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• A change-point model is used to study
the variability of riverine nitrate and
phosphate.

• The effect of change thresholds in river
flow is assessed according to the time
of occurrence.

• Water quality properties are modelled
using spline models.

• Strong seasonal effect is seen on nitrate
concentrations, but not on phosphate.

• We estimate and predict macronutrient
fluxes.
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Themacronutrients nitrate and phosphate are aquatic pollutants that arise naturally, however, in excess concen-
trations they can be harmful to human health and ecosystems. These pollutants are driven by river currents and
showdynamics that are affected byweather patterns and extreme rainfall events. As a result, the nutrient budget
in the receiving estuaries and coasts can change suddenly and seasonally, causing ecological damage to resident
wildlife and fish populations. In this paper, we propose a statistical change-point model with interactions be-
tween time and river flow, to capture the macronutrient dynamics and their responses to river flow threshold
behaviour. It also accounts for the nonlinear effect of water quality properties via nonparametric penalised
splines. This model enables us to estimate the daily levels of riverine macronutrient fluxes and their seasonal
and annual totals. In particular, we present a study of macronutrient dynamics on the Hampshire Avon River,
which flows to the southern coast of the UK through the Christchurch Harbour estuary. We model daily data
formore than a year during 2013–14 inwhich period thereweremultiple severemeteorological conditions lead-
ing to localised flooding. Adopting a Bayesian inference framework, we have quantified riverine macronutrient
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captures also the dependencies of macronutrient concentrations with water body characteristics.
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1. Introduction

River ecosystems are experiencing rapid transformations in
response to anthropogenic and climatological stressors, which impact
on macronutrient pollution, water quality characteristics, biodiversity
and ultimately on the ecological health of the rivers (Whitehead et al.,
2009). In particular, macronutrients nitrate and phosphate occur
naturally in freshwater bodies, but when present in excessive
amounts can be harmful not only for aquatic life but also for human
health by reducing drinking water quality (Whitehead and Crossman,
2012). Many sources can contribute to macronutrient over enrichment
(eutrophication) from human activities, including runoff from fertilised
fields, discharge from sewage treatment, burning of fossil fuels and food
production (e.g. Conley et al., 2009; Paerl, 2009; Withers et al., 2014).

In addition to these disturbances, natural features of the environment
and climate change can compromise macronutrient cycles in fresh
waters (Woodward et al., 2010; Whitehead and Crossman, 2012).
Climate change is likely to impact on weather patterns and bring
an increasing number of extreme events, including increased
frequency and intensity of storms, leading to high winds and heavy
rainfall. These events might cause changes in the process that governs
macronutrient behaviour.

In this paper, we are concernedwith the dynamics of riverine nitrate
and phosphate concentrations and their response to rapid changes in
river flow andwater quality properties, such as temperature, conductiv-
ity, dissolved oxygen and turbidity. River flow alteration is indeed an
environmental factor to which riverine ecosystems respond consider-
ably (Poff and Zimmerman, 2010; Rolls et al., 2012). Rapid changes in
river flow are driven by extreme weather patterns and events such as
storms, which can impact on the macronutrient runoff and budget,
but their ecological importance is not well documented (Leigh
et al., 2014). Inclusion of the effect of variations in river flow on riv-
erine macronutrient dynamics provides new insights into the dy-
namics of the macronutrient fluxes from the river to the estuary.

Our study is based on measurements collected at the Knapp
Mill gauging station on the River Hampshire Avon in the UK under the
Macronutrient Cycles Programme funded by Natural Environmental
Research Council (NERC). In particular, we use macronutrient and
river flow data, as well as water quality properties, from the Hampshire
Avon which flows to the south coast of the UK and feeds into the
Christchurch Harbour estuary. We model daily concentrations of
nitrate and phosphate for more than a year during 2013–14, a period
in which the UK experienced a highly unusual number of storm
events (Muchan et al., 2015), with series of destructive floods across
the country.

We adopt a novel change-point approach, within a Bayesian hierar-
chical structure, which results in a generalized additive model that is
able to: (i) differentiate the effect of changes in river flow on nitrate
and phosphate according to the time of year in which they occur, and
(ii) capture the complex nonlinear relationships amongmacronutrients
with thewater quality properties through unspecified smooth functions
of these properties. The resulting model allows us to estimate the
annual total flux of the modelled micronutrients from the river to the
downstream estuary, often called the annual budget, with quantified
uncertainties.

The hierarchical model detects changes in micronutrient dynamics
by simultaneously estimating change-points in river flow and also a
change-point in time. Thus the changes in river flow rate, that we call
odelling macronutrient dyna
nviron (2016), http://dx.doi.o
change thresholds following the terminology adopted by Alameddine
et al. (2011), can be different according to the period of the year in
which they occur. Hence, themodel accommodates a temporal window
introducing a possible shift in time, that we simply call switch-point, to
distinguish it from the terminology used to refer to changes in river
flow. Henceforth, we call the full statistical model identifying the
switch-point in time and the change thresholds in river flow simply as
change-point structures.

Change-point analysis has become a popular tool in ecological
studies and in the simplest form it detects distributional changes
within observations that are ordered in time. Its use in water quality
models resulted in very interesting contributions. For example,
Fortin et al. (2004) reformulated the shifting-level model to show
that it belongs to the class of hidden Markov models, and developed
Bayesianmethods for evaluating its parameter uncertainty and dem-
onstrated its utility for forecasting of streamflows. Alameddine et al.
(2011) used a change-point and threshold model to analyse the rela-
tionship between nitrogen concentrations and flow regimes during a
long period of 29 years, quantifying changes in this relationship
across time.

