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Abstract
Accurate laboratory measurements of crack initiation and growth are of vital importance for

characterising material behaviour for use in the residual life assessment of structural

components. The Potential Drop (PD) technique is one of the most common methods of

performing these measurements, but such measurements are also sensitive to large

inelastic strains which are often erroneously interpreted as crack growth.  Despite the

maturity of the PD technique, the extent of these errors is not fully understood and the most

appropriate method of suppressing them is unknown.

In this thesis typical errors in the measurement of crack extension due to large inelastic

strains have been quantified experimentally. These errors depend on the PD configuration

and in some cases the configurations recommended in the standards are susceptible to

particularly large errors. Optimum configurations for common fracture specimens have been

identified but despite these mitigating measures, when testing ductile materials, the errors

due to strain remain large compared to other sources of error common to the PD technique.

A sequentially coupled structural-electrical FE modelling approach has been developed

which is capable of predicting the influence of strain on PD.  This provides a powerful tool for

decoupling the effects of strain from crack extension. It has been used in conjunction with

experimental measurements, performed using a novel low frequency ACPD system (which

behaves in a quasi-DC manner), to develop procedures for accurately measuring crack

initiation and growth during fracture toughness and creep crack growth testing. It is

demonstrated that some of the common methods of interpreting PD measurements during

these tests are not fit for purpose. The proposed method of interpreting creep crack growth

data has been used to re-validate creep crack initiation prediction models provided in the R5

assessment procedure.
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Chapter 1:
Introduction
All metal structures contain defects as a result of manufacturing processes.  In order to

assess the residual life of a structure it is necessary to understand the initiation and growth

behaviour of these defects.  This is typically characterised under laboratory conditions where

an artificial defect is introduced into a specimen and simplified loading conditions are

applied.  Data obtained from such tests is also used to validate analytical models for

predicting crack initiation and growth in situations where empirical test data is not available.

Accurate methods of measuring crack behaviour in the laboratory are therefore critical for

the continued safe operation of existing structures.

One of the most common methods of measuring crack behaviour in the laboratory is the

Potential Drop (PD) technique, primarily due to its versatility; it can be used to monitor a

wide variety of crack growth mechanisms and can be implemented in hostile environments.

Although this is a mature technique, some limitations have yet to be fully addressed.  For

applications such as fracture toughness and creep crack growth testing of ductile materials,

large inelastic strains can influence the PD measurement and are often erroneously

interpreted as crack growth.  The extent of these errors is not fully understood and the most

appropriate method of suppressing them is unknown.  Also, the most common variant of the

PD technique, Direct Current Potential Drop (DCPD), tends to be susceptible to electrical

noise which can reduce the accuracy of the measurement of crack extension.

Recently a low frequency Alternating Current Potential Drop (ACPD) system, which behaves

in a quasi-DC manner, has been developed for monitoring creep strains on plant.  This

system demonstrates reduced noise and increased thermal stability compared to a typical

DCPD system.  In addition, advances in Finite Element (FE) techniques permit

computationally inexpensive analyses to be performed which may be used to predict the PD

response due to strain.  This work combines these two technologies to address the

limitations of the PD technique identified above and provide recommendations for the

measurement of crack initiation and growth during fracture toughness and creep crack

growth testing of ductile materials.  These recommendations have been implemented to

assess the accuracy of the analytical Creep Crack Initiation (CCI) models included in the R5

high temperature structural integrity assessment procedure.
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1.1 Objectives

The main objectives of this research are:

 Review methods of measuring crack initiation and growth suitable for room

temperature and high temperature applications, in particular the PD technique.

 Quantify the errors associated with the PD technique due to large inelastic strains

and identify their significance by comparing them to other typical sources of error.

 Develop numerical tools for predicting the influence of strain on PD measurements.

 Use these tools to develop experimental methods for accurately measuring crack

initiation and growth during fracture toughness and Creep Crack Growth (CCG)

testing of ductile materials.

 Use these experimental methods to assess the accuracy of the analytical CCI

models included in the R5 assessment procedure.

1.2 Structure of the Thesis

Chapters 2 and 3 provide a review of the literature and concepts relevant to this research.

Chapter 2 presents a review of fracture mechanics concepts including Linear-Elastic

Fracture Mechanics (LEFM), Elastic-Plastic Fracture Mechanics (EPFM) and

Time-Dependent Fracture Mechanics (TDFM).  Analytical models for predicting CCI and

Creep Crack Growth (CCG) are also included.  Chapter 3 reviews experimental techniques

used to measure crack extension.  Only techniques which are suitable for both room

temperature and high temperature applications are considered because this research is

related to both.

Chapters 4 and 5 investigate the typical errors associated with the PD technique and ways

to mitigate them.  The influence of the PD configuration is assessed in Chapter 4 and

optimum configurations are identified for Compact Tension, C(T), and Single Edge-Notched,

SEN, specimen geometries. Errors associated with calibrating the PD measurement with a

crack extension are quantified in Chapter 5.  Consideration is also given to a possible unified

calibration function for the most common fracture specimen geometries.

Chapter 6 presents the development and validation of an FE based tool for predicting the

influence of strain on PD measurements. This tool and the experimental validation have

been used to identify the significance of plastic strain on PD measurements in the absence

of crack extension. These are compared to the other common sources of error identified in

Chapters 4 and 5 and recommendations are provided regarding methods to limit the

influence of strain on PD measurements.
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The most appropriate method of interpreting PD data during fracture toughness testing of

ductile materials is assessed in Chapter 7.  A combination of empirical and finite element

analysis has been used to critically assess the two main methods proposed in the literature

and standards [1, 2].  Anecdotally observed limitations of the PD technique for this

application are also investigated.

The most appropriate method of interpreting PD data during CCG testing of ductile materials

is assessed in Chapter 8.  A modified method of interpreting the data is proposed which is

analogous to the method used for fracture toughness testing.  Possible limitations of this

method have been investigated using FE.

PD data from a series of CCG tests has been reinterpreted using the proposed new method

in Chapter 9.  The measured initiation times and the subsequent crack growth rates are

compared to those obtained using the current method defined in ASTM E1457-13 [3].  The

experimental measurements are also compared to the analytical CCI models included in the

R5 assessment procedure [4] to assess the accuracy of these models.

A discussion of the results is presented in each individual chapter whilst overall conclusions

are provided in Chapter 10.  Recommendations for future work are also provided.  All

references are provided at the end of the thesis.



4

Chapter 2:
Review of Fracture
Mechanics Concepts
2.1 Introduction

This chapter reviews the fundamental fracture mechanics concepts relevant to this research.

The mechanisms associated with elastic, plastic and creep deformation are considered first,

along with the associated material models. This is followed by a review of Linear-Elastic

Fracture Mechanics (LEFM), Elastic-Plastic Fracture Mechanics (EPFM) and

Time-Dependent Fracture Mechanics (TDFM). The chapter concludes with a review of the

analytical Creep Crack Initiation (CCI) and Creep Crack Growth (CCG) models which are

assessed towards the end of this thesis.

2.2 Deformation Mechanisms

When a tensile load is applied to a uniaxial specimen at high temperature it will deform.  The

resulting strain, ε, will be a combination of elastic strain, εe, plastic strain, εp, and creep strain,

εc, as defined in Equation (2.1).  The elastic and plastic strain components are generally

independent of time whilst the creep strain is time dependent.

e p c      (2.1)

A uniaxial, one dimensional, explanation of these different strain components is provided in

the following sections.  This is extended to multi-axial, three dimensional, conditions later in

this chapter.

2.2.1 Elastic Deformation

Up to the elastic limit of the material, the time independent deformation is purely elastic.

This is due to distortion of the atomic lattice and is fully recoverable.  It is described by

Equation (2.2) where σ is the applied stress and E is the Young’s modulus of the material.
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e

E
  (2.2)

2.2.2 Plastic Deformation

Above the elastic limit, the time independent deformation consists of elastic and plastic strain

where the plastic component is due to dislocations in the atomic lattice and is

non-recoverable.  Plastic strain is often represented by a power-law as defined in Equation

(2.3) where N is the stress exponent, α is a material constant and σp0 and εp0 are the

normalising stress and strain respectively.  The normalising stress is typically the 0.2% proof

stress, σ0.2, (the stress corresponding to 0.2% plastic strain) which is often used to

approximate the yield stress, σy, of the material.  The normalising strain is the corresponding

elastic strain calculated from Equation (2.2).

0 0

N
p

p p

 
 

 
   
 

(2.3)

2.2.2.1 Ramberg-Osgood Material Model

The Ramberg-Osgood material model is often used to approximate the elastic-plastic tensile

behaviour of a strain hardening material.  This model combines Equations (2.2) and (2.3) to

produce Equation (2.4):

0 0 0

N

p p p

  
  

 
    

 
(2.4)

2.2.3 Creep Deformation

Time dependent creep is most significant at high temperatures.  At low temperatures

logarithmic creep can occur but only produces small strains and does not lead to eventual

failure [5].  The temperature at which creep becomes significant is approximately 50% of the

absolute melting point, although it varies with material [6].

There are two main mechanisms which control creep: dislocation movement and diffusion of

atoms.  At stresses too low for dislocations to occur, diffusion dominates the creep process

which results in an approximately linear dependence of creep strain rate on stress [6].  At

higher stresses, the generation and movement of dislocations dominate the creep process

and results in a power-law dependence of the creep strain rate on stress [6].  This is known

as dislocation or power-law creep.  For a given material, applied stress and temperature, the

dominant mechanism may be obtained from a deformation mechanism map.  The following
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research focuses on materials, loads and temperatures for which dislocation creep is the

dominant mechanism so the following discussion focuses on power-law creep.

A typical uniaxial creep curve for a polycrystalline material is provided in Figure 2.1.  It

consists of three stages: Primary, Secondary and Tertiary.  During the primary stage, the

creep strain rate reduces due to the introduction of dislocations which strain hardens the

material.  This strain hardening is competing with thermal recovery processes which soften

the material.  When a balance is obtained between these two mechanisms, a constant creep

rate occurs.  This is known as secondary or steady-state creep.  The final stage is tertiary

creep where the strain rate accelerates due to microstructural and/or mechanical instability

[5].  Sources of microstructural instability include grain growth, recrystalisation and

coarsening of precipitate dispersion.  Sources of mechanical instability include necking and

the formation of micro-voids along grain boundaries which coalesce to form micro-cracks

and eventually lead to inter-granular failure [6].

C
re

ep
 S

tra
in

Time

Primary Secondary Tertiary

εf

tr

Typical Creep Curve

Average Creep Approximation

εA

εs

Figure 2.1: Typical uniaxial creep curve.

Uniaxial creep tests are typically performed at a constant temperature and a constant load

but empirical creep laws required to assess the residual life of structural components must

be applicable to wide range of temperatures and stresses.  A significant number of tests are

required to derive these creep laws.
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2.2.3.1 Power-Law Creep

Power-law creep is so-called because of the power-law relationship between creep strain

rate, c , and stress.  A typical power-law relationship is provided in Equation (2.5) where n is

the strain rate stress exponent, σ0 is the normalising stress and 0 is the normalising strain

rate.  The normalising stress and strain rate may alternatively be expressed as a

temperature dependent material constant, A. The secondary creep strain rate, c
s , shown in

Figure 2.1, is often related to the applied stress by a power-law relationship in the form of

Equation (2.5).

0
0

n
c nA  


 

  
 

  (2.5)

The time to rupture, tr, is also related to the applied stress by a power-law relationship.  This

is shown in Equation (2.6) where νr is the stress rupture exponent and Br is a temperature

dependent material constant.

r

r
r

Bt 
 (2.6)

2.2.3.2 Primary and Secondary Creep Laws

Power-law creep models have also been derived which include the different stages of creep.

Equation (2.7) is an example of a primary and secondary creep law originally derived for

austenitic Type 316LN stainless steel taken from the French nuclear design code RCC-MR

[7].

 

2 1

2 1

1

1

C n

c

C n n
fp fp

C t

C t C t t




 


 
  

fp

fp

t t

t t




(2.7)

The total creep strain, εc, is in mm/mm, time, t, is in hours, stress is in MPa and C1, C2, C, n1
and n are material constants.  The transition from primary to secondary creep occurs at time

tfp.  This is the time at which the primary and secondary creep strain rates are equal and can

be calculated from Equation (2.8) where constants C3 and n3 are calculated from Equations

(2.9) and (2.10) respectively.

3
3

n
fpt C  (2.8)
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(2.9)

1
3

2 1
n nn
C





(2.10)

At times up to tfp the total creep strain calculated from Equation (2.7) is due to primary creep

only.  At times greater than tfp it is equal to the primary creep strain at the transition time plus

a secondary creep component.  This creep law is valid for creep strains up to 1% and

temperatures up to 700ºC.

2.2.3.3 Average Creep Rate

To avoid complex creep laws which model the separate stages of creep, laws based on the

average creep strain, c
A , shown in Figure 2.1, are often used.  This is calculated from the

creep ductility, εf, and the rupture time, tr, as shown in Equation (2.11).  It is often related to

the applied stress by the power-law relationship, also shown in Equation (2.11), where nA is

the average stress exponent and AA is a temperature dependent material constant.

Af nc
A A

r

A
t


   (2.11)

Equation (2.12) combines Equations (2.6) and (2.11). It demonstrates that an increase in

stress results in an increase in creep ductility when nA > νr and when nA = νr it is independent

of stress.  These observations can be particularly useful when analysing creep ductility data,

where experimental scatter can be significant, e.g. [8].

 A rn
f A rA B    (2.12)

2.2.3.4 Variable Stress and Temperature

For an element of material at a constant stress and temperature the accumulated creep

strain at a given time may be easily obtained from the creep laws presented above;

however, the operating conditions of real components often result in fluctuating stresses and

temperatures.  To assess the residual life of such components, it is necessary to calculate

the total accumulated creep strain for these complex operating conditions.

When the operating conditions change, the creep curve which describes the deformation

behaviour will also change.  In order to determine the location of an element of material on

the creep curve for the new conditions it is necessary to use some parameter to capture the

current ‘state’ of this element.  The two most common parameters used are strain and time.
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These are known as strain hardening and time hardening respectively and are shown

schematically in Figure 2.2.

σ1, T1

σ2, T2

σ3, T3

Time

C
re

ep
 S

tra
in

To
ta

l C
re

ep
 S

tra
in

Time

Strain Hardening

Time Hardening

t1 t2 t3 t1 t2 t3

(a) (b)

σ3> σ2> σ1
T3> T2> T1

Figure 2.2: Accumulation of creep strain based on strain hardening and time
hardening assumptions showing (a) instantaneous jumps between creep curves when

the component conditions change, and (b) the total creep strain.

In Figure 2.2 the initial (primary) stage of three creep curves are shown corresponding to

different operating conditions.  In this example, the operating conditions change from

condition 1 (σ1, T1), to condition 2 (σ2, T2), to condition 3 (σ3, T3) which represent progressively

more onerous conditions.   When the conditions change, the strain hardening law uses the

current strain to characterise the ‘state’ of the material and the location on the new creep

curve is obtained by moving horizontally in Figure 2.2(a).  The time hardening law uses the

total creep time to characterise the ‘state’ of the material and the location on the new creep

curve is obtained by moving vertically in Figure 2.2(a).  The strain hardening law and time

hardening laws are demonstrated mathematically in Equations (2.13) and (2.14)

respectively.

 c cf ,T ,   (2.13)

 c f ,T ,t  (2.14)

Neither of these approaches is consistently conservative so the method of characterising the

‘state’ of the material should be selected with caution.  The difference between the two

depends on the shape of the creep curve and the stress and temperature history of the
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component.  In Figure 2.2, where the creep strain rate is reducing with time, and the

changes in stress and temperature result in progressively more onerous conditions, the

strain hardening law predicts a larger accumulated creep strain, as shown in Figure 2.2(b).

If the creep strain rate was increasing with time (typical of tertiary creep) or the changes in

stress and temperature resulted in less onerous conditions, the opposite would be true.  For

secondary creep, where the creep strain rate is constant, the two methods are identical.

2.2.4 Multi-axial Deformation

The constitutive relationships provided above are all derived from uniaxial tensile tests, but

real components (and fracture specimens) tend to experience multi-axial stress states.  For

these complex stress states it is necessary to define an equivalent stress and an equivalent

strain which may be compared to the uniaxial data.  The von Mises yield criterion is the most

common method used in fracture mechanics problems [9] although the Tresca yield criterion

is also sometimes used.  Both methods are presented here.

2.2.4.1 Von Mises Yield Criterion

The stresses experienced by an element of material can be separated into hydrostatic (or

mean) and deviatoric components.  An element of material which experiences only

hydrostatic stress will experience a change in volume but not a change in shape, i.e. it will

not plastically deform.  This is because plasticity is driven by shear which results from

deviatoric stresses [10].  The hydrostatic stress, σm, is the mean of the three principal

stresses, σ1, σ2 and σ3, as defined in Equation (2.15).

1 2 3

3m
  


 

 (2.15)

The deviatoric stresses in the three principal directions, σ'1, σ'2 and σ'3, may be calculated

from (2.16).

1 1

2 2

3 3

m

m

m

  

  

  

  

  

  

(2.16)

An element of material which experiences deviatoric stresses will experience shear and at

some critical point, this will result in plastic deformation which occurs at constant volume, i.e.

the effective Poisson’s ratio, ν, is 0.5.  The von Mises yield criterion states that an element of

material will plastically deform when the shear strain energy attains a critical value.
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Alternatively this may be stated as when the equivalent stress,  , defined by Equation

(2.17), attains a critical value.

     
1

2 2 2 2
1 2 2 3 3 1

1
2

              (2.17)

In a uniaxial tensile test, where σ2 = σ3 = 0, Equation (2.17) reduces to Equation (2.18).  The

yield stress obtained from a uniaxial test is therefore this critical value of equivalent stress.

1  (2.18)

Using the von Mises definition of equivalent stress in Equation (2.17), it can be shown that

the equivalent plastic strain, p for a power-law hardening material may be defined by

Equation (2.19).  By comparing this to the uniaxial definition of plastic strain in Equation (2.3)

it can be seen that a uniaxial stress-strain curve may also be applied to multi-axial conditions

based on the von Mises definition of equivalent stress [9].  The same is also true for

power-law creep properties derived from uniaxial creep tests.

0 0

N
p

p p

 
 

 
   
 

(2.19)

2.2.4.2 Tresca Yield Criterion

The Tresca yield criterion states that plastic deformation will occur at a critical value of shear

stress.  The corresponding definition of equivalent stress is provided in Equation (2.20)

assuming σ1 > σ2 > σ3.  For a uniaxial specimen, this again reduces to Equation (2.18), such

that plastic deformation will occur when the equivalent stress is equal to the yield stress

obtained from a uniaxial test.

1 3    (2.20)

2.2.4.3 Flow Rule

To determine the deformed shape of an element of material in a multi-axial stress state a

so-called flow rule is applied.  A typical flow rule for metals assumes that the increment in

plastic strain is proportional to the deviatoric stress in the same direction, i.e. the principal

axes of plastic strain increment and deviatoric stress are coincident.

2.2.4.4 Multi-axial Creep Ductility

Creep rupture is often associated with the nucleation, growth and coalescence of voids

forming along grain boundaries.  The creep strain rate of a material is related to the
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equivalent stress, whilst the rate of growth of these voids is also related to the ratio m 

[11].  This is often referred to as the triaxiality ratio and depends on the stress state of the

material.  The creep ductility of the material must therefore also depend on the stress state.

Various models have been developed to capture this dependency e.g. [11, 12].  The one

proposed by Cocks and Ashby [12] is often applied to Type 316H stainless steel [13-15]

which is the main material considered in this research.  This model is discussed here.

The multi-axial rupture time, *
rt , for a power-law creeping material at a constant stress, due

to the nucleation, growth and coalescence of evenly spaced voids along grain boundaries is

given by Equation (2.21) [12].  In this equation tn is the void nucleation time, fi is the original

area fraction of cavities and λ is defined by Equation (2.22).  The multi-axial stress state is

captured by the triaxiality ratio in Equation (2.22).

   
1

1 1
*
r n

s i

t t ln
n n f



 
      

(2.21)
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(2.22)

From equations (2.15) and (2.18) the triaxiality ratio is 1/3 under uniaxial conditions so the

ratio of the uniaxial rupture time and multi-axial rupture time may be obtained from Equation

(2.23) assuming that the void nucleation time is negligible.
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(2.23)

As discussed previously, creep laws derived from uniaxial tests are also applicable to

multi-axial conditions so the average creep rate, defined in Equation (2.11) may also be

expressed in terms of the multi-axial creep ductility, *
f , and the multi-axial rupture time as

demonstrated in Equation (2.24).

*
f fc

A *
r rt t
 

   (2.24)

By combining Equations (2.23) and (2.24), the ratio of the uniaxial and multi-axial creep

ductility may be defined by Equation (2.25).
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(2.25)

2.3 Fracture Mechanics

The stress and strain fields in a loaded body can be calculated by solving the equilibrium

and compatibility equations for given set of boundary conditions.  If that body contains a

crack, it can be shown that the stress and strain fields local to the crack tip often depend

only on the properties of the material and a single scaling parameter.  This single scaling

parameter depends on the geometry and the applied loading.  For linear-elastic materials,

this parameter is the stress intensity factor, K, and for elastic-plastic materials it is the J

contour integral. In the presence of creep, this parameter may be C(t) or C* depending on

the extent of the creep.  Each of these different regimes is discussed below.  The discussion

focuses on mode I loading, i.e. the applied load is normal to the plane of the crack.  This is

the loading experienced by the fracture specimens considered in this research and is typical

of cracks in most real components.  The polar co-ordinate system used to describe the

stress and strain fields around the crack tip is shown in Figure 2.3 for a crack of length 2a in

an infinite body.

σxx

x

y

θ

r

σyy

2a

τxy

Crack

Figure 2.3:  Crack tip co-ordinate system.
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2.3.1 Linear-Elastic Fracture Mechanics (LEFM)

LEFM is applies to structures which fail in a predominantly elastic manner.  It does not

account for plasticity or time dependent effects although the concepts have been extended

to account for small amounts of plasticity.  Two different parameters are commonly used to

describe the behaviour of cracks in LEFM.  These are the strain energy release rate, G, and

the stress intensity factor, K.

2.3.1.1 Strain Energy Release Rate, G

Griffith [16] identified that a crack would grow in a linear elastic material when the resulting

release in strain energy is equal to, or more than, the energy required to break the atomic

bonds necessary to form the new fracture surfaces.  Based on Griffiths theory, strain energy

release rate, G, was later proposed as a measure of the available energy to produce crack

growth.  The term ‘rate’ refers to the strain energy that would be released per unit area of

crack growth.  It is defined by Equation (2.26), where Π is the potential energy due to the

internal strain and external forces and Ac is the crack area.  The strain energy release rate,

G, is sometimes called the crack driving force.

c

dG
dA


  (2.26)

According to Griffith’s theory, crack growth occurs when the crack driving force reaches a

critical value, GC (or GIC for mode I loading).  This critical value is the work done to break the

atomic bonds and form the new fracture surfaces, Ws, per unit area of crack growth and is

defined in Equation (2.27).

s
C

c

dWG
dA
 (2.27)

2.3.1.2 Stress Intensity Factor, K

By solving the equilibrium and compatibility equations, it can be shown that the stress

distribution close to a perfectly sharp crack tip in a linear-elastic material can be

approximated from Equation (2.28), where fij describes the variation of the stress field with

angle θ, and K is the stress intensity factor which is the magnitude of the field.

 ij ij
K f
r

  (2.28)

This is the first term of a series expansion.  In the vicinity of the crack tip, where r is small

compared with the specimen geometry, this term dominates, but remote from the crack tip,
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the higher order terms become significant and the stresses are governed by the remote

boundary conditions. In some cases the second term, which contains the so-called T stress,

can also influence the stresses close to the crack tip [17]. The elastic strain field around the

crack tip is described by Equation (2.29).

 e
ij ij

K g ,v
E r

  (2.29)

The value of K depends on the geometry, including the size of the crack, and the applied

loading. Handbook solutions for many standard configurations are available in the literature

(e.g. [18]).  These are often in the form of Equation (2.30), where Y is a shape function which

describes the geometry dependency.

K Y a (2.30)

Given that K fully describes the conditions at the crack tip for a linear-elastic material, it

follows that fracture will occur at a critical value, KC.  This is known as the fracture toughness

and for mode I loading, the critical value is KIC.

2.3.1.3 Small Scale Yielding

Equation (2.28) predicts infinite stresses at the crack tip.  In real materials, this is not

possible because plasticity will occur when the stress exceeds yield and a plastic zone will

form at the crack tip.  If this plastic zone is small compared to the region dominated by the

crack tip singularity, the stress and strain fields inside the plastic zone will be driven by the

surrounding material which behaves according to Equations (2.28) and (2.29).  The

conditions in the plastic zone therefore remain characterised by, K, albeit not described by

Equations (2.28) and (2.29). This is called small-scale yielding.

Assuming an elastic-perfectly plastic material, the stress at the crack tip cannot exceed the

yield stress.  Irwin [19] demonstrated, from Equation (2.28), that the region of material ahead

of the crack tip where the equivalent stress is predicted to exceed yield, ry, may be obtained

from Equation (2.31)

2
1

y
y

Kr
 
 

   
 

(2.31)

For plane stress conditions β = 2.  For plane strain conditions, where plasticity at the crack

tip is suppressed by stress triaxiality, β = 6. Accounting for the redistribution of the stress

within this region, it can be shown that the size of the plastic zone, rp, is double the value of

ry.
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In the presence of small scale yielding, Irwin [19] postulated that the plastic zone increased

the effective size of the crack and the corresponding stress intensity factor.  He proposed

that the effective crack length, aeff, could be approximated from Equation (2.32).

eff ya a r  (2.32)

For a Ramberg-Osgood material a modified version of this approach has been proposed to

account for strain hardening [20]. The corresponding values of ry and aeff are calculated from

Equations (2.33) and (2.34) respectively, where P is the applied load and Pp0 is a normalising

load.
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2.3.1.4 Relationship between G and K

Irwin [21] performed a crack closure analysis to demonstrate the unique relationship

between G and K.  This relationship is provided in Equation (2.35) where Eʹ is the effective

Young’s modulus.

2KG
E




(2.35)

For plane stress conditions Eʹ is simply the Young’s modulus obtained from a uniaxial tensile

test, E.  For plane strain conditions it is corrected for the multi-axial stress state using

Equation (2.36) where ν is the Poisson’s ratio.

21
EE


 


(2.36)

2.3.2 Elastic-Plastic Fracture Mechanics (EPFM)

For an elastic-plastic material, small scale yielding conditions exist as long as the plastic

zone is small compared to the K dominated zone around the crack tip as shown in Figure

2.4(a).  As the load increases the plastic zone size increases engulfing the K dominated

zone as shown in Figure 2.4(b).  In these conditions, LEFM is no longer applicable and

EPFM is required.  The main parameter used to characterise the conditions at the crack tip

in the elastic-plastic regime is the J contour integral.  EPFM remains applicable as long as

the large strain region (strains greater than ~10%) at the crack tip remains small compared
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to the region characterised by J.  At very large loads, this region engulfs the J dominated

zone and the crack tip conditions can no longer be characterised by a single parameter.

This is shown schematically in Figure 2.4(c). The Crack Tip Opening Displacement (CTOD)

is sometimes used as alternative to the J contour integral.  Both parameters are discussed

here.

Large Strain Region

Region Characterised by J

Region Characterised by K

Increasing Load

(a) (b) (c)

Figure 2.4:  Schematic representation of the crack tip stress and strain fields for (a)
LEFM regime (small scale yielding), (b) EPFM regime, and (c) crack tip conditions no

longer characterised by a single parameter.

2.3.2.1 J Contour Integral

The J contour integral was originally derived by Rice [22] as a line integral taken

anti-clockwise around the crack tip.  It is defined in Equation (2.37) where s is the length of

the contour Γ, w is the strain energy density given by Equation (2.38) and Ti and ui are

components of the traction and displacement vectors acting on the contour.

i
i

uJ wdy T ds
x

        
 (2.37)

0

ij

ij ijw d

   (2.38)

This derivation was based on the deformation theory of plasticity which assumes a

non-linear elastic material.  For monotonic loading, this is a reasonable approximation of an

elastic-plastic material.  Rice [22] also demonstrated that this contour integral is equal to the

strain energy release rate for a non-linear elastic material so crack growth will occur when J
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reaches come critical value JC (or JIC for mode I loading).  This is similar to the linear elastic

strain energy release rate identified above such that for a linear elastic material:

2KJ G
E'

  (2.39)

2.3.2.2 HRR Field

Hutchinson [23] and Rice and Rosengren [24] independently demonstrated that the stress

and strain fields around a sharp crack in a power-law hardening material are described by

Equations (2.40) and (2.41).  This is known as the HRR field and is based on the

deformation theory of plasticity similar to the derivation of J.  The J contour integral provides

the magnitude of these fields, in a similar manner to K for a linear elastic material.
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In Equations (2.40) and (2.41) IN is a non-dimensional function of N and ijσ and ij are

non-dimensional functions of N and θ.  Tables of values of IN, ijσ and ij for plane stress and

plane strain conditions are available [25].  Polynomial fits to this tabulated data have been

used to derive Equations (2.42) and (2.43) for plane strain and plane stress conditions

respectively [6].
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The HRR field predicts infinite stresses at the crack tip.  In real materials, large stresses at

the crack tip result in a large strain region and crack blunting as demonstrated in Figure 2.4.

The stress and strain field inside this region are not captured by the HRR field but, as long

as this region is small compared to the region dominated by the crack tip singularity, Figure

2.4(b), the stress and strain fields inside the large strain region will be driven by the

surrounding material.  This material behaves according to the HRR field, so the conditions in
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the large strain region will be characterised by, J, albeit not described by Equations (2.40)

and (2.41). This is analogous to small scale yielding.

2.3.2.3 Crack Tip Opening Displacement

Wells [26] measured the Crack Tip Opening Displacement (CTOD), δ,  which occurred due

blunting in the large strain region.  He identified that at the point of failure it was proportional

to the material toughness.  This led him to propose that a critical value of CTOD, δC, could be

used as an alternative to JC as a measure of fracture toughness.  Both J and CTOD are

incorporated into most fracture toughness testing standards e.g. [1, 2, 27].

When a crack blunts, some crack extension occurs which can make the definition of CTOD

somewhat ambiguous and has led to various definitions.  The two most commonly used are

provided in Figure 2.5.  In Figure 2.5(a) it is distance measured perpendicular to the crack

plane at the original crack tip.  In Figure 2.5(b) it is the distance measured between the

intercepts of two 45º lines, originating from the current crack tip, with the crack profile.  The

latter definition is often used to measure CTOD from FE analyses [17].

(a) (b)
Figure 2.5: Definitions of CTOD based on (a) original crack tip location, and (b)

Intercept of two 45º lines from the current crack tip with the crack profile.

The region of blunting is sometimes referred to as the Stretch Zone which is also shown in

Figure 2.5(a).  The size of this zone can be measured from the post-test fracture surface,

using a Scanning Electron Microscope (SEM).  When viewed from directly above the fracture

surface, the extent of this zone is called the Stretch Zone Width (SZW) and is sometimes

used as a measure of crack extension due to blunting although the subjectivity of such

measurements can result in significant scatter [28].  The extent of this region perpendicular

to the crack plane is twice the Stretch Zone Height (2SZH).

2.3.2.4 Relationship between J and CTOD

For a power-law hardening material which deforms according to Equation (2.3), the CTOD

may be related to J by Equation (2.44) where dN is the non-dimensional constant defined in
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Equation (2.45) that is strongly dependent on the stress exponent, N, and weakly dependent

on the other material constants α and εp0 [29].  In Equation (2.45) DN is a non-dimensional

constant that is only dependent on the stress exponent.  Tables of values of this constant

are available [29].
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In the limit of rigid plasticity, where N → ∞, dN → DN and Equation (2.44) may be simplified to

Equation (2.46).  The constant m represents the constraint at the crack tip.  For plane stress

and plane strain conditions it may be assumed that m = 1 and m = √3 respectively [6].
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2.3.2.5 Resistance Curves

Crack extension occurs when the crack driving force, J, attains a critical value, JC, but the

subsequent crack growth may be stable or unstable.  This depends on how the resistance to

crack extension, JR, and the crack driving force vary with crack extension.  A typical plot of

the material resistance with crack extension for a ductile material is shown in Figure 2.6(a).

This is known as a resistance or J-R curve.

Figure 2.6: Schematic representation of (a) a J-R curve, and (b) the variation of crack
driving force for two different load levels relative to the J-R curve.
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J R
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For brittle materials, crack extension is generally unstable.  This results in a flat resistance

curve and a single value of fracture toughness which is a material property.  For ductile

materials, stable tearing can occur because the material resistance increases with crack

extension.  This results in a rising resistance curve such as the one shown in Figure 2.6(a).

At low loads, the crack will extend due to blunting as discussed above and the resistance

curve follows the so-called blunting line.  The point at which the resistance curve deviates

from the blunting line, labelled ‘×’ in Figure 2.6, corresponds to the initiation fracture

toughness, JC, and the onset of stable tearing.  The value of JC is generally independent of

geometry and may be considered a material property but the exact value is difficult to

identify experimentally so an alternative, engineering definition is often used, J0.2, e.g. [1, 2,

27]. This is the toughness corresponding to 0.2 mm of crack extension, which is a small but

measurable amount of crack extension.  It is labelled ‘+’ in Figure 2.6(a) and is obtained from

the point where the resistance curve intersects a line drawn parallel to the blunting line,

offset by 0.2 mm of crack extension.

It is possible to determine whether crack growth is stable or unstable by comparing the

relationship between crack driving force and crack length with the resistance curve.  This is

shown in Figure 2.6(b) for two different load levels. For the ‘low load’ at the initial crack

length, a0, the crack driving force, J, is above the resistance curve so some crack extension

will occur, but this will stop when JR becomes greater than J .  This is stable crack extension

and occurs when:
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J J

and

dJdJ
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(2.47)

At the ‘high load’ the variation of the crack driving force with crack length is such that it

always remains above the resistance curve. This is unstable crack extension and occurs

when:
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J J
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(2.48)

2.3.2.6 Blunting Lines

In order to determine the value of J0.2, a blunting line is required which accurately describes

the crack tip behaviour prior to stable tearing.  Various different equations are presented in
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the literature, derived from the relationships between J and CTOD discussed in Section

2.3.2.4.

The implementation of a blunting line was originally proposed by Landes and Begley [30], in

the form of Equation (2.49).

2 y

Ja


  (2.49)

This is based on Equation (2.46) assuming plane stress conditions and that the blunt crack

tip has a semi-circular profile. To account for strain hardening, it was proposed that the yield

stress could be replaced with the flow stress, σf, calculated from Equation (2.50) where σu is

the ultimate tensile stress.  This approach is included in the fracture toughness standard

ASTM E1820-13 [27].
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Measurements of the SZW have demonstrated that Equation (2.49) can overestimate crack

blunting [28, 31], particularly for materials which exhibit significant strain hardening.  To

address this problem Equation (2.51) was derived based on the HRR field and Equation

(2.44) [31]. Equation (2.51) is slightly different from its original form for consistency with

Equations (2.3) and (2.44).
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The coefficient of 0.4 is based on two experimental observations:

1. The “operational” definition of CTOD implemented by Shih is very similar to the

double stretch zone height, 2SZH.

2. The relationship between the stretch zone width, SZW, and the double stretch zone

height, 2SZH, is approximately constant at 0.4.  This is also in agreement with FE

calculations [32].

Equation (2.51) suggests that the crack tip does not deform in a semi-circular manner which

explains why Equation (2.49) tends to overestimate crack blunting, even for materials which

approximate rigid-plasticity.  This blunting line has been incorporated into the fracture

toughness standard ESIS P2-92 [1] assuming plane strain conditions but the required

methodology is quite complex due to the need to derive power-law material properties.  To

avoid this complexity, Landes [33] identified that the same blunting line could be

approximated to within 5% for most engineering materials from the ultimate tensile stress

using Equation (2.52).



23

3 75 uJ . a  (2.52)

This simplified blunting line is used in ISO 12135 [2], BS 7448-4:1997 [34] and is provided in

ESIS P2-92 [1] as an “approximate method”.

2.3.2.7 Limit Load Analysis

The load bearing capacity of a flawed structure in the elastic-plastic regime may be limited

by fracture or plastic collapse.  Failure of the structure due to plastic collapse is said to occur

when the applied load, P, exceeds some limit load, PL.  This limit load typically corresponds

to gross yielding of the remaining ligament assuming rigid plasticity.  Limit load solutions can

be derived analytically, numerically or empirically, although handbook solutions are readily

available for most standard specimen geometries e.g. [35].  The limit load solutions depend

on the stress state and the yield criterion.  Solutions based on plane stress conditions

produce lower plastic collapse loads than those based on plane strain conditions. Solutions

based on the Tresca yield criterion produce lower plastic collapse loads than those based on

the von Mises yield criterion.

2.3.2.8 Failure Assessment Diagram

The Failure Assessment Diagram (FAD) was originally proposed to assess the interaction

between elastic fracture and plastic collapse [36].  This was later extended to include J

based EPFM  which removed some of the conservatism from the assessment method [37].

This approach forms the basis of the R6 procedure for the assessment of the integrity of

structures containing defects [35].  The main benefits of the FAD approach are that no prior

knowledge of the failure mechanism is required, it is easy to implement and it can be applied

to combined primary and secondary loads.  Primary loads are those which contribute to

plastic collapse whilst secondary loads only contribute to fracture, e.g. residual stresses.

In the R6 assessment procedure, the proximity of a component containing a flaw to fracture

is described by the term Kr.  This is calculated from Equation (2.53) where Kmat is calculated

from Equation (2.54) for mode I loading.  For elastic materials, Kmat is the linear-elastic

fracture toughness, KIC.
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The proximity of a component containing a flaw to plastic collapse is described by the term Lr

which is calculated from Equation (2.55) where σref is the reference stress which is discussed

further in Section 2.3.2.10.

ref
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  (2.55)

The so-called Option 1 FAD is defined in Equation (2.56) and shown in Figure 2.7.  This is a

general curve suitable for all materials.  The reduction in the critical value of Kr at higher

values of Lr accounts for the increase in the crack driving force due to plasticity compared to

the linear elastic value used to calculate Kr.  The Lr cut-off (the vertical part of the FAD) is

known as max
rL and is defined in Equation (2.57).
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The values of Lr and Kr, calculated from Equations (2.53) and (2.55) respectively, provide

the co-ordinates of the assessment point (Lr, Kr) on the FAD.  If the assessment point is

inside the FAD, the structure is considered safe.  Conversely, if it is outside the FAD it is

unsafe.  The proximity of an assessment point to the FAD may be used as a measure of

proximity to failure.

The FAD is a particularly powerful tool for performing sensitivity studies to identify which of

the input parameters most significantly influences the proximity of the assessment point to

failure.  Also by progressively increasing one of these parameters and plotting the locus of

the assessment point it is possible to predict the failure mechanism from where the locus

intercepts the FAD.  At low values of Lr, (Lr < 0.3) failure occurs when Kr ≈ 1 which

corresponds to elastic failure and LEFM applies.   For 0.3 < Lr < 0.8 failure typically

corresponds to small scale yielding [35],  for 0.8 < Lr < max
rL EPFM applies and at large

values of Lr (Lr > max
rL ) failure is due to plastic collapse.
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Figure 2.7: Option 1 failure assessment diagram [35].

For materials where the full uniaxial stress-strain curve is available a material specific

(Option 2) FAD may be calculated from Equation (2.58).  The main difference between the

Option 1 and Option 2 curves exist for values of Lr > 0.8 where EPFM characterises failure

[35].  These are the two main approaches proposed in R6 although a material and geometry

specific Option 3 FAD is also available.
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2.3.2.9 EPRI solutions of J Contour Integral

For a crack in a non-linear elastic power-law hardening material, deforming according to

Equation (2.3), the stress at every point within that body is directly proportional to the applied

load, P.  It follows from Equation (2.40) that J must be proportional to PN+1 and also to

constants α, σp0 and εp0.  The value of J may therefore be evaluated from Equation (2.59)

where c is an appropriate length scale often taken as the ligament ahead of the crack, Pp0 is

a normalising load which is a function of σp0 and h1 is a non-dimensional function of a/W and

N. W is the characteristic width of the specimen.
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(2.59)

The power-law relationship defined in Equation (2.3) and used to derive Equation (2.59) only

accounts for the plastic component of strain in a Ramberg Osgood material.  Equation (2.59)

therefore accounts for only the plastic component of J, as identified by the superscript ‘p’.

The full value of J is calculated from Equation (2.60) where the elastic component is based

on the effective crack length, from Equation (2.34).

 2effe p p
K a

J J J J
E'

    (2.60)

The Electric Power Research Institute (EPRI) have published tables of values of h1 for a

range of values of N and a/W for common specimen geometries [20].  These have been

obtained from a suite of 2D FE analyses for both plane strain and plane stress conditions.  In

the same document, similar equations are provided for Crack Mouth Opening Displacement

(CMOD), Load-Line Displacement (LLD) and Crack Tip Opening Displacement (CTOD).

2.3.2.10 Reference Stress Methods

The EPRI solutions are limited to common test geometries and power-law materials.  For

other geometries or materials Ainsworth [38] proposed an alternative approach based on the

reference stress, σref, which is defined in Equation (2.61).
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For a Ramberg-Osgood material, the reference stress can be incorporated into

Equation (2.60) to produce Equation (2.62) where εref is the reference strain corresponding to

the reference stress.
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When the stress exponent N = 1, the plastic component of Equation (2.62) corresponds to

the elastic solution for ν = 0.5 as shown in Equation (2.63) where μ = 1 for plane stress

conditions and μ = 0.75 for plane strain conditions which accounts for the change in the

effective Young’s modulus for the multi-axial stress state.
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By careful selection of the normalising load, Pp0, the value of h1 becomes approximately

independent of the stress exponent N.  It has been shown that this normalising load is close

to the limit load based on the von Mises yield criterion [38]. For this value of Pp0, the

corresponding value of h1 can be approximated from Equation (2.63) and the value of J

approximated from Equation (2.64).
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For a power-law hardening material, rather than a Ramberg-Osgood material, this simplifies

to Equation (2.65) [6].
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The benefit of this approach is that it may be applied to any material for which the uniaxial

stress-strain data is available and is not limited to common fracture specimen geometries.

2.3.2.11 Empirical Methods

Rice et al. [39] demonstrated that the value of J could also be obtained experimentally from a

plot of load vs. displacement for a single point on a specimen.  They derived solutions for a

range of standard fracture specimens in the form of Equation (2.66) where H is a

dimensionless constant which depends on the stress exponent, N, η is a dimensionless

constant which depends on the specimen geometry, Δp is the plastic component of

displacement and Bn is the net specimen thickness measured between the roots of the

side-grooves.  For specimens without side-grooves the net specimen thickness is equal to

the specimen thickness, B.
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A detailed review of η solutions is provided by Davies et al. [40] along with numerical

derivation of η for a range of standard test specimens, crack sizes and stress exponents.

These solutions are provided for displacement measurements taken at the load-line, ΔLLD,

and the crack mouth, ΔCMOD.
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2.3.3 Time-Dependent Fracture Mechanics (TDFM)

When a load is applied to a cracked body at elevated temperature, the instantaneous stress

and strain distribution around the crack tip is governed by LEFM or EPFM depending on the

material properties and the applied loading as shown in Figure 2.4.  Due to the high stresses

at the crack tip a creep zone will form and start to grow which will tend to relax the stresses

in this region.  When this creep zone is small compared to the dimensions of the component

and the crack, this is known as small scale creep and is shown schematically in Figure

2.8(a).  This is analogous to small scale yielding for LEFM and the material surrounding the

creep zone will still be characterised by K or J.  The material in the creep zone is

characterised by a parameter known as C(t) which is time dependent.  As time progresses,

this creep zone grows and eventually engulfs the region originally characterised by J and/or

K as shown in Figure 2.8(b).  This is known as transient creep and the crack tip conditions

remain characterised by C(t).  After a long period of time the creep zone extends across the

entire ligament ahead of the crack and wide-spread creep occurs.  At this time, steady-state

creep conditions exist and the parameter characterising the crack tip conditions tends to a

constant value, C*, shown schematically in Figure 2.8(c).

Region Characterised by J

Region Characterised by K

Region Characterised by C*

Increasing Time

(a) (b) (c)

Region Characterised by C(t)

Figure 2.8: Schematic representation of the development of the creep zone showing
(a) small scale creep, (b) transition creep, and (c) steady-state creep.

2.3.3.1 Steady State Creep

For steady-state creep conditions, the stress around the crack tip of a power-law creeping

material is an HRR type field [41] similar to a power-law hardening material.  For materials

where n = N the stress distributions are identical for the same load.  This is because the
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same equilibrium and compatibility equations are applicable except that the strain and

displacement are replaced by strain rate and displacement rate.

For steady-state creep conditions the crack tip stress and strain rate fields are described by

Equations (2.67) and (2.68) respectively.  These are analogous to Equations (2.40) and

(2.41) but the magnitude of the fields are defined by the parameter C* rather than J.  The

close analogy between power-law hardening materials and power-law creeping materials is

frequently used to explain the steady-state creep behaviour of a structure.
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In Equations (2.67) and (2.68) In is a non-dimensional function of n and ijσ and ij are

non-dimensional functions of n and θ.  These are the same functions used for a power-law

hardening material but N is replaced by n.  The tables of values of IN, ijσ and ij produced by

Shih [11] for a power-law hardening material are therefore applicable, as are Equations

(2.42) and (2.43).

