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Abstract

We propose a generalized strip modelling method that is computationally efficient for the VIV prediction

of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings

of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are

sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow

around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional

scale resolving model for individual strips, which have local spanwise scale along the cylinder’s axial direction

and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover

the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips

is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics

of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel

Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and

then the VIV response prediction is achieved through the strip-structure interactions. Numerical tests on

both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to

demonstrate the applicability of this approach.
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1. Introduction

Vortex-induced vibration (VIV) of long flexible cylinders is widely encountered in various engineering

fields. For instance, string-like marine risers exposed to strong currents may experience VIV with large am-

plitudes, as a consequence of significant interactions of vortex shedding and structural dynamics. Since such

vibration, particularly in deep water, has the potential to cause severe fatigue failure, how to accurately pre-

dict response features of flexible bodies and understand associated basic flow dynamics has drawn sustainable
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attention in recent decades (Williamson and Govardhan, 2008; Wu et al., 2012).

Two different ways, respectively, of semi-empirical model and computational fluid dynamic (CFD) simu-

lation, are available in the literature for predicting VIV of long flexible cylinders, according to the method

of acquiring hydrodynamic forces exerted on the slender bodies. In the semi-empirical method, such as the

wake-oscillator model (Facchinetti et al., 2004; Gabbai and Benaroya, 2005; Chaplin et al., 2005), the principle

features of vortex shedding are usually described by a dynamic system, which is derived based on experimen-

tal results rather than physical laws. As a consequence, the semi-empirical models are unable to capture the

intrinsic physical mechanisms involved and may lack predictable capability to analyze new configurations or

scenarios. In CFD simulation, the Navier-Stokes equations are employed to solve the flow dynamics in the

physical system and hence compute the fluid forces acting on the bodies, which further couple with structural

dynamic model to simulate the interactions between moving bodies and ambient time-dependent flow fields.

With regards to the CFD modelling, most of the full 3D simulation of long flexible cylinders reported

in the literature have been carried out for the flow regime where turbulent effects were not significant. The

main reason is that full resolutions of cylinder flow with large aspect ratio at high Re are extremely time

consuming with current computer power. In particular, Newman and Karniadakis (1996, 1997) presented

numerical results on VIV of flexible cable at Reynolds numbers of 100 and 200. Later on, Evangelinos

and Karniadakis (1999) and Evangelinos et al. (2000) predicted dynamic responses of a flexible cylinder at

Re = 1000 using the spectral/hp element-Fourier DNS method. A short cylinder was examined in their

simulations under the consideration of computational feasibility and physical reality. A numerical simulation

of a much longer flexible cylinder with the same range of Reynolds number was reported in Lucor et al.

(2001). The flexible body had an aspect ratio greater than 500 and only larger flow structures were captured

due to the very low resolution along the spanwise direction. Bourguet et al. (2011, 2013) conducted DNS

in simulations of VIV of long flexible cylinders within oncoming sheared flows with the maximum Reynolds

number up to 1100. The flexible structure was modeled as an extensible tensioned beam with an aspect ratio

of 200. Holmes et al. (2006) conducted a numerical study of cylinder VIV with an aspect ratio over 1400 in

fully 3-D turbulent flows. In their simulations, they made significant compromises between mesh resolution

and computational effort. Even so, the size of the unstructured meshes used to discretize the entire domain

still reached 10 million. Constantinides and Oakley (2009) performed similar CFD simulations on a cylinder

with an aspect ratio above 4000.

As a more computationally efficient model, strip theory-based VIV modelling technique has also been

proposed previously to predict VIV for higher Reynolds number flows (Huang et al., 2011; Yamamoto et al.,

2004; Meneghini et al., 2004; Sun et al., 2012; Willden and Graham, 2001, 2004a,b). In the strip theory-

based model, the fluid flow solution is obtained on a series of 2D computational planes (also referred to as

“strips”) along the cylinder’s axis. These strips are coupled with each other through the structural dynamic

model of the cylinder, and then the VIV response prediction is achieved by the strip-structure interaction.

Through this model, a large 3D problem can be reduced to a series of smaller 2D problems and decreases

2



the computational cost to a more manageable level. However, an inherent disadvantage of such modelling is

that it is unable to resolve the turbulence effects and much of the three-dimensionality of the flow around

the body. Motivated by this problem, in this paper we have developed a novel strip model in the context

of high-order spectral/hp element framework−Nektar++ (Cantwell et al., 2015). A distinct feature of this

approach is that we have constructed a three-dimensional DNS model with local spanwise scale for each strip,

and thereby addressed the main objection to the traditional 2D strip model.

The outline of this paper is as follows. Section 2 presents the proposed strip model in detail and section

3 shows the numerical method used to solve this fluid-structure interaction problem. In section 4 we present

some results for laminar and turbulent flow regimes, including a direct comparison with a fully resolved case,

respectively, and in section 5 we discuss on the scale of the width of strips. Some conclusions are drawn in

section 6.

2. “Thick” strip based VIV model

We consider a three-dimensional incompressible flow past a long slender and flexible cylinder with an

aspect ratio of Lc/D � 1, where Lc is the spanwise length of the cylinder and D is the cross-sectional

diameter. Further, we assume global periodicity along the cylinder’s length on both the flow and structure

variables. In the 2D strip theory, it is assumed that the flow is locally two-dimensional without spanwise

correlation, which allows the problem to be split into various 2D planes. A consequence of 2D strip solution

under this assumption is that it is unable to reflect the influence of wake turbulence on the structural

dynamics. In order to overcome this problem, a spanwise scale is locally allocated to each of the strips in

the current approach, so that the spanwise velocity correlation is reconstructed locally in the flow field. We

propose this as a natural extension to the standard strip theory since the largest spanwise wavelength of a

turbulent wake (which is of the order of the diameter) is typically much shorter than the excited vibration

mode typically observed in a high-aspect ratio cylinder undergoing vortex wave interaction (of the order of

the spanwise length). A sketch of the proposed approach is plotted in Fig. 1. In particular, this model

lets the fluid domain be divided into N strips with non-dimensional thickness of Lz/D evenly distributed

along the spanwise (z′) direction. The gap between the neighboring strips, represented by Lg, satisfies the

relation Lc = Lz + (N − 1)(Lz + Lg). Since the strip in this model has finite scale in the z′-direction, we

have named it “thick” strip to distinguish it from the conventional 2D strip approximations. Next, the flow

dynamics are modeled by a series of incompressible Navier-Stokes equations in an inertial coordinate system

x′(t) = (x′(t), y′(t), z′). Then, a sequence of strip-domains is given by

Ω ′n(t) := {x′(t)|(x′(t), y′(t)) ∈ R2, z′ ∈ [n(Lz + Lg), Lz + n(Lz + Lg)]}n=[0,N−1] (1)

and the governing equation is written over a general local domain Ω ′n in non-dimensional form as

∂u′n
∂t

+ (u′n · ∇′)u′n = − 1

ρf
∇′p′n + ν∇′2u′n on Ω ′n (2)
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∇′ · u′n = 0 on Ω ′n (3)

where the vector u′n = (u′n, v
′
n, w

′
n) denotes the fluid velocity and p′n is the fluid’s dynamic pressure for the nth

strip, and ν is the kinematic viscosity associated with Reynolds number, defined as Re = U∞D/ν. U∞ is the

incoming velocity and ρf is the density of the fluid. The governing equations (2) and (3) are supplemented

by boundary conditions of either Dirichlet or Neumann type. For the Dirichlet type, the velocity is imposed

in general as

u′n = gn(x′, t) (4)

where gn is the prescribed boundary value, while for the Neumann type neither velocity nor pressure is

known.
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Figure 1: A sketch of the “thick” strip model for vortex-induced vibration of a flexible cylinder.