Themodelling approach proposed in this paper, is similar in spirit to
the Bayesian model of Alameddine et al. (2011), as we describe the
macronutrient dynamics through change-point structures, modelling
their locations as unknown.However ourmodel formulation is different
from the Alameddine et al. (2011) contribution, as (i) we focus on a
short study period, (ii) we use interaction terms between time and
river flow to capture a potential seasonal behaviour in freshwater, that
is known to be an important determinant when considering macro-
nutrient loadings (Sigleo and Frick, 2003; Guillaud et al., 2008),
and (iii) we include different physico-chemical water properties
without imposing any parametric form (e.g. linear) in their relationship
with macronutrients.

2. Methods

2.1. Study area

TheHampshire Avon is one of themost biodiverse chalk rivers in the
UK, providing a habitat for a very rich flora and fauna. Much of the
Hampshire Avon river has been designated as Sites of Special Scientific
Interest or as a Special Area of Conservation, and its water has been
used for a number of purposes including general agriculture, spray
irrigation and fish farming, as well as for public and private water
supplies (Environment Agency, 2012).

The sampling site for this study is located at the lowest water flow
gauging station on Hampshire Avon at Knapp Mill (latitude: 50.74807,
longitude: −1.77968), encompassing a catchment area of 1706 km2.
Fig. 1 provides a map of the study area.

2.2. Macronutrient and water quality samples

Sampling at KnappMill was carried out between 22 November 2013
and 19 December 2014. Water quality properties, including tempera-
ture, conductivity, dissolved oxygen, turbidity and chlorophyll concen-
tration, were measured in situ every 10 min using an EXO2
multiparameter sonde (Xylem, UK). Samples formacronutrient analysis
were collected every 8 to 15 hours with an ISCO automated water sam-
pler (RS Hydro, UK). Water samples were fixed immediately with
mics in the Hampshire Avon river: A Bayesian approach to estimate
rg/10.1016/j.scitotenv.2016.04.129
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Fig. 1.Map of the study area.
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0.015Mmercuric chloride (750 μL in 150mL) and later filtered through
a glass fibre filter upon return to the laboratory. Concentrations of inor-
ganic macronutrients were determined at the University of Portsmouth
using a QuAAtro segmented flow nutrient analyser (SEAL Analytical,
UK). River flow data were obtained from the UK Environment Agency.
To regularise the sampling intervals between measurements, the 24-
hour daily means were calculated and used for further analyses.

2.3. Exploratory analysis

Table 1 provides the descriptive statistics for all the data collected at
the Knapp Mill station and also for the daily river flow data. The large
difference between the mean and median daily river flow clearly
highlights the severe impacts of storm events that the UK experienced
during the 2013–2014 winter months. Time-series plots of these
data are given in Figs. 2 and 3. A visual inspection of the plots
Table 1
Summary statistics for macronutrients, physical and chemical properties of water and river
flow. Hampshire Avon at Knapp Mill, 22/11/2013 to 19/12/2014.

Min 1st Q Mean Median 3rd Q Max

Macronutrients
Nitrate (mg/L) 2.48 4.83 5.33 5.21 5.93 7.10
Phosphate (mg/L) 0.01 0.06 0.07 0.07 0.09 0.39

Water properties
Temperature (°C) 4.71 8.11 12.26 12.21 16.24 21.96
Conductivity (μS/cm) 200.96 340.06 384.60 381.24 439.65 501.94
Dissolved oxygen (%) 77.44 90.04 96.33 94.55 103.40 119.18
Turbidity (NTU) 1.04 2.27 5.96 4.29 7.90 42.95
Chlorophyll (μg/L) 0.89 1.58 2.71 2.40 3.41 8.73

River Flow
Flow (m3/s) 7.35 9.99 30.19 19.82 35.79 102.64

Please cite this article as: Pirani, M., et al., Modelling macronutrient dyna
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shows considerable variation in the daily levels of the data, with a
winter/summer seasonal pattern for most of the time-series. The
time-series for nitrate exhibits lower concentrations during the winter
months, from December 2013 to March 2014, while phosphate does
not show a specific trend but does display lower concentrations during
the months of February and March 2014. In general, there is greater
overall variability in nitrate than seen in phosphate concentrations.
From Fig. 2 it is also apparent that river flow rates are at the highest
during thewinter months 2013–2014with levels that gradually decline
toward summer. Among the water quality properties (Fig. 3), we
observe, as expected, a seasonal temperature pattern, and higher level
Fig. 2. Daily macronutrient and river flow data (22/11/2013 to 19/12/2014). Data are
plotted on original scale: nitrate (solid line) in mg/L, phosphate (dashed line) in mg/L
and river flow (dotted line) in m3/s.

mics in the Hampshire Avon river: A Bayesian approach to estimate
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Fig. 3. Daily water quality data (22/11/2013 to 19/12/2014). Data are plotted on original scale: temperature (solid line) in °C, conductivity (dashed line) in μS/cm, dissolved oxygen
saturation (dotted line) in %, turbidity (dotdash line) in NTU and chlorophyll (longdash line) in μg/L.
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of turbidity during winter months, consistent with altered flow regimes.
Nitrate concentrations show a trend consistent with changes in
conductivity.

Table 2 shows the Spearman rank correlation coefficients between
macronutrients and water quality properties. Only temperature and
conductivity have a strong positive correlation (N0.90), while moderate
correlations are found for dissolved oxygen% saturationwith conductivity
(0.50) and turbidity (−0.62). Fig. 4 shows the relationship betweenmac-
ronutrient concentrations andwater quality properties,with these scatter
plots revealing generally nonlinear relationships.

2.3.1. Data pre-processing
The various measured water quality properties have a range of differ-

ent units, therefore formodelling purposes these are standardised to have
zeromean and unit variance. This proceduremakes themagnitude of the
coefficients comparable. Macronutrient concentrations and river flow
data are modelled on logarithmic scale to stabilise their variance. More-
over, logarithmic transformation of the data is convenient formacronutri-
ents, as they are nonnegative and their distributions are often skewed to
the right.

