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Abstract 

There has been an increasing role played by Global Navigation Satellite Systems (GNSS) in 

Intelligent Transportation System (ITS) applications in recent decades. In particular, 

centimetre/decimetre positioning accuracy is required for some safety related applications, 

such as lane control, collision avoidance, and intelligent speed assistance. Lane-level 

Anomalous driving detection underpins these safety-related ITS applications. The two major 

issues associated with such detection are (1) accessing high accuracy vehicle positioning and 

dynamic parameters; and (2) extraction of irregular driving patterns from such information. 

This paper introduces a new integrated framework for detecting lane-level anomalous driving, 

by combining Global Positioning Systems (GPS), BeiDou, and Inertial Measurement Unit 

(IMU) with advanced algorithms. Specifically, we use Unscented Particle Filter (UPF) to 

perform data fusion with different positioning sources. The detection of different types of 

Anomalous driving is achieved based on the application of a Fuzzy Inference System (FIS) 

with a newly introduced velocity-based indicator. The framework proposed in this paper 

yield significantly improved accuracy in terms of positioning and Anomalous driving 

detection compared to state-of-the-art, while offering an economically viable solution for 

performing these tasks. 

 Keywords:  BeiDou, Anomalous Driving Detection, Unscented Particle Filter, Fuzzy 

Inference System  
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Acronym 

DOP Dilution of Precision 

EKF Extended Kalman Filter 

EKFCA Extended Kalman Filter with Constant Acceleration 

EKFCTRA Extended Kalman Filter with Constant Turn Rate and Acceleration 

FIS Fuzzy Inference System 

FNN Fuzzy Neural Network 

GDOP Geometric Dilution of Precision 

GEO Geosynchronous Orbit 

GNSS Global Navigation Satellite Systems 

GPS Global Positioning System 

HDOP Horizontal Dilution of Precision 

IGSO Inclined Geostationary Orbit 

IMU Inertial Measurement Unit 

INS Inertial Navigation System 

ITS Intelligent Transportation System 

MEO Medium Earth Orbit 

PDOP Position Dilution of Precision 

PF Particle Filter 

UKF Unscented Kalman Filter 

UPF Unscented Particle Filter 

UPFCA Unscented Particle Filter with Constant Acceleration 

UPFCTRA Unscented Particle Filter with Constant Turn Rate and Acceleration 

VDOP Vertical Dilution of Precision 

 

1. Introduction  

The rapid growth of road transportation caused by urbanization and motorization has been 

accompanied by increased risk of traffic accidents. Reducing the occurrence of accidents 

requires not only the enhancement of the safety consciousness of the drivers and the general 

public, but also the development and deployment of technological measures to reduce 

transportation related risks. Intelligent Transportation System (ITS) technologies play a vital 

role in the assessment and improvement of driving safety, e.g. driving performance 

evaluation, anomalous driving detection, lane control, and collision avoidance. The safety 

performance of road transportation systems could be significantly enhanced when accurate 

and reliable information regarding anomalous driving detection is available and processed in 

a timely fashion. Real-time identification of vehicle driving patterns is a promising approach 

for anomalous driving detection. The underpinning idea is to extract anomalous driving cues 

from information obtained from the vehicle’s motion sensors, including position, orientation, 

and velocity, to classify different dangerous driving styles and provide warning messages 

with recommended actions.  



3 

 

Lecce et al. (2008) develop a driving information collection system based on a specific senor 

and GPS receiver, and apply pattern matching for the classification of driving styles. Their 

study is preliminary and does not present simulation or field test results. Chang et al. (2008) 

propose a machine learning mechanism based on Radial Basis Probability Neural Network 

(RBPNN) to calculate the safety level of a vehicle using trajectory and velocity data obtained 

from vision sensors. Both simulations and field tests are used to assess this method. However, 

this system only provides a coarse classification of the safety levels, namely “safe”, 

“cautious”, and “dangerous”. In addition, the performance of the vision sensor is susceptible 

to adverse weather conditions during the field test. Similar methods have been developed by 

Imkamon et al. (2008) and Krajewski et al. (2009), with yet again crude classification of the 

hazard levels and no quantifiable performance indicators. Dai et al. (2010) combine mobile 

phones, accelerometers, and orientation sensors to detect vehicle manoeuvres typically 

associated with driving under influence. The acceleration patterns extracted from sensor 

readings are compared with patterns obtained from real-world driving tests. However, the 

success of such detection is not quantified, although it is argued that the system performance 

could be improved if GPS information were integrated. Saruwatari et al. (2012) introduce a 

method for detecting abnormal driving, which includes meandering, transverse motion, and 

sudden acceleration. The extraction of abnormal vehicle motions is performed by applying a 

multi-linear relationship in spatial-temporal images in the sense of group behaviour. This 

research, however, does not present any simulation or field experiment results.  

Although the aforementioned real-time driving pattern detection approaches have shown 

some potential for anomalous driving detection, several technical barriers remain to be 

surmounted. Firstly, the effective use of vision sensors is largely dependent on weather 

conditions. Secondly, some methods heavily rely on the readings of high grade GPS or 

similar motion sensors, the cost of which may hinder their widespread practical use. 

Moreover, most of the anomalous driving detection systems discussed before are still at an 

early stage of development, with few simulations or field tests. Last but no least, most such 

systems do not offer a robust algorithm to distinguish or quantify different types of 

anomalous driving styles, and their efficiency and reliability need to be further examined. 

In order to address these issues, Sun et al. (2015) propose an integrated solution for lane-level 

anomalous driving detection, which takes advantage of high accuracy estimation of vehicle 

positions and dynamic parameters, and combines them with different types of anomalous 

driving identification method. That paper has identified a critical threshold (0.5 m) in terms 
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of the positioning accuracy, where only positioning errors below this value ensure the 

validity and effectiveness of the lane-level anomalous driving detection. Unfortunately, due 

to the insufficient accuracy of GPS positioning, it is impossible to achieve an accuracy of 

0.5m for all instances, and the capability of any positioning mehtods to reach such accuracy 

is of critical importance to the successful detection of anomalous driving. In this paper, we 

have made considerable improvement over the method by Sun et al. (2015) in terms of 

accuracy, reliability, and practicality. This is done through both technological innovation and 

algorithm advancement. In particular, we introduce BeiDou as a new source of positioning 

data, and propose a new UPF-based GNSS/IMU fusion model.  