A linearized tensioned beam model is employed to govern the dynamics of the flexible structure and can

be expressed by the following equation

ρc
∂2ξ

∂t2
+ c

∂ξ

∂t
= T

∂2ξ

∂z′2
− EI ∂

4ξ

∂z′4
+ F(z′, t) z′ ∈ [0, Lc] (5)

where ρc is the structural mass per unit length, c is the structural damping per unit length. T is the cylinder

tension and EI is the flexural rigidity. F(z′, t) denotes the vector of hydrodynamic force (per unit length)

with two components of (FD, FL), respectively of the inline (IL) and crossflow (CF) directions, exerted on

the structure’s wall. The structural displacement ξ(z′, t) has two components which will be denoted as ξ and

η, respectively, corresponding to the IL and CF directions. In the following implementation we discretize the

spanwise direction of the structural model with a Fourier expansion, so that the partial differential equations

reduce to a set of ordinary differential equations, which are further integrated using the Newmark–β method.

How to construct the connection between the discrete strips is an essential aspect of this prediction model,

and, typically, we represent it implicitly through the structural dynamic model. As regards to the dynamic
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continuity condition, the instantaneous hydrodynamic force per unit span length distribution along the nth

strip is expressed as

Fn(z′, t) =

∮
Γ ′

(−p′nn′ + ν∇′u′n · n′) dΓ ′ z′ ∈ [n(Lz + Lg), Lz + n(Lz + Lg)] (6)

where n′ is the outward-pointing unit vector normal to the surface of the cross-section of the cylinder,

represented by Γ ′.

Under the scenario of N = 1 and Lz = Lc, the fully resolved case is recovered from the strip modelling,

since in this limit a single thick strip would fill the full 3D domain. For the situation of N > 1 with Lz > 0 and

Lg > 0, we need to build the coupling between the strips by filling the gaps between them. To implement this,

we need sampling Fn(z′, t) at equispaced points {z′k}n := {z′k = n(Lz + Lg) + k/K · Lz}n∈[0,N−1],k∈[0,K−1],

where K is the number of points (uniformly distributed) over each strip. Further, a set of points is obtained

from union operation for all strips as {z′nk} :=
⋃N−1
n=0 {z′k}n, which is in general non-uniformly distributed

along the spanwise direction. Next, we define the discrete Fourier transform (DFT) as

F(F(z′nk, t)) := F̂(ζ ′rs, t) =

N−1∑
n=0

K−1∑
k=0

F(z′nk, t)e
−i2π/Lc(r·K+s)z′nk (7)

Here, the sampling points in the Fourier domain are equispaced and given by {ζ ′rs} := {ζ ′rs = 2π(r · K +

s)/(N ·K)}r∈[0,N−1],s∈[0,K−1]. A reconstruction in the physical domain is then implemented from the following

inverse discrete Fourier transform (IDFT), which is defined as

F−1(F̂(ζ ′rs, t)) := F(ž′nk, t) =
1

(N ·K)

N−1∑
r=0

K−1∑
s=0

F̂(ζ ′rs, t)e
i2π(n·K+k)/(N ·K)(r·K+s) (8)

The set of points, which is evenly sampling the physical domain after an inverse Fourier transformation, is

finally expressed by {ž′nk} := {ž′nk = (n ·K + k)/(N ·K)Lc}n∈[0,N−1],k∈[0,K−1].

It is important to remark here that a standard fast Fourier transform (FFT) algorithm, which allows the

calculation to be computed in O(N ·Klog(N ·K)) operations rather than O((N ·K)2), is no longer applicable

for the computation of the DFT defined by (7) in the situation of K > 1, due to the nonequispaced sampling

sequence {z′nk}. Over the last decade, a number of numerically efficient algorithms have been developed to

overcome this limitation and are often referred to as nonuniform FFTs (NUFFTs). We refer the interested

reader to (Greengard and Lee, 2004; Fessler and Bradley, 2003) for the implementation details of the NUFFTs.

Nevertheless, a standard FFT algorithm is still applicable for the case of K = 1, that is, when a single point

is used to describe the kinematics of each strip. Under this situation, we take the homogeneous average of

the hydrodynamic forces over the strip-domain, such that

F(z′nk, t) =
1

Lz

∫ Lz+n(Lz+Lg)

n(Lz+Lg)

Fn(z′, t) dz′ (k = 0) (9)

Equivalently, the above equation can be treated as the zeroth-order wave component of forces for each strip.

As a consequence, the sampling in the DFT then recovers to be a equispaced sequence in the physical domain.
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However, such treatment requires an assumption of λc � Lz/D, where λc is the minimum wavelength of the

oscillation of the cylinder, since this approximation will be eventually missing some information related to

higher order derivatives with respect to z′-direction.

In the current work, we consider only the reconstruction based on a standard DFT transform in uniform

spaced sampling with K = 1. Because in this simplification the homogeneous periodicity is satisfied in

the spanwise direction to the local flow within individual strips, therefore it enables the use of spectral

element-Fourier methods to the flow simulations in the strip-domains independently.

The kinematic continuity for the nth strip is stated simply as

u′n = ∂ξn(z′, t)/∂t = ∂ξ(z′, t)/∂t z′ ∈ [n(Lz + Lg), Lz + n(Lz + Lg)] (10)

where ξn represents the displacement vector of the nth strip. In order to associate to the approximation of

(9), the above condition is reduced to

u′n = ∂ξn(z′, t)/∂t = ∂ξ(z′nk, t)/∂t (k = 0) (11)

The simplified condition of (11) then indicates that the discrete strips with this condition would move as a

solid region and so only allow the IL and CF motions.

The coupled system of incompressible flow and moving bodies are solved in the Nektar++ spectral/hp

element framework (Cantwell et al., 2015; Web, 2014). A body-fitted coordinate formulation is used to

accommodate the moving boundary, therefore, the moving body’s influence upon the surrounding flows is

embedded in adding acceleration term to the Navier-Stokes equations with non-inertial transformation. More

details will be shown in Section 3.