2.3.2. Selection of water quality properties
Before embarking on the task of modelling the data, we carefully

examined the possibility of issues arising from multicollinearity
among the water quality properties that may compromise the estima-
tion of the regression coefficients and thus affect their interpretation.
To mitigate this, we applied a covariate selection procedure based on
knowledge of riverine ecosystems as well as on a conventional statistical
methods such as Lasso (Least Absolute Shrinkage and Selection Operator;
Tibshirani, 1996) that allows identification of thewater quality properties
that have the strongest association with variation in the macronutrient
Table 2
Correlation coefficients between pairs of measured data.

Nitrate Phosphate Temperature

Nitrate 1
Phosphate −0.16 1
Temperature 0.06 0.23 1
Conductivity 0.31 0.20 0.92
Dissolved oxygen % 0.24 −0.39 0.44
Turbidity 0.16 0.30 −0.13
Chlorophyll 0.02 −0.30 −0.11

Please cite this article as: Pirani, M., et al., Modelling macronutrient dyna
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concentrations. Lasso is amethod that is used in the context of regression
analysis, and it can simultaneously perform variable selection and shrink-
age of the vector of regression coefficients towards zero.

We use a Bayesian formulation of Lasso regression (Park and Casella,
2008; Hans, 2009; O'Hara and Sillanpää, 2009) that is constructed by
specifying a Laplace distribution as a prior distribution for the
model coefficients. We standardised all regressor variables and
implemented the Bayesian Lasso regression technique described by
Lykou and Ntzoufras (2013). This Lasso technique revealed temperature,
conductivity, dissolved oxygen, and turbidity as the most important
water quality properties for modelling nitrate data on the log scale
and our subsequent analysis proceeds with these only. For modelling
phosphate data, the Lasso technique showed temperature and dissolved
oxygen as the two most important covariates, followed by chlorophyll,
turbidity and conductivity. In this instance, however, we exclude chloro-
phyll from themain analysis on phosphate. In fact, although chlorophyll is
important in analysing data sets from estuarine and coastal waters, we
find that chlorophyll is less important in explaining macronutrient
dynamics within riverine systems, where it is more likely the result of
storm runoff and not a predictor.

3. Model set-up

The discussion in the previous section leads us to consider a regime
switching model for macronutrients according to both temporal window
and river flow that is able to adjust for nonlinear effects of the chosen
water quality properties. Here the twomacronutrients, nitrate and phos-
phate, are modelled separately, although it is possible to model them
jointly. Joint modelling of the twomacronutrients nitrate and phosphate,
is not of interest here since our objective is not to study their inter-
relationships, which is seen to be rather weak (correlation −0.16 in
Conductivity Dissolved oxygen % Turbidity Chlorophyll

1
0.50 1

−0.20 −0.62 1
−0.27 −0.02 0.25 1

mics in the Hampshire Avon river: A Bayesian approach to estimate
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Table 3
Quality of themodel fit and the predictive abilities of the competingmodels: goodness of fit term (G), penalty term (P) and overall predictivemodel choice criterion (PMCC: G+ P), along
with the Bayesian statistic RB2.

Nitrate Phosphate

Models G P PMCC (G + P) RB
2 G P PMCC (G + P) RB

2

M1. Penalised spline for water quality data + change-point structures 1.31 3.76 5.07 0.68 33.84 42.61 76.45 0.74
M2. Linear model for water quality data, no change-point structures 3.87 5.97 9.84 0.46 66.79 71.42 138.21 0.47
M3. Linear model for water quality data + a switch-point in time 3.02 5.14 8.16 0.53 73.50 78.58 152.08 0.49
M4. Linear model for water quality data + a change threshold in river flow 2.56 4.70 7.26 0.57 67.72 72.42 140.14 0.53
M5. Linear model for water quality data + change-point structures 1.56 4.04 5.60 0.65 44.24 50.67 94.91 0.67
M6. Penalised splines for water quality data, no change-point structures 2.37 4.77 7.14 0.58 50.24 57.91 108.15 0.63
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Table 2), but to predict their individual daily and annual fluxes into the
estuary.

The model is developed for data yt, which denotes the natural loga-
rithm of the observed macronutrient concentration at day t, for t=
1,… ,T=393. We construct a Bayesian hierarchical model, which en-
compasses themodel for the observed data, the dynamics of the process
and the specification of parameters and hyperparameters (Berliner,
1996). At the first stage of themodelling hierarchy, we assume an inde-
pendent Gaussian measurement error model:

yt∼Normal μ t ;σ
2� �
; t ¼ 1;…;393 ð1Þ

where μt denotes the time varyingmean and σ2 is the variance assumed
to be constant at all time points. We do not consider time varying
variances aswe do not have replicated data at each time point to estimate
them. Rather, our effort is dedicated to finding the best model for the
mean concentration μt at time t in the next stage of modelling hierarchy.

The second stage of thehierarchy defines themodel for μt. To capture
nonlinear effects of each of the p water quality properties, we
incorporate a nonparametric smoothing function gj(xtj) of xtj at each
time point t, where xtj denotes the value of the jth water quality proper-
ty at the tth time point. The choice of the gj(⋅) functions ranges from
linear to nonparametric penalised splines (Eilers and Marx, 1996;
Ruppert et al., 2003) which are well-known to be very flexible. In our
implementation, following Crainiceanu et al. (2005), we construct the
splines using radial basis functions, which provides a more stable fit
than traditional truncated linear basis. By denoting x to be a generic co-
variate, we define a set of K knots, k1bk2b… bkK taken to be equally
Table 4
Parameter estimations.

