benefits of smart EVs/HPs expressed per unit of smart demand are driven 426 

by their flexibility to shift demand and provide frequency response. 427 

2. Carbon benefits of smart EVs/HPs increase if they provide frequency response in 428 

addition to demand shifting. These additional benefits are significant in 2030 429 

scenarios.  430 

3. Carbon benefits are generally more pronounced with higher intermittent RES 431 

penetration, but can be limited if the non-renewable generation capacity on the 432 

system is mostly zero-carbon (as in the 2050 HR scenario). 433 

4. Integration of electrified transport and heating demand is significantly less carbon 434 

intensive if smart operation strategies are adopted. 435 

Table 3 Summary of carbon benefit per unit demand of smart EVs/HPs 436 
(in gCO2/kWh) 2030 GW 2030 SP 2050 HR 

EV 92-151 114-218 129-152 
HP 46-78 65-109 58-68 

 437 
5. Impact of smart EVs and HPs on renewable integration cost 438 
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In this section we investigate the impact of EVs/HPs on the integration cost of RES. 439 

ASUC model is applied to quantify the cost reductions associated with lower back-up 440 

capacity requirements, reduced system balancing cost and reduced CAPEX due to 441 

avoided investment in low-carbon capacity to reach the CO2 target. 442 

 443 

5.1 Challenges of RES integration 444 

UK has a very significant wind power resource with almost 12 GW of installed capacity 445 

at the end of 2014. Similarly, the UK system has recently seen a rapid increase in the 446 

number of solar PV installations. A key feature of wind as well as PV generation is the 447 

variability (intermittency) of the primary energy source.  448 

These system integration impacts need to be assessed in order for the overall system 449 

cost of intermittent RES to be quantified. As indicated in Figure 11, the total Whole-450 

System Cost (WSC) of intermittent RES consists of their Levelised Cost of Electricity 451 

(LCOE) and the system integration cost of RES. The latter is defined as the additional 452 

infrastructure and/or operating costs to the system as a result of integrating RES. 453 

 454 
Figure 11 Whole-system cost of intermittent RES 455 

LCOE considers the capital cost and O&M cost of RES technologies over their project 456 

life while the system integration cost of RES includes the system capacity costs 457 

associated with capacity needed for security, balancing costs and the impact of the 458 

RES output patterns.§ Other components of system integration cost, not considered in 459 

this paper, may include transmission and distribution network costs, as well as the cost 460 

of network losses; these components would reflect any requirement to reinforce 461 

transmission and distribution networks in order to accommodate RES generation. In 462 

this paper we focus on the capability of smart EVs/HPs to reduce the system 463 

integration cost of RES. 464 

As the system integration cost of RES due to increased requirements for back-up 465 

capacity and provision of ancillary services is significant, it is important to implement 466 

                                                
§
 For instance, a renewable technology generating the highest electricity output during system 

peak demand would have a lower integration cost than the alternative technology that produces 
the same output annually, but provides the highest output during off-peak conditions. 
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new operating approaches that can minimise the integration costs. In this context, we 467 

will quantify the benefits of smart EVs/HPs for reducing the system integration cost of 468 

RES. The benefits are assessed in the three categories discussed below: 469 

1. Reduced backup capacity cost (Backup). Smart EVs/HPs have the capability of 470 

shifting demand i.e. modifying the effective (net) demand profile seen by 471 

conventional generators. If the smart EVs/HPs are operated so that they reduce the 472 

net peak demand, this will also reduce the requirement for generation capacity 473 

margin in the system while maintaining security of supply. In other words, smart 474 

EVs/HPs may improve the capacity value of RES. Reduction in backup capacity 475 

cost due to improved capacity value is quantified according to [25]. 476 

2. Reduced balancing operating cost (Balancing). This component of the RES 477 

integration cost reflects the increased need to provide ancillary services in the 478 

system with high RES penetration, as well as the occasional necessity to curtail 479 

RES output in order to balance the system (e.g. at times of low demand and high 480 

RES output). Smart EVs/HPs have the potential to absorb some of this output that 481 

would otherwise be curtailed, while at the same time provide ancillary services that 482 

would otherwise have to be provided by conventional plants at a considerable cost. 483 

3. Reduced investment cost associated with balancing (Balancing (CAPEX)). In the 484 

context of a specific CO2 target, reducing the curtailment of RES output by 485 

deploying smart EVs/HPs also means that less additional zero- or low-carbon 486 

generation capacity will need to be built in order to meet the carbon target. We 487 

quantify this component of RES integration cost savings by assuming reduced RES 488 

output required less CCS capacity to be built.** 489 

5.2 Case studies 490 

The studies are based on the future UK scenarios described in Section 3.2. 491 

Assumption for each case study remains the same as that in Section 4, which can be 492 

found in Table 2. The simulations are firstly carried out to characterise the annual 493 

operation of the system as well as necessary RES curtailment without any flexibility 494 

contribution from EVs/HPs (i.e. the non-smart case). After establishing the baseline 495 

