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Abstract  

The current human papillomavirus (HPV) vaccines consist of major capsid protein (L1) virus-

like particles (VLP) and target the two most prevalent oncogenic genotypes, HPV16 and 

HPV18. Prophylactic HPV vaccination is highly effective at preventing HPV16 and HPV18 

infection and associated cervical disease, with type-specific neutralising antibodies thought 

to be the immune mediators of vaccine type protection. A degree of vaccine-induced cross-

protection has also been demonstrated against genetically-related genotypes in the Alpha-7 

(HPV18-like) and Alpha-9 (HPV16-like) species groups and although the underlying immune 

mechanism is uncertain, cross-protection is coincident with the detection of cross-

neutralising antibodies. The aim of this thesis was to delineate the HPV L1 domains that are 

recognised by inter-genotype cross-neutralising antibodies. The formal analysis of the 

vaccine-induced A9 L1 antibody response demonstrated that cross-neutralising antibodies 

were a minor component of the total HPV16 antibody response and comprised antibody 

specificities which recognised single and multiple non-vaccine genotypes. The bioinformatic 

examination of A9 capsid amino acid sequences demonstrated that the L1L2 pseudovirions 

(PsV) used to measure cross-neutralising responses were generally representative of 

available contemporary sequences. The potential impact of amino acid variation within the 

L1 capsid protein was investigated for HPV31 and found differences in cross-neutralising 

antibody recognition of the L1 variants; however, this was of a low magnitude. L1 

crystallographic homology models predicted structural changes in the loops between HPV16 

and the non-vaccine A9 genotypes, informing the design and generation of chimeric PsV 

with inter-genotype loop swaps. These chimeric PsV demonstrated that cross-neutralising 

antibodies recognise DE and FG loop amino acid residues within close proximity to each 

other on the capsid surface. These data contribute to our understanding of the antigenicity of 

the L1 major capsid protein of HPV by identifying the L1 regions recognised by vaccine-

induced cross-neutralising antibodies. Such specificities may play a critical role in vaccine-

induced cross-protection.  
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1.1 Oncoviruses 

Viruses have an aetiological role in the development of approximately 12% of human 

cancers (Parkin, 2006). The highest percentage of virus-associated cancer cases (5.2%) 

are attributable to infection with human papillomavirus (HPV), followed by hepatitis B virus 

(HBV) and hepatitis C virus (HCV) (4.9% accumulatively), Epstein-Barr virus (EBV) (1-2%), 

Kaposi’s sarcoma-associated herpesvirus (KSHV) (1%), and human T cell lymphotropic 

virus (HTLV) (0.5%) (Parkin, 2006). The recognition that infectious agents are the principal 

cause of certain human cancers, such as cancer of the cervix (HPV) and liver (HBV), offers 

a unique opportunity whereby preventing the initial infection would also protect against the 

development of the associated cancer. A prophylactic HBV vaccine for the prevention of 

hepatocellular carcinoma (HCC) was first licensed in 1981-82 and subsequent generations 

of the vaccine have proven highly effective at reducing the burden of acute HBV and 

subsequent chronic carriage, the main predictor for the development of HBV-associated 

HCC (Schiller and Lowy, 2010). Since 2006, two prophylactic HPV vaccines have been 

licensed in over 100 countries worldwide with the primary aim of decreasing the burden of 

cervical cancer associated with infection by the two most prevalent HPV genotypes 

(Markowitz et al., 2012). 

 

1.2 Papillomavirus phylogeny and classification 

Papillomaviruses (PV) were originally classified in the Papovaviridae virus family alongside 

polyomaviruses (e.g. SV40 and JC virus) due to both viruses having a non-enveloped 

icosahedral capsid containing a double-stranded DNA genome as observed by electron 

microscopic analysis (Klug and Finch, 1965). The advancement of molecular technology 

demonstrated that PV and polyomaviruses have different genome sizes and organisations 

with the only sequence homology between the two viruses limited to a single protein in each 

virus, the E1 of PV (a region of ca. 230 amino acids) and the T-antigen of polyomavirus 

(Clertant and Seif, 1984).  
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In 2002 the International Committee on Taxonomy of Viruses (ICTV) reclassified PV into a 

distinct family, the Papillomaviridae and a classification system was proposed whereby the 

family was first divided into genera designated by Greek letters and then sub-divided into 

numbered species groups containing the individual PV genotypes (de Villiers et al., 2004) 

(Figure 1A). The classification of PV is based upon the nucleotide sequence of the most 

conserved region of the viral genome, the L1 open reading frame (ORF), which encodes the 

major capsid structural protein (Bernard et al., 1994). Different PV genera (e.g. Alpha and 

Beta) share a L1 nucleotide sequences identity of <60% and species groups (e.g. Alpha-7 

and Alpha-9) within a genera share a 60-70% sequence identity (Bernard, 2013). Individual 

PV genotypes (e.g. HPV16 and HPV31) within a species group are classified by a difference 

in L1 sequence identity of >10% (Figure 1B). PV have been isolated from a diverse range of 

mammals, as well as birds and reptiles (Bernard et al., 2010) but the vast majority of PV 

have been isolated from humans (170 genotypes isolated to date) and fall into one of five 

genera: Alpha, Beta, Gamma, Mu, and Nu (de Villiers, 2013). PV also demonstrate tissue 

tropism and are generally divided into PV which predominantly infect mucosa (e.g. Alpha-

PV) or cutaneous epithelium (e.g. Beta-PV) (de Villiers et al., 2004; Mistry et al., 2008) 

 

1.3 PV evolution and viral variants 

It has been estimated that the ca. 8 kb double-stranded DNA genome of PV is replicated via 

host cell polymerases with an error rate of ca. 2x10-7 base substitutions, per site, per year 

(Bernard, 2013). This rate is substantially lower than that found in the majority of single-

stranded RNA viruses (ca. 1x10-3 base substitutions/site/year) (Duffy et al., 2008) and is 

more closely related to the slower rate of the host species, suggesting an evolutionary link. 

Both HPV and ape PV are found within the Alpha-PV genera whilst other mammal groups 

(e.g. hooved) fall into separate distinct genera (e.g. Delta-PV) (Figure 1A). This infers that 

humans and apes shared a common PV ancestor and that the evolution into HPV and ape 

PV occurred along the same time lines as the speciation of the host (Bernard, 2013).  



Figure 1

Figure 1 PV phylogeny. (A) Maximum likelihood phylogenetic tree for PVs. The four PV supertaxa
are colour coded, with PVs not yet assigned to a supertaxa labelled in black. Silhouettes represent
the hosts infected by the corresponding viruses. (B) Intergeneric, interspecies and intraspecies L1
nucleotide sequence percentage identity. The 189 L1 nucleotide sequences were used to evaluate
the distribution of intraspecies: comparisons of PV genotypes within the same species;
interspecies: comparisons of PV genotypes within the same genus; intergeneric: comparisons of all
PV genotypes within different genera. Bravo et al., Trends in Microbiology, 18:432 (2010); Bernard
et al., Virology, 401:70 (2010).

A

B
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Despite the low evolutionary rate of the HPV genome, sequence variants have arisen over 

time leading to the generation of distinct intra-genotype variant lineages and sublineages 

(Burk et al., 2013). Initial studies of HPV16 and HPV18 identified that variant lineages 

evolved as the human population spread out of Africa and that the lineages became 

associated with distinct ethnic groups: for example, HPV16 variants were categorised as 

African (Af1 and Af2), Asian-American (AA), European (E) and Asian (As) (Bernard, 1994) 

(Figure 1A). However, such geographical niches are not overtly obvious for variants of the 

other A9 HPV genotypes (Chen et al., 2011) and subsequently these categories have been 

replaced by alphabetical designations (A to D) to bring HPV16 variant classification in line 

with other genotypes (Burk et al., 2013). 

 

1.4 History of HPV  

References in the medical literature to warts, a clinical manifestation of HPV infection, can 

be found as far back as the ancient Greeks and Romans with both civilisations recognising 

that such warts could be sexually transmitted (Onon, 2011). A treatment for genital warts 

was documented by the Greek Hippocrates, who lived 400 years BC, describing how plant 

extracts could be used for the removal of penile warts. An initial understanding of the HPV 

epidemiology began to emerge in the 19th century, when Italian physician Domenico Rigoni-

Stern studied the cause of cancer death in married, widower and single women including 

nuns (Scotto and Bailar, 1969). He observed that in the latter group death due to cancer of 

uterine was substantially lower whilst similar rates of death due to breast cancer were seen 

across the three groups. By the late 19th century it was recognised that the risk factors for 

contracting a sexually transmitted disease were the same risk factors associated with the 

development of cervical cancer, these included the early onset of sexual activity and having 

multiple sexual partners.  

 

The link between an infectious agent and cancer was established by work carried out in 

chickens by Peyton Rous which demonstrated that inoculation with cell-free extract, 
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prepared from a spontaneous malignant sarcoma, resulted in the development of malignant 

tumours in inoculated chickens (Rous, 1911). The infectious agent responsible for tumour 

development in healthy chickens was an RNA virus which was subsequently called Rous 

sarcoma virus. Work carried out by Richard Shope, a colleague of Rous’s at the Rockefeller 

Institute, demonstrated that PV could also induce malignant tumours. Shope prepared cell-

free extracts of a malignant tumour taken from a rabbit infected with cottontail rabbit 

papillomavirus (CRPV) and inoculated healthy rabbits with the cell-free extracts, resulting in 

the formation of benign papillomas which had the potential to progress to malignant tumours 

(Shope, 1932a). The development of papillomas was found to coincide with resistance to 

homologous viral challenge at other cutaneous sites and the detection of neutralising 

antibodies in the serum of the inoculated rabbits (Shope and Hurst, 1933). Further work 

carried out using CRPV demonstrated both the strict species and tissue tropism of PV 

(Shope, 1932b) (Shope and Hurst, 1933). These early discoveries were subsequently 

followed by a reduced interest in PV research due in part to the inability to propagate the 

virus in vitro and the belief that HPV was of limited medical importance. 

 

1.5 HPV cervical infection, disease and cancer 

A role for HPV in the development of human cancers was postulated by Harald zur Hausen 

in the 1970s (zur Hausen, 1977) and his seminal work in the field culminated in the award of 

the Nobel Prize for Medicine in 2008. Today the WHO International Agency for Research on 

Cancer (IARC) recognises 12 HPV genotypes as human carcinogens: HPV16, 18, 31, 33, 

35, 39, 45, 51, 52, 56, 58 and 59 because of their fundamental role in the development of 

cervical cancer (Figure 2A) (Bouvard et al., 2009), the third commonest malignancy in 

women worldwide (Forman et al., 2012). 

 

Sexually active women have a >80% risk of acquiring an HPV infection at least once during 

their lifetime (Brown et al., 2005; Koutsky, 1997) with 75% of these infections attributable to 

oncogenic HPV genotypes (Peto et al., 2004). Cervical HPV infection is usually acquired  
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soon after initiating sexual activity with ca. 90% of infections cleared within 2 years (Winer et 

al., 2011). The prevalence of HPV infection reaches a peak in women below the age of 25 

followed by a slow decline (Cuschieri et al., 2004; Dunne et al., 2007) with a second, lower 

peak in HPV infection observed in women aged 45 or older (de Sanjose et al., 2007). This 

secondary peak in older women has mainly been attributed to the reactivation of latent HPV 

infections rather than incident infections due to new sexual exposures (Rositch et al., 2012).  

 

Infection with HPV can cause dysplasia of the cervical epithelium, defined as cervical 

intraepithelial neoplasia (CIN) and graded as mild (CIN1), moderate (CIN2) and severe 

(CIN3) changes in the cells of the cervix. Persistent infection with an oncogenic HPV 

genotype increases the risk of progression to CIN3, the precursor to cervical cancer 

(Dahlstrom et al., 2010; Moscicki et al., 2012). The detection of CIN3+ (CIN3 or worse) 

lesions peaks in women aged 25-29 years indicating that the time from first acquisition to the 

development of lesions is considerably shorter than the decades that generally precede the 

development of cancer (Moscicki et al., 2012; Winer et al., 2005). The persistence of CIN3+ 

lesions does not necessitate the development of cancer since lesions can regress or persist 

without clonal expansion, which is the final step towards the development of invasive 

cervical cancer (Moscicki et al., 2012).  

 

Infection with either HPV16 or HPV18 accounts for ca. 70% of cervical cancer cases 

worldwide and nearly all cases are attributable to infection with either an HPV18-related 

Alpha-7 (A7) or HPV16-related Alpha-9 (A9) genotype (Figure 2B) (Li et al., 2010).  Infection 

with oncogenic HPV genotypes is also an identified risk factor associated with the 

development of other anogenital cancers and head and neck cancers (Figure 2C) (Forman 

et al., 2012). All cervical cancer cases are attributable to infection with HPV; however, the 

number of cases attributed to HPV varies between the other anatomical sites: anus (88%), 

vagina (70%), penis (50%), vulva (43%) and oropharynx (26%) (Forman et al., 2012).  
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1.6 The HPV genome and gene expression 

HPV have a closed circular double-stranded DNA genome of approximately 8kb which can 

be divided into three regions: early (E), late (L) and long control region (LCR) (Figure 3A). 