Nitrate

Parameters Median

Change-point structures
τ (Switch-point in time, occurring in the year 2014) 08/03
φ1 (Change threshold in flow before switch-point in time) 27.87
φ2 (Change threshold in flow after switch-point in time) 10.64
δ1 (Slope for low flow before switch-point in time) −0.80
δ2 (Slope for high flow before switch-point in time) 1.17
δ4 (Slope for high flow after switch-point in time) 1.21

Penalised splines
β0 (Global intercept) 4.74
β1 (Fixed effect for temperature) −0.18
β2 (Fixed effect for conductivity) 0.29
β3 (Fixed effect for dissolved oxygen) 0.06
β4 (Fixed effect for turbidity) 0.10
σb1

(Standard deviation for spline on temperature) 0.02
σb2

(Standard deviation for spline on conductivity) 0.03
σb3

(Standard deviation for spline on dissolved oxygen) 0.03
σb4

(Standard deviation for spline on turbidity) 0.03

Other
σ2 (Measurement error variance) 0.01

Please cite this article as: Pirani, M., et al., Modelling macronutrient dyna
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spaced over the range of x. We consider a low-rank thin-plate spline
representation given by:

g xð Þ ¼ β0 þ β1xþ
XK

k¼1

bk x−kkð Þdþ ð2Þ

where we treat β0 and β1 to be fixed but unknown parameters and
assume b=(b1, … ,bK)' to be the vector of random parameters
corresponding to the set of basis functions (x−kk+

d , that is equal
to (x−kk)d if (x−kk)dN0 and zero otherwise, and d is the degree of
the spline. Each component of b is assigned an independent normal
prior distribution with mean zero and unknown variance, σb

2, to be
estimated from the model.

Model in Eq. (2) assumed for the jth covariate at tth time point, xtj, is
given by:

g j xtj
� � ¼ β0 j þ β1 jxtj þ

XK

k¼1

bkj xtj−kkj
� �d

þ; j ¼ 1;…;p; t ¼ 1;…; T: ð3Þ

Here, we consider a model with the same set of knots and the same
degree for the splines for all the covariates that have been normalised
already, see Section 2.3.1. Assuming an additive model, we obtain the
total contribution:

∑
p

j¼1
g j xtj
� � ¼ ∑

p

j¼1
β0 j þ∑

p

j¼1
β1 jxtj þ∑

p

j¼1
∑
K

k¼1
btkj xtj−kkj

� �d
þ; t ¼ 1;…; T:
Phosphate

95% CI Median 95% CI

(05/03, 13/03) 24/01 (22/01, 28/01)
(16.26, 43.64) 66.35 (7.89, 100.28)
(7.65, 13.41) 34.29 (29.19, 40.32)
(−0.63, −0.88) 0.07 (−0.63, 1.26)
(1.09, 1.32) 0.06 (−0.74, 1.94)
(1.16, 1.27) −1.25 (−1.59, −0.97)

(4.31, 5.18) 0.05 (0.04, 0.09)
(−0.29, −0.07) −0.01 (−0.41, 1.25)
(0.17, 0.40) 0.37 (−0.14, 0.87)
(−0.03, 0.22) −0.47 (−1.13, −0.07)
(0.05, 0.16) 0.15 (−0.09, 0.51)
(0.01, 0.71) 0.12 (0.03, 0.71)
(0.02, 0.06) 0.14 (0.05, 0.45)
(0.02, 0.08) 0.17 (0.04, 0.61)
(0.01, 0.07) 0.07 (0.01, 0.44)

(0.00, 0.01) 0.10 (0.08, 0.12)

mics in the Hampshire Avon river: A Bayesian approach to estimate
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Table 5
Posterior median and 95% CI for the catchment area normalised total annualmacronutrient fluxes from 22/11/2013 to 21/11/2014 according tomodels M1 andM2. Values are catchment
area standardised with kg/km2 units. The last two rows present comparable estimates from the literature.

Nitrate Phosphate

Models/Methods Annual budget 95% CI Annual budget 95% CI

M1. Penalised spline for water quality data + change-point structures 2978.9 (2937.9, 3016.4) 31.6 (30.2, 33.1)
M2. Linear model for water quality data, no change-point structures 2936.7 (2890.4, 2981.8) 29.8 (28.3, 31.3)
Jarvie et al. (2005): Mean annual load during 1993–2000 2050 – 71 –
Nedwell et al. (2002): UK average during 1995–96 1400 – 152 –
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However, the p separate intercept terms will not be identified
and hence we only take one global intercept β0 in place of the
sum ∑j=1

p β0j. For ease of notation we shall write βj=β1j for j=
1,… ,p. Now, each bkj for k=1,… ,K and j=1,… ,p is given an indepen-
dent normal prior distributionwithmean zero and unknown variance,σb

2

as mentioned above.
Ruppert (2002) and Crainiceanu et al. (2005) recommends a num-

ber of knots that is large enough to ensure flexibility. In our application
we choose the number of knots to be 5 for the cubic splines, (i.e. d=3),
which is judged to be sufficient formodel fitting and prediction purposes.
The knots are chosen at equal spaced quantiles of each water quality
variable.

Nowwe turn tomodelling the step changes in nitrate and phosphate
concentrations due to temporal changes and discontinuities in river
flow. The exploratory analysis in Section 2.3 hasmade it clear that the nu-
trient concentration, especially nitrate, is severely impacted upon by not
only river flow but also seasonality. However, it is likely that variations
in river flow will have different effects on concentration in different
Fig. 4. Scatterplot of macronutrient data versus water quality properties. Data are plotted on or
dissolved oxygen (DO) in %, turbidity in NTU and chlorophyll in μg/L.