RES balancing cost, benefits of EVs/HPs for RES integration are assessed by 496 

comparing the key characteristics of smart and non-smart cases: operating cost, 497 

backup capacity requirement and RES curtailment. The benefits are expressed as 498 

annual integration cost savings (with the three components defined in the previous 499 

section) divided by the volume of absorbed annual RES output. In all studies we treat 500 

                                                
**
 In the studies presented here we assume the future investment cost of CCS capacity of 

£1,313.8/kW, lifetime of 25 years and the discount rate of 10%. 
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wind and solar PV collectively as intermittent RES, although in the model these two 501 

were disaggregated as illustrated at the end of this section.  502 

Figure 12 (a) presents the benefit of smart EVs/HPs for reducing RES integration cost 503 

in 2030 GW scenario. Total integration cost savings for EVs/HPs vary between about 504 

£2 and £5/MW. The greatest integration cost savings are achieved with smart HP 505 

operation, mostly because of the large volume of flexible HP demand assumed in this 506 

scenario. Similar to the carbon impact, provision of frequency response could largely 507 

increase the value of smart EVs/HPs.  It is also observed that the three components of 508 

RES integration benefits arise in broadly similar proportions. 509 

 510 
(a)  2030 Green World (GW)                                         (b) 2030 Slow Progression (SP) 511 

 512 
(C) 2050 High Renewable (HR) 513 

Figure 12 Reduced RES integration cost from smart EVs and HPs  514 
Results for the same set of case studies but for the 2030 SP scenario are presented in 515 

Figure 12 (b). Similar trends are observed as that in the 2030 GW scenario, although 516 

the benefits tend to be lower. Total integration cost savings for EVs/HPs vary between 517 

£1 and £3/MWh. 518 

Finally, Figure 12 (c) shows the RES integration cost savings with smart EVs/HPs in 519 

the 2050 HR scenario. Total integration cost savings for EVs/HPs are now highest 520 

among all the scenarios, which lies between £3.8 and £6.5/MWh. The backup saving 521 

component for smart EVs/HPs increases significantly due to the large deployment of 522 

these technologies in 2050 HR scenario. The balancing CAPEX component in this 523 

scenario exceeds those seen in the other two scenarios, as the deployed volume of 524 

RES, and consequently also of the curtailment, is the greatest.  525 

Finally, integration benefits are allocated separately to wind and solar generation, and 526 

the results suggest that the scale and the composition of benefits vary considerably 527 
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between these two technologies. Figure 13 shows that while smart EVs/HPs reduce 528 

wind curtailment, they may lead to slightly higher PV curtailment as part of the overall 529 

cost-optimal solution (note that the total RES curtailment still reduces). This suggests 530 

that the model is able to identify certain trade-offs, where the flexibility of EVs/HPs is 531 

used to absorb wind output even at the expense of slightly increased PV curtailment, 532 

as it results in a more cost-efficient overall solution. 533 

 534 
Figure 13 Wind and solar PV curtailment in non-smart and smart cases across scenarios 535 
On the example of the 2030 GW scenario, Figure 14 further shows how different 536 

components of system integration benefits generated by smart EVs/HPs may arise in 537 

different proportions if these benefits are allocated to wind and solar capacity according 538 

to the integration cost driven by these two technologies. Wind capacity dominates the 539 

overall RES mix, therefore the integration benefits for wind and total intermittent RES 540 

portfolio differ very little. On the other hand, the benefits for PV integration consist 541 

almost exclusively of backup cost savings, with the balancing OPEX and CAPEX 542 

components almost negligible. As illustrated in the previous figure, this occurs because 543 

smart EVs/HPs are not utilised to reduce PV curtailment, but on the contrary rather 544 

allow the PV curtailment to increase slightly in order to use more attractive 545 

opportunities to save wind curtailment. Increase in PV curtailment is more than offset 546 

by balancing cost savings associated with more efficient system operation, which 547 

results in positive although small savings in balancing OPEX and CAPEX categories. 548 
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 549 
Figure 14 Average wind/solar integration benefits from smart EVs/HPs 550 

 551 
5.3 Average and marginal benefit of smart EVs/HPs 552 

When analysing the benefit of smart EVs/HPs, their benefits are distributed in terms of 553 

reduced integration cost across the entire output of intermittent RES generators in a 554 

given scenario. It is obvious that if an additional unit of RES capacity is added onto a 555 

system that already has significant RES capacity, the additional integration cost of the 556 

added capacity is likely to be higher than the average integration cost of the entire RES 557 

portfolio. This is due to the fact that as more RES are added to the system, it becomes 558 

progressively more difficult to absorb their output without having to resort to 559 

curtailment. Therefore, in addition to average RES integration benefit described in 560 