 

The early regions encode non-structural viral proteins (E1, E2, E4, E5, E6 & E7) whilst the 

late regions encode genes which express the viral structural proteins (L1 & L2) (Johansson 

and Schwartz, 2013). The LCR is a non-coding region located between the L1 and E6 ORFs 

which contains the origin of DNA replication (ori) and the early promoter p97 (HPV16 

designation). Activation of the p97 promoter during the early stages of viral replication 

generates messenger RNA (mRNA) transcripts representing all the early genes (Schwartz, 

2013; Smotkin and Wettstein, 1986). The late promoter, p670, is located within the E7 gene 

and its differentiation-dependent activation results in increased production of E1, E2 and E4 

mRNA transcripts followed by the subsequent transcription of the L1 and L2 ORFs 

(Grassmann et al., 1996). HPV increases the coding capacity of its viral genome by 

generating multiple polycistronic mRNA species and full transcription maps have been 

generated for HPV16, HPV18 and HPV31 with up to 23 different mRNAs being detected in 

HPV31-infected cell lines (Figure 3B) (Ozbun and Meyers, 1997; Wang et al., 2011; Zheng 

and Baker, 2006). This diversity results from the combined effects of alternative promoter 

and termination site usage and differential use of splice donor and splice acceptor sites 

within the mRNA transcripts.  

 

Expression of the E1 ORF produces the only viral encoded enzyme, an ATP-dependent 

DNA helicase which is essential for viral DNA synthesis and subsequent elongation (Liu et 

al., 1995). The E1 protein binds the ori located in the LCR, an interaction facilitated by the 

E2 protein which loads the E1 onto the ori (Mohr et al., 1990). Aside from its role in the 

initiation of DNA replication, the primary function of the E2 protein is the regulation of viral 

transcription. The E2 can activate or repress transcription dependent upon its binding motif,  

associated cellular factors and the specific isoform of E2 interacting with the viral genome  



Figure 3

A

Figure 3 Graphic representations of HPV16 genome and transcriptional map. (A)
L1 and L2 structural genes labelled in yellow. E1. E2, E4 and E5 regulatory genes
labelled in green. E6 and E7 oncogenes labelled in red. Genes are expressed from
a double-stranded DNA genome of ~8kb. (B) Linear form of virus genome
positioned above reported RNA species derived from alternative promoter usage
and alternative splicing. Doorbar et al., Clinical Science, 110:525 (2006); Zheng et
al., Frontiers in Biosciences, 11:2286 (2006).
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(McBride, 2013). For example, following the upregulation of p670 the E2 protein represses 

the transcription of the E6 and E7 genes by direct binding to p97 (Thierry, 2009). The E2 

protein exerts control in a dose-dependent manner whereby low concentrations activate viral 

transcription whilst high concentrations repress (Steger and Corbach, 1997). 

 

The E6 and E7 proteins disrupt checkpoints that regulate cell cycle progression thereby 

promoting cellular proliferation which facilitates the process of viral DNA synthesis in 

differentiating cells which would normally exit the cell cycle (Howie et al., 2009). The E6 and 

E7 proteins of oncogenic HPV genotypes are commonly referred to as ‘oncoproteins’ 

because they have the potential to transform the host cell and they are the only viral proteins 

consistently expressed in HPV-associated cancers (Munger et al., 2004).  

 

The E6 protein contains two zinc-like finger motifs (Barbosa et al., 1989) and the majority of 

E6 activity is mediated via protein-protein interactions. The E6 protein can alter multiple 

cellular pathways by binding host cell proteins affecting functions such as G protein 

signalling, chromosome stability, polarity adhesions and modulation of immune signalling 

which facilitates immune avoidance (Howie et al., 2009). The best characterised E6 protein 

interaction is that with p53 (Thomas et al., 1999), a tumour suppressor protein, which is 

activated in response to cellular stress resulting in the initiation of DNA repair, cell cycle 

arrest and/or apoptosis (Zilfou and Lowe, 2009). HPV-mediated stimulation of DNA 

synthesis outside the S phase of the cell cycle also triggers p53 activation and the E6 protein 

acts to block p53 function by binding the cellular protein E3 ubiquitin ligase (E6AP), an 

interaction which permits E6AP to bind p53 which is subsequently degraded (Scheffner et 

al., 1993). 

 

The E7 protein contains a single zinc-like finger motif (Barbosa et al., 1989) which shares 

sequence homology with control protein EA1 of Adenovirus and the large T antigen of SV40 

(Phelps et al., 1988; Vousden and Jat, 1989). The E7 protein, like E6, interacts with host cell 
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proteins resulting in the alteration or disruption of cellular processes including cell death, 

cytostatic cytokine signalling, cellular metabolism and epigenetic programming (McLaughlin-

Drubin and Munger, 2009). The major action of E7 is the association with, and subsequent 

degradation of, the retinoblastoma tumour protein, pRB (Roman and Munger, 2013). The 

pRB binds transcriptional factors of the E2F family forming a repressor complex which  

inhibits cell cycle progression from G1 to S phase and subsequent cellular DNA replication 

(Frolov and Dyson, 2004). The E7 protein associates with, and disrupts, the pRB/E2F 

repressor complex (Dyson et al., 1992) resulting in the release of E2F and as a 

consequence the cell cycle exits G1 and enters the S phase. The pRB is subsequently 

inactivated via proteasomal degradation in a process mediated by the E7 protein (Boyer et 

al., 1996).  

 

The E5 is a small hydrophobic protein of ca. 83 amino acids (HPV16) which is primarily 

expressed during the late stage of the viral replication cycle (Longworth and Laimins, 2004). 

The E5 protein acts via interaction with cellular proteins and is required for the successful 

completion of viral genome amplification and the subsequent activation of the late genes 

(DiMaio and Petti, 2013). The E5 protein directly interacts with the epidermal growth factor 

receptor (EGFR) (Tomakidi et al., 2000), activating the receptor and initiating a cascade of 

mitogenic signalling which results in the proliferation of the HPV infected cell.   

 

The E4 gene is located within the E2 ORF and the most abundant E4 gene product is E1^E4 

which is expressed from a spliced mRNA containing a 5’ E1 region with transcription initiated 

from the E1 start codon (Doorbar, 2013). An increase in E1^E4 protein expression precedes 

the expression of the late proteins and coincides with the initiation of viral genome 

amplification (Doorbar et al., 1997). The role(s) of the E1^E4 protein during the earlier 

stages of viral replication, where limited amounts of the protein are expressed, are undefined 

(Doorbar, 2013). In the later stages of viral replication the E1^E4 protein facilitates viral 

genome amplification and protein synthesis by stimulating cell cycle arrest in G2 (Davy et al., 
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2002). The E1^E4 has also been shown to disrupt cellular cytokine networks indicating that it 

may have a role in facilitating virion release from the host cell (Doorbar et al., 1991).  

 

The late viral genes express two structural proteins, the major capsid protein L1 and the 

minor capsid protein L2. The L1 and L2 form a non-enveloped, icosahedral structure which 

encapsidates the viral genome and associated cellular histones (Buck et al., 2013; Wang 

and Roden, 2013).  The L1 protein is ca. 500 amino acids in length and consists of a core of 

β-strand and α-helix structures which support the surface exposed loop regions designated 

BC, DE, EF, FG and HI (Chen et al., 2000). Five L1 proteins, or monomers, form an 

intermediate capsomer structure, then these pentameric subunits associate to form an 

icosahedral structure of 72 capsomers (Modis et al., 2002). The C-terminus of the L1 

extends outwards from the core and interacts with L1 monomers in adjacent capsomers 

resulting in 12 pentavalent and 60 hexavelent positioned capsomers (Modis et al., 2002). 

The L2 protein is ca. 450 amino acids in length and the HPV capsid is capable of 

incorporating up to 72 L2 monomers, thought to be positioned in the axial lumen of each L1 

capsomer (Buck et al., 2008), although as few as 12 monomers per capsid has also been 

reported (Roden et al., 1996a; Volpers et al., 1994). 

 

1.7 HPV replication cycle 

The replication cycle of HPV is strictly linked to the differentiation program of epithelial cells 

(Stubenrauch and Laimins, 1999) and to establish a productive infection HPV must infect 

cells capable of undergoing cell division such as the basal cells of the epithelium which are 

accessed via microtraumas, one or two cell-length tears in the stratified epithelium (Schiller 

et al., 2010). Additionally, the outermost cell layer of the cervical squamo-columnar junction 

is also capable of undergoing differentiation in a novel ‘top down’ process (Herfs et al., 2013) 

and it has been demonstrated that HPV are capable of infecting this superficial layer of cells 

(Mirkovic et al., 2015).  
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The L1 protein mediates initial viral attachment via heparin sulphate proteoglycans (HSPG) 

on the basement membrane (Giroglou et al., 2001a; Johnson et al., 2009; Joyce et al., 

1999). At least three L1 sites are involved in virus interaction with the host heparin sulphate 

moieties, with lysine residues in site 1 (Lys278 & Lys361: HPV16 designation) mediating 

primary attachment following which sites 2 (Lys54 & Lys356) and 3 (Asn57, Lys59, Lys442 & 

Lys443) are engaged (Knappe et al., 2007; Richards et al., 2013). L1-mediated attachment 

triggers a conformational change in the viral capsid, exposing the N-terminus of the L2 

protein which is subsequently cleaved by cellular furin proteases (Richards et al., 2006). The 

cleavage of the L2 protein causes an additional conformational change in the capsid which 

reduces L1 affinity for the primary HSPG receptor resulting in the subsequent transfer to an 

as yet unidentified secondary receptor on the host cell surface (Buck et al., 2013). These 

series of events necessitate that the time from initial HPV attachment to particle endocytosis 

is protracted (Giroglou et al., 2001a; Schelhaas et al., 2012) (Figure 4). 

 

There are conflicting data on the pathways used by individual HPV genotypes with HPV16 

and HPV31 the most intensely studied. The entry process of HPV16 has been classified as 

both clathrin-dependent (Bousarghin et al., 2003; Hindmarsh and Laimins, 2007; Smith et 

al., 2008b) and clathrin- and caveolar-independent (Schelhaas et al., 2012; Spoden et al., 

2008) whereas the entry of HPV31 has been identified as caveolar-dependent in some 

studies (Bousarghin et al., 2003; Smith et al., 2008b) and clathrin-dependent in others 

(Hindmarsh and Laimins, 2007). Following endocytosis, HPV is trafficked through the 

endosomal system as particle uncoating necessitates an acidified environment (Day et al., 

2003; Smith et al., 2008b). The L1 protein is degraded by lysosomes in the late endosomal 

compartments whilst the L2 protein facilitates viral genome egress from the endosome, 

forming a complex with the genome whilst it is translocated to the host cell nucleus (Bergant 

Marusic et al., 2012; Day et al., 2004). 

 

  



Figure 4
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Figure 4 Steps in HPV binding to host epithelial cells. Initially attachment to basement membrane
heparin sulphate proteoglycans mediates a conformational change in the viral capsid exposing
L2, which is cleaved, subsequently an L1 cell-receptor binding site is exposed and the virus
attaches to basal epithelial keratinocytes. Day et al., Cell Host and Microbe, 8:260 (2010); Schiller
& Lowy Nat Rev Mirco, 10:681 (2012).
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An initial phase of viral genome amplification occurs within the infected basal cell facilitated 

by viral replication proteins, E1 and E2 (Lambert, 1991). The viral genome is subsequently 

maintained within the nucleus as a low copy number episome (Stubenrauch and Laimins, 

1999). The infected basal cell divides and the daughter cell migrates into the upper layers of 

epithelium and begins the process of differentiation which coincides with exit from the cell 

cycle and the down regulation of cellular replication factors. However, HPV-infected cells do 

not exit the cell cycle but instead re-enter the S-phase (Stubenrauch and Laimins, 1999) 

principally due to the action of the E7 protein which binds and degrades pRB, releasing the 

E2F transcription factor which induces host cell replication machinery overcoming the block 

on DNA synthesis (Flores et al., 1999). The E6 and E5 proteins also contribute to the 

maintenance of this favourable cellular environment for HPV genome amplification. The 

activity of p53, which increases in response to the activity of the E7 protein, is counteracted 

by the E6 protein which targets p53 for degradation via the ubiquitin-proteasome pathway 

(Scheffner et al., 1993). The E5 protein binds the EGFR resulting in receptor dimerisation 

and the initiation of a signalling cascade which stimulates cell growth (Venuti et al., 2011). 

 

The concentration of the E1 and E2 proteins increases with the differentiation-dependent 

activation of the late promoter, p670 (Grassmann et al., 1996). The E2 protein subsequently 

downregulates the early promoter (p97) resulting in the reduced expression of E6 and E7 

proteins and subsequent progression in cell differentiation (Thierry, 2009). Upregulation of 

the p670 increases the expression of the E1^E4 protein which stimulates cell cycle arrest in 

G2 (Davy et al., 2002) facilitating the synthesis of the viral late proteins, L2 followed by L1, in 

the uppermost layers of the epithelium. The E2 protein recruits the L2 to the newly replicated 

viral genome which is subsequently encapsidated, alongside cellular histones, within an 

icosahedral capsid composed of the L1 and L2 proteins (Buck et al., 2013; Wang and 

Roden, 2013). Progeny virions are shed from the top layer of epithelium, released from cells 

undergoing a programmed cell death, a process which is facilitated by disruption of the 

cellular cytokine network by the E1^E4 protein (Doorbar et al., 1991).   
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1.8 HPV oncogenesis 

Oncogenesis is the process by which normal cells are transformed into cancer cells following 

a breakdown in the regulatory mechanisms which govern cell division. Multiple steps are 

involved in the development of cancer beginning with initiation whereby acquisition of DNA 

damage and/or mutations causes the cell to become abnormal; this may happen as a result 

of exposure to carcinogens such as certain chemicals or radiation but can also occur 

spontaneously (Bertram, 2000). Cellular mechanisms are in place which identify and repair 

abnormal DNA and if these mechanisms fail the cell undergoes a programmed cell death; 

however, the accumulation of DNA damage and/or mutations over time, which can be 

promoted by certain hormones and drugs (Yager and Davidson, 2006), results in the loss of 

cellular growth control checks and transformation of the cell into a cancer cell. The 

uncontrolled proliferation of cancer cells leads to the formation of malignant tumours which 

interfere with the normal functions of their resident tissue or organ. Ultimately, cancer cells 

can spread throughout the body and form secondary tumours or metastases (Leber and 

Efferth, 2009). 