BeiDou is a Chinese satellite navigation system initiated in 2000. By the end of 2012, the 

basic system construction was finished, and it has, since then, covered China and Asia-

Pacific areas by providing regional continuous positioning, navigation, timing and short 

message communication services. It is expected that the BeiDou system will reach a global 

coverage and become one of the four largest Global Navigation Satellite Systems (GNSSs) in 

the world by 2020, along with GPS, GLONASS and Galileo (Yang, 2010). Currently, 20 

BeiDou satellites have been launched, among which 14 are in operation, including 5 

Geosynchronous Orbit (GEO) satellites, 5 Inclined Geostationary Orbit (IGSO) satellites and 

4 Medium Earth Orbit (MEO) satellites (Sun et al., 2012). Not only can the BeiDou system 

be used independently for single-mode positioning, it can also be combined with GPS and 

other positioning systems to fix positioning solutions (Xiao et al., 2014; Cai et al., 2014; 

Odolinski et al., 2014a, 2014b). For the open regional service of BeiDou, it is claimed that its 

open application accuracy is close to that of GPS (Chen et al., 2009; Xu et al., 2013). 

Combining BeiDou with GPS for positioning purposes brings more satellites redundancies 

and thus has great potential to improve the positioning accuracy, which is beneficial not only 

for the anomalous driving detection as we study in this paper, but also a lot of other ITS 

applications. 

This paper proposes a lane-level anomalous driving detection framework, and makes 

contribution in the following three areas:  

1. Introducing BeiDou as an additional source of positioning; 

2. Two new methods for the fusion of positioning data and motion parameter estimation; 

and 

3. A new anomalous driving detection algorithm based on Fuzzy Inference System and 

velocity-based indicator. 
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The significance of each contribution is illustrated below. 

The benefit of having both GPS and BeiDou signals is illustrated in detail in this paper. In 

particular, it is shown that based on a combination of both GPS and BeiDou sources, the 

positioning accuracy is greatly enhanced, regardless of the data fusion model employed (see 

Table 7). Moreover, the inclusion of BeiDou does not bring additional economic cost since 

cheap receiver chips can be manufactured to pick up both GPS and BeiDou signals. 

Furthermore, using the newly introduced BeiDou source, we further devise data fusion 

algorithms based on Unscented Kalman Filter (UKF) or Unscented Particle Filter (UPF), 

which provides substantial improvements over Extended Kalman Filter (EKF) and Particle 

Filter (PF) considered in Sun et al. (2015); see Table 1 for more detailed comparison. 

Regarding the identification of anomalous driving patterns, we consider a velocity-related 

indicator and incorporate it into the Fuzzy Interface System (FIS), which has not been done 

in the literature. The new anomalous driving detection algorithm is extensively tested and 

compared with other state-of-the-art algorithms, including those from Sun et al. (2015), 

Chang et al. (2008), Dai et al. (2010), and Krajewski et al. (2009). Our experiments based on 

both simulated and field data show that the proposed FIS algorithm outperforms, by a 

discernible margin, all other methods in terms of timeliness of detection, availability, and 

correction rate.  In particular, given the same positioning data input, our method is 0.1s-4s 

earlier than the other methods in terms of time of first detection (see Table 8). Moreover, it 

also provides higher availability and correction rate
1
 across all scenarios than the state-of-the-

arts, with a margin of 0.7%-3% (availability) and 0.16%~17% (correction rate); see Table 9.  

Finally, the complete, end-to-end anomalous driving detection framework, including data 

acquisition, fusion, and irregularity detection, is tested using field data and GPS/BeiDou 

signals. Due to the improvements made at individual stages of the framework as we briefly 

described above, the overall performance of the framework yields a significant improvement 

over our previous work (Sun et al., 2015). The use of GPS, BeiDou and commercial IMU as 

data sources for lane-level anomalous driving detection has not been done before to the best 

of our knowledge. The field test has demonstrated the practicality of our technical approach. 

Without the need for vision or other high-grade sensors, the anomalous driving detection 

method proposed here significantly reduces the cost, and becomes an economically viable 

                                                 
1
 Availability refers to the percentage of valid driving style identification (weaving, swerving, jerky 

driving, and normal driving) produced by the algorithm. Correct detection rate is the percentage of 

correct driving style identification among all available outputs. 
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solution. The improvements we have made over other state-of-the-art algorithms or 

frameworks are of paramount importance to driving safety and accident prevention. 

The rest of the paper is organized as follows. Section 2 presents the BeiDou/GPS and IMU 

fusion models for the lane-level positioning and dynamic parameter estimation. Several data 

fusion models are proposed and compared as well. Section 3 presents the FIS-based 

anomalous driving detection algorithm and its advantage over existing ones by taking into 

account the velocity indicator. In Section 4 we conduct a field test, in which the improvement 

of individual component of the proposed anomalous driving detection framework, including 

BeiDou data source, UKP/UPF data fusion models, and FIS-based anomalous driving 

detection, is analysed in detail using real-world data. We also test the complete, end-to-end 

anomalous driving detection framework with all the new components in place, and illustrate 

its advantage over state-of-the-art. Finally, Section 5 provides some concluding remarks. 

2. Sensor Integration Model 

This section describes a sensor integration model for lane-level positioning based on:   

(1) Data fusion methods using Unscented Kalman Filter (UKF) and Unscented Particle 

Filter (UPF); and  

(2) Precise vehicle motion models for straight and curved lanes.  

Sun et al. (2015) employ Extended Kalman Filter (EKF) and Particle Filter (PF) to estimate 

position and motion parameters. It is shown that PF yields better results than EKF. 

Nevertheless, in some cases, PF could produce large estimation errors when the likelihood of 

the input measurements is too peaked or the noise of the measurements is heavy-tailed, which 

are consequences of inaccurate sensors or sudden changes of the input data (Van der Merwe 

et al., 2000). Recently some more advanced filters, namely those based on generic PF or EKF, 

have emerged for non-linear estimations. Examples include Unscented Kalman Filter and 

Unscented Particle Filter, which are potentially beneficial to high-precision positioning and 

parameter estimation. Sections 2.1 and 2.2 below describe the UKF and UPF methods in 

detail for the intended application, while Section 2.3 compares the estimation results for 

different fusion models. 