2.3.3.2 C* Contour Integral

Continuing the analogy between a power-law hardening material and a power-law creeping

material, the crack tip characterising parameter during steady-state creep, C*, may be

determined in the same manner as J.  That is a line integral taken anti-clockwise around the

crack tip, as defined in Equation (2.69) where w is the strain energy rate density given by

Equation (2.70) and iu is the displacement rate vector acting on the contour.
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2.3.3.3 Approximations of C*

Similar methods to the ones used to approximate J can also be applied to C*. For a

power-law creeping material the value of C* can therefore be estimated from EPRI

handbook solutions [20] by substituting the normalising strain, εp0, with the normalising strain
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rate, 0 , and the tensile stress exponent, N, for the creep stress exponent, n, as

demonstrated in Equation (2.71).
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To overcome the limitations of the EPRI solutions discussed above, reference stress

estimations of C* can be calculated from a modified version of Equation (2.65) where the

reference strain, εref, is replaced by the reference strain rate, ref , which is the strain rate at

the reference stress determined from Equation (2.5).  This approximation of C* is

demonstrated in Equation (2.72) where Rʹ is a characteristic length defined in Equation

(2.73)
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Empirical estimations of C* may be calculated from a modified version of Equation (2.66)

where the plastic displacement, Δp, is replaced with the creep displacement rate, c , as

demonstrated in Equation (2.74).
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2.3.3.4 Small-scale and Transient Creep

During small scale creep and transient creep the stress and strain rate fields at the crack tip

are defined by Equations (2.75) and (2.76) respectively [41].  They are similar in form to

Equations (2.67) and (2.68) which describe the steady-state crack tip conditions, but

because the crack tip parameter which describes the magnitude of these fields, C(t), varies

with time, the stresses and strain rates also vary with time.
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Similar to C*, the crack tip parameter, C(t), can be defined as an anti-clockwise line integral

around the crack tip, as defined in Equation (2.77).
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Unlike C*, C(t) is path dependent.  As demonstrated schematically in Figure 2.8, the region

characterised by C(t) is close to the crack tip, so the line integral must be evaluated in this

region.  At long times C(t) tends towards C*, so Equations (2.75) and (2.76) tend towards

Equations (2.67) and (2.68).

2.3.3.5 Approximations of C(t)

For small-scale creep conditions, where the creep zone is surrounded by a region of material

characterised by J, Riedel and Rice [41] demonstrated that the crack tip characterising

parameter C(t) could be approximated from Equation (2.78) where J0 is the value of J at time

t = 0.  This equation is applicable to situations where the initial deformation is elastic or

elastic-plastic.
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2.3.3.6 Stress Redistribution

At long times C(t)→ C*, but Equation (2.78) predicts that C(t)→ 0.  This is because it is only

valid for small scale creep conditions.  Despite this it may still be used to approximate the

time for wide-spread creep conditions to occur by replacing C(t) with C* and rearranging to

make time the subject as demonstrated in Equation (2.79).  This is often called the transition

time, tT,

 1T *

Jt
n C


 (2.79)

Due to the limited validity of Equation (2.78), the transition time underestimates the time for

stress redistribution to occur.  In reality the stresses never truly redistribute but

asymptotically approach steady-state conditions; however, it may be shown that C(t) is within

10% of C* when n ≥ 2.5 and t ≥ tred as defined in Equation (2.80) [6].  This is known as the

redistribution time.

 1red T *

Jt n t
C

   (2.80)
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For elastic-creep conditions this may be rewritten in terms of the reference stress as

demonstrated in Equation (2.81).  This suggests that the time for stress redistribution to

occur is approximately the time for the creep strain to equal the elastic strain at the reference

stress [6].
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2.4 Creep Crack Initiation and Growth Models

When a cracked body undergoes creep, the creep strains are largest at the crack tip.  After

some time, micro-voids will start to form along grain boundaries ahead of the crack tip which

coalesce to form micro-cracks.  Eventually these micro-cracks will link up with the

pre-existing defect which is known as Creep Crack Initiation (CCI).  This precise point can be

difficult to measure experimentally so an engineering definition of initiation is often used

which is the time for a small, measureable amount of crack extension to occur, Δai.

Consistent with fracture toughness testing, this is often taken to be 0.2 mm which is the

resolution of typical laboratory measurement techniques [3].  The time prior to initiation is the

incubation period and can contribute to a significant portion of a components life [42].  After

initiation, Creep Crack Growth (CCG) will occur until the remaining ligament fails due to

fracture or creep rupture.

A wide variety of different models for predicting CCI and CCG have been proposed in the

literature.  The validation of these models for use with creep ductile materials requires

accurate laboratory measurements in the presence of large strains. This will be addressed

as part of this research, so the relevant models are reviewed here. There are a large number

of CCI models available in the literature.  The most common are included in the R5

assessment procedure [4] so only those will be considered in detail here although a brief

discussion of the other models is also provided.

2.4.1 NSW Model

The main CCG model is the NSW model proposed by Nikbin, Smith and Webster [43].  It is

based on a power-law creeping material under established steady-state creep conditions.  It

assumes a creep process zone ahead of the crack of size rc, as shown in Figure 2.9, which

is growing at a constant rate.
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Figure 2.9: Schematic representation of the steady-state creep process zone ahead of
the crack tip assumed by the NSW Model.

For an undamaged element of material entering the creep process zone at r = rc, and time

t = 0, the creep strain accumulated over time, t, may be calculated by Equation (2.82).

0 c

t rc c c
ij ij ijr

dtdt dr
dr

      (2.82)

The steady-state crack growth rate, sa , is estimated from Equation (2.83) assuming: failure

occurs when the element of material reaches the crack tip (r = 0) which corresponds to when

the multi-axial creep ductility, *
f , is exhausted in that element; crack growth does not

influence the value of C*; and growth of the creep process zone is equal to the crack growth

rate.

     
1 11 1

0 1 1

0 0

1
1

n n
n n

n n
s c c* *

f n f n

nC* C*a n r Ar
I I


   

 
 

   
     

   





(2.83)

In this model failure is assumed to occur at the location around the crack tip, θ, where the

equivalent strain is largest.  This is where  ij ,n  obtains its maximum value of unity.

2.4.1.1 Alternative Versions of the NSW Method

A modification to the NSW model has been derived to incorporate the variation in triaxiality

around the crack tip which will influence the multi-axial creep ductility [14].  Assuming that

crack growth occurs at the location which corresponds to the maximum ratio of the

equivalent strain to multi-axial creep ductility the growth rate may be estimated from

Equation (2.84).
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An alternative version of the NSW model, based on creep rupture data has also been

proposed [44].  By using rupture data the model is based on average creep rates which

account for primary and tertiary creep, albeit approximately, as demonstrated in Figure 2.1.

The model also allows for any dependency of creep ductility on stress [45] by replacing the

multi-axial creep ductility *
f with the term 0

*
f which is the multi-axial creep ductility at σ0.

The crack growth rate predicted by this version of the NSW model is calculated from

Equation (2.85).
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For the case where nA = vr, the creep ductility becomes independent of stress so 0
*
f = *

f

and Equation (2.85) simplifies to Equation (2.86).
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2.4.1.2 Initial CCG Rates

The NSW model assumes established steady-state damage conditions exist at the crack tip

but at time, t = 0, no creep strains exist in the region ahead of the crack tip.  By

approximating the creep process zone as a number of small elements ahead of the crack tip

it is possible to analytically model the development of strain in the creep process zone [46].

From this it may be shown that the initial crack growth rate, 0a , can be approximated from

Equation (2.87) where sa is the steady-state crack growth rate predicted by the NSW

model.

0
1
1 sa a

n



  (2.87)

This approach still assumes that the crack tip stress field is characterised by C* and does

not account for any stress redistribution.
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2.4.2 Experimental CCG Rate Correlations

Experimental creep crack growth rates are often correlated to some crack tip parameter to

produce empirical laws.  For creep ductile materials, where failure occurs in the presence of

significant creep strains, the crack growth rates are usually correlated to the steady-state

crack tip parameter C*.  A power-law fit in the form of Equation (2.88) is most commonly

used where D and ϕ are material constants which may be temperature and stress state

dependent [6].

a DC* (2.88)

For creep brittle materials where failure occurs prior to any significant creep strain, the

elastic stress intensity factor, K, is sometimes correlated with crack growth rate. Correlations

have also been performed to the other crack tip characterising parameters discussed above

[6].

By comparing Equation (2.88) with Equation (2.83) it can be seen that for steady state

conditions, D and ϕ may be predicted from Equations (2.89) and (2.90) respectively.  For

n ≫ 1, typical of creep, ϕ should be close to but less than unity.
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2.4.3 Sigma-d Model

The sigma-d model assumes that crack initiation occurs at the time required for a uniaxial

specimen to fail with an applied stress, σd, which corresponds to the stress at some

characteristic distance, d, ahead of the crack tip.  This method is included in the R5

procedure [4] for assessing austenitic stainless steels.  It is confined to this classification of

steel because they exhibit significant work hardening.  For materials which do not work

harden, the predicted stress value, and therefore the initiation time would be independent of

the applied load. The recommended value of the characteristic distance, d, is 50 μm which

is approximately the grain size for this classification of steel [4].  This value is pessimistic

compared to the guidance in RCC-MR which recommends 60 μm [7].

The sigma-d method has been validated against experimental CCG tests performed on

parent material, heat affected zone (HAZ) and weld metal for two stainless steels: Type

316H and Esshete [4].  Predictions based on mean material properties were in good
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agreement with experimental measurements of the time for 0.2 mm of crack extension to

occur.  Predictions based on lower-bound material properties were conservative.  This

validation was used to justify the use of the sigma-d method for predicting the time for

0.2 mm of crack extension to occur in austenitic stainless steels.

Various different methods of estimating the value of σd are available.  For cracks in the linear

elastic regime, it may be obtained from the K field.  For cracks in the elastic-plastic regime it

may be obtained from the HRR field.  Alternatively the Neuber method may be used which is

the method used in R5 and RCC-MR.  Neuber proposed that for a sharply curved notch in

an elastic-plastic material, the maximum equivalent stress, max , and maximum equivalent

strain, max may be related to the nominal equivalent stress, nom , and nominal equivalent

strain, nom , by the linear-elastic stress concentration factor, kt, by Equation (2.91) [47].

2
max max t nom nomk    (2.91)

In R5, this approach is applied to a sharp crack.  The equivalent elastic stress at a distance,

d, ahead of the crack tip, e
d , is obtained from the K field solution using Equation (2.92).

This conservatively implies plane stress conditions (no out of plane stress).

2
e
d

K
d




 (2.92)

The corresponding equivalent strain, e
d , is calculated from Equation (2.93) where p

ref is the

plastic strain which occurs at the reference stress and is included to account for large scale

yielding.  The value of E is obtained from Equation (2.94).

2
e p

d ref
K

E d
 


  (2.93)

 
3
2 1

EE



 (2.94)

The values of σd and εd at a distance, d, from the crack tip are obtained using the Neuber

construction shown schematically in Figure 2.10.  Mathematically, this is the point on the

uniaxial tensile stress-strain curve which satisfies Equation (2.95), which is equivalent to

Equation (2.91).  The iterative procedure required to obtain these values may be simplified

by applying a Ramberg Osgood fit to the uniaxial data.
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Figure 2.10: Schematic representation of the Neuber construction for the sigma-d
method.

The time for 0.2 mm of crack growth to occur is then obtained from the uniaxial creep

properties using Equation (2.96) which is based on Equation (2.6).

r

r
i v

d

Bt

 (2.96)

As demonstrated above, the stress ahead of the crack tip is obtained from the elastic-plastic

material properties.  No account of the stress relaxation due to creep is considered in this

model.

2.4.4 CTOD Model

For a component containing a pre-existing defect under creep conditions, large strains will

accumulate at the crack tip causing it to blunt prior to crack extension.  Ainsworth [48]

postulated that this blunting continues until the ductility of the material ahead of the defect is

exhausted at which point crack initiation occurs.  Assuming that the crack tip blunts in a

semi-circular manner and the initial CTOD, δ0, is negligible compared to the CTOD at

initiation, δi,, which is a material property, it may be shown that δi is related to the initiation

time, ti, by Equation (2.97) where c
i is the creep strain at the initiation time at the reference

stress.
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Substituting in the reference stress definition of C* from Equation (2.72), this can be

simplified to Equation (2.98).
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This form of the CTOD method is included in R5 [4].  For power-law creep the corresponding

initiation time is calculated from Equation (2.99).
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One of the benefits of this method is that it is considered to incorporate the different stages

of creep deformation [6] however, in order to implement it experimental measurements of the

CTOD at initiation are required.  Often this data is not available which restricts the use of this

model.  For this reason, a modified version, shown schematically in Figure 2.11, has been

proposed which negates this limitation [8].

a0 Δai

δi

Original crack with potential
crack faces shown closed
over a distance Δai

Crack tip profile after crack
extension Δai

Figure 2.11: Schematic representation of  creep crack initiation based on a critical
CTOD

Assuming that for crack extension to occur, the creep ductility associated with the state of

stress at the crack tip, *
f , has been exhausted, the critical CTOD may be related to this

creep ductility.  If the creep strain along the new crack faces associated with crack

extension, Δai, results in crack tip blunting, and again assuming a semi-circular crack tip, the

critical CTOD may be related to the crack extension and the multi-axial creep ductility by

Equation (2.100).
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2
2

*i
i fa
  (2.100)

From the analogy between J and C*, it may be assumed that, for n→∞, Equation (2.46) may

be rewritten in terms of C* where  is replaced with  and σy is replaced by σref such that:

refC* m   (2.101)

Assuming that C* and  are constant for the small crack increment associated with

initiation, Δai,  Equation (2.101) may be integrated over the incubation period to give:

i ref iC* t m  (2.102)

Estimating C* from Equation (2.72) and combining Equations (2.100) and (2.102) gives:
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Substituting Equation (2.11) for c
ref and noting that for plane stress conditions m ≈ 1 and for

plane strain conditions m ≈ √3 [6] it is conservative to rewrite Equation (2.103) as:
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(2.104)

This equation may be used to derive the initiation time without the need for experimental

measurements of the critical CTOD.

2.4.5 Time Dependent Failure Assessment Diagram (TDFAD)

The TDFAD was originally proposed by Ainsworth [49] to extend the FAD approach

described above to the creep regime.  This approach is incorporated into R5 to assess if a

small tolerable amount of crack extension, Δa, will occur in a given time, t, known as the

assessment time [4].

The TDFAD approach uses a modified version of the Option 2 FAD, described in Equation

(2.105), to incorporate time dependent material properties.  Isochronous stress-strain data is

required for its construction.
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The stress corresponding to 0.2% inelastic strain (plastic plus creep), 0 2
c
. , is obtained from

the isochronous stress-strain data at the assessment time.  When the assessment time is

short, this tends towards the 0.2% proof stress.  When the assessment time is long, it tends

towards the stress to produce 0.2% creep strain.  The total strain at the reference stress, εref,

is also obtained from the isochronous stress-strain data.  The Lr cut-off, equivalent to that

shown in Figure 2.7, is calculated from Equation (2.106) where σr is the rupture stress at the

assessment time obtained from Equation (2.6).  The second part of Equation (2.106) is for

consistency with the FAD approach in R6.

0 2 0 2

2max r r
r c

. . u

L  
  
 


(2.106)

The assessment point on the diagram is defined by Equations (2.107) and (2.108) where
c
matK is the creep toughness.  The creep toughness may be obtained from a creep crack

growth test using Equation (2.109) where η is same as the value used in Equations (2.66)

and (2.74) and Δc is the experimental load-line displacement due to creep.  A typical

experimental force vs. load-line displacement plot for a creep crack growth test is provided in

Figure 2.12.  The crack length, a, in Equation (2.109) includes the crack extension Δa.

r c
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A single creep crack growth test will provide a correlation between Δa and Δc but each set of

data points will correspond to a different time.  In order to obtain the dependence of c
matK on

time for a given Δa or the dependence of c
matK on Δa for a given time, a number of tests at

different reference stresses are required.
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Δp Δe Δc

UT= Ue+ Up+ Uc

ΔT= Δe+ Δp+ Δc

Figure 2.12: Schematic force vs. load-line displacement plot for a typical creep crack
growth test.

An alternative approach to calculating c
matK has been implemented by some authors e.g. [50]

based on the procedure for calculating J in ESIS P2-92 [1].  This approach uses the total

strain energy, UT, defined in Figure 2.12 which avoids the need to separate the various

components of displacement.  This calculation is provided in Equation (2.110).
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Based on the above definitions, the coordinates of the assessment point, Lr and Kr are both

time dependent as is the TDFAD.  For a given assessment time the crack extension is

predicted to have exceeded Δa if the assessment point falls outside the TDFAD.  If it falls

inside the TDFAD then the crack extension is less than Δa.  The time for the crack increment

associated with initiation to occur, Δai, corresponds to the time when the assessment point

falls on the TDFAD which can be obtained by iteration.

2.4.6 Experimental CCI Correlations

Similar to crack growth rates, initiation times may also be correlated to a suitable crack tip

parameter to produce empirical laws.  For creep ductile materials, this is usually the

steady-state crack tip parameter C*.  A power-law fit in the form of Equation (2.111) is most

commonly used where γ and q are material constants which may be temperature and stress

state dependent [6].
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q
it C *  (2.111)

2.4.7 Other CCI Models

Other CCI prediction models are also available in the literature, but are less widely used.

Upper and lower bound predictions of the time for CCI to occur may be obtained from the

initial and steady-state crack growth rates predicted by the NSW model [8]. Riedel and Rice

[41] proposed a model which assumes that crack growth occurs when the equivalent strain

at a small structural distance ahead of the crack tip achieves a critical value.  Alternatively,

Davies [51] proposed a more comprehensive model which accounts for stress redistribution

from initial elastic or elastic-plastic conditions, to small scale creep, transition creep and

eventually widespread creep.
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Chapter 3:
Review of Techniques for
Measuring Crack Initiation
and Growth
3.1 Introduction

This chapter presents a review of the experimental techniques used to measure crack

initiation and growth in the laboratory.  The following research considers both room

temperature and high temperature applications so the scope of this review is restricted to

techniques capable of operating in both these environments.  The Potential Drop (PD) is the

most common technique for high temperatures applications [52], particularly in the field of

creep [53].  For this reason it is the only method recommended in ASTM E1457-13 [3] and is

the primary focus of this chapter.  There are two main forms of the PD technique: Direct

Current Potential Drop (DCPD) and Alternating Current Potential Drop (ACPD).  ACPD can

be further categorized into low frequency and high frequency.  These three variants of the

PD technique are reviewed in detail followed by the elastic unloading compliance and optical

techniques which have also been implemented with some success. Each of these

techniques is critically reviewed, with specific consideration given to the influence of strain.

A brief discussion of some other techniques is also presented.

3.2 DCPD

All variants of the PD technique work on the principle that a constant current flowing through

a specimen containing a crack generates an electrical field which is sensitive to changes in

the geometry of the specimen, in particular crack extension.  As the crack grows the PD,

measured between two probes located either side of the crack, will increase.  By using a

suitable calibration function, this can be correlated to a crack extension.  The following

discussion relates specifically to DCPD.
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Figure 3.1: A direct current, I, applied to a rod of uniform cross-section, A, with the
potential drop, V, measured over a central gauge length, L.

Figure 3.1 shows a rod of uniform cross-section, A, with a direct current, I, applied at a point

source in the centre of one end, and a point sink at the centre of the other.  The potential

drop, V, is measured across a central gauge length, L. When a direct current is applied to a

conductor, it tends to fill the cross section, limited only by the separation of the source and

sink [54].  In Figure 3.1, if the ends of the rod are suitably remote from the gauge length, the

current in the gauge region will be uniformly distributed and the resistance, R, can be

calculated from Equation (3.1), where ρ is the resistivity of the material.  This assumes an

isotropic, homogeneous material.

LR
A
 (3.1)

The potential drop measured across the gauge region, V, can then be calculated using

Ohm’s law, Equation (3.2):

V IR (3.2)

It can be seen from Equations (3.1) and (3.2) that for this simple case, the potential drop is

inversely proportional to the cross section. Introducing a crack into the gauge region, as

shown in Figure 3.2, creates a local reduction in cross-section which increases the

resistance and therefore the PD measured along the gauge length.  The crack also disturbs

the electric field such that the current distribution local to the crack is no longer uniform and

the relationship between PD and crack size is no longer simple.  A calibration function is

therefore required to convert potential drop to crack length.
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Figure 3.2: A direct current, I, applied to a rod with the potential drop, V, measured
over a central gauge length, L, containing a semi-circular crack.

3.2.1 Calibration

Calibration functions are often expressed in terms of a normalised PD and a normalised

crack length [55, 56].  The PD, V, is usually normalised with respect to a value, Vn,

corresponding to a normalising crack length, an. This makes the calibration independent of

the magnitude of the applied current and the material resistivity provided they remain

constant.  It is also independent of specimen thickness as long as the current is injected

sufficiently remote from the crack and the PD probes.  The crack length, a, is normalised

with respect to another in-plane dimension [57-59].  This is usually the normalising crack

length or the characteristic specimen width, W.  This makes the calibration independent of

specimen size, as long as the dimensions remain in proportion.  This includes the

configuration of the current injection and the PD probes,.

If the calibration function is normalised with respect to the initial crack length, a0, and the

corresponding PD, V0, the initial crack length is usually obtained by optical measurement

either from the surface of the specimen at the start of the test or from the fracture surface

after the test.  Assuming accurate measurement of this initial crack length, this normalisation

will suppress small geometrical differences between the actual and nominal specimen

geometry [57, 58].  If however this initial crack length is not measured accurately, it will be a

source of systematic error for all crack length measurements [60].

3.2.1.1 Deriving Calibration Curves

For a specimen with an applied electric current, the static electric field is described by

Equation (3.3) assuming there is no free charge [61].

2 0V  (3.3)
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This is Laplace’s equation where ∇ is the Laplacian.  For a three dimensional conductor in a

Cartesian co-ordinate system, this can be rewritten as Equation (3.4) [61].

2 2 2

2 2 2 0V V V
x y z
  
  

  
(3.4)

For fracture specimens, this is often simplified to a two dimensional problem by assuming

the current distribution is uniform through the thickness [58, 60, 62] as shown in Equation

(3.5).

2 2

2 2 0V V
x y
 
 

 
(3.5)

To generate a calibration function for a given geometry it is necessary to find the solution to

Laplace’s equation.  This can be achieved analytically, numerically or empirically.

3.2.1.2 Analytical Calibration

Where the boundary conditions of the specimen are known, Laplace’s equation can be

solved analytically using, for example, conformal mapping techniques [58, 62-64].  When

performing such calculations the free surfaces of the specimen are generally assumed to be

perfectly insulated with the exception of the current injection locations where a uniform

current is assumed.  Symmetry of the electric field about the plane of the crack is often

utilised to simplify the calculation [60].

Analytical calibration functions provide an exact solution for the nominal specimen geometry

and idealised boundary conditions.  They also tend to be general solutions written in terms of

the specimen dimensions making them highly suited to parametric studies, e.g. [62].  This

general form also allows the user to select the normalising crack size to match the initial

crack length which can usually be determined with a high degree of accuracy.
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(3.6)

One of the most common calibration functions referenced in the literature was derived by

Johnson [58] for a Middle Tension, M(T), specimen using analytical methods.  This

calibration function is provided in Equation (3.6) and the corresponding geometry is shown in

Figure 3.3 which includes an infinitesimally thin crack with a remotely applied uniform

current.  The analysis performed by Johnson was extended by Gilbey and Pearson [65] to
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consider a point application of the current and PD probe locations off the centre-line of the

specimen.

Uniform Current Out

PD Probes

2W

2a

2y

Uniform Current In

x

y

Figure 3.3: M(T) specimen geometry used to derive Equation (3.6) [58].

Although Johnson’s formula was originally derived for the geometry shown in Figure 3.3,

Schwalbe and Hellman [66] demonstrated experimentally that it could also be applied to

Compact Tension, C(T), and Single Edge-Notch, SEN, specimens due to the geometric

similarities shown in Figure 3.4.  By splitting an M(T) specimen along its centre line, two SEN

specimens are obtained as shown in Figure 3.4(a).  Furthermore, a C(T) specimen is

effectively a short SEN specimen as shown in Figure 3.4(b).  The term SEN incorporates

both Single Edge-Notch Bend, SEN(B), and Single Edge-Notch Tension, SEN(T), specimens

which are geometrically equivalent for the purpose of calibration where deformation is not

considered.

The main disadvantage of analytical calibration is that the mathematics is relatively complex

[63].  As the complexity of the specimen geometry increases analytical techniques cannot be

easily applied and an alternative method is often required [67].
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Figure 3.4: Similarities between (a) M(T) and SEN specimen geometries, and (b) SEN
and C(T) specimen geometries.

3.2.1.3 Numerical Calibration

Numerical techniques such as FE analysis [56, 67-70] and finite boundary analysis [71] can

also be used to solve Laplace’s equation and, unlike analytical techniques, are not restricted

to simple geometries.  An example of a numerically derived calibration function for a C(T)

specimen is provided in Equation (3.7) [55].

3 2

0 0002398 0 1398 0 8857 0 5051
n n n

a V V V. . . .
W V V V

     
        

     
(3.7)

Equation (3.7) was originally derived by Hicks and Pickard [68] by fitting a third order

polynomial to discrete data points calculated from multiple FE analyses of a C(T) specimen

with different crack lengths.  Unlike Equation (3.6) this is not a general solution and is only

valid for a specific PD configuration and a normalising crack size, an, of 0.241W.  To use

Equation (3.7) it is necessary to obtain the normalising PD, Vn, which corresponds to this

crack size.  If the initial crack length, a0, is 0.241W then this is simply the initial PD, V0, but if

not then it must be calculated from the initial crack length and PD.  This is achieved by

rearranging the calibration function to make Vn the subject and substituting in a0 and V0 for a

and V respectively.  For simple calibration functions, e.g. a power law fit, this rearrangement

is a trivial matter but for the polynomial in Equation (3.7) an easier approach is to fit another

polynomial to the original numerical data with the abscissa and ordinate switched which

produces Equation (3.8).
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(3.8)

Numerical calibration has the advantage of being easily applied to complex geometry and

non-uniform current distributions [67].  It is also easy to perform parametric studies to

optimise the specimen geometry and the PD configuration [56, 71].  Other complexities such

as deformation and loading pin contact can also be considered in the numerical analysis

[72].

The main draw-back of this approach is that it relies on fitting a curve to the data or, in the

case identified above, fitting two curves to the data.  The accuracy of the calibration function

is therefore limited by this fit which can introduce significant errors when measuring small

crack extensions [62].

3.2.1.4 Empirical Calibration

The third method of deriving a calibration function is from empirical data.  The PD is

measured for a range of crack lengths on a physical specimen and, similar to the numerical

approach, a curve is fitted to the discrete data points.  Fatigue is often used to grow a crack

in a controlled manner [56, 57, 63, 68, 73].  By recording the PD at various points throughout

the test and marking the fracture surface at the same time, post-test crack length

measurements can be correlated to the PD.  A calibration function based on measurements

from the fracture surface can correct for uneven crack growth, unlike optical surface

measurements [73].  The fracture surface may be marked by varying the fatigue loading [56,

57, 68, 73] or by heat tinting [63].  An alternative approach is to use multiple nominally

identical specimens and grow the crack to different lengths in each specimen although this

requires a large amount of material [67, 74].

Rather than using fatigue crack growth, the crack can be incrementally machined into the

specimen, often by Electrical Discharge Machining (EDM) or a saw cut [67, 69, 75, 76].  This

approach ensures a straight crack front which negates the need to mark the fracture surface

but it also introduces a blunt notch rather than a sharp crack which may influence the

calibration [58, 75].  To avoid this some authors used graphitised conducting paper [71, 75]

or aluminium foil [68, 77] cut to the shape of the specimen and produced a sharp crack using

a scalpel or razor blade. This assumes that the current distribution is uniform through the

thickness.

Empirical calibrations can be developed under the required experimental conditions, to

incorporate test specific variables such as time dependent creep effects [78].  Despite this,

they are considered less accurate than those developed using analytical or numerical
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methods because they tend to be based on a limited number of data points with significant

experimental scatter [62].  This scatter can be reduced by scaling up the specimen geometry

[68] but this requires more material.  They also suffer from many of the limitations

experienced by numerical calibration because they also rely on a curve fitted to discrete data

points.  For these reasons, empirical data are often used to validate calibration curves

derived by other methods rather than to define them [62, 67, 69, 71].

3.2.2 Suppressing Proportional Changes in PD

As discussed in Section 3.2.1, the PD measured across the crack, V, is usually normalised

with respect to a value, Vn, corresponding to a normalising crack length, an, so the calibration

is independent of current magnitude and material resistivity provided they remain constant.

The normalising PD is usually determined at the start of a test, so the calibration will be

sensitive to any subsequent changes in applied current magnitude and material resistivity

which occur throughout the test.  These variations can have a significant influence on the

measurement of crack extension [79].

Fluctuations in input current due to, for example, amplifier drift [79] will produce a change in

the measured PD which is proportional to the magnitude of the signal. The same is true for

factors which influence the resistivity of the entire specimen such as global temperature

fluctuations [59, 79-81].  These fluctuations will have the same proportional effect on another

measurement performed at the same time, on the same material, in the same environment

and with the same equipment.  This observation can be used to supress proportional

changes in PD using either of the two methods discussed below.

3.2.2.1 Reference Measurement Remote from the Crack

The first method uses a reference measurement, Vref, taken at the same time as the

measurement across the crack, V, with the same equipment but at a location which is not

influenced by crack growth.  This reference measurement can be taken from the test

specimen at a location remote from the crack [57, 59, 79] or on a nominally identical

specimen in the same environment but without a growing crack [81-83].  It is used to correct

the measurement using Equation (3.9) where Vcorr is the corrected measurement and Vref0 is

the value of Vref at the start of the test.

0ref
corr

ref

V
V V

V
 (3.9)

Whilst this will supress proportional changes in PD from the measurement signal, it will also

increase the noise on the signal because the reference signal, like the measurement signal,
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is susceptible to electrical noise.  By ensuring Vref ≥ V, this additional noise should be

acceptable [55].

3.2.2.2 Two Measurements across the Crack

McCartney et al. [60] proposed an alternative approach where two PD measurements, V1
and V2, are taken across the crack at different locations, at the same time.  Assuming the

relationship between PD and crack extension is different at these two locations, the ratio of

the two measurements will be dependent on crack extension, but independent of

proportional changes in PD.  This approach requires a calibration function derived based on

the ratio of these measurements such as Equation (3.10) which was derived for a C(T)

specimen [60].
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A calibration in this form does not require further normalisation based on a known crack size.

This avoids the need for an initial, usually optical, crack length measurement.  Instead, the

initial crack length is determined directly from the PD measurement. It also avoids the

complications associated with taking a reference measurement at a location which is truly

independent of crack extension.

A disadvantage of this approach is that a calibration based on the ratio of two

measurements, both of which are sensitive to crack extension, will inevitably be less

sensitive to crack extension than a single measurement.  In the extreme, the ratio V1/V2

could remain constant for all crack lengths and the measurement would be completely

insensitive to crack growth.

3.2.3 PD Configuration

Calibration functions are geometry specific which includes the PD configuration, i.e. the

location of the current injection and PD probes.  Whilst the specimen type is selected based

on the test requirements such as crack tip constraint and material availability, the PD

configuration can be selected to optimise the accuracy of the crack growth measurement.

Optimisation of the PD configuration has been the subject of much research [56, 65, 71, 76,

84].  When comparing configurations, the following metrics were generally used:

 ‘Sensitivity’: Change in PD with crack extension.  The higher the sensitivity, the

more accurately small increments in crack extension can be measured.

 ‘Repeatability’: Change in PD due to small errors in the PD configuration.  The

smaller this change in PD, the better repeatability of the measurement.
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 ‘Measurability’: The magnitude of the PD at the start of the test.  This was used to

infer the signal-to-noise ratio.  The larger the magnitude, the larger the

signal-to-noise ratio.

One study also considered the linearity of the calibration function [71].  This simplifies the

calculation of crack extension and provides constant sensitivity for all crack lengths however,

no configurations were identified with a truly linear calibration function.

The preferred PD configurations suggested by previous optimisation studies are provided in

Figure 3.5.  The rationale behind these locations is discussed below.

V

(c)

V

(b)(a)

V

Current Injection

PD Probe

Figure 3.5: PD configurations suggested by previous optimisation studies for (a) a
SEN specimen, (b) a C(T) specimen with current injection points on the front face, (c)

a C(T) specimen with current injection points on the side flanks.

3.2.3.1 Current Injection

Injecting the current close to the crack generates a large local current density which provides

good sensitivity but poor repeatability [71, 84].  Injecting the current remote from the crack

generates a more uniform current distribution; reducing sensitivity but improving

repeatability.  The improved repeatability associated with remote current injection was

typically preferred to the greater sensitivity which accompanies local current injection [56, 71,

84].

The large aspect ratio of a typical SEN specimen enables the current to be injected at a

sufficiently remote location to produce a uniform current distribution in the region of the

crack.  These current injection points, shown in Figure 3.5(a), produce a calibration which is

not sensitive to small changes in the current injection points [84].  The same is not possible

for C(T) specimens.  Due to the compact nature of the geometry, there is no equivalent

location which is sufficiently remote from the crack [66, 84].  This suggests that C(T)

calibration functions are sensitive to small variations in the location of the current injection
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points however, such variations have not been considered in previous probe optimisation

studies [56, 71].  The preferred current injection points are on the front face [69], or the side

flanks [56, 71] as shown in Figure 3.5(b) and (c) respectively.  Both of these locations have a

similar sensitivity, but locating the current injection point on the front face improves the

measurability [56].

Ritchie et al. [84] suggested applying the current by area contact to provide a more uniform

distribution.  This has been achieved experimentally by transmitting the current to the

specimen using copper braid bolted to the specimen [71] or copper sheet soldered, brazed

or screwed to the specimen [76, 84].  Whilst this approach will distribute the current over an

area, difficulties have been identified with ensuring a consistent, uniform electrical contact for

the duration of the test [76, 84].

3.2.3.2 PD Probes

Similar to the current injection, the most sensitive PD probe location is next to the crack tip

however this reduces repeatability due to the sensitivity of the calibration function to small

changes in probe location [84].  If the probes are moved behind the crack tip the sensitivity

does not reduce significantly [65], but the repeatability is greatly improved [84].  For this

reason, all of the probe optimisation studies identified have concluded that the preferred

location is across the crack mouth, as close to the crack plane as possible [56, 65, 71, 76,

84].  Moving the probes ahead of the crack tip reduces sensitivity [65, 76] whilst moving the

probes away from the crack plane reduces repeatability [56].  Locating the PD probes close

to the current injection points also reduces repeatability [56].

3.2.3.3 Other Considerations

When selecting the optimum PD configuration, there is generally a compromise between

sensitivity and repeatability.  In all of the studies identified in the literature, this compromise

is discussed in a purely qualitative manner [56, 71, 84] and the relative influence of these

metrics on crack extension measurements has not been quantified.  In addition, these

previous studies did not consider other factors which may influence the optimum PD

configuration such as the electrical resistivity of the specimen material, the amount of crack

growth being measured (both of which will influence the magnitude of the PD signal) or the

type of system used to take the measurements (which will influences the noise level on the

PD signal).  Also, they did not identify optimum configurations for a suitable reference

measurement to suppress proportional changes in PD.  It is therefore unclear from the

existing research if the optimum PD configurations have been identified and if they are the

same for all test conditions.
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3.2.4 Influence of Strain

It is well known that strain can influence the electrical behaviour of materials since it is this

phenomenon which is utilized in a typical resistance strain gauge.  Using this as an example,

the influence of strain on PD is discussed below.  This is followed by a discussion of the

influence of strain on crack length measurements performed using the DCPD technique.

3.2.4.1 A typical Strain Gauge

The gauge factor of a strain gauge, Ksg, is the sensitivity of the resistance, R, to the applied

uniaxial strain, ε, as defined by Equation (3.11) [85]:

0
sg
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For isotropic materials, this can be written as Equation (3.12) [85] where ν is the Poisson’s

ratio and ρ and ρ0 are the electrical resistivity of the strained and unstrained material

respectively.
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Alternatively, Equation (3.12) can be written as Equation (3.13) where Kg and Km are

calculated from Equations (3.14) and (3.15) respectively. Kg is the geometric gauge factor

associated with a change in physical geometry. Km is the material gauge factor associated

with a change in the electrical resistivity.
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The resistivity of the material depends on the number of charge carriers per unit volume, the

total number of charge carriers and their mobility [85].  For elastic materials which undergo

volumetric changes due to strain (ν < 0.5), the number of charge carriers per unit volume will

change.  It can therefore be shown that the material gauge factor, as calculated in Equation

(3.15), contains a geometric term (1 - 2ν).  When this is included in Equation (3.14), the total

geometric gauge factor is 2 and is independent of Poisson’s ratio [85].
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For metal strain gauges operated in the elastic regime, the total gauge factor, Ksg, is material

dependent and can range from -12.1 for Nickel to 6.1 for Platinum [86].  The material

components of these gauge factors are therefore -14.1 and 4.1 respectively.  In the plastic

regime however, the influence of strain on resistivity is much smaller such that the gauge

factor is often taken as 2 and material effects are ignored [85, 87, 88].

Madhi and Nagy [89] used non-contacting eddy current measurements to investigate the

influence of elastic and plastic strain on the electrical conductivity of a uniaxial tensile

specimen manufactured from type 304 stainless steel.  The axial and lateral elastic material

gauge factors, corresponding to Equation (3.15), were 1.35 and 1.95 respectively.

Comparisons between an as-received specimen and one containing 15% plastic strain

demonstrated negligible change in the axial direction and only a very small reduction in

conductivity in the lateral direction.  This was more than an order of magnitude less than the

corresponding elastic value and reduced with temperature such that above 250ºC it was

negligible. This is consistent with the findings of other authors who measured the PD along

the gauge length of uniaxial tensile tests performed on 316L [83], X70 pipeline steel and

S690 structural steel [90].  The measurements were in good agreement with hand

calculations and FEA, both of which neglected material effects of strain on PD.  These

various studies confirm that the geometric effects dominate in the presence of significant

plastic strain.

3.2.4.2 Influence of Strain on DCPD Crack Length Measurements

Strain has been identified as a significant source of error in crack length measurements

using the DCPD technique [52, 57, 75, 78, 91].  It is most significant prior to initiation and the

influence of strain is often ignored during crack growth [75, 91].  In some cases, such as low

cycle fatigue, the majority of the strain effects can be identified from the first few cycles,

which makes it relatively simple to suppress e.g. [83].  In other cases however, such as

fracture toughness and creep crack growth testing, strain is constantly changing, particularly

during the early stage of the test, so it is much more difficult to isolate the change in PD due

to crack extension.

Research has been performed to decouple the effects of strain and crack extension during

fracture toughness testing of tough, ductile materials.  This has resulted in two separate

methods of interpreting the PD data which are shown schematically in Figure 3.6.  The

method shown in Figure 3.6(a) is based on a plot of load vs. PD and is herein called the

‘load’ method.  The method shown in Figure 3.6(b) is based on a plot of Crack Opening

Displacement (COD) vs. PD and is herein called the ‘COD’ method.  These methods are

included in some fracture toughness standards e.g. [1, 2].
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Figure 3.6:  Interpretation of DCPD data during fracture toughness testing using (a)
the ‘load’ method and (b) the ‘COD’ method.  The point of crack initiation is identified

by ‘×’ and the PD values used to calculate crack extension at ‘+’ are shown.

The ‘load’ method is based on a linear regression applied to the initial steep portion of the

load vs. PD plot.  The onset of crack blunting is assumed to correspond to the point where

the data deviates from this linear trend, labelled ‘×’ in Figure 3.6(a).   The subsequent crack

extension, which consists of crack blunting and stable tearing, is calculated using a standard

calibration function, but the value of V0 is assumed to be a function of the applied load, P.

This function is the equation of the linear regression.  The values of V0 and ΔV used to

calculate crack extension corresponding to the point labelled ‘+’, are shown.

In this method, the DCPD is used to measure the total crack extension due to the

combination of blunting and stable tearing.  To calculate the initiation fracture toughness, JIC,

it is necessary to identify the onset of stable tearing.  This is achieved by comparing a plot of

J vs Δa, obtained experimentally, with a suitable blunting line.  The onset of stable tearing is

identified as the point where the two diverge.  Alternatively the amount of blunting may be

observed from post-test SEM measurements of the Stretch Zone Width (SZW).

The ‘COD’ method was originally proposed by Lowes and Fearnehough [75].  Unlike the

‘load’ method, the DCPD is only used to measure stable tearing.  A linear regression is

applied to a plot of PD vs. COD where COD could be CMOD or LLD.  The onset of stable

tearing is assumed to correspond to the point where the data deviates from this linear trend.

This is labelled ‘×’ in Figure 3.6(b).  The subsequent tearing is calculated using a standard

calibration function and a fixed value of V0.  The values of V0 and ΔV used to calculate crack

extension at the point labelled ‘+’, are shown.  The crack extension due to blunting is not
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obtained from the PD technique and is instead assumed to follow a suitable blunting line.

Alternatively it could be obtained from post-test SEM measurements of the SZW.

Crack length predictions from both of these methods have been compared with

measurements from the final fracture surface for a range of materials [82].  Results from the

‘COD’ method were in better agreement with the fracture surface measurements, particularly

for high toughness materials where the ‘Load’ method significantly over estimated crack

extension and underestimated JIC.   Despite the general success of the ‘COD’ method, a

limitation has been identified when testing high toughness, high tearing resistance and high

hardening materials whereby the point of deviation from linear, labelled ‘×’ in Figure 3.6(b),

can be difficult to identify.  Similar observations have been made by other authors [91, 92].

Although creep crack growth tests are likely to experience a similar increase in PD due to

strain prior to the onset of crack growth [6, 78], an equivalent approach has not been

developed.  The current guidance in the most common creep crack growth standard, ASTM

E1457-13 [3], states that the initial PD, V0, used in the calculation of crack length, should

correspond to the value at the end of load-up.  This supresses the influence of any elastic or

plastic strains which occurs during load-up, but not the subsequent creep strains.  This is a

potentially significant source of error when testing creep ductile materials.

To investigate the influence of strain on PD measurements, FE analyses of cracked

specimens have been performed.  Ljustell [83] performed a sequentially coupled

structural-electrical FE analysis of a C(T) specimen with a stationary crack.  Large plastic

strains were demonstrated to have a significant influence on the PD in the absence of crack

extension although validation of the results was not presented.  Ke and Stahle [72]

performed a similar analysis on a three point bend specimen.  The model included gap

elements to model electrical contact between the loading pins and the specimen.  The

results compared well with experimental data however; the amplification of the PD system in

the experiment was unknown so the magnitude of the FE predictions could not be checked.

Both of these studies only considered geometric effects of strain on PD and assumed that

any change in material resistivity due to strain was negligible.

3.2.5 Other Sources of Error

3.2.5.1 Thermal EMF

Another potential source of error in DCPD measurements is thermal EMF [52, 57, 79].  A

voltage or EMF is induced in a conductor that is subjected to a thermal gradient.  The

magnitude of the voltage is material specific.  In an electric circuit consisting of a single

material subject to a thermal gradient, all thermal EMFs will cancel each other out however,
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if the circuit contains multiple materials e.g. different materials for the specimen and the PD

leads, then a voltage will be induced in the measuring circuit which is not related to crack

growth.  The most common approach to mitigate this source of error is to switch the current

off periodically throughout the test.  The PD measured in the absence of the applied current

is the error due to thermal EMF and can be subtracted from the measurements taken with

the current applied [57].  A similar approach is to take two PD readings for each data point,

one with the current polarity switched.  The average of these two readings is the thermal

EMF [3].

3.2.5.2 Crack Morphology

Calibration functions typically assume an ideal straight fronted, planar crack however, real

cracks often do not to exhibit such behaviour.  In cases where the crack faces are rough or

the crack opening displacements are small, shorting can occur between the faces which

results in the PD under-predicting crack extension [76].  Also, despite claims that DCPD

measurements are related to some average crack extension, making it suitable for

measuring tunnelling and discontinuous cracks [53], it has been shown that it tends to

underestimate the mean crack extension [92].

In cases where crack morphology results in significant errors, a linear correction in the form

of Equation (3.16) can be applied to the PD measurements where a0 and af are the initial and

final crack lengths obtained from the fracture surface and apf and ap are the final and

instantaneous predicted crack lengths based on the PD [76].  This approach is included in

ASTM E1457-13 [3] for measuring creep crack growth where discontinuous cracking can

result in significant errors in crack length measurements.
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3.2.5.3 Noise

One of the main issues with DCPD is the difficulty in isolating the signal from any electrical

noise.  For this reason DCPD is generally unsuitable to noisy environments [93].  Even when

implemented under laboratory conditions, large currents are required to obtain the necessary

signal-to-noise ratio [52].  This can result in Joule heating of the specimen which can be a

problem when trying to perform a test at room temperature although the current

requirements of modern DCPD systems have significantly reduced [73].
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3.2.5.4 Initial Drop in PD

Another complication specific to creep crack growth testing is an initial drop in PD which is

sometimes observed early in the test.  The cause of this behaviour remains unknown

although it has been suggested that it may be related to dislocation rearrangement during

primary creep and changes in precipitate size and spacing [78].  To mitigate this, the

guidance in ASTM E1457-13 is to extrapolate the minimum value of PD back to zero time.