 

Cancers attributable to oncoviruses share common traits such as virus infection being 

necessary but not sufficient for cancer development and viral cancers occurring in the 

context of persistent infection (Mesri et al., 2014); however the specific mechanism of 

oncogenesis differs between oncoviruses with multiple factors contributing towards cancer 

development. The development of HCC as a result of a chronic infection with HBV is 

multifactorial with oncogenesis promoted by HBV DNA integration in the host genome, the 

expression of the HBV X protein and HBV-specific T cell-meditated hepatic inflammation 

(Sung et al., 2012). These three events contribute to the induction of chromosomal instability 

and altered gene functions, modulation of cell viability and proliferation and the accumulation 

of genetic damage, respectively.  
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A persistent infection with an oncogenic HPV genotype can lead to integration of viral DNA 

into the host genome (Klaes et al., 1999), a key event in HPV oncogenesis. Integration 

results in the maintenance of E6 and E7 oncogene expression whilst other regions of the 

viral genome are lost or their expression impaired. Significantly the expression of the E2 

transcriptional repressor protein is lost resulting in deregulation of E6 and E7 oncoprotein 

expression (Baker et al., 1987). The integration of HPV DNA alters host cell gene expression 

(Alazawi et al., 2002) whilst the expression of E6 and E7 confers a selective growth 

advantage over cells which contain HPV DNA in episomal form (Jeon et al., 1995). The 

major action of the E6 and E7 proteins during the HPV replication cycle is the facilitation of 

viral DNA synthesis by blocking the functions of p53 and pRB, respectively (Roman and 

Munger, 2013; Thomas et al., 1999). This in turn promotes cellular proliferation since the  

cell cycle remains in the S phase without triggering DNA repair pathways and ultimately 

apoptosis (Howie et al., 2009). The absence of E2-mediated regulation of E6 and E7 protein 

expression following HPV DNA integration allows the accumulation of secondary mutations 

within the host DNA contributing to the malignant progression of the cell (McBride, 2013).  

 

1.9 Host response to HPV infection 

The high rates of exposure in contrast to the low numbers of women who develop cervical 

cancer indicate that an effective immune response is generated against the majority of HPV 

infections. The humoral immune response to HPV predominantly targets the L1 major capsid 

protein; however, antibodies targeting the early proteins E2, E6 and E7 can be detected in 

patients with high grade cervical disease (Lehtinen et al., 1992; Muller et al., 1992) 

suggesting that the detection of such antibody specificities may have utility for monitoring 

disease progression. Low levels of L1 serum antibodies are detectable in ca. 60% of HPV 

infected individuals (Gravitt, 2011) with one study finding that seroconversion rates at 18 

months following incident infection with either HPV16, HPV18 or HPV6 were 60%, 54% and 

69% respectively (Carter et al., 2000). A recent systematic review demonstrate that HPV16 

natural infection antibodies offered significant protection against reinfection with HPV16 in 



32 
 

women, although this effect was not apparent in male subjects (Beachler et al., 2015). 

Seroconversion rates following natural HPV infection are lower in males which may 

contribute towards this lack of protection (Dunne et al., 2006). Protection also seems to be 

dependent upon the magnitude of the antibody response since higher levels of HPV16 and 

HPV18 natural infection antibodies have been shown to be associated with a reduced risk of 

subsequent reinfection in women (Safaeian et al., 2010).  

 

The regression of HPV-induced lesions is thought to occur as a result of a successful cell-

mediated response targeting the viral early proteins, particular E2 and E6 (Woo et al., 2010). 

This was first demonstrated by an immunohistologic study which found significantly higher 

levels of T lymphocytes (CD4+ and CD8+) in regressing genital warts compared to non-

regressing (Coleman et al., 1994), an observation which was subsequently confirmed using 

serial wart biopsies taken from the canine oral papillomavirus (COPV) infection model.  

Immunohistochemical staining of these biopsies showed the presence of T-lymphocytes just 

prior to regression with levels reaching peak concentrations during the resolution of the wart 

(Nicholls et al., 2001).  

 

HPV has evolved strategies to avoid detection by the innate immune system. thereby 

delaying the activation of the adaptive immune system resulting in the maintenance of a 

persistent infection (Schiffman and Kjaer, 2003). The replication of HPV is linked to epithelial 

differentiation and the establishment of a productive infection depends upon the infection of 

basal epithelium cells.  Basal cells are the only cell type capable of undergoing cell division 

with one daughter cell, carrying the viral episome, migrating away to begin the program of 

terminal differentiation whilst the other daughter cell becomes a new basal cell maintaining 

the viral episome (Lowy and Schiller, 2006). The expression of high levels of viral proteins, 

which would be detectable by immune surveillance, only occurs in highly differentiated cells 

which have migrated away from the basal cell layer leaving the viral episome-containing cell 

undetected (Lowy and Schiller, 2006). Critically there is no inflammation and therefore no 
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danger signals are raised when the infectious virus particles are shed from the top layer of 

epithelium since progeny virions are released from cells undergoing apoptosis. There is also 

no viraemic phase during the normal course of HPV infection, with the virus shed into the 

local environment of the genital mucosa where transport to lymph nodes via vascular and 

lymphatic channels is limited (Mariani and Venuti, 2010). HPV DNA is detectable in the 

peripheral blood of women with advanced cervical cancer, however this DNA is thought to 

originate from circulating tumour cells rather than the release of progeny virions (Kay et al., 

2005). 

 

HPV also targets specific components of both the innate and adaptive immune system. Virus 

infected cells should stimulate the production of type 1 interferons, IFN-α and IFN-β, which 

have broad-spectrum antiviral activity and act as a bridge between the innate and adaptive 

arms of the immune system (Le Bon and Tough, 2002). HPV lesions exhibit a degree of 

clinical resistance to IFN-α treatment and it has been demonstrated that the E7 protein can 

inhibit the antiviral activities of INF-α by direct interaction with protein components of the 

interferon signalling pathway (Barnard and McMillan, 1999; Barnard et al., 2000). 

Langerhans cells are a subset of antigen-presenting dendritic cells which reside in the 

epithelium, where they act as the first line of defence against invading pathogens alongside 

other elements of the innate system (e.g. cytokines, neutrophils and macrophages). 

Langerhans cells should be activated by the uptake of HPV capsids triggering an anti-HPV 

immune response; however, it has been shown that Langerhans cells are not activated by 

HPV16 L1 VLPs (Fausch et al., 2002) demonstrating the ability of HPV to silence another 

component of the innate immune response. Toll-like receptors (TLR) which play a 

fundamental role in pathogen recognition and subsequent activation of the innate immune 

system are also a target for the E6 and E7 proteins which downregulate TLR9 mRNA 

inhibiting the activation of the TLR9 pathway (Hasan et al., 2007).  HPV can also subvert the 

adaptive immune system, impairing cytotoxic T-cell targeting of HPV infected cells by the 
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action of the E7 and E5 viral proteins which reduce the expression of the major 

histocompatibility complex (MHC) I (O'Brien and Saveria Campo, 2002). 

 

1.10 Medical and therapeutic HPV interventions 

The link between persistent infection with an oncogenic HPV genotype and subsequent 

development of cervical cancer has resulted in many countries establishing national 

screening programmes to identify and treat pre-cancerous cervical disease resulting in a 

subsequent decrease in the numbers of cervical cancer cases (Hakama et al., 1985). 

However, resources for such programmes are not available, or limited, in many low- and 

middle-income countries contributing to the heavier burden of cervical cancer incidence 

(86% of worldwide incidence) and mortality (88%) in these regions (Arbyn et al., 2011). 

 

The UK national cervical screening programme was launched in 1988 supported by a 

computerised call/recall system and is estimated to prevent up to 5,000 deaths per year in 

the UK (Peto et al., 2004). The programme invites 25 to 64 year old women to attend for 

screening every 3 years between the ages 25 to 49 and every 5 years between the ages of 

50 to 64. Cell samples are collected from the surface of the cervix and screened for 

abnormalities, which if found trigger follow-up investigations. HPV DNA testing is carried out 

on samples with cellular abnormalities classified as borderline or mild cervical dyskaryosis 

and women with HPV DNA positive samples are referred for colposcopy examination. 

Women with cellular abnormalities classified as moderate or severe cervical dyskaryosis are 

referred straight to colposcopy for biopsy and treatment of abnormal cells, which are usually 

removed by large loop excision of the transformation zone (LLETZ). Cervical treatment is 

successful in ca. 90% of women, with no cellular abnormalities detected at follow up 

screenings (Kitchener et al., 2006). 

 

The development of therapeutic vaccines for the treatment of precancerous HPV lesions 

without the need for surgical excision has focussed on the E6 and E7 oncoproteins (van der 
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Sluis et al., 2015). It is the expression of these two proteins that is required for the initiation 

and maintenance of precancerous, high grade lesions and their subsequent immortalisation 

(Hudson et al., 1990). Clinical trials have been carried out with various forms of the E6 

and/or E7 as immunogens (Stern et al., 2012) with vaccination strategies generally aimed at 

stimulating T lymphocytes since this is primarily the immune response implicated in the 

regression of HPV lesions (Coleman et al., 1994; Nicholls et al., 2001). It has been 

demonstrated that therapeutic vaccines are safe and are well tolerated in patient cohorts 

ranging from healthy individuals to those with end-stage cervical cancer; however, their 

efficacy to date has been limited (Stern et al., 2012). Cervical cancer tumours commonly 

have mutations within the genes involved in antigen processing and presentation which may 

reduce the effectiveness of E6 and/or E7 antigen-specific vaccines in late stage disease 

(Brady et al., 2000; Evans et al., 2001). However, clinical efficacy has been demonstrated for 

two E6/E7 vaccines against HPV16-associated vulva intraepithelial neoplasia (VIN) in 

separate phase II clinical trials with lesion regression correlating with the detection of 

vaccine-induced HPV-specific T cell responses (Daayana et al., 2010; Welters et al., 2010). 

More recently the therapeutic vaccine candidate VGX-3100, which consists of synthetic 

plasmids encoding the E6 and E7 genes, demonstrated therapeutic efficacy against CIN2/3 

associated with HPV16 and HPV18 (Trimble et al., 2015). 

 

1.11 L1 virus-like particle prophylactic vaccines 

1.11.1 L1 virus-like particles 

The L1 major capsid protein of HPV can self-assemble to form icosahedral virus-like 

particles (VLP) when over-expressed in various in vitro systems including bacterial and yeast 

cells which are transformed by L1 expression plasmids and by L1 recombinant vaccinia or 

baculovirus infection of eukaryotic cell lines (Kirnbauer et al., 1992; Nardelli-Haefliger et al., 

1997; Sasagawa et al., 1995; Zhou et al., 1993). L1 VLP form in a step-wise process 

whereby five L1 monomers associate to form a capsomer, then 72 capsomers associate to 

form the icosahedral capsid structure (Modis et al., 2002) (Figure 5A). The five L1 loop  
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regions, BC, DE, EF, FG and HI (Figure 5B), are surface exposed on the pentameric 

capsomer structure. The DE loop, centrally positioned around the capsomer lumen, is 

encircled by the FG and HI loops with the BC and EF loops located on the outer rim of the 

capsomer (Chen et al., 2000) (Figure 5C). The L1 loops from different monomers are 

intertwined within the capsomer structure. For example, the BC loop of monomer 1 is in 

close proximity to the EF loop of monomer 2 whilst the HI loop of monomer 1 inserts 

between the FG and EF loops of monomer 2 and extends as far as the FG loop of monomer 

3 (Bishop et al., 2007). This repetitive external structure makes L1 VLP (Figure 5D) 

immunogenic even in the absence of adjuvant (Suzich et al., 1995). Most of the monoclonal 

antibodies (MAbs) known to neutralise HPV infection in vitro recognise conformational 

epitopes on one or more of these L1 loops (Carter et al., 2003; Rizk et al., 2008; Zhang et 

al., 2015a; Zhang et al., 2015b).  

 

1.11.2 L1 VLP mediated protection in PV preclinical disease models 

Two seminal studies carried out on the CRPV and COPV disease models demonstrated that 

active immunisation with L1 VLP protected animals from homologous viral challenge at both 

cutaneous and mucosal epithelium sites of infection (Breitburd et al., 1995; Suzich et al., 

1995). L1 VLP-induced protection was concomitant with the detection of high titre, type-

specific anti-L1 serum antibodies which recognised the L1 VLP used as an immunogen. 

Passive transfer of sera from immunised animals, or the purified IgG component, was found 

to protect naïve animals from subsequent viral challenge. Protection was type-specific since 

immunisation did not protect animals against heterologous challenge; however, in both 

instances the heterologous PV used for challenge were from a diverse PV genus (Breitburd 

et al., 1995; Suzich et al., 1995). No protection from viral challenge was observed when 

animals were immunised with denatured L1 VLP, implying that the anti-L1 antibodies which 

conferred protection target conformational epitopes of the L1 capsid protein. These studies 

highlighted the utility of the L1 VLP as a candidate prophylactic HPV vaccine.  
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1.11.3 L1 VLP based vaccines 

The HPV prophylactic vaccines Cervarix® and Gardasil® both contain L1 VLP representing 

the oncogenic genotypes HPV16 and HPV18; additionally Gardasil® also contains VLP 

representing genotypes HPV6 and HPV11 which are associated with ca. 90% of external 

genital warts cases (Lacey et al., 2006) (Table 1). The two vaccine preparations use 

different adjuvants: Gardasil® is adjuvanted with amorphous aluminium hydroyxphosphate 

sulphate (AAHS) whilst Cervarix® is formulated with the proprietary Adjuvant System 04 

(AS04). AAHS was demonstrated to have a greater binding capacity for L1 VLP and induced 

higher anti-L1 VLP antibody titres when compared to aluminium phosphate (AIPO4) and 

aluminium hydroxide (AIOH) in small animal immunisation studies (Caulfield et al., 2007). 