2.1 Unscented Kalman Filter Model Design 

For nonlinear systems, UKF treats the nonlinear state vector without calculating the Jacobian, 
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which is the essential linearization step in the EKF method. Instead, UKF employs the so-

called Unscented Transformation (UT) for calculating the statistics of random variables in 

the process model. In UKF, the state approximated by a Gaussian Random Variable (GRV) is 

represented by a set of carefully chosen points, namely sigma points. The true mean and 

covariance of the GRV are captured by these sigma points, which will also capture the 

posterior mean and covariance accurately up to the second order for any nonlinearity 

propagating through the system (Wan and Van Der Merwe, 2000). The main steps for the 

UKF have been tailored to fit the specific application and are presented below. 

UKF Algorithm: 

χk Sigma vector at step k 

x̂k estimated state vector at step k 

ŷk estimated measurement vector at step k 

yk measurement vector at step k 

r scaling parameter 

Pk
XX covariance matrix of the state vector at step k 

Pk
YY covariance matrix of the measurement vector at step k 

Pk
XY cross covariance matrix of the state vector and measurement vector at step k 

Wi
(m)

 weights for sample mean with i-th column of the matrix 

Wi
(C)

 weights for covariance with i-th column of the matrix 

Qk covariance matrix of process noise at step k 

Rk covariance matrix of measurement noise at step k 

1) Initialization. The initialization is carried out for the estimated state vector �̂�0  and 

covariance matrix 𝑃0
𝑋𝑋 on the defined state vector for the lane-level anomalous driving. The 

state vector is defined as 

 (X Y vβ θ ω )𝑇 (1) 

where: 

X is the X-coordinate (in meter) of the vehicle’s geometric center in the local coordinate 

system; 

Y is the Y-coordinate (in meter) of the vehicle’s geometric center in the local coordinate 

system; 

v is the velocity along the heading direction; 

β is the angle between the tangent line of the lane central line and the x-axis; 

θ is the angle between the vehicle heading and the x-axis; 

ω is the vehicle yaw rate. 

 

2) Calculate the Sigma points. For 𝑘 ≥ 1,  

 𝜒𝑘−1 = [�̂�𝑘−1    �̂�𝑘−1 + 𝑟√𝑃𝑘−1
𝑋𝑋     �̂�𝑘−1 − 𝑟√𝑃𝑘−1

𝑋𝑋  ] (2) 

where the three column vectors form a matrix. 

3) Propagate the sigma points. Using the state-update function 𝜒𝑘|𝑘−1 = 𝐹(𝜒𝑘−1, 𝑢𝑘−1) to 

transform the sigma points and then calculate the a priori state estimate using (3) and 
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covariance using (4). The function 𝐹(⋅,⋅) is related to the model of the vehicle’s dynamic 

(Gyorgy et al., 2014). 

 

 �̂�𝑘|𝑘−1 = ∑ 𝑊𝑖
(𝑚)

2𝐿

𝑖=0

𝜒𝑘|𝑘−1
𝑖  (3) 

  

 𝑃𝑘
𝑋𝑋 = ∑ 𝑊𝑖

(𝐶)
[

2𝐿

𝑖=0

𝜒𝑘|𝑘−1
𝑖 − �̂�𝑘|𝑘−1][𝜒𝑘|𝑘−1

𝑖 − �̂�𝑘|𝑘−1]𝑇 + 𝑄𝑘 (4) 

where 𝜒𝑘|𝑘−1
𝑖  denotes the i-th column of the matrix 𝜒𝜅|𝜅−1.  

4) Update the output vectors. Transform the sigma points through the measurement-update 

function ℎ(⋅) (Gyorgy et al., 2014), and calculate the mean and covariance of the 

measurement vector according to (5) and (6) respectively. 

 �̂�𝑘|𝑘−1 = ∑ 𝑊𝑖
(𝑚)

ℎ(𝜒𝑘|𝑘−1
𝑖 )2𝐿

𝑖=1        (5) 

 

 

𝑃𝑘
𝑌𝑌 = ∑ 𝑊𝑖

(𝐶)
[

2𝐿

𝑖=0

ℎ(𝜒𝑘|𝑘−1
𝑖 ) − �̂�𝑘|𝑘−1][ℎ(𝜒𝑘|𝑘−1

𝑖 ) − �̂�𝑘|𝑘−1]𝑇 + 𝑅𝑘 
(6) 

 

5) Calculate the cross covariance matrix and the Kalman Filter gain. Calculate the cross 

covariance matrix and the Kalman Filter gain vector according to (7) and (8), respectively: 

 𝑃𝑘
𝑋𝑌 = ∑ 𝑊𝑖

(𝐶)
[𝜒𝑘|𝑘−1

𝑖 −2𝐿
𝑖=0 �̂�𝑘|𝑘−1][ℎ(𝜒𝑘|𝑘−1

𝑖 ) − �̂�𝑘|𝑘−1]𝑇  (7) 

 

 𝐾𝑘 = 𝑃𝑘
𝑋𝑌(𝑃𝑘

𝑌𝑌 − 𝑅𝑘)−1 (8) 

6) Calculate the estimated state and the covariance. Calculate the estimated state and the 

covariance in accordance with the generic Kalman Filter. 

 �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘 − �̂�𝑘|𝑘−1)       (9) 
 

 𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝑃𝑘
𝑌𝑌𝐾𝑘

𝑇 (10) 

 

2.2 Unscented Particle Filter Model Design 

The Unscented Particle Filter (UPF) is a combination of the unscented method and Particle 

Filters. As is known from previous research (Wan and Van Der Merwe, 2000), the 

insufficiency of valid particles is an issue for generic PF, and is caused by using the transition 

prior as proposal distribution. However, if the unscented filter is used as proposal distribution, 

the particles will be moved towards the regions of high likelihood. This can be simply 

achieved by propagating the sufficient statistics of the UKF for each particle (Van Der 

Merwe and Wan, 2000). The following steps describe the UPF cycle for lane-level 

positioning, where the notations have the same meaning as in the previous section. 

UPF Algorithm: 
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1) Initialization.  Define the state vector as: 

 (X Y vθωaβd)𝑇 (11) 

where a is the vehicle acceleration along the heading; 𝑑 is the vehicle lateral displacement. 