3.3 ACPD

When an alternating current (AC) passes through a conductor the distribution of this current

is related to the geometry of the component, the material and the frequency of the applied

current.  The current density is highest at the surface which is known as the ‘skin effect’.  If

the frequency is sufficiently high, the AC distribution through a cross-section of the gauge

length of the conductor shown in Figure 3.1 is shown schematically in Figure 3.7.
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Figure 3.7: High frequency AC distribution through the cross-section of a cylinder

The current distribution is often simplified to a uniform current acting over a distance, δs. This

distance is known as the skin depth and is shown in Figure 3.7(b).  This is the depth at which

the current amplitude reduces to 1/e (~37%) of the surface value.  This simplification makes

the AC analogous to a DC in the skin region only.  For good conductors, e.g. metals, the skin

depth can be calculated from Equation (3.17) where f is the frequency, ρ is the resistivity and

µ is the magnetic permeability of the material.
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Unlike DC, where the opposition to the flow of electric charge is due to the material resistivity

only, the opposition to the flow of AC is a combination of resistive and reactive components.

The resistive component is the same as the DC resistance, but the reactive component

consists of capacitive reactance and inductive reactance which are both a function of

frequency.  The combination of the resistive and reactive components is known as the

impedance, Z.  Based on the skin depth analogy, the impedance of the gauge length of the

cylinder shown in Figure 3.1 may be calculated from Equation (3.18) where Aeff is the

effective area estimated from the skin depth using Equation (3.19) and r is the radius of the

cylinder [79].
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These equations are only applicable to situations where the frequency is sufficiently high,

such that the skin depth is much smaller than the radius of the cylinder.  At lower

frequencies, where the skin depth calculated from Equation (3.17) is much greater than the

radius of the cylinder, a quasi-DC current distribution exists.

There are two forms of the ACPD technique: high frequency and low frequency.  High

frequency ACPD applies to cases where the skin effect is significant.  Low frequency ACPD

applies to quasi-DC conditions where the skin effect is negligible.  Whether a technique is

considered high frequency or low frequency is dependent on the specimen geometry, the

material and the applied frequency.  For typical fracture specimen geometries, some

materials, such as 2.25Cr-1Mo ferritic steels, experience a significant skin effect at

frequencies as low as 50Hz [81], whilst others, such as Type 304 stainless steel, experience

negligible skin effect at much higher frequencies [94].

3.3.1 High Frequency ACPD

By limiting the current to the skin region, the high frequency AC impedance of a specimen is

significantly larger than its DC resistance.  This reduces the input current required to

produce a signal of a given magnitude [52, 79]. In addition, phase sensitive detectors (or

lock-in amplifiers) which filter out noise at frequencies other than that of the applied current

often result in a better signal-to-noise ratio than an equivalent DCPD system so the
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magnitude of the current may be further reduced [52, 53, 73, 95]. This large signal-to-noise

ratio makes ACPD particularly suited to noisy environments [96] and the low current

requirements avoid the complications associated with Joule heating.

Another benefit of high frequency ACPD is current focusing [97].  By locating the current

leads close to the surface of the specimen, but electrically isolated from it, the electrical

current is focused in the region of the lead.  This approach can be used to control current

density thus further increasing the sensitivity of the ACPD technique [98].

3.3.1.1 Calibration

Assuming that the applied frequency, magnetic permeability and material resistivity remain

constant such that the skin depth does not change throughout the test, the impedance is

directly proportional to the length of free surface, L, between the two PD probes as

demonstrated by Equation (3.18).  It follows that the measured ACPD signal is

approximately proportional to the crack length such that linear interpolation, based on

Equation (3.20), is often used to estimate the crack length from the instantaneous PD, V,

where a0 and af are the initial and final crack lengths measured from the post-test fracture

surface and V0 and Vf are the corresponding PD measurements [79, 81, 99, 100].
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The assumption that the resistivity and magnetic permeability of the material remain

constant is not always true, since both are sensitive to other factors, e.g. strain [79, 81, 99,

100].  Equation (3.20) also assumes that the only current path is via the crack tip however,

alternative current paths which do not include the crack tip provide alternative parallel

current paths e.g. such as via the back or side faces of the specimen [101].  For these

reasons, the linearity of the calibration function is often confirmed experimentally [100, 101].

3.3.1.2 Suppressing Proportional Changes in PD

When using ACPD the most common method of supressing proportional changes in PD due

to temperature fluctuations is to take a reference measurement on a nominally identical

specimen which is not loaded [79, 81].  This is also the approach recommended in ESIS

P2-92 [1].  The reference measurement also suppresses variations in current which occur

during the test; however, this is less important for ACPD because the electronics tend to be

inherently more stable than DCPD systems [81].
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3.3.1.3 PD Configuration

The linear calibration function usually applied to high frequency ACPD measurements is

derived based on post-test fracture surface measurements.  It does not require a

predetermined calibration function, so the location of the PD configuration is of less

importance than DCPD and has not been addressed in the literature.

3.3.1.4 Influence of Strain

High frequency ACPD has been successfully implemented to measure stable tearing during

fracture toughness testing of various steels at room temperature [79, 81, 99, 100].  The

approach used by many of these studies is included in the ESIS P2-92 standard [1] and is

described here.

A typical plot of ACPD and load against COD is provided in Figure 3.8; it consists of four

separate stages.  In Stage 1, on initial loading, there is an increase in PD.  This is due to the

elimination of shorting across the faces of the fatigue pre-crack [81, 99, 100].  For specimens

where the pre-crack is introduced by Electrical Discharge Machining (EDM) such that the

two faces of the pre-crack are not initially in contact, this increase in PD is not observed [81,

99].  Once this electrical shorting has been eliminated, a maximum in the PD occurs followed

by a linear decrease (Stage 2).  This corresponds to the elastic response of the structure

and is caused by the dependence of the electrical resistivity and magnetic permeability of

the material on elastic strain [79, 81, 99, 100].  Once the global response of the structure

becomes non-linear due to significant plasticity, the reduction in PD also becomes

non-linear.  This is Stage 3 which continues until a minimum in the PD occurs, labelled ‘×’ in

Figure 3.8.  This minimum is often associated with the onset of stable tearing and the

subsequent increase in PD during Stage 4 is attributed to crack extension [79, 81, 99, 100]

assuming that any further influence of strain is negligible.  The instantaneous stable tearing

corresponding to the point labelled ‘+’ in Figure 3.8 is estimated from Equation (3.20) where

the necessary PD values are shown.
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Figure 3.8: Typical ACPD/Load vs. COD plot obtained from a typical fracture
toughness test performed on a tough, ductile material.

The value of JIC measured using this approach can be dependent on the frequency of the

applied current [100, 101].  This suggests that the minimum does not always correspond to

the onset of stable tearing. One suggestion is that the minimum can occur when the plastic

zone extends outside the skin depth such that it no longer has a significant influence on the

magnetic permeability of the material in the skin region and the increasing distance between

the PD probes due to blunting begins to dominate the PD response.  To avoid this it was

recommended that the frequency was selected such that the skin depth remains larger than

the plastic zone size [100].

Alternatively, a different method of interpreting the high frequency ACPD data has been

proposed [99].  It was suggested that by extrapolating the linear relationship between load

and PD during Stage 2, the influence of strain on PD at higher loads could be determined.

Using this to correct the PD data for strain effects (assuming that the influence of plastic

strain on magnetic permeability is small) the onset of stable tearing was identified from a plot

of corrected PD vs. J where it deviated from linear.
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The interpretation of high frequency ACPD data during fracture toughness testing is more

complex than for DCPD because of the dependence of the magnetic permeability on strain.

This has resulted in some uncertainty regarding the most appropriate method of identifying

the onset of stable tearing.  For creep crack growth testing there is no comparable procedure

for interpreting high frequency ACPD data.

3.3.1.5 High Frequency ACPD – Other sources of Error

One of the main disadvantages of high frequency ACPD is the relatively complex and

therefore expensive electronics compared to DCPD [52, 80, 95].  It can also be sensitive to

interference from other electrical equipment [52] or ferromagnetic material [79].  Cross-talk

between the current and voltage leads can also produce signals not related to crack growth

although this effect can be reduced by keeping the current and voltage leads separate, fixing

all of the leads in position to prevent movement during the test, twisting the voltage leads

together, twisting the current leads together and reducing the applied current [52].

Capacitance effects across the crack faces can further complicate the signal [52] but, such

effects are only significant at very high frequencies [79].

Although high frequency ACPD has been applied to high temperature applications, e.g. [95,

102, 103], it is rarely used for measuring creep crack growth where DCPD is almost

exclusively used [53].  As well as the strain effects discussed above, other complications

include interference from the heating equipment [95] and measuring discontinuous cracking

which, if separated from the crack tip by more than the skin depth, will remain undetected

[104].

3.3.2 Low Frequency ACPD

Low frequency ACPD was originally developed as an alternative to DCPD to avoid thermal

EMF effects and to reduce the high current requirements [96].  It combines some of the

benefits of DCPD and High frequency ACPD, but also has some of the disadvantages of

both.  To avoid repetition a brief summary of low frequency ACPD is presented here with

reference to the discussion above.

Similar to high frequency ACPD, the use of phase sensitive detectors (or lock-in amplifiers)

improves the signal-to-noise ratio compared to DCPD [96] albeit at the expense of more

sophisticated electronics.  This reduces the required input current although it remains larger

than high frequency ACPD because it is not confined to the skin region.  Despite this, it

tends to be sufficiently low to avoid any heating effects.  Low frequency ACPD systems

suffer from similar sources of interference to high frequency ACPD such as the proximity to
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other electrical equipment or ferromagnetic material and cross-talk between the current and

PD leads.  To avoid this, the same mitigations may be implemented.

The quasi-DC current distribution enables calibration functions derived for DCPD to be

applied to low frequency ACPD [105] although the same detailed consideration of the most

appropriate PD configuration is required.  The PD measurement is therefore related to the

remaining ligament ahead of the crack thus providing some average crack length

measurement and some sensitivity to crack tunnelling and sub-surface defects [53, 105].

Proportional changes in PD can also be suppressed in a similar way.  The post-processing

of the PD data in the presence of large strains is also the same as for DCPD.  This avoids

the additional complexity associated with variations in magnetic permeability.

The main limitation of low frequency ACPD is that it requires a frequency low enough to

produce the required quasi-DC current distribution by ensuring that the skin depth, as

calculated from Equation (3.17), is large compared to the specimen dimensions.  Typical

systems often have a minimum frequency 1-2 Hz because at frequencies lower than this

flicker noise can become significant.  This is sufficiently low for common fracture specimen

geometries manufactured from materials with a low magnetic permeability, such as

austenitic stainless steels, but for materials with a high magnetic permeability, such as

ferritic steels, the skin depth may be small enough to prevent the required quasi-DC current

distribution [54].

3.4 Elastic Unloading Compliance

When a cracked specimen is partially unloaded, the behaviour tends to be linear and

independent of prior plastic deformation [106] and the unloading compliance can be easily

obtained from the load-displacement plot.  As the crack advances, this compliance increases

and can be correlated to a crack length using solutions available in the literature.  Most of

these solutions, such as the one provided in Equation (3.21) for a standard C(T) specimen,

are derived from small displacement elastic FE analyses [107].  In this equation u is obtained

from Equation (3.22), CLL is the ratio of the change in LLD and the change in load, and Be is

the effective specimen thickness, calculated from Equation (3.23).

2 3 4 51 000196 4 06319 11 242 106 043 464 335 650 677a . . u . u . u . u . u
W
      (3.21)
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Solutions such as this one are not directly applicable to materials where large deformations

accompany crack extension such as austenitic stainless steels.  In these materials the

elastic unloading compliance can significantly underestimate the crack length so a rotational

correction must be applied [108].

The elastic unloading compliance technique is the most common method of measuring

stable tearing for single specimen fracture toughness tests.  The main benefits of this

method are that it is cheap, simple to automate and easy to implement [109] and can be

applied to high temperature environments [110].  In a few instances it has been applied to

creep crack growth tests [111, 112] and is included in the European code of practice for

creep crack growth [113] although periodic unloading may cause stress redistribution at the

crack tip which could influence the crack growth rate [6].

The elastic unloading compliance is related to some average crack length [114] although it

has been shown that it can underestimate the mean crack extension by up to 40% in the

presence of crack tunnelling [115, 116].  Other sources of error include elastic displacements

of the testing fixture, misalignment of the load train, frictional effects and local indentations in

the shackles/loading pin assembly which can result in negative crack growth predictions [92,

106].  These sources of error can be mitigated by using flat bottomed pin holes in the

shackles, roller bearings, or other modifications which allow the pins to freely rotate, even

when bending [111, 117].  Additional difficulties have been identified due to some materials

having large inelastic strain responses and for application to low compliant test geometries

where a change in crack length has a small influence in the overall response of the

specimen [82].

Comparisons between the elastic unloading compliance method and the DCPD technique

have been performed for fatigue crack growth with large scale plastic deformation [83] and

fracture toughness testing [118].  Both authors observed good agreement between the two

techniques although the scatter in the partial unloading data was typically higher. Fewer

measurements are also obtained when using the elastic unloading compliance method.

3.5 Optical Techniques

Optical methods directly observe the surface of the specimen with equipment such as a

travelling microscope [67].  They rely on surface measurements to characterise the through

thickness crack length and cannot capture crack tunnelling.  This can result in significant
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errors and in extreme circumstances, cracking can occur inside the specimen with no

observable growth on the surface until final fracture [119].  Whilst crack tunnelling can be

reduced by applying side grooves, this can make the crack more difficult to observe.  Optical

methods are therefore most reliable when testing thin specimens.  When testing thicker

specimens they are often used in conjunction with other methods such as the PD technique

[79, 80].

The effect of crack tunnelling can also be corrected for by inspection of the post-test fracture

surface [120].  This is discussed in ASTM E1457-13 [3] where a 9 point average crack length

is taken at the start and the end of the test.  Additional data points can also be obtained from

a single specimen by marking the fracture surface throughout the test by heat tinting, fatigue

beach marks or dye penetrant.  Cortie and Garrett [121] demonstrated highly accurate crack

length measurements using this method; however, this approach is not always possible,

particularly during sustained load creep crack growth tests.

3.6 Other Techniques

The techniques described above are the main methods of measuring crack growth in the

laboratory, particularly at high temperature.  Some studies have considered alternative

techniques, but these technologies remain in their infancy.  Such techniques include

ultrasonics [122] and acoustic emissions [123] where waveguides have been used to locate

the temperature sensitive transducers away from the hostile environment.

3.7 Discussion

The most suitable technique for measuring crack initiation and growth at room temperature

and high temperature is the PD technique.  In some situations the elastic unloading

compliance technique may also be suitable, but fewer measurements are obtained per test

and increased scatter in the data has been observed when compared with the PD technique.

This scatter is probably due to friction and misalignment of the load train which the elastic

unloading compliance technique is particularly sensitive to. In addition, questions remain

with regards to the suitability of the elastic unloading compliance technique for creep crack

growth testing where regular unloading may influence the test results.

The relative advantages and disadvantages of the different variants of the PD technique are

summarised in Table 3.1.  Low frequency ACPD provides a good compromise between

DCPD and high frequency ACPD for measuring crack initiation and growth in the presence

of large strains.  It has a high signal-to-noise ratio suitable for measuring small crack

extensions such as those associated with initiation whilst the PD data is relatively simple to
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interpret in the presence of large strains because it is not sensitive to changes in magnetic

permeability.  In addition, the measurement is sensitive to discontinuous cracking which is of

particular concern for creep crack growth testing.

DCPD High Frequency
ACPD

Low Frequency
ACPD

Input Current: High

Very low
(skin effect and
phase-sensitive

detection)

Low
(phase-sensitive

detection)

Electronics: Simple &
inexpensive

Complex &
expensive

Complex &
expensive

Signal-to-noise ratio: Low High High

Influence of large
strains:

Geometry &
resistivity

Geometry,
resistivity &
magnetic

permeability

Geometry &
resistivity

PD interpretation due
to large strains: Relatively simple Complex Relatively simple

Measured crack
length:

Some average
crack length

including
sub-surface

cracking

Less sensitive to
crack tunnelling
and sub-surface

cracking

Some average
crack length

including
sub-surface

cracking

Calibration:

Calibration function
required

(linear calibration
sometimes
assumed)

Linear calibration
often assumed

Calibration function
required

(linear calibration
sometimes
assumed)

PD configuration:
Careful selection of

PD configuration
required.

PD configuration
less critical.

Careful selection of
PD configuration

required.

Thermal EMF errors: Yes No No

Suitable Materials: All Metals
Not metals with
high magnetic
permeability

All Metals

Table 3.1: Comparison of the three main variants of the PD technique.  Relative
advantages highlighted.

Recently a low frequency ACPD system has been developed for in-situ monitoring of creep

on power plant components [94].  This system demonstrates reduced noise and increased

thermal stability compared to a typical DCPD system at frequencies as low as 2 Hz.  This

system will be implemented in this research.
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One of the main disadvantages of low frequency ACPD (and DCPD), compared to high

frequency ACPD, is that careful selection of the PD configuration is required to optimise the

accuracy of the crack length measurement.  Although suitable PD configurations are

suggested in the literature, some uncertainty remains with regards to the most appropriate

configuration for a wide range of conditions.  This uncertainty will be addressed as part of

this research.

Another limitation of the low frequency ACPD technique is that it is not suitable for materials

with high magnetic permeability. This research will therefore focus on Type 316H stainless

steel which is a ductile, austenitic stainless steel with a low magnetic permeability that will

ensure that the low frequency ACPD system behaves in a quasi-DC manner.  Conclusions

based on this PD system and material should be applicable to all conducting materials when

tested using a typical DCPD.
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Chapter 4:
Optimisation of the PD
Configuration
4.1 Introduction

To calculate crack extension from a PD measurement, a calibration function is required.

This function is specific to the specimen geometry and the configuration of the current

injection and PD probes.  The location of these electrical connections must be carefully

selected to optimise the accuracy with which crack extension may be determined.

PD configuration optimisation studies have been published on C(T), SEN and M(T)

specimens [56, 65, 71, 76, 84].  These studies did not consider the mechanical behaviour of

each specimen, so the results for the SEN specimen are applicable to both the tension,

SEN(T), and bend, SEN(B), variants of this geometry.  A review of this work is presented in

the previous chapter.  A variety of metrics have been used to assess different PD

configurations but the qualitative nature of these previous studies prevented a direct

comparison of the relative importance of these metrics.  As such, the preferred configuration

was typically selected based on a preference for ‘repeatability’ over ‘sensitivity’.  In addition,

these previous studies did not consider other factors which may influence the optimum PD

configuration such as the electrical resistivity of the specimen material, the amount of crack

growth being measured (both of which will influence the magnitude of the electrical signal) or

the PD system used to take the measurements (which will influences the noise level on the

signal).  Also, they did not identify optimum configurations for any additional measurements

used to suppress proportional changes in PD due to, for example, temperature fluctuations

and/or amplifier drift.  Further work is needed to address these limitations and ensure that a

suitable PD configuration is implemented in the subsequent studies.

This chapter builds on the existing research to present a finite element based PD

configuration optimisation study for two of the most common specimen geometries: C(T) and

SEN.  The metrics used in previous studies have been revised so they each relate to an

error in the measurement of crack extension which allows them to be directly compared.
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The other limitations of the previous studies are addressed by considering suitable extremes

of material resistivity as well as small and large amounts of crack extension.  The different

methods of suppressing proportional changes in PD, discussed in the previous chapter,

have also been assessed.  The results are presented for a typical DCPD system and the low

frequency ACPD system used in the following research.

4.2 Calibration Functions
For each of the PD configurations considered in this study, a calibration function has been

derived in the form of Equation (4.1) where A0, A1, A2 and A3 are coefficients and Vnorm is the

normalised PD.  This format of calibration function has been used to adequately describe the

relationship between PD and crack length in previous studies [55].

2 3
0 1 2 3norm norm norm

a A AV A V A V
W
    (4.1)

The normalised PD is generally calculated from Equation (4.2) where the instantaneous PD

measured across the crack, V, is normalised by the initial value, V0.

0
norm

VV
V
 (4.2)

4.2.1 Supressing Proportional Changes in PD

Temperature fluctuations and amplifier drift can be significant sources of error in the

measurement of crack extension [79]; however, they produce proportional changes in all PD

measurements obtained under the same conditions so this error can be easily suppressed

by taking additional PD measurements which are incorporated into a modified version of

Equation (4.2).  Two methods of achieving this are discussed in the previous chapter.  These

are:

1. A reference measurement remote from the crack,

2. Two parallel measurements across the crack.

Whilst these methods will suppress errors due to proportional changes in PD they will

inevitably introduce other sources of error to the normalised PD signal, e.g. noise.  To

investigate whether these additional errors are significant and identify which method of

suppression is most appropriate both have been considered in this study.  A brief overview

of the two methods, including the required modifications to Equation (4.2), is provided below.
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4.2.1.1 Reference Measurement Remote from the Crack

This method of suppressing proportional changes in PD requires a reference measurement

taken at the same time as the measurement across the crack, with the same equipment but

at a location which is not influenced by crack growth.  Variations in the reference

measurement which occur throughout the test are then used to correct the measurement

taken across the crack.  Using this method, the normalised PD, Vnorm, is calculated from

Equation (4.3) where Vref is the reference signal and Vref0 is the initial reference signal.

0

0
norm

ref ref

V VV
V V
 (4.3)

The reference measurement can either be made on the test specimen at a location remote

from the crack [57, 59, 79] or on a nominally identical specimen in the same environment but

without a growing crack [81].  Due to the limited availability of the material used in this

research, the use of additional reference specimens is not viable so this study focuses on a

reference measurement on the same specimen as the growing crack.

4.2.1.2 Two Measurements across the Crack

This method involves two PD measurements, V1 and V2, taken across the crack at the same

time but at different locations.  The calibration is derived in terms of the ratio of these

measurements.  Using this method the normalised PD, Vnorm, is calculated from Equation

(4.4).

1

2
norm

VV
V
 (4.4)

4.3 Metrics
In order to compare PD configurations, a set of suitable metrics are required.  In previous

optimisation studies [56, 65, 71, 76, 84] the following metrics were used:

 ‘Sensitivity’: Change in PD with crack extension.  The higher the sensitivity, the

more accurately small increments in crack extension can be measured.

 ‘Repeatability’: Change in PD due to small errors in the PD configuration.  The

smaller this change in PD, the better repeatability of the measurement.

 ‘Measurability’: The magnitude of the PD at the start of the test.  This was used to

infer the signal-to-noise ratio.  The larger the magnitude, the larger the

signal-to-noise ratio.
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In this report, these have been revised to produce two new metrics called ‘probe

misplacement error’ and ‘resolution’.  A third metric called ‘remote reference error’ has also

been included.  Each of these metrics relate to an error in the crack extension measurement

so they can be directly compared.  They are described in the following sub-sections.

4.3.1 Probe Misplacement Error

Calibration functions are derived based on a nominal PD configuration, but when the current

injection and PD probes are attached to a physical specimen, small deviations from this

nominal configuration are inevitable.  The difference in the relationship between PD and

crack extension for the actual and nominal PD configurations introduces a ‘probe

misplacement error’.  This is related to the ‘repeatability’ metric used in previous studies [56,

71, 84].

Based on experience, electrical connections can be attached to the specimen to within

0.5 mm of the nominal location.  This is in agreement with observations by Aronson and

Ritchie [56] and has been used as the basis for calculating probe misplacement error as

shown schematically in Figure 4.1.

Misplaced probe location

Nominal probe location

0.5 mm 0.5 mm

0.
5 

m
m

0.
5 

m
m

(a)

Normalised PD

a/W

Probe
Misplacement
Error

(b)

Figure 4.1: Schematic representation of the ‘probe misplacement error’ showing (a)
the probe locations considered and (b) the calibration curves for the nominal and a

‘misplaced’ configuration.

The individual steps in the calculation of probe misplacement error are:

1. An FE analysis of the specimen was performed with the nominal PD configuration

and the crack was grown in small increments.  For each increment the change in PD
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was recorded and a nominal calibration function was derived in the form of Equation

(4.1).

2. The PD probe and current injection locations were then adjusted by 0.5 mm parallel

to one of the axes of the co-ordinate system and a calibration function for the

‘misplaced’ configuration was derived.

3. For each crack increment with the ‘misplaced’ configuration, the change in PD was

recorded and the crack extension was calculated from the calibration functions for

the nominal and ‘misplaced’ configurations.  The difference between these two

values is the error due to probe misplacement.

4. Steps 2 & 3 were repeated for every combination of current injection and PD probe

misplacement (including electrical connections used to suppress proportional

changes in PD).  The ‘probe misplacement error’ for each crack increment is the

maximum value for all ‘misplaced’ configurations considered.

This metric is only related to the location of the PD configuration.  It is independent of the

magnitude of the electrical signal (i.e. the electrical resistivity of the specimen material) and

the noise on the PD signal (i.e. the type of PD system used to perform the measurement).

4.3.2 Resolution

PD measurements are inherently susceptible to electrical noise which can mask changes in

PD associated with small amounts of crack growth.  The ‘resolution’ is the crack extension

which is necessary to produce a change in PD equal to the amplitude of the electrical noise,

shown schematically in Figure 4.2.
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Nominal calibration with noise

Nominal calibration curve

a/W
Resolution

Normalised PD

Figure 4.2: Schematic representation of the ‘resolution’.

When no method of suppression is considered, the normalised PD is calculated from

Equation (4.2) where the measurement signal, V, is susceptible to electrical noise.  By

including the amplitude of the electrical noise, Vnoise, on this signal, the maximum value of the

normalised PD due to noise, Vnorm_max, can be calculated from Equation (4.5) for each

increment of crack extension.

0

noise
norm _max

V VV
V


 (4.5)

The corresponding maximum crack length predicted by the calibration function, amax_res, is

calculated from Equation (4.6).

     2 3

0 1 2 3
max_res

norm_max norm_max norm_max

a
A A V A V A V

W
    (4.6)

The resolution, Δares, can therefore be calculated from Equation (4.7) where a is the nominal

crack length calculated from Equation (4.1) based on the normalised PD, Vnorm, from

Equation (4.2).

res max_resa a a   (4.7)
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The resolution, as calculated in this study, is only influenced by signals which change

throughout the test.  It has been assumed that the initial measurement, V0, is obtained from

an average of a sufficient number of readings such that the influence of noise may be

neglected. The value of the resolution depends on the magnitude of the electrical signal (i.e.

the electrical resistivity of the specimen material) and the noise on the PD signal (i.e. the

type of PD system used to perform the measurement). It is therefore related to the

‘sensitivity’ and ‘measurability’ metrics used in previous optimisation studies [56, 71, 84].

All PD measurements will be susceptible to electrical noise.  This includes any additional

measurements used to supress proportional changes in PD.  The resolution is therefore

dependent on the method of suppression.  The calculation of resolution for the different

methods of suppression considered in this study is provided below.

4.3.2.1 Reference Measurement Remote from the Crack

For this method of suppression, the normalised PD is calculated from Equation (4.3) where

the measurement signal, V, and the reference signal, Vref, are both susceptible to electrical

noise.  By including the amplitude of the electrical noise, Vnoise, on these signals, the

maximum value of the normalised PD due to noise, Vnorm_max, can be calculated from

Equation (4.8) for each increment of crack extension.
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(4.8)

The corresponding maximum crack length predicted by the calibration function, amax_res, is

calculated from Equation (4.6) and the resolution, Δares, from Equation (4.7) where the

nominal crack length, a, is the calculated from Equation (4.1) based on the normalised PD,

Vnorm, from Equation (4.3).

4.3.2.2 Two Measurements across the Crack

For this method of suppression, the normalised PD is calculated from Equation (4.4) where

both signals, V1 and V2, are susceptible to electrical noise.  The maximum value of the

normalised PD, Vnorm_max, due to noise can be calculated from Equation (4.9) for each

increment of crack extension.
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2

noise
norm _max

noise

V VV
V V





(4.9)

The corresponding maximum crack length predicted by the calibration function, amax_res, is

calculated from Equation (4.6) and the resolution, Δares, from Equation (4.7) where the
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nominal crack length, a, is the calculated from Equation (4.1) based on the normalised PD,

Vnorm, from Equation (4.4).

4.3.3 Remote Reference Error

When using a remote reference measurement to supress proportional changes in PD, it is

assumed that this measurement is independent of crack extension; however, when this

measurement is obtained from the same specimen as the growing crack it is likely to have

some small dependence on crack extension. This dependence will influence the value of

Vnorm calculated from Equation (4.3) which will introduce a ‘remote reference error’, shown

schematically in Figure 4.3.

Nominal calibration

Calibration including
remote reference

Remote
reference
error

Normalised PD

a/
W

a/W

V r
ef

(a) (b)

Figure 4.3: Schematic representation of the ‘remote reference error’ showing (a)
variation of the reference measurement with crack extension and (b) the influence of

the remote reference signal on the nominal calibration curve.

When using a remote reference measurement, the normalised PD is calculated from

Equation (4.3).  By including the reference measurement as a function of crack length,

Vref (a), the normalised PD including the influence of crack length on the reference

measurement, Vnorm_remote, can be calculated from Equation (4.10).
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V a V
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The corresponding crack length predicted by the calibration function, aremote, is calculated

from Equation (4.11).

     2 3

0 1 2 3
remote

norm _remote norm _remote norm _remote
a A A V A V A V

W
    (4.11)

The remote reference error, Δaremote, can therefore be calculated from Equation (4.12) where

a is the nominal crack length calculated from Equation (4.1) based on the normalised PD,

Vnorm, from Equation (4.3) where Vref is assumed to be constant for all crack lengths.

remote remotea a a   (4.12)

This error does not apply when two parallel measurements across the crack are used to

supress proportional changes in PD because the calibration function accounts for the

dependence of both of these signals on crack extension.

4.4 General Methodology
Two of the most common specimen geometries have been considered in this study:

Compact Tension, C(T), and Single Edge-Notch, SEN.  This study does not consider the

mechanical behaviour of each specimen, so the results for the SEN specimen are applicable

to both the tension, SEN(T), and bend, SEN(B), variants of this geometry. This section

provides a general overview of the methodology used to identify the optimum PD

configurations.  Details specific to the two specimen types are provided in Section 4.5 for the

SEN specimen, and Section 4.6 for the C(T) specimen.

For each specimen a selection of possible PD configurations have been identified based on

the results of previous studies [56, 65, 71, 76, 84] and for each configuration a series of FE

analyses have been performed to calculate the metrics discussed above.  FE provides the

precise control of crack length and the PD configuration necessary to perform this study.

COMSOL [124] was used to perform these analyses because of its capability to

automatically re-mesh geometry which makes it ideal for performing parametric studies

looking at a growing crack and different PD configurations.

4.4.1 Influence of Specimen Size

Specimen size will influence the accuracy of the crack extension measurements however, to

limit the number of variables in this study only a single, common size is considered for each

specimen type.  For the SEN specimen W = 25 mm and for the C(T) specimen W = 50 mm.

Details of the exact geometries are provided in the individual specimen sections later in this

chapter.
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4.4.2 Influence of the Amount of Crack Growth

Some of the metrics used in this study depend on the magnitude of the measurement signal

which is related to the amount of crack growth being measured; this may therefore influence

the optimum PD configuration. For each specimen type the optimum configuration has been

identified for significant crack growth and crack initiation separately.  For crack growth, an

arbitrary 10 mm of crack extension is considered in 0.5 mm increments.  This is a significant

amount of crack extension which is typical of fatigue crack growth tests although smaller

crack extensions are often measured for other test types e.g. fracture toughness and creep

crack growth.  For each increment in crack extension, the metrics described earlier in this

chapter have been calculated and the average value for all increments reported.  For crack

initiation, each metric is calculated for a single crack increment of 0.2 mm.  This is the

engineering definition of crack initiation implemented in many standards e.g. [3, 27].

4.4.3 Influence of Material

The magnitude of the measurement signal is also related to the resistivity of the specimen

material which may also influence the optimum PD configuration.  In this study two different

materials are considered:  Type 316H stainless steel at 550ºC and aluminium at 20ºC.  They

represent extremes in resistivity of typical structural metals.

The resistivity of these materials is provided in Table 4.1.  The variation of resistivity with

temperature is provided in Figure 4.4.  The equations describing the second order

polynomial fits in this figure are provided in Equations (4.13) and (4.14) for Type 316H and

aluminium respectively where ρ is the material resistivity (in Ωm) and T is the temperature

(in °C).

Material
Temperature

[°C]
Resistivity

[Ωm]
Reference

Type 316H Stainless Steel 550 1.05×10-6 [125]
Aluminium 20 2.65×10-8 [126]

Table 4.1: Resistivity and temperature of the materials considered in this study.
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(a) (b)

Figure 4.4: Variation of resistivity with temperature for (a) Type 316H stainless steel
[125] and (b) Aluminium [126],

07 10 13 2
316 7 272 10 7 134 10 2 237 10H . . T . T        (4.13)

08 10 14 22 409 10 1 059 10 2 704 10Al . . T . T        (4.14)

4.4.4 Influence of PD System

The resolution metric is dependent on the amplitude of the electrical noise, Vnoise, which is a

function of the PD system.  The system used to obtain the measurements may therefore

influence the optimum PD configuration.  In this study two different systems have been

considered: a typical DCPD system and a low frequency ACPD system.  The DCPD system

consists of a TDK Lambda ZUP 10-80 constant current source set to a typical value of 20 A,

with a National Instruments USB-4065 digital multi-meter to measure the PD.  This has been

compared to the bespoke low frequency ACPD system, originally developed for measuring

creep strain [54] with an applied constant current of 3 mA at a frequency of 2 Hz and a total

gain of ~8000.  Unlike the DCPD system, the ACPD system measures resistance rather than

PD but for a constant current, the two are directly proportional.  The calibration functions and

metrics derived in this chapter, which are based on normalised PD, can therefore be

implemented using normalised resistance for the ACPD system.

To measure the amplitude of the electrical noise for these two systems they were

simultaneously connected to a C(T) specimen manufactured from Type 316H stainless steel

at room temperature using the PD configuration recommended in ASTM E1457 [3].  An initial

test was performed to confirm that the ACPD signal was not sensitive to small changes in

frequency thus demonstrating that the skin effect was negligible and the current distribution
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was quasi-DC.  Consecutive measurements were then taken from the two systems at

intervals of ~5 mins over a period of 80 hours.  The typical noise amplitude and the

signal-to-noise ratios are summarised in Table 4.2.

PD System Noise Amplitude Signal-to-Noise Ratio

Low frequency ACPD 25 µΩ 8900

DCPD 0.3 µV 1800

Table 4.2: Noise Amplitude used in the calculation of resolution for the different PD
systems considered.

The signal-to-noise ratio for the low frequency ACPD system is much larger than the DCPD

system.  This was expected due to the lock-in amplifier which filters out noise at frequencies

other than that of the applied current.  In the following study, the noise amplitudes in Table

4.2 have been assumed to be constant for all signal amplitudes, i.e. they do not vary for

different PD configurations or specimen geometries or materials.  This simplified assumption

is adequate for the purpose of this comparative study.

4.4.5 Method of Supressing Proportional Changes in PD

Two methods of suppressing proportional changes in PD due to, for example temperature

fluctuations and/or amplifier drift, are discussed in Section 4.2.1.  Both of these methods

have been considered in this study.  The optimum locations of the additional electrical

connections required to implement these methods are identified.

4.5 SEN PD Configuration Optimisation

4.5.1 Specimen Geometry

The SEN specimen geometry and the co-ordinate system are shown in Figure 4.5.  Only the

gauge region is shown for clarity.  The key dimensions are summarised in Table 4.3 which

correspond to a typical SEN specimen as defined in ASTM E1457-13 [3].  Also shown in

Figure 4.5 are the PD probe locations and the uniform current injection considered in this

study.
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Figure 4.5: ½ SEN geometry and co-ordinate system, dimensions in mm.  The crack is
shown in blue and the remaining ligament is the dotted line.  The current injection is

shown in red and PD probe locations are shown in orange.

W

[mm]

a0
[mm]

0a
W

af

[mm]
fa

W
B

[mm]
B
W

25.0 7.5 0.30 17.5 0.70 12.5 0.50

Table 4.3: SEN specimen key dimensions.

4.5.2 PD Configurations

A uniform current distribution has been considered, as shown in Figure 4.5, based on the

results from previous studies [65, 84].  This assumes that the current is injected at a location

which is sufficiently remote from the gauge region that the calibration function is independent
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of misplacement of the current injection points.  The aspect ratio of a typical SEN specimen

will usually facilitate this.

The PD probe locations considered in this study are also shown in Figure 4.5.  The

co-ordinates of these locations are provided in Table 4.4.  Two lines of PD probes have been

considered based on the results of previous studies [56, 76, 84]:

A. Across the crack mouth: A compromise between high sensitivity to crack extension

and low sensitivity to probe misplacement.  Often selected as the ‘optimum’ probe

location.

B. In-line with the initial crack tip: Extremely sensitive to crack extension but also to

probe misplacement.

Five distances from the crack plane were considered.

Probe
Location

Co-ordinates

x/W y/W x (mm) y (mm)

A1 0.00 0.08 0.0 2.0

A2 0.00 0.24 0.0 6.0

A3 0.00 0.48 0.0 12.0

A4 0.00 0.72 0.0 18.0

A5 0.00 0.96 0.0 24.0

B1 0.30 0.08 7.5 2.0

B2 0.30 0.24 7.5 6.0

B3 0.30 0.48 7.5 12.0

B4 0.30 0.72 7.5 18.0

B5 0.30 0.96 7.5 24.0

Table 4.4: Co-ordinates of the SEN PD probe locations.

4.5.3 Finite Element Model

A FE model of the gauge region was developed using COMSOL [124].  A 2D model was

used which assumes that the current distribution is uniform through the thickness.  Only half

of the gauge region was modelled, taking advantage of the symmetry about the plane of the

crack.  The geometry, shown in Figure 4.5, was meshed using 10,000 quad elements with a

uniform size of 0.01W.  A mesh refinement study was performed to confirm model

convergence.  Further validation was obtained by comparing the derived calibration

functions for probe locations A1-A5 with Johnson’s analytical solution [58] with excellent

agreement.
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A uniform current was distributed over the top surface.  This assumes that the actual current

injection point is sufficiently remote from the gauge region to produce this current

distribution.  A 0 V potential was applied to the ligament ahead of the crack (the dotted line in

Figure 4.5).  Crack growth was simulated by adjusting the length of the ligament in

increments of 0.02W for 0.30 ≤ a/W ≤ 0.70.  This is equivalent to 10 mm of crack growth in

increments of 0.5 mm.  An initial crack increment of 0.2 mm was also performed to consider

crack initiation.  All other surfaces of the specimen were assumed perfectly insulated.

4.5.4 Results

The results presented here are split into three sections.  The first two sections look at crack

growth and crack initiation respectively.  Crack growth considers 10 mm of crack extension

in increments of 0.5 mm.  The errors reported are the average of all increments.  Crack

initiation considers a single increment of 0.2 mm.  Neither of these two sections considers

the method of suppressing proportional changes in PD.  This is considered separately in the

third section.

4.5.4.1 Crack Growth

Figure 4.6 shows the average absolute errors (based on the metrics provided in Section 4.3)

for the different PD configurations when measuring significant crack extension in a Type

316H SEN specimen at 550ºC. Figure 4.7 shows the results for an aluminium specimen at

20ºC.
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(a) (b)

(c) (d)
Figure 4.6: Average absolute error when measuring significant crack extension in a

Type 316H SEN specimen at 550ºC with PD probes (a) across the crack mouth, using
low frequency ACPD, (b) across the crack mouth, using DCPD, (c) in-line with the

crack tip, using low frequency ACPD and (d) in-line with the crack tip, using DCPD.
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(a) (b)

(c) (d)
Figure 4.7: Absolute error when measuring significant crack extension in an

aluminium SEN specimen at 20ºC with PD probes (a) across the crack mouth, using
low frequency ACPD, (b) across the crack mouth, using DCPD, (c) in-line with the

crack tip, using low frequency ACPD and (d) in-line with the crack tip, using DCPD.

When measuring significant crack growth, PD probes across the crack mouth (locations

beginning with ‘A’) are generally less prone to errors than those in-line with the crack tip

(locations beginning with ‘B’).  Probe location A1 consistently demonstrates the lowest

average error.  For a Type 316H specimen at 550ºC this error is 2.4% and is almost entirely

due to probe misplacement.  It is therefore independent of the type of PD system used to

perform the measurement.  For an aluminium specimen at 20ºC this error increases to 3.1%

and 6.1% when using the low frequency ACPD system or the DCPD system respectively.
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The type of system used is more important for materials with low resistivity because the

signal-to-noise ratio reduces which increases the resolution.  Only for the extreme case of an

aluminium specimen and a DCPD system does the resolution become more significant than

the probe misplacement error however, the optimum PD configuration remains A1.

4.5.4.2 Crack Initiation

Figure 4.8 shows the absolute errors (based on the metrics provided in Section 4.3) for

different PD configurations when measuring 0.2 mm of crack extension in a Type 316H SEN

specimen at 550ºC. Figure 4.9 shows the results for an aluminium specimen at 20ºC.

(a) (b)

(c) (d)
Figure 4.8: Absolute error when measuring 0.2 mm of crack extension in a Type 316H

SEN specimen at 550ºC with PD probes (a) across the crack mouth, using low
frequency ACPD, (b) across the crack mouth, using DCPD, (c) in-line with the crack

tip, using low frequency ACPD and (d) in-line with the crack tip, using DCPD.
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(a) (b)

(c) (d)
Figure 4.9: Absolute error when measuring 0.2 mm of crack extension in an

aluminium SEN specimen at 20ºC with PD probes (a) across the crack mouth, using
low frequency ACPD, (b) across the crack mouth, using DCPD, (c) in-line with the

crack tip, using low frequency ACPD and (d) in-line with the crack tip, using DCPD.

When measuring 0.2 mm of crack extension, PD probes across the crack mouth (locations

beginning with ‘A’) are again less prone to errors than those in-line with the crack tip

(locations beginning with ‘B’) and probe location A1 again demonstrates the lowest total

error.  For a Type 316H specimen at 550ºC this error is 3.6% or 4.4% for the low frequency

ACPD system and DCPD system respectively.  For an aluminium specimen at 20ºC these

errors increase to 11.8% and 43.7% for the respective PD systems.

The choice of PD system is more important when measuring small amounts of crack growth,

particularly for specimens with low resistivity.  This is again because the signal-to-noise ratio

Probe Misplacement Error Resolution

0
10
20
30
40
50
60
70
80
90

100

A1 A2 A3 A4 A5

Er
ro

r i
n 

cr
ac

k 
ex

te
ns

io
n 

[%
]

Probe LocationLow Freq. ACPD

0
10
20
30
40
50
60
70
80
90

100

A1 A2 A3 A4 A5

Er
ro

r i
n 

cr
ac

k 
ex

te
ns

io
n 

[%
]

Probe LocationDCPD

0
10
20
30
40
50
60
70
80
90

100

B1 B2 B3 B4 B5

Er
ro

r i
n 

cr
ac

k 
ex

te
ns

io
n 

[%
]

Probe LocationLow Freq. ACPD

0
10
20
30
40
50
60
70
80
90

100

B1 B2 B3 B4 B5

Er
ro

r i
n 

cr
ac

k 
ex

te
ns

io
n 

[%
]

Probe LocationDCPD



89

is greatly reduced so the resolution becomes the dominant source of error.  Despite this, A1

remains optimum because it is the probe location with the smallest resolution as well as the

smallest probe misplacement error.

4.5.4.3 Method of Suppressing Proportional Changes in PD

When a reference measurement remote from the crack is used to suppress proportional

changes in PD, the influence of crack growth on this measurement should be minimised to

reduce the ‘remote reference error’ (see section 4.3.3).  The magnitude of the reference

signal should also be as large as possible to reduce the ‘resolution’ (see section 4.3.2).

Suitable current injection and PD probe locations which fulfil these criteria have been

identified for a SEN specimen.  These are shown in Figure 4.10 where the current injection

locations, shown in black, are labelled Iref, and the PD probes, shown in pink, are labelled

Sref.

Figure 4.10: SEN remote reference PD configuration.

It has been identified that PD probes across the crack mouth (locations beginning with ‘A’)

are generally less prone to errors than those in-line with the crack tip (locations beginning

with ‘B’).  The reference configuration shown in Figure 4.10 has therefore only been

considered in conjunction with PD probes across the crack mouth.

When using two measurements across the crack to suppress proportional changes in PD,

again, only PD probes across the crack mouth have been.  Only combinations including

probe location A1 have been considered because this has been consistently identified as the

optimum location.  These combinations are:

 A1/A2: The ratio of A1 to A2,

 A1/A3: The ratio of A1 to A3,

 A1/A4: The ratio of A1 to A4,
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 A1/A5: The ratio of A1 to A5.

Figure 4.11 shows the average absolute errors (based on the metrics provided in Section

4.3) in crack extension due to different methods of suppressing proportional changes in PD

when measuring significant crack extension in a 316H SEN specimen at 550ºC. Figure 4.12

shows the results for an aluminium specimen at 20ºC.  For some configurations where the

errors are particularly high, the total extent of these errors are not shown because the scale

of the axes has been selected to compare the PD configurations with the lowest errors.