3. Numerical methods

3.1. Coordinate Mapping

Solving the flow around flexible cylinders involves fluid-structure interaction, which requires specific treat-

ment of moving boundary conditions. A relatively simple approach that can be used to tackle this situation

is setting the coordinate system to be fixed in the moving body (Newman and Karniadakis, 1996; Li et al.,

2002). One significant advantage is that it avoids the dynamic re-meshing of the computational domain, but

it comes at the cost of increasing the complexity of the governing equations. The coordinate transformation

is required to map the flow fields from the inertial domain Ω ′n(t) to the body-fitted domain Ωn, which is given

by

Ωn := {x = (x, y, z)|(x, y) ∈ R2, z ∈ [n(Lz + Lg), Lz + n(Lz + Lg)]}n=[0,N−1] (12)

We define the mapping with respect to the cylinder’s motion as
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Ω ′n(t)→ Ωn : x = x′(t)− ξn(z′, t), y = y′(t)− ηn(z′, t), z = z′ (13)

According to this linear mapping, the field variables of velocity un = (un, vn, wn) and pn in the body-fitted

system are easily obtained as

un = u′n − ∂ξn(z′, t)/∂t, vn = v′n − ∂ηn(z′, t)/∂t, wn = w′n, pn = p′n (14)

As the coordinate transformation is applied to the governing equations (2) and (3), the Navier-Stokes and

continuity equations, then become

∂un
∂t

+ (un · ∇)un = −∇pn + ν∇2un + fn on Ωn (15)

∇ · un = 0 on Ωn (16)

with the Dirichlet boundary condition of equation (4) in the body-fitted system transformed as

un = gn − ∂ξn(z, t)/∂t (17)

In particular, on the wall of the body, it becomes un = 0. A high order outflow boundary condition is applied

to supplement the governing eqs. (15) and (16), as

−pnn + νn · ∇un −
1

2
|un|2 S0(n · un) = 0 (18)

where n is the outward-pointing unit vector normal to the outlet, and |un| denotes the magnitude of velocity

un. The smoothing function S0(n · un) is chosen by Dong et al. (2014) as

S0(n · un) =
1

2

(
1− tanh

n · un
U0δ

)
(19)

where U0 is the characteristic velocity scale, and δ > 0 is a chosen non-dimensional positive constant that is

sufficiently small.

The additional forcing term fn = (fnx, fny, fnz) appears in the transformed momentum equation (15) to

take account of the acceleration of the transformed axes in each strip. The three components of this term

are given as

fnx = −d
2ξn
dt2

+
1

Re

[
∂2

∂z′′2
(un +

∂ξn
∂z

wn)− ∂2un
∂z2

+
∂ξn
∂z
∇2
xywn +

∂3ξn
∂t∂z2

]
(20a)

fny = −d
2ηn
dt2

+
1

Re

[
∂2

∂z′′2
(vn +

∂ηn
∂z

wn)− ∂2vn
∂z2

+
∂ηn
∂z
∇2
xywn +

∂3ηn
∂t∂z2

]
(20b)

fnz =
∂ξn
∂z

∂pn
∂x

+
∂ηn
∂z

∂pn
∂y

+
1

Re

[
∂2wn
∂z′′2

− ∂2wn
∂z2

]
(20c)
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where we define

d

dt
≡ ∂

∂t
+ un

∂

∂x
+ vn

∂

∂y
+ wn

∂

∂z
(21a)

∂

∂z′′
≡ ∂

∂z
− ∂ξn

∂z

∂

∂x
− ∂ηn

∂z

∂

∂x
(21b)

∇2
xy ≡

∂2

∂x2
+

∂2

∂y2
(21c)

Again, if we consider only the zeroth-order component, it reduces to

fnx = −∂
2ξ(znk, t)

∂t2
, fny = −∂

2η(znk, t)

∂t2
, fnz = 0 (k = 0) (22)

3.2. Fourier Spectral/hp Element Method

We have assumed that the flow variables for each strip are homogeneous in the spanwise direction with a

periodic length (i.e., strip thickness) Lz. Based on this assumption, a Fourier expansion is introduced in the

z-direction to the flow variables un and pn as

un(x, t) =

M−1∑
m=0

ûnm(x, y, t)eiβmz, pn(x, t) =

M−1∑
m=0

p̂nm(x, y, t)eiβmz (23)

with β = 2π/Lz. m is a Fourier mode index and M the number of modes in the Fourier expansion. After

applying the Fourier transformation to eqs. (15) and (16), we obtain a set of uncoupled two-dimensional

equations for each mode,

∂ûnm
∂t

+ N̂(un)m = −∇̃p̂nm + ν∇̃2ûnm + f̂nm (24)

∇̃ · ûnm = 0 (25)

where N̂(un)m represents the Fourier mode of the convective term and f̂nm is the corresponding Fourier

mode of the forcing term. In order to avoid formation of convolution sums, the Fourier transformation of the

nonlinear terms is applied in physical space. In eqs. (24) and (25), we defined the differential operators as

∇̃ =

(
∂

∂x
,
∂

∂y
, iβm

)
, ∇̃2 =

∂2

∂x2
+

∂2

∂y2
− β2m2 (26)

The stiffly stable high-order splitting scheme proposed by Karniadakis et al. (1991), also referred to as

a velocity correction scheme (Guermond and Shen, 2003), is employed for time integration of the eqs. (24)

and (25), and it hence consists of the following four steps:
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(1) Compute a first intermediate velocity field by calculating explicitly the advection term and forcing term

in the momentum equation, which are extrapolated from the previous time steps k−q (q = 0, 1, ..., J−1).

û∗nm −
∑J−1
q=0 αqû

k−q
nm

∆t
=

J−1∑
q=0

βq

[
N̂(un)m + f̂nm

]k−q
(27)

(2) Solve a Poisson equation to obtain the pressure solution at the time step k + 1

∇̃2p̂k+1
nm = ∇̃ ·

(
û∗nm
∆t

)
(28)

with consistent Neumann boundary condition prescribed as

∂p̂k+1
nm

∂n
= −

[
∂ûk+1

nm

∂t
+ ν

J−1∑
q=0

βq

(
∇̃ × ∇̃ × ûnm

)k−q
+

J−1∑
q=0

βq

[
N̂(un)m + f̂nm

]k−q]
· n (29)

and a high order Dirichlet boundary condition on the outlet boundary

p̂k+1
nm = νn ·

J−1∑
q=0

βq∇̃ûk−qnm · n−
J−1∑
q=0

βqN̂0(un)
k−q
m (30)

N0(un) = 0.5 |un|2 S0 (n · un) (31)

(3) Calculate a second intermediate velocity field by including the pressure gradient term

û∗∗nm − û∗nm
∆t

= −∇̃p̂k+1
nm (32)

(4) Fully update the velocity field at the new time level by solving a Helmholtz equation, in which the

second intermediate velocity field is taken as a forcing term

γ0û
k+1
nm − û∗∗nm

∆t
= ν∇̃2ûk+1

nm (33)

with a high order Neumann boundary condition on the outflow boundary

n · ∇̃ûk+1
nm =

1

ν

[
p̂k+1
nm n + ν

J−1∑
q=0

βq

(
N̂0(un)

k−q
m − ∇̃ · ûk−qnm

)
n

]
(34)

Here J denotes the time integration order, and αq, βq and γ0 are the corresponding coefficients of the J-th

order backward differentiation formulas. In this work, we set J = 2 to obtain second-order accuracy for time

integration of the fluid solver.