Please cite this article as: Pirani, M., et al., Modelling macronutrient dyna
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temporal windows. Moreover, natural rain fall, and hence river flow,
does not strictly adhere to the calendar dates. That is why, we let the pa-
rameter τ denote the switch-point in time that serves as the unknown
boundary between the end of the winter high flow season and the start
of the low flow season spanning the rest of the year. Since τ is unknown
we estimate it along with all other parameters. To allow for interactions
between seasonal windows and river flow levels we imagine that there
are two change thresholds in riverflowwhich occur once during thewin-
ter and the other during the rest of the year. Let φ1 and φ2, denote these
flow threshold parameters. Hence, we introduce the following four
terms in the model:

1. δ1I(tbτ)I(ftbφ1)(ft−φ1) describing the effect of incremental flow
less than φ1 before the switch-point in time,

2. δ2I(tbτ)I(ft≥φ1)(ft−φ1) describing the effect of incremental flow
greater than φ1 before the switch-point in time,

3. δ3I(t≥τ)I(ftbφ2)(ft−φ2) describing the effect of incremental flow
less than φ2 after the switch-point in time,
iginal scale: nitrate in mg/L, phosphate in mg/L, temperature in °C, conductivity in μS/cm,

mics in the Hampshire Avon river: A Bayesian approach to estimate
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Fig. 5. Directed Acyclic Graph (DAG) for the model M1, depicting the relationship among macronutrient, river flow and water quality properties. In the graph, yt is the observed
concentration for a macronutrient in day t. The macronutrient concentrations are assumed to be distributed normally around the mean μt. The parameter 1/σ2 represents the precision
(i.e. 1/variance) of the normal distribution. μt is modelled as a function of: (i) a global intercept, β0; (ii) the water quality properties, which are parameterised via penalised splines,
where βj is the fixed coefficient for each water quality property, xt j, and bjk are the random coefficients associated with the design matrix with elements zt jk = (xt j − kk j)+d ; (iii) the
change-point structures constructed with interaction terms described by indicator functions: Itτ is the indicator for the switch-point in time, τ, and Itφ1 and Itφ2 are the indicators for
the two change thresholds in river flow, φ1 and φ2. Finally, δ1,… ,δ4 are the coefficients associated with the change-point structures.
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4. δ4I(t≥τ)I(ft≥φ2)(ft−φ2) describing the effect of incremental flow
greater than φ2 after the switch-point in time,

where I(A)=1 if A is true and 0 otherwise. For model identifiability
reasons, we set δ3=0 so that the three remaining parameters, δ1 ,δ2
and δ4 measure incremental slope relative to the one for low river flow
after the switch-point in time.

Putting the above discussions together, we arrive at the following
model for μt:

μ t ¼ β0 þ
Xp

j¼1

β jxtj þ
Xp

j¼1

XK

k¼1

bkj xtj−kkj
� �d

þ þ
X4

h¼1

δhvth ð4Þ

where vth denotes the product of the two indicator functions and the
incremental river flow corresponding to δh for h=1,… ,4. In subse-
quent discussion we denote this general model by M1. We compare
this model with the following sub-models of interests:

• M2. A linear regression model for the water quality properties, but
with no change-point structures, that allows us to compare the
proposed modelling innovations with a straw method:

μ t ¼ β0 þ
Xp

j¼1

β jxtj: ð5Þ

• M3. A linear regression model for the water quality properties, with
only a switch-point in time:

μt ¼ β0 þ
Xp

j¼1

β jxtj þ δ1I t≥τð Þ: ð6Þ

• M4. A linear regression model for the water quality properties, with
only a change threshold in river flow:

μt ¼ β0 þ
Xp

j¼1

β jxtj þ δ1 f t þ δ2I f t ≥φð Þ f t−φð Þ: ð7Þ
Please cite this article as: Pirani, M., et al., Modelling macronutrient dyna
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• M5. A linear regression model for the water quality properties, with
change-point structures for time and river flow:

μt ¼ β0 þ
Xp

j¼1

β jxtj þ
X4

h¼1

δhvth: ð8Þ

• M6. A regression model via penalised splines for the water quality
properties, but no change-point structures:

μ t ¼ β0 þ
Xp

j¼1

β jxtj þ
Xp

j¼1

XK

k¼1

bkj xtj−kkj
� �d

þ: ð9Þ

To account for temporal dependence that is expected to occur between
measurements collected on consecutive days, we also evaluated the
additional inclusion in Eq. (4) of a random intercept, modelled as a
linear stationary first-order autoregressive process, ηt, which is a very
popular choice in time series analyses. Thus, the model for ηt assumes
the form: ηt=ρηt−1+ut, where the error ut is white noise, that is
normally distributed with mean 0 and variance ση

2, and the parameter
ρ is assumed be in the interval [−1,1]. However, we were not able to
fit this model to the data due to lack of identifiability.

The Bayesianmodel is completed by assuming prior distributions for
all the unknown parameters. We assume that the switch-point in time,
τ, is uniformly distributed on [1,2,… ,T]. Note that τ=1 and τ=T does
not imply any change. We also assess a discrete uniform prior for the
switch-point in time, that leads to a better convergence for the phos-
phate model, though requiring a higher computational effort. Similarly,
we adopt uniform prior distributions for the two change thresholds on
river flow φ1 and φ2, in the interval [1.995, 4.631], which are the mini-
mum and maximum values of the river flow on the logarithmic scales.
The precision parameters (i.e. inverse of the variance parameters) spe-
cific for each macronutrient, σ−2, are assumed to follow a Gamma dis-
tribution Ga(c,d) independently, with shape parameter, c, and
expectation, c/d. In particular, we assume a proper prior specification
by taking c=2 and d=1 for these parameters. We assume normal
mics in the Hampshire Avon river: A Bayesian approach to estimate
rg/10.1016/j.scitotenv.2016.04.129
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Fig. 6. Time-series plot of the standardised residuals for (a) nitrate and (b) phosphate.
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prior distributions for β0 and the fixed effect parameters β specified as
Normal(0,104). Moreover, as previously mentioned, an independent
normal prior distribution, centered at zero, is chosen for the randompa-
rameters b associated with the splines for the water quality properties.
For σb

2, which controls the amount of smoothness of the water quality
properties, we consider two different prior distributions: (i) a widely
accepted Gamma distribution for the precision parameter, σb

−2~-
Ga(ab,bb), with ab=1 and bb=0.001, and (ii) a half-Cauchy distribu-
tion for the standard deviation parameter, σb~half−Cauchy(A), with
A=25 as suggested by Marley and Wand (2010). Using a half-Cauchy,
in fact, we can restrict the standard deviation parameter, σb, to be
away from very large values (Gelman, 2006), that could bias the distri-
bution against zero. By comparing model fits under both of these prior
distributions, we adopt the first parameterization for the nitrate
model and the latter for the phosphatemodel. Finally, we assume a nor-
mal prior distribution for the δ parameters associated with the change-
point structures.