Two sub-state vectors, vehicle motion vector (12) and lane geometry-related vector (13), are 

derived from the state vector (11). Sub-state vector (12) is for the UPF cycle calculation and 

(13) is the dependent vector of (12). 

 𝑝(𝑘) = (X Y vθωa)𝑇 (12) 
 

 𝑞(𝑘) = (𝛽𝑑)𝑇 (13) 

In the UPF, the state variables change with time (indicated using k), and they are associated 

with each particle (indicated using i). The detail of initialization of the particles for 𝑝(𝑘) and 

𝑞(𝑘) is the same as the generic PF discussed in Sun et al. (2015).  

2) Filter Prediction. The prediction model for 𝑝(𝑘) is based on the vehicle motion models. 

In this paper, constant acceleration (CA) models are applied to straight highway motion, 

while Constant Turn Rate and Acceleration (CTRA) models are applied to curved scenarios 

(Tsogas et al., 2005; Sun et al., 2015). The quantity 𝑞(𝑘) is predicted based on the geometric 

relationship with the lane segment as follows:   

 𝛽𝑘+1
𝑖 ≈ 𝛽𝑘

𝑖        (14) 
 

 𝑑𝑘+1
𝑖 = 𝑑𝑘

𝑖 + 𝑠𝑖𝑛(𝛽𝑘
𝑖 ) ∆𝑥

𝑖 − 𝑐𝑜𝑠(𝛽𝑘
𝑖 )∆𝑦

𝑖  (15) 

where ∆𝑥
𝑖  and ∆𝑦

𝑖  indicate the displacement along the x- and y-axis, respectively. 

3) Filter update. The prediction cycle is applied to every input sample. First, the validity of 

𝑑𝑖 is checked. Once this is done, we apply the UKF to update the particles. The covariance is 

updated according to (10) and the state estimate is updated based on (9). 

4) Normalize and resample. After every update phase, the particles’ weights are modified, 

and the normalization and resample test phases of a UPF is launched. 

 

2.3 Comparison of Model Performances 

Different types of driving styles are defined in straight and curved lanes on highways. The 

driving styles can be classified into weaving, swerving, jerky driving and normal driving 
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(NHTSA, 2010; Sun et al., 2015). In this paper, these same driving styles are considered for 

the anomalous driving detection.  

The proposed position and motion estimation methods (UKF and UPF) are tested using 

simulation data here, before they are examined with field tests (see Section 4). The 

simulation data generated by the GNSS simulator and Matlab are used to feed the UKF and 

UPF for the evaluation of the positioning results. Details of the data generation process are 

described in Sun et al. (2015) and omitted here. Two motion models are used in this paper: 

Constant Acceleration (CA) and Constant Turn Rate and Acceleration (CTRA), which have 

the best performance when combined with sensor fusion methods (Sun et al., 2015). 

Consequently, for straight lanes the proposed fusion models are referred to as Unscented 

Kalman Filter with Constant Acceleration (UKFCA) and Unscented Particle Filter with 

Constant Acceleration (UPFCA); for the curved lane the new fusion models are called 

Unscented Kalman Filter with Constant Turn Rate and Acceleration (UKFCTRA) and 

Unscented Particle Filter with Constant Turn Rate and Acceleration (UPFCTRA). 

Comparison of the proposed fusion methods with those proposed by Sun et al. (2015) (i.e. KF 

and PF with CA and CTRA) is summarized in Table 1, where the 2d root-mean-square 

(2dRMS) is used as the criterion. It is shown that the UKFCA/UKFCTRA and 

UPFCA/UPFCTRA methods have better performance than EKFCA/EKFCTRA and 

PFCA/PFCTRA. Especially, the UPFCA/UPFCTRA yields the highest positioning accuracy 

among all others in their designed scenarios. It is also noted from the table that the 2dRMS 

accuracy for S4 (Normal Driving on straight) are lower than the other straight scenarios for 

all four methods. The likely reason is that for normal driving on straight scenarios the motion 

is almost linear; however, EKF, PF, UKF, UPF are all nonlinear filters, which may incur 

larger errors than nonlinear scenarios.  

Table 1 2dRMS accuracy for straight and curved scenarios. 

Straight Scenarios (m) 

Anomalous driving scenarios UKFCA UPFCA EKFCA PFCA 

S1 Weaving on straight 0.2034 0.1521 0.3621 0.2142 

S2 Swerving on straight 0.3090 0.2560 0.5653 0.3410 

S3 Jerky Driving on straight 0.3238 0.2875 0.4801 0.3713 

S4 Normal Driving on straight 0.3654 0.3149 0.4920 0.4215 

Curved Scenarios (m) 

Anomalous driving scenarios UKFCTRA UPFCTRA EKFCTRA PFCTRA 

S5 Weaving on curve 0.3546 0.2942 0.5003 0.3906 

S6 Swerving on curve 0.3216 0.2843 0.4502 0.3735 

S7 Jerky Driving on curve  0.3761 0.3204 0.6337 0.4315 

S8 Normal Driving on curve 0.2917 0.2381 0.3924 0.3532 
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3. Anomalous Driving Detection  

The detection of a vehicle’s anomalous driving styles is by matching the estimated driving 

styles with reference styles. In this paper, besides the yaw rate and lateral displacement, 

which are considered in Sun et al. (2015), the vehicle’s velocity is added as the third input to 

improve the representation of the vehicle’s motion. We denote the vehicle’s yaw rate, lateral 

displacement, and velocity as omega, d and v, respectively. In order to reduce noises within 

the quantities obtained from the filters and extract trends of their changes, Moving Average 

Deviation (MAD) is applied to omega, d and v, and the results are respectively denoted as O-

indicator, D-indicator and V-indicator. The detection of anomalous driving has to recognize a 

driving event, which characterizes the different driving styles based on Fuzzy Inference 

System (FIS), with O-indicator and D-indicator V-indicator derived at every time epoch. 

3.1 System Overview 

The flow chart in Figure 1 illustrates the overall lane-level anomalous driving detection 

system proposed in this paper. The system consists of two phases. The first phase is 

concerned with lane-level positioning and motion parameter estimation, as we have described 

in Section 2. For the collection of the vehicle’s driving data, we mount one Inertial 

Measurement Unit (IMU) with one gyro and one accelerometer along the vehicle body axis 

to output the yaw rate, acceleration and heading angle. Meanwhile, a GPS/BeiDou receiver is 

used to collect the vehicle’s local coordinates and heading velocity. These data are then 

provided to the fusion model (Filter Prediction) to estimate the position and motion 

parameters of the vehicle (v, omega, and d).  