Next, for application of spectral/hp element methods to the above split scheme, we formulate the weak

forms of eqs. (27) to (34) by using the Galerkin method. Let Ω2d ∈ R2 denote the fluid sub-domain plane

and its boundary by ∂Ω2d, which is composed of three different parts, i.e. ∂Ω2d = ∂Ω2d
w

⋃
∂Ω2d

i

⋃
∂Ω2d

o ,

where ∂Ω2d
w , ∂Ω2d

i and ∂Ω2d
o are wall, inlet and outlet boundaries, respectively. A pressure test function φ

is defined from the Sobolev space H1(Ω2d) such that φ ∈ H1(Ω2d) and φ|∂Ω2d
o

= 0. Multiplying eq. (28) by
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the test function φ and integrating by parts over the fluid domain, the weak form of the Poisson equation for

the pressure is obtained as,

∫
Ω2d

∇̃p̂k+1
nm · ∇̃φ dΩ = − 1

∆t

∫
Ω2d

∇̃ · û∗nmφ dΩ

−
∫
∂Ω2d

i

⋃
∂Ω2d

w

[
∂ûk+1

nm

∂t
+ ν

J−1∑
q=0

βq

(
∇̃ × ∇̃ × ûnm

)k−q
+

J−1∑
q=0

βq

[
N̂(un)m + f̂nm

]k−q]
· nφ dS

(35)

Similarly, we define a velocity test function ϕ from the same space such that ϕ ∈ H1(Ω2d) and ϕ|∂Ω2d
i

⋃
∂Ω2d

w
=

0. Taking the same procedure as that applied for the Poisson equation, we can obtain the weak form of the

Helmholtz equation for the velocity as follows,

γ0
ν∆t

∫
Ω2d

ϕûk+1
nm dΩ +

∫
Ω2d

∇̃ϕ · ∇̃ûk+1
nm dΩ =

1

ν

∫
Ω2d

ϕ

(
û∗nm
∆t
− ∇̃p̂k+1

)
dΩ

+
1

ν

∫
∂Ω2d

o

ϕ

[
p̂k+1
nm n + ν

J−1∑
q=0

(
N̂o(un)

k−q
m − ∇̃ · ûk−qnm

)
n

]
dS

(36)

Finally, the flow domain is partitioned into a mesh containing elements, such that Ω2d =
⋃

Ω2d
e and

Ω2d
e1

⋂
Ω2d
e2 = ∂Ω2d

e1e2 is the empty set or an interface of two adjacent elements. Spatial discretization proceeds

by the approximation of unknown flow variables by polynomial expansions element by element. Here we

choose the test functions to be the same as the trial functions, so the flow solution can be represented as

ûe =
∑P
j=1 û

δ
jϕj(x) and p̂e =

∑P
j=1 p̂

δ
jφj(x), where P is the order of polynomial, ûδj and p̂δj denotes model

coefficients of velocity and pressure. Substituting the polynomial approximation into the elemental-wise weak

form of the governing equations, and assembling the local contribution to the solution through the assembly

operator, we can form a global solution that can be solved by both direct or iterative solvers (Karniadakis

and Sherwin, 2013).

3.3. Fluid-Structure Coupling

Similar to the Fourier transformation applied to the governing equations of fluid flow, a periodic assump-

tion is imposed for the cylinder’s motion with respect to the full-length scale Lc. The motion variables and

forces then are expressed as a complex Fourier series,

ξ(z, t) =

N−1∑
r=0

ξ̂(ζ ′rs, t)e
iαrz, F(z, t) =

N−1∑
r=0

F̂(ζ ′rs, t)e
iαrz (s = 0) (37)

In the following, the superscript ′ and the second subscript s are omitted for simplicity of the notation. The

partial differential equation of the tensioned beam model then decouples into a set of ordinary differential

equations (38), which are easily solved by a second-order Newmark-β method,

ρc
¨̂
ξ(ζr, t) + c

˙̂
ξ(ζr, t) + (α2r2T + α4r4EI)ξ̂(ζr, t) = F̂(ζr, t) (38)
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A partitioned approach is adopted to solve the fluid-structure coupling system, which requires the ex-

change of transmission conditions on the interface between the fluid solver and structure solver. A simple

and efficient strategy of loose coupling is applied for the time integration of the coupled system. Sequential

solution of the fluid and structural fields in a staggered manner causes numerical instability in this scheme

due to the so called artificial added mass effect, and that becomes significant particularly at low ratios of

structure density to fluid density (Förster et al., 2007). In order to address this problem, Yu et al. (2013) and

Baek and Karniadakis (2012) developed a generalized fictitious method to stabilize the partitioned scheme by

introducing either fictitious pressure to the fluid solver or fictitious mass and damping to the structure solver.

In the current work, we introduce fictitious mass and damping to the tensioned beam model. Considering

the fictitious acceleration and damping terms, which are added to both sides of eq. (38), it becomes

(ρc + ρa)
¨̂
ξ(ζr, t) + (c+ ca)

˙̂
ξ(ζr, t) + (α2r2T + α4r4EI)ξ̂(ζr, t) = F̂(ζr, t) +

[
ρa
¨̂
ξ(ζr, t) + ca

˙̂
ξ(ζr, t)

]
(39)

where ρa and ca are fictitious density and damping coefficient, respectively. The term in the square bracket

in eq. (39) is approximated explicitly from the values computed in the previous time steps. A combination of

fictitious mass and damping (Baek and Karniadakis, 2012) of (ρa/ρc, ca/c) = (3.0, 0.1) gives a stable solution

for the mass ratios considered in this work.

3.4. Hybrid Parallelisation

A hybrid parallelisation approach (Bolis, 2013), in which FFT transposition (modal parallelisation) and

mesh decomposition (elemental modal parallelisation) are used concurrently, is adopted for the current model.