AS04 contains AIOH in combination with 3-O-desacyl-4’-monophosphoryl lipid A (MPL). 

MPL is a detoxified derivative of the lipopolysaccharide (LPS) cell wall of Salmonella 

minnesota strain R595 (Garcon et al., 2007) and activates TLR4 resulting in activation of 

innate system immune cells (Hoshino et al., 1999). This non-specific immunodulatory effect 

of MPL enhances antigen presentation and in doing so links the innate and adaptive immune 

system responses (Garcon et al., 2007). HPV16 and HPV18 L1 VLP adjuvanted with AS04 

were shown to induce higher anti-L1 VLP antibody titres in humans than the corresponding 

VLP adjuvanted with AIOH alone (Giannini et al., 2006). The quality of the immune 

response, as measured by the frequency of HPV16 and HPV18 specific memory B cells, 

was also higher in the AS04 adjuvanted group (Giannini et al., 2006).  

 

1.11.4 L1 VLP vaccine efficacy and immunobridging trials 

The HPV L1 VLP-based vaccines were primarily developed to prevent cervical cancer and  

vaccine efficacy trials were carried out in young women (15–26 years) with surrogate clinical 

endpoints of infection and disease (Schiller et al., 2008). The Cervarix® phase II trial 

(GSK001/007) investigated safety, immunogenicity and efficacy against incident and 

persistent HPV16/18 infection (Harper et al., 2006). In the according-to-protocol (ATP) 

analysis comprising women who were negative for HPV16 and HPV18 antibodies and  



Table 1. Characteristics of HPV VLP vaccines 
    Cervarix® Gardasil® 
      Manufacturer GlaxoSmithKline Merck 

   VLP genotypes 16/18 6/11/16/18 
   Dose of L1 protein 20/20µg 20/40/40/20µg 
   Producer cells Trichoplusia ni Saccharomyces cerevisiae 
 Insect cells Yeast cells 
   Adjuvant Adjuvant system 04  

(AS04) 
Amorphous aluminium 
hydroyxphosphate sulphate 
(AAHS) 

    500µg aluminium hydroxide 
50µg 3-O-deacylated-4’-
monophosphoryl lipid A (MPL) 

225µg aluminium 
hydroyxphosphate sulphate 

   Injection schedule 0, 1, 6 months 0, 2, 6 months 
   Source: Schiller et al., Vaccine, 30S F123 (2012) 
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oncogenic HPV DNA at entry and who had received all three doses of vaccine, efficacy was 

demonstrated to be 96.0% (95% confidence interval [CI], 75.2 to 99.9) against 6 month 

persistent infection (Harper et al., 2006) (Table 2). The Merck 007 phase II trial measured 

Gardasil® efficacy against HPV6/11/16/18 persistent infection and cervical, external 

anogenital or vaginal disease (Villa et al., 2006b). In the preprotocol population analysis of 

women negative for HPV6/11/16/18 antibodies and DNA at entry who received all three 

doses, efficacy was 95.6% (95% CI, 83.3 to 99.5) against 4 month persistent infection (Villa 

et al., 2006b) (Table 2). 

 

Larger phase III vaccine efficacy trials followed, recruiting tens of thousands of women from 

multiple sites in Europe, North America, South America, Asia and Australia (Schiller et al., 

2008). The papilloma trial against cancer in young adults (PATRICIA) study enrolled 18,644 

women aged 15-25 years randomly assigned to receive either Cervarix® or the hepatitis A 

vaccine. In the 4-year end-of-study analysis, efficacy against HPV16/18 CIN3+ of 91.7% 

(95% CI, 66.6 to 99.1) was reported in the ATP cohort for efficacy (ATP-E) (Lehtinen et al., 

2011) (Table 2). The FUTURE (females united to unilaterally reduce endo/ectocervical 

disease) I and II trials investigated the efficacy of Gardasil® against anogenital disease 

associated with HPV6/11/16/18 in a study cohort of 17,222 women aged 15-26 years. 

Vaccine efficacy against HPV6/11/16/18 CIN3+ was 100% (95% CI, 90.5 to 100), in the 

study cohort DNA negative for 14 oncogenic HPV genotypes at enrolment (Munoz et al., 

2010) (Table 2).    

 

Efficacy trials have also been carried out in other populations where the HPV vaccines offer 

potential health benefits. A Gardasil® study (Protocol 019) carried out in older women (24-45 

years) reported an end-of-study efficacy against 6 month persistent infection of 89.6% (95% 

CI, 79.3 to 95.4), in women who were seronegative for HPV6/11/16/18 antibodies and DNA 

at enrolment and who remained DNA negative up to 7 months (Castellsague et al., 2011) 

(Table 2). The ongoing human papillomavirus: vaccine immunogenicity and efficacy  



Table 2. HPV vaccine efficacy against infection and lesions related to vaccine targeted genotypes 
     Vaccine Study Participants (years) Endpointsa Efficacy (95% CI)b 
          Cervarix® GSK 001/007 Women (15 to 25)  Persistence infection (6M) 96.0 (75.2 to 99.9) 
   Persistence infection (12M) 100 (52.5 to 100) 
      PATRICIA Women (15 to 25)  CIN2+ 94.9 (87.7 to 98.4) 
   CIN3+ 91.7 (66.6 to 99.1) 
      VIVIANE Women (26 to 45)  Persistence infection (6M) 82.9 (53.8 to 95.1) 
   CIN1+ 86.1 (-35.4 to 99.9) 
     Gardasil® Merck 007 Women (16 to 23)  Persistence infection (4M) 95.6 (83.3 to 99.5) 
   CIN1+ 100 (<0.0 to 100) 
      FUTURE I and II Women (15 to 26)  CIN2+ 100 (91.9 to 100) 
   CIN3+ 100 (90.5 to 100) 
      Protocol 019 Women (24 to 45) Persistence infection (6M) 89.6 (79.3 to 95.4) 
   CIN, any grade 94.1 (62.5 to 99.9) 
      V501-020 Men (16 to 26) Persistence infection (6M) 94.9 (80.4 to 99.4) 
   AIN, any grade 77.5 (39.6 to 93.3) 
     CI: confidence interval, CIN: Cervical intraepithelial neoplasia; AIN: Anal intraepithelial 

neoplasia. 
a Protection against persistent infection over 4 (4M), 6 (6M) and 12 (12M) months,  cervical 
infection in women and anal infection in men. 
b The Cervarix® efficacy data reported from the according to protocol (ATP) group. The 
Gardasil® efficacy data reported from the pre-protocol population for the Merck 007, Protocol 
019 and V501-020 trials. Efficacy data from the FUTURE I and II trials reported from women 
DNA negative for 14 oncogenic HPV genotypes are enrolment.  
Source: Schiller et al., Vaccine, 26S K53 (2008); Schiller et al., Vaccine, 30S F123 (2012); 
Skinner et al., Lancet, 384:2213 (2014). 
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(VIVIANE) study assessing the efficacy, safety, and immunogenicity of Cervarix® in 26-45 

year old women reported interim efficacy data of 82.9% (97.7% CI, 53.8 to 95.1) against 6 

month persistent infection with HPV16/18 in the ATP-E cohort (Skinner et al., 2014) (Table 

2). A Gardasil® efficacy study (V501-020) carried out in males (16-26 years) demonstrated 

efficacy of 77.5% (95% CI, 39.6 to 93.3) against anal intraepithelial neoplasia (AIN) 

attributable to HPV6/11/16/18, in the study cohort DNA negative for 14 oncogenic HPV 

genotypes and HPV6/11/16/18 antibody negative at enrolment (Giuliano et al., 2011; 

Palefsky et al., 2011) (Table 2). 

 

The HPV vaccines induce high titre, neutralising serum antibody responses which target the 

L1 of HPV16 and HPV18. Antibody titres increased in a step-wise manner following each 

vaccine dose, peaking at levels 10 to 100-fold higher than those induced by natural infection 

at 1 month post final dose (Einstein et al., 2011b; Villa et al., 2006a). Antibodies specific for 

HPV16 and HPV18 L1 VLP can also be detected in the cervicovaginal secretions of vaccine 

recipients but at titres several fold lower (Einstein et al., 2009; Kemp et al., 2008) and are 

thought to be serum antibodies which have accessed the site of HPV infection via the 

mechanisms of transudation or exudation (Schiller and Lowy, 2012). Serum antibody titres 

subsequently wane over the following 18 months plateauing at a level ca. 10-fold higher than 

the level of natural infection antibody (Einstein et al., 2011b). This level of antibody is 

maintained over several years with Gardasil® immunogenicity demonstrated through 9 years 

of follow up (Nygard et al., 2015) and Cervarix® through 9.4 years (Naud et al., 2014).  

 

Immunobridging studies were carried out in young adolescents (9-15 years), the target age 

group for vaccination but a population for which efficacy data could not be obtained (Block et 

al., 2006; Pedersen et al., 2007; Petaja et al., 2009). The adolescent age groups 

demonstrated non-inferiority of vaccine-induced immunogenicity, measured in the form of L1 

serum antibody responses, compared to older women from the age group (15-25 years) for 

which vaccine efficacy had been proven. It is inferred that the non-inferior immunogenicity of 
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the younger age group will translate into non-inferior vaccine efficacy (Lowy et al., 2015). 

These studies alongside the vaccine efficacy trials have supported the successful licensure 

of both Cervarix® and Gardasil® in over 100 countries worldwide since 2006 (Markowitz et 

al., 2012). Cervarix® is indicated for use in 9-25 year old females for the prevention of CIN, 

cervical cancer and adenocarcinoma in situ (AIS). Gardasil® is indicated for 9-26 year olds 

for the prevention of cervical, vulvar and vaginal cancers in females, and anal cancer, 

external genital warts, precancerous and dysplastic lesions in both females and males. 

 

1.11.5 L1 VLP vaccine-induced cross-protection 

L1 VLP vaccine-induced cross-protection was considered unlikely due to L1 VLP type-

specific protection seen in animal models (Breitburd et al., 1995; Suzich et al., 1995); 

however, data from the vaccine efficacy trials demonstrated a degree of cross-protection 

against some non-vaccine genotypes closely related to either HPV16 or HPV18 within the 

A9 or A7 species groups.  

 

Efficacy against non-vaccine genotypes was first reported for Cervarix® in 2006 as part of 

the phase II trial, GSK 001/007, where a reduction in incident infection caused by HPV31 

(54.5% [95% CI, 11.5 to 77.7]) and HPV45 (94.2% [95% CI, 63.6 to 99.9]) was observed 

(Harper et al., 2006). The larger phase III PATRICIA trial of Cervarix® extended the analysis 

of vaccine efficacy to include 12 oncogenic HPV genotypes (Wheeler et al., 2012). In the 

ATP-E cohort efficacy against 6-months persistent infection was demonstrated for HPV31, 

HPV33 and HPV45 (Table 3). Furthermore, efficacy against CIN2+ was demonstrated for 

HPV31 (84.3% [95% CI, 59.5 to 95.2]) and HPV33 (59.4% [95% CI, 20.5 to 80.4]) (Wheeler 

et al., 2012). The cross-protective efficacy of Cervarix® has also been demonstrated for older 

women (26-45 years) in the VIVANE study which reported efficacy in its ATP-E cohort 

against 6 month persistent infection attributable to HPV31 (79.1% [97.7% CI, 27.6 to 95.6]) 

and HPV45 (76.9% [97.7% CI, 18.5 to 95.6]) (Skinner et al., 2014). Cross-protection against 

infection with non-vaccine genotypes was also evaluated in the phase III trials of Gardasil®.  



Table 3. HPV vaccine efficacy against 6-month persistent infection related to non-
vaccine genotypes  
    Efficacy (95% CI)a 
      Genotype  Cervarix®  - PATRICIA   Gardasil® - FUTURE I and II 
      HPV31  76.8 (69.0 to 82.9) 46.2 (15.3 to 66.4) 
HPV33  44.8 (24.6 to 59.9) 28.7 (-45.1 to 65.8) 
HPV35 -19.8 (-74.1 to 17.2) 17.8 (-77.1 to 62.5) 
HPV52    8.3 (-6.5 to 21.0) 18.4 (-20.6 to 45.0) 
HPV58 -18.3 (-51.8 to 7.7)   5.5 (-54.3 to 42.2) 
All non-vaccine A9  22.0 (13.2 to 30.0) 21.9 (0.6 to 38.8) 
   HPV39   4.8 (-17.7 to 23.1) NR 
HPV45 73.6 (58.1 to 83.9)   7.8 (-67.0 to 49.3) 
HPV59  -7.5 (-51.8 to 23.8) 18.7 (-22.8 to 46.4) 
HPV68   2.6 (-21.5 to 21.9) NR 
Non-vaccine A7 11.6 (-1.0 to 22.7) 14.8 (-19.9 to 39.6)b 
   CI: confidence interval; NR: Not reported 
a The Cervarix® efficacy data reported from the according to protocol (ATP) group from the 
PATRICIA trial. The Gardasil® efficacy data from the FUTURE I and II trials reported from 
women DNA negative for 14 oncogenic HPV genotypes are enrolment. 
b Date for HPV45 and HPV59 only 
Source: Brown et al., Journal of Infectious Diseases, 199:926 (2009); Wheeler et al., Lancet 
Oncology, 13:100 (2012); Schiller et al., Vaccine, 30S F123 (2012). 
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In the cohort of women HPV-naïve at enrolment, efficacy against 6-months persistent 

infection was most notable for HPV31 (Table 3), with efficacy against CIN2-3 or AIS 

attributable to HPV31 infection (70.0% [95% CI, 32.1 to 88.2) also reported (Brown et al., 

2009).  