The second phase involves the anomalous driving detection with input (position and motion 

parameters) from the first phase. Specifically, omega, d, and v from the first phase are used to 

calculate the O-indicator, D-indicator and V-indicator. Then, these three indicators are used 

as the inputs of the FIS for producing the risk type indicator, based on which the driving 

classification indicator is developed in order to identify the main features of each driving 

style. Finally, by comparing sorted values of the driving classification indicators with 

predefined sorting rules extracted from the experience data 
2
, one can obtain the type of 

driving style. 

 

                                                 
2
 The experience data are provided by the Zhoushan Traffic Police Station; the fuzzy values and rules 

are obtained as the outputs of artificial neural networks trained based on the recent 5-year vehicle 

trajectory data in radar image format. 
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Figure 1 Framework of the proposed anomalous driving detection system. 

3.2 FIS-Based Anomalous Driving Detection Algorithm with Velocity Indicators 

The O-indicator, D-indicator and V-indicator are the inputs of the FIS system for calculating 

the risk type indicator. The membership function and fuzzy rules for the input indicators and 

output indicator are designed in this section. Figure 2 shows an example of the designed FIS 

membership functions for the O-indicator, D-indicator, V-indicator and risk type indicator in 

straight lane scenarios. The fuzzy values of these indicators are defined in Table 2. The risk 

type indicator is defined with four fuzzy values A, B, C, D, representing low risk, medium 

risk, high risk, and very high risk, respectively (see Figure 2).  

 

 



13 

 

Table 2 Acronyms for different fuzzy values of the indicators. 

 Small Medium Large Very large 

V-indicator SV MV LV VLV 

O-indicator SO MO LO VLO 

D-indicator SD MD LD VLD 

 

 

 

Figure 2 Membership function for the straight scenarios. 

 

The experience data are used to design the fuzzy values in the membership functions and the 

rules for mapping the V-indicator, O-indicator and D-indicator to the corresponding risk 

types. The experience data are provided by the Zhoushan Traffic Police Station; the fuzzy 

values and rules are obtained as the outputs of artificial neural networks trained based on the 

recent 5-year vehicle trajectory data in radar image format. The mapping rules for the 

straight-lane scenarios are shown in Table 3, while the rules for the curved-lane scenarios are 

similar and omitted here. 

Table 3 Rules of FIS for the straight scenarios. 

O-indicator D-indicator V-indicator Risk Type 

SO SD Any(SV,MV) A 

SO SD LV B 

SO MD SV B 

SO SD VLV C 

SO Any(MD,LD) MV C 

SO Any(LD,VLD) SV C 

SO Any(MD,LD,VLD) Any(LV,VLV) D 

MO Any( SD,MD,LD,VLD) Any(LV,VLV) D 

MO Any(MD,LD,VLD) Any(SV,MV) C 

LO Any(SD,MD,LD,VLD) Any(SV,MV,LV,VLV) D 

VLO Any(SD,MD,LD,VLD) Any(SV,MV,LV,VLV) D 
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Based on the risk type indicator produced by the FIS in every time epoch, the counts of all 

four risk types (A, B, C, D) for all the driving scenarios (defined in Table 1) during the last 5 

seconds are recorded. Four driving classification indicators are then developed to classify 

different types of anomalous driving. They are AB, BC, CD, and AD; and their values are 

calculated based on the counts of relevant risk types: AB is defined to be the sum of counts of 

risk type A and risk type B; the others can be similarly defined.  

Once the numerical values of the driving classification indicators are calculated, one can sort 

these indicators and use the sorted list to identify the types of anomalous driving based on the 

experience data. For example, if the order AB>BC>=CD>=AD is associated with weaving in 

the experience data, then the driving style is classified as weaving whenever the same sorting 

pattern is identified from the test data. Notice that there may be more than one sorting 

patterns associated with the same anomalous driving style. We refer the reader to Sun et al. 

(2015) for more elaboration of the development of the driving classification indicators and 

the sorting rules.  

3.3 Algorithm Test based on Simulated Data 

In this section we conduct a preliminary assessment of the proposed anomalous driving 

detection algorithm based on simulated data, and compare it with the algorithm proposed in 

Sun et al. (2015), which does not take V-indicator into account. An episode of simulated 

driving data is generated to find out if the newly designed algorithm can continuously detect 

different types of anomalous driving. A time horizon of 120 s is assumed, and the simulated 

data include manoeuvres corresponding to weaving for 20 seconds, swerving for 20 seconds, 

jerky driving for 20 seconds and normal driving for 60 seconds. The anomalous driving 

detection results are generated at three different frequencies: 10Hz, 5Hz and 1Hz; see Table 4 

for a summary of the results. Here, we use the first time of correct detection as the 

performance measure. 

Table 4 Time to first detection in the simulation test. 

Output 

Frequency 
FIS Algorithm with (V-indi, O-indi and D-indi) input 

Weaving Swerving Jerky Driving Normal Driving 

10Hz 5s 24.3s 41.6s 62.5s 

5Hz 5s 24.5s 42s 62.5s 

1Hz 5s 25s 42s 63s 

Output 

Frequency 
FIS Algorithm with (O-indi and D-indi) input 

Weaving Swerving Jerky Driving Normal Driving 

10Hz 5s 24.5s 41.8s 62.7s 

5Hz 5s 24.5s 42s 63s 
1Hz 5s 25s 42s 63s 
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Table 4 suggests that the newly designed FIS algorithm for anomalous driving detection, with 

the additional consideration of the V-indicator, has slightly improved the time to first 

detection. The savings are typically between 0.2-0.5s, and the improvement is more 

significant for high-frequency outputs.   

 

Availability and correct detection rate are two other important performance indicators for 

evaluating the effectiveness of the anomalous driving detection algorithms. Availability 

refers to the percentage of valid driving style identification (weaving, swerving, jerky driving, 

and normal driving) produced by the algorithm. Correct detection rate is the percentage of 

correct driving style identification among all available outputs. The availability and correct 

detection rate for the simulation test is shown in Table 5, which clearly indicates that the 

proposed algorithm outperforms the one without the V-indicator in terms of both criteria. 