(a) (b)

(c) (d)
Figure 4.11: Average absolute error when measuring significant crack extension in a

Type 316H SEN specimen at 550ºC for (a) a remote reference measurement, using low
frequency ACPD, (b) a remote reference measurement, using DCPD, (c) two

measurements across the crack, using low frequency ACPD, and (d) two
measurements across the crack, using DCPD.
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(a) (b)

(c) (d)
Figure 4.12: Average absolute error when measuring significant crack extension in an
aluminium SEN specimen at 20ºC for (a) a remote reference measurement, using low

frequency ACPD, (b) a remote reference measurement, using DCPD, (c) two
measurements across the crack, using low frequency ACPD, and (d) two

measurements across the crack, using DCPD.

When measuring significant crack growth the optimum PD configurations are A1 (when

using a reference measurement remote from the crack) and A1/A5 (when using two

measurements across the crack).  Despite the dominant source of error depending on the

type of PD system being used, the optimum PD configurations are the same for both

systems.

The total average errors for PD configurations A1 and A1/A5 are similar.  For a Type 316H

specimen at 550ºC this error is ~3%, independent of the PD system.  For an aluminium
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specimen at 20ºC, this increases to ~4% for the low frequency ACPD system and ~10% for

the DCPD system.  These errors are larger than if no method of suppression is used

because the additional measurements required to implement these suppression techniques

are sources of error in themselves.  This additional error must therefore be smaller than

those which are being suppressed for the technique to be effective.

When using two measurements across the crack to supress proportional changes in PD, the

errors reduce as the distance between the two measurement locations increases. When the

two probes are very close together e.g. A1/A2, the errors are particularly large.  This is

because the calibration functions for these two probe locations are very similar so the

normalised PD, Vnorm, as calculated from Equation (4.4), remains close to unity for all crack

lengths.  The calibration is therefore relatively insensitive to crack extension so the resolution

is large and small changes in the probe locations can significantly affect this sensitivity so

the probe misplacement error is also large.  When using this method to supress proportional

changes in PD the two probe locations should be relatively far apart.

Figure 4.13 shows the absolute errors (based on the metrics provided in Section 4.3) when

measuring 0.2 mm of crack growth in a Type 316H SEN specimen at 550ºC using different

methods of supressing proportional changes in PD. Figure 4.14 shows the results for an

aluminium specimen at 20ºC.  For some configurations where the errors are particularly

high, the total extent of these errors are not shown because the scale of the axes has been

selected to compare the PD configurations with the lowest errors.
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(a) (b)

(c) (d)
Figure 4.13: Absolute error when measuring 0.2 mm crack extension in a Type 316H

SEN specimen at 550ºC for (a) a remote reference measurement, using low frequency
ACPD, (b) a remote reference measurement, using DCPD, (c) two measurements

across the crack, using low frequency ACPD, and (d) two measurements across the
crack, using DCPD.

Probe Misplacement Error Resolution Remote Reference Error

0

5

10

15

20

25

30

35

A1 A2 A3 A4 A5

Er
ro

r i
n 

cr
ac

k 
ex

te
ns

io
n 

[%
]

Probe LocationLow Freq. ACPD

0

5

10

15

20

25

30

35

A1 A2 A3 A4 A5

Er
ro

r i
n 

cr
ac

k 
ex

te
ns

io
n 

[%
]

Probe LocationDCPD

0

5

10

15

20

25

30

35

A1/A2 A1/A3 A1/A4 A1/A5

Er
ro

r i
n 

cr
ac

k 
ex

te
ns

io
n 

[%
]

Probe LocationLow Freq. ACPD

0

5

10

15

20

25

30

35

A1/A2 A1/A3 A1/A4 A1/A5

Er
ro

r i
n 

cr
ac

k 
ex

te
ns

io
n 

[%
]

Probe LocationDCPD



94

(a) (b)

(c) (d)
Figure 4.14: Absolute error when measuring 0.2 mm crack extension in an aluminium
SEN specimen at 20ºC for (a) a remote reference measurement, using low frequency

ACPD, (b) a remote reference measurement, using DCPD, (c) two measurements
across the crack, using low frequency ACPD, and (d) two measurements across the

crack, using DCPD.

When measuring 0.2 mm of crack growth the optimum PD configurations remain A1 (when

using a remote reference measurement) and A1/A5 (when using two measurements across

the crack).  Both of these PD configurations again result in similar levels of error.  For a Type

316H specimen at 550ºC this error is ~4% for the low frequency ACPD system and ~6% for

the DCPD system.  For an aluminium specimen at 20ºC, this increases to ~18% for the low

frequency ACPD system and ~70% for the DCPD system.  When measuring small amounts
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of crack growth in an aluminium specimen the magnitude of the signal is particularly low, so

the errors are very high, particularly when using DCPD.

4.6 C(T) PD Configuration Optimisation

4.6.1 Specimen Geometry

The C(T) specimen geometry and the co-ordinate system are shown in Figure 4.15 and the

key dimensions are summarised in Table 4.5.  Only half of the specimen is shown due to

symmetry.  The origin of the co-ordinate system is where the load-line intersects the plane of

the crack. Figure 4.15 shows the two current injection locations, I1 and I2, and the five PD

probe locations, A thru E, which are considered in this study.  The process used to select

these locations is discussed in the following section.

A

E

B C

D

x

y

37.5 25.0

28
.0

2.
0

a0 (25.0)

I2

I1

W (25.0)

Figure 4.15: ½ C(T) geometry and co-ordinate system, dimensions in mm.  The crack
is shown in blue and the remaining ligament is the dotted line.  The current injection

locations are shown in red and PD probe locations are shown in orange.

W

[mm]

a0
[mm]

0a
W

af

[mm]
fa

W
B

[mm]

50.0 25.0 0.50 35.0 0.70 25.0

Table 4.5: C(T) specimen key dimensions.
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4.6.2 PD Configurations

Two different current injection locations have been considered in this study as shown in

Figure 4.15.  Locations remote from the crack tip have been selected to provide a more

uniform current distribution and reduce the sensitivity to misplacement.  These current

injection locations are consistent with previous optimisation studies [56, 71, 76, 84].

Five different PD probe locations have been considered which are also shown in Figure

4.15.  Their co-ordinates are provided in Table 4.6.  These locations were selected based on

the results from the SEN specimen which demonstrated that the optimum probe locations

tend to be those with a low sensitivity to probe misplacement. Locations A, B, D and E were

identified in previous studies [56, 71] as having particularly low sensitivity to probe

misplacement. Location C was included as an alternative which is the most sensitive to

crack growth but is also sensitive to probe misplacement.  All of the current injection and PD

probe locations considered in this study are accessible when the specimen is gripped using

a typical shackle assembly.

Probe Location
Co-ordinates

x/W y/W x (mm) y (mm)

A -0.25 0.04 -12.5 2.0

B 0.00 0.04 0.0 2.0

C 0.50 0.04 25.0 2.0

D 0.96 0.60 48.0 30.0

E -0.21 0.60 -10.5 30.0

Table 4.6: Co-ordinates of the C(T) PD probe locations.

4.6.3 Finite Element Model

A FE model of the specimen was developed using COMSOL [124].  A 2D model was used

which assumes that the PD probe locations are sufficiently far from the current injection

locations such that the current is uniform through the thickness.  Only half of the specimen

was modelled taking advantage of the symmetry about the plane of the crack.  The geometry

in Figure 4.15 was meshed with ~31,000 linear quad elements with a maximum element size

of 0.005W.  This mesh is shown in Figure 4.16.  A mesh refinement study was performed to

confirm model convergence.
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Figure 4.16: FE model of C(T) specimen

A 0V potential was applied to the ligament ahead of the crack (the dotted line in Figure 4.15).

Crack growth was simulated by adjusting the length of the ligament in increments of 0.01W

for 0.50 ≤ a/W ≤ 0.70.  This is equivalent to 10 mm of crack growth in increments of 0.5 mm.

An initial crack increment of 0.2 mm was also performed to consider crack initiation.  The

current injection was modelled as a point source and separate analyses were performed to

look at the two different current injection locations.  All other surfaces were assumed

perfectly insulated.

4.6.4 Results

Similar to the SEN specimen, the results are split into three sections.  The first two sections

look at crack growth and crack initiation respectively.  Crack growth considers 10 mm of

crack extension in increments of 0.5 mm.  The errors reported are the average of all

increments.  Crack initiation considers a single increment of 0.2 mm.  Neither of these two

sections considers the method of suppressing proportional changes in PD.  This is

considered separately in the third section.

4.6.4.1 Crack Growth

Figure 4.17 shows the average absolute errors (based on the metrics provided in Section

4.3) for the different PD configurations when measuring significant crack extension in a Type

316H C(T) specimen at 550ºC. Figure 4.18 shows the results for an aluminium specimen at

20ºC.
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(a) (b)

(c) (d)
Figure 4.17: Average absolute error when measuring significant crack extension in a
Type 316H C(T) specimen at 550ºC with (a) current injected at I1, using low frequency

ACPD, (b) current injected at I1, using DCPD, (c) current injected at I2, using low
frequency ACPD and (d) current injected at I2, using DCPD.
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(a) (b)

(c) (d)
Figure 4.18: Average absolute error when measuring significant crack extension in an
aluminium C(T) specimen at 20ºC with (a) current injected at I1, using low frequency

ACPD, (b) current injected at I1, using DCPD, (c) current injected at I2, using low
frequency ACPD and (d) current injected at I2, using DCPD.

When measuring significant crack growth, the lowest errors are typically at probe location A

when the current is injected at I1.  For a Type 316H specimen at 550ºC this error is <1% for

both PD systems and is almost entirely due to probe misplacement.  For an aluminium

specimen at 20ºC the resolution becomes more significant which increases the error to ~2%

for the low frequency ACPD and ~9% for the DCPD.

Other suitable PD configurations where the error is similar, albeit slightly higher, are:

 Probe location A with the current injected at I2
 Probe location B with the current injected at I1or I2
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 Probe location E with the current injected at I2

The other PD configurations should generally be avoided.  Probe location C, irrespective of

the current injection location, is susceptible to very large probe misplacement errors because

it is located close to the crack tip where the potential gradient is large [76, 84].  Probe

location E with the current injected at I1 is also susceptible to large probe misplacement

errors.  This is also due to a large potential gradient, but this time it is caused by the

proximity of the PD probe to the current injection location [56].  Finally, probe location D,

irrespective of the current injection location, is susceptible to high resolution because the

probe is located ahead of the crack tip where the PD measurement is less sensitive to crack

extension [76].

4.6.4.2 Crack Initiation

Figure 4.19 shows the absolute errors (based on the metrics provided in Section 4.3) for

different PD configurations when measuring 0.2 mm of crack extension in a Type 316H C(T)

specimen at 550ºC. Figure 4.20 shows the results for an aluminium specimen at 20ºC.
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(a) (b)

(c) (d)
Figure 4.19: Absolute error when measuring 0.2 mm of crack extension in a Type
316H C(T) specimen at 550ºC with (a) current injected at I1, using low frequency
ACPD, (b) current injected at I1, using DCPD, (c) current injected at I2, using low

frequency ACPD and (d) current injected at I2, using DCPD.
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(a) (b)

(c) (d)
Figure 4.20: Absolute error when measuring 0.2 mm of crack extension in an

aluminium C(T) specimen at 20ºC with (a) current injected at I1, using low frequency
ACPD, (b) current injected at I1, using DCPD, (c) current injected at I2, using low

frequency ACPD and (d) current injected at I2, using DCPD.

When measuring 0.2 mm of crack growth, the resolution is generally larger than the probe

misplacement error, but despite this change in the dominant source of error, probe location

A with the current injected at I1 remains optimum.  The total error for this configuration in a

Type 316H specimen at 550ºC is ~1% and ~3% for the low frequency ACPD and DCPD

systems respectively.  For an aluminium specimen at 20ºC, this increases to ~19% and

~91% for the respective PD systems.  When measuring small amounts of crack growth the

choice of PD system is of vital importance, particularly for specimens with low resistivity.
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Other PD configurations where the error is similar, albeit slightly higher, are:

 Probe location A with the current injected at I2
 Probe location B with the current injected at I1or I2
 Probe location E with the current injected at I2

These are the same configurations identified when measuring significant crack growth.

In general, when measuring small amounts of crack growth, the errors for the C(T) specimen

are larger than for the SEN specimen.  This is because the dominant source of error is

resolution which is inversely related to the magnitude of the signal.  The C(T) specimen

considered in this study is wider and thicker than the SEN specimen. It therefore has a

lower resistance so the resolution is higher.

4.6.4.3 Method of Suppressing Proportional Changes in PD

A suitable remote reference PD configuration for the C(T) specimen has been identified in

Figure 4.21 where the current injection locations, shown in black, are labelled Iref, and the

PD probes, shown in pink, are labelled Cref.  This configuration provides a large reference

signal that is not significantly affected by crack growth.  In the following section, this

reference measurement has been considered in conjunction with the probe locations which

produced the lowest errors in crack extension.  These are: probe location A with the current

injected at I1and I2; Probe location B with the current injected at I1and I2; and Probe location

E with the current injected at I2.

Figure 4.21: C(T) remote reference PD configuration.
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From the SEN specimen, it was identified that when using two measurements across the

crack to supress proportional changes in PD, the two probe locations should be located far

from each other.  Based on this observation configurations D/A (the ratio of D to A) and D/B

(the ratio of D to B) have been considered here.  The total error for probe location D is

significantly higher if the current is injected at I2, so only I1 has been considered.  These PD

configurations are similar to those proposed by McCartney et al. [60].

Figure 4.22 shows the errors (based on the metrics provided in Section 4.3) in crack

extension due to different methods of suppressing proportional changes in PD when

measuring large amounts of crack extension in a 316H C(T) specimen at 550ºC. Figure

4.23 shows the results for an aluminium specimen at 20ºC.
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(a) (b)

(c) (d)
Figure 4.22: Average absolute error when measuring significant crack extension in a
Type 316H C(T) specimen at 550ºC for (a) a remote reference measurement, using low

frequency ACPD, (b) a remote reference measurement, using DCPD, (c) two
measurements across the crack, using low frequency ACPD, and (d) two

measurements across the crack, using DCPD.
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(a) (b)

(c) (d)
Figure 4.23: Average absolute error when measuring significant crack extension in an
aluminium C(T) specimen at 20ºC for (a) a remote reference measurement, using low

frequency ACPD, (b) a remote reference measurement, using DCPD, (c) two
measurements across the crack, using low frequency ACPD, and (d) two

measurements across the crack, using DCPD.

When measuring significant crack growth with a remote reference measurement the

optimum PD configuration is probe A, with the current injected at I2.  For this configuration,

the total error in a Type 316H specimen at 550ºC is 2.4% for the low frequency ACPD

system and 2.7% for the DCPD system.  For an aluminium specimen at 20ºC, this increases

to 5.8% and 19.0% respectively.  The optimum PD configuration is slightly different to when

no method of suppression is implemented, where the optimum current injection location is I1

but the errors for all of the other configurations considered in this study remain similar.
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When two measurements are taken across the crack the optimum PD configuration is D/A,

with the current injected at I1.  For a Type 316H specimen at 550ºC the total error is 1.6% for

the low frequency ACPD system and 2.4% for the DCPD system.  For an aluminium

specimen at 20ºC, this increases to 10.1% and 42.3% respectively.  The errors for

configuration D/B are considerably higher.

When testing materials with a low resistivity the errors in the crack extension measurement

are smaller when a remote reference measurement is used to supress proportional changes

in PD rather than two measurements across the crack.  When testing materials with a high

resistivity the errors in the crack extension measurement reduce significantly such that either

method may be implemented without a significant impact on the accuracy of the

measurements.

Figure 4.24 shows the absolute errors (based on the metrics provided in Section 4.3) when

measuring 0.2 mm of crack growth in a Type 316H C(T) specimen at 550ºC using different

methods of supressing proportional changes in PD. Figure 4.25 shows the same results for

an aluminium specimen at 20ºC.  For some configurations where the errors are particularly

high, the total extent of these errors are not shown because the scale of the axes has been

selected to compare the PD configurations with the lowest errors.
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(a) (b)

(c) (d)
Figure 4.24: Absolute error when measuring 0.2 mm crack extension in a Type 316H

C(T) specimen at 550ºC for (a) a remote reference measurement, using low frequency
ACPD, (b) a remote reference measurement, using DCPD, (c) two measurements

across the crack, using low frequency ACPD, and (d) two measurements across the
crack, using DCPD.
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(a) (b)

(c) (d)
Figure 4.25: Absolute error when measuring 0.2 mm crack extension in an aluminium
C(T) specimen at 20ºC for (a) a remote reference measurement, using low frequency

ACPD, (b) a remote reference measurement, using DCPD, (c) two measurements
across the crack, using low frequency ACPD, and (d) two measurements across the

crack, using DCPD.

When measuring 0.2 mm of crack growth with a remote reference measurement the error for

all the configurations considered in this study is similar.  For PD probe A, with the current

injected at I2 (the optimum configuration when measuring significant crack growth) the total

error in a Type 316H specimen at 550ºC is 4.2% for the low frequency ACPD system and

7.6% for the DCPD system.  For an aluminium specimen at 20ºC, this increases to 38.9%

and 173.9% respectively.
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When two measurements are taken across the crack, the optimum configuration remains

D/A with the current injected at I1.  For a Type 316H specimen at 550ºC the total error is

4.2% for the low frequency ACPD system and 13.5% for the DCPD system.  For an

aluminium specimen at 20ºC, this increases to 98.4% and 459% respectively.  The errors for

configuration D/B are considerably higher.

4.7 Discussion

When additional measurements are not implemented to suppress proportional changes in

PD the optimum configuration for a SEN specimen, is probe location A1 with the current

injected remote from the gauge region of the specimen.  For a C(T) specimen the optimum

configuration is probe location A with the current injected at I1.  These remain the optimum

configurations when measuring small or large amounts of crack growth in specimens

manufactured from a broad range of structural materials.  For a C(T) specimen,  a range of

alternative configurations have been also been identified where the error is only slightly

higher than the optimum configuration.  These are:

 Probe location A with the current injected at I2.

 Probe location B with the current injected at either I1 or I2.

 Probe location E with the current injected at I2.

The errors in the measurement of crack extension for the optimum configurations are

summarised in Table 4.7 and Table 4.8 for the SEN and C(T) specimens respectively.

Amount of Crack
Growth Material

Error in crack extension measurement [%]

DCPD Low Freq. ACPD

Significant crack
growth

Type 316H (550°C) 2.4 2.4

Aluminium (20°C) 6.1 3.1

Crack Initiation
Type 316H (550°C) 4.4 3.6

Aluminium (20°C) 43.7 11.8

Table 4.7: Summary of the errors associated with the optimum PD configuration for a
SEN specimen.

For materials with high resistivity, the signal-to-noise ratio is high, so the resolution is small

and probe misplacement is the dominant source of error.  By implementing the optimum PD

configurations identified above, the error in the crack extension measurement is <5% and

the benefit of the reduced noise of the low frequency ACPD system is also small.  For

materials with low resistivity, the signal-to-noise ratio is reduced and the resolution becomes

the dominant source of error.  Despite this change, the optimum PD configurations remain
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the same.  For such materials, the total error in the crack extension measurement is much

larger, and can be as high as 90%.  It is therefore necessary, where possible, to increase the

signal-to-noise ratio.  The low frequency ACPD system is an effective way of achieving this.

Amount of Crack
Growth Material

Error in crack extension measurement [%]

DCPD Low Freq. ACPD

Significant crack
growth

Type 316H (550°C) 0.7 0.5

Aluminium (20°C) 9.3 2.3

Crack Initiation
Type 316H (550°C) 2.8 1.0

Aluminium (20°C) 90.6 19.3

Table 4.8: Summary of the errors associated with the optimum PD configuration for a
C(T) specimen.

It should be noted that the errors calculated for aluminium specimens in this study are likely

to be overestimated.  For the DCPD system a constant current of 20 A has been assumed

for simplicity, but for low resistivity materials, higher currents are sometimes used which

would increase the signal-to-noise ratio.  Also, the low frequency ACPD system incorporates

a resistance bridge with a variable reference resistor which should be set to match the

approximate resistance of the specimen. This reduces the signal noise when measuring

smaller resistances.  Although these changes would reduce the magnitude of the errors in

Table 4.7 and Table 4.8, they will not change optimum PD configurations which, as has been

demonstrated, remain unchanged for all conditions considered in this study.

Two methods of supressing proportional changes in PD have been considered in this study:

1. A reference measurement remote from the crack

2. Two parallel measurements across the crack

For a SEN specimen with a remote reference measurement, the optimum PD configuration

remains probe location A1 with the current injected remote from the gauge region.  When

two measurements are taken across the crack, the optimum PD configuration is A1/A5 (the

ratio of A1 to A5) with the current injected remote from the gauge region.  For both of these

configurations, the errors in the crack extension measurement are very similar.  Typical

values of these errors are summarised in Table 4.9.



112

Amount of Crack
Growth Material

Error in crack extension measurement [%]

DCPD Low Freq. ACPD

Significant crack
growth

Type 316H (550°C) ~3 ~3

Aluminium (20°C) ~10 ~5

Crack Initiation
Type 316H (550°C) ~6 ~5

Aluminium (20°C) ~70 ~18

Table 4.9: Typical errors associated with the optimum PD configurations for the SEN
specimen when supressing proportional changes in PD.

For a C(T) specimen with a remote reference measurement, the optimum PD configuration

is probe location A with the current injected at I2.  This current injection location is different to

when no method of suppression is implemented but the difference between the two current

injection locations is small.  When two measurements are taken across the crack, the

optimum PD configuration is D/A (the ratio of D to A) with the current injected at I1.  For a

C(T) specimen, a remote reference measurement tends to result in smaller errors in the

crack extension measurement than when two measurements are taken across the crack,

particularly when the material resistivity is low.  The errors in the measurement of crack

extension for the optimum PD configuration, based on a remote reference measurement, are

summarised in Table 4.10.

Amount of Crack
Growth Material

Error in crack extension measurement [%]

DCPD Low Freq. ACPD

Significant crack
growth

Type 316H (550°C) 2.7 2.4

Aluminium (20°C) 19.0 5.8

Crack Initiation
Type 316H (550°C) 7.6 4.2

Aluminium (20°C) 173.9 38.9

Table 4.10: Errors associated with the optimum PD configuration for the C(T)
specimen when supressing proportional changes in PD.

By comparing Table 4.7 and Table 4.8 with Table 4.9 and Table 4.10 it is apparent that

introducing additional measurements to supress proportional changes in PD increases other

sources of error. For specimens with high resistivity, this additional error is relatively small

(a few percent) so it is reasonable to implement these suppression techniques without

significantly affecting the overall accuracy of the measurement.  For specimens with low

resistivity however, the total error is approximately doubled and can be extremely large,
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especially when measuring crack initiation.  If this additional error is larger than those which

are being suppressed then these additional measurements should not be performed.

Where it is appropriate to supress proportional changes in PD, various factors should be

considered when selecting which method of suppression to use.  As well as the additional

error in the measurement of crack extension consideration should also be given to the

accuracy with which the initial crack length can be determined and the simplicity of

implementing the chosen method.

When using a remote reference measurement, the initial crack length, a0, is typically

obtained from an independent optical measurement.  This may be either from the side-face

of the specimen or the post-test fracture surface.  When two measurements are taken

across the crack, the initial crack length is obtained directly from the PD.  If the initial crack

length can be measured optically with a high degree of accuracy, e.g. for specimens with an

EDM pre-crack or if post-test measurements from the fracture surface are feasible, a remote

reference measurement is likely to provide a more accurate initial crack length measurement

compared to two PD measurements across the crack.  If however a specimen with a fatigue

pre-crack is used and the final fracture surface cannot be observed, the initial crack length

may be more accurately determined from two PD measurements across the crack rather

than a remote reference measurement.

Another consideration is the simplicity of implementing the chosen method of suppression.

When two measurements are taken across the crack, it is often necessary to derive a

calibration function specific for the PD configuration because very few calibration functions

are available in the literature in this format.  Implementing a remote reference measurement

however is much simpler because the calibration function is the same as when no method of

suppression is implemented.  A calibration function can therefore be readily obtained from

the literature.  It should be noted however that small differences between the nominal

geometry assumed in the derivation of the calibration function and the actual test geometry

can introduce additional errors into the measurement of crack extension.  The significance of

these errors is assessed in the next chapter.
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Chapter 5:
Errors Associated with
PD Calibration Functions
5.1 Introduction

Calibration functions are provided in standards for various specimen geometries e.g. [3, 55].

When applying these calibration functions, the geometry of the specimen being tested is

often different to the geometry for which the calibration was derived due to, for example, the

addition of a notch to accommodate the necessary extensometry or side-grooves.  Most

calibration functions also assume uniform crack extension along the crack front whilst

uneven crack extension, such as crack tunnelling, is often observed experimentally.  Finally,

for specimens containing two crack tips, calibration functions assume the same crack

extension at each tip but some uneven crack growth is inevitable. These differences are all

potential sources of error in the measurement of crack extension.  In this chapter a finite

element based investigation is presented which quantifies the significance of these sources

of error.  Consideration is given to the measurement of both crack initiation and significant

crack growth. By quantifying these typical sources of error, the significance of the influence

of large inelastic strains, considered in subsequent chapters, may be determined by

comparison.

Most standards only provide calibration functions for a limited number of specimen types.

This can preclude the use of other specimens which may be more representative of the

structure for which the test is being performed.  In this chapter, the possibility of a single

unified calibration function for all geometries will also be investigated which would ensure

that the specimen geometry was selected based on the test requirements rather than the

availability of a suitable calibration function.  The error in the measurement of crack

extension based on a unified calibration function will be assessed and recommendations

made with regards to its use.  The seven specimen types considered in this study are:

 Middle Tension, M(T)

 Compact Tension, C(T),
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 Single Edge-Notched Tension, SEN(T),

 Single Edge-Notched Bend, SEN(B),

 Double Edge-Notched Tension, DEN(T),

 Disc-shaped Compact Tension, DC(T),

 C-Shaped Tension, CS(T).

5.2 Influence of Notch Geometry

When performing crack growth tests on a C(T) specimen, either a capacitance gauge or a

clip gauge are often used to measure load-line displacement and the size and shape of the

notch required to accept the necessary extensometry can vary significantly.  Conversely,

when a load-line displacement measurement is not required, or is measured remotely, the

specimen may only contain a thin EDM slot.  Calibration functions are sensitive to these

variations in notch geometry [58, 75] but are often derived based on a crack of infinitesimal

width for simplicity [58, 60].  When applying these calibration functions to a specimen

containing a substantial notch, this will introduce errors in the calculation of crack extension.

The significance of these errors is investigated here.
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Figure 5.1: ½ C(T) specimen geometry, including the maximum allowable notch
geometry from ASTM E1820-13 [27].  The fatigue pre-crack is highlighted blue, the

current injection location is labelled I and the two likely PD probe locations are
labelled V1 and V2.
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ASTM E1820-13 [27] provides guidelines for the maximum allowable notch size in a C(T)

specimen for fracture toughness testing.  This notch geometry is shown in Figure 5.1.  No

guidance is provided for the size of opening at the crack mouth so 0.18W has been selected

which is adequate to accommodate a typical clip gauge based on a specimen width, W, of

50 mm.

A similar modelling approach to the one outlined in the previous chapter was used to assess

the influence of notch geometry.  Two 2D ½ models of a C(T) specimen were developed

using COMSOL [124].  One contained the minimum possible notch geometry (a crack of

infinitesimal width) whilst the other contained the maximum allowable notch geometry shown

in Figure 5.1.  In each specimen, the crack was grown from 0.45W<a<0.90W and the change

in PD was monitored at probe locations V1 and V2, also shown in Figure 5.1.  The initial crack

length, a0, of 0.45W was based on the minimum requirement in ASTM E1820-13 [27].  For

the model containing the maximum notch geometry, a 0.05W long fatigue pre-crack of

infinitesimal width was assumed ahead of the notch which is another requirement of  ASTM

E1820-13 [27].  This standard does not provide a recommendation for the PD configuration,

so the PD probe and current injection locations are based on recommendations in ASTM

E1457-13 [3].  They also correspond to two of the preferred PD configurations identified in

the previous chapter.  The locations of the PD probes are provided in Table 5.1 based on the

co-ordinate system shown in Figure 5.1.

PD Probe
Co-ordinates

x/W y/W

V1 -0.25 0.22
V2 0.00 0.14

Table 5.1: Co-ordinates of the PD probes used to assess the influence of notch
geometry on crack extension measurement

2 3

0 1 2 3
0 0 0

a V V VA A A A
W V V V

     
        

     
(5.1)

The initial crack increment was 0.004W.  This corresponds to 0.2 mm of crack extension for

a standard C(T) specimen (W = 50 mm) which is often used as an engineering definition of

crack initiation.  Subsequent crack increments were 0.05W.  The results from the model with

the minimum notch geometry were used to derive a third order polynomial calibration

function in the form of Equation (5.1).  This calibration function was used to predict crack

extension from PD measurements obtained from the model containing the maximum
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allowable notch geometry.  The difference between the predicted crack extension and the

modelled value is the error due to the notch geometry.  This is shown schematically in Figure

5.2.

Min. notch calibration curve

Max. notch calibration curve

Normalised PD

a/W
Error due to notch
geometry

Figure 5.2: Schematic representation of the error due to notch geometry

The influence of notch geometry on the measurement of crack extension is illustrated in

Figure 5.3.  For both probe locations, the notch geometry has a significant influence on the

crack extension measurement.  The associated error is greatest when measuring small

amounts of crack extension and is worse at probe location V1.  At this location, the initial

error when measuring small amounts of crack extension is 21.9%.  The mean error for all

crack increments is much lower at 12.5%.  At location V2 the initial error is 13.6% and the

mean is 6.4%.

The influence of the notch geometry is more significant for small crack extensions because

the crack tip is closer to the notch.  If a calibration function based on the minimum notch

geometry was used to monitor crack extension when growing the 0.05W fatigue pre-crack

the error would be even larger.
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(a) (b)
Figure 5.3: Influence of C(T) notch geometry on crack extension measurement for PD

probe locations (a) V1 and (b) V2

5.3 Influence of Side Grooves

Calibration functions are often derived for plane sided geometry for simplicity however, crack

growth tests performed on this type of specimen tend to exhibit crack tunnelling due to the

reduced constraint associated with the plane stress conditions at the surface [127].  To avoid

this, side grooves are often incorporated into the specimen however, these are likely to

influence the calibration in a similar manner to the notch geometry.

The same approach used to investigate the influence of notch geometry has been used to

investigate the influence of side grooves.  Four 3D ¼ models of a C(T) specimen were

developed using COMSOL [124] to model the effects of side grooves.  A crack of

infinitesimal width was assumed with no notch and a specimen thickness, B, of W/2.  One of

the models was plane sided whilst the others contained side grooves equal to 10%, 20% and

30% of the thickness (Bn = 0.9W, 0.8W and 0.7W respectively).  The model with 30% side

grooves is shown in Figure 5.4.   The side grooves were modelled as perfectly sharp to

simplify the mesh, with a root angle of 60º.
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Figure 5.4: ¼ FE model of a C(T) specimen with 30% side-grooves.

Unlike the notch geometry study above, which was based on geometry from ASTM

E1820-13, this and all subsequent studies are not specific to any standard and as such a

wider range of crack lengths have been considered.   For each model, the crack was grown

from 0.20W<a<0.90W in increments of 0.05W.  An initial crack increment of 0.004W was also

assessed to simulate initiation.  The change in PD was monitored at two locations similar to

those used in the notch geometry study.  The location of the PD probes is provided in Table

5.2 based on the co-ordinate system shown in Figure 5.4.   The results from the plane sided

model were used to derive a third order polynomial calibration function in the form of

Equation (5.1).  This calibration function was used to predict crack extension from PD

measurements obtained from the models containing the side grooves.  The difference

between the predicted crack extension and the modelled value is the error due to the side

grooves.

PD Probe Location
Co-ordinates

x/W y/W z/W

V1 -0.25 0.08 0.21
V2 0.00 0.08 0.25

Table 5.2: Co-ordinates of the PD probes used to assess the influence of side-grooves
on crack extension measurement

The influence of side-grooves on the measurement of crack extension is illustrated in Figure

5.5.  Larger side-grooves result in a larger error, and these errors are greater at PD probe

location V2.  For a C(T) specimen containing 20% side-grooves, which are suitable for most

materials [3], the initial error when measuring small amounts of crack extension is 2.9% and

5.2% for probe locations V1 and V2 respectively.  They increase to 5.8% and 10.0% for a
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specimen with 30% side-grooves.  These errors do not change significantly for the initial

0.3W of crack extension, but are much smaller when measuring large crack extensions.

(a) (b)
Figure 5.5: Influence of side grooves on crack extension measurement for PD probe

locations (a) V1 and (b) V2

5.4 Influence of Crack Tunnelling

If a plane sided specimen is used, crack tunnelling tends to occur due to the reduced

constraint at the free surface of the specimen but calibration functions are usually derived

assuming uniform crack extension.  Crack tunnelling will therefore influence the accuracy of

the crack extension measurement.  When using DCPD and low frequency ACPD the current

distributes throughout the specimen.  One of the often quoted advantages of this current

distribution is that the measured PD will relate to some average crack length and will be less

sensitive to uneven crack extension [105].  The accuracy of this statement and the

significance of this source of error are investigated here.

A 3D model of a C(T) specimen was developed using COMSOL [124].  The crack was grown

from 0.20W < aave < 0.90W in increments of 0.05W, where aave is the mean crack length.  This

is calculated from Equation (5.2) where Ac is the crack area and B is the specimen thickness.

An initial crack increment of 0.004W was also assessed to simulate initiation.  The evolution

of the crack tunnelling is shown in Figure 5.6 and is based on fracture surface observations

from a creep crack growth test performed on a plane-sided C(T) specimen with no

side-grooves [127].  A triangular rather than elliptical crack front was selected due to the

ease of meshing this geometry.  This simplification is considered adequate for the purposes
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of this study.  For each crack increment, the change in PD was monitored at the two probe

locations in Table 5.2.

c
ave

Aa
B

 (5.2)

The results from a model with a straight fronted crack were used to derive a third order

polynomial calibration function in the form of Equation (5.1).  This calibration function was

used to predict crack extension from PD measurements obtained from the model including

crack tunnelling.  The difference between the predicted crack extension and the average

modelled crack extension is the error due to crack tunnelling.  The predicted crack extension

has also been compared to the minimum and maximum crack extension where the minimum

corresponds to the crack extension at the side face of the specimen and the maximum

corresponds to the crack extension at the mid-plane.

Load-line

(a0) 0.2W
0.3W
0.4W
0.5W

(a) (b) (c) (d)

B = 0.5W

Figure 5.6: Section of a C(T) specimen showing the crack plane with the crack
highlighted blue.  The evolution of crack tunnelling is shown for (a) aave = 0.20W (a0),

(b) aave = 0.25 W, (c) aave = 0.30 W, (d) aave = 0.40 W.

The influence of crack tunnelling on the measurement of crack extension is illustrated in

Figure 5.7.  For both probe locations, the results are similar.  The results based on uniform

crack extension are in closer agreement with the mean extension of the tunnelling crack

rather than the maximum or minimum but some significant errors still occur.  For probe

locations V1 and V2 these errors are 44.5% and 49.3% respectively.  These errors reduce

rapidly with crack extension and when measuring very large cracks they can be as low as

3%.  In general the calibration function underestimates the mean crack extension of a

tunnelling crack which is consistent with experimental observations [92].  This confirms that
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DCPD measurements do indeed relate to some intermediate crack length, but not

necessarily the arithmetic mean.

(a) (b)
Figure 5.7:  Influence of crack tunnelling on crack extension measurement for PD

probe locations (a) V1 and (b) V2

This assessment of crack tunnelling is based on a specific crack front shape albeit based on

experimental observations.  In any one specific test, the error due to crack tunnelling may be

smaller or larger depending on the shape of the crack front.  Despite this, the results

presented here are sufficient to conclude that the influence of crack tunnelling on DCPD

measurements can be significant. This highlights the importance of applying appropriate

side-grooves in order to obtain accurate measurements of crack extension and, in particular,

crack initiation.

5.5 Uneven Crack Growth

DEN(T) and M(T) specimen geometries contain two crack tips.  Calibration functions derived

for these specimen geometries are based on the assumption that crack extension is identical

at both crack tips however, in a physical test, crack growth is inevitably uneven.  ASTM

E647-13 [55] provides guidance for an M(T) specimen which limits the difference in distance

from the centre-line of the specimen to each of the crack tips to 0.025W to avoid invalidating

the SIF solution.  This limit has been used in the following study to look at the influence of

uneven crack growth on PD measurements for M(T) and DEN(T) specimens.

A 2D ½ model of an M(T) and a DEN(T) specimen was developed using COMSOL [124].

The specimen geometries, including the PD configuration are provided in Figure 5.8.  A
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uniform current distribution was assumed.  In each specimen, the crack was grown from

0.20W<am<0.90W in increments of 0.05W where am is the mean of the two crack lengths, a1
and a2, defined in Figure 5.8.  An initial crack increment of 0.008W was also assessed to

simulate initiation.  This corresponds to 0.2 mm of crack extension for a standard DEN(T) or

M(T) specimen (W = 25 mm).  The individual lengths of a1 and a2 were calculated from

Equation (5.3) in accordance with the validity limit in ASTM E647-13.  The change in PD was

monitored at each crack increment.

1 2 0 025a a .
W W
  (5.3)

The geometry of the M(T), shown in Figure 5.8(a), is identical to the geometry used by

Johnson to derive his analytical calibration [58] (See Section 3.2.1.2).  Due to the similarities

in the geometry, the DEN(T) specimen, shown in Figure 5.8(b), will have an equivalent

current distribution to that of the M(T), so the same analytical calibration is applicable [18].

Johnson’s calibration function was therefore used to predict crack length from PD

measurements obtained from the FE models with uneven crack extension.  The difference

between the predicted crack extension and the modelled value is the error due to uneven

crack growth.

(a) (b)
Figure 5.8:  Geometry for (a) M(T) and (b) DEN(T) specimens

The influence of uneven crack growth on the measurement of crack extension in an M(T)

and a DEN(T) specimen is shown in Figure 5.9.  The FE results are in good agreement with

the theoretical calibration derived by Johnson.  For the M(T) specimen, the error is <0.5% for

all crack extensions.  For the DEN(T) specimen, the error is <1.5%. For the validity limits

specified in ASTM E647-13, the influence of uneven crack growth is very small compared to

the other sources of error considered in this study.



124

(a) (b)
Figure 5.9: Influence of uneven crack growth in the measurement of crack extension

for (a) an M(T) specimen and (b) a DEN(T) specimen

5.6 Unified Calibration Function

Calibration functions provided in standards are based on a set of assumptions about the

geometry e.g. notch size and shape etc.  When these are applied to a test specimen with

slightly different geometry, the crack extension measurements will be subject to the sources

of error discussed above.  It is therefore preferable to derive a calibration function for the

exact geometry being tested however, this is not always practical and the calibration

functions provided in standards are often used.

Calibration functions are not available in the standards for the full range of specimen types.

This can restrict the choice of specimen to the most common geometries which may not be

representative of the structure for which the test is being performed.  To avoid this

restriction, the use of a single ‘unified’ calibration function has been considered for all the

main specimen geometries.  Whilst this will inevitably introduce some additional error into

the calculation of crack extension, if this error is small relative to other typical sources of

error, the availability of a unified calibration function would allow the specimen type to be

selected based on the test requirements rather than the availability of a calibration function.

There are a wide range of specimen types available, the choice of which depends on the

level of constraint required and material availability.  The seven most common specimen

types which will be considered in this investigation are:

 Compact Tension, C(T),

 Middle Tension, M(T),

 Single Edge-Notched Tension, SEN(T),
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 Single Edge-Notched Bend, SEN(B),

 Double Edge-Notched Tension, DEN(T),

 C-Shaped Tension, CS(T),

 Disc-shaped Compact Tension, DC(T).

As discussed in Chapter 3, calibration functions can be derived analytically, numerically or

empirically.  Numerical and empirical calibration functions are derived by curve fitting to

discrete data points.  To ensure that they are independent of specimen material, thickness

and in-plane size they are normalised with respect to a known defect size. This makes

implementing these calibration functions more onerous since an additional calculation is

required to identify the PD at this known defect size.  Analytical calibration functions, such as

the one derived by Johnson [58], are more general.  This allows the user to select the

normalising defect size to match the initial crack which simplifies the implementation of this

form of calibration function.  For this reason, the calibration curve derived by Johnson will be

the focus of this study.

Johnson’s calibration was originally derived for an M(T) specimen.  Schwalbe and Hellman

[66] identified that an M(T) specimen is geometrically equivalent to two mirrored SEN

specimens and that the calibration should therefore be the same for the equivalent PD

configuration.  Similar to an M(T), a DEN(T) specimen is also equivalent to two mirrored

SEN specimens so the calibration for this specimen should also the same [18]. Johnson’s

calibration is therefore an exact solution for four of the seven specimen types considered in

this study, namely M(T), DEN(T), SEN(T) and SEN(B).

Schwalbe and Hellman [66] also observed that a C(T) is effectively a short SEN specimen

so the calibration is similar although the non-uniform current distribution, due to the compact

geometry, is a source of discrepancy. Of the remaining geometries, a DC(T) is geometrically

similar to a C(T) specimen and a CS(T) is geometrically similar to an SEN specimen.  It is

therefore likely that the same calibration can also be applied to these geometries.

In this study, the work performed by Schwalbe and Hellman has been extended to include all

of the geometries listed above.  The error in crack extension associated with the use of

Johnson’s calibration function has been calculated for all seven specimen types listed

above.  For the three specimen types for which Johnson’s calibration is not an exact

solution, the PD configuration which results in the minimum error has been identified by trial

and error.

For each specimen, a 2D finite element model was developed using COMSOL [124].  An

infinitesimal crack width has been assumed, similar to Johnson’s original derivation. The

distance of the PD probes from the crack plane was set to 0.08W for all geometries.  For a
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specimen width, W, of 25 mm, this is a distance of 2.0 mm.  This close proximity will reduce

the errors due to probe misplacement based on the results of the previous chapter.

Johnson’s calibration also assumes a uniform current distribution so the current has been

injected as remote from the crack as possible for each specimen.  In the case of the M(T),

SEN and DEN(T) specimens, which usually have a long thin aspect ratio, a uniform current

distribution has been applied directly which assumes that the current can be injected at a

location which is sufficiently remote from the crack. For the other, more compact geometries,

the current injection location has been explicitly modelled.

For each model, the crack was grown from 0.20W<a<0.90W in increments of 0.05W.  For

each increment the PD from the model was used to estimate crack extension using

Johnson’s calibration.  The difference between the predicted and modelled crack extension

is the error due to the applied calibration function.

The following sections focus on optimising the PD configurations for the C(T), CS(T) and

DC(T) specimen types.  This is followed by a comparison of Johnson’s calibration with the

FE results for each of the seven specimen types.  The viability of using Johnson’s calibration

as a unified calibration function is then discussed.

5.6.1 C(T) Specimen

The C(T) specimen geometry and proposed PD configurations are shown in Figure 5.10(a).

The current injection location is the one proposed by Schwalbe and Hellman [66]. Two PD

probe locations, V1 and V2, have been considered.  Schwalbe and Hellman used location V1
but V2 is more representative of the location used by Johnson.  The results from the two PD

probe locations are compared with Johnson’s calibration function in Figure 5.10(b).  The

absolute errors in crack extension are also shown.

The calibration of PD probe location V2 is in better agreement with Johnson’s calibration

function than V1.  The maximum absolute error in crack extension at this location is 7.9%

when measuring small crack extensions compared with 24.9% at location V1.  At large crack

extensions these errors are significantly reduced.  Probe location V2 will be considered for

the unified calibration function.
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(a) (b)
Figure 5.10: C(T) Specimen (a) geometry and (b) influence of PD probe location on

calibration

5.6.2 CS(T)

The CS(T) specimen geometry and proposed PD configuration is shown in Figure 5.11(a).

The PD probe location is similar to that proposed by Schwalbe and Hellman for an SEN

specimen.  The current injection location has been varied to try and match Johnson’s

calibration.  The influence of the angle, θ, on the calibration is shown in Figure 5.11(b).  The

absolute error in crack extension is only shown for the optimum PD configuration for clarity.

(a) (b)
Figure 5.11: CS(T) specimen (a) geometry and (b) influence of current injection

location on calibration

The angle of the current injection, θ, which most accurately matches Johnson’s calibration, is

25º.  For this PD configuration, the maximum error in crack extension is 5.7% when
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measuring small crack extensions.  At large crack extensions, these errors reduce

significantly.  When the angle of the current injection is 45º, the worst case considered in this

study, the maximum error increases to 9.8%.

5.6.3 DC(T)

The DC(T) specimen geometry and proposed PD configuration is shown in Figure 5.12(a).

The PD probe location is similar to that used for a C(T) specimen.  The current injection

location has been varied to try and match Johnson’s calibration.  The influence of the angle,

θ, on the calibration is shown in Figure 5.12(b).  The absolute error in crack extension is only

shown for the optimum PD configuration for clarity.