 

1.12 L1 antibody serology 

The antibody responses following L1 VLP immunisation have been measured using a variety 

of serological assays and although the antibody specificities measured by each assay do 

overlap the direct comparison of each system output is problematic (Schiller and Lowy, 

2009). The enzyme-linked immunosorbent assay (ELISA) has probably been the most 

widely used with the assay generally taking the form of an indirect ELISA (Giannini et al., 

2006; Nardelli-Haefliger et al., 2003). The target L1 VLP is immobilised on the solid phase 

and subsequently bound by anti-L1 antibodies, a reaction which is resolved by the addition 

of a secondary enzyme-conjugated antibody which allows Ig class and subclass 

differentiation. However, neutralising and non-neutralising antibodies cannot be 

discriminated using the ELISA as all antibodies which bind to the L1 capsid, irrespective of 

functionality, will be detected.  

 

The competitive Luminex immunoassay (cLIA) was developed by Merck to monitor vaccine 

immunogenicity (Opalka et al., 2003). L1 VLP are immobilised on microspheres, then anti-L1 

antibodies compete with a fluorescent tagged type-specific, neutralising murine L1 MAb for 

binding to the VLP. The fluorescent output is inversely proportional to the amount of anti-L1 

antibody able to block MAb binding. This assay is highly specific as it only detects antibodies 

which can abrogate the binding of single antibody specificity. Antibodies which can 

successful compete off the MAb are assumed to be type-specific and neutralising in nature. 

 

The L1 protein’s innate ability to self-assemble was exploited to generate high titre, 

infectious pseudovirions (PsV) with capsids comprising the L1 and the L2 minor capsid 



46 
 

protein (Buck et al., 2004) which is essential for HPV infectivity (Yang et al., 2003) (Figure 

6A). PsV can encapsidate exogenous DNA such as luciferase or green fluorescent protein 

(GFP) expression plasmids (Figure 6B) and act as viral vectors since the encapsidated 

plasmid is chaperoned to the host cell nucleus by the L2 minor capsid protein (Day et al., 

2004). The reporter protein is then expressed and the level of expression is used as a 

surrogate marker for PsV infectivity.  

 

L1L2 PsV are utilised in the HPV neutralisation assay (Pastrana et al., 2004). The PsV are 

pre-incubated with anti-L1 antibodies before addition to immortalised cell lines that stably 

express the SV40 large T antigen which in turn drives the expression of the reporter protein. 

If functional anti-L1 antibodies are present the PsV are neutralised; however, if such 

antibody specificities are not present the PsV will be taken up by the cell and the reporter 

plasmid delivered resulting in the expression of the reporter protein. This assay format only 

detects functional, neutralising antibodies, the antibody specificity thought to most likely play 

a role in protection against HPV infection.  

 

The ability of HPV L1L2 PsV to bind and transduce cells of the murine genital epithelium in 

vivo to express reporter protein led to the establishment of the murine cervicovaginal 

challenge (CVC) model (Roberts et al., 2007). Murine genital epithelium becomes 

susceptible to transduction with L1L2 PsV following gentle abrasion, a situation which is 

thought to parallel the epithelium micro-traumas necessary for the establishment of authentic 

HPV infection. The murine CVC model is a more sensitive measurement of neutralising 

antibodies than the standard in vitro L1L2 PsV neutralisation assay (Longet et al., 2011).  

 

1.13 Type-specific L1 antigenicity 

1.13.1 L1 MAbs 

MAbs raised against HPV L1 VLP have utility in the assessment of the antibody responses 

induced by vaccination and natural infection (Smith et al., 2008a; Wang et al., 1997a), the  



Figure 6

B 

A 

Figure 6 HPV L1L2 pseudovirus particles. (A) Computerised reconstruction of exterior view of L1-only 
capsid, L2-specific density alone and superimposed in interior of L1-only capsid. (B) The PsV particle is 
comprised of the L1 and L2 proteins and is able to encapsidate a reporter plasimd.  Schiller & Muller, 
Lancet Oncology, 16:e217 (2015); Buck et al., Journal of Virology, 82:5190 (2008). 
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identification and characterisation of L1 epitopes (Christensen et al., 1996a; Christensen et 

al., 1996b; Fleury et al., 2009) and the monitoring of L1 VLP quality and vaccine potency 

(Deschuyteneer et al., 2010; Shank-Retzlaff et al., 2005; Shank-Retzlaff et al., 2006; Zhao et 

al., 2012). The murine MAbs which have been generated against L1 VLP immunogens are 

almost exclusively of a type-specific nature and recognise conformational, neutralising 

epitopes on the surface-exposed loops of the L1 protein (Carter et al., 2003; Fleury et al., 

2006; Rizk et al., 2008). A number of cross-reactive L1 MAbs have also been generated 

supporting the concept of common L1 epitopes but only a minority are neutralising (Rizk et 

al., 2008). HPV16 has historically been the most intensively studied HPV due to its high 

prevalence in cervical cancer and subsequently the majority of well characterised murine 

MAbs that are available have been generated against HPV16 L1 VLP (Christensen et al., 

2001; Christensen et al., 1996a). Panels of MAbs targeting HPV6, HPV11 (Christensen et 

al., 1996b) and HPV18 (Christensen et al., 1996a) were also developed in parallel with the 

HPV16 MAbs and more recently L1 MAbs raised against HPV31, HPV33, HPV45, HPV52 

and HPV58 have been generated and characterised (Brendle et al., 2010; Brown et al., 

2014; Fleury et al., 2006). 

 

The neutralising, type-specific MAb H16.V5 binds a conformational epitope comprised of 

amino acid residues from the DE, EF, FG and HI loops of the HPV16 L1 protein (Guan et al., 

2015; Lee et al., 2015) and is able to block ca. 75% of the binding antibodies generated in 

response to HPV16 natural infection (Wang et al., 1997a). This demonstrated that some 

components of the murine and human L1 antibody repertoires overlapped and that murine 

MAbs had utility for monitoring of the HPV antibody response in humans. H16.V5 was 

incorporated into the cLIA, developed to monitor the type-specific antibody response 

following HPV vaccination (Smith et al., 2008a). This assay also incorporated type-specific 

MAbs which bound L1 conformation-dependent epitopes of HPV6 (H6.M48), HPV11 

(H11.B2) and HPV18 (H18.J4) (Smith et al., 2008a). Like H16.V5, these MAbs were able to 

block type-specific anti-L1 reactivity in human vaccinee sera exploiting the overlap in human 
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and murine antibody repertoires, albeit to only a single antibody specificity for each 

genotype. 

Cross-reactive L1 MAbs recognise epitopes common between HPV genotypes but rarely 

neutralise their prototype genotype or cross-neutralise other genotypes (Rizk et al., 2008). A 

limited number of L1 MAbs, which target the A10 genotype HPV6, and the A7 genotypes 

HPV18 and HPV45 (Brown et al., 2014; Christensen et al., 1996b; Smith et al., 2007), have 

demonstrated cross-neutralisation of closely related genotypes from within the same species 

group. For example, MAb H18.R5 was able to cross-neutralise L1L2 PsV representing 

HPV45 whilst MAbs H45.6G6 and H45.3C3 were able to cross-neutralise L1L2 PsV 

representing HPV18; however, higher IgG concentrations (ca. 5 to 30-fold) were required for 

cross-neutralisation compared to the concentration required to neutralise the prototype PsV 

(Smith et al., 2007). This observation indicates that even though these monoclonal 

specificities recognise common L1 epitopes between HPV18 and HPV45, they have reduced 

recognition of these epitopes when presented on the heterologous L1 protein. No L1 MAbs 

which cross-neutralise genotypes within the HPV16 containing A9 group have been 

identified to date.   

 

1.13.2 L1 MAb epitope identification  

The majority of studies aimed at identifying and characterising the epitopes of the L1 protein 

have utilised MAbs in conjunction with L1 VLP harbouring either individual amino acid 

residue substitutions or the replacement of entire sections of the L1 protein. Initial studies 

mapped conformationally dependent epitopes of HPV11 by transferring MAb reactivity from 

HPV11 to either HPV6 or HPV16 L1 VLPs via the introduction of amino acid residues 

specific to HPV11 into the heterologous backbones (Ludmerer et al., 1996; Ludmerer et al., 

1997). These substitutions demonstrated that residues within a ca. 20 amino acid stretch of 

the DE loop were important for the binding of a subset HPV11 neutralising MAbs. Utilising 

chimeric L1 VLP with inter-genotype loop swaps, a second panel of HPV11 MAbs 
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demonstrated more complex epitope footprints which encompassed both the FG and HI 

loops (Ludmerer et al., 2000).  

 

Similar work carried out with HPV6, HPV16, and HPV33 L1 MAbs provided further evidence 

that the L1 capsid of HPV harbours epitopes which can be restricted to a single loop and 

those that have more complex, multiple loop epitopes. The BC loop alone, and in 

conjunction with EF loop, was identified as contributing towards the epitope footprints of 

HPV6 MAbs (McClements et al., 2001) whilst HPV16 L1 MAbs appeared to target BC and HI 

single loop epitopes and FG/HI multi-loop epitopes (Christensen et al., 2001). Two HPV33 

L1 MAbs targeted residues in the DE and FG loops with the BC loop alone containing the 

epitope of a third MAb (Roth et al., 2006). The epitope of the H16.V5 MAb has been 

extensively studied with several studies confirming the requirement for the FG loop 

(Carpentier et al., 2005; Slupetzky et al., 2001) in conjunction with the HI (Carter et al., 2003; 

Ryding et al., 2007) for H16.V5 binding whilst fine mapping has identified specific FG loop 

amino acid residues (Asn270, Asn285 and Ser288) which appeared to contribute towards the 

epitope footprint (Carpentier et al., 2005; Carter et al., 2003). Recently, the epitope footprint 

of HPV16.V5 was resolved further with cryo-electron microscope data corroborating the 

requirement of residues in the FG and HI loops, and identifying additional residues in the DE 

and EF loops (Guan et al., 2015; Lee et al., 2015). 

 

Limited data are available on whether L1 epitope presentation is altered by the inclusion of 

L2 in the capsid. A number of HPV16 L1 MAbs demonstrate differential recognition of their 

epitopes displayed on L1 VLP compared to L1L2 PsV (Culp et al., 2007). There are 

structural differences between L1 VLP and L1L2 PsV, with the latter containing a higher 

degree of disulphide cross-linking between L1 monomers within the capsid (Fligge et al., 

2001). However, the epitopes recognised by the majority of type-specific neutralising L1 

MAbs appear not to be affected by the structural, and possible antigenic, changes in the 

capsid resulting from the inclusion of the L2 protein (Culp et al., 2007). 
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1.13.3 L1 domains recognised by natural infection antibodies 

The L1 epitopes recognised by the antibodies generated in response to natural infection with 

HPV16 and HPV6 have been mapped using chimeric L1 VLP or L1 capsomers. HPV6 L1 

capsomers with HPV11 loop swaps, either in single or multiple combinations, demonstrated 

that the antibody response to HPV6 infection targets the BC, DE and FG loops, singly or in 

combination with reactivity against the C-terminal portion (HPV6 aa 361-500) also observed 

(Orozco et al., 2005). A study mapping the antibody response to HPV16 natural infection 

found that the majority of the seroreactivity targeted the C-terminal portion of the L1 (HPV16 

aa 172-505) with reactivity against the N-terminal portion (HPV16 aa 1-173) only observed in 

a limited number of sera (Wang et al., 2003). A chimeric HPV11 L1 VLP with HPV16 FG and 

HI loops, which retained reactivity against the H16.V5 MAb, was recognised by 84% of the 

sera which demonstrated C-terminal portion reactivity implying the FG and HI loops of 

HPV16 are immunodominant regions (Wang et al., 1997b). An attempt to fine map the L1 

regions targeted by HPV16 neutralising antibodies induced in response to natural infection 

demonstrated that most sera targeted epitopes spanning two or more loops with the DE, FG 

and HI most frequently recognised (Carter et al., 2006). These data illustrate that the 

antibody response to HPV natural infection is polyclonal in nature and although reactivity 

patterns can be grouped, antibody specificities differ from one individual to another and 

target complex sets of L1 epitopes. 

 

1.14 L1 cross-neutralising antibody responses in vaccine recipients 

The potential of L1 VLP vaccines to induce a cross-neutralising antibody response in 

vaccinees was first reported in two small scale studies. HPV31 (closely related to HPV16 

within the A9 species group) cross-neutralising antibodies were detected following 

immunisation with a monovalent L1 HPV16 VLP vaccine candidate (Pinto et al., 2006) and 

HPV45 (closely related to HPV18 within the A7 species group) cross-neutralising antibodies 

were detected following immunisation with Gardasil® or a monovalent L1 HPV18 VLP 

vaccine candidate (Smith et al., 2007). The potential to generate cross-neutralising 
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antibodies which recognise HPV31 and HPV45 following vaccination was confirmed by two 

larger scale studies: the first compared Cervarix® and Gardasil® immunogenicity against 

HPV31 and HPV45 in women aged 18-45 years (Einstein et al., 2011a) and the second 

demonstrated that Cervarix® sera had the potential to cross-neutralise the L1L2 PsV 

representing the non-vaccine A9 genotypes HPV52 and HPV58, in addition to HPV31 and 

HPV45 (Kemp et al., 2011). 