 

Table 5 Availability and correct detection rate in the simulation test. 

FIS Algorithm with (V-indi, O-indi and D-indi) input 

Output Frequency Availability Correct Detection Rate 

10Hz 95.14% 98.10% 

5Hz 97.28% 99.29% 

1Hz 98.35% 100% 

FIS Algorithm with (O-indi and D-indi) input 

Output Frequency Availability Correct Detection Rate 

10Hz 94.08% 97.12% 

5Hz 97.16% 98.15% 

1Hz 98.20% 100% 

 

So far, we have discussed two new data fusion methods, UKFCA/UKFCTRA and 

UPFCA/UPFCTRA for positioning and motion parameter estimation (Section 2). The outputs 

of these methods are then input into the anomalous driving detection algorithm proposed in 

this section. The efficacy of the IFS-based anomalous driving detection with V-indicator is 

proven with simulated data. In the next section, the entire end-to-end anomalous driving 

detection framework, including BeiDou/GPS+IMU data acquisition, data fusion, and 

anomalous driving detection, will be tested extensively using real data from a field test.  

4. Field Experiment and Analysis  

A field test was carried out to validate the proposed lane-level anomalous driving detection 

approach based on real BeiDou/GPS & IMU data filtered with the proposed UPFCA and 

UPFCTRA methods (the UPF method is selected over the UKF since it has better 

performance as shown in Table 1). Since this paper makes contribution in both data fusion 



16 

 

and anomalousity detection (see Figure 1), the test is designed into three stages: (1) to 

validate the proposed lane-level high-precision positioning approach, i.e. UPFCA and 

UPFCTRA fusion methods based on BeiDou/GPS and IMU feeds (to be conducted in Section 

4.2); (2) to validate the proposed new FIS-based anomalous driving detection algorithm and 

compare it with other state-of-the-art algorithms for the same application, based on the same 

reference data 
3
 (to be conducted in Section 4.3); and (3) to test the integrated GPS/BeiDou-

fusion-detection approach (to be conducted in Section 4.4). 

4.1 Data Collection  

The testing field is on the Ningbo-Zhoushan expressway near the University of Nottingham, 

Ningbo campus. The driving data were captured for 2 hours from 13:50 to 15:50, which 

involved weaving, swerving and jerky driving on both straight and curved lanes. A total of 

six sessions, involving different types of anomalous driving styles, are defined in Table 6. All 

the sessions were carried out on open areas, when there was no passing-by traffic or roadside 

objects to ensure the safety of the experimental environment and also the high quality of the 

GPS and BeiDou measurements.  

Table 6 Definition of sessions. 

Session Name Start Time (UTC) End Time (UTC) Driving Type 

Session 1 13:51:24.0 13:51:31.2 Weaving on Straight 

Session 2 13:54:25.5 13:55:01.4 Jerky Driving on Straight 

Session 3 14:00:10.0 14:00:17.5 Swerving on Straight 

Session 4 14:57:13.9 14:57:23.5 Jerky Driving on Curve 

Session 5 15:17:05.8 15:17:11.6 Swerving on Curve 

Session 6 15:21:25.7 15:21:35.2 Weaving on Curve 

 

For the anomalous driving data collection, the test vehicle was driven at speeds ranging from 

70km/h to 120km/h, and the positioning data were collected at a frequency of 10 Hz. The 

installation of various equipment used in the experiment is illustrated in Figure 3, The 

equipment specification are as follows. 

 JAVARD Triumph-VS receiver for real-time GNSS data collection, including the 

BeiDou and GPS positioning results and velocity of the vehicle. 

 XSENS IMU for real-time attitude data collection, including heading angle and 

yaw rate of the vehicle.  

                                                 
3
 The reference data are obtained using high-accuracy I-Mar RT-200 INS outputs, which were post-

processed by forward and backward processing tools to yield highly accurate vehicle positioning 

information, which were treated as ground truth. 
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 i-Mar RT-200 INS for providing integrated GPS/INS measurements, which were 

post-processed by forward and backward processing tools for a high accuracy 

reference. The reference data are treated as the ground truth. 

 

Besides the collection of car trajectory data, another important quantity to measure is the 

lane’s central line in the driving route. In this experiment, the coordinates of the lane’s central 

line are collected afterwards by the vehicle with i-Mar RT-200 INS (with 20Hz output rate) 

driving along the middle of the same lane on which the anomalous driving were conducted. 

The post-processed i-Mar RT-200 measurements are recognized as the position of the lane’s 

central line. The lateral displacement of the vehicle was calculated by finding the two 

measurement points on the central line that are closest to the vehicle, and then calculating the 

perpendicular distance from the vehicle to the line segment containing these two points.  

 

 

Figure 3 Test equipment. 

4.2 Fusion Results with GPS/BeiDou and IMU feeds 

A prerequisite of the lane-level positioning is the knowledge of the ground truth, which can 

be estimated from the expensive yet accurate post-processed data from i-Mar RT-200 INS. In 

this section, we use GPS/BeiDou & IMU feeds combined with advanced fusion algorithms 

(i.e. UPFCA/UPFCTRA) to approximate the ground truth with satisfactory accuracy.  

It is expected that the multi-satellite positioning systems (with both GPS and BeiDou) will 

bring more redundancy of the satellites and diminish the Dilution of Precision (DOP) values, 

GNSS receiver integrated with IMU GNSS receiver 

XSENS IMU Test vehicle 
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thereby improving the positioning accuracy. Figure 4 compares the DOP values of two 

systems, one based solely on GPS and the other based on both BeiDou and GPS with 15 

degree elevation angle. In particular, four categories have been considered, namely the 

Geometric Dilution of Precision (GDOP), Position Dilution of Precision (PDOP), Horizontal 

Dilution of Precision (HDOP), and Vertical Dilution of Precision (VDOP). It is shown that 

for each category, the DOP values with BeiDou+GPS are consistently lower than those with 

GPS only.  