Section 5.2, this section quantifies the marginal benefit of smart EVs/HPs, i.e. the 561 

reduction of RES integration cost if a small quantity of RES is added to the capacity 562 

already existing in each scenario. 563 

Figure 15(a) shows the marginal benefits of smart EVs/HPs (with and without 564 

frequency response provision) when a small quantity of RES capacity is added to the 565 

system in 2030 SP, 2030 GW and 2050 HR scenarios. As a comparison, the average 566 

benefits for all three scenarios are presented in Figure 15(b). An immediate 567 

observation is that the marginal benefits exceed comparable average benefits by a 568 

factor of between 2 and 3. This suggests that the value of smart EVs/HPs for 569 

integrating additional RES capacity in a system that already contains a large share of 570 

intermittent renewables is significant. A further conclusion is that decarbonising the 571 

electricity system by integrating large amounts of RES can be much more cost-efficient 572 

if coupled with smart EVs/HPs. 573 

In the two 2030 scenarios the marginal benefits double when frequency response is 574 

provided by EVs/HPs in addition to balancing, whereas in the 2050 HR scenario the 575 

difference between the two smart cases is much smaller. It is further noted that the 576 

dominant component of marginal benefits in the 2030 SP scenario is balancing cost 577 
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(OPEX); in the 2030 GW scenario balancing OPEX savings are commensurate with 578 

balancing-driven CAPEX savings. In the 2050 HR scenario the large volume of RES 579 

curtailment makes the balancing CAPEX benefits the dominant component. 580 

  581 
(a) Marginal     (b) Average 582 

Figure 15 RES integration benefits from deployment of smart EVs/HPs 583 
 584 

5.4 Key findings on renewable integration benefit of smart EVs and HPs 585 

From the studies presented above, it is possible to draw the following conclusions: 586 

1. Smart EVs/HPs have a significant potential to support RES integration by 587 

reducing: balancing cost, required back-up generation capacity and cost of 588 

replacing curtailed RES output with alternative low-carbon technology to 589 

achieve the same emission target. 590 

2. The uptake of EVs/HPs is an important factor in the benefit of RES integration. 591 

3. Average RES integration benefit of smart EVs/HPs varies between £1.5 and 592 

£7/MWh of absorbed RES output across the three scenarios. 593 

4. Marginal RES integration benefit is 2-3 times higher than the average benefit, 594 

suggesting an increasingly important role for smart EVs/HPs in expanding RES 595 

capacity beyond the already high penetrations foreseen in the future. 596 

5. Frequency response provision from EVs/HPs could significantly enhance the 597 

RES integration benefit of smart EVs/HPs. Particularly in the two 2030 598 

scenarios, the marginal benefit doubles if smart EVs/HPs are also capable to 599 

provide frequency response. 600 

6. Conclusions 601 

This paper presents an advanced stochastic analytical framework and the results of a 602 

large number of case studies in order to quantify the benefits of smart EVs/HPs on the 603 

carbon performance and cost of RES integration in the future UK electricity system.  604 

The results suggest that smart EVs/HPs are able to deliver measurable carbon 605 

reductions primarily by enabling the largely decarbonised electricity system to operate 606 

more efficiently. Carbon benefits of smart EVs/HPs, when expressed per unit of smart 607 
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demand appear to be a function of the assumed flexibility of these two demand 608 

categories to shift demand and provide frequency response. Provision of frequency 609 

response in addition to smart balancing significantly increases carbon benefits, 610 

particularly for the systems without large amount of CCS plants. 611 

Carbon benefits of smart EVs/HPs are generally more pronounced in systems with 612 

higher intermittent RES penetration, although there are limits to this trend where the 613 

non-renewable generation capacity on the system is also low- or zero-carbon. 614 

Furthermore, the integration of electrified transport and heating demand is shown to be 615 

significantly less carbon intensive if smart operation strategies are adopted, making a 616 

more positive impact on the overall carbon performance of the economy. 617 

The second set of case studies established that smart EVs/HPs have a significant 618 

potential to support cost-efficient RES integration by reducing: 619 

1. RES balancing cost 620 

2. Cost of required back-up generation capacity 621 

3. Cost of alternative low-carbon technology to offset poorer fuel efficiency and 622 

curtailed RES output while achieving the same emission target 623 

The case studies show that smart EVs/HPs are capable of supporting cost-efficient 624 

decarbonisation of future electricity system by reducing RES integration cost. The 625 

results indicate that the uptake of EVs/HPs is an important factor in the value for RES 626 

integration, as it determines the volume of flexible services that can be provided. 627 

Average RES integration benefit of smart EVs/HPs varies between £1.5 and £7/MWh 628 

of absorbed RES output across the three scenarios. Marginal RES integration benefit is 629 

2-3 times higher than the average benefit, suggesting an important role for smart 630 

EVs/HPs in supporting the expansion of RES capacity even beyond the high shares 631 

foreseen in future scenarios. Moreover, the marginal benefit doubles in the two 2030 632 

scenarios, if smart EVs/HPs are also capable to provide frequency response.  633 
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