 

Cervarix® sera from young adolescent girls (13-14 years) tested against a complete panel of 

L1L2 PsV representing the oncogenic A7 (HPV18, HPV39, HPV45, HPV59 and HPV68) and 

A9 (HPV16, HPV31, HPV33, HPV35, HPV52 and HPV58) genotypes demonstrated cross-

neutralisation of all the A9 genotypes but recognition in the A7 species group appeared to be 

limited to HPV45 (Draper et al., 2011) (Figure 7). The difference in the breadth of response 

between the A9 and the A7 groups may be due to differences in the L1 amino acid 

sequence homology of the non-vaccine genotypes compared to the vaccine types HPV16 

and HPV18. For example, HPV45 has a 88% L1 amino acid sequence homology with 

HPV18; however the remaining A7 non-vaccine genotypes (HPV39, HPV59 and HPV68) 

have L1 sequence homology to HPV18 of <80% whilst the non-vaccine A9 genotypes all 

share an L1 amino acid sequence homology of ca. 80% with HPV16 (Brown et al., 2009). 

 

Data from these immunogenicity studies also demonstrate that whilst Cervarix® and 

Gardasil® vaccines have the potential to generate cross-neutralising antibodies, 

seropositivity rates against non-vaccine genotypes are lower than those observed against 

HPV16 and HPV18 and cross neutralising antibody titres are considerably lower, generally 

representing <1% of the vaccine type neutralising antibody titre (Draper et al., 2011; Kemp 

et al., 2011). It is not known whether the vaccine-induced cross-neutralising antibody 

response is a consequence of a low affinity interaction of an otherwise predominantly type-

specific antibody. For example, the cross-neutralisation of A9 genotypes may be attributable 

to the human antibody equivalent of H16.V5 which exhibits some degree of cross- 
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Figure 7 Cross-neutralising antibody titres related to vaccine-type
neutralising antibody titres for A9 and A7 HPV genotypes. Neutralising
antibody data from non-vaccine genotypes segregated according to Low (L),
Middle (M) and High (H) vaccine-type tertiles. Plot shows box (median, IQR),
whisker (±1.5 IQR) and outliers (>1.5 IQR). p values represent associated by
Pearson’s correlation across tertiles: * p <0.05; ** p<0.01; ***p <0.001; NS p
>0.05. Draper et al., Vaccine, 29:8585 (2011).
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recognition not present in the murine version. Alternatively, the cross-neutralising antibody 

response may represent a minor antibody specificity (or specificities).  

 

1.15 Cross-reactive L1 antigenicity  

Several studies have generated L1 VLP antisera in animals in order to investigate whether 

common L1 epitopes existed between HPV genotypes. Initial studies used diverse means of 

testing the neutralising potential of the antisera including a L1 VLP haemagglutination 

inhibition assay and HPV16 virion infection inhibition as measured by the detection of 

HPV16 spliced mRNA (Roden et al., 1996b; White et al., 1998). Subsequent studies have 

tested antisera against PsV representing HPV genotypes in vitro neutralisation assays 

(Bousarghin et al., 2002; Combita et al., 2002; Giroglou et al., 2001b; Ochi et al., 2008). 

However, due to the limited number of genotypes tested, the general lack of reciprocal data 

and the inconsistency in choice of antigen (L1 PsV vs L1L2 PsV), assay and animal used, it 

is difficult to directly compare these studies.  

 

Data from these preclinical studies did however demonstrate that even though the majority 

of the antibody response to L1 VLP is type-specific, cross-neutralisation was observed 

sporadically within the A7 and A9 species groups at antibody titres substantially lower than 

the type-specific titres (Figure 8). For example, antisera generated against L1 VLP 

representing A9 genotypes HPV16 and HPV31 demonstrated reciprocal cross-neutralisation 

which was reproducible across studies (Bousarghin et al., 2002; Combita et al., 2002; Ochi 

et al., 2008). In one study, rabbit antisera raised against HPV16 L1 VLP neutralised HPV16 

and HPV31 at antibody titres of 204,800 and 200 respectively whilst antisera raised against 

HPV31 neutralised HPV16 and HPV31 at antibody titres of 800 and 1,638,400 respectively, 

demonstrating the difference in magnitude between the type-specific and cross-neutralising 

antibody responses (Ochi et al., 2008). These data imply that common L1 epitopes which 

are targeted by neutralising antibodies exist between closely related genotypes.   

 



16 31 33 35 52 58 18 39 45 59 68 Log10

VLP16 4.7 2.5 1.3 1.0 1.0 1.0 1.0 1.0 1.0 6.0

VLP31 2.1 5.7 3.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0

VLP33 1.7 1.0 3.7 1.3 1.0 1.0 1.0 1.0 4.0

VLP35 1.0 1.0 1.0 3.0

VLP52 1.0 1.0 5.6 2.6 1.0 2.0

VLP58 1.5 1.0 1.5 4.4 5.3 1.0 1.0

VLP18 1.0 1.0 1.0 1.0 5.9

VLP39 1.0 1.0 1.0

VLP45 1.0 1.0 1.0 1.0 3.0 1.0 2.3 1.0

VLP59 1.0 1.0 1.0 1.0 1.6 1.0 3.0

VLP68

Figure 8

Alpha-9 Alpha-7

Pseudovirus

Figure 8 Heatmap summarising A7 and A9 type-specific and cross-neutralising antibody
responses from preclinical L1 antigenicity studies. Data from preclinical L1 VLP immunisation
studies (n=4) carried out in small mammals were pooled and presented as a heatmap
representing the log10 transformed average neutralising titre against indicated PsV. Key
indicates log10 heatmap gradient. Combinations which were not tested are greyed out.
Combita et al., J Virol, 76:6480 (2002); Giroglou et al., Vaccine, 19:1783 (2001); Bousarghin et
al., J Clin Microbiol, 40:926 (2002); Ochi et al., Clin Vaccine Immunol, 15:1536 (2008).
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1.16 L1 VLP vaccine-induced protection  

Neutralising antibodies in the serum or on the mucosa are the correlates or surrogates of 

protection for almost all prophylactic viral vaccines (Plotkin, 2008); however, no immune 

correlate or surrogate of protection has been defined for the HPV prophylactic vaccines 

since both vaccines are high efficacious and no vaccine type breakthrough infections have 

been reported (Stanley et al., 2012). L1 type-specific neutralising antibodies are assumed to 

be the immune effectors of HPV vaccine-induced type-specific protection based upon data 

from preclinical studies carried out in CRPV and COPV which demonstrated that passive 

transfer of neutralising antibodies protected animals against PV challenge (Breitburd et al., 

1995; Suzich et al., 1995). More recently, work carried out using the murine CVC model 

demonstrated that the passive transfer of serum from Gardasil®-immunised mice conferred 

protection against in vivo genital challenge with L1L2 PsV representing the vaccine types, 

HPV16 and HPV18 (Longet et al., 2012).  

 

Cross-neutralising antibodies are assumed to be the mediators of cross-protection based 

upon the observation that the in vitro detection of cross-neutralising antibodies is coincident 

with the cross-protection data from vaccine efficacy studies (Schiller and Lowy, 2012). If 

cross-neutralising antibodies generated against L1 VLP are cross-protective, then the 

examination of the functional characteristics and antigenic targets of these antibody 

specificities may help to elucidate the immunological mechanism(s) supporting the partial 

cross-protection induced by the HPV vaccines and contribute to our understanding of 

vaccine-induced host-virus interactions.  
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1.17 Aims and Objectives 

1.17.1 Hypothesis: Common antigenic L1 domains exist between related HPV genotypes  

1.17.2 Aim of thesis: To delineate the L1 domains which are recognised by inter-genotype 

cross-neutralising antibodies 

1.17.3 Objectives: 

1. Perform a formal analysis of the vaccine-induced A9 cross-reactive L1 

antibody response 

Vaccine sera will be tested against antigens representing the A9 genotypes in both 

antibody binding and neutralisation assays, with the resulting serological data 

subjected to hierarchical clustering in order to get an overview of HPV16 vaccine-

induced cross-reactive antibody response and the specificities therein. 

2. Examine the capsid amino acid sequences of the A9 genotypes using 

appropriate bioinformatic tools 

The L1 and L2 protein sequences of the A9 antigens will be compared alongside 

available database sequences to determine how representative these antigens are of 

their respective genotype.  

3. Design and generate novel antigens to test cross-neutralising antibody 

recognition of specific L1 domains 

L1 proteins harbouring point mutations, inter-genotype loop swaps or foreign epitope 

insertions, alone or in combination, will be utilised to generate VLP and/or PsV 

antigens. 

 

  



 

 

 

 

 

2. Materials and Methods 
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2.1 Study Samples 

Study-01 wherein 69 serum samples were collected from girls aged 13-14 years, who had 

received three doses of the Cervarix® vaccine as part of the UK’s school-based National 

HPV Immunisation Programme (Research Ethics Committee (REC) number 09/H1013/33). 

Serum samples were collected in October and November 2009, a median of 5.9 months 

(Interquartile range [IQR] 5.7 to 6.0) after the girls received their final dose (Draper et al., 

2011). Study-02 wherein 198 girls aged 12-15 years were randomised to receive either three 

doses of the Cervarix® vaccine or the Gardasil® vaccine as part of a Phase IV clinical trial 

comparing HPV vaccine immunogenicity (www.clinicaltrials.gov: NCT00956553; REC 

number 09/H0720/25). Study enrolment commenced October 2009 and the last sample was 

collected in December 2011. Month 7 serum samples from 46 study participants were 

selected based upon HPV31 cross-neutralising antibody titres of >450 (n=22 Cervarix® and 

n=24 Gardasil®) (Draper et al., 2013). Anonymised HPV DNA samples were available from 

liquid-based cytology (LBC) samples collected from women aged 25 years or older, 

attending cervical screening at eight centres in England (REC number 06/MRE01/48) 

(Howell-Jones et al., 2010). 

 

2.2 Control Material  

2.2.1 Antibody-control reagent 

The high HPV16/18 and HPV negative plasma pools were used as positive and negative 

serological control reagents (Bissett et al., 2011). These reagents were generated from 

plasma samples taken from females of 18 years of age in September 2009, who would have 

been targeted for vaccination with the Cervarix® vaccine as part of the National HPV 

Immunisation “Catch-up” Campaign. The HPV antibody specificities of the plasma samples 

were evaluated by three independent laboratories and pooled to create a reagent which was 

not reactive against any of the HPV genotypes tested (HPV negative) and a reagent with 

high levels of antibody to HPV16, HPV18, HPV31, and HPV45 (High HPV16/18). 
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2.2.2 Heparin 

Heparin (H-4784; Sigma) was included in the L1L2 PsV neutralisation assay as a positive 

inhibition control and as an indicator of inter-assay reproducibility.  

 

2.3 Cell lines 

The human embryonic kidney cell line, 293TT (National Cancer Institute [NCI], Bethesda, 

MD, USA) was maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10% foetal bovine serum (FBS), 1% penicillin-streptomycin, 1% L-glutamine, 1% non-

essential amino acids (all Thermo Fisher Scientific) and 400µg/mL of hygromycin B (Roche), 

herein referred to as complete DMEM (cDMEM). Cell culture assays were performed using 

cDMEM without phenol red and hygromycin B, herein referred to as neutralisation DMEM 

(nDMEM). The Spodoptera frugiperda insect cell line Sf21 (Thermo Fisher Scientific) was 

maintained in Sf-900 II serum-free media supplemented with 5% FBS and 0.5% penicillin-

streptomycin (all Thermo Fisher Scientific) herein referred to as complete Sf-900 (cSf-900). 

 

2.4 HPV L1 and L2 gene amplification and sequencing  

The L1 and L2 genes from HPV DNA positive LBC samples were amplified on a PTC-200 

thermal cycler machine (Bio-Rad) using an initial denaturation step of 95oC 1 min, followed 

by 30 to 40 cycles of 95oC for 1 min, primer-specific melting temperature for 1 min and 

target-specific extension time at 72oC, with a final extension step of 72oC for 5 mins. Each 

amplification was carried out as standard, in a 50µL reaction volume containing: 1X High 

Fidelity PCR buffer, 3mM MgSO4, 0.2mM dNTPs, 1.25 U Platinum® Taq DNA polymerase 

High Fidelity (all Thermo Fisher Scientific), 20 pmol each of target-specific forward and 

reverse primers and 10 µL of sample DNA. Amplification products were visualised by 

agarose gel electrophoresis stained with RedSafe™ nucleic acid staining solution (iNtRON 

Biotechnology). Amplicons were purified using the illustra GFX PCR DNA and Gel Band 

Purification Kit (GE Healthcare) and sequenced using an ABI 3730 genetic analyser using 

target-specific sequencing primers. For primer sequences see Supplementary Table 1.  
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2.5 L1L2 PsV  

2.5.1 L1L2 PsV expression plasmids 

Bicistronic pXsheLL vectors, where X is the HPV genotype, containing L1 and L2 codon 

optimised genes for mammalian expression were available for HPV16, HPV31, HPV52 and  

HPV58 (JT Schiller and C Buck, NCI) and HPV33 (H Faust and J Dillner, Malmö University 

Hospital, Malmö, Sweden). A novel L1L2 PsV construct representing HPV35 was generated 

in order to expand the panel to cover all oncogenic A9 genotypes. HPV35 L1 and L2 amino 

acid sequences were collected from the National Centre for Biotechnology Information 

(NCBI; http://www.ncbi.nlm.nih.gov/) database (GenBank accession numbers: M74117 

(Marich et al., 1992) and X74477) and additional contemporary sequences were derived 

from LBC samples (JN104062-67 (Draper et al., 2011)). The consensus L1 and L2 

sequences were then codon optimised for mammalian expression and the resulting genes 

were synthesised (Blue Heron) and inserted into the p5sheLL backbone (JT Schiller and C 

Buck) following a protocol provided by Chris Buck (personal communication). Briefly, the L1 

and L2 genes were excised from separate Blue Heron plasmids following restriction enzyme 

digestion (L1: BspEl and PspXl; L2: NotI and NheI) and subcloned into the p5sheLL plasmid 

in conjunction with the Rapid DNA Dephos & Ligation Kit (Roche). The HPV35 L1L2 PsV 

construct is available from Addgene (www.addgene.org) and the sequence has been 

deposited on the NCI website. 