The Cartesian virtual topology (rows and columns) shown in Fig. 2 facilitates the conceptual handling of

the two parallel techniques. Practically, we split the N strips across a set of PZ processors used for the

FFT parallelisation, and then the FFT transposition is implemented by re-splitting the N 2D planes across

a subset of PZ/N processors for each strip independently. As can be observed in the graphical illustration

of the communicator, the mesh partitions are distributed across columns, requiring a specific communicator

for each row. The decomposition of the 2D plane is accomplished on the root process just once, i.e. P0 in

Fig. 2. Subsequently, each partition will be sent to the appropriate process. For example the first partition

in the strip 0, the yellow one, will be sent to P5, and in the strip 1, P10 will be send to P15. The second

partition, the blue one, will be sent to P1, P6 for the strip 0, and P11, P16 for the strip 1 and so on. It also

appears from this particular example that P1 is not required to communicate with P2, since the respective

partitions do not share DOFs (actually in each row the blue process does not need to communicate with the

green one). The composition of all the partitions on a row produces a full 2D plane, but each row refers to

a different plane (or set of consecutive planes in the most general case). Therefore operations across planes

require another set of communicators, i.e. the column communicators. Before and after an FFT, data needs

to be reordered.
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Figure 2: Structure of the MPI cartesian communicator for an hybrid parallelisation of “thick” strip model. The example consists

of 2 strips with 4 row communicators to send messages during the linear system solution and 5 column communicators to send

messages between planes during FFTs, and 20 MPI processes are used to parallelise a Fourier spectral/hp element discretisation

with 4 planes.

4. Numerical Tests

We now consider some computational validations of the “thick” strip theory by first considering a lower

Reynolds number (Re = 100) problem as a fully coupled, single domain problem as well as a higher Reynolds

number flow at Re = 3900 where we discuss how the “thick” strip modelling works for the turbulent flow.

In the low Reynolds number test the “thick” strips become equivalent to the classical “thin” strips model

since the underlying flow is two-dimensional. At Re = 3900 the flow is certainly three-dimensional and

so the “thin” strip model cannot capture these wake features. In the following study we will consider the

cases without the addition of a turbulence model, (although as discussed below we will add some high

frequency stabilization). We do recognize that in previous “thin” strip models (Willden and Graham, 2001;

Meneghini et al., 2004) turbulence modelling has been incorporated which tends to suppress the vortex

pairing phenomena which we will observe in the simulations below. However the introduction of these types

of turbulence models necessarily makes a number of assumptions about the sub-grid scale model of the

turbulence which are almost certainly unjustifiable in the near wake of a turbulent flow past bluff bodies.

4.1. Computational settings

4.1.1. Test problems

At Re = 100, a 3D fully resolved simulation is conducted firstly to verify the code implementation against

the previous numerical results in Newman and Karniadakis (1996) and to be used to compare against the

results of strip theory-based modelling. In the laminar flow simulation, the vibration of the cylinder is

constrained to occur only in the CF direction. The cylinder has a length ratio of Lc/D = 4π with the

tension parameter set to T = 8.82, choosing the same value reported in Newman and Karniadakis (1996).
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The structural damping and flexural rigidity are omitted to simplify the analysis. Two different mass ratios,

m∗, defined as the ratio of the cylinder’s mass per unit length to the fluid density (i.e., m∗ = ρc/ρfD
2 with

D = 1), respectively with the values of 1 and 2 are considered.

In the turbulent flow simulation at Re = 3900, the cylinder has an aspect ratio of Lc/D = 32π(≈ 100.53).

It is pinned at both ends and free to vibrate in both the CF and IL directions. The mass ratio considered is

m∗ = 1.17, a typical value of that can be encountered in the context of ocean engineering. The tension and

the bending stiffness are set equal to 600 and 20.8, respectively. The structural damping coefficient is set to

be c = 0.022.

4.1.2. Computational domain and conditions

A C-type domain is used in the computation that has its semicircle upstream boundary with a diameter of

20D, its lateral boundaries located at 10D, and extending over 12.5D downstream. On the inlet and lateral

boundaries, a Dirichlet velocity condition is specified as (u′n, v
′
n, w

′
n)∞ = (U∞, 0, 0) with U∞ = 1, while on

the outlet a high-order Neumann boundary condition is determined from eq. (34). The 2D spectral element

mesh employed for the computation is also shown in Fig. 3a. In the laminar flow tests, all of the simulations

use a grid of 283 spectral elements with polynomial order P = 6 in the (x, y) plane, while in the turbulent

flow the polynomial order is set to P = 7. For the full 3D/single strip simulation at Re = 100, 32 planes (16

complex Fourier modes, i.e. M = 16) are used, which gives a high resolution to the homogeneous solution in

the z-direction.

For the multiple strip modelling at Re = 100, the strips with thickness ratio of Lz/D = π/8 are evenly

decomposed along the z-direction, and for each strip two planes (one pair of complex Fourier modes) are

used for the local flow resolution.

For the flow at Re = 3900, we carried out a series of simulation with different strip thickness, which has

aggregate impact on the performance of the modelling. 16 strips are distributed along the cylinder’s span as

shown in Fig. 3b. The spanwise thickness of the strip is chosen to be Lz/D = {π/16, π/8, π/4, π/2, π, 2π}.

For the case with Lz/D = π, a total of 48 planes (24 complex modes, i.e. M = 48) are used in the spanwise

resolution of the local strip. A similar level of resolution is commonly used in the numerical simulations

of fixed cylinders in the published literature (Kravchenko and Moin, 2000; Parnaudeau et al., 2008). The

resolution scale remains the same for different thickness.

4.2. Results and discussions

4.2.1. 3D full resolution test at Re = 100

The VIV responses of the cylinder in an early period of the simulations at m∗ = 1 and 2 are shown

in Fig. 4. From this figure, we observe a well-defined standing wave pattern at both mass ratios. While

the displacement profile shows similar cell patterns, the hydrodynamics forces behave somewhat differently,

depending on the mass ratio, as highlighted by the change of the cell pattern in the standing wave in this

figure. The standing wave is not a stable response and gradually transitions to a traveling wave as the
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Figure 3: (a) 2D spectral-element mesh with 283 elements and (b) The distribution of the “thick” strips (N = 16) with

Lz/D = π/2 and Lg/D = 3π/2 along the axial direction of the cylinder.

simulation becomes fully saturated. Fig. 5 shows the displacement evolution for different mass ratios after

the VIV response turns into traveling waves. A similar observation was reported by Newman and Karniadakis

(1996).

4.2.2. 2D strip modelling at Re = 100

The transition from a standing wave pattern to a traveling wave provides the opportunity to compare

the strip theory during these two stages. Therefore in this test, we apply the “thick” strip theory to the low

Reynolds number problems. Since the three-dimensional wake structures induced by this problem have a

larger wavelength than the local “thick” strips (see later Fig. 8), we are essentially solving 2D strips similar

to the classical “thin” strip theory. As seen in the temporal evolution of VIV responses plotted in Fig. 6, the

model reproduces the standing wave that is also observed in the full 3D model. However, the wave pattern in

the drag and lift coefficients are somewhat different from their fully resolved counterparts. This is because,

the communication between the flow dynamics in different strips is achieved, not directly, but through the

structure dynamics. This then accounts for the principal difference between the full 3D and strip theory-based

models. The predicted vibration amplitudes are 0.643 (m∗ = 1) and 0.589 (m∗ = 2), respectively, which are

approximately lower by 11% and 15% with respect to those in full 3D resolutions. There appears to be a

relatively larger difference in prediction of the hydrodynamic forces. Taking lift coefficient as an example, its

magnitudes for the cases of m∗ = 1 and 2 are 1.415 and 0.282, respectively, whereas the full 3D simulations

obtained the values of lift coefficient as 1.279 and 0.482, showing differences of 9.6% and 41.5% respectively.