(a) (b)
Figure 5.12:  DC(T) specimen (a) geometry and (b) influence of current injection

location on calibration

The angle of the current injection, θ, which most accurately matches Johnson’s calibration, is

22.5º.  For this PD configuration, the maximum error in crack extension is 5.8% when

measuring small crack extensions.  When the angle of the current injection is 0º, the worst

case considered in this study, the maximum error increases to 10.7%.

5.6.4 All Geometries

The selected PD configurations for the different specimen types are shown in Figure 5.13.

The calibration functions for these geometries, obtained numerically, are compared with

Johnson’s calibration function in Figure 5.14.  The errors in the measurement of crack

extension based on Johnson’s calibration function are provided in Table 5.3.  The maximum

and mean errors for all crack increments are provided along with the initiation error which

corresponds to the initial 0.2 mm of crack extension.
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(a) (b)

(c) (d)

(e) (f)
Figure 5.13: Geometry and PD configuration for (a) C(T), (b) M(T), (c) DC(T), (d) SEN,

(e) CS(T) and (f) DEN(T) specimens.
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Figure 5.14: Comparison of the different geometries with Johnson’s calibration
function

For all geometries considered, Johnson’s calibration function provides a reasonable

approximation of the correlation between PD and crack length.  As expected, the errors for

the M(T), SEN and DEN(T) specimens, for which Johnson’s calibration function is an exact

solution, are negligible.  The maximum errors for the other three specimen geometries are

<8%.  These errors are largest from small amounts of crack extension and tend to reduce

with crack growth.  The mean error is approximately half the maximum.

Geometry
Error in crack extension [%]

Maximum Initiation Mean

C(T) 7.9 7.9 2.9

M(T) 0.2 0.0 0.1

SEN 0.2 0.1 0.1

DEN(T) 0.2 0.0 0.1

DC(T) 5.8 5.8 3.0

CS(T) 5.7 5.6 3.6

Table 5.3: Error in crack extension associated with the application of Johnson’s
calibration to the main fracture specimen geometries.
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The errors in Table 5.3 are relatively modest compared to some of the other sources of error

identified in this and the previous chapter.  Also, the largest errors corresponds to the C(T)

specimen for which Johnson’s calibration function is already applied in some standards e.g.

[3].  It is therefore reasonable to extend the application of this calibration function to the other

geometries considered here. It should be noted that the values in Table 5.3 would change

for a different initial a/W, but any change is likely to be small.

5.7 Discussion

The various sources of error in the measurement of crack extension considered in this

chapter are summarised in Table 5.4.  The maximum and mean errors for all crack

increments are provided along with the initiation error which corresponds to the initial

0.2 mm of crack extension.  These are the typical errors which might be expected when

applying a calibration function from the literature or standards for which the input

assumptions are not known or don’t exactly match the geometry being tested. It should be

noted that the values in Table 5.4 would change for a different initial a/W, but any change is

likely to be small.

Source of Error
Error in crack extension [%]

Maximum Initiation Mean

Notch geometry 13.6 13.6 6.4

20% side-grooves 5.2 5.2 3.4

Crack tunnelling 49.3 49.3 11.8

Uneven crack growth, DEN(T) specimen 1.5 0.5 1.1

Table 5.4: Errors associated with the measurement of crack initiation and small
amounts of crack growth.

By far the most significant source of error considered here is crack tunnelling.  Although

DCPD measurements relate to some average crack length, it is apparent that this is not

necessarily the mean value.  To avoid this error, specimens should include appropriate

side-grooves.  Notch geometry is the other potentially significant source of error; however,

this is often selected to accommodate the extensometry requirements of the test and cannot

easily be avoided.  The two other sources of error are relatively small although if very large

side-grooves are implemented (>20%) this can become another significant source of error.

The errors in Table 5.4 are generally largest when measuring initiation (0.2 mm of crack

extension) where the total error due to the two main sources (crack tunnelling and notch

geometry) could potentially be as high as 63% based on the simplistic assumption that the
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errors are additive.  By introducing 20% side-grooves to the specimen and assuming the

crack front remains flat, this reduces to 19%.  When measuring significant crack extension

the total mean error, due to crack tunnelling and notch geometry, is 18%.  This reduces to

10% for a side-grooved specimen assuming a straight crack front.  These errors are

comparable to those identified in the previous chapter when testing specimens with low

resistivity.  When testing a specimen with a high resistivity, the errors identified in Table 5.4

will be the dominant sources of errors.

These results highlight the importance of applying appropriate side-grooves to the specimen

to produce a straight-fronted crack in order to obtain accurate measurements of crack

extension.  Even with appropriate side-grooves, a calibration function should ideally be

derived specifically for the geometry being tested.  Where this is not possible and a suitable

calibration function is not available in the literature, Johnson’s formula may be used with the

PD configurations shown in Figure 5.13.  Although this will inevitably introduce some

additional errors into the calculation of crack extension, this error should be relatively modest

compared to the other sources of error identified here and in the previous chapter.
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Chapter 6:
Predicting the Influence
of Strain on PD
6.1 Introduction

Large inelastic strains due to plasticity and creep influence the electrical response of fracture

specimens which can erroneously be interpreted as crack growth [75, 78, 91].  For tests

where the strain is constantly changing, for example monotonically loaded fracture

toughness testing of tough materials or creep crack growth testing, it is difficult to

experimentally decouple the effects of strain and crack extension on PD measurements.  For

this reason the influence of strain is not fully understood.

The influence of strain on PD measurements can be separated into geometric and material

effects.  For a material with significant plastic strains, the geometric effects dominate [85, 87,

88].  If the material effects are indeed small, a sequentially coupled structural-electrical FE

analysis, which neglects them, should be capable of predicting the influence of strain on PD

with a reasonable degree of accuracy.  This would provide a powerful tool to help

understand the influence of strain on PD.  A similar approach has been applied to uniaxial

tensile tests with some success [90] and has even been applied to cracked specimens [72,

83] although a detailed validation has not been performed.

In this chapter, the ability of a sequentially coupled structural-electrical FE analysis to predict

the influence of strains on PD measurements is investigated by comparison with

experimental data. For simplicity this chapter focuses on plasticity rather creep however,

strains in a material undergoing power-law creep are driven by dislocations, similar to

plasticity, so the conclusions should be applicable to both deformation mechanisms.  Initially

the simple case of a uniaxial tensile specimen is considered before applying the method to

more complex fracture specimens to identify typical errors in the measurement of crack

extension due to strain.  Different specimen geometries and crack lengths are considered to

investigate the influence of constraint.  A range of different PD configurations are also

considered to see if some are more susceptible to the influence of strain than others.
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6.2 Uniaxial Tensile Tests

A series of nine uniaxial tensile tests were performed from specimens manufactured from

ex-service Type 316H stainless steel.  Five of these tests (Specimen IDs UTT_RB01 to

UTT_RB05) were used to obtain the tensile material properties for use in the finite element

models.  The remaining four tests (Specimen IDs UTT_RB06 to UTT_RB09) were used to

measure the influence of strain on the electrical resistance of the specimens for comparisons

with predictions obtained from a finite element model. Independent validation of the finite

element modelling approach was provided by comparison to a hand calculation based on

strain gauge theory.

6.2.1 Experimental Methodology

6.2.1.1 Specimen Geometry

The uniaxial tensile specimen geometry is shown in Figure 6.1.  This geometry is based on

guidance in ASTM E8/E8M-13a [128].

Figure 6.1: Uniaxial tensile specimen geometry

6.2.1.2 Loading

Each specimen was loaded in displacement control at a cross-head velocity of 2 mm/min.

The applied load was recorded at a frequency of 10 Hz.

6.2.1.3 Extensometry

For all specimens, strain was monitored using an extensometer capable of measuring up to

100% strain and a gauge length of 25.0 mm.  For specimens UTT_RB01 to UTT_RB05 an

additional extensometer was located on the opposite side of the gauge region.  The Young’s

modulus was calculated from the average of the two extensometers in accordance with

ASTM E111-04 [129] which supresses any bending in the specimen due to misalignment of

the cross-head.  Strain measurements were recorded at a frequency of 10 Hz.
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6.2.1.4 PD Measurements

A low frequency ACPD system was used to measure the resistance of the gauge region of

specimens UTT_RB06 to UTT_RB09.  A 3 mA constant current was passed through the

specimen at a frequency of 2Hz.  This frequency is low enough to produce negligible skin

effect for this material and geometry such that the current behaves in a quasi-DC manner.

This was confirmed by measuring the resistance of the undeformed specimen at a range of

frequencies up to 30Hz and demonstrating that the measurement was not frequency

dependent.

The current injection leads were attached to either end of the specimen on the unthreaded

section of the grip region 2 mm from the threads.  This is sufficiently remote to produce a

uniform electrical field in the gauge region.  The PD between two probes 25.0 mm apart on

the central portion of the gauge length was recorded at a frequency of 10 Hz.  This is the

same region over which the axial strain was measured.  The current injection and PD probe

leads were 0.8 mm diameter Chromel wire which was spot welded to the specimen and

twisted together to avoid electromagnetic interference.  The grips were painted to isolate the

specimen from the load frame and prevent alternative paths for the current.  This

experimental setup is shown in Figure 6.2.

Extensometer

Current Injection

Painted Grips

PD Probes

Figure 6.2: Uniaxial tensile test experimental setup.
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6.2.2 Finite Element Analysis

A sequentially coupled structural-electrical analysis of the uniaxial tensile test has been

performed using Abaqus v6.13-2 [130].  A structural analysis was used to obtain the

deformed shape upon which an electrical analysis was performed.  By comparing the results

to an electrical analysis performed on the undeformed shape, the relative change in PD due

to the geometric effects of strain was calculated.  This approach assumes that the resistivity

of the specimen remains constant throughout the test.

6.2.2.1 Geometry and Mesh

A 3D ¼ model of the specimen was produced shown in Figure 6.3.  The current injection

location, labelled ‘I’, and the PD probe location, labelled ‘PD’ are shown.  The model

includes the unthreaded portion of the larger diameter grip.  This was included to explicitly

model the current injection location, to confirm that a uniform current is generated in the

gauge length as desired.  The change in diameter in the model also promotes necking at the

middle of the gauge length so the influence of necking on the PD response may be

predicted.  This approach is often implemented in FE investigations of the necking behaviour

of uniaxial specimens [131].  Without this change in diameter, FE models do not neck due to

the perfectly uniform stress distribution.

The mesh, shown in Figure 6.3, consisted of 11180 linear elements.  The mesh is refined

towards the middle of the gauge length where necking will occur.  For the structural analysis,

reduced integration 8-node brick elements (type C3D8R) were used.  These were converted

to 8-node thermal-electrical brick elements (type DC3D8E) for the electrical analysis.  Large

displacement formulation (NLGEOM) was applied to the structural analysis to accurately

capture the large plastic deformation.
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Figure 6.3: Uniaxial tensile specimen finite element mesh.
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6.2.2.2 Material Properties

The Young’s modulus, E, 0.2% proof stress, σ0.2, ultimate tensile stress, σu, the strain at the

ultimate tensile stress, εu, and failure strain, εf, for tests UTT_RB01 to UTT_RB05 are

summarised in Table 6.1.  The failure strain is the average engineering strain measured

along the gauge length.  The mean and standard deviations are also provided.  The

standard deviations are small, demonstrating a high level of repeatability.

Specimen ID E
[GPa]

σ0.2
[MPa]

σu
[MPa]

εu
[%]

εf
[%]

UTT_RB01 190.6 313.5 605.7 47.9 64.0

UTT_RB02 196.2 302.5 609.7 49.3 64.9

UTT_RB03 203.2 290.3 604.3 49.1 67.0

UTT_RB04 191.9 291.8 607.9 47.7 63.5

UTT_RB05 194.5 302.9 610.6 51.5 68.8
Mean: 195.3 300.2 607.6 49.1 65.6

Standard Deviation: 4.9 9.4 2.6 1.5 2.2

Table 6.1: Young’s modulus, engineering 0.2% proof stress, ultimate tensile stress
and failure strain for each uniaxial tensile test.

The true plastic stress-strain data for the same tests are provided in Figure 6.4.  Again, the

results are consistent for all five tests.   The mean data used in the FE model are provided in

Table 6.2 where p
true is the true plastic strain and σtrue is the true stress.

Figure 6.4: True plastic stress-strain data for UTT_RB01-05
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p
true

[%]
σtrue

[MPa]

0 170.0

0.01 213.7

0.02 233.1

0.05 260.3

0.10 280.8

0.20 301.4

0.50 327.9

1.00 350.8

2.00 382.5

5.00 453.5
10.00 550.8

20.00 698.8

30.00 812.6

40.00 910.3

Table 6.2: Mean true stress-plastic strain room temperature material from UTT_RB01
to UTT_RB05.

The mean properties, provided in Table 6.1 and Table 6.2, were applied to the finite element

model.  The properties in Table 6.2 are provided up to 40% strain which corresponds

approximately to the true plastic strain at the ultimate tensile stress.  Beyond this point

material data cannot be easily obtained from a standard uniaxial tensile test so a power-law

fit to the data between 10% and 40% plastic strain has been used to extrapolate this data for

the FE model.

6.2.2.3 Boundary Conditions

For the structural analysis, symmetry boundary conditions were applied to the ‘Y1’ and ‘Z’

planes, labelled in Figure 6.3.  A displacement boundary condition was applied to all nodes

on the ‘Y2’ plane in the positive y direction.  This displacement was selected to produce an

average strain, in the gauge region equal to the average failure strain, εf, provided in Table

6.1.

The deformed shape of the specimen was output from structural analysis at eight

displacement increments.  An electrical analysis was performed on each of these deformed

geometries as well as the undeformed geometry.  An electrical ground (0 V potential)

boundary condition was applied to all nodes on the ‘Y1’ plane and a point source current was
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applied to the node labelled ‘I’.  All other surfaces were assumed to be perfectly insulated.

The electrical potential was measured at the node, labelled ‘PD’.

The low frequency ACPD system used in the experimental set-up provides a measurement

of resistance rather than PD.  The experimental results are therefore presented in terms of

the relative change in resistance, ΔR/R0 (where ΔR is the change in resistance due to strain

and R0 is the resistance of the undeformed geometry) so they are independent of current and

electrical resistivity.  The finite element analysis will output a PD; however, for a constant

current the two are directly proportional so the relative change in resistance from the FE

model can be calculated from Equation (6.1) where V and V0 are the measured electrical

potential for the deformed and undeformed geometries respectively.

0

0 0

V VR
R V


 (6.1)

6.2.3 Hand Calculation

The change in resistance of a uniform bar due to strain can be calculated based on strain

gauge theory.  This has been used to validate the FE predictions.  For consistency with the

FE model, the influence of strain on the resistivity of the material has been ignored.

The geometric gauge factor of a strain gauge is calculated from Equation (6.2) [85] where ε

is the engineering strain and ν is the Poisson’s ratio.

 
0

1 2R
R

 
  (6.2)

This can be rewritten as Equation (6.3) where ΔL is the change in axial length due to strain

and L0 is the original length.

 
0 0

1 2R L
R L

 
  (6.3)

Equations (6.2) and (6.3) are valid for small strains only which is often a reasonable

assumption because strain gauges typically do not exceed their elastic limit. To account for

the large plastic strains which occur during a uniaxial tensile test, this must be rewritten as

Equation (6.4):

 
0 0

1 2
R L

R L

dR dL
R L

   (6.4)

Expanding these definite integrals gives Equation (6.5) which can be rearranged to give

Equation (6.6).
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(6.6)

Therefore the relative change in resistance due to geometric changes for a uniaxial tensile

specimen can be calculated from Equation (6.7) assuming the change in cross section is

uniform along the gauge length of the material.  This is a reasonable assumption up to the

onset of necking.

  1 2

0

1 1R
R

 
   (6.7)

For elastic deformation the Poison’s ratio is approximately 0.3 whilst for plastic deformation

the material may be assumed to be incompressible, i.e. ν = 0.5.  During a uniaxial tensile

test elastic and plastic deformations occur simultaneously however, assuming that the

plastic strains are much larger than the elastic strains (as they are for the majority of a test

performed on Type 316H) a constant Poisson’s ratio of 0.5 may be assumed such that the

total relative change in resistance is estimated from Equation (6.8).

 2 0
0

1 1.R
R


   (6.8)

6.2.4 Results

For tests UTT_RB06 to UTT_RB09, necking and subsequent failure occurred within the

25.0 mm gauge length.  No failures occurred at the PD probe spot weld so the welds did not

influence the test results.

6.2.4.1 Influence of strain on PD

The true stress-strain data for tests UTT_RB06 to UTT_RB09 are compared to the mean

data from tests UTT_RB01 to UTT_RB05 in Figure 6.5.  Except for some small

discrepancies with specimen UTT_RB06, the results are in excellent agreement.  Test

UTT_RB06 demonstrates slightly higher yield strength than the other tests which may be

due to slight inhomogeneity of the ex-service material.
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Figure 6.5: True stress-strain data for specimens UTT_RB06 to UTT_RB09 and the
mean data from specimens UTT_RB01 to UTT_RB05.

The relative change in resistance due to strain for each specimen is compared with

predictions based on Equation (6.8) in Figure 6.6.

Figure 6.6: Measured relative change in resistance for specimens UTT_RB06 to
UTT_RB09 compared with predictions based on Equation (6.8).
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The engineering strain at the ultimate tensile stress, from Table 6.1, is approximately 50%.

For strains below 50%, the hand calculation under-predicts the relative change in resistance

by up to 6.6%.  At higher strains this increases to as much as 10.5%.  This increase is

expected because Equation (6.8) assumes uniform strain along the gauge length, which is

invalid after the onset of necking.  These results are in good agreement with observations

made by Ljustell [83] who performed similar tests on type 316L stainless steel.

The discrepancy between the experimental and theoretical results up to the onset of necking

is probably due to changes in material resistivity which are not accounted for in Equation

(6.8).  The 6.6% discrepancy equates to a 3.5% change in resistivity.  The likely causes of a

change in resistivity are piezo-resistivity (the dependency of resistivity on stress) and an

increase in temperature due to the strain rate.  From the electrical material properties of

Type 316H (provided in the previous chapter), a change in temperature of ~37ºC is required

to produce a 3.5% change in resistivity.  Whilst the temperature of the specimen was not

monitored, an increase of this magnitude would be noticeable and temperature fluctuations

of a few degrees are considered more likely for the relatively slow strain rate.

Piezo-resistivity is therefore the most likely cause of this discrepancy.

Figure 6.7: Comparison of experimentally observed relative change in resistance for
specimen UTT_RB08 with predictions obtained from Equation (6.8) and FEA.
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UTT_RB08 are included for clarity.  The engineering stress-strain data obtained from the FE

are averaged over the 25.0 mm gauge length and so are directly comparable to the

experimental data obtained from an extensometer over the same region.  The final deformed

shape and axial strain distribution predicted by FEA are provided in Figure 6.8.

Axial Engineering
Strain

(mm/mm)

Figure 6.8: FEA predictions of the final deformed shape and the corresponding axial
engineering strain.

Prior to necking the results from the FE model are in excellent agreement with Equation (6.8)

which provides confidence in the modelling approach.  After the onset of necking the FE

diverges from Equation (6.8) similar to the experimental data.  The influence of necking

predicted by the FE is more significant than observed experimentally.  This can be attributed

to the extrapolation of the uniaxial tensile data beyond the ultimate tensile stress.  The

differences between the experimental and FE stress-strain data observed in Figure 6.7

suggest that the extrapolated material properties result in the FE over-predicting the extent

of necking.  This is consistent with the over-prediction of the relative change in resistance.

These results demonstrate that for a simple uniaxial tensile specimen manufactured from

Type 316H stainless steel, the material effects of strain on resistance are small compared to

the geometric effects.  By neglecting any change in resistivity, a relatively simple

sequentially coupled structural-electrical FE model may be used to predict the change in

resistance (or PD) due to strain with a reasonable degree of accuracy.  If the influence of

any change in temperature is suppressed by the use of a suitable reference measurement,

the accuracy of the predictions may be improved although, for the results presented here,

this improvement is likely to be small.
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6.3 Fracture Specimens

The same FE technique is applied to the more complex geometry and stress state of a

standard fracture specimen here.  Two specimen types have been considered to investigate

the influence of constraint.  These are a high constraint, thick C(T) specimen with side

grooves and a relatively low constraint, thin, plane sided SEN(T) specimen.  For each

specimen type a range of PD configurations and crack lengths have also been considered.

All specimens were manufactured from ex-service Type 316H stainless steel.  This is a

material with high resistivity so any errors associated with probe misplacement and signal

noise should be small as identified in Chapter 4.

6.3.1 Experimental Methodology

The experimental setup for the SEN(T) and C(T) specimens is shown in Figure 6.9.

(a) (b)
Figure 6.9: Experimental setup for (a) SEN(T) specimen and (b) C(T) specimen.

Each specimen was loaded in small increments in displacement control at a cross-head

velocity of 2 mm/min.  At each increment, with the load applied, the change in resistance

relative to the undeformed specimen was measured.  This was compared to predictions

obtained from a sequentially coupled structural-electrical FE model of the specimen.  Each

test was stopped after significant plastic deformation had occurred, but before any crack

extension was predicted so any change in resistance was primarily due to strain.  After the

test, the fracture surface was heat tinted and the specimen broken open to confirm that no

crack extension had occurred.
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6.3.1.1 Specimen Geometry

The geometry of the SEN(T) specimen is shown in Figure 6.10.  Four specimens were

tested with different crack lengths.  The key dimensions of these specimens are summarised

in Table 6.3.  Studs were spot welded onto the front face of the specimen and ‘knife edges’

were firmly attached to accommodate a clip gauge for the measurement of Crack Mouth

Opening Displacement (CMOD) as shown in Figure 6.9(a).  The position of the knife edges

was measured before each test so comparable CMOD measurements could be obtained

from the FE models.

Figure 6.10: SEN(T) specimen geometry.

Specimen
ID a0/W

a0
[mm]

W
[mm]

B
[mm]

L
[mm]

CTP_ST30 0.30 7.5 25.0 6.25 50.0

CTP_ST38 0.38 9.5 25.0 6.25 50.0
CTP_ST54 0.54 13.5 25.0 6.25 50.0

CTP_ST70 0.70 17.5 25.0 6.25 50.0

Table 6.3: SEN(T) specimen key dimensions.

The geometry of the C(T) specimen is shown in Figure 6.11.  Two specimens were tested

with different initial crack lengths.  The key dimensions of these specimens are summarised

in Table 6.4.  The selected crack lengths are the extreme allowable initial values for creep
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crack growth testing in accordance with ASTM E1457-13 [3] and are typical of fracture

toughness tests performed in accordance with ASTM E1820-13 [27]. ‘Knife edges’ were

machined into the specimen, as shown in Figure 6.11, to accommodate a clip gauge.

Figure 6.11: C(T) Specimen Geometry

Specimen
ID a0/W

a0
[mm]

W
[mm]

B
[mm]

Bn
[mm]

CTP_CT45 0.45 22.5 50.0 25.0 20.0
CTP_CT55 0.55 27.5 50.0 25.0 20.0

Table 6.4: Key dimensions of the two C(T) specimens

An EDM slit of width 0.3 mm was used to simulate the crack for both the SEN(T) and C(T)

specimens.  This ensured a straight fronted crack of known dimensions which could be

accurately modelled in FE.  The specimen was electrically isolated from the loading pins and

shackles using PVC insulation tape, as shown in Figure 6.9, to prevent alternative paths for

the electrical current.  To accommodate the insulation tape, the loading holes in all

specimens were increased from the standard 12.5 mm diameter to 13.0 mm.  The clip gauge

was isolated from the specimen by painting the knife edges.

6.3.1.2 Digital Image Correlation

To validate the structural component of the FE model, the experimental surface strain fields

were obtained using Digital Image Correlation (DIC) at each displacement increment and

compared to the numerical results.  3D DIC was performed using a stereo camera system

consisting of two 5 megapixel monochrome cameras with 100mm lenses.  This set-up was

capable of capturing the out-of-plane displacements such as necking at the crack tip.  The

surface of the specimen was painted using matt black paint and white speckles were applied

using an airbrush to produce a high contrast speckle pattern.
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The images were post-processed using GOM proprietary software Aramis v6.3.0 [132].  A

facet size of 19 pixels with 4 pixel overlap was sufficient to capture the strain field without

excessive noise.  A single pass of a smoothing algorithm was applied to further reduce the

noise.  This algorithm averaged the strains over a 3x3 grid of facets.  Multiple passes of the

smoothing algorithm were avoided to ensure the high strain gradient close to the crack tip

was captured.

6.3.1.3 PD Measurements

For both specimens, a range of PD configurations have been considered to identify if some

are more susceptible to the influence of strain than others.  The PD configurations for the

SEN(T) specimens are shown in Figure 6.12.  The PD probe locations are labelled with the

suffix ‘S’ and the current injection locations are labelled with the suffix ‘I’.  Four

configurations have been used to measure the PD across the crack as shown in Figure

6.12(a).  These were selected based on the results of the optimisation study presented in

Chapter 4.  The optimum location identified in that study is S1.  Locations S2 and S3 are

included to investigate the influence of moving the PD probes away from the crack plane.

Location Stip is included because it is the most sensitive to crack extension although it is

also sensitive to probe misplacement errors.  For each of the PD probe locations, the same

current injection location was used which is sufficiently remote from the gauge region to

produce a uniform current distribution.

(a) (b)
Figure 6.12: SEN(T) specimen PD configurations (dimensions in mm)

A reference measurement has also been used to supress any changes in ambient

temperature.  The PD probe and current injection locations, shown in Figure 6.12(b), are

labelled Sref and Iref respectively.  This configuration was also obtained from the

optimisation study in Chapter 4.

The PD configurations for the C(T) specimens are shown in Figure 6.13.  The current

injection locations are labelled with the suffix ‘I’ and the PD probes are labelled with the

suffix ‘C’.  The optimisation study presented in Chapter 4 identified a range of different

suitable PD configurations with similarly low errors.  A range of these configurations
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incorporating different PD probe and current injection locations has been considered in this

study.  These are labelled C1, C2 and C3. Configuration Ctip has also been included

because it is the most sensitive to crack extension although it is also sensitive to probe

misplacement. Figure 6.13(a) shows the PD configurations C1, C3 and Ctip where the

current is injected at I1. Figure 6.13(b) shows the PD configuration C2 where the current is

injected at I2.  The reference PD configuration, also obtained from the optimisation study in

Chapter 4, is shown in Figure 6.13(c).

(a) (b) (c)
Figure 6.13: C(T) specimen PD configurations (dimensions in mm)

Resistance measurements were taken using the low frequency ACPD system.  A multiplexor

was used to switch between the different configurations discussed above.  A 3 mA constant

current was passed through the specimen at a frequency of 2Hz.  This frequency is low

enough to produce negligible skin effect for this material and geometry such that the current

behaves in a quasi-DC manner.  0.8 mm diameter Chromel wire was spot welded to the

specimen for the current injection and PD probes.  Each pair of wires was twisted together to

reduce electromagnetic interference.

6.3.1.4 Calibration Functions

Johnsons analytical calibration function is directly applicable to the SEN(T) PD

configurations S1, S2 and S3 [18] and has therefore been used here.  For all other PD

configurations a calibration function in the form of Equation (6.9), was derived using

COMSOL [124].  These calibration functions only consider the effects of crack growth and do

not include the influence of strain.

3 2

3 2 1 0
0 0 0

a R R RA A A A
W R R R

     
        
     

(6.9)
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A separate calibration function has been derived for each combination of specimen type and

initial crack length such that the normalising resistance, R0, always corresponds to the initial

crack length.  The polynomial coefficients for the SEN(T) and C(T) calibration functions are

provided in Table 6.5 and Table 6.6 respectively.

Specimen
ID

0a
W

PD
Configuration A3 A2 A1 A0

CTP_ST30 0.30 Stip -0.000177 -0.005301 0.140327 0.165100

CTP_ST38 0.38 Stip -0.000177 -0.006271 0.142426 0.243742

CTP_ST54 0.54 Stip 0.001699 -0.021944 0.171267 0.388128

CTP_ST70 0.70 Stip 0.023502 -0.127753 0.322516 0.481327

Table 6.5: SEN(T) Calibration function polynomial coefficients.

Specimen
ID

0a
W

PD
Configuration A3 A2 A1 A0

CTP_CT45 0.45

C1 -0.129087 -0.460516 2.586340 -1.546730
C2 0.021744 -0.183473 0.675999 -0.064227
C3 0.066542 -0.417092 1.046970 -0.246157

Ctip -0.000235 0.000005 0.113557 0.336937

04CTP_CT55 0.55

C1 -0.232736 -0.321649 2.570170 -1.465780
C2 0.032998 -0.255912 0.813309 -0.040396
C3 0.091550 -0.503110 1.117650 -0.156089

Ctip 0.005043 -0.030741 0.164803 0.410759

Table 6.6: C(T) Calibration function polynomial coefficients.

6.3.1.5 Calibration Validation

Before implementing the calibration curves in Table 6.5 and Table 6.6, the method of

deriving them using FE was validated experimentally.  A C(T) specimen with the geometry

shown in Figure 6.11 was manufactured.  A 0.3 mm wide EDM slot was used to simulate

the crack and was initially machined to a depth of 0.5W (25.0 mm).  The EDM slot was then

extended to 0.7W in increments of 0.02W (1.0 mm).   At each increment the resistance was

monitored at the PD configurations provided in Figure 6.13(a) and (b).  The crack extension

predicted from the PD measurement was compared to the value measured by the EDM

machine.  The results are presented in Figure 6.14.
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(a) (b)
Figure 6.14: Calibration curve validation for PD configurations (a) C1, C2 and C3, and

(b) Ctip

The calibration curves for PD configurations C2 and C3 are in excellent agreement with the

experimental measurements with errors in crack extension <<1%.  The errors are larger for

PD configuration Ctip but this is expected since it is more susceptible to probe misplacement

error.  The errors for these three PD configurations are generally within the errors predicted

in Chapter 4 which provides confidence in the method used to derive the calibration

functions.  The agreement between the calibration curve and the experimental

measurements for PD configuration C1 is not as good where errors as high as 4.9% were

observed.  This is an order of magnitude larger than the error predicted in Chapter 4

(~0.5%).

The PD measurement at C1 is dominated by the small section of material between the crack

mouth cut-out for the clip gauge and the loading hole.  This is demonstrated by the initial

resistance measurement, a/W = 0.5, which is more than 3.5 times larger than the other three

PD configurations.  The calibration will therefore be particularly sensitive to small errors in

the location of the loading holes.  This is the likely cause of the discrepancy and highlights a

possible issue with this PD configuration.

6.3.2 Finite Element Analyses

A 1/4 model of each SEN(T) specimen was developed using Abaqus v6.13-2 [130].  A 3D

model was used to capture the out-of-plane strains, in particular the necking at the crack tip.

The model for specimen CTP_ST30 (a/W = 0.3) is shown in Figure 6.15.  It consists of

~12000 linear elements.  The structural analysis was performed using reduced integration

C3D8R elements and the electrical analysis used DC3D8E thermal-electric elements.  Large

displacement formulation (NLGEOM) was applied to the structural analysis and a focused
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mesh was used at the crack tip to accurately capture the strain field in this region and extract

J-Integral values from the model.  The crack was modelled with a 0.3 mm tip diameter,

consistent with the EDM pre-crack machined in the specimen.  To reduce the computational

expense of the analysis only the gauge region of the specimen was modelled.  A

displacement boundary condition was applied to a reference node located at the centre of

the pin hole on the z plane of symmetry.  This was transmitted to the gauge region via a

kinematic coupling which effectively models the grip region as rigid.  The reference node

was fixed in the x and z directions and prevented from rotating about the x and y axes.  It was

free to rotate about the z axis to simulate the rotation of the pin on the flats in the holes of the

shackles (see Figure 6.9).

Figure 6.15: Finite element mesh for SENT(T) specimen CTP_ST30 (a/W = 0.30)

The applied displacement was chosen so the CMOD, measured at the location of the knife

edges, matched the values measured experimentally.  For each increment, the deformed

shape of the specimen was used for an electrical analysis.  An electrical ground (0 V

potential) boundary condition was applied to the ligament ahead of the crack tip and a

uniform unit current (1A) was applied to the top surface of the specimen.  All other surfaces

were assumed to be perfectly insulated.  The electrical potential was measured at nodes

located at the PD probe locations shown in Figure 6.12.  For each of these locations the

relative change in resistance due to deformation was compared to the experimentally

measured values.

1/4 models of both C(T) specimens were also developed using Abaqus v6.13-2 [130].  The

model for specimen CTP_CT45 (a/W = 0.45) is shown in Figure 6.16. It consists of ~45000

linear elements.  The side-grooves were modelled as perfectly sharp to simplify the mesh.  A

sensitivity study was performed which demonstrated that this did not significantly influence
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the results.   The pin was explicitly modelled to capture the strain around the pin hole.  It was

modelled as rigid for simplicity.  A displacement boundary condition was applied to the pin in

the y direction and it was free to rotate about the z axis.  It was fixed in the x and z directions

and prevented from rotating about the x and y axes.  Contact between the pin and the

specimen was modelled as ‘rough’ for simplicity.  To assist with model convergence, contact

stabilization was included in the model.  Checks were performed to confirm that the

stabilization energy remained small compared to the total strain energy in the model.

Figure 6.16: C(T) finite element mesh

The applied displacement was chosen so the CMOD, measured at the location of the knife

edges, matched the values measured experimentally.  For each increment the deformed

shape was used to perform two separate electrical analyses, one for each of the current

injection locations shown in Figure 6.13.  In each analysis an electrical ground (0 V potential)

boundary condition was applied to all nodes on the ligament ahead of the crack tip and a

point source unit current (1A) was applied to a node at the relevant current injection location.

All other surfaces were assumed to be perfectly insulated.  The electrical potential was

measured at nodes located at the PD probe locations shown in Figure 6.13. For each of

these locations the relative change in resistance due to deformation was compared to the

experimentally measured values.

6.3.3 Results

6.3.3.1 SEN(T) Specimen Results

In order to validate the structural finite element models, the experimental load-displacement

curves were compared with the FE results.  The surface strain fields from DIC were also

compared to the models for the final displacement increment (CMOD = 0.556 mm).  These

comparisons are provided in Figure 6.17 for specimen CTP_ST30 (a/W = 0.30).  There is

excellent agreement between the experimental and finite element results which provides
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confidence in the structural model and material data.  Similar results were obtained for the

other three SEN(T) specimens.

(a)

(b) (c)
Figure 6.17: Validation of structural FE model CTP_ST30 (a/W = 0.3) by comparison
with experimental data showing (a) load-displacement plot, (b) crack tip εxx field and

(c) crack tip εyy field.

Figure 6.18 shows the relative change in resistance with CMOD for all four SEN(T)

specimens.  Experimental data, shown by the dashed lines and hollow symbols, is compared

with FE predictions, shown by the solid lines and solid symbols.  There is a strong

correlation between the FE and the experimental data although the FE consistently

under-predicts the relative change in resistance. The validation of the structural model,

presented above, demonstrates excellent agreement between the FE model and

experimental observations so the differences identified in Figure 6.18 are likely related to

variations in the electrical material properties which are not captured in the model.
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(a) (b)

(c) (d)
Figure 6.18: Relative change in resistance due to strain for a SEN(T) specimen with
different PD configurations and (a) a/W = 0.30, (b) a/W = 0.38, (c) a/W = 0.54 and (d)

a/W = 0.70.

Only a small change in material resistivity is required to account for the discrepancies

between the experimental data and FE predictions and the necessary change increases with

load which suggests it may be stress/strain related.  For each PD configuration the required

change in resistivity at maximum load is provided in Table 6.7.  The ranges in this table are

to cover all four specimens.

PD Configuration
Δρ

[%]

Stip 0.97 - 1.44
S1 0.31 - 0.44
S2 0.15 - 0.33
S3 0.03 - 0.18

Table 6.7: Change in resistivity necessary to account for the discrepancies between
the experimental data and FE predictions.
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The values in Table 6.7 have been calculated assuming that any change in resistivity occurs

across the entire specimen but a uniform change in resistivity would be suppressed by the

reference measurement.  The change must therefore be non-uniform across the specimen.

The largest change in resistivity is required for configurations where the PD probes are

closest to the crack tip.  This is the region with the highest stresses and strains and is

consistent with the suggestion that the change in resistivity may be stress/strain related.

The current density at the crack tip is also highest, as shown in Figure 6.19, so the influence

of any change in resistivity in this region will be magnified. The change in resistivity is

therefore likely due to piezo-resistive effects and strain rate related local temperature

changes at the crack tip.

Current Density
[A/m2]

Figure 6.19: SEN(T) specimen current density based on a unit current, a/W=0.30

Figure 6.18 demonstrates that the relative change in resistance due to strain at the crack tip

is larger when the PD probes are closest to the crack tip but these PD configurations are

also more sensitive to crack extension.  To investigate how the crack length measurement is

influenced by strain, the relative change in resistance in Figure 6.18 has been converted into

a ‘spurious crack extension’ due to strain using Johnson’s calibration function for PD

configurations S1, S2 and S3 and the calibration function provided in Table 6.5 for Stip.

Figure 6.20 shows the ‘spurious crack extension’ for all four SEN(T) specimens.  For short

crack lengths (a/W = 0.3) the influence of strain on the measurement of crack extension is

strongly dependent on the PD configuration.  The closer the PD probes are to the crack tip,

the smaller the spurious crack extension.  The spurious crack extension measured by

configuration S3 is approximately double that of Stip and also S1 which is the optimum

configuration identified in Chapter 4. For larger crack lengths the influence of the PD
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configuration is less significant.  When a/W = 0.7, the spurious crack extension due to strain

is almost identical for all configurations considered.

(a) (b)

(c) (d)
Figure 6.20: Spurious crack extension due to strain for a SEN(T) specimen with

different PD configurations and (a) a/W = 0.30, (b) a/W = 0.38, (c) a/W = 0.54 and (d)
a/W = 0.70.

The reason for this difference is the ratio of the nominal stress to the reference stress.

When the crack length is large, a small load is required to attain a relatively large reference

stress so the stresses in the gauge region, and therefore the strains, remain small.  When

the crack length is small, a large load is required to achieve the same reference stress, so

the strains in the gauge region become significant.  These strains are only sampled by the

PD configurations where the PD probes are remote from the crack, so these configurations

exhibit larger spurious crack extension measurements.

6.3.3.1.1 Influence of Crack Length

The influence of crack length on spurious crack extension due to strain is shown in Figure

6.21.  The mode I stress intensity factor, KI, has been used to compare the different

specimens because, for a given material, this is related to the size of the plastic zone ahead
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of the crack tip which is likely to influence the spurious crack extension.  The experimental

results are shown in Figure 6.21(a) and the FE predictions are shown in Figure 6.21(b).  This

comparison demonstrates the ability of the sequentially coupled structural-electrical FE

models to predict similar trends to those observed experimentally.

(a) (b)
Figure 6.21: Influence of crack length on spurious crack extension due to strain

derived for PD configuration S1 from (a) Experimental data, and (b) FE predictions

For a strain hardening material, such as Type 316H, the size of the plastic zone, rp, can be

approximated from Equation (6.10) where σy is the yield strength, N is the stress exponent

and β is a constant which depends on the level of constraint at the crack tip.  For plane

stress conditions β is 2 and for plane strain conditions β is 6.

2
2 1

1p
y

N Kr
N 

        
(6.10)

Figure 6.21 shows that, for a given value of KI, the spurious crack extension reduces as the

crack length increases from 0.3W to 0.54W.  This suggests that the size of the plastic zone is

reducing, so the value of β must be increasing due a higher level of constraint.  This

constraint is caused by the increase in bending associated with the larger a/W.   At very large

crack lengths (0.70W) the spurious crack extension starts to increase again.  This is probably

due to a loss of constraint associated with gross yielding of the remaining ligament.  Similar

trends could be expected for all specimen types.

6.3.3.2 C(T) Specimen Results

The experimental load-displacement curves are compared to the FE predictions in Figure

6.22.  The FE consistently over-predicts the stiffness of the specimen compared to the

experimental data for both specimens.  A series of sensitivity studies were performed to

investigate the source of this discrepancy.  The results were relatively insensitive to mesh
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size, pin flexibility, crack tip acuity and side-groove acuity.  The results were sensitive to the

method of modelling the pin/hole interaction however, the proposed boundary condition with

a rough interface and a pin which is free to rotate is the most flexible.  Preventing the pin

from rotating and varying the coefficient of friction between the pin and the specimen

increases the stiffness of the assembly and therefore the difference between the FE and

experimental results.  The source of the discrepancy in Figure 6.22 may therefore be due to

inhomogeneity within the ex-service material.

(a) (b)
Figure 6.22: Load-displacement plot for C(T) specimens (a) a/W = 0.45 and (b)

a/W = 0.55.

Figure 6.23: Comparison of the experimental and numerical surface strain field for the
final displacement increment of specimen 04CTP_CT45 (a/W = 0.45) showing (a) crack

tip εxx field and (b) crack tip εyy field.

Figure 6.23 compares the experimental and numerical surface strain fields for the final

displacement increment of C(T) specimen CTP_CT45 (a/W = 0.45).  The strains predicted by

the FE are lower than those measured experimentally, although the difference is small.  This

is likely related to the discrepancy observed in Figure 6.22.  The small difference in the crack

tip strain field suggests that by matching the CMOD of the FE to the experimental data, it
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should remain possible to predict the influence of strain on PD, despite the difference in

stiffness identified in Figure 6.22.  The FE predictions would change significantly if the load

from the FE was matched to the experiment.

(a) (b)
Figure 6.24: Relative change in resistance due to strain for a C(T) specimen with

different PD configurations and (a) a/W = 0.45 and (b) a/W = 0.55.

Figure 6.24 shows the relative change in resistance with CMOD for both C(T) specimens.

There is a strong correlation between the FE and the experimental data with the FE

consistently under-predicting the relative change in resistance.  The differences between the

FE and experimental predictions are typically slightly larger than those predicted for the

SEN(T) specimens.  This is consistent with the discrepancies in the strain fields shown in

Figure 6.23.

(a) (b)
Figure 6.25: Spurious crack extension due to strain for a C(T) specimen with different

PD configurations and (a) a/W = 0.45, and (b) a/W = 0.55.
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The relative change in resistance from Figure 6.24 has been converted into a ‘spurious crack

extension’ due to strain in Figure 6.25, using the calibration functions provided in Table 6.6.

PD configurations C2, C3 and Ctip all demonstrate similar spurious crack extensions but for

a/W = 0.45 this is more than doubled at configuration C1.  To investigate if this is related to

strains around the pin hole the FE model was rerun with a modified boundary condition.  The

rigid pin was removed and the displacement boundary condition was applied to a node at the

centre of the hole.  This this was transferred to all of the nodes on the circumference of the

loading hole via a kinematic coupling which prevented the hole from deforming.  The node to

which the displacement boundary condition was applied was free to rotate about the z axis to

simulate pin rotation.  The results for the original and modified FE models are shown in

Figure 6.26(a) and (b) respectively.

Equivalent Plastic Strain (von Mises)
[mm/mm]

(a) (b)
Figure 6.26: Equivalent plastic strain and distribution and spurious crack extension
due to strain for (a) FE model with rigid pin, (b) FE model with kinematic coupling

boundary condition.

The modified boundary condition removes the plastic strain around the hole whilst

maintaining the strain field around the crack tip.  This reduces the spurious crack extension

for PD configuration C1 to a similar value to the other probe locations.  The influence of the

boundary condition modification on the other PD configurations is negligible.  This confirms

that the plastic deformation around the loading hole can have a significant influence on crack

extension measurements performed using PD configuration C1.  It should be noted that this

is the configuration suggested in many standards [3, 27].
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6.3.3.2.1 Influence of Specimen Geometry

The influence of specimen type on spurious crack extension due to strain is shown in Figure

6.27.  The mode I stress intensity factor, KI, has been used to compare the different

geometries.  Only PD configurations Stip and Ctip have been considered since these are the

most comparable.

Figure 6.27: Influence of specimen geometry on spurious crack extension due to
strain for PD configurations Stip and Ctip

For a given value of KI, the spurious crack extension due to strain is much smaller for the

C(T) specimen than the  SEN(T) specimen.  This is because the high constraint of the thick

C(T) specimen with side grooves promotes stress tri-axiality at the crack tip, reducing the

size of the plastic zone and the influence of strain on PD.  Conversely, the relatively low

constraint, thin SEN(T) has a large plastic zone for the same value of KI, so the influence of

strain on PD is larger.

6.4 Discussion

A sequentially coupled structural-electrical FE model is capable of predicting the influence of

strain on PD measurements. It underestimates the magnitude of the change in PD because

it neglects variations in electrical resistivity but it is capable of predicting the general trends

because these variations tend to be secondary to the geometric effects of strain.  The

accuracy of the model could be improved by including strain dependent material properties
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but this would significantly increase the necessary validation. Without this additional

complexity, it provides a powerful tool which can be used to help understand the influence of

strain on PD simply from the specimen geometry and the uniaxial tensile data.

The FE results and experimental data have confirmed that the influence of strain on PD

measurements can be significant, particularly when testing low constraint geometries, such

as SEN(T) specimens.  In this study, spurious crack extension measurements significantly

larger than the typical 0.2 mm engineering definition of crack initiation have been obtained

prior to any physical crack growth.  It is therefore of vital importance to mitigate the influence

of strain in order to obtain accurate measurements of crack initiation and growth in ductile

materials.