 

Figure 4 DOP values with GPS only and GPS+BeiDou 

 

Table 7 shows the positioning accuracy with different GNSS sources and data fusion 

algorithms. It is clear that the combined GPS+BeiDou feeds have improved the positioning 

accuracy for all of the data fusion techniques employed. In particular, without any data fusion 

(indicated as ‘Raw data’ in the table), the percentage of measurement errors below 0.5m has 

increased from 6.25% (with GPS only) to 8.26% (with GPS+BeiDou); and the mean error has 

decreased from 0.7591m (with GPS only) to 0.6012m (with GPS+BeiDou). In addition, the 

performance of both fusion methods, PFCA/PFCTRA from Sun et al. (2015) and 

UPFCA/UPFCTRA from this paper, have been enhanced with the introduction of the BeiDou 

signal. In particular, the percentages of errors below 0.5m have been increased from 20.13% 

to 30.15% for PFCA/PFCTRA, and from 25.75% to 45.26% for UPFCA/UPFCTRA.  

Finally, a comparison between PFCA/PFCTRA and UPFCA/UPFCTRA shows that the latter, 

which is proposed in this paper, performs consistently better than the former regardless of the 
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GNSS source. Figure 5 confirms that the UPFCA/UPFCTRA estimates are indeed closer to 

the reference (ground truth) than PFCA/PFCTRA estimates. 

Table 7 Statistics of the 2dRMS positioning accuracy 

GNSS 

Source 

Data Fusion Error  

<0.5 (m) 

Error  

0.5-1(m) 

Error  

>1(m) 

Total Mean 

Error (m) 

GPS Only 

Raw data 6.25% 57.30% 36.45% 100% 0.7591 

PFCA/PFCTRA  20.13% 65.27% 14.60% 100% 0.5162 

UPFCA/UPFCTRA  25.75% 68.58% 5.67% 100% 0.4215 

GPS+BeiDou 

Raw data 8.26% 61.28% 30.46% 100% 0.6012 

PFCA/PFCTRA  30.15% 54.58% 15.27% 100% 0.4536 

UPFCA/UPFCTRA  45.26% 48.53% 6.21% 100% 0.3821 

 

 

Figure 5 Comparison of positioning accuracies where the ground-truth reference is given by GPS/INS. 

4.3 Testing Anomalous Driving Detection Algorithms based on the Reference Data  

For the validation of the new FIS-based anomalous driving detection algorithm and its 

comparison with other state-of-the-art algorithms, we apply the reference data, which were 

obtained from the post-processed high grade i-Mar integrated measurements mentioned in 

Section 4.1. The reference data are highly accurate and thus used as the ground truth for 

testing the algorithms. For the defined sessions (Table 6), relevant quantities from the 

reference data are fed into different algorithms to produce the anomalous driving detection 

results in three output rates (1Hz, 5Hz and 10Hz).  

Here in this section, we compare the proposed algorithm with the one from our previous 

study (Sun et al. 2015), as well as other state-of-the-art algorithms from relevant literature. 

We note, according to our literature review, that no other studies have attempted to classify 
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different driving styles (weaving, swerving, jerky driving, and normal driving) as we did in 

this paper and in Sun et al. (2015); however, some of their methodologies can still be adapted 

to design specific algorithms for the same application. These typical methods include Radial 

Basis Probability Neural Networks (RBPNN) (Chang et al., 2008), Longitude-Latitude-

Acceleration based Pattern Matching Algorithm (Dai et al., 2010), and the Machine Learning 

algorithm designed in Krajewski et al. (2009).  

The first performance measure for our comparison is time to first detection, which measures 

the timeliness of the detection, and the results are shown in Table 8. It can be seen that the 

proposed algorithm outperforms all of its competitors. In particular, the advantage of the 

proposed FIS-based algorithm is more pronounced with higher output rates. It is also noted 

from the table that, with the exception of the Pattern Matching Algorithm, the anomalous 

driving detection algorithms can detect anomalous driving within 5s after the first incident. In 

addition, the Pattern Matching Algorithm produces severe delay in the detection, especially 

for Session 1, which can be up to 4 s later than our proposed algorithm. Overall, the FIS-

based algorithm with the V-indicator performs the best, followed by the Sun et al. (2015) 

algorithm and the RBPNN (Chang et al., 2000) whose performances are similar. The 

Machine Learning Algorithm and Pattern Matching Algorithm provide the least satisfactory 

results.  

 

Table 8 Comparison of algorithms in terms of timeliness of detection (time to first detection minus time of the 

incident)  

Output 

Frequency 

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 

Proposed FIS Algorithm with V-indi, O-indi and D-indi 
10Hz 1.8s 2.7s 3.1s 2.9s 2.5s 2.9s 

5Hz 2.0s 3.0s 3.5s 3.1s 2.7s 3.3s 

1Hz 2.0s 3.5s 4.0s 3.1s 3.2s 3.3s 

 FIS Algorithm with O-indi and D-indi (Sun et al., 2015) 

10Hz 2.2s 3.4s 3.5s 3.5s 2.9s 3.2s 

5Hz 2.5s 3.5s 3.5s 3.6s 3.2s 3.3s 

1Hz 3.0s 3.5s 4.0s 4.1s 3.2 3.3s 

 RBPNN Algorithm (Chang et al., 2008) 

10Hz 2.8s 3.2s 3.2s 3.7s 2.6s 3.2s 

5Hz 3.0s 3.5s 3.5s 4.1s 2.7s 3.3s 

1Hz 3.0s 3.5s 4.0s 4.1s 3.2s 3.3s 

 Pattern Matching Algorithm (Dai et al., 2010) 

10Hz 5.2s 3.3s 3.4s 4.8s 3.5s 4.1s 

5Hz 5.5s 3.5s 3.5s 5.1s 3.7s 4.3s 

1Hz 6.0s 3.5s 4.0s 5.1s 4.2s 4.3s 

 Machine Learning Algorithm (Krajewski et al., 2009) 

10Hz 3.8s 3.4s 3.4s 4.8s 3.0s 4.0s 

5Hz 4.0s 3.5s 3.5s 5.1s 3.2s 4.3s 

1Hz 4.0s 3.5s 4.0s 5.1s 3.2s 4.3s 
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The second and third performance measures for our comparison are availability and correct 

detection rate, whose definition can be found in Section 3.3. Table 9 shows the comparison 

results based on the reference data. The findings are as follows.  

(1) All the anomalous driving detection algorithms perform properly and yield high 

availability of system outputs, although our proposed method has the highest 

availability across all three output frequencies.  