Fig. 5 presents the Directed Acyclic Graph (DAG) of our more com-
plex model M1, that is a simplified graphical representation of the hier-
archical modelling structure. In this graph each quantity is represented
by a node and links between nodes show direct dependence. The ellip-
ses represent stochastic nodes (that is, variables that have a probability
distribution) or logical nodes (that is, deterministic relationships or
functions). The small squares identify nodes that are constants. Stochas-
tic dependence and functional dependence are denoted by solid and
Fig. 7. Relationship between nitrate and river flow using the estimated parameters for the
change-point structures: red dotted vertical line is the switch-point in time and black solid
horizontal lines are the change thresholds in river flow. Data are plotted on original scale:
nitrate (black solid line) in mg/L, and river flow (gray dotted line) in m3/s.
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dashed arrows, respectively. Finally, the large square plates represent
repetitive structures (i.e. the ‘loop’ from t=1 to T).

To compare the quality of the model fit of the proposed modelling
approach in comparison to the above described simpler statistical
models, we adopt the predictive model choice criterion (PMCC; Laud
and Ibrahim, 1995; Gelfand and Ghosh, 1995) defined by:

PMCC ¼
XT

t¼1

yobst −E yrept

� �n o2
þ
XT

t¼1

Var yrept

� � ð10Þ

where yt
rep denote the future replicate of the observed macronutrient

concentrations yt
obs. The PMCC essentially quantifies the fit of the

model by comparing the posterior predictive distribution obtained
from the assumed model p(ytrep|ytobs) with the observed data. The first
term of Eq. (10) gives a goodness of fit measure (G)whichwill decrease
with increasing model complexity and the second term of Eq. (10) is a
penalty term (P) which tends to be larger for complex models. The
model with the smallest value of PMCC is the preferred model.

To facilitate model comparisons using the traditional coefficient of
determination (often termed as adjusted R2), we consider the analogus

Bayesian statistic R2
B ¼ 1− σ2

S2Y
, where SY

2 is the sample variance of Y (i.e.

the macronutrient concentrations) and σ2 is the model variance
(Ntzoufras, 2009). The RB2 quantity can be interpreted as the proportional
reduction of uncertainty concerning themacronutrient concentrations, Y,
achieved by incorporating in the model the water quality properties and
Fig. 8. Relationship between phosphate and river flowusing the estimated parameters for
the change-point structures: red dotted vertical line is the switch-point in time and black
solid horizontal lines are the change thresholds in river flow. Data are plotted on original
scale: phosphate (black solid line) in mg/L, and river flow (gray dotted line) in m3/s.
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Fig. 9. Plots of daily fluxes (kg/day) for nitrate (top) and phosphate (bottom). Rectangle
identified by the red dotted lines on the right-hand of the panel contains the predicted
fluxes from model M1 for the period 30/11/2014 to 19/12/2014.
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the change-point structures. Alternatives to the RB
2 are the estimating

model skill methods proposed by Jolliff et al. (2009), and the traditional
Nash-Sutcliffe calculation (see e.g. Krause et al., 2005). However, these
are not considered any further in the paper. Instead, we use simple
to interpret and use out-of-sample validation tests as noted below
in Section 3.2.

3.1. Computation

Our Bayesian model fitting and computations are based on Markov
chain Monte Carlo (MCMC)methods (e.g. Gilks et al., 1996). In particu-
lar, usingMCMC, we obtain a sample of the model parameters from the
target posterior distribution.MCMC samples are used to obtain summa-
ries of the posterior distributions, such as mean, median and quantiles
which were used to construct the 95% credible intervals (CI).

The implementation of the models has been performed using the
freely available software package WinBUGS (version 1.4.3; Lunn et al.,
2000), thatwas executed in batchmode using the R library R2WinBUGS
(version 2.1–19; Sturtz et al., 2005).WinBUGS code for themodel M1 is
available in the Supplementary material. We have run two parallel
MCMC chains independently starting at two very different initial values
for 50,000 iterations with 20,000 burn-in, and we thinned the Markov
chains by a factor of 10, resulting in samples of size 6000 to estimate
the posterior distributions for the parameters of interest. Convergence
was assessed by checking the trace plots of the samples of the posterior
distribution and the estimated autocorrelation functions and theMonte
Carlo standard errors.

3.2. Prediction and estimation of macronutrient fluxes

To assess the quality of the probabilistic predictions of macronutri-
ent concentrations, which can be obtained using the proposed model,
we use out-of-sample validation techniques. Here, we remove a set of
consecutive observations from the sample and then use the remaining
data to fit the models. Using the fitted model we predict the set aside
data based on their posterior predictive distributions. These predictions
are comparedwith the actual observations to validate themodel. In par-
ticular, we remove the last 20 days (from 30/11/2014 to 19/12/2014)
data from the macronutrient time-series and compare these set aside
samples with model based predictions.