 

Novel L1L2 PsV expression plasmids were generated throughout the study. These included 

L1L2 PsV representing variant lineage and chimeric L1L2 PsV with inter-genotype L1 loop 

swaps. Codon-optimised L1 and L2 genes were either synthesised (GeneArt®, Thermo 

Fisher Scientific) or generated by QuikChange® Site-Direct Mutagenesis (Stratagene), prior 

to subcloning into the appropriate psheLL backbone. The accuracy of the L1 and L2 genes 

within the PsV expression plasmids were confirmed by sequencing. For sequencing and 

mutagenesis primer sequences see Supplementary Table 1. 
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2.5.2 L1L2 PsV expression and purification 

L1L2 PsV stocks were expressed and purified as previously described (Buck and 

Thompson, 2007) using an alternative protocol for capsid maturation 

(http://home.ccr.cancer.gov/lco/ripcord.htm) and a luciferase plasmid (pGL4.51 

[luc2/CMV/Neo]; Promega) as the encapsidated reporter DNA. The alternative protocol 

removes L1L2 PsV ‘cold capsids’ that contain encapsidated cellular DNA instead of reporter 

DNA with the intent of improving the particle-to-infectivity (PI) ratio of the resulting L1L2 PsV 

stocks. Since the alternative protocol removes ‘cold capsids’ the L1 protein concentration in 

the L1L2 PsV stock is decreased, restricting the use of these antigens in assays which 

require a higher protein input.  In order to carry out an ELISA using L1L2 PsV as the target 

antigen, PsV stocks with higher L1 protein concentrations were generated following the 

original protocol for capsid maturation (Buck and Thompson, 2007). 

 

2.5.3 Transfection of 293TT cells 

A 75cm2 flask was seeded with 7.5 x 106 293TT cells in cDMEM without hygromycin B and 

incubated at 37oC with 5% CO2 overnight. The cells were transfected with 19µg of pXsheLL 

plasmid DNA and 19µg of luciferase plasmid DNA using Lipofectamine 2000 (Thermo Fisher 

Scientific) before incubation at 37oC with 5% CO2 for 6 hrs. The transfection mixture was 

then removed and replaced with cDMEM and protein expression occurred during a 48 hr 

incubation at 37oC with 5% CO2. 

 

2.5.4 Cell lysis and capsid maturation 

The cDMEM was removed and the transfected cells were pelleted (500 x g for 5 mins) 

following trypsin (Thermo Fisher Scientific) treatment. The cell pellet was resuspended in  

phosphate-buffered saline (PBS) (Thermo Fisher Scientific) supplemented with 9.5mM 

MgCl2 (Sigma) (PBS-Mg) and transferred to a 2.0mL low protein binding tube (Eppendorf) 

before re-pelleting (500 x g for 5 mins) and disposal of the supernatant. In the alternative 

protocol, the cell pellet was resuspended in a 1X cell pellet volume of lysis buffer containing 
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a final concentration of 0.4% Brij-58 (Sigma) and 0.1% RNase Cocktail (Ambion) in PBS-Mg. 

In the original protocol, the 1X cell pellet volume of lysis buffer contained a final 

concentration of 0.5% Brij-58, 0.25% Benzonase (Sigma) and 0.25% Plasmid Safe 

(Epicentre) in PBS-Mg. The cell lysate was then ‘matured’ at 37oC for 24 hrs to allow 

disulphide bond formation between neighbouring L1 monomers which is required for the 

stabilisation of the capsid structure (Buck et al., 2005). 

 

2.5.5 Purification 

Iodixanol (Optiprep; Sigma) gradients were prepared by layering three concentrations (39%, 

33% and 27%) on top of each other in 13 x 51mm polyallomer centrifuge tubes (Beckman 

Coulter), before incubation at room temperature for 2 hrs to allow a continuous gradient to 

form. The cell lysate produced by the alternative protocol was clarified twice by 

centrifugation (14,000 x g for 10 mins) before the double clarified supernatant was applied to 

an iodixanol gradient. In the original protocol, NaCl was added to the cell lysate to a final 

concentration of 0.85M before incubation on ice and addition of the cell lysate to an iodixanol 

gradient. The L1L2 PsV were subjected to fractionation at 234,000 x g for 3.5 hrs using a 

SW55Ti rotor and the Optima L-100 XP Ultracentrifuge (Beckman Coulter). Gradient 

fractions were collected by puncturing the bottom of the centrifugation tube. Individual 

fractions spanning the expected peak of infectivity were pooled and 50µL aliquots of 

infectious L1L2 PsV stocks were prepared and stored at -80oC. 

 

2.5.6 Protein quantification 

The L1 protein concentration of the original protocol L1L2 PsV stocks, generated for use as 

target antigens for ELISA, were determined by reducing sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) using reagents from Thermo Fisher 

Scientific unless otherwise stated. A sample volume of 8µL was added to 1X Novex® Tris-

Glycine SDS Sample Buffer and 1X NuPAGE® Reducing Agent and denatured at 85oC for 2 

mins. After denaturing the sample was run on a Novex® Tris-Glycine 4-20% Gel alongside a 
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protein molecular weight marker (SeeBlue® Plus2 Pre-Stained Standard), bovine serum 

albumin (BSA) standard (1600, 800, 400 and 200 ng/well) (Pierce) and HPV16 L1 VLP final 

aqueous preparation (FAP) (National Institute of Biological Standards and Control [NIBSC]) 

at a concentration of 800ng/well. Gels were washed twice in distilled water (dH2O) before 

staining with SimplyBlue™ SafeStain for 60 mins shaking at room temperature. Gels were 

subsequently destained and dried using a 65% methanol (Prolabo Chemicals, VWR 

International) and 5% glycine (Sigma) solution in conjunction with the DryEase® Mini-Gel 

Drying System (Thermo Fisher Scientific). The amount of L1 protein was quantified against 

the BSA standard using ImageJ software (U. S. National Institutes of Health, 

http://imagej.nih.gov/ij). 

 

2.5.7 Electron microscopic analysis 

Particle formation and size were confirmed using a JEM-1400 electron microscope (JEOL). 

Particles were negatively stained with phosphotungstic acid (Sigma) and adsorbed onto 

copper grids coated with formvar (Sigma) and carbon (Figure 9A). 

 

2.5.8 Infectivity assay  

The relative infectivity of the L1L2 PsV stocks generated by the alternative protocol for use in 

the neutralisation assay (Figure 9B) were determined. The inner 60 wells of a clear 96-well 

plate were seeded with 293TT cells at 1 x 104 cells per well in nDMEM and incubated at 

37oC with 5% CO2 overnight. Purified L1L2 PsV stocks were subjected to five-fold serial 

dilutions with each dilution tested in quadruplicate. A 100µL volume, made up of 50µL of 

diluted L1L2 PsV stock and 50µL of nDMEM, was added to the cells and the assay was 

incubated for 72 hrs at 37oC with 5% CO2. Luciferase reporter gene transduction was 

detected using the Steady-Glo Luciferase Assay Reagent (Promega) and the luminescent 

signal output read using the GloMax Multi Detection System (Promega) in accordance with 

manufacturer’s instructions. The equivalent of a Tissue Culture Infectious Dose 50% 

(TCID50) was estimated for the L1L2 PsV stock using the Spearman-Karber equation.  
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2.6 L1 VLP 

2.6.1 L1 VLP expression plasmids  

Recombinant bacmid vectors were generated by the transposition of L1 genes representing 

the oncogenic A9 HPV genotypes. The L1 genes were derived from HPV DNA positive LBC 

samples (section 2.1) as previously described (section 2.4) and had a 100% amino acid 

sequence identity to the L1 gene of the homologous L1L2 PsV construct (Figure 10). The 

purified L1 PCR products were ligated into TOPO® vectors in accordance with the 

manufacturer’s instructions and subsequently used to transform One Shot® TOP10 

Chemically Competent E.coli (Thermo Fisher Scientific). L1 genes were excised from the 

TOPO® Vector following restriction enzyme digestion and subcloned into the pFastBac™1 

(Thermo Fisher Scientific), in conjunction with Rapid DNA Dephos & Ligation Kit. 

Recombinant bacmid vectors were generated by the transformation of MAX Efficiency® 

DH10Bac™ Competent Cells (Thermo Fisher Scientific) by the recombinant L1 

pFastBac™1, in accordance with the manufacturer’s instructions. The accuracy of the L1 

genes within the TOPO®, pFastBac™1 and recombinant bacmid vectors were confirmed by 

sequencing. For sequencing primer sequences see Supplementary Table 1. 

 

2.6.2 Transfection of Sf21 cells 

A 6-well plate was seeded with Sf21 cells at 8 x 105 cells per well in cSf-900 and incubated 

for 1 hr at 27oC to allow the cells to adhere. The media was removed prior to transfection 

and replaced with 2.5mL of plating medium consisting of Grace’s Insect Medium 

Unsupplemented containing 15% Supplemented Grace’s Insect Medium and 10% FBS 

(Thermo Fisher Scientific). Each well was transfected with 1µg of recombinant bacmid DNA 

using Cellfectin® II (Thermo Fisher Scientific) and incubated at 27oC for 5 hrs. The 

transfection mixture was subsequently removed and replaced with cSf-900 and the cells 

were incubated for a further 72 hrs at 27oC  



Figure 10

Figure 10. A9 L1 phylogenetic tree. Neighbouring joining tree generated from the
L1 amino acid sequence from the VLP and PsV representing the A9 genotypes.
BPV1 is used as an outlier.

67



68 
 

2.6.3 Isolation of infectious recombinant baculovirus 

The supernatant containing the infectious recombinant baculovirus was removed from the 

transfected wells and cellular debris pelleted by centrifugation (500 x g for 5 mins). The 

supernatant was transferred to a clean tube and stored at 4oC, protected from light. 

 

2.6.4 Infection of Sf21 cells with recombinant baculovirus 

A 175cm2 flask was seeded with 2 x 107 Sf21cells in cSf-900 II SFM and incubated at 27oC 

for 24 hrs prior to infection. The media was then removed and replaced with 5mL of 

infectious recombinant baculovirus stock and the cells were incubated at room temperature 

for 1 hr whilst gently rocking. Subsequently, an additional 10mL of cSf-900 II SFM was 

added to the flask before the infected cells were incubated for a further 72 hrs at 27oC. 

 

2.6.5 L1 VLP maturation 

The infected cells were scraped off the flask and pelleted by centrifugation (500 x g for 5 

mins). The cell pellet was resuspended in 1mL of PBS, transferred to a low protein binding 

tube and re-pelleted (500 x g for 5 mins). The supernatant was removed and the cell pellet 

resuspended in 1X cell pellet volume of lysis buffer containing a final concentration of 0.5% 

IGEPAL® CA-630 (Sigma), 1X Complete Mini Protease Inhibitor (Roche) and 10µM E-64 

(Thermo) in PBS-Mg. The cell lysate was then incubated at 27oC for 24 hrs. 

 

2.6.6 L1 VLP purification 

The cell lysate was clarified twice by centrifugation (10,000 x g for 10 mins) before the 

double clarified supernatant was applied to an iodixanol gradient. The L1 VLP were 

subjected to ultracentrifugation and gradient fractions collected following the same method 

used for the L1L2 PsV (see section 2.5.5).  
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2.6.7 Characterisation of L1 VLP stocks 

L1 VLP formation and particle size were also confirmed using a JEM-1400 electron 

microscope (see section 2.5.7) (Figure 11A). The L1 protein concentration and purity of the 

VLP stocks were determined using the ImageJ software following SDS-PAGE and total 

protein staining with SimplyBlue™ SafeStain (see section 2.5.6).  

 

2.7 Serological Assays 

2.7.1 L1 VLP & L1L2 PsV ELISA 

Nunc-Immuno™ Polysorp 96-well plates were coated overnight at 4oC with either L1 VLP 

(Figure 11B) or L1L2 PsV representing a L1 protein concentration of 25ng per well diluted in 

tris-buffered saline (TBS) (Sigma). Wells were washed 3 times with 300µL of wash buffer 

(TBS and 0.05% Tween 20; Sigma) and blocked at room temperature for 3 hrs with 300µL of 

blocking buffer (TBS, 5% non-fat milk and 5% normal sheep serum; Abcam) followed by 3 

washes. Samples were subjected to 4 to 5 serial dilutions carried out in sample buffer (TBS, 

2% non-fat milk, 20% normal sheep serum and 0.05% Tween 20) before 50µL was added to 

wells and incubated for 1 hr at 37oC. The wells were washed 4 times before a further 

incubation at 37oC for 1 hr with 50µL of goat anti-human IgG alkaline phosphatase 

conjugated secondary antibody (Thermo Fisher Scientific) diluted in sample buffer. A final 4 

washes preceded detection using the ELISA Amplification System (Thermo Fisher Scientific) 

according to the manufacturer’s instructions with absorbance read at 490nm using the 

GloMax Multi Detection System (Promega). The antibody titre derived using the 50% 

maximal binding optical density was estimated by interpolation. The positive (High 

HPV16/18) and negative (HPV negative) antibody-control reagents were included in every 

assay (Table 4) and additionally a panel of six human vaccinee sera were retested against 

L1 VLP and L1L2 PsV representing the A9 genotypes and demonstrated good inter-assay 

reproducibility: L1 VLP ELISA (n=36; Pearson’s r = 0.947 p <0.001) and L1L2 PsV ELISA 

(n=36; Pearson’s r = 0.819; p <0.001).  The denatured L1 VLP ELISA were carried out 

following the above method except that the L1 VLP were denatured prior to coating by 
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incubation at 68oC for 30 mins in a solution of 0.1M NaHCO3 (Sigma) containing 15mM 

dithiothreitol (DTT) (Thermo Fisher Scientific). The denatured L1 VLP were subsequently 

diluted to a concentration of 500ng/mL of L1 protein in TBS and Polysorp 96-well plates 

were coated at 25ng per well overnight at 4oC. 