(2) In terms of the correct detection rate, the proposed algorithm outperforms the others 

by a discernable margin, especially compared to the algorithms (RBPNN, Pattern 

Matching, Machine Learning) from the literature.  

(3) The Pattern Matching Algorithm yields significant error in the anomalous driving 

identification. A possible reason is that as the algorithm only takes, as input, the 

longitudinal and latitudinal acceleration, which are inadequate to capture the different 

driving styles considered in this paper. 

Table 9 Comparison of the Algorithms in terms of availability and correct detection rate based on the reference 

data with different output frequencies. 

Output Frequency Availability Correct Detection Rate 

Proposed FIS Algorithm with V-indi, O-indi and D-indi 

10Hz 88.14% 87.12% 

5Hz 95.18% 95.29% 

1Hz 97.05% 97.51% 

 FIS Algorithm with O-indi and D-indi (Sun et al., 2015) 

10Hz 85.48% 85.95% 

5Hz 94.49% 95.13% 

1Hz 96.04% 96.31% 

 RBPNN Algorithm (Chang et al., 2008) 

10Hz 86.28% 78.30% 

5Hz 93.78% 82.82% 

1Hz 95.28% 87.93% 

 Pattern Matching Algorithm (Dai et al., 2010) 

10Hz 85.25% 37.38% 

5Hz 93.72% 46.24% 

1Hz 96.51% 49.85% 

 Matching Learning Algorithm (Krajewski et al., 2009) 

10Hz 84.89% 71.31% 

5Hz 92.69% 77.06% 

1Hz 95.19% 80.56% 

 

From these results, it is clear that the anomalous driving styles (weaving, swerving, jerky 

driving, and normal driving) can be distinguished by the proposed algorithm along with some 
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other ones from previous studies. The new FIS algorithm proposed in this paper is shown to 

outperform the state-of-the-arts in terms of time of first detection, availability, and correction 

rate.  

4.4 Integrated Approach 

In this section, the integrated and end-to-end GPS/BeiDou/IMU-fusion-detection approach 

for anomalous driving detection is tested and validated. Notice that this integrated approach 

makes contribution in all three aspects, namely data source, fusion method, and anomalous 

driving detection algorithm. In this experiment, the combined GPS/BeiDou signals are used 

as the source of the raw data, which were fed to the fusion model and then used by the 

proposed FIS-based anomalous driving detection algorithm. 
4
  

Based on the GPS/BeiDou/IMU data feeds, we compare the combined (fusion 

model)+(anomaly detection model). The two candidates are: UPFCA/UPFCTRA fusion 

model + the velocity-based FIS algorithm, as proposed in this paper; and PFCA/PFCTRA 

fusion model + the FIS algorithm (Sun et al., 2015). The comparison results in terms of time 

to first detection are presented in Table 10. It can be seen that the first combination provides 

more timely responses, especially with higher output rates. For example, in Session 2, the 

time to first detection calculated by our algorithm can be 0.9s earlier than the Sun et al. (2015) 

algorithm under 10Hz output frequency. 

Table 10 Comparison of (data fusion model)+(irregularity detection model) in terms of time of first detection 

 UPFCA/UPFCTRA + the velocity-based 

FIS Algorithm 

PFCA/PFCTRA + the Sun et al. (2015) 

FIS algorithm 

Output 

Frequency 
10HZ 5Hz 1Hz 10Hz 5Hz 1Hz 

Session 1 1.9s 2.0s 2.0s 2.4s 2.5s 3.0s 

Session 2 2.9s 3.0s 3.5s 3.8s 4.5s 4.5s 

Session 3 3.3s 3.5s 4.0s 3.7s 4.0s 4.0s 

Session 4 3.0s 3.1s 3.1s 3.7s 4.1s 4.1s 

Session 5 2.6s 2.7s 3.2s 3.0s 3.2s 3.2s 

Session 6 3.2s 3.3s 3.3s 3.5s 3.8s 4.3s 

The comparison results in terms of availability and correct detection rate are presented in 

Table 11. The availability and correct detection rate based on the proposed model and 

algorithm are higher than its competitor, especially for high-frequency outputs.  

 

                                                 
4
 Since the inclusion of BeiDou source is obviously beneficial to the positioning accuracy, in our 

comparison we have skipped the part where GPS is used as the only source of positioning.  
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Table 11 Comparison in terms of availability and correct detection rate 

 Availability Correct Detection Rate 

Output 

Frequency 

UPFCA/UPFCTRA + 

the velocity-based FIS 

algorithm  

PFCA/PFCTRA + 

the Sun et al. (2015) 

FIS algorithm  

UPFCA/UPFCTRA + 

the velocity-based FIS 

algorithm 

PFCA/PFCTRA + 

the Sun et al. (2015) 

FIS algorithm 
10Hz 84.13% 79.28% 86.82% 81.25% 

5Hz 94.35% 93.49% 92.20% 91.13% 

1Hz 95.21% 94.04% 95.71% 94.15% 

 

It is validated that the UPFCA/UPFCTRA fusion algorithm with GPS/BeiDou source have 

greatly improved positioning accuracy, compared to the GPS only positioning results. 

Furthermore, the newly designed UPFCA/UPFCTRA model with the proposed FIS algorithm 

provides earlier detection than the other state-of the-art algorithms. Moreover, the availability 

and correct detection rate of the anomalous driving has also been improved by the same 

algorithm especially in higher output rates. 

5. Conclusion 

This paper presents an integrated framework for anomalous driving detection. We make 

contribution in three aspects: data source, fusion model, and anomalous driving identification 

algorithm. We are among the first to introduce BeiDou as an additional source of positioning 

for anomalous driving detection, and have demonstrated its effectiveness and practicality in 

terms of deployment and financial cost. Then, we propose two new data fusion models, 

Unscented Kalman Filter and Unscented Particle Filter, to estimate vehicle motion 

parameters. Last but not least, a FIS-based algorithm that takes into account the velocity 

indicator is proposed. The advantages of individual components have been demonstrated 

using extensive tests involving both simulated and real-world data. 

The integrated anomalous driving detection system not only utilizes BeiDou feeds, which 

significantly improves vehicle positioning results, but also relies on a series of 

methodological advancements during various stages of the process with much improved 

timeliness, availability, and correctness of the detection. The field test has demonstrated the 

practicality of this approach for real-world applications through the use of low-cost 

equipment and integrated procedures. 
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