For SEN(T) specimens, PD configuration S1 demonstrates the lowest spurious crack

extension measurements, particularly for small initial crack lengths (a/W = 0.3) where moving

the PD probes away from the plane of the crack increases the errors due strain. Stip also

demonstrates relatively low spurious crack extension measurements, but this configuration is

very sensitive to probe misplacement errors as identified in Chapter 4. S1 is therefore

considered the most suitable configuration for accurately measuring crack initiation and

growth in the presence of large strains.  Comparable configurations are likely to be

appropriate for similar specimen geometries e.g. SEN(B), M(T), DEN(T) and CS(T).

For C(T) specimens, PD configuration C1 should be avoided despite being recommended in

many standards [3, 27].  Crack extension measurements using this configuration can be

highly susceptible to spurious crack extension measurements due to strains around the

loading holes.  In general, configurations with the PD probes on the opposite side of the

loading hole to the crack tip should be avoided. C2 is a more suitable PD configuration.

Comparable configurations are likely to be appropriate for similar specimen geometries e.g.

DC(T).

Although the influence of strain may be reduced by selecting an appropriate PD

configuration it cannot be avoided altogether.  Even for the preferred PD configurations

identified above, the spurious crack extension measurements due to strain remain large

when compared to the 0.2 mm engineering definition of crack initiation.  They are also large

compared to the other sources of error identified in the previous two chapters.  It is therefore

important to develop experimental methods of supressing the influence of strain when

measuring crack initiation and growth in the presence of large strains. Sequentially coupled

structural-electrical FE models provide an ideal tool to help develop these methods and will

be used to identify the most suitable approach for measuring crack extension during fracture

toughness or creep crack growth testing in the following two chapters.
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Chapter 7:
Measuring Crack
Extension during Fracture
Toughness Testing
7.1 Introduction

During fracture toughness testing of ductile materials crack extension occurs prior to final

failure in two ways: blunting and stable tearing.  During such tests, the strains developed in

the specimen can be very large, particularly during blunting where it is effectively the source

of crack extension.  If using the PD technique to measure crack extension it is of vital

importance to ensure that only the crack extension is being measured.

When using DCPD (or low frequency ACPD) to measure this crack extension, two methods

of interpreting the PD data are widely accepted and are included in some standards [1, 2].

Both of these methods are based on experimentally observed phenomena, and the

underlying theory is not fully understood.  In this chapter, both of these methods are

reviewed using a combination of experimental techniques and the finite element based tool

developed in the previous chapter.  This combined approach allows the blunting and stable

tearing phases to be considered separately.  The limitations inherent in each of the two

methods are discussed and recommendations provided with regards to the most appropriate

method of measuring crack extension during fracture toughness testing.

7.2 Interpreting Fracture Toughness Test PD Data

The two methods of interpreting PD measurements during fracture toughness testing are the

‘load’ method and the ‘COD’ method.  These methods are described in Chapter 2 but a

recap is provided here for clarity.  They are shown schematically in Figure 7.1.  In this figure
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the PD measurements are presented in terms of resistance for consistency with the low

frequency ACPD system.
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Figure 7.1: Interpretation of PD data during fracture toughness testing of ductile
materials using (a) the ‘load’ method, and (b) the ‘COD’ method.

7.2.1 The ‘Load’ Method

The ‘load’ method is based on a linear regression applied to the initial steep portion of the

load vs. PD plot.  The onset of crack blunting is assumed to correspond to the point where

the data deviates from this linear trend, labelled ‘×’ in Figure 7.1(a).   The subsequent crack

extension is calculated using a standard calibration function, but the value of R0 is assumed

to be a function of the applied load, P.  This function is the equation of the linear regression.

The values of R0 and ΔR used to calculate crack extension corresponding to the point

labelled ‘+’, are shown.

In this method, the PD is used to measure the both blunting and stable tearing.  To calculate

the initiation fracture toughness, JIC, it is necessary to identify the onset of stable tearing.

This is achieved by comparing a plot of J vs Δa, obtained experimentally, with a suitable

blunting line.  The onset of stable tearing is identified from the point where the two diverge.

7.2.2 The ‘COD’ Method

The ‘COD’ method was originally proposed by Lowes and Fearnehough [75].  Unlike the

‘load’ method, the PD is only used to measure stable tearing.  A linear regression is applied

to a plot of PD vs. COD where COD could be CMOD or LLD.  The onset of stable tearing is

assumed to correspond to the point where the data deviates from this linear trend.  This is

labelled ‘×’ in Figure 7.1(b).  The subsequent tearing is calculated using a standard
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calibration function and a fixed value of R0.  The values of R0 and ΔR used to calculate crack

extension at the point labelled ‘+’, are shown.  The crack extension due to blunting is not

obtained from the PD technique and is instead obtained from SEM images of the SZW or it

is assumed to follow a suitable blunting line.

7.3 Measuring Blunting using the PD Technique

In the previous chapter, the influence of strain on PD in the absence of crack growth was

measured for a series of monotonically loaded specimens.  These experiments were

essentially measuring the change in PD during the blunting phase of a fracture toughness

test.  The results were also compared with predictions obtained from a sequentially coupled

structural-electrical FE model with good agreement.  These FE results are reanalysed here

to investigate the ability of the PD technique to accurately measure the crack extension due

to blunting.

Six specimens were tested in total: four SEN(T) and two C(T) specimens.  The key

dimensions of each of the specimens are summarised in Table 7.1.  The high constraint C(T)

geometry is typical of most fracture toughness tests where high constraint, approximately

plane strain, crack tip conditions are required. The SEN(T) specimens are typical of fracture

toughness tests performed on pipeline steels where low constraint crack tip conditions are

more representative.

Specimen
ID

Specimen
Type a0/W

W
[mm]

B
[mm]

BN
[mm]

L
[mm]

CTP_ST30 SEN(T) 0.30 25.0 6.25 6.25 50.0

CTP_ST38 SEN(T) 0.38 25.0 6.25 6.25 50.0

CTP_ST54 SEN(T) 0.54 25.0 6.25 6.25 50.0

CTP_ST70 SEN(T) 0.70 25.0 6.25 6.25 50.0

CTP_CT45 C(T) 0.45 50.0 25.0 20.0 -

CTP_CT55 C(T) 0.55 50.0 25.0 20.0 -

Table 7.1: Specimen key dimensions.

The ‘load’ method assumes that the PD technique can be used to directly measure crack

extension due to blunting.  To investigate the validity of this assumption, the FE models from

the previous chapter have been interrogated.  For each model, the PD results were

interpreted using the method shown in Figure 7.1(a) to predict the crack extension due to

blunting.  These predictions have been compared to measurements obtained directly from

the FE displacement field and the blunting lines provided in ASTM E1820-13 [27],

ISO 12135 [2], and ESIS P2-92 [1].  A detailed review of these blunting lines is provided in

Section 2.3.2.6.
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An example of the interpretation of the FE PD results for C(T) specimen CTP_CT45

(a/W = 0.45) is provided in Figure 7.2.  A linear regression was fitted to the initial data points

where the global response of the specimen is elastic.  This linear regression was used to

determine the equation for R0.  The subsequent blunting predicted from the PD data,

Δab_FE_PD, was determined using the calibration functions provided in the previous chapter.

PD configurations C2 and S1 were used for the C(T) and SEN(T) specimens respectively.

These were identified in the previous chapter as suitable configurations for measuring crack

initiation and growth in the presence of large strains.

Figure 7.2: Linear regression used to calculate R0 when assessing the PD data for
specimen CTP_CT45 using the ‘load’ method.

The blunting predictions obtained from the PD data were compared to measurements from

the FE displacement field, Δab_FE_disp, calculated from the difference in the x displacement at

“Node A” and “Node B” shown in Figure 7.3. Due to the three dimensional nature of the FE

model, this was performed for all pairs of “Node A” and “Node B” along the crack front and the

mean value was calculated.
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Node B

Node A

45º

Figure 7.3: Example crack tip mesh, including the nodes used to calculate crack
extension due to blunting from the displacement field.  The crack tip is ‘Node A’.

The predictions based on the PD were also compared to the three different blunting lines

implemented in fracture toughness standards ASTM E1820-13 [27], ISO 12135 [2] and

ESIS P2-92 [1].  The crack extensions due to blunting calculated from these lines are

denoted Δab_ASTM, Δab_ISO and Δab_ESIS respectively.  These blunting lines calculate the crack

extension from the J contour integral. This was obtained directly from the FE analysis using

the focused mesh at the crack tip. In a 3D analysis Abaqus performs a volume integral of

the region surrounding the crack tip to calculate a value of J at each element along the crack

front.  This calculation was based on a region which extended approximately 5 mm from the

crack tip where it was demonstrated that the contour integral was approximately path

independent and in good agreement with the EPRI handbook solutions [20].

The value of J varies along the crack front along with the stress state.  This variation is

shown in Figure 7.4 for a C(T) specimen CTP_CT45 (a/W = 0.45).  The large spike at the

free surface is caused by the tip of the side-groove and is enhanced because the

side-grooves have been modelled as perfectly sharp to simplify the mesh.  A ‘characteristic’

value of J, was used in the blunting line formulae.  This value was taken from a node

approximately mid-way between the mid-plane and the free surface as highlighted in Figure

7.4.
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Figure 7.4: Variation of J along the crack front where z = 0 mm at the mid-plane of the
specimen and z = 10 mm at the tip of the side-groove.  The node used to provide a

characteristic value of J is highlighted.

The different estimations of crack extension due to blunting at the maximum load are

provided in Table 7.2 for the two C(T) specimens.  Similar trends are identified for both

specimens.  The blunting estimated from the PD is significantly larger than the other

predictions.  The predictions based on the blunting line in ASTM E1820-13 are also relatively

high whilst the measurements from the displacement field and the predictions from the

blunting lines in ISO 12135 and ESIS P92-2 are much lower and in good agreement.  These

different estimations are compared in Figure 7.5 for C(T) specimen CTP_CT45 (a/W = 0.45).

Specimen
ID

a
W

Δab_FE_PD

[mm]
Δab_FE_disp

[mm]
Δab_ASTM

[mm]
Δab_ISO

[mm]
Δab_ESIS

[mm]

CTP_CT45 0.45 0.33 0.08 0.21 0.09 0.08

CTP_CT55 0.55 0.27 0.07 0.19 0.07 0.07

Table 7.2: Predictions of crack extension due to blunting for the C(T) specimens.

The blunting line in ASTM E1820-13 was derived for an elastic-perfectly-plastic material and

assumes a semi-circular crack tip.  It was modified to account for stain hardening materials

by replacing the yield stress, σy, with the flow stress, σf, however, it has been demonstrated

that it over-estimates blunting [28, 31], particularly for strain hardening materials such as
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Type 316H stainless steel.  A detailed review of fracture toughness data for Type 304 and

Type 316 stainless steels based on a large number of tests from various sources has been

performed by Mills [133].  It was identified that the ASTM procedure is not applicable to

stainless steels because of their exceptionally high toughness, ductility and strain hardening

capacity and as a result, the blunting is over-predicted by a factor of ~2.  This is consistent

with the other two blunting lines and the measurements from the crack tip displacement field

measurements presented in Figure 7.5.

Figure 7.5: Predictions of crack extension due to blunting for C(T) specimen
CTP_CT45 (a/W = 0.45).

The blunting line in ISO 12135 was developed as a simplified approximation of the more

detailed approach presented in ESIS P2-92.  They are both based on the HRR field for

power-law strain hardening materials assuming plane strain conditions.  This explains the

good agreement between them and the measurements from the displacement field.  The

blunting predicted by the PD however is approximately four times larger.  If used to measure

the initiation fracture toughness, JIC, this would result in extremely conservative results.

The different estimations of crack extension due to blunting at the maximum load are

provided in Table 7.3 for the four SEN(T) specimens.  The predictions for specimen

CTP_ST30 (a/W = 0.30) are compared in Figure 7.6.  The blunting estimated from the PD is

again significantly larger than the other predictions and the discrepancy is even greater than
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for the C(T) specimens.  In Figure 7.6 the PD predictions are approximately 11 times larger

than the values measured from the displacement field.

Specimen
ID

a
W

Δab_FE_PD

[mm]
Δab_FE_disp

[mm]
Δab_ASTM

[mm]
Δab_ISO

[mm]
Δab_ESIS

[mm]

CTP_ST30 0.30 0.25 0.02 0.13 0.05 0.05

CTP_ST38 0.38 0.20 0.02 0.10 0.04 0.04

CTP_ST54 0.54 0.19 0.02 0.11 0.04 0.04

CTP_ST70 0.70 0.14 0.02 0.10 0.04 0.04

Table 7.3: Predictions of crack extension due to blunting for the SEN(T) specimens.

Figure 7.6: Predictions of crack extension due to blunting for SEN(T) specimen
CTP_ST30 (a/W = 0.30).

The measurements from the displacement field are lower than the predictions based on the

blunting lines.  The discrepancy with the blunting line in ASTM E1820-13 is expected for the

reasons discussed above, but there is also a discrepancy with the blunting lines in

ISO 12135 and ESIS P92-2.  This is because these blunting lines assume plane strain

conditions at the crack tip.  This is reasonable for the most common fracture toughness

specimens, such as C(T) and SEN(B), which are high constraint geometries but for the

relatively low constraint geometries, such as thin SEN(T) specimens, this is not a valid

assumption.
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To demonstrate that this discrepancy is related to the stress state at the crack tip and

provide confidence in the measurements based on the displacement field, the blunting line in

ESIS P2-92 has been modified for plane stress conditions.  This blunting line is defined by

Equation (7.1) where Nd is derived from the plane strain HRR field [29] and the coefficient of

0.4 is based on experimental observations of the stretch zone [31] where SZW/2SZH ≈ 0.4

for high constraint fracture toughness specimens.

0

0 4 N
p

Ja . d


  (7.1)

To modify this blunting line, Nd has been recalculated based on the plane stress HRR field

[29] and a new coefficient has been estimated from a 2D FE model of a SEN(T) specimen

(a/W = 0.30).  The ratio SZW/2SZH was estimated from the crack tip displacement field of the

2D model where the SZH is the y displacement of “Node B” in Figure 7.3, and the SZW is the

difference in the x displacement of “Node A” and “Node B”  (the same as Δab_FE_disp).  The

variation of the ratio SZW/2SZH with J for plane strain and plane stress conditions is shown in

Figure 7.7.

Figure 7.7: Variation of SZW/2SZH obtained from a 2D FE model of a SEN(T) specimen
for plane stress and plane strain conditions.

After an initial reduction at low loads the ratio SZW/2SZH becomes approximately constant.

For plane strain conditions this constant value is close to 0.4 which is the value used in
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Equation (7.1).  For plane stress this constant value is much lower at approximately 0.14.  A

coefficient of 0.14 is therefore considered more appropriate for the SEN(T) specimens.

The crack extension due to blunting obtained from the displacement field for specimen

CTP_ST30 (a/W = 0.30) is compared to the original blunting line from ESIS P2-92 for plane

strain conditions and a modified version based on plane stress conditions in Figure 7.8.  The

modified blunting line is in reasonable agreement with the from the displacement field.  This

provides confidence in the displacement field measurements provided in Figure 7.6 thus

confirming that the PD can over-predict the crack extension due to blunting by more than an

order of magnitude for low constraint geometry.

Figure 7.8: Predictions of crack extension due to blunting for SEN(T) specimen
CTP_ST30 (a/W = 0.30)

In general it can be concluded that the PD technique significantly overestimates the crack

extension due to blunting.  The level to which it overestimates the blunting depends on the

stress state and is also likely to depend on the degree of strain hardening exhibited by the

material.  For typical high constraint geometries such as C(T) specimens, manufactured from

Type 316H stainless steel, the crack extension can be overestimated by a factor ~4.  For

lower constraint geometries which experience higher levels of plasticity, this factor can be

significantly larger.  This overestimation is probably because the PD response is related to

the entire strain field and not just the geometry of the crack tip.  It also explains why previous
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studies have reported unexpectedly low values of JIC when using the ‘load’ method to

interpret PD data e.g. [82].

The discussion presented above is based entirely on FE analysis.  It was demonstrated in

the previous chapter that for Type 316H the FE under-estimates the change in PD compared

with the experimental data because it does not include material effects such as

piezo-resistivity which can be significant during the blunting phase. Including these material

effects would increase the error in the PD measurement further still so the ‘load’ method of

interpreting PD data is therefore not suitable for measuring crack blunting. The relationship

between strain and resistivity is material specific. The error in the measurement of crack

blunting based on the PD technique will therefore also be material specific thus making it

difficult to quantify without a detailed understanding of the electrical material properties.

7.3.1 Measuring Blunting using the ‘COD’ Method

The ‘COD’ method uses SEM measurements of the SZW or a blunting line to predict crack

extension prior to stable tearing. Significant scatter has been identified in SEM

measurements [28] but extensive work is documented in the literature which demonstrates

the suitability of the various blunting lines to different materials, e.g. [31]. As demonstrated

above, it is important to ensure that the applied blunting line is applicable to the level of

constraint provided by the specimen. As long as appropriate consideration is given to these

factors, a good approximation of the crack extension due to blunting should be obtained.

7.4 Measuring Stable Tearing using the PD Technique

To investigate the use of the PD method for measuring stable tearing, a fracture toughness

test was performed in accordance with ASTM E1820-13 [27].  The specimen was

manufactured from the same ex-service Type 316H stainless steel used in the previous

chapter.  The crack extension was simultaneously monitored using the PD technique and the

partial unloading compliance technique.  The PD data was interpreted twice: once using the

‘load’ method and once using the ‘COD’ method.  The J resistance curve and the initiation

fracture toughness, JIC, were determined using all three methods for comparison.  Although

the test was performed to ASTM E1820-13, the blunting line used in the post-processing of

the data was taken from ISO 12135 [2] based on the findings of the previous section.
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7.4.1 Methodology

7.4.1.1 Geometry

The test was performed on a standard, high constraint, C(T) specimen.  The specimen

geometry is shown in Figure 7.9 and the key dimensions summarised in Table 7.4.  The

specimen was loaded in displacement control at a cross-head speed of 2 mm/min.

Figure 7.9: C(T) specimen geometry used for fracture toughness testing (dimensions
in mm)

Specimen ID a0
[mm]

W
[mm]

B
[mm]

Bn
[mm]

JIC_CT01 23.1 50.0 25.0 17.5

Table 7.4: C(T) specimen key dimensions

7.4.1.2 Crack Extension Measurement

Crack extension was monitored using the low frequency ACPD system and partial unloading

compliance. Measurements were taken at increments of 0.15 mm of the cross head.  A hold

time was introduced prior to each unloading to record the PD.  A total of 18 crack extension

measurements were made throughout the test.
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(a) (b)
Figure 7.10: PD configuration use to measure (a) crack extension measurement, and

(b) reference measurement (dimensions in mm)

The PD configuration is shown in Figure 7.10.  This configuration was selected based on the

results of the previous chapter.  The PD probes were located on opposite sides of the

specimen to reduce the influence of any uneven crack growth.  The corresponding

calibration function was derived using COMSOL [124] and is provided in Equation (7.2),

where R0 is the resistance when a = a0.  The shackles and the loading pins were coated in

PVC insulation tape to isolate the specimen from the load frame and prevent alternative

paths for the electrical current.  A reference measurement was taken to suppress any

variations in temperature which occurred throughout the test.

The unloading compliance was measured using a clip gauge mounted directly on the ‘knife

edges’ machined into the specimen.  These were painted to isolate the clip gauge from the

specimen.  For each measurement the specimen was unloaded to 50% of the applied load.

The unloading compliance data was post-processed in accordance with ASTM E1820-13.

7.4.1.3 Fatigue Pre-cracking

The specimen was manufactured with a 20 mm long EDM slit (tip radius of 0.15 mm).  This

was extended approximately 3 mm by fatigue using a sinusoidal load with an R-ratio of 0.1

3 2

0 0 0

a R R R0.0230712 0.194202 0.701779 0.0806068
W R R R

     
        

     
(7.2)
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and a loading frequency of 25 Hz. The peak pre-cracking load was 12 kN which is small

compared to the load at the onset of stable tearing of ~50kN.

Crack extension was monitored during fatigue pre-cracking using the same PD configuration

described above.  The pre-cracking was performed on a plane-sided specimen and the side

faces were polished to observe the crack extension and confirm the PD measurements.

After the fatigue pre-cracking, the side-grooves were machined into the specimen. The

value of a0, provided in Table 7.4, was measured from the post-test fracture surface.

7.4.1.4 Post-Test Measurements

After the test the specimen was cut in half to reveal the crack profile along the mid-plane of

the specimen.  One half of the specimen was sliced up to reveal the crack profile 2.5 mm

and 5.0 mm from the mid-plane.  The other half of the specimen was fatigued open to reveal

the fracture surface whilst minimising further plastic deformation.  The final crack length was

obtained using an area average obtained from image processing software assuming the

crack front was symmetrical about the mid-plane.  The final crack length measurement was

compared to the PD predictions.

7.4.2 The J Resistance Curve based on the ‘Load’ Method

The equation for the linear regression used to calculate R0 (in μΩ), similar to Figure 7.2, is

provided in Equation (7.3), where P is the applied load (in kN).  Using this equation, the

subsequent crack extension was calculated from the calibration function provided in

Equation (7.2).

0 159 94 4395 8. P  .R  (7.3)

The resulting J resistance curve is provided in Figure 7.11.  The data is separated into

qualified and unqualified data for calculating JIC, which is also shown.  Data which exceeds

the maximum crack extension, Δalimit, have been omitted.  The value of JIC and the relevant

validity limits from ASTM E1820-13 are summarised in Table 7.5.
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Figure 7.11: J resistance curve and JIC for a fracture toughness test where the crack
extension is measured using the PD technique, interpreted using the ‘load’ method.

The results do not show any appreciable blunting region.  This is consistent with the results

in the previous section which demonstrated that the PD over-predicts crack extension due to

blunting.  In accordance with ASTM E1820-13, this would be interpreted as almost

instantaneous stable tearing and results in a value of JIC of 112.4MPa.mm.

JIC
[MPa.mm]

Jmax
[MPa.mm]

Jlimit
[MPa.mm]

Δamin
[mm]

Δalimit
[mm]

Test
Validity

112.4 1134.8 1691.5 0.19 1.74 Valid

Table 7.5: Summary of a fracture toughness test results where the crack extension is
measured using the PD technique, interpreted using the ‘load’ Method.

7.4.3 The J Resistance Curve based on the ‘COD’ Method

Figure 7.12 shows the relationship between resistance and CMOD.  An initial linear region is

observed before the gradient gradually increases.  A linear regression fit to the initial data is

shown along with the point at which the data first deviates from this linear trend, labelled R0.
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Figure 7.12: Estimation of R0 from a plot of resistance vs. CMOD.

The value of R0, obtained from Figure 7.12, is 28.82 µΩ.  Using this value, the subsequent

stable tearing was calculated from the calibration function provided in Equation (7.2).  The

resulting J resistance curve is provided in Figure 7.13.  The test results, including the

relevant limits are summarised in Table 7.6.

Figure 7.13: J resistance and JIC for a fracture toughness test where the crack
extension is measured using the PD technique, interpreted using the ‘COD’ method.
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The shape of the J resistance curve is very different to the one derived based on the ‘load’

method.  A distinct blunting phase is observed before the onset of stable tearing which

results in a much larger value of JIC of 326.7MPa.mm.  It should be noted that the initial data

points are perfectly linear because they are calculated from the blunting line formula in

accordance with the ‘COD’ method.  They are not experimental data points.

JIC
[MPa.mm]

Jmax
[MPa.mm]

Jlimit
[MPa.mm]

Δamin
[mm]

Δalimit
[mm]

Test
Validity

326.7 1134.8 1691.5 0.28 1.77 Valid

Table 7.6: Summary of a fracture toughness test where the crack extension is
measured using the PD technique, interpreted using the “COD Method”.

7.4.4 The J Resistance Curve based on the Compliance Method

The J resistance curve calculated from the compliance method is provided in Figure 7.14.

The test results, including the relevant limits are summarised in Table 7.7.

Figure 7.14: J resistance curve and JIC for a fracture toughness test where the crack
extension is measured using partial unloading compliance method.

There is an initial steep section in the J resistance curve which could be due to blunting

however, the gradient reduces significantly very early in the test.  This is interpreted as

stable tearing and results in a value of JIC of 151.7MPa.mm.
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JIC
[MPa.mm]

Jmax
[MPa.mm]

Jlimit
[MPa.mm]

Δamin
[mm]

Δalimit
[mm]

Test
Validity

151.7 1134.8 1691.5 0.21 1.74 Valid

Table 7.7: Summary of a fracture toughness test where the crack extension is
measured using the compliance method.

7.4.5 Post-Test Measurements

The fracture surface of the specimen is shown in Figure 7.15 and the profile of the crack at

various points though the thickness is shown in Figure 7.16.  The crack extension is

relatively uniform across the thickness with minimal crack tunnelling observed.  The average

crack extension due to stable tearing measured from the fracture surface is 2.4 mm.

Figure 7.15: Post-test fracture surface.
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(a) (b) (c)
Figure 7.16:Crack profile at (a) the mid-plane, (b) 2.5 mm from the mid-plane, and (c)

5.0 mm from the mid-plane
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7.4.6 Comparison of the Results

Figure 7.17:  Comparison of the J-R curves derived using three different methods.

The three J resistance curves are compared in Figure 7.17 and the values of JIC are

summarised in Table 7.8.  There are obvious similarities between the two curves derived

from the ‘load’ method and the compliance method.  Both diverge from the blunting line very

early on in the test and a have a similar, shallow gradient which results in a relatively low

value of JIC.  Conversely, the ‘COD’ method demonstrates a significant blunting phase and a

value of JIC which is more than double the other two methods.

Method
JIC

[MPa.mm]

PD technique: ‘Load’ method 112.4

PD technique: ‘COD’ method 316.7

Compliance method 151.7

Table 7.8: Values of JIC predicted by the three different methods

Typical mean and lower bound values of the initiation fracture toughness of Type 316

stainless steel obtained from the literature are provided in Table 7.9.  The values obtained by

the ‘load’ method and the compliance method are equal to or below the lower bound values

whilst the value predicted by the ‘COD’ method is comparable to the mean values and is

therefore more likely to be correct.
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Source
JIC [MPa.mm]

Mean Lower Bound

Mills [133] 672 215

Dixon [134] 312 152

Table 7.9: Typical values of JIC

The blunting analysis performed at the start of this chapter demonstrated that the ‘load’

method over-estimates the crack extension due to blunting which leads to an

underestimation of the value of JIC.  Given that the compliance method is consistent with the

‘load’ method this suggests that it too is over-estimating the crack extension due to blunting.

The source of the error in the ‘load’ method is the relationship between strain and the

resistance of the specimen which should not influence the results obtained from the

compliance method.  This suggests that the consistency between the ‘load’ method and the

compliance method is probably coincidental.

Figure 7.18:  Comparison of experimental and numerical compliance measurements
performed on a C(T) specimen (a/W = 0.45) with the blunting line from ISO 12135.

Compliance measurements obtained from C(T) specimen CTP_CT45 (a/W = 0.45) in the

previous chapter are analysed here to investigate the source of these errors.  The crack

extension predicted from the compliance measurements is compared with the blunting line
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from ISO 12135 in Figure 7.18.  The FE model of this specimen was also rerun to include

partial unloading cycles from which the compliance was calculated.  Crack extension

predictions obtained from the unloading compliance of the FE model are also included in

Figure 7.18.  Observations from the post-test fracture surface confirmed that no stable

tearing occurred during the test, so any crack extension was due to blunting only.

The experimental measurements significantly over-predict the crack extension due to

blunting compared with the FE measurements and the blunting line from ISO 12135.  The

FE measurements are in very good agreement with the blunting line which confirms that the

compliance equations in ASTM E1820-13, used to calculate crack extension are suitable for

this material.  The large experimental crack extensions must therefore be related to the

experimental setup.  This may be due to the PVC insulation tape applied to the loading pins

to electrically isolate the specimen from the load frame.  It is well known that the compliance

technique is very sensitive to the loading pin configuration [92, 106].

Figure 7.19: Comparison of the stable tearing predicted using three different methods.

Assuming that the ‘COD’ method is capable of accurately identifying the onset of stable

tearing, it occurs at a value of J of ~270 MPa.mm, as identified in Figure 7.13 (the last point

on the blunting line).  Ignoring any crack extension prior to this point the three resistance

curves have been re-plotted in Figure 7.19.  The similarities are striking.  The two PD

methods are in excellent agreement although this is to be expected because they are both

based on the same calibration function (albeit with different values of R0) and the same PD
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data; however, the compliance measurements are also in very good agreement.  This

provides confidence in the measurement of stable tearing and suggests that the differences

between the three methods are limited to the blunting phase.

The stable tearing measurements from Figure 7.19 are compared to measurements from the

post-test fracture surface in Table 7.10.  All of the measurements are in good agreement.

The measurements based on the PD technique assume that the influence of strain on PD is

negligible during stable tearing.  The close agreement between the PD and the post-test

fracture surface measurements suggests that this is a reasonable assumption.  This

demonstrates that the ‘COD’ method can be used to accurately identify the onset of stable

tearing and measure subsequent crack extension. The slight underestimation may be due to

the small amount of discontinuous crack growth observed at the crack tip in Figure 7.16.

Method Stable Tearing
[mm]

PD technique: ‘load’ method 2.2

PD technique: ‘COD’ method 2.2

Compliance method 2.3

Post-test fracture surface 2.4

Table 7.10: Comparison of the stable tearing predicted by the different methods with
measurements from the post-test fracture surface.

7.5 Limitations of the ‘COD’ Approach

It has been demonstrated that the PD technique can be used to accurately measure crack

extension using the ‘COD’ method.  One limitation of this technique is that the point of

deviation from linear on a plot of PD (or resistance) against COD, necessary for identifying

the onset of stable tearing, can be difficult to identify, particularly for high toughness, high

strain hardening materials [82]. To investigate this limitation, a sequentially coupled

structural-electrical FE model, similar to the one developed in the previous chapter was

used.  Here the analysis has been extended to include crack growth.

Initially the experimental results presented above were recreated to validate the modelling

approach and demonstrate that the model was able to capture the PD behaviour for a

growing crack.  Then the analysis was used to look at the influence of material toughness on

the ability to identify the onset of stable tearing.
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7.5.1 Model Validation

7.5.1.1 Geometry and Mesh

Figure 7.20: C(T) mesh for modelling fracture toughness testing including stable
tearing.

A 3D ¼ model of the C(T) specimen was produced using Abaqus.  The side-grooves were

modelled as perfectly sharp to simplify the mesh.  To allow small, uniform increments of

crack extension, the mesh at the crack tip was refined to a uniform element size of 0.1 mm

and the crack tip was modelled as infinitely sharp.  The specimen mesh is shown in Figure

7.20 and the refined mesh at the crack tip is shown in Figure 7.21.  The model consisted of

42,177 linear brick elements.

Initial Crack Tip

Figure 7.21: Refined crack tip mesh for modelling fracture toughness testing
including stable tearing.

Y

Z
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7.5.1.2 Material Properties

The material properties of Type 316H stainless steel provided in the previous chapter have

been used in this model.

7.5.1.3 Boundary Conditions

A displacement boundary condition was applied to a node at the centre of the loading hole.

This displacement was transmitted to the hole using a kinematic coupling.  This avoids the

computational expense of modelling contact between the loading pin and the hole and does

not significantly influence the behaviour of the PD for the configuration shown in Figure 7.10.

Validation of this approach is provided in the previous chapter.

Figure 7.22: Variation of CMOD with stable tearing.

Appropriate boundary conditions were applied to the relevant planes of symmetry and crack

growth was modelled simply by releasing nodes from the symmetry boundary condition

applied to the remaining ligament ahead of the crack.  The experimentally observed

relationship between stable tearing, Δatearing, and CMOD was calculated from Figure 7.12 and

is provided in Figure 7.22.  A second order polynomial has been applied to this data and the

equation for this line is provided in Equation (7.4) where CMOD and Δatearing are in mm.
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This equation was used to define the crack extension in the model by modifying the

symmetry boundary condition ahead of the crack accordingly.  Each crack increment of

0.1 mm was modelled as a separate load step.  In the initial step, a y displacement was

applied to the node at the centre of the loading hole to produce a CMOD of 1.47 mm

(corresponding to Δatearing = 0.0 mm).  In the subsequent step, a line of nodes parallel to the

crack tip was released from the symmetry boundary condition and the y displacement

increased to produce a CMOD of 1.59 mm (corresponding to Δatearing = 0.1 mm). This

process was repeated up to a CMOD of 3.37 mm (Δatearing = 2.1 mm).

The electrical boundary conditions were similar to those used in the previous chapter, but

only the PD configuration shown in Figure 7.10 was considered.  The 0 V electrical potential

applied to all nodes on the remaining ligament ahead of the crack was updated after each

crack increment.

7.5.1.4 Results

The structural response of the FE model is provided in Figure 7.23.  Consistent with the C(T)

analyses presented in the previous chapter, the FE model slightly over-predicts the stiffness

of the specimen.

Figure 7.23: Comparison of the experimentally observed structural response of the
specimen with the FE model.
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The electrical response of the FE model is compared to the experimental data in Figure

7.24.  Prior to stable tearing, the FE under predicts the influence of strain on PD.  This is

similar to the analyses of a stationary crack in the previous chapter and is because the

changes in the resistivity of the material due to strain are not included in the model.  Here

the discrepancy is slightly larger which can be explained by the uniform mesh at the infinitely

sharp crack tip which is unable to fully capture the deformed shape.

The change in PD after the onset of stable tearing predicted by the FE model is in excellent

agreement with the experimental data as demonstrated by the almost constant offset

between the two data sets.  Given that the FE will inherently under predict any change in PD

due to strain, Figure 7.24 confirms that after the onset of stable tearing, the PD response is

dominated by crack growth and that subsequent changes due to strain are small.  This is

consistent with assumptions made in previous studies, e.g. [91].

Figure 7.24: Comparison of the experimentally observed electrical response of the
specimen with the FE model.

These results demonstrate that the FE is capable of capturing changes in PD for a growing

crack and the change in slope at the onset of crack growth.  A sensitivity study has also

been performed which has shown that these results are not significantly sensitive to

increasing the element size at the crack tip (and therefore the crack increments) to 0.3 mm.
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7.5.2 Influence of Toughness

To investigate the influence of toughness on the increase in gradient on a plot of PD (or

resistance) vs. CMOD, used to identify the onset of stable tearing, the FE model was rerun

four times.  The displacement boundary condition applied to the node at the centre pin hole

was replaced with a concentrated load and the initial crack length was changed to 25.0 mm

(a/W = 0.5).  To simulate materials of different toughness, crack extension was assumed to

occur at different loads.  The loads considered were those which produced a reference

stress, σref, of 0.75, 1.00, 1.25 and 1.50 times the 0.2 % proof stress, σ0.2.  The reference

stress was calculated assuming plane strain conditions.  The applied loads are provided in

Table 7.11.  For each analysis, 0.2 mm of crack extension was modelled.  For simplicity

crack growth was assumed to occur at a constant load.

0 2

ref

.




σref

[MPa]
Load
[kN]

0.75 225.3 25.4

1.00 299.8 33.8

1.25 375.2 42.3
1.50 449.7 50.7

Table 7.11: Loads at the onset of crack growth used to investigate the influence of
toughness on a plot of PD (or resistance) vs. CMOD.

The results of the four analyses are provided in Figure 7.25.  When crack initiation occurs at

a reference stress below the 0.2% proof stress, the increase in gradient is easily observed.

As the reference stress increases above the 0.2% proof stress, the increase in gradient

becomes less well defined.  This is because the crack extension is accompanied by a

significant increase in CMOD associated with gross yielding of the remaining ligament.  At

very high loads the increase in gradient is very gradual and much more difficult to identify.  In

addition, for materials with a high tearing resistance, this increment in crack length would be

accompanied by an increase in load which would further mask the increase in gradient.  It is

therefore the ability of a high toughness and high strain hardening material to sustain gross

yielding of the remaining ligament without failing which makes it difficult to identify the onset

of stable tearing using the ‘COD’ method.  This is an inherent limitation of the ‘COD’ method

for monitoring crack growth during fracture toughness tests.
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Figure 7.25: The influence of the onset of crack growth on a plot of relative change in
resistance vs. CMOD at different values of σref/σ0.2

7.6 Discussion

The PD technique is not suitable for measuring crack blunting.  This is because it is not just

sensitive to the shape of the crack tip, but the entire strain field.  The ‘load’ method of

interpreting PD data from fracture toughness tests therefore overestimates the cack

extension due to blunting and underestimates JIC and is not fit for purpose.  For high

constraint geometries such as C(T) specimens manufactured from Type 316H stainless steel

the crack extension predicted by this method is overestimated by at least a factor of 4.  For

lower constraint geometries which experience higher levels of plasticity, this factor can be

significantly larger.  In general, the extent of the error is likely related to the strain hardening

and the strain dependence of the electrical properties of the material.

The PD technique is suitable for measuring stable tearing during which the influence of

strain appears to be small.  The onset of stable tearing may be identified from where a plot

of PD vs COD deviates from linear. The ‘COD’ method is therefore suitable for interpreting

PD data from fracture toughness tests.  Experimental measurements based on this

technique produce a value of JIC which is consistent with the literature and the predicted

stable tearing was also consistent with post-test fracture surface measurements and the

compliance technique.

The implementation of the ‘COD’ method requires SEM images or a suitable blunting line to

predict the crack extension prior to the onset of stable tearing.  For Type 316H, the blunting
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lines in ESIS P2-92 and ISO 12135 provide good approximations whilst the line in ASTM

E1820-13 over-predicts the crack extension by approximately a factor of 2.  This observation

is consistent with the literature [28, 31, 133].  The use of a blunting line rather than

experimental measurements appears prudent since in this study both the PD technique and

the unloading compliance technique were both subject to errors when measuring blunting,

for different reasons.  Whilst the compliance technique has been successfully implemented

in many previous studies, it is well known that the measurements are extremely sensitive to

the configuration of the load train and the loading pins.  This is believed to be the source of

the error in the present study.

It has also been shown that the sequentially coupled structural-electrical FE tool developed

in the previous chapter to predict the influence of strain on PD can be extended to include

crack growth.  FE results have been compared to experimental measurements from a

fracture toughness test with good agreement. The FE confirms that a change in slope on a

plot of PD vs. COD corresponds to the onset of crack growth and that the subsequent

change in PD is almost entirely due to crack growth.

This FE tool has been used to investigate anecdotal observations from previous studies that

the onset of stable tearing can be difficult to identify from a plot of PD vs COD when testing

high toughness, high strain hardening materials.  The analysis confirmed that the increase in

gradient can be masked by gross plasticity in the remaining ligament for such materials. This

is an inherent limitation of the ‘COD’ method which cannot be easily overcome.  The

compliance technique may therefore be more suitable when testing such materials.
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Chapter 8:
Measuring Creep Crack
Initiation and Growth
8.1 Introduction

Creep Crack Initiation (CCI) can occupy a significant portion of a component’s life when

operating in a high temperature environment [42].  Despite this, it is currently not possible to

accurately identify the onset of crack growth in laboratory tests.  During a creep crack growth

test, any change in PD which occurs after load-up is assumed to be associated with crack

growth.  Based on this interpretation of the data, the PD technique often predicts immediate

crack extension; however, the initial change in PD is most likely due to creep strain rather

than crack growth [6].

This chapter investigates whether an increase in gradient on a plot of PD vs. CMOD can be

used to identify the onset of creep crack growth, similar to the method used to identify the

onset of stable tearing during fracture toughness testing.  A series of interrupted creep crack

growth tests have been performed to determine the PD response before, at and after the

onset of crack growth.  These experimental observations are supported by predictions from

a sequentially coupled FE analysis of a creep crack growth test.  This FE based tool has

also been used to investigate possible limitations of the proposed methodology.

8.2 Creep Crack Growth Testing Methodology

Two preliminary creep crack growth tests were performed.  The first was an interrupted test

performed on ferritic P91 steel to investigate the significance of strain on PD during the early

stages of a test.  The second was a test to failure on ex-service Type 316H stainless steel

(cast 55882) to see if an abrupt increase in gradient exists on a plot of PD vs. CMOD.  This

test also compared the response of the low frequency ACPD system with a typical DCPD

system.  These preliminary tests were followed by a series of interrupted tests performed on

the same cast of Type 316H stainless steel.  With the exception of the interpretation of the
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PD data, all of these tests have been performed in accordance with ASTM E1457-13 [3].

Details of the test methodology are provided here.

8.2.1 Specimen Geometry

The C(T) specimen geometry is shown in Figure 8.1 and the key dimensions are provided in

Table 8.1.  An EDM pre-crack with a tip radius of 0.15 mm was used.  The specimen was not

fatigue pre-cracked to ensure a straight crack front which could be easily modelled using FE.

It has been demonstrated that the method of introducing the pre-crack does not significantly

influence the steady-state creep crack growth behaviour [135].  It may influence the initiation

time, but it is unlikely to change the increase in gradient on a plot of PD vs. CMOD.

Figure 8.1: Geometry of C(T) specimens used for CCG testing (dimensions in mm)

a0
[mm]

W

[mm]
B

[mm]
BN

[mm]

25.0 50.0 25.0 20.0

Table 8.1: Key dimensions of C(T) specimens used for CCG testing.

8.2.2 Materials

CCG tests have been performed on two materials.  A preliminary test has been performed

on ferritic type P91 steel at 620 ºC and the rest of the tests were performed on ex-service

Type 316H stainless steel (cast 55882) at 550 ºC.  These are two steels of specific interest

to the power generation industry.
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8.2.3 Extensometry

For the Type 316H specimens the CMOD was monitored using a single capacitance gauge

located in the crack mouth cut-out and the opposite face of the cut-out was used as the

target for the gauge.  For the test performed on ferritic P91 steel the opposite face of the cut-

out could not be used as the target due to significant oxidation so the fixture shown in Figure

8.2 was developed.  It was manufactured from Nimonic 80A which is a creep resistant

nickel-based superalloy that does not experience significant oxidation at the test temperature

of 620 ºC.  The gauge fixture was attached to one side of the crack mouth cut-out and the

target fixture attached to the other side using the M3 holes shown in Figure 8.1.  Two

capacitance gauges were mounted on the gauge fixture either side of the specimen.  The

average measurement from the two gauges was used as the CMOD.

Figure 8.2: Fixture used to measure CMOD for P91 specimen.

8.2.4 Crack Length Monitoring

Crack length was monitored using the PD technique.  The PD configuration, selected based

on the results of Chapter 4, is shown Figure 8.3.  The loading pins and the specimen were

coated with high temperature exhaust paint to electrically isolate the specimen from the

testing machine and avoid any alternative current paths.

C(T) Specimen

Target Fixture

Capacitance Gauge 1

Capacitance Gauge 2

Gauge Fixture
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(a) (b)
Figure 8.3: PD Configuration for (a) crack length measurement, and (b) reference

measurement (dimensions in mm)

A third order polynomial calibration function was derived specifically for this specimen

geometry and PD configuration using COMSOL [124] and is provided in Equation (8.1).

3 2

0 0 0

0 034096 0 252180 0 801959 0 083862a R R R. . . .
W R R R

     
        

     
(8.1)

The low frequency ACPD system was not suitable for the preliminary test performed on

ferritic P91 steel.  Although the initial current distribution at the lowest available frequency

(2 Hz) was quasi-DC, the application of the initial load increased the magnetic permeability

which resulted in a reduction in the signal.  This response is typical to high frequency ACPD

tests e.g. [79, 99] and is symptomatic of the skin effect.  In order to implement the calibration

function in Equation (8.1) crack extension was monitored using a DCPD system with a

constant current of 20A.  For the Type 316H specimens the skin effect is negligible at a

frequency of 2Hz so the low frequency ACPD system was used with a constant current of

3mA.

8.2.5 Post-Test Sectioning

After each test the specimen was cut in half to reveal the crack profile along the mid-plane of

the specimen.  One half of the specimen was sliced up to reveal the profile at 2.5 mm,

5.0 mm and 7.5 mm from the mid-plane.  The other half of the specimen was fatigued open

to reveal the fracture surface whilst minimising further deformation.
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8.3 Preliminary CCG Tests

8.3.1 Preliminary Test 1: Ferritic P91 Interrupted CCG Test

The preliminary CCG test on P91 steel was to investigate the significance of creep strain on

the PD measurement in the absence of crack extension.  The test was performed at 620 ºC.

P91 has relatively high creep ductility of ~32% (mean of four tests performed at 625ºC [136])

so the influence of creep strain is more likely to be significant.  The load applied to the

specimen was 12.0kN.  This results in a reference stress of 93.2MPa, assuming plane strain

conditions, which is 39% of the 0.2% proof stress at 620 ºC (240MPa [136]). The influence

of plastic strain should therefore be small.  The DCPD system used only had a single input

channel, so a reference measurement was not taken.

Microstructural evolution of P91 steel at high temperature is a well-documented

phenomenon e.g. [137, 138], so the specimen was thermally soaked for 570 hours before

the load was applied.  This was enough time for the PD signal to stabilise.   The load was

applied for 1660 hours before the test was interrupted.  A plot of relative change in PD

against CMOD is provided in Figure 8.4(a).  It demonstrates an approximately linear trend

with no increase in gradient.  The slight reduction in the PD signal corresponding to a CMOD

of 0.8 mm corresponds with a small drop in the furnace temperature of ~0.5 °C.  The PD

measurements have been interpreted according to ASTM E1457-13 [3] and the predicted

crack extension is plotted against time in Figure 8.4(b).  At the termination of the test, the PD

predicts a crack extension of 0.34 mm.