The Bayesian methods allow us to estimate the daily total deposit
(mass flux) of each macronutrient as follows. Note that macronutrient
flux is defined as the product of concentration times river flow rate
(Sigleo and Frick, 2003; Quilbé et al., 2006), measured in kg/day, i.e.
flux at day t, denoted by ξt is μt× ftwhere μt is converted to bemeasured
in kg/m3 and river flow is converted in m3/day. We estimate ξt and its

uncertainty by using ξðℓÞt ¼ μðℓÞ
t f t where ℓ¼1;…;6000 indexes the

thinned MCMC iterates.
We predict macronutrient fluxes for the 20 days used in the out-of-

sample validation test to assess the predictive accuracy of the model.
We also estimate daily and total fluxes for the entire study period
using the whole data set available. Finally, to allow a comparison with
similar literature contributions, we quantify the annual macronutrient
fluxes, from 22/11/2013 to 21/11/2014, computing catchment-
normalised estimates (that is, our estimated annual macronutrient
fluxes are divided by the total area of the catchment).

4. Results

Table 3 presents the values of the PMCC and the Bayesian statistic RB2

that inform us about the quality of the fit and predictive abilities of each
model. From this analyses, we are able to judge theworth of each of the
modelling strategies: change-point structures, penalised splines and
linear regression model for the water quality properties. Model M5
based on the linear regression model for the water quality properties
Please cite this article as: Pirani, M., et al., Modelling macronutrient dyna
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provides almost equal performance but shows a worse goodness-of-fit
as expected, since the spline based models are more flexible. Interest-
ingly, the straw method based on simple linear model, M2, without
any modelling innovation does not perform well as expected. We also
note that both the PMCC and RB

2 choose the same model M1 as the
best model, which is adopted henceforth in this paper.

To assess the adequacy of the chosen model M1 for the macronutri-
ents data, we have checked the residuals plots. Fig. 6 illustrates themedi-
an of the posterior distributions of the standardised residuals plotted
against the time period for nitrate and phosphate. No discernible pattern
is present for nitrate, with a random scattering of points. For phosphate,
the residuals scatter around zero randomly with a few large values. This
result supports an overall adequacy of the model for the data.

4.1. Parameter and flux estimates

Parameter estimates for the chosen model M1 are presented in
Table 4. The switch-point in time for nitrate, estimated to occur on
08/03/2014 (95% CI: 05/03/2014, 13/03/2014), identifies essentially
two seasonal periods that are, clearly, winter and summer times. The
change thresholds before and after this switch-point captures two
regimens in river flow, occurring at 27.87 m3/s (95% CI: 16.26,
43.64) and 10.64 m3/s (95% CI: 7.64, 13.41) in winter and summer
times respectively. Taking low flow conditions in summer as the refer-
ence category, the results suggest that a higher level of river flow in win-
ter, as well as in summer, is associated with increased concentrations of
nitrate, such that a difference of 1 in river flow corresponds, on original
scale, to an increase in nitrate of about 1.17 mg/L in winter, and about
1.22 mg/L in summer.
mics in the Hampshire Avon river: A Bayesian approach to estimate
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Phosphate shows a considerable different change-point structure,
with no clearly identifiable seasonal variation. The switch-point in
time for phosphate is estimated to occur on 24/01/2014 (95% CI:
22/01/2014, 28/01/2014). Because of this early identification of the
switch-point in time, during which the Hampshire Avon is still
experiencing extremely high flow levels, the associated estimation
of the change thresholds in river flow lacks precision. This is clearly
shown in a larger uncertainty in the estimation of the change threshold
parameters, occurring at 66.3 m3/s (95% CI: 7.89, 100.28) before the
switch-point in time and at 34.29 m3/s (95% CI: 29.19, 40.32) after the
switch-point in time. The increase in phosphate before the switch-point
in time, associated with high river flow is not significant, however after
the switch-point in time, a higher level of river flow seems associated
with a dilution of phosphate of about 0.29 mg/L.

Figs. 7 and 8 show the different change-point regimes in themacro-
nutrient dynamics and river flow as estimated by the model. Between
regime variations in macronutrients can be clearly seen from these
two graphs, although the variations are more pronounced in the case
of nitrate than phosphate as expected.

The fixed effects for the water quality properties in the model for
nitrate show a negative relationship with temperature and a positive
relationship for conductivity and turbidity. A negative fixed effect of dis-
solved oxygen is estimated for phosphate. However these relationships
are nonlinear as confirmed by the estimated four standard deviations of
penalised splines, that are non-zero. The estimates of the measurement
error variance are higher in magnitude for phosphate than for nitrate.

Fig. 9 shows the daily time-series of macronutrient fluxes (kg/day)
based on the measured data (black dots) and estimated by the model
(black solid lines; shaded area represent 95% CI), along with the fluxes
predicted by the model assuming the observed data from 30/11/2014
Fig. 10.Nitratefluxes (kg/day) for the entire studyperiod using the estimated parameters for th
fluxes estimated from model M1 and shaded area represents the 95% CI for the estimated flux
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to 19/12/2014 as unknown (here plottedwithin the rectangle identified
by the red dotted lines on the right-hand of the panel). The 95% CI for
the predicted fluxes include the actual 20 observed fluxes for the mac-
ronutrient data, although these intervals are more conservative (that
is, wider) for phosphate in comparison to nitrate.

We also estimate the total macronutrient fluxes from the complete
model, according to the estimated parameters for the change-point
structures. We find strong seasonal effects in the riverine nitrate fluxes
as shown in Fig. 10. For example, in winter time low-flow conditions
(that is, before the 08/03/2014) the mean of the daily observed nitrate
fluxes is 5552 kg/day (that correspond to an estimated daily posterior
mean of 5531 kg/day from our model), while in winter time high-flow
conditions, the mean increases to 31,696 kg/day (that correspond to
an estimated daily posterior mean of 31,668 kg/day from our model).
The seasonal structure is not so clear in the model for phosphate.
From Fig. 11 we can see that most of the days (no. 260), occurring
after the 24/01/2014, are classified as low-flow conditions. However,
we can still estimate the effect of high flow caused by extreme rainfall
events in the model for phosphate. For example, before 24/01/2014,
the mean of the daily observed nitrate fluxes in low-flow conditions is
197.18 kg/day (that corresponds to an estimated daily posterior mean
of 208.68 kg/day from our model), and the mean in high-flow conditions
is definitively higher, being equal to 605.7 kg/day (that corresponds to an
estimated daily posterior mean of 573.0 kg/day from our model).