When m∗ = 1, the cylinder’s response converges to a traveling wave pattern that is consistent with the

full resolution results. In contrast, at m∗ = 2, the mode may converge to different states, depending on

the initial conditions. As shown in Fig. 7, if the simulation runs from a standing wave perturbation with
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Figure 4: Early time evolution (100 < tU∞/D < 120) where we observe a standing wave response: (a) η/D at m∗ = 1; (b)

CD at m∗ = 1; (c) CL at m∗ = 1; (d) η/D at m∗ = 2; (e) CD at m∗ = 2 and (f) CL at m∗ = 2, Full resolution results

(CD = FD/0.5ρfDU
2
∞ and CL = FL/0.5ρfDU

2
∞).
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Figure 5: Later time evolution where we observe a traveling wave response: (a) η/D at m∗ = 1 (320 < tU∞/D < 340) and (b)

η/D at m∗ = 2 (500 < tU∞/D < 520), Full resolution results.

an amplitude of A/D = 0.025, the VIV saturated in a mixed state of standing wave and traveling wave.

However, if the simulation is started from an initial condition of a traveling wave with an amplitude value of

A/D = 2 × 10−4, the flow converges quickly to a traveling wave. The amplitude of the displacement in the

traveling wave is 0.559 for the case of m∗ = 1, approximately larger by 3% compared to the full 3D result of

0.542. It reduces to 0.483 at m∗ = 2, which is less than 2% from the CF vibration amplitude of 0.492 in the

full 3D case.
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Figure 6: Temporal evolution of standing wave responses: (a) η/D at m∗ = 1; (b) CD at m∗ = 1; (c) CL at m∗ = 1; (d) η/D

at m∗ = 2; (e) CD at m∗ = 2 and (f) CL at m∗ = 2, 2D strip modelling results.
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Figure 7: Converged states of η/D response for the cylinder at m∗ = 2 (Lc/D = 4π and Re = 100): (a) Mixed wave response

and (b) Traveling wave response, 2D strip modelling results.

The wake features of the 2D strip model at m∗ = 1 are illustrated in Fig. 8. The spanwise vorticity

contours show a consistent convergence of the flow fields with the increase of the number of strip. The

standing wave response of the cylinder generates an interwoven structure of vortex shedding in the wake,

which is consistent with the wake observed in the full 3D simulations (Newman and Karniadakis, 1996).

Similar to the full 3D results again, the traveling wave responses generate a coherent wake structure with

oblique shedding of spanwise vorticity. Therefore, it can be observed that although the wake produced

within strip-domain is two dimensional, the intrinsic three dimensionality of the wake structure as a whole
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(d) (e) (f)

Figure 8: Spanwise vorticity contours for the cylinder with a mass ratio of m∗ = 1 by using different number of strips (Lc/D = 4π

and Re = 100): (a) N = 8, at tU∞/D=100; (b) N = 16, at tU∞/D=100; (c) N = 32, at tU∞/D=100; (d) N = 8, at

tU∞/D=600; (e) NN = 16, at tU∞/D=600 and (f) N = 32, at tU∞/D=600.

is well-captured due to the interactions between strips through the structural dynamics. Interestingly, the

decoupled nature of the flow in the “thin” strip model means that this physical feature is driven by the

structural mechanics rather than the wake dynamics of the fluid.

In summary, the traveling wave responses are very accurately captured by the ‘thick’ strip approach, while

standing wave states have some error. To the best of our knowledge, the previously reported VIV response

predictions based on classical 2D strip theory are all conducted in the turbulent flow regime. So, it is

significant to evaluate it in laminar flow regime, because there the flow dynamics are dominated by coherent

vortex structures in the full spanwise domain. The VIV response predicted by the 2D strip model then

indicates that the traveling wave responses are predominantly governed by the VIV dynamics, meanwhile the

standing wave responses are governed by not only the VIV dynamics but also the spanwise wake structures.

Overall many of the full 3D features are captured by what is still essentially a classical 2D “thin” strip theory.

4.2.3. “Thick” strip modelling at Re = 3900

We now turn our attention to a “thick” strip model at a Reynolds number where the wake dynamics vary

within a single “thick” strip. Therefore in this section, we investigate the “thick” strip modelling of the flow

at Re = 3900. When using a limited resolution it is necessary to stabilize the under-resolved simulations

and so we apply a spectral vanishing viscosity (SVV) technique (Tadmor, 1989; Karamanos and Karniadakis,

2000; Kirby and Sherwin, 2006) by introducing a term as an artificial dissipation mechanism to operate only
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Figure 9: Displacement responses of the flexible cylinder (Lc/D = 32π, Lz/D = π, N = 16 and Re = 3900): (a) time series of

the IL displacement; (b) time series of the CF displacement; (c) PSD of the IL displacement and (d) PSD of the CF displacement.

on the highest resolved frequencies of wave space solution. This has the form of a convolution:

Svv(ûnm) = ε

Dim∑
i=1

∇̃ ·
(

QDim ∗ ∇̃ûnm
)

(40)

where ε is the viscosity amplitude and QDim (Dim = 2) is the viscosity kernel. In the framework of Nektar++,

this term is incorporated into the velocity splitting scheme of the incompressible Navier-Stokes equations.

In Figs. 9a and 9b, we show the time evolution of the displacement responses predicted by the “thick”

strip models with Lz/D = π. It is obviously illustrated that a standing wave in second harmonic mode

is excited in the CF vibrations over the length of the cylinder. We plot in Figs. 9c and 9d the power

spectral densities as a function of spanwise location for the displacement responses shown in Figs. 9a and 9b.

The analysis is performed on the time series after the initial transient effect has died out. From this figure

we observe that the frequency profile along the spanwise also illustrates a standing wave response. When

compared with the PSD of lift coefficient, the CF vibration is found to be synchronized with the excited lift

frequency. On the other hand, the spectrum of the oscillation component of the IL displacement shows three

peaks that evenly distributed along the length at a frequency typically twice of that of CF response. The

spanwise distribution of a representative XY-trajectory over a time period covering one full vortex shedding

cycle is revealed in Fig. 10. A figure of ‘8’ pattern is observed for the two sides of the flexible cylinder, except

for the trajectory pattern around the node of the standing wave.
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Figure 10: The XY-trajectory of the vibration of the flexible cylinder along spanwise length (Lc/D = 32π, Lz/D = π, N = 16

and Re = 3900): (a)-(o) z/Lc = 1/16 ∼ 15/16 (n represents the index of the associated strip).