(a) (b)
Figure 8.4: Results from an interrupted test performed on a P91 Steel C(T) specimen
showing (a) the relative change in PD vs. CMOD, and (b) the crack extension vs. time

inferred from this change in PD.
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Following the test, the specimen was sectioned as described in Section 8.2.5.  The crack

profiles at the various points through the thickness are shown in Figure 8.5.  There is little

evidence of crack extension.  The small indications at the crack tip observed in Figure 8.5(b)

and (d) are most likely an artefact of the original EDM pre-crack or due to oxidation.

(a) (b)

(c) (d)
Figure 8.5: Post-test crack profile from the preliminary test performed on P91 steel

showing (a) the mid-plane, (b) 2.5 mm from the mid-plane, (c) 5.0 mm from the
mid-plane, and (d) 7.5 mm from the mid-plane.

The 0.34 mm crack extension predicted by the PD is much larger than the 0.2 mm used in

ASTM E1457-13 as an engineering definition of crack initiation, but Figure 8.5 demonstrates

no such crack growth.  This demonstrates that the PD technique, as defined in ASTM
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E1457-13, can significantly overestimate the early stages of crack growth and underestimate

the time to initiate crack growth.

The likely source of this spurious crack extension is creep strain.  It is apparent from Figure

8.5 that significant strains have occurred.  The diameter of the notch tip is ~0.6 mm which is

double that of the original EDM pre-crack.  Given that the reference stress is small compared

to the 0.2% proof stress, the plastic strain will be small and the majority of this deformation

will be due to creep.  These results highlight the need for an alternative method of

interpreting PD measurements obtained from CCG tests.

8.3.2 Preliminary Test 2: Type 316H CCG Test to Failure

This test was performed to see if an increase in gradient exists on a plot of PD against

CMOD which may indicate the onset of crack growth.  Crack growth was monitored using

DCPD and low frequency ACPD simultaneously to confirm that any change in slope was

observed by both systems.  The test was continued until final failure to confirm that the AC

current distribution remained quasi-DC for the full duration of a test.

The test was performed on Type 316H stainless steel at 550 °C with a load, P, of 24.5 kN.

This corresponds to a reference stress of 190 MPa, assuming plane strain conditions, which

is approximately equal to the 0.2% proof stress of this cast of material at 550 °C (191.9 MPa

[35]).  Significant plasticity is therefore expected.

The PD configuration shown in Figure 8.3 was used for the AC and DC systems with the

same current injection and PD probe locations used for both.  To avoid the need for complex

electronics, both current sources were constantly running for the duration of the test.  This

avoided any temperature fluctuations associated with switching the DC on and off.  The lock-

in amplifier of the ACPD system filtered out the DC component of the signal.  The DCPD

system was sensitive to the alternating current however; the 3mA AC was ~4 orders of

magnitude smaller than the 20A DC so the effect was small.  To further reduce this effect,

each DC data point was averaged from 200 measurements taken over a period of ~10

seconds to remove the AC fluctuations.

The relative change in resistance is plotted against CMOD for both PD systems in Figure

8.6. Figure 8.6(a) shows the data for the entire test, and Figure 8.6(b) focuses on load-up

and the initial part of the creep phase of the test.  Some data is missing due to power

failures.  The agreement between the low frequency ACPD system and the DCPD system is

good.  The measurements based on the low frequency AC are slightly lower than the DC,

but the difference is small.  These results provide confidence that the ACPD system is

behaving in a quasi-DC manner for the duration of the test.
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(a) (b)
Figure 8.6: Relative change in resistance vs. CMOD measured using DCPD and low

frequency ACPD showing (a) all data up to failure, and (b) load-up and the initial part
of the creep phase of the test.

During load-up the relationship between the relative change in resistance and CMOD is

approximately linear, similar to the trend observed in the previous chapters.  This linear trend

continues into the creep phase of the experiment until an abrupt increase in gradient is

observed at a CMOD of ~0.48 mm.  This occurs after ~240hrs and may indicate crack

initiation.  The increase in gradient is much easier to identify from the low frequency ACPD

data because of the increased signal-to-noise ratio.

8.4 Interrupted CCG Tests

To investigate if the increase in gradient observed in the preliminary tests corresponds to the

onset of crack growth, a series of interrupted creep crack growth tests have been performed

using the low frequency ACPD system to monitor crack extension.  These tests were

performed on specimens manufactured from ex-service Type 316H (cast 55882) at 550 °C

with a load, P, of 24.5 kN.  These conditions are nominally identical to the specimen used in

the second preliminary test.   The tests were interrupted at different stages as detailed in

Table 8.2.

Specimen ID Point of Interruption

CCG316_CT01 Stopped after significant crack growth, prior to final failure.

CCG316_CT02 Stopped after 0.2 mm crack extension predicted by the PD.

CCG316_CT03 Stopped immediately after the increase in gradient on a PD vs. CMOD
plot.

CCG316_CT04 Stopped prior the increase in gradient on a PD vs. CMOD plot.
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Table 8.2: Point of interruption for each CCG specimen.

8.4.1 Results

Figure 8.7(a) shows the global response of each specimen during the load-up phase of the

test and Figure 8.7(b) shows the time dependent response during the creep phase of the

test.  During load-up, the response of each specimen is very similar which suggests

homogenous tensile properties throughout the ex-service material.  The response remains

similar during the creep phase of the test, within the scatter normally observed during CCG

testing.

(a) (b)
Figure 8.7: Structural response of each specimen during (a) the load-up phase, and

(b) the creep phase.

Figure 8.8 shows the relative change in resistance with CMOD for all specimens. Figure

8.8(a) shows all the data whilst Figure 8.8(b) focuses on the initial part of the creep phase.

Figure 8.8: Relative change in resistance vs. CMOD during the creep phase of the test
for each specimen showing (a) all data, and (b) the early stages of each test.
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The data for specimens CCG316_CT01 and CCG316_CT02 are linear either side of the

abrupt increase in gradient which occurs at a CMOD ~0.05 mm.  The data for specimen

CCG316_CT03 is slightly different with a small initial drop in resistance which occurs over

the initial 10 hours of the test.  This behaviour is not uncommon during creep crack growth

testing and is commented on in ASTM E1457 [3] although the cause is not fully understood.

After this initial drop the behaviour is similar to specimens CCG316_CT01 and

CCG316_CT02 with an approximately linear region before the gradient increases and the

test was interrupted.

The initial gradient in Figure 8.8 for all four specimens is different.  This is despite very

similar structural responses.  The gradient for specimen CCG316_CT04 is steepest and is

similar to the gradient observed after the change in slope for the other tests.  Based on this

observation, this test was stopped very early on to see if crack growth had already initiated.

The crack profiles at various points through the thickness are provided for each of these

specimens in Figure 8.9, Figure 8.10, Figure 8.11 and Figure 8.12.  Significant crack growth

was observed for specimens CCG316_CT01 and CCG316_CT02.  Due to the inter-granular

nature of creep crack growth, the fracture surface for these specimens is not planar. The

crack growth is also severely discontinuous, particularly for specimen CCG316_CT02, which

is also typical of creep and despite the 20% side grooves some crack tunnelling has

occurred.  Significant damage ahead of the EDM pre-crack is observed for specimen

CCG316_CT03 but this is only connected to the pre-crack at the mid-plane of the specimen.

No crack growth and very little damage were observed for specimen CCG316_CT04 despite

the notable steeper gradient in Figure 8.8.

The cause of the initial steep gradient observed for specimen CCG316_CT04 is not known.

One possibility is that the unknown mechanism which sometimes causes the reduction in PD

in the early stages of creep may also, in some instances cause an increase in PD.  This

would normally go unnoticed when the PD data is interpreted using the standard method in

ASTM 1457-13 and would simply be interpreted as additional crack extension.
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(a) (b) (c) (d)
Figure 8.9: Crack profile of specimen CCG316_CT01 at (a) the mid-plane, (b) 2.5 mm

from the mid-plane, (c) 5.0 mm from the mid-plane, and (d) 7.5 mm from the mid-plane.

(a) (b) (c) (d)
Figure 8.10: Crack profile of specimen CCG316_CT02 at (a) the mid-plane, (b) 2.5 mm

from the mid-plane, (c) 5.0 mm from the mid-plane, and (d) 7.5 mm from the mid-plane.
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(a) (b)

(c) (d)
Figure 8.11: Crack profile of specimen CCG316_CT03 at (a) the mid-plane, (b) 2.5 mm

from the mid-plane, (c) 5.0 mm from the mid-plane, and (d) 7.5 mm from the mid-plane.

(a) (b)

(c) (d)
Figure 8.12: Crack profile of specimen CCG316_CT04 at (a) the mid-plane, (b) 2.5 mm

from the mid-plane, (c) 5.0 mm from the mid-plane, and (d) 7.5 mm from the mid-plane.
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Figure 8.13 shows the fracture surface for specimens CCG316_CT01, CCG316_CT02 and

CCG316_CT03.  The fracture surface of specimen CCG316_CT04 is not shown because no

crack growth was observed.  The mid-plane of the specimen is on the right-hand side of

each image, and the side-groove is on the left.  The dark, oxidised region ahead of the EDM

pre-crack is the region of creep crack growth.  This region contains small areas which are

not heat tinted.  They are most prevalent on specimen CCG316_CT02 which is the

specimen most significantly affected by discontinuous cracking (see Figure 8.10) and are

likely to correspond to islands of uncracked material which did not oxidise during the test.  It

is possible that some of the areas which are not heat tinted are due to contact with the

opposing face when fatiguing open the specimens after the test but a positive R-ratio (0.1)

was used in the fatigue process in an attempt to minimise this.

(a) (b)

(c)
Figure 8.13: Fracture surface of specimens (a) CCG316_CT03, (b) CCG316_CT02, and

(c) CCG316_CT01.

The average final crack extension, Δaf, measured from the fracture surface using image

processing software [139], is provided in Table 8.3.  The crack extension for specimen

CCG316_CT03 is from a small, localised region of creep crack growth close to the mid-plane

Side Groove

EDM Pre-crack

Creep Crack Growth

2.0 mm

Post-test fatigue

Mid-plane
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of the specimen which is consistent with observations from the crack profiles in Figure 8.11.

Also provided in the same table are the crack extensions at the mid-plane, measured from

the fracture surface, Δaf_mid_fract, and the length of the crack at the mid-plane measured from

the crack profiles in Figure 8.9(a), Figure 8.10(a) and Figure 8.11(a), Δaf_mid_profile.  The crack

extensions determined from the crack profiles include the discontinuities ahead of the main

crack tip.  The two measurements of crack length at the mid-plane are in good agreement

which suggests that whilst the crack appears discontinuous from the profile, these

discontinuities are linked to the main crack in other planes which allows the apparent

discontinuities to oxidise.

Specimen
Δaf

[mm]
Δaf_mid_profile

[mm]
Δaf_mid_fract

[mm]

CCG316_CT01 2.44 2.64 2.69

CCG316_CT02 0.62 0.99 0.96

CCG316_CT03 0.01 0.20 0.17

CCG316_CT04 0.00 0.00 0.00

Table 8.3: Post-test crack length measurements.

8.4.2 Interpretation of the PD Data

An abrupt increase in gradient on a plot of resistance (or PD) against CMOD appears to

correspond to crack initiation as demonstrated by the fracture surface and crack profile

observations of specimen CCG316_CT03.  This test was interrupted immediately after the

increase in gradient and significant damage, in the form of micro-cracks, is observed, but

they are only linked to the EDM pre-crack at the mid-plane.  This is the location of highest

constraint and the most likely location for crack initiation to occur.  This suggests that the test

was interrupted shortly after the onset of crack growth as defined by the point at which

damage first links up with the pre-crack.  Conversely, no crack growth was observed for

specimen CCG316_CT04 which did not demonstrate an increase in gradient, despite a

notable increase in PD.  This is consistent with the preliminary test performed on P91.

To determine crack extension, from the PD data a value of the normalising resistance, R0,

must be determined for the calibration function.  Assuming that the increase in gradient

corresponds to the onset of crack growth, it is proposed that the resistance at this point is

the most appropriate value.  This will remove any change in resistance due to strain which

occurs prior to crack initiation from the calculation of crack growth.  This includes plastic

strains which occur during load-up and creep strains which occur during the incubation

period.  This approach is analogous to the ‘COD’ method used to measure stable tearing
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during fracture toughness testing and assumes that after the onset of crack growth the

influence of any additional strain is negligible.  To determine how this method of interpreting

the PD data will influence the results of a creep crack growth test, the data from the three

tests for which crack growth occurred has been interpreted twice.  Once using the current

method in ASTM E1457-13 and once using the proposed modified method.

Where the value of R0 has been derived based on the modified method it is denoted R0_MOD

and is determined from the intersection of two linear regressions applied to the data either

side of the change in slope as shown in Figure 8.14.  For specimen CCG316_CT03, the

initial drop in resistance was ignored and the linear regression was applied to the data after

this drop as shown in Figure 8.14(c).

(a) (b)

(c)
Figure 8.14: Identification of R0_MOD for specimens (a) CCG316_CT01, (b)

CCG316_CT02, and (c) CCG316_CT03.
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Where the value of R0 has been derived based on the method in ASTM E1457-13 it is

denoted R0_ASTM.  According to this standard, R0 should be taken as the resistance at the start

of the creep phase of the test unless an initial drop in resistance is observed in which case

the minimum value should be “extrapolated back to zero time”.  For specimen

CCG316_CT03 this has been interpreted as setting R0_ASTM equal to the minimum resistance

in Figure 8.14(c).

The values of R0_ASTM and R0_MOD for each of the specimens are summarised in Table 8.4

along with the final resistance measurement, Rf.  Also included in this table, are the

predicted final crack extensions based on these resistances, Δapf_ASTM and Δapf_MOD, and the

average crack extension measured from the fracture surface, Δaf.

Specimen ID
R0_ASTM

[mΩ]
R0_MOD

[mΩ]
Rf

[mΩ]
Δapf_ASTM

[mm]
Δapf_MOD

[mm]
Δaf

[mm]

CCG316_CT01 426.76 427.36 455.85 1.33 1.30 2.44

CCG316_CT02 427.65 428.47 432.74 0.24 0.20 0.62

CCG316_CT03 430.69 430.83 431.08 0.02 0.01 0.01

Table 8.4: Inputs to crack length calculations

For specimens CCG316_CT01 and CCG316_CT02, the crack growth predicted from the PD

is significantly less than the value measured from the fracture surface, independent of the

method of interpreting the PD data.  For specimen CCG316_CT01 the PD predicts

approximately half of the crack extension measured from the fracture surface and for

specimen CCG316_CT02 this reduces to a third.  According to ASTM E1457-13, which

allows a maximum discrepancy of 15% between the predicted crack length and the fracture

surface measurements, these tests are invalid.  The most likely causes of these

discrepancies are discontinuous cracking and asperities on the fracture surface, both of

which can be observed from the crack profiles.  These prevent clean separation of the crack

faces and provide alternative paths for the current which will reduce the measured

resistance and the predicted crack length [76, 78].  This crack morphology is typical of creep,

which suggests that many tests will be rendered invalid in accordance with ASTM E1457-13.

The main output from a CCG test is a correlation between some parameter which

characterises the crack tip conditions and the crack growth rate.  The analytical models used

to calculate the crack tip parameter assume a sharp, straight fronted, continuous crack

which is very different from the crack profiles shown in Figure 8.9 and Figure 8.10.  The

interaction of the main crack and the discontinuities ahead of it will be extremely complex so

the accurate determination of an ‘effective’ crack size is not practical.  A conservative

interpretation of the test data is therefore required.
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The crack extension is typically small compared with the overall crack length, so the

calculated crack growth rate is significantly more sensitive to the crack extension

measurement than the parameter which characterises the crack tip.  A conservative

correlation should therefore be obtained by overestimating the crack extension.  The length

of the heat tinted region at the mid-plane of the specimen is in good agreement with the

distance from the EDM pre-crack to the tip of the discontinuous crack measured from the

crack profile at the same location.  This suggests that the average crack length measured

from the fracture surface, Δaf, includes most of the discontinuities ahead of the crack tip and

is effectively an upper-bound envelope of the crack size.  ASTM E1457-13 provides a linear

correction for the PD data based on measurements from the fracture surface.  If the errors in

the PD measurement vary approximately linearly with crack extension, this linear correction

should produce conservative results for all intermediate crack lengths.  This approach has

been demonstrated to accurately suppress errors due to electrical bridging across the crack

faces for stress corrosion cracking [76].

The subsequent analysis of the results is based on crack extensions which have been

corrected based on the fracture surface measurements. Figure 8.15 compares the corrected

crack extension for the ASTM and modified methods of interpreting the PD data for

specimens CCG316_CT01 and CCG316_CT02.  For both specimens, the ASTM method

predicts immediate crack growth whilst the modified method demonstrates a period of

incubation.  At the point of initiation, as predicted by the modified method, the ASTM method

predicts 0.05 mm and 0.10 mm of crack extension in specimens CCG316_CT01 and

CCG316_CT02 respectively.  This is most likely spurious crack growth caused by the

accumulation of creep strains during incubation.

(a) (b)
Figure 8.15: Corrected crack extension for (a) specimen CCG316_CT01, and (b)

specimen CCG316_CT0200.51
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The initiation times for both methods of interpreting the PD data are summarised in Table 8.5

along with the experimental transition times, tT.  The onset of crack growth is denoted 0
ASTMt

and 0
MODt for the ASTM and modified methods respectively.  The corresponding times for

0.2 mm of crack growth are denoted 0 2
ASTM
.t and 0 2

MOD
.t .

Specimen ID Tt
[h]

0
ASTMt
[h]

0
MODt
[h]

0 2
ASTM
.t
[h]

0 2
MOD
.t

[h]

CCG316_CT01 141 0 237 450 478

CCG316_CT02 192 0 226 396 463

CCG316_CT03 N/A 8 94 N/A N/A

Table 8.5: Comparison of incubation times

There is a significant difference in the times corresponding to the onset of crack growth

measured by the two methods.  This is because the ASTM method assumes the onset of

crack growth occurs at the start of the test unless there is an initial drop in PD in which case

initiation corresponds to the time of the minimum PD value.  The modified method predicts

the onset of crack growth after ~230 hours for tests CCG316_CT01 and CCG316_CT02.

For test CCG316_CT03, it is predicted to occur after approximately half this time.  This

difference is typical of the scatter often seen in creep crack initiation data.

Despite this difference in the onset of crack growth, the times for 0.2 mm of crack extension

to occur, as measured by the two methods, are very similar as a result of the rapidly

increasing crack growth rate shown in Figure 8.15.  The modified method predicts it takes

6% longer than the ASTM method in specimen CCG316_CT01 and 17% longer for

specimen CCG316_CT02.  Although these differences are relatively small, the preliminary

test performed on P91 steel has demonstrated that this is not always the case.  The ASTM

method predicted 0.2 mm of crack extension after ~350 hours whilst the test was interrupted

after 1660 hours with no apparent crack growth which is almost a factor of 5 different.

The difference in behaviour between the two materials is because Type 316H stainless steel

at 550 ºC has a creep ductility of ~11% [8] whilst P91 at 620 ºC has a much higher creep

ductility of ~32% [136].  Assuming crack initiation occurs when this ductility is exhausted the

PD system will measure larger spurious crack extensions due to creep in a P91 specimen.

The difference in creep strain between the two specimens can be observed qualitatively by

comparing the final diameter of the EDM pre-crack measured from the post-test crack

profiles.  For the Type 316H specimen it is ~0.45 mm, as measured from Figure 8.11, and

for the P91 specimen it is ~0.60 mm, as measured from Figure 8.5.  Both specimens initially

had nominally identical ~0.30 mm EDM pre-cracks.  The total strain at the crack tip is
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therefore much larger in the P91 specimen despite larger plastic strains in the Type 316H

specimen.

The crack growth rates for specimens CCG_CT01 and CCG_CT02, have been correlated

with the crack tip parameter C* in Figure 8.16(a) and Figure 8.16(b) respectively.  Both

methods of analysing the PD data are shown.  For both specimens the method of

interpreting the PD data has a minimal influence on the steady state crack growth rates with

both data sets lying approximately on top of each other.  The main difference is in the

so-called “tail” region with only the ASTM method predicting a sizable tail.  This

demonstrates that, for this material, the tail is mainly due to strain effects rather than crack

growth.  The difference in the steady-state crack growth rates would be more significant for

materials with higher creep ductility.

(a) (b)
Figure 8.16: Correlation between crack growth rate and C* for (a) specimen

CCG316_CT01, and (b) specimen CCG316_CT02

8.5 Finite Element Investigations

A modified method of interpreting the PD data from a creep crack growth test has been

proposed.  To investigate possible limitations associated with this approach, a sequentially

coupled structural-electrical FE model will be used.  This FE based approach was developed

in Chapter 6 for a stationary crack and extended to include crack extension in Chapter 7.  In

this chapter it will be extended further to include creep and validated against the

experimental measurements obtained from specimen CCG316_CT01.  It will then be used to

investigate possible limitations the proposed method.

It was confirmed in the previous chapter that the increase in gradient on a plot of resistance
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accompanies an increment in crack length produces a large change in COD which can mask

the increase in gradient.  This is analogous to a creep crack growth test performed on a

material with very high creep ductility where the large creep strains which accompany crack

growth may act in a similar manner.  The influence of creep ductility on the ability to observe

an increase in gradient will therefore be investigated.

An additional complication associated with creep crack growth testing is stress redistribution

which occurs prior to attaining steady-state conditions.  This stress redistribution is likely to

influence the PD response and could also obscure the change in slope.  The influence of

stress redistribution on the PD response will also be investigated.

8.5.1 Model Validation

8.5.1.1 Geometry and Mesh

Two 3D ¼ models of the C(T) specimen were produced using Abaqus [11].  Model ‘CCG_CI’

was used to assess the influence of strain on resistance up to the point of crack initiation.

Model ‘CCG_CG’ was used to assess the entire creep crack growth test, including crack

growth.  The two models are shown in Figure 8.17 and Figure 8.18 respectively. Model

‘CCG_CI’ includes the 0.15 mm radius EDM pre-crack and a focused mesh to accurately

capture the strain field at the crack tip.  Model ‘CCG_CG’ has a uniform mesh at the crack tip

to allow 0.1 mm increments of crack growth to be modelled. Due to the increased

computational expense of modelling crack growth, a coarser mesh was applied to this

model.  This mesh was validated by comparing the results of the two models up to the onset

of crack growth.  Both models used linear brick elements with a summary of the meshes

provided in Table 8.6.

Figure 8.17: FE model ‘CCG_CI’ used to predict the change in PD up to crack
initiation.
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Figure 8.18: FE model ‘CCG_CG’ used to predict the change in PD including crack
growth.

FE Model Number of
Elements

Structural Element
Type

Electrical Element
Type

CCG_CI 45,300 C3D8R DC3D8E

CCG_CG 33,810 C3D8R DC3D8E

Table 8.6: Finite element mesh details

8.5.1.2 Boundary Conditions

8.5.1.2.1 Model ‘CCG_CI’

Appropriate boundary conditions were applied to the planes of symmetry.  A concentrated

force was applied to a node at the centre of the pin hole.  This node was free to move in the

y direction (the direction of the applied force) and free to rotate about the z axis to simulate

pin rotation in the shackles.  All other degrees of freedom were constrained. The motion of

this node was transmitted to the inside surface of the pin hole in all degrees of freedom via a

kinematic coupling.  This prevented the hole from deforming.  The loading pin was not

explicitly modelled to reduce computational expense.  It has been shown that the strain

around the pin hole has a negligible impact on the resistance measurement obtained for a

similar PD configuration to the one shown in Figure 8.3.  A 12.25kN force was applied to the

FE model.  This is equivalent to the 24.5kN force applied in the experiments due to

symmetry. The structural analysis consisted of two load steps: “load-up” and “creep”. It has

been assumed that no creep occurs during load-up.

For the electrical analyses a 0 V electrical potential was applied to all nodes on the

remaining ligament ahead of the crack (the y plane of symmetry).  A point current source

Y

Z
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was applied to a node at the current injection location and the electrical potential was

measured at a node at the PD probe location.  All electrical results are presented in terms of

relative change in resistance so they are independent of the magnitude of the applied

current and the material resistivity.

8.5.1.2.2 Model ‘CCG_CG’

For the structural analysis the method of applying the load and the initial symmetry boundary

conditions were the same as for model ‘CCG_CI’. The initial two load steps were also the

same, but for every 0.1 mm increment of crack growth an additional two steps were

included.  The first of these was to release a line of nodes parallel to the crack front from the

symmetry boundary condition applied to the ligament ahead of the crack.  The second was

to allow creep to occur before the next 0.1 mm increment in crack length.  The rate of crack

growth was determined from the experimental data for specimen CCG316_CT01.  A

comparison of the experimental and FE crack length vs. time is shown in Figure 8.19.  The

experimental crack length data is corrected based on the post-test fracture surface

measurements.  This method of simulating crack growth is extremely simplified.  It assumes

a straight crack front and a continuous, perfectly sharp crack tip.

Figure 8.19: Comparison of experimental crack growth with the incremental crack
growth applied to FE model ‘CCG_CG’.
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For the electrical analyses the boundary conditions were similar to those applied to model

‘CCG_CI’.  The 0V electrical potential applied to all nodes on the remaining ligament ahead

of the crack was updated after each crack increment.

8.5.1.3 Material Properties

An elastic modulus, E, of 159.75 GPa and a Poisson’s ratio, ν, of 0.294 were applied to the

structural model.  The true plastic stress-strain data is provided in Table 8.7.  This tensile

data is specifically for cast 55882 of Type 316H and is obtained from the validation section of

R6 [35].

True Stress
[MPa]

True Strain
[mm/mm]

116.2 0.000
191.9 0.002

228.7 0.010

257.2 0.020

332.9 0.050

425.7 0.100

530.8 0.200

606.1 0.300

Table 8.7: True plastic stress-strain data for Type 316H stainless steel (cast 55882).

A primary + secondary creep law, originally derived from Type 316LN creep data, is

provided in RCC-MR [7].  The form of this creep law is shown in Equation (8.2):
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 (8.2)

In this creep law, εc is the total creep strain (in mm/mm), C1, C2, C, n1 and n are material

constants and t is time (in h).  The transition from primary to secondary creep occurs at time

tfp.  This corresponds to the time at which the primary creep rate is equal to the secondary

creep rate and can be calculated from Equation (8.3):

3
3

n
fpt C  (8.3)

where:
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At times less than tfp the total creep strain is due to primary creep only, εc
p.  After this the total

creep strain is equal to the primary creep strain at the transition time plus a secondary creep

component, εc
s.

The material constants for Equation (8.2) have been derived for Type 316H stainless steel

from the uniaxial creep tests listed in Table 8.8.

Test ID Header Cast Stress
[MPa]

tfp
[h]

c
s

[h-1]
Reference

G9 1C2/3 55882 318 300 5.42×10-6 Bettinson [135]

G12 1C2/3 55882 359 120 6.10×10-5 Bettinson [135]

G14 2D2/2 55882 349 160 4.18×10-5 Bettinson [135]

G16 2D2/2 55882 366 100 7.11×10-5 Bettinson [135]

CBB 2D2/2 55882 290 290 5.74×10-6 Bettinson [135]

CBC 2D2/2 55882 308 308 1.02×10-5 Bettinson [135]

A1-1 1B1/1 53415 335 82 1.95×10-4 Mehmanparast [140]

A1-2 1B1/1 53415 300 198 4.43×10-5 Mehmanparast [140]

A1-3 1B1/1 53415 290 N/A 1.19×10-5 Mehmanparast [140]

A1-4 1B1/1 53415 280 598 1.26×10-5 Mehmanparast [140]

A1-5 1B1/1 53415 257 602 8.50×10-6 Mehmanparast [140]
2-2 unknown 55882 290 745 1.16×10-5 Davies [141]

2-3 unknown 55882 335 38 1.22×10-4 Davies [141]

Table 8.8: Uniaxial creep tests performed on austenitic type 316H stainless steel at
550ºC.

For each test, the data corresponding to the primary and secondary creep regimes was

identified from a plot of creep strain vs. time.  The transition time for each test is provided in

Table 8.8.  For each plot of creep strain vs. time the secondary creep rate was obtained from

a linear regression fit to the secondary creep data.  These secondary creep rates are also

provided in Table 8.8.  A plot of secondary creep strain rates against nominal stress was

used to obtain values for the material constants, C and n in Equation (8.2).  This plot is

provided in Figure 8.20.
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Figure 8.20: Calculation of average secondary creep strain rate for austenitic type
316H stainless steel based on the tests listed in Table 8.8

It is apparent from Figure 8.20 that all three data sets have a similar stress exponent, n, but

a different coefficient, C.  Due to the different stress ranges for each data set, a power-law

regression fit to all the data results in a stress exponent which is much lower than would be

predicted by each individual data set and a coefficient which is much higher.  To avoid this,

separate power-law regression fits were applied to the data from Bettinson [135] and

Mehmanparast [140] and an average of these two fits was used.  The values of C and n

were calculated from Equations (8.6) and (8.7) respectively.  A power-law regression fit was

not applied to the data from Davies et al. [141] due to the limited number of data points

however, it can be seen that this data is in good agreement with the average power law

derived from the other two data sets.
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A similar approach was used to derive the primary creep constants C1, C2 and n1 in Equation

(8.2).  For each test listed in Table 8.8, the primary creep data was reduced to 10 evenly

spaced data points to apply an even weighting to each test.  For all tests performed by
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Bettinson [135], a surface in the form of the primary component of Equation (8.2) was fitted

to the data using the method of least squares.  This process was repeated for the tests

performed by Mehmanparast [140], and the average values of C1, C2 and n1 were calculated

from Equations (8.8), (8.9) and (8.10) respectively.

 1 1 1_ Bettinson _ MehmanparastC C C (8.8)

2 2
2 2

_ Bettinson _ MehmanparastC C
C


 (8.9)

1 1
1 2

_ Bettinson _ Mehmanparastn n
n


 (8.10)

The average material constants derived for Type 316H stainless steel at 550 °C are

provided in Table 8.9.  These material constants were applied to the FE model via a user

subroutine which assumed strain hardening conditions.  A sensitivity study was used to

demonstrate that the difference between strain hardening and time hardening was negligible.

When these material properties are applied to a multi-axial stress state, a flow rule similar to

that used for plasticity is used to define the deformation.

Parameter Value

C1 2.42×10-17

C2 0.527
n1 5.374
C 9.05×10-36

n 12.202

Table 8.9: Average creep law coefficients for Type 316H at 550°C.  Stress in MPa, time
in h.
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8.5.1.4 Results

Figure 8.21 compares the structural response of the finite element models with the

experimental data for specimen CCG316_CT01 during the load-up phase of the test.  The

static response of both FE models during load-up is in very good agreement with the

experimental data.  This provides confidence in the tensile material properties and structural

modelling assumptions.  It also demonstrates that the differences between the two models

(the crack tip acuity and mesh density) do not significantly influence the global response of

the specimen during load-up.

Figure 8.21: Comparison of the structural response of the FE models and the
experimental data during load-up.
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Figure 8.22: Comparison of the structural response of the FE models and the
experimental data during load-up.

Figure 8.22 compares the time dependent response of the finite element models with the

experimental data during the creep phase of the test.  Both FE models are in good

agreement with the experimental data up to the onset of crack growth at ~240hrs. This

provides confidence in the creep properties derived above and demonstrates that the mesh

and geometry differences between the two models do not significantly influence the global

time dependent response. A sensitivity study was performed using the creep properties in

RCC-MR [7] derived for Type 316LN which resulted in an increase in CMOD over the initial

200hours of ~50%.  This difference is small compared to typical scatter observed in creep

data thus providing further confidence in the creep properties derived above.

After crack initiation, the CMOD is over-estimated by model ‘CCG_CG’ compared to the

experimental data.  The most likely source of this discrepancy is the simplified modelling

assumptions with respect to the crack morphology.  Uneven crack extension and

discontinuous cracking will both reduce the CMOD compared to the continuous, straight

fronted crack which is modelled and both of these phenomena have been observed in

specimen CCG316_CT01.

This discrepancy could also be due to the interaction between creep and plasticity.  In the

FE model, they are assumed to be independent, but they are both driven by dislocations.

The introduction of dislocations by either of these mechanisms will therefore influence the
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subsequent deformation by strain hardening the material [142]. This interaction will be most

significant when the crack is growing due to the evolution of the stress and strain fields

ahead of the crack however, it is likely to be a secondary effect compared to the significant

discontinuous cracking observed experimentally. Scatter in the secondary creep data is

unlikely to account for the discrepancy observed in Figure 8.22 because the value of tfp,

calculated from Equation (8.3) using the reference stress of 190 MPa, is much greater than

the test time.

Figure 8.23: Comparison of the electrical response of the FE models and the
experimental data during the load-up and early part of the creep phase, including

crack initiation.

Figure 8.23 compares the electrical response of both models with the experimental data.  It

includes load-up and the early stages of creep until just after the onset of crack growth.

Prior to any crack growth, the response of both models is similar which confirms that the

differences between them (the crack tip acuity and mesh density) do not significantly

influence the model behaviour.  At the onset of crack growth, model ‘CCG_CG’ predicts an

increase in gradient, similar to the one observed experimentally which supports the

proposed interpretation of the PD data.  Consistent with previous chapters both models

under predict the relative change in resistance due to strain.  This is because they do not

include the influence of strain on the resistivity of the material.
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Figure 8.24: Comparison of the electrical response of FE model ‘CCG_CG’ and the
experimental data for the entire creep crack growth test.

Figure 8.24 compares the electrical response of model ‘CCG_CG’ with the experimental

data for the entire creep crack growth test.  After the onset of crack growth, the FE

over-predicts both the relative change in resistance and the CMOD.  The differences in

CMOD are primarily due to the simplified crack morphology as discussed above.  The

differences in resistance are likely to be for the same reason.  Discontinuous cracking and

asperities on the fracture surfaces observed experimentally will allow the current to short

across the crack faces.  This will reduce the measured resistance compared to the FE

model. Crack tunnelling will also influence the experimental PD measurements as

demonstrated in Chapter 5 although this is likely to be a secondary effect compared to the

discontinuous cracking.  These results are in contrast to the simpler crack morphology

observed in the previous chapter for stable tearing where the correlation between the FE

and the experimental data was extremely good.

These results demonstrate that a sequentially coupled structural-electrical FE model can be

used to predict the influence of strain and crack initiation on the resistance of a specimen

during a high temperature creep crack growth test.  Similar to the room temperature

predictions from previous chapters, the FE does not capture the magnitude of the changes in

resistance because it does not include the influence of strain on resistivity, but it does

capture the general behaviour, including the abrupt increase in gradient on a plot of
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resistance vs. CMOD which corresponds to the onset of crack growth.  A limitation of this FE

technique is that it is not suitable for modelling complex crack morphology such as

discontinuous cracking which is typical of creep crack growth. The following studies into

possible limitations of the proposed method of interpreting the PD data from creep crack

growth tests will therefore focus on small amounts of crack extension such as those

associated with initiation. These studies will investigate the influence of creep ductility and

stress redistribution on the increase in gradient used to identify the onset of crack growth.

8.5.2 The Influence of Creep Ductility

In the previous chapter it was identified that the increase in gradient on a plot of resistance

(or PD) against COD for a high toughness, high strain-hardening material can be difficult to

identify.  This is because the additional load which accompanies stable tearing also

produces a large change in COD which can obscure the change in slope.  This is analogous

to a material with very high creep ductility undergoing a creep crack growth test where the

creep strain which accompanies crack growth will increase the COD and could obscure the

change in slope in a similar manner.

Figure 8.25:  The influence of the time for a 0.1 mm crack increment to occur on the
increase in gradient used to identify the onset of crack growth.

Assuming crack extension occurs when the creep ductility is exhausted; increasing the time

for crack extension to occur in an FE model of a specimen with a constant load is

approximately equivalent to increasing the creep ductility of the material.  To demonstrate

the effect of this, model ‘CCG_CG’ has been rerun with a single 0.1 mm increment of crack
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growth.  The time for that increment to occur has been varied from 100, 500, 1000 and 5000

hours.  The results of this analysis are provided in Figure 8.25.

As the time for the initial crack increment to occur increases, the corresponding increase in

creep strain reduces the acuity of the change in slope. For materials with very high creep

ductility the increase in gradient may be masked almost entirely, making it difficult to identify

the onset of crack growth.  This is similar to the limitation observed in fracture toughness

testing.  For the experiments presented earlier in this chapter, the initial 0.1 mm of crack

extension typically occurred over a period of ~180 hours (see Figure 8.19). Figure 8.25

suggests that this would need to increase by an order of magnitude before the increase in

gradient became difficult to identify.  This is a significant increase, and Type 316H is already

a creep ductile material, so the proposed method of interpreting CCG PD data should be

suitable for most engineering materials.

8.5.3 The Influence of Stress Redistribution

During a creep crack growth test, stress redistribution will occur prior to attaining

steady-state conditions.  This stress redistribution is likely to influence the PD response of

the specimen and could obscure the increase in gradient used to identify the onset of crack

growth.  To investigate the influence of stress redistribution a finite element parametric study

has been performed.

8.5.3.1 Geometry and Mesh

To perform this parametric study a 2D plane strain ½ FE model was generated using

Abaqus [130].  A large number of analyses were performed as part of this study, so a 2D

model was used to reduce the computational expense.  This assumes no out-of-plane

deformation and a constant level of crack tip constraint along the crack front.  A preliminary

study demonstrated that a 2D plane strain model will predict a change in resistance ~20%

lower than a 3D model as a result of these assumptions.  This is considered adequate for

the following qualitative parametric study.

The specimen geometry shown in Figure 8.1 was used, with the exception of the side

grooves which could not be included in the 2D model.  The model consists of 5,914 linear

quad elements.  Element types CPE4R and DC2D4E were used for the structural and

electrical models respectively.  The mesh is shown in Figure 8.26.

The inputs to this parametric study were based on the interrupted tests presented above to

provide realistic deformation magnitudes.  The material properties, defined in the following

section, are related to those of Type 316H stainless steel at 550ºC.  The load applied to the
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model was 30.9kN which results in a reference stress, σref, of 191.9MPa.  This is the 0.2 %

proof stress of 316H and is similar to the reference stress applied in the interrupted tests.

Figure 8.26: 2D Finite Element Mesh

8.5.3.2 Tensile Material Properties

A Ramberg Osgood material model, as defined in Section 2.2.2.1, has been assumed.  The

values of σp0 and E have been taken as the 0.2% proof stress and the Young’s modulus of

Type 316H stainless steel at 550 ºC provided in Section 8.5.1.3.  Three values of stress

exponent, N, have been considered: 1, 3 and 10.  For N = 1, the material is assumed to be

elastic, so α = 0.  For the other two stress exponents, the value of α has been calculated

such that 0.2% plastic strain occurs at σp0.  The material constants for each material are

provided in Table 8.10.

N E
[GPa]

σp0
[MPa] α

1 159.75 191.9 0.000
3 159.75 191.9 1.665

10 159.75 191.9 1.665

Table 8.10: Tensile material properties considered in the parametric study to
investigate the influence of stress redistribution

8.5.3.3 Creep Material Properties

A power-law creeping material model has also been assumed as defined in Section 2.2.3.3.

Three creep stress exponents, nA, have been considered: 1, 3 and 10.  For each stress
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exponent, the corresponding value of material constant AA has been calculated such that the

creep strain rate at the reference stress (191.9 MPa) is 2.26×10-6 h-1.  This is the average

creep strain rate for austenitic Type 316H stainless steel at 550 ºC for the same reference

stress [8].  The material constants for each material, including the average creep properties

for Type 316H at 550 ºC, are provided in Table 8.11.

Material nA AA

Type 316H Stainless Steel at 550 ºC [8] 8.17 5.02×10-25

Stress redistribution study, n = 1 1 1.18×10-08

Stress redistribution study, n = 3 3 3.19×10-13

Stress redistribution study, n = 10 10 3.33×10-29

Table 8.11: Creep properties for the materials considered in the parametric study to
investigate the influence of stress redistribution and the average creep properties for

austenitic type 316H stainless steel at 550 ºC.

8.5.3.4 Analysis Time

The stress redistribution time, tred, for elastic-creep conditions can be estimated from

Equation (8.11) [6].  At the reference stress and reference strain rate defined above stress

redistribution is estimated to take just over 500 hours.  To ensure the full effect of stress

redistribution was captured, each analysis was run for 2,000 hours.

ref
red c

ref

t
E






(8.11)

8.5.3.5 Results

Figure 8.27 shows the relationship between relative change in resistance and CMOD during

load-up and creep for each combination of material properties considered.  In Figure 8.27(a),

where elastic-creep conditions are assumed (N = 1), the predicted stress redistribution time

according to Equation (8.11) is shown by the “+” symbol.

When the tensile stress exponent, N, and the creep stress exponent, n, are equal, the linear

relationship which occurs during load-up (after the initial elastic region) continues into the

creep phase.  This is because there is no stress redistribution, so the evolution of the strain

field due to creep is equivalent to increasing the applied load in the absence of creep.  The

constant gradient in Figure 8.27 should make the increase in gradient at the onset of crack

growth relatively easy to identify.
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(a)

(b) (c)
Figure 8.27: Relative change in resistance against CMOD for a range of tensile and

creep material properties

When n < N the gradient of Figure 8.27 reduces gradually during the creep phase.  This

occurs over a very long period of time and the 2,000 hour duration of the analysis is not

sufficient for the stresses to fully redistribute.  For tests which replicate these conditions,

crack initiation is likely to occur prior to the completion of stress redistribution however due to

the very gradual change in gradient, the increase in gradient associated with the onset of

crack growth should still be easily identified.

When n > N the gradient of Figure 8.27 increases instantaneously at the start of the creep

phase before steadily reducing to a constant value. For N = 1, the stress redistribution times

predicted from Equation (8.11) are in good agreement with the start of the constant gradient

confirming that the change in gradient is indeed due to stress redistribution. If crack initiation

occurs during this period of stress redistribution, it may be difficult to identify a change in

slope due to the already steep gradient however, after stress redistribution, it should be

easily observed.
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8.6 Discussion

During a creep crack growth test, crack initiation can be identified from an abrupt increase in

gradient on a plot of resistance (or PD) against CMOD.  This corresponds to damage, in the

form of micro-cracks, ahead of the crack tip first linking up with the pre-crack.  Based on this

experimental observation, a modified method of interpreting the PD data from a creep crack

growth test has been proposed which is analogous to the ‘COD’ method used to measure

stable tearing during fracture toughness testing.  This approach has been validated through

a series of interrupted creep crack growth tests.

The change in PD (or resistance) which occurs during incubation is primarily due to creep

strain.  Using the current method of interpreting the PD data in ASTM E1457-13, this is

erroneously interpreted as crack growth.  For materials with moderate creep ductility, such

as Type 316H stainless steel, this spurious crack extension is relatively small but not

insignificant when compared to the 0.2 mm ‘engineering’ definition of crack initiation.  For

materials with high creep ductility, such as P91 steel, the spurious crack extension can be

much bigger than 0.2 mm such that incubation times are underestimated by more than a

factor of 5.

When plotting the crack growth rate against the crack tip characterising parameter C* the

influence of the modified method on the steady-state crack growth rates is small for the tests

performed here on Type 316H although it will be larger for materials with a higher creep

ductility.  The modified method does however remove a significant portion of the so-called

‘tail’ which is due to creep strains rather than crack growth.

The interrupted creep crack growth tests have also demonstrated that the PD technique can

significantly underestimate the crack extension.  This is because discontinuous cracking and

asperities on the fracture surfaces prevent clean separation of the crack faces and provide

alternative paths for the current.  To mitigate this, a linear correction to the PD based on the

final crack length measured from the fracture surface may be performed.  In most cases this

should provide conservative crack growth rates.

The sequentially-coupled structural-electrical FE tool developed in Chapter 6 has been

extended to include creep strain and crack growth and has been validated against the

experimental results.  Up to crack initiation, the model is in good agreement with the

experimental data and confirms that the increase in gradient corresponds to the onset of

crack growth. It is not however capable of capturing the change in PD due to significant

crack growth because the simplified modelling of crack extension doesn’t capture the

discontinuous crack morphology so it over predicts the change in resistance and CMOD

compared to the experimental data.  The use of the FE model as a predictive tool is
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therefore limited to load-up, incubation and crack initiation, but this not a significant limitation

because this is the portion of the test most influenced by strain.

This FE tool has been used to demonstrate that the increase in gradient used to identify the

onset of crack growth may be difficult to discern for materials with very high creep ductility.

A similar limitation was observed for fracture toughness testing of high toughness, high

strain hardening materials in the previous chapter.

The FE tool has also been used to look at the influence of stress redistribution.  It has been

demonstrated that the relationship between resistance (or PD) and CMOD during the early

part of a creep crack growth test is not always linear and depends on the combination of the

tensile and creep material properties. For the case where the creep stress exponent, n, is

greater than the tensile stress exponent, N, the gradient of a plot of resistance (or PD) vs.