Finally, Table 5 presents the posterior median estimates and 95% CI
for the catchment area normalised annual total nitrate and phosphate
fluxes in kg/km2 for the year from 22/11/2013 to 21/11/2014, according
to our best model M1 and the linear regression model, M2. We can
observe that the flux estimates under model M2 are lower than the
corresponding estimates under model M1. However, the estimates
e change-point structures. Black dots are the observedfluxes, black solid line represents the
es.

mics in the Hampshire Avon river: A Bayesian approach to estimate
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Fig. 11. Phosphate fluxes (kg/day) for the entire study period using the estimated parameters for the change-point structures. Black dots are the observedfluxes, black solid line represents
the fluxes estimated from model M1 and shaded area represents the 95% CI for the estimated fluxes.
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underM2 have higher uncertainties as seen by comparing the lengths of
the 95% intervals. Hence the estimates under model M1 are seen to be
more accurate than those under M2 and, hence, the former model con-
tinues to be our preferred model.

The last two rows of Table 5, respectively, provide estimates ofmean
annual fluxes for the Hampshire Avon at Knapp Mill reported by Jarvie
et al. (2005) and the UK wide average reported by Nedwell et al.
(2002). Our estimates are of broadly similar magnitude to both of
these sets of estimates. However, for nitrate we note that our estimate
is for a very unusual year with exceptionally high rainfall leading to
higher nitrate fluxes. Regarding phosphate, both the other estimates
are for dates which are more than two decades in the past and during
these last two decades sewage treatment works have improved signifi-
cantly reducing phosphate levels. In addition to these points, there are
substantial differences in the methodologies used to calculate the
fluxes. Our estimates are based on a detailed model based calculation
of daily concentrations and river flow that takes advantage of sudden
changes in flow levels. On the contrary, the estimates reported by
Jarvie et al. (2005) and Nedwell et al. (2002) are based on simple calcu-
lations of monthly average concentration levels and monthly average
flow levels which are likely to miss peaks and troughs, and seasonality
in the deposition levels.

5. Discussion and conclusion

The principal aim of this paper was to gain a better understanding of
how different macronutrient species respond to changes in river flow
that are in turn influenced by weather patterns and extreme storm
events. Therefore, we have developed a model for riverine data collect-
ed during a relatively short study period characterised by unusual fre-
quency of storms and heavy rainfall. The model describes the inter-
Please cite this article as: Pirani, M., et al., Modelling macronutrient dyna
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annual variability of these macronutrient species using a Bayesian
modelling approach characterised by an interaction between temporal
window and river flow via change-point structures. It is also
complemented by a flexible representation of the effect of the water
quality properties, that are modelled free from parametric constraints.
In the application considered in the paper, we observe that the
change-point structures better depict the temporal behaviour of river-
ine nitrate and phosphate, and the nonparametric spline based model
outperforms the standard multiple linear regression model. This is co-
herent with Walther (2010), who also noted that the relationships
among the components of ecological systems are complex and that in-
teractions and feed-back mechanisms can lead to nonlinear and abrupt
changes.

The identification of switch-points or threshold behaviour in
hydrological processes is indeed an active area of research, which
is, in a growing number of examples, accomplishedwithin a Bayesian
modelling framework (e.g. Fortin et al., 2004; Alameddine et al.,
2011; Jo et al., 2016). Recently, the importance of encapsulating en-
vironmental thresholds behaviour has also been raised in the context
of hydrological process-based models. Wellen et al. (2014) proposed,
for example, a Bayesian approach for accommodating environmental
thresholds and extreme events within SWAT models, assuming that
the watershed response to precipitation occurs in distinct states, thus
allowing the parameters values to vary between states. In our statistical
approach applied to the Hampshire Avon river's waters, we did not
assess directly the macronutrient response to extreme events, but
instead we assessed their response to the threshold behaviour of river
flow, which is, however, largely controlled by weather patterns. There-
fore, taking advantage of the interaction with distributional changes in
time, we found that the threshold changes in river flow caused
different dynamics in nitrate and phosphate time-series.
mics in the Hampshire Avon river: A Bayesian approach to estimate
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An important feature of our model is that it allows the prediction of
macronutrient concentrations and also the quantification of riverine
input fluxes to the estuary. We illustrate this by providing estimates of
daily fluxes and annual totals for nitrate and phosphate along with
their uncertainties. These daily fluxes can be aggregated to coarser tem-
poral levels, e.g., monthly, quarterly or annually, as demonstrated in our
application, where we found that the amount of macronutrients deliv-
ered to the estuary can change dramatically according to the period of
the year in which river flow experiences larger changes. This is particu-
larly evident for nitratewhich shows a clear seasonal pattern, while flux
estimates for phosphate present a weaker seasonal structure, that leads
to a higher uncertainty in our modelling approach.

The Bayesianmodelling framework adopted here can be extended in
various ways by including more relevant covariates, such as wind field
that may have a short-term mixing effect on water quality, increasing
the sediment re-suspension and be a driving force in exporting
nutrients to the estuary. This can lead to a better estimate of changes
in macronutrient concentrations and fluxes. Multivariate modelling
for both the aquatic pollutants and for data from multiple sites may
also lead to fruitful research.

In conclusion, the Bayesian approach introduced here is able to facil-
itate the description of complex and nonlinear environmental processes
and is able to assess the associated uncertainties of the reported
estimates. We present an application for modelling macronutrient
dynamics in relationship to water quality properties and changes in
river flow. Our method can be easily adapted to similar data modelling
and analysis problems for estuarine pollution using the accompanying
computer code.
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