Chaplin (2010) has reported an experimental investigation of the vortex- and wake-induced oscillations

of two flexible model risers in a uniform cross-flow at Reynolds numbers between 104 and 4.5 × 104. The

properties of the risers used in his experiment are very close to our simulation. In his report, the upstream

riser exhibits a characteristic figure-of-eight patterns, with CF amplitudes reaching one diameter and IL

amplitudes about half of this. This experimental observation is consistent with our prediction model. Another

experimental study is carried out by Tognarelli et al. (2004). They performed a series of tests of a long, flexible

riser in uniform and linearly sheared flow. The Reynolds number is ranged from 0.4 × 104 up to 4.6 × 104.

Some of the model properties include (m∗, Lc/D, T (N)) = (2.2, 481.5, 700). They reported a standing wave

with definite nodes and antinodes for the CF displacement of the riser in uniform flow. In particular, the

CF response is excited at a single frequency and in a single mode shape. This feature is highly consistent

with the current numerical results. In terms of IL response, appreciable contributions at both twice the CF

response frequency and at the CF response frequency itself are revealed at some spanwise locations in the

contour plot of the power spectral density.

The contour corresponding to the time series of hydrodynamic force distributions along the cylinder and

their PSD analysis are presented in Fig. 11. A more detailed discussion on the temporal and frequency

characteristics will be provided in the later comparison with the fully resolved case. Finally, the evolution

of fully developed wake flows is shown in Fig. 12, which gives a fuller picture of the instantaneous wake

features in the discrete strips. Further, the strip coupling is evident in Fig. 12, since the distribution of
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Figure 11: Hydrodynamic responses of the flexible cylinder (Lc/D = 32π, Lz/D = π, N = 16 and Re = 3900): (a) time series

of the drag coefficient; (b) time series of the lift coefficient; (c) PSD of the drag coefficient and (d) PSD of the lift coefficient.

vortex shedding along the spanwise length shows a second harmonic wave, which is consistent with that

observed in the VIV responses in Fig. 9.

4.2.4. Fully resolved simulation at Re = 3900

In this subsection, we present the results of the fully resolved simulation (N = 1 and Lz/D = Lc/D = 32π)

at the same Reynolds number of 3900. A total of 1024 planes (512 complex modes) are employed over the

whole length of the cylinder. The simulation was started from a state of fully developed turbulent flow around

a stationary cylinder, and approximately 10 cycles of vortex shedding has been developed in the wake. A

total of 16 sine modes were taken into account for the cylinder’s responses and a cubic spline was used for

the interpolation in the mapping from the structure to flow domains.

The displacement contours of both the temporal and frequency responses are plotted in Figs. 13. As it

can be now clearly seen, the response characteristics in both the time and frequency domains in the fully

resolved simulation are in close agreement to those predicted by the strip’ modelling, see Fig. 9. The

calculated spatio-temporal root mean square (ξRMS) and the spatio-temporal standard deviation (σ2
ξ ) of the

IL displacement are ξRMS = 1.762 (1.868 for the strip modelling with 5.6% error) and σ2
ξ =0.143 (0.149 for

the strip modelling with 4% error).

We now turn our attention to the contours of the hydrodynamic force coefficients and the associated PSDs

are shown in Fig. 14. The spatio-temporal average of the full simulation drag force is C̄D = 2.266, while for
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(a) n = 0 (b) n = 1 (c) n = 2 (d) n = 3

(e) n = 4 (f) n = 5 (g) n = 6 (h) n = 7

(i) n = 8 (j) n = 9 (k) n = 10 (l) n = 11

(m) n = 12 (n) n = 13 (o) n = 14 (p) n = 15

(q) full domain

Figure 12: Perspective view of the instantaneous spanwise structure of the flow for the individual strips of thickness Lz/D = π

(structure visualized by the vortex-identification Q-criterion: iso-surfaces of the Q-value= [−5, 5], and the color denotes the

streamwise u-velocity). In the subcaption, n represents the index of the associated strip.

the strip modelling is C̄D = 2.295 (1.2% error). We further note that the time evolution of the lift component

of the full simulation (in Figs. 14b and 14d) also agree very well with the results of the strip modelling (in

Figs. 11b and 11d) with PSD plot highlighting the strong frequency around the vortex shedding mode.

While a single frequency dominates the oscillation of the lift forces in both the thick strip modelling

and the full simulation, multiple frequencies, of much lower amplitude, are evident in the PSD of the drag

contours. These appearance of higher frequencies might well be expected following the analysis of Wang et

al. (2003) who analyzed the higher harmonics arising from the nonlinearity of the fluid structure interaction

process. We however note that the range of the frequencies are difference in the drag PSD plots (Fig. 14c)
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of the full simulation and the thick strip theory (Fig. 11c). Whilst the fundamental frequencies are similar

there is notably more energy in the fourth harmonic in the full simulation (Fig. 14c) versus a number of high

frequency content in the thick strip theory simulation (Fig. 11c). We note that these harmonics are present in

the lift forces data but since the lift force is dominated by the vortex shedding frequency they are not evident

in these plots (note the different scales of the lift and drag PSD). There are a number of potential sources for

this discrepancy. First we recall that we are using a zeroth-order approximation of both the hydrodynamic

forces and kinematic response on each strip. Second, we do not allow for far wake interaction in the thick

strip modelling. Indeed consideration of Fig. 15 (figure of full simulation wake) as compared to Fig. 12 we

observe that in the thick strip model more coherent far wake vortices that are most likely associated with

the high frequencies observed in the drag coefficient of the strip model.

To summarize we observe good agreement in the displacement characteristics arising from ability to

capture near wake force characteristics with sufficient fidelity, particularly in the lift. However there are

discrepancies in the far field force characteristics which is not surprising since far wake interactions are

restricted by the strips thickness. Nevertheless the interaction of the far wake has a relatively small effect on

the dynamics of the cylinder motion which is the primary motivation behind using the thick strip method.

Whilst we accept that far field interactions will be restricted by the strip thicknesses we also acknowledge

the strips need to be sufficiently thick to capture the near wake dynamics. In the following section we

therefore explore the dependence in more detail.