CMOD will increase instantaneously at the start of the creep phase before steadily reducing

to a constant value.  If crack initiation occurs during this period of stress redistribution, it may

be difficult to identify the change in slope associated with the onset of crack growth but after

stress redistribution, it should be easily observed.  It should also be easily observed for other

combinations of tensile and creep material properties.
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Chapter 9:
Re-analysis of Creep
Crack Growth Data
9.1 Introduction

EDF Energy Nuclear Generation Limited have performed a significant number of creep crack

growth tests on Type 316H for a wide range of loads and test durations [143].  Historically,

the experimental data from these tests has been post-processed using a method similar to

the one proposed in ASTM E1457-13 [3].  In this chapter the raw data from a selection of

these tests has been reanalysed using the modified method proposed in the previous

chapter and compared with measurements obtained using the current ASTM method.

Consideration is given to both crack initiation times and crack growth rates although the

main focus is on initiation because, as discussed in the previous chapter, it is more

significantly influenced by strain and therefore the method of interpreting the PD data.

Three creep crack initiation models are provided in R5 [4]: Sigma-d, CTOD and TDFAD.

Details of these models are provided in Chapter 2.  These models have been previously

validated by comparing predictions with experimental data that has been analysed based on

the ASTM method.  The implications of the proposed modified method of interpreting the PD

data on this validation are assessed by comparing the reanalysed experimental data with

these three models.

9.2 Re-analysis of CCG Data

9.2.1 Test Methodology

All of the tests considered in this chapter were performed on C(T) specimens manufactured

from Type 316H and containing a sharp fatigue pre-crack.  A brief overview of the

methodology used to obtain the PD measurements is provided here.  A more detailed

description of the test methodology is set out in an internal company report [144].
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Figure 9.1: PD configuration adopted by EDF Energy Nuclear Generation Limited
showing the current injection locations (‘I’) and the PD probes (‘PD’)

Crack extension was monitored using a DCPD system with the PD configuration shown in

Figure 9.1.  No reference measurement was taken so the measurements are sensitive to

temperature fluctuations and amplifier drift.  The instantaneous crack length, a, was

determined from the corresponding PD, V, assuming a linear calibration function.  This

calibration function is provided in Equation (9.1) where a0 and af are the initial and final crack

lengths measured from the post-test fracture surface and V0 and Vf are the corresponding

PD measurements.

   
 

0
0 0

0
f

f

V V
a a a a

V V


  


(9.1)

9.2.2 Test Details

13 creep crack growth tests have been reanalysed covering a range of test durations from

62 to 17,850 hours.  Details of the individual tests are provided in Table 9.1.  The reference

stress values assume plane strain conditions.



232

Test ID Temp.
[ºC]

Load
[N]

σref
[MPa]

a0
[mm]

Δaf
[mm]

W
[mm]

B
[mm]

BN
[mm]

2D2/2 CT1 550 7.86 131.9 20.68 2.97 37.91 18.85 15.27

2D2/2 CT2 550 10.17 151.6 20.03 2.63 38.01 18.92 15.62

2D2/2 CT3 550 15.50 250.7 20.49 1.21 37.82 18.98 15.57

2D2/2 CT4 550 12.83 196.4 20.14 1.24 37.90 18.98 15.59

2D2/2 CT5 550 13.68 199.6 19.79 1.42 37.97 18.98 15.50

2D2/2 CT20 550 7.75 128.4 20.56 4.52 37.97 18.86 15.13

1C2/3 CT5 550 14.40 233.7 20.48 2.21 38.02 19.00 15.20
1C2/3 CT6 550 13.25 196.9 19.87 2.86 38.10 19.02 15.21

1C2/3 CT11 550 8.75 257.5 21.24 8.26 38.01 18.96 9.32

2B1/2 CT14 550 14.58 243.7 20.63 2.96 37.97 18.93 15.14

2B1/2 CT15 550 15.43 251.8 20.42 6.36 37.94 18.95 15.12

2B1/2 CT16 550 10.00 159.7 20.26 1.89 37.99 18.93 15.10

2B1/2 CT17 550 11.25 169.2 19.86 1.21 37.99 18.95 15.15

Table 9.1: Test details of the creep crack growth tests performed on Type 316H
stainless steel.

9.2.3 Interpretation of the PD Data

9.2.3.1 The ASTM Method

All of the tests listed in Table 9.1 have been analysed using the ASTM method. In five cases

an initial drop in PD was observed: 2D2/2 CT1, 2D2/2 CT2, 2D2/2 CT4, 2D2/2 CT5 and

1C2/3 CT6.  For these tests the value of V0 used in Equation (9.1) was the minimum value

observed throughout the test. For all other tests the value of V0 was the value at the end of

load-up. The onset of crack growth predicted by this method is, by definition, the time

corresponding to V0.  For most tests this corresponds to t = 0, but for tests which experience

an initial drop in PD this corresponds to t > 0.  This method of addressing an initial drop in

PD is merely a pragmatic method of analysing the data and is not believed to have any

physical relevance so the time to the onset of crack growth, as predicted by the ASTM

method, has not been reported here. The time for 0.2 mm of crack extension to occur is

herein denoted 0 2
ASTM
.t .

9.2.3.2 The Modified Method

All of the tests listed in Table 9.1 have also been analysed using the modified method

proposed in the previous chapter.  For each of the tests an increase in gradient was
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successfully identified which has been attributed to the onset of crack growth. The time at

the increase in gradient is denoted 0
MODt , and the time for 0.2 mm of crack extension to occur

is denoted 0 2
MOD
.t .  Despite all of the tests demonstrating an increase in gradient, some

variation in the shape of the plots was observed as demonstrated by the examples provided

in Figure 9.2. These four plots are typical of all 13 tests so details of the interpretation of the

PD data are only provided for these tests.

(a) (b)

(c) (d)
Figure 9.2: Increase in gradient used to identify the onset of crack growth in
specimens (a) 2D2/2 CT1, (b) 2B1/2 CT14, (c) 2D2/2 CT20, and (d) 2B1/2 CT16.

The load-up behaviour of the four tests shown in Figure 9.2 is generally similar. There is a

large increase in PD when the initial load is applied as the two faces of the fatigue pre-crack

are separated.  This is followed by an approximately linear region as observed in the

interrupted tests in the previous chapter.  The main differences between the four tests occur

during the early part of the creep phase.

The PD vs. CMOD plot for specimen 2D2/2 CT1 is shown in Figure 9.2(a).  Although there is

an initial drop in PD, the subsequent behaviour is consistent with the FE predictions and

interrupted tests in the previous chapter.  The initial slope is approximately parallel to the

load-up data, before an obvious increase in gradient.
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The plot for specimen 2B1/2 CT14, shown in Figure 9.2(b), demonstrates similar behaviour

but the increase in gradient occurs very early in the test such that there are only two data

points prior to it.  This highlights the need to increase the frequency with which experimental

data is recorded in the early part of the test in order to accurately capture the change in

slope.

The increase in gradient is more difficult to identify in Figure 9.2(c) which is for specimen

2D2/2 CT20.  Two points of inflection can be observed early on in the test and, unlike the

other tests, the subsequent data demonstrates significant fluctuations. Possible reasons for

this are the stability of the test temperature or the measuring equipment which are likely to

fluctuate over the duration of such a long term test (~18,000 hours).  If this is the cause then

it could have been suppressed by a suitable reference measurement.  To analyse this test,

the first increase in gradient has been assumed to correspond to crack initiation.

The data for specimen 2B1/2 CT16, shown in Figure 9.2(d), demonstrates an immediate

increase in slope at the start of the creep phase relative to load-up.  This behaviour is similar

to one of the interrupted tests presented in the previous chapter where observations from the

fracture surface confirmed that this increase in gradient does not correspond to instant crack

growth.   It does however make the increase in gradient less evident but it is still observed

nonetheless.  Similar behaviour was also demonstrated by specimen 2B1/2 CT17.
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9.2.4 Results

9.2.4.1 Creep Crack Growth Rates

Figure 9.3: Correlation between crack growth rate and C* for all specimens.

Figure 9.3 shows the correlation between the steady-state creep crack growth rate and C*

for all of the tests listed in Table 9.1.  Both methods of interpreting the PD data are included.

For some of the tests the modified method results in a small increase in the measured crack

growth rate, but for many, the difference is negligible.  The tests with the largest difference

are 1B1/2 CT16 and 1B1/2 CT17. These are the tests which demonstrate an instantaneous

increase in the gradient of a plot of PD vs. CMOD after load-up, as shown in Figure 9.2(d).

This results in a larger increase in PD prior to the change in slope and therefore a larger

difference between the two methods of interpreting the PD.

The results in Figure 9.3 are in good agreement with the original analysis of the data [143].

They are also consistent with the interrupted tests performed in the previous chapter.  In

general it may be concluded that for this material, the modified method of interpreting the PD

data does not significantly influence the measured crack growth rate compared to the current

method in ASTM.  For other, more ductile materials however, the difference between the two

methods will be larger and may become significant.  Larger differences are also expected

when measuring small amounts of crack growth such as those associated with initiation.
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9.2.4.2 Creep Crack Initiation

The different initiation times and the transition time, tT, as a proportion of the test duration, tf,

are provided in Table 9.2.  On average, the time for 0.2 mm of crack extension to occur

based on the modified method of interpreting the PD data, 0 2
MOD
.t , is approximately double the

value based on the ASTM method, 0 2
ASTM
.t .  This is because the ASTM method erroneously

interprets the change in PD due to creep strain as crack growth.  Similar to the creep crack

growth rates in Figure 9.3, the maximum difference in initiation times correspond to tests

2B1/2 CT16 and 2B1/2 CT17.  For these two tests the difference is a factor of 4.5 and 3.0

respectively.

The time for the onset of crack growth, identified from the increase in gradient, 0
MODt , is on

average 80% of the time for 0.2 mm of crack extension to occur as measured using the

ASTM method, 0 2
ASTM
.t .  This suggests that for this material, the “engineering definition” of

initiation in ASTM E1457-13 [3] provides a reasonable approximation of the time to the onset

of crack growth which is generally conservative.

Test ID σref
[MPa]

tf
[h]

T

f

t
t

[%]

0
MOD

f

t
t

[%]

0 2
MOD
.

f

t
t

[%]

0 2
ASTM
.

f

t
t

[%]

2D2/2 CT1 131.9 16630 10.9 7.3 19.6 9.4

2D2/2 CT2 151.6 4698 8.1 26.8 38.1 20.6

2D2/2 CT3 250.8 170 8.2 7.6 37.6 36.5

2D2/2 CT4 196.4 1921 10.0 20.5 45.0 26.4

2D2/2 CT5 199.7 1589 8.0 15.4 39.7 24.8

2D2/2 CT20 128.4 17850 43.3 0.8 8.4 5.5

1C2/3 CT5 234.4 146 1.4 7.5 24.0 19.9

1C2/3 CT6 196.9 1081 4.1 5.7 23.9 14.9

1C2/3 CT11 257.3 287 2.8 3.1 9.1 7.0

2B1/2 CT14 243.8 140 2.1 4.3 22.1 17.1

2B1/2 CT15 251.9 62 1.6 12.9 19.4 9.7
2B1/2 CT16 159.3 3572 9.6 30.1 44.8 10.0

2B1/2 CT17 169.3 1537 15.1 11.8 38.7 12.9

Table 9.2: Predicted crack initiation times for a range of creep crack growth tests
performed on austenitic Type 316H stainless steel at 550ºC.

Power-law correlations between the various definitions of initiation time in Table 9.2 and

experimental values of C* have been derived in the form of Equation (9.2).



237

q
it C*  (9.2)

Values of the correlation coefficient, γ, and power-law exponent, q, are provided in Table 9.3

along with 2 standard deviations to the fit.

Initiation Time Δa
[mm] γ q ×/÷ 2SD

0
MODt 0.0 0.066 0.685 3.19

0 2
MOD
.t 0.2 0.309 0.619 2.54

0 2
ASTM
.t 0.2 0.252 0.600 2.76

Table 9.3: Power law fit parameters for predicting the initiation time (in h) from C* (in
MPam/h).

Figure 9.4 compares the two correlations for 0.2 mm of crack extension.  The two mean lines

are approximately parallel and both data sets demonstrate similar scatter.  For both data

sets, the largest outlier is due to specimen 2D2/2 CT20 (circled).  Fluctuations in the PD data

were observed for this test as shown in Figure 9.2(c).  These fluctuations are the probable

cause of this relatively low experimental measurement.

Figure 9.4:  Experimental correlation between the initiation time (based 0.2 mm of
crack extension) and C* for the two different methods of interpreting the PD data.
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Comparisons of the correlations between 0
MODt , 0 2

MOD
.t and C* are provided in Figure 9.5.

Again the two mean lines are nearly parallel but the scatter in the 0
MODt data is slightly higher.

This can again be attributed to specimen 2D2/2 CT20 (circled) for which fluctuations were

observed in the PD data.  By removing this data point, the scatter for the two data sets is

similar.  In this study the initial increase in gradient, shown in Figure 9.2(c), was used to

predict the onset of crack growth but the correlations in Figure 9.5 suggest that this is more

likely due to a fluctuation in the PD data and the onset of crack growth occurs much later.

This highlights the importance of implementing a reference measurement to remove these

fluctuations.

Figure 9.5:  Experimental correlation between the initiation time and C* for the two
definitions of initiation obtained from the modified method of interpreting the PD data.

Interpreting the PD data using the modified method typically results in the data points in

Figure 9.4 moving up and to the left compared to the ASTM method.  The vertical shift is due

to the increase in initiation time whilst the horizontal shift is due to a reduction in C*.  The

latter is because the ASTM method sometimes predicts 0.2 mm of crack extension occurs

before steady-state conditions are established whilst the modified method consistently

predicts 0.2 mm of crack extension occurs during steady-state creep conditions.

A typical example of this is shown in Figure 9.6(a) which shows the correlation between

crack growth rate and C* for specimen 2B1/2 CT16.  The ASTM method of interpreting the

PD data predicts a significant tail, and 0.2 mm of crack extension occurs within this tail.  The
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modified method however discards most of the tail, attributing it to creep strain, and predicts

0.2 mm of crack growth occurs approximately at the onset of steady-state conditions.

Conversely, specimens which demonstrate small changes in PD prior to the increase in

gradient, such as 2B1/2 CT14, generally have a much smaller tail as shown in Figure 9.6(b).

In this case, both methods of interpreting the PD predict 0.2 mm of crack extension occurs

approximately at the onset of steady-state conditions.  This supports the suggestion made in

the previous chapter that when large tails are observed, this is most likely due to the effects

of strain rather than crack growth.

(a) (b)
Figure 9.6: Correlation between crack growth rate and crack tip characterising

parameter C* for (a) specimen 2B1/2 CT16, and (b) specimen 2B1/2 CT14.  Initiation
corresponds to Δa = 0.2 mm.

9.3 Re-validation of CCI Models

Various CCI models have been proposed in the literature and are reviewed in Chapter 2.

These models have been previously validated by comparison with experimental times for

0.2 mm of crack extension to occur based on the ASTM method of interpreting PD data.

The implications of the proposed modified method of interpreting PD data on the validation

of these models are investigated here by comparing predictions from these models with the

experimental results in Table 9.2.

The three creep crack initiation models included in R5 [4] have been considered.  These are

the sigma-d model, the CTOD model and the TDFAD model.  Each of these models requires

different material properties as inputs which are usually obtained from uniaxial tensile and

creep tests. This test data is provided in the following section.
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9.3.1 Material Properties

9.3.1.1 Uniaxial Tensile Data

Uniaxial tensile data for Type 316H stainless steel is provided in the previous chapter and

was originally obtained from the validation section of R6 [35].  This data is provided in a

piece-wise linear format but it is much easier to incorporate into analytical initiation models in

the form of a Ramberg-Osgood material model (see Section 2.2.2.1). A single

Ramberg-Osgood fit cannot accurately capture the full stress-strain behaviour, so two fits

have been applied, as shown in Figure 9.7.  One fit provides an accurate representation of

the experimental data for low strains (<2.4%) and the other for high strains (≥2.4%).  The

relevant fitting parameters are provided in Table 9.4.

Valid Strain
Range

σp0
[MPa]

εp0
[mm/mm] α N

εe + εp < 2.4% 191.9 1.20×10-3 1.80 8.0

εe + εp≥ 2.4% 191.9 1.20×10-3 7.60 3.0

Table 9.4: Ramberg Osgood fitting parameters for Type 316H stainless steel.

Figure 9.7: Ramberg-Osgood fits to the uniaxial tensile test data for Type 316H at
550ºC.
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9.3.1.2 Uniaxial Creep Data

Webster et al. [8] has analysed creep rupture data for a large number of uniaxial tests

performed on Type 316.  These tests were performed for a range of stresses between

~170 MPa and ~380 MPa and test durations from ~30 to ~100,000 hours.  This data was

collated from a wide range of sources and incorporates different variants of Type 316 [145].

Different variants of Type 316 are likely to demonstrate slightly different creep properties, but

any such variations should be outweighed by the robust power-law fits obtained from such a

large data set. The empirical fits to the data are provided in Table 9.5. The various

parameters are described in Section 2.2.3.

Parameter Value ×/÷ 2SD

nA 8.45 -
AA 1.05×10-25 9.25
νr 8.45 -
Br 1.09×1024 5.33
εf 11.3% 4.12

Table 9.5: Creep strain rate and rupture properties for Type 316 at 550 ºC [8].  Stresses
are in MPa, time in hours, strain rate in mm/h and strain in %.

Significant scatter was observed in the creep ductility data so a mean value of 11.3% was

selected.  For a creep ductility that is independent of stress, it follows that the average stress

exponent, nA, should be equal to the stress rupture exponent, νr.  Power-law regression fits

to the data produced values of nA and νr of 8.17 and 8.72 respectively.  For consistency with

the constant creep ductility, a mean value of 8.45 was assumed for both.  The corresponding

coefficients AA and Br were calculated accordingly.

9.3.2 Sigma-d Predictions

The Sigma-d model, as defined in R5 [4], has been used to predict initiation times for the

specimens in Table 9.1.  The characteristic distance, d, ahead of the crack tip was taken as

50 μm and a Neuber construction was used to predict the equivalent stress at this distance

ahead of the crack tip.  Initiation predictions based on this model are compared to

experimental measurements of the time for 0.2 mm of crack extension to occur in Figure 9.8.

Only predictions based on plane stress conditions are provided which is implied in R5 (see

Section 2.4.3) by the definition of the equivalent elastic stress.  This is a conservative

assumption since under plane strain conditions the stress triaxiality suppresses plasticity so

the plastic collapse load is higher.  This results in a lower reference stress, a lower value of

σd and therefore a longer initiation time.
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Figure 9.8: Comparison of crack initiation predictions, based on the Sigma-d, model
with experimental measurements of 0.2 mm of crack of crack extension.

Predictions based on the Sigma-d method are conservative for all specimens irrespective of

the method of interpreting the PD data but the level of conservatism is considerably higher

when the modified method is used to interpret the PD.  This is because it increases the

measured time for 0.2 mm of crack growth to occur without influencing the predictions from

the Sigma-d model.  The least conservative predictions are obtained for specimen

2D2/2 CT20 (circled) which is the outlier observed in Figure 9.4 and Figure 9.5.  Fluctuations

in the experimental PD data are the probable reason for this.

This Sigma-d method does not explicitly model crack extension but its predictions are

assumed to correspond to 0.2 mm of crack extension in R5 [4].  This is based on empirical

validation using the ASTM (or similar) method of interpreting the PD data. Figure 9.9

compares the Sigma-d predictions with the onset of crack growth identified from the increase

in gradient on a plot of PD vs. CMOD.  It demonstrates the predictions remain conservative

for all specimens except 2D2/2 CT20 (circled).
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Figure 9.9: Comparison of crack initiation predictions, based on the Sigma-d model,
with experimental measurements of the onset of crack growth (increase in gradient).

9.3.3 CTOD Predictions

The CTOD model, as originally described by Ainsworth [48] and in its current form in R5,

requires a value of the critical CTOD obtained from experimental measurements.  For many

materials this data is not available.  Where this is the case, an alternative version of the

model may be applied as described in Chapter 2, although it is not currently included in R5.

Critical values of CTOD are not available in the literature for Type 316H and insufficient

measurements may be obtained from the interrupted tests performed in the previous chapter

to obtain a value with any confidence so the alternative version has been applied here.

Crack growth was assumed to occur at the location around the crack tip which corresponds

to the maximum ratio of the equivalent strain to multi-axial creep ductility.  The variation of

normalised equivalent strain around the crack tip,  ij ,n  , was obtained from tables of the

HRR field solution for a stress exponent, n, of 8 [25].  The same data was also used to

calculate the ratio of hydrostatic stress to equivalent stress (triaxiality) at all points around

the crack tip, which in-turn was used to calculate the variation in multi-axial creep ductility,
*
f , based on the Cocks and Ashby model [12].  For plane stress conditions this approach

predicts crack growth occurs in the plane of the crack (θ = 0º) and a multi-axial creep ductility
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of 2f .  For plane strain conditions it predicts crack growth occurs at an angle, θ, of 52º to

the crack plane and a multi-axial creep ductility of 38 4f . .  Initiation predictions based on

this model are compared to experimental measurements of the time for 0.2 mm of crack

extension to occur in Figure 9.10.

(a) (b)
Figure 9.10: Comparison of crack initiation predictions, based on the CTOD model,

with experimental measurements of 0.2 mm of crack of crack extension.  Predictions
are provided for (a) plane strain, and (b) plane stress conditions.

The predictions remain conservative for both plane stress and plane strain conditions

although those based on plane strain are more conservative as a result of the lower

multi-axial creep ductility.  Similar to the Sigma-d method, the modified method of

interpreting the PD data increases the measured time for 0.2 mm of crack growth to occur

without influencing the predictions based on the CTOD method.  This increases the

conservatism in the predictions.  The least conservative predictions are again obtained for

specimen 2D2/2 CT20 (circled).

Predictions from the CTOD model are compared to the onset of crack growth identified from

the increase in gradient on a plot of PD vs. CMOD in Figure 9.11.   Although the CTOD

model explicitly models 0.2 mm of crack growth, the predictions remain conservative

compared to the experimental data with the exception of specimen 2D2/2 CT20 (circled).
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(a) (b)
Figure 9.11: Comparison of crack initiation predictions, based on the CTOD model,

with experimental measurements of the onset of crack growth (increase in gradient).
Predictions are provided for (a) plane strain, and (b) plane stress conditions.

9.3.4 TDFAD Predictions

Unlike the other methods of predicting crack initiation which are entirely based on material

properties obtained from uniaxial tests, the TDFAD approach requires the variation of creep

toughness, c
matK , with time as an input.  This is often obtained from creep crack growth tests

rather than uniaxial data, so the method of interpreting the PD data will influence the

predicted initiation times as well as the experimental values.

The creep toughness for a crack extension of 0.2 mm was obtained from each of the creep

crack growth tests listed in Table 9.1.  This process was performed twice: once interpreting

the PD data using the ASTM method, and once using the modified method.  For each test,

the force-displacement plot was obtained and the creep toughness calculated from the total

area under the plot based on the procedure in ESIS P2-92 [1].  This approach calculates the

creep toughness from the total strain energy thus negating the need for separate elastic,

plastic and creep components.  A previous TDFAD assessment [50] applied this approach to

Type 316H and demonstrated that it provides similar results to the more onerous procedure

in ASTM E1820-13 [27].
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Figure 9.12: Variation of creep toughness (corresponding to 0.2 mm of crack growth)
with time for both methods of interpreting the experimental PD data.

The variation of creep toughness with time (corresponding to 0.2 mm of crack growth) is

shown in Figure 9.12 for the two different methods of interpreting the PD data.  A power-law

regression analysis has been performed on the two data sets in the form of Equation (9.3).

c j
matK Ht (9.3)

Values of the coefficient, H, and the time exponent, j, are provided in Table 9.6 along with

two standard deviations.  Lines corresponding to these fits are shown in Figure 9.12. A

similar level of scatter is observed for both methods of interpreting the PD data.

Method of
Interpreting PD Data H j ×/÷ 2SD

Modified 303.98 0.242 1.54

ASTM 276.70 0.254 1.68

Table 9.6: Constants used to calculate creep toughness in MPa√m (corresponding to

0.2 mm of crack growth) from time in hours.

The TDFAD is constructed from isochronous stress-strain data.  This was calculated from

the Ramberg-Osgood tensile stress-strain data provided in Table 9.4 and the average
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power-law creep properties in Table 9.5.  The TDFAD at a range of times is compared to the

R6 Option 1 curve in Figure 9.13.

Figure 9.13: TDFAD for Type 316H compared to the R6 Option 1 curve.

TDFAD predictions of the time for 0.2 mm of crack extension to occur, based on the mean

creep toughness data, are compared to the experimental measurements in Figure 9.14 for

plane stress and plane strain conditions.  There are fewer data points for plane stress

conditions because instant failure due to plastic collapse is predicted for five specimens as a

result of the large reference stress.  The specimens predicted to fail immediately are

2D2/2 CT3, 1C2/3 CT5, 1C2/3 CT11, 2B1/2 CT14 and 2B1/4 CT15.  These are the

specimens with the highest reference stresses and the shortest failure times in Table 9.2.

(a) (b)
Figure 9.14: Comparison of crack initiation predictions, based on the TDFAD, with

experimental measurements of 0.2 mm of crack of crack extension.  Predictions are
provided for (a) plane strain, and (b) plane stress conditions.
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The results presented in Figure 9.14, based on the ASTM method, are consistent with a

previous assessment [146].  The level of conservatism in the predictions is only slightly

smaller for the modified method of interpreting the PD data.  This is because the increase in

experimental initiation time is offset by an increase in creep toughness.  The plane stress

predictions are approximately equal to or less than the experimental initiation times but some

of the plane strain predictions are greater than the experimental values.  If lower bound

creep toughness data is applied, this non-conservatism is avoided for all specimens except

2D2/2 CT20 (circled).

The additional conservatism in the plane stress predictions is a result of the higher reference

stresses which significantly increases the value of Lr. For plane strain conditions, the values

of Lr when 0.2 mm of crack growth occurs at the assessment time are between 0.8 and 1.4

for all specimens.  This corresponds to the steepest part of the TDFAD, as demonstrated in

Figure 9.13, so the predictions are very sensitive to changes in Lr and therefore the

assumed stress state.

The TDFAD has also been used to predict the time for crack initiation to occur from the

increase in gradient on a plot of PD vs. CMOD using the corresponding values of creep

toughness.  The predictions for plane stress and plane strain conditions are compared to the

experimental measurements in Figure 9.15.

(a) (b)
Figure 9.15: Comparison of crack initiation predictions, based on the TDFAD, with
experimental measurements of the onset of crack growth (increase in gradient).

Predictions are provided for (a) plane strain, and (b) plane stress conditions.

The results are similar to those for 0.2 mm of crack growth.  With the exception of specimen

2D2/2 CT20 (circled), the plane stress predictions are all conservative but some of the plane

strain predictions are non-conservative.  Excluding this one data point, conservative

predictions are obtained for both plane stress and plane strain if they are based on lower

bound creep toughness data.
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9.3.5 Summary of CCI Models

Table 9.7 provides a summary of the factors which must be applied to the experimental

initiation times (Δa = 0.2 mm) to obtain the time predicted by each CCI model.  Factors less

than unity identify conservative predictions, and factors greater than unity (highlighted red)

identify non-conservative predictions.  For each model and stress state considered, the

mean, maximum and minimum factors are provided.  The values without parentheses omit

specimen 2D2/2 CT20 which, due to fluctuations in the PD data results in a measured

initiation time that was lower than the trend from the other 12 specimens and is not

considered reliable.  The values in parentheses include this test for comparison.

Initiation
Model Stress State PD

Interpretation Mean Maximum Minimum

Sigma-d Plane Stress
ASTM 0.181

(0.237)
0.529

(1.016)
0.025

(0.025)

Modified 0.094
(0.132)

0.255
(0.666)

0.017
(0.017)

Modified
CTOD

Plane Strain
ASTM 0.057

(0.069)
0.136

(0.246)
0.012

(0.012)

Modified 0.030
(0.039)

0.068
(0.161)

0.007
(0.007)

Plane Stress
ASTM 0.102

(0.125)
0.245

(0.447)
0.022

(0.022)

Modified 0.054
(0.070)

0.123
(0.293)

0.013
(0.013)

TDFAD

Plane Strain
ASTM 1.218

(1.466)
3.747

(4.931)
0.105

(0.105)

Modified 0.944
(1.242)

2.134
(5.414)

0.163
(0.163)

Plane Stress
ASTM 0.091

(0.155)
0.526

(1.045)
0.000

(0.000)

Modified 0.062
(0.127)

0.385
(1.031)

0.000
(0.000)

Table 9.7: Mean, maximum and minimum factors on the experimental crack initiation
times (Δa = 0.2 mm) necessary to obtain the predictions for the various CCI models.

Non-conservative predictions are highlighted red.  Factors without parentheses
exclude specimen 2D2/2 CT20.  The factors in parentheses include specimen

2D2/2 CT20.

Excluding specimen 2D2/2 CT20, all three models provide conservative predictions of the

time for 0.2 mm of crack extension to occur with the exception of the TDFAD for plane strain
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conditions however, as discussed above, conservative predictions may be obtained if lower

bound creep toughness data is used.  In general, the modified method of interpreting the PD

data identifies increased levels of conservatism in the CCI models because it increases the

experimental initiation times.  For the tests considered here it approximately doubles the

time for 0.2 mm of crack extension to occur, as identified in Section 9.2.4.  For the Sigma-d

and CTOD models this doubles the mean factors in Table 9.7 because the method of

interpreting the PD data only influences the experimental measurements.  For the TDFAD

model, the mean factors in Table 9.7 are only increased by ~30% for plane stress and ~40%

for plane strain compared to the ASTM method.   This is because the increase in the

measured initiation time is partially offset by a corresponding increase in creep toughness.

In a few cases the TDFAD predictions based on the modified method of interpreting the PD

data are less conservative than the predictions based on the ASTM method.

Table 9.8 provides a summary of the factors which must be applied to the experimental

initiation times at the increase in gradient (Δa = 0.0 mm) to obtain the predicted values for

each of the CCI models.  The values without parentheses omit specimen 2D2/2 CT20 whilst

the values in parentheses include this test.  Factors less than unity identify conservative

predictions, and factors greater than unity (highlighted red) identify non-conservative

predictions.

Initiation
Model Stress State Mean Maximum Minimum

Sigma-d Plane Stress 0.255
(0.735)

0.685
(7.454)

0.037
(0.037)

CTOD
Plane Strain 0.083

(0.198)
0.181

(1.808)
0.016

(0.016)

Plane Stress 0.149
(0.358)

0.330
(3.279)

0.029
(0.029)

TDFAD
Plane Strain 1.040

(3.872)
4.044

(43.521)
0.105

(0.105)

Plane Stress 0.061
(0.531)

0.608
(7.101)

0.000
(0.000)

Table 9.8: Mean, maximum and minimum factors on the experimental crack initiation
times (Δa = 0.0 mm) necessary to obtain the predictions for the various CCI models.

Non-conservative predictions are highlighted red.  Factors without parentheses
exclude specimen 2D2/2 CT20.  The factors in parentheses include specimen

2D2/2 CT20.

Again, excluding specimen 2D2/2 CT20, all of the models provide conservative predictions

of the time to the onset of crack growth with the exception of the TDFAD model for plane
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strain conditions although conservative predictions may be obtained using lower bound

creep toughness data.  For Type 316H the three CCI models considered here are therefore

not only appropriate for predicting the time for 0.2 mm of crack extension to occur, but also

appear to provide conservative predictions of the time to the onset of crack growth.

The predictions for specimen 2D2/2 CT20 are consistently less conservative than the other

specimens.  In Table 9.8 the factors for this specimen are an order of magnitude larger than

the next biggest factor.  This dramatic difference supports the suggestion that the

fluctuations in the PD data observed for this specimen prevent the accurate measurement of

initiation.

9.4 Discussion

An abrupt increase in gradient has been consistently identified on a plot of PD vs. CMOD for

a series of thirteen creep crack growth tests performed on Type 316H stainless steel.  PD

data for these tests has been reanalysed assuming this corresponds to the onset of crack

growth and compared to measurements based on the current method of interpreting the PD

data in ASTM E1457-13 [3].

The correlation between C* and the steady state crack growth rate is not significantly

influenced by the modified method of interpreting the PD data for this material, but significant

differences are observed when measuring small amounts of crack growth such as those

associated with crack initiation.  On average the time for 0.2 mm of crack extension to occur,

based on the modified method is approximately double the time measured based on the

ASTM method.  This difference is due to creep strains which accumulate at the crack tip

prior to the onset of crack growth which are erroneously interpreted as crack growth by the

ASTM method.

For one of the tests (specimen 2D2/2 CT20) significant fluctuations in the PD data were

observed which resulted in low crack initiation times compared to the trends observed from

the other 12 tests.  The results for this test have therefore been treated with caution.  If these

fluctuations were caused by changes in temperature or amplifier drift a reference

measurement would have improved the quality of the test data.  The reduced noise and

thermal stability of the low frequency ACPD system may also have improved the data.

In some of the tests an increase in the gradient of the PD vs. CMOD record was observed

immediately after load-up.  This results in a significant over-estimation of the crack length

and an under-estimation of the initiation time when the PD data is interpreted using the

ASTM method compared to the modified method. These tests also demonstrated a

particularly large tail on a plot of C* vs. crack growth rate when interpreted using the ASTM
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method.  Similar behaviour was observed in one of the interrupted tests in the previous

chapter which demonstrates that it is specimen, not material, specific.  In this regard it is

similar to the drop in PD which is also sometimes observed at the start of a creep crack

growth test and may even be caused by the same mechanism (which is currently unknown).

The experimental CCI times have been compared to the three prediction models provided in

R5 [4]: Sigma-d, CTOD and TDFAD.  An alternative version of the CTOD model has been

used here due to the lack of critical CTOD measurements available for Type 316H.  In

general all three models provide conservative predictions of the time for 0.2 mm of crack

extension to occur although lower bound creep toughness properties are required for the

TDFAD model for plane strain conditions.  This conservatism is sufficient that the predictions

remain conservative even when compared the onset of crack growth obtained from the

increase in gradient on a plot of CMOD vs. PD.  These conclusions are currently only

applicable to Type 316H.  Further validation is necessary to extend them to other materials.
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Chapter 10:
Conclusions and Further
Work
10.1 Conclusions

In this study a detailed review of the common errors associated with the PD technique has

been performed.  It has been demonstrated that when applied to ductile materials, large

inelastic strains are often the most significant source of error, particularly during the early

stages of the test, prior to the onset of crack growth. Appropriate methods of mitigating

these errors have been identified which facilitate the accurate measurement of crack

initiation and growth in the presence of large strains.

In order to obtain accurate measurements of crack extension it is essential to use an

appropriate PD configuration. Configurations for C(T) and SEN specimens have been

identified which are optimum for a wide range of structural materials whether measuring

small or large amounts of crack growth. These configurations may also be read-across to

other similar specimen geometries. Suitable configurations for additional measurements

used to supress proportional changes in PD due to, for example, fluctuations in specimen

temperature, have also been identified.

Even when adopting these optimum PD configurations, errors in the measurement of

extension are inevitable due to slight misplacement of the electrical connections and noise

on the measurement signal. These errors are most significant when measuring small

amounts of crack extension.  For a specimen with high resistivity e.g. stainless steel,

measured using a typical DCPD system, these errors are low (<5%) but for a specimen with

low resistivity e.g. aluminium, they can be an order of magnitude higher due to the reduced

signal-to-noise ratio.  To mitigate these additional errors a low frequency ACPD system has

been used in this study, which incorporates a lock-in amplifier to filter out much of the noise.

It also demonstrates improve thermal stability compared to a typical DCPD system so it is

less susceptible to fluctuations in ambient conditions e.g. lab temperature.
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Geometric assumptions in the derivation of the calibration function used to correlate PD

measurements with crack length are another common source of error.  When measuring

small amounts of crack extension errors >60% can occur. Crack tunnelling can account for

a large part of this error when the calibration function assumes a straight fronted crack, but

differences between the actual and assumed notch geometry can also be significant.  In

order to obtain accurate measurements of crack extension it is necessary to apply

appropriate side-grooves to the specimen and derive a calibration function for the specific

test geometry rather than using a calibration function from the literature for which the exact

input assumptions are often unknown.

When the derivation of a calibration function is not practical, and one is not available in the

literature, Johnson’s calibration function [58] may be applied to most common specimen

geometries using the PD configurations derived in Chapter 5.  Although this will introduce

additional errors in the measurement of crack extension, they are relatively modest

compared to the other sources of error identified above so this approach should provide a

reasonable approximation of crack extension.  Despite this it is always preferable to derive a

calibration function specifically for the geometry being tested wherever possible.

The influence of plastic strain on PD has been measured experimentally and can result in

very large spurious crack extensions although this can be reduced by selecting an

appropriate PD configuration.  Suitable configurations for C(T) and SEN(T) specimens have

been identified.  For C(T) specimens it is important that the PD probes are not on the

opposite side of the loading holes to the crack tip to avoid the influence of the large strains

around the hole.  This is contrary to the recommended configurations in many standards [3,

4].  Although the influence of strain may be reduced by selecting an appropriate PD

configuration it cannot be avoided altogether and spurious crack extensions multiple times

greater than the 0.2 mm ‘engineering’ definition of crack initiation are possible. This is much

larger than the other sources of error identified above.  It is therefore of vital importance to

develop experimental methods capable of suppressing the influence of strain on PD

measurements.

To help develop these experimental methods a sequentially coupled structural-electrical FE

based tool has been produced which is capable of predicting the influence of strain on PD

measurements.  For simplicity, the modelling approach only considers geometric effects

which dominate when the strains are inelastic.  The only material data required to implement

this model is a uniaxial stress-strain curve because, by appropriate normalisation the model

predictions are independent of the electrical material properties.  This FE tool has been

validated by comparison with experimental measurements performed on uniaxial, SEN(T)

and C(T) specimens.  The FE results consistently under-predict the influence of strain on
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PD.  This is because the variation in electrical resistivity due to strain is not included which,

although secondary to the geometric effects, remains significant.  Despite this limitation, this

FE tool has been demonstrated to accurately predict trends in PD due to strain which is

adequate for the studies performed in this research where it has been used to determine the

general PD response rather than the magnitude of this response.

The PD technique is often used to measure crack extension during fracture toughness

testing where the influence of strain can be significant.  During these tests two different

mechanisms increase the crack length: blunting and stable tearing.  Two methods of

interpreting the PD data are included in some standards e.g. [1, 2].  One method uses it to

measure both of these mechanisms whilst the other only uses it to measure stable tearing.

Using the FE tool developed above in conjunction with experimental data it has been

demonstrated that the PD technique is not suitable for measuring crack extension due to

blunting and is only suitable for measuring stable tearing.  This is because significant strain

occurs during blunting and the PD is sensitive to the entire strain field and not just the crack

tip geometry.  For stable tearing the change in PD due to strain is generally small compared

to that due to crack extension.  The onset of stable tearing can be identified from an abrupt

increase in gradient on a plot of PD vs. COD and the prior crack extension due to blunting

may be predicted using a suitable blunting line.  For materials which demonstrate significant

strain hardening the blunting lines provided in ESIS P2-92 [1] and ISO 12135 [2] are

appropriate.  Using this approach measurements of stable tearing are in good agreement

with the post-test fracture surface measurements and the elastic unloading compliance

technique.

An experimentally observed limitation of this approach is that the increase in gradient on a

plot of PD vs. COD becomes difficult to discern for high toughness, high tearing resistant,

high strain hardening materials.  To investigate this limitation the FE tool for predicting the

influence of strain on PD measurements has been extended to incorporate crack extension.

The FE analysis confirmed that this is a fundamental limitation of the PD technique.  In such

materials, small increases in crack length are accompanied by large increases in strain

which can obscure the change in slope.  For such materials, the elastic unloading

compliance technique may be more suitable.

Unlike fracture toughness testing, there is currently no method of separating blunting from

crack growth in creep crack growth tests.  As such, creep strain which occurs during the

initial incubation period is erroneously interpreted as crack extension when the PD data is

interpreted in accordance with the procedure in ASTM E1457-13 [3].  To investigate whether

a similar method to that used during fracture toughness testing may be applied, a series of

interrupted creep crack growth tests have been performed.  The results demonstrate that an
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abrupt increase in gradient on a plot of PD vs. COD consistently occurs and that this

corresponds to the point where micro-voids ahead of the crack tip first link up with the

pre-crack.  Prior to this point, the change in PD is primarily due to the accumulation of creep

strains.  In creep ductile materials, such as P91 steel, these strains can produce spurious

crack extensions much greater than 0.2 mm which will result in very conservative initiation

times.  A modified method of interpreting the PD data analogous to that used for fracture

toughness testing has been proposed.

The interrupted creep crack growth tests also demonstrate that the PD technique can

struggle to accurately measure creep crack growth in the presence of discontinuous

cracking.  In one case the PD only predicted ~30% of the crack extension measured from

the post-test fracture surface.  It is recommended that the PD data should always be

corrected based on fracture surface measurements.  In the presence of discontinuous

cracking this should generally result in conservative crack growth rate measurements.

Potential limitations of the proposed method of interpreting the PD data from creep crack

growth tests have been investigated using the FE based tool.  It has been demonstrated that

similar to fracture toughness testing the increase in gradient may become difficult to observe

for materials with very high creep ductility.   It has also been demonstrated that stress

redistribution will cause non-linearity in the plot of PD vs. COD which may also make the

change in slope more difficult to discern.  Despite these limitations, the results suggest that

for most engineering materials an increase in gradient should be observed.

The proposed method of interpreting the PD data has been used to reanalyse a series of 13

creep crack growth tests performed on Type 316H stainless steel at 550°C.  For all tests an

increase in gradient was observed on a plot of PD vs. COD.  On average the modified

method increased the measured time for 0.2 mm of crack extension to occur by a factor of 2

compared to the current method in ASTM E1457-13 and the onset of crack growth, identified

from the change in slope, occurred after ~40% of the time for 0.2 mmm of crack extension to

occur.  These measurements have been compared to predictions based on the three CCI

models provided in R5 [4]: Sigma-d, CTOD and TDFAD.  An alternative version of the CTOD

model was used due to the lack of critical CTOD measurements available for Type 316H.

The modified method of interpreting the PD data increases the level of conservatism in these

models compared to the time for 0.2 mm of crack extension to occur although lower bound

creep toughness properties were required to obtain conservative predictions for the TDFAD

model under plane strain conditions.  For Type 316H, the models remain conservative when

compared the onset of crack growth obtained from the abrupt increase in gradient on a plot

of CMOD vs. PD, but this may not apply to all materials.
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10.2 Further Work

The method proposed for interpreting PD data during creep crack growth testing has only

been applied to specimens manufactured from Type 316H stainless steel with the exception

of a single test performed on P91.  To fully validate the proposed method, it should be

applied to a wide range of materials.  This should include materials with very high creep

ductility in order to identify the maximum errors which could occur due to creep strain when

using the current ASTM method of interpreting the PD data.  It will also demonstrate if the

increase in gradient becomes more difficult to identify as predicted in this work.  Materials

which demonstrate significant stress redistribution should also be tested to validate the PD

response predicted by the FE models.  The assessment of a wide range of materials need

not require significant additional testing because the PD data from existing tests may be

reanalysed but some interrupted tests performed on other materials would be prudent.

Most of the tests performed as part of this research used homogenous specimens but one of

the most common sources of defects in real structures are welds.  The fracture toughness

and creep crack growth properties of welds are therefore of particular interest and tests

should be performed on suitable specimens to identify if the proposed PD methods remain

applicable.  The PD response of a specimen containing a weld is likely to be significantly

more complex than a homogenous specimen due to the combination of primary and

secondary loading as well as the different material properties.   The FE tool developed in this

work can be used to help interpret this response.

Further work could also be performed to improve the accuracy of the FE model.  Strain

dependent electrical properties would significantly improve the predictions albeit at the

expense of a much more complicated model.  Also, a more detailed model of the interaction

between creep and plasticity may also improve the predictions.  These are currently

modelled as independent mechanisms but it is widely known that they interact [142].  Both

are driven by dislocations so the introduction of dislocations by either mechanism will

influence the subsequent deformation behaviour due to strain hardening.  By improving the

accuracy of the FE predictions, the tool developed in this study could be used to predict the

magnitude of the changes in PD due to strain and not just the general trends.  Changes in

PD due to strain predicted from the FE could then be subtracted from experimental

measurements to allow the PD technique to be applied in situations where an increase in

gradient is not easily observed.

This work has raised significant questions with regards to how creep crack growth tests are

analysed.  The interrupted tests presented in this work are not valid in accordance with

ASTM E1457-13 [3].  This is due to the discontinuous cracking which is typical of creep
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crack growth so many tests are likely to be invalid.  This is unsatisfactory, particularly for

long term tests which can last months or even years.  In the presence of discontinuous

cracking the PD technique alone is not suitable for measuring crack extension without some

form of correction.  It is suggested in this work that the linear correction currently included in

ASTM E1457-13 may be sufficient to produce conservative crack growth rates.  Further work

should be performed to help understand the evolution of discontinuous creep cracks and

identify the most appropriate method of monitoring them.  Tomographic imaging techniques

could be used for this purpose.

Finally, it has been demonstrated that there is more conservatism in the CCI models

presented in the R5 assessment procedure than originally thought which could lead to

components being removed from service prematurely. Many of the models are based on

simplified assumptions such as steady-state conditions which are often not applicable during

incubation.  The experimental techniques proposed in this work could be used to justify

revisiting these models to remove some of this conservatism by incorporating more realistic

assumptions.
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