5. Thickness of the strips

The dependence of the VIV responses on the strip thickness is dictated by the behavior of the wake

dynamics in each strip and the corresponding forces these wakes produced. In Fig. 16, we illustrate the

effect of strip thickness on the wake structures through the comparison of the spanwise velocity contour of

the 4th strip-wake. This highlights that the strip thickness is critical to appropriately capture the three

dimensionality of wake behavior. For the ‘thinner’ strips (e.g. Lz/D = π/16, π/8), the wake dynamics are

similar to those of a 2D strip without a turbulence model. Although the onset of three dimensionality was

already triggered in the wake, it is not ‘thick’ enough to cover the most important correlation length. This

is consistent to the width being smaller than that of the Mode B instability (λzB/D ≈ 0.825) (Barkley and

Henderson, 1996; Williamson, 1996; Barkley et al., 2000). It can also be illustrated from this figure that the

‘thicker’ strips, with Lz/D = π/2, π and 2π, are able to capture the most energized spanwise turbulent scales

in the strip-wake. The ability to capture the near wake three-dimensional dynamics leads to a dissipation

of higher frequency components of hydrodynamic forces as displayed in the PSD of lift forces as a function

of spanwise length shown in Fig. 17. This figure also illustrates the sensitivity of the strip thickness since,

in the strips with Lz/D = π/16, π/8 and π/4, the wake behaves in a manner more similar to that of a

2D strip theory, where the oscillation energy is scattered over a broader band of frequencies. As the three

dimensionality is fully developed and Mode B is fully captured for the cases with Lz/D = π/2, π and 2π, the
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Figure 13: Displacement responses of the flexible cylinder in fully resolved simulation (Lc/D = 32π, Lz/D = 32π, N = 1, and

Re = 3900): (a) time series of the IL displacement; (b) time series of the CF displacement; (c) PSD of the IL displacement and

(d) PSD of the CF displacement.

energy is concentrated at the vortex shedding frequency. We also noticed that the energy of lift oscillation

becomes statistically saturated as the strips fully captured Mode B. As we have noted earlier, 2D strip models

would typically incorporate a turbulence model which would likely suppress the vortex pairing phenomena

observed in this model at shorter wavelengths. However, such models can be quite diffusive and they formally

make a number of assumptions about turbulence, which are not valid in the near wake region of a cylinder.

For strip-structure coupling, we consider only the mean mode (corresponding to K = 1) inside each strip

analogous to the classical 2D strip theory. Therefore each strip can be considered as a spanwise rigid block

(able to move inline and transversely) that can capture the anisotropic wake breakdown but cannot respond

to other three dimensional features of the structure’s movement or indeed capture a linear variation of the

incoming flow due to our assumption of spanwise periodic strips. Although this goes beyond the scope of this

work, one might consider exploring more intricate deformations of the span even under the locally periodic

strips we have adopted. In addition, fully three-dimensional blocks could be incorporated into the model but

appropriate boundary conditions, such as the use of symmetry conditions, would also need to be investigated.

6. Conclusions
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Figure 14: Hydrodynamic forces of the flexible cylinder in fully resolved simulation (Lc/D = 32π, Lz/D = 32π, N = 1, and

Re = 3900): (a) time series of the drag coefficient; (b) time series of the lift coefficient; (c) PSD of the drag coefficient and (d)

PSD of the lift coefficient.

Figure 15: Perspective view of the instantaneous spanwise structure in the fully resolved simulation at Lz/D = 32π (structure

visualized by the vortex-identification Q-criterion: iso-surfaces of the Q-value= [−5, 5], and the color denotes the streamwise

u-velocity).

A generalized strip model has been presented for prediction of VIV responses of long flexible cylinders,

which is also highly parallelizable due to only requiring weak coupling between each strip from the structural

model. The flows in this model are split into a sequence of discrete strips, which have spanwise scale to locally
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Figure 16: The iso-contour of the spanwise velocity for the 4th strip with different thickness (Lc/D = 32π, N = 16 and

Re = 3900): (a) Lz/D = π/16; (b) Lz/D = π/8; (c) Lz/D = π/4; (d) Lz/D = π/2; (e) Lz/D = π and (f) Lz/D = 2π.
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Figure 17: PSD of the lift force coefficient of the flexible cylinder with different strip thickness (Lc/D = 32π, N = 16 and

Re = 3900): (a) Lz/D = π/16; (b) Lz/D = π/8; (c) Lz/D = π/4; (d) Lz/D = π/2; (e) Lz/D = π and (f) Lz/D = 2π.
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resolve the three dimensional wakes that have a substantial influence on the VIV responses in turbulent flows.

This removes the need to rely on 2D turbulence modelling of bluff body flows, thereby reducing flow modelling

inaccuracies.

Numerical tests were performed to evaluate the performance of this approach for both laminar and

turbulent flow regimes. The working principle of the 2D strip model is investigated for laminar flow, since in

this case the ‘thick’ strip model is essentially equivalent to 2D strip theory. It is shown that the 2D model

can accurately predict the main features of the VIV responses of flexible bodies, in particular of traveling

wave responses, whereas the performance for standing waves is worse since the coupling between the wake

modes has been lost.

Tests on the turbulent flows were conducted on a flexible cylinder with an aspect ratio of Lc/D = 32π

at Re = 3900. A full simulation (N = 1 and Lz = Lc) resolved using 1024 planes were also carried out

to evaluate the performance for thick strip modelling. Consistent agreement in terms of VIV responses

was observed with RMS and standard deviation of the inline response being within 5.5%. The lift force

characteristics also demonstrated close agreement as did the mean drag. However the resolution of the

unsteady drag charactersitics was more demanding and highlight a discrepancies in the higher frequencies

components. Potential sources of this discrepancy could be related to the zeroth-order approximation of the

wave components in each strip as well as the restriction on far wake interaction in this model. Finally, the

parametric analysis suggests that the strip thickness is critical for this model and the width of strips needs

to be larger than the wavelength corresponds to Mode B instability.

Acknowledgments

This work is supported by EPSRC grant EP/K037536/1 and UK Turbulence Consortium(UKTC) for

ARCHER time under EPSRC grant EP/L000261/1. S.J.S. would like to acknowledge the contribution of the

Royal Academy of Engineering under their Research Chair scheme. Y.B. also acknowledges support from the

NSFC projects (51490674; 51278297) and Doctoral Disciplinary Special Research Project of Chinese Ministry

of Education (no. 20130073110096).

References

Nektar++: Spectral/hp element framework, 2014. URL http://www.nektar.info.

H Baek and GE Karniadakis. A convergence study of a new partitioned fluid–structure interaction algorithm

based on fictitious mass and damping. Journal of Computational Physics, 231(2):629–652, 2012.

D Barkley and RD Henderson. Three-dimensional Floquet stability analysis of the wake of a circular cylinder.

Journal of Fluid Mechanics, 322:215–241, 1996.

D Barkley, LS Tuckerman, and M Golubitsky. Bifurcation theory for three-dimensional flow in the wake of

a circular cylinder. Physical Review E, 61(5):5247, 2000.

26



A Bolis. Fourier Spectral/hp Element Method: Investigation of Time-Stepping and Parallelisation Strategies.

PhD thesis, Imperial College London, 2013.

R Bourguet, GE Karniadakis, and MS Triantafyllou. Vortex-induced vibrations of a long flexible cylinder in

shear flow. Journal of Fluid Mechanics, 677:342–382, 2011.
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