 

2.7.2 L1L2 PsV neutralisation assay 

The assay was performed as originally described (Pastrana et al., 2004) with some 

modifications. The inner 60 wells of a clear 96-well plate were seeded with 293TT cells at 1 x 

104 cells per well in nDMEM and incubated at 37oC with 5% CO2 overnight. Serum samples 

were heat inactivated (56°C for 30 mins) prior to t esting. Samples were subjected to 4 to 5 

serial dilutions before a volume of 55µL was incubated at room temperature for 1 hr with 

55µL of L1L2 PsV at a standard input of 300 TCID50. Subsequently 100µL was transferred to 

the cells and the assay was incubated for 72 hrs at 37oC with 5% CO2. Luciferase reporter 

gene transduction was detected as previously described (see section 2.5.8). The antibody 

titre resulting in an 80% reduction of luciferase signal produced by the control wells 

containing L1L2 PsV only was estimated by interpolation. Heparin, either titrated or at a 

single input concentration (1mg/mL), was tested alongside positive (High HPV16/18) and 

negative (HPV negative) antibody-control reagents in every assay (Table 4). Good inter-

assay reproducibility was demonstrated by testing a panel of six sera against the A9 L1L2 

PsV (n=36; Pearson’s r = 0.976; p <0.001).  

 

2.7.3 L1 VLP competition of neutralising antibodies 

The L1L2 PsV neutralisation assay was carried out following the above method except the 

serial diluted samples were pre-incubated for 1 hr at room temperature with 1µg of L1 VLP 

representing HPV16, HPV31 or HPV33 prior to incubation with the L1L2 PsV. A 100µL 

volume of the antibody/L1 VLP/L1L2 PsV mixture was transferred to 293TT cells, incubated 

for 72hrs at 37oC before the 80% reciprocal neutralisation titres were estimated by 

interpolation.  



Table 4. HPV control reagent reproducibility data against A9 L1 and L1L2 targets  
        HPV Assay  High HPV16/18a  HPV Negativeb  Heparinc 
                  N Median (IQR) N Median (IQR) N Median (IQR) 
                16 L1L2 PsV Neutralisation 19 64,162 (40,034 - 74,499) 34 10 (10 - 10) 8 12.1 (8.1 - 15.9) 

 L1L2 PsV Binding 10 63,605 (55,806 - 80,794) 32 10 (10 - 10) - - 
 L1 VLP Binding 15 64,192 (45,627 - 70,535) 51 10 (10 - 10) - - 

        31 L1L2 PsV Neutralisation 18 489 (402 - 593) 32 10 (10 - 10) 7 3.1 (2.7 - 5.1) 
 L1L2 PsV Binding 6 851 (758 - 955) 11 10 (10 - 10) - - 
 L1 VLP Binding 10 1,784 (1,240 - 1,907) 19 10 (10 - 10) - - 
        33 L1L2 PsV Neutralisation 10 71 (50 - 78) 16 10 (10 -10) 5 6.7 (6.6 - 18.1) 
 L1L2 PsV Binding 6 322 (305 - 406) 11 10 (10 -10) - - 
 L1 VLP Binding 8 916 (853 - 2,101) 21 10 (10 -10) - - 
        35 L1L2 PsV Neutralisation 3 37 (36 - 38) 3 10 (10 - 10) 5 2.3 (2.2 - 2.8) 
 L1L2 PsV Binding 3 381 (338 - 460) 5 10 (10 - 10) - - 
 L1 VLP Binding 5 3,195 (2,988 - 4,812) 3 10 (10 - 10) - - 
        52 L1L2 PsV Neutralisation 3 10 (10 - 10) 3 10 (10 - 10) 5 22.8 (7.7 - 24.5) 
 L1L2 PsV Binding 4  128 (91 -139) 6 10 (10 - 10) - - 
 L1 VLP Binding 5 846 (829 - 5,361) 15 10 (10 - 10) - - 
        58 L1L2 PsV Neutralisation 9 20 (10 - 30) 12 10 (10 - 10) 5 8.3 (3.5 - 12.5) 
 L1L2 PsV Binding 4 10 (10 - 73) 6 10 (10 - 10) - - 
 L1 VLP Binding 5 960 (923 - 4,349) 15 10 (10 - 10) - - 
        N, Number of data sets used to calculate median and inter-quartile range (IQR).  
a Median (IQR) of 80% inhibition titre (L1L2 PsV Neutralisation) or 50% binding titre (L1L2 PsV and L1 VLP Binding). For calculation purposes High HPV16/18 
neutralisation titres of <20 and ELISA titres of <100 were assigned a value of 10. 
b Median (IQR) of 80% inhibition titre (L1L2 PsV Neutralisation) or 50% binding titre (L1L2 PsV and L1 VLP Binding). For calculation purposes HPV Negative 
neutralisation titres of <40 and ELISA titres of <100 were assigned a value of 10.  
C Median (IQR) of 50% inhibition concentration (µg/mL) L1L2 PsV Neutralisation only.  
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2.8 Antibody enrichment on L1 VLP 

2.8.1 L1 VLP coupling to magnetic sepharose beads 

The coupling reaction was carried out using NHS Mag Sepharose beads (GE Healthcare) in 

conjunction with the NHS HP SpinTrap Buffer Kit (GE Healthcare). A single reaction volume 

of NHS Mag Sepharose beads (25µL slurry volume containing a 5µL bead volume) was 

transferred to a 1.5mL tube and placed on a magnetic rack. The storage solution was 

removed from the beads and replaced with 500µL of ice cold equilibration buffer (0.1M HCl). 

L1 VLP representing HPV16 and non-vaccine A9 genotypes were prepared at a 

concentration of 10µg and 5µg, respectively, in coupling buffer (0.15M triethanolamine, 

0.15M NaCl, pH 8.3). The equilibration buffer was removed from the beads and replaced 

with 500µL of L1 VLP solution and the coupling reaction was subjected to end-over-end 

mixing overnight at 4oC. The coupling solution was removed and the beads were blocked 

using three alternative 500µL incubations with Blocking Buffer A (0.5M ethanolamine, 0.5M 

NaCI, pH 8.3) and Blocking Buffer B (0.1M NaAc, 0.5M NaCI, pH 4.0), followed by three 

additional 500µL incubations with DMEM supplemented with 10% FBS. The L1 VLP coupled 

beads were stored in a 500µL volume of DMEM supplemented with 10% FBS at 4oC.  

 

2.8.2 Antibody depletion on L1 VLP 

The serum samples for adsorption were diluted 5-fold in DMEM supplemented with 10% 

FBS and a 350µL volume incubated with the L1 VLP coupled beads by end-over-end mixing 

for 1 hr at room temperature. The post absorption serum fraction was separated from the 

beads using a magnetic rack and transferred to a fresh L1 VLP coupled bead set for a 

second round of adsorption. The serum fraction was subsequently separated from the 

second bead set and clarified twice using the magnetic rack to ensure that no beads were 

carried over, before storage at -20oC. 
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2.8.3 Antibody elution from L1 VLP 

Both L1 VLP coupled bead sets were washed 3 times in 500µL of DMEM supplemented with 

10% FBS. The residual antibody activity in the final washes was below the detection 

threshold of the L1L2 PsV neutralisation assay. Antibody elution was performed as 

described elsewhere with minor modifications (Li et al., 2009). Antibodies were eluted from 

the beads using 0.1M glycine-HCI (Sigma) with a step-wise reduction in pH: 3 x 50µL at pH 

2.9, 3 x 50µL at pH 2.4 and 3 x 50µL at pH 1.9. The beads were vortexed for 30 seconds 

after each 50µL addition and the eluted antibody fraction was separated from the beads 

using a magnetic rack and neutralised with 1M Tris-HCl pH 9 (Sigma). The eluted antibody 

fractions from both bead sets were then combined and concentrated using a Vivaspin 500 

column (GE Healthcare) and stored at -20oC. To control for non-specific adsorption each 

serum was also subjected to two rounds of adsorption on, and elution from, beads coupled 

with 10 µg BSA. The BSA eluted fractions were found to have levels of neutralising antibody 

below the detection threshold of the neutralisation assay when tested against HPV16 L1L2 

PsV.  

 

2.9 Bioinformatics and statistical analyses 

2.9.1 Hierarchical clustering of serological data 

Pairwise Euclidean distances were calculated for the Log10-transformed serological data 

generated from the L1L2 PsV neutralisation assay, L1 VLP and L1L2 PsV ELISA which 

generated distance matrices which were then clustered using a neighbour joining algorithm 

(http://evolution.genetics.washington.edu/phylip.html) producing the serological and viral 

dendrograms. The resulting viral dendrograms were bootstrapped by resampling the sera 

data to generate 500 pseudoreplicates. Due to the limited number of viral targets sampled 

relative to the number of sera, it was not possible to bootstrap the serological dendrograms. 

Dendrograms were viewed using FigTree 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/). 

The serological data were then represented by a heat map ordered according to the 

resulting serological and viral dendrograms. 
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2.9.2 L1 and L2 amino acid sequence analysis 

Available L1 and L2 gene sequences representing the A9 genotypes HPV16, HPV31, 

HPV33, HPV35, HPV52 and HPV58 were downloaded from the NCBI database. Only whole 

genome sequences (WGS) (n=265) or partial sequences encompassing both the L1 and L2 

genes (n=34) were considered for this analysis. The full length L1 and L2 amino acid 

sequences were extracted separately and then adjoined so that both sequences were in the 

same reading frame, with the L1 sequence positioned in front of the L2 sequence. The L1 

and L2 amino acid sequences representing the A9 PsV were downloaded from the NCI 

database (http://home.ccr.cancer.gov/LCO/packaging.htm). The A9 genotype reference 

sequences were the same as those given in the Papillomavirus Episteme database 

(http://pave.niaid.-nih.gov) and the representative sequences for each A9 variant lineage and 

sublineage were taken from the paper by Burk and colleagues (Burk et al., 2013). For 

sequence accession numbers and source references see Supplementary Table 2. Using 

MEGA v6 (Tamura et al., 2013) the adjoined L1 and L2 amino acid sequences were aligned 

and analyzed using a Neighbour-Joining tree algorithm with the resulting phylogenetic tree 

supported by bootstrap values of ≥80% (n=500 iterations). L1 and L2 amino acid sequence 

diversity of the A9 variant lineages from their representative L1L2 PsV were also calculated 

using MEGA v6.  

 

2.9.3 L1 amino acid diversity analysis 

The L1 amino acid sequence of the A9 L1L2 PsV were aligned and exported as a FASTA 

formatted file using MEGA v6, this FASTA file was subsequently used as the input file for 

further analysis. Amino acid charge was calculated using EMBOSS Pepinfo 

(www.ebi.ac.uk/Tools/seqstats/emboss_pepinfo/) whilst hydrophobicity and molecular weight 

scores were determined using ProtScale software (web.expasy.org/protscale/) with a scale 

normalised from 0 to 1. The hydrophobicity scale used was determined by Eisenberg 

(Eisenberg et al., 1984). All analyses were carried out using a window size of 9. 
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2.9.4 L1 modelling 

L1 homology models were created from the L1 amino acid sequence of each A9 PsV using 

SWISS MODEL (http://swissmodel.expasy.org/) (Bordoli et al., 2009; Schwede et al., 2003). 

The crystal structure of the HPV16 L1 capsomer (Protein Data Bank [PDB] code: 2R5H) 

(Bishop et al., 2007) was used as the template to which the target amino acid sequences 

were modelled. The quality of the predictive models was measured by the Global Model 

Quality Estimation (GMQE) score which combines properties from the target-template 

alignment and represents the expected accuracy of the resulting model. The GMQE score 

ranges from 0 to 1, with a score of 1 indicating the highest level of quality estimation 

reliability (Biasini et al., 2014). DeepView Swiss-Pdb viewer v4.0 (Guex and Peitsch, 1997) 

was used to model the positions of amino acid residues of interest on to the crystal structure 

of the HPV16 L1 capsomer and the L1 homology models. Additionally, pairwise L1 model 

comparisons were performed by superimposition and predicted structural differences 

between models were measured in angstroms (Å). The superimposition of L1 homology 

models was supported by a Root Mean Squared (RMS) value. The RMS value is a measure 

of the degree of relatedness between the two models and represents the average distance 

in Å between corresponding atoms in the two models. A model compared to itself would 

have an RMS value of 0 and the lower the RMS value the closer two models are related 

(Guex and Peitsch, 1997). 

 

2.9.5 Statistical methods 

Tests were 2-tailed where appropriate and performed using the statistical package Stata 

12.1 (StataCorp LP). The Wilcoxon paired signed-rank test was used for the comparison of 

antibody titres between different assay systems and antigen targets. The Fisher’s Exact test 

was used to determine whether there was a difference in seropositivity rates between the 

L1L2 PsV neutralisation assay and the L1 VLP ELISA or L1L2 PsV ELISA for non-vaccine 

A9 genotypes. Pearson’s correlation was used to evaluate the relationship between HPV16 

antibody titres and the inter-assay reproducibility of antibody titres. Inter-rater agreement 
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between the L1L2 PsV neutralisation assay and the L1 VLP ELISA or L1L2 PsV ELISA were 

generated using Kappa (k) statistics wherein a k of ≤0.20 is generally considered Poor, a k 

between 0.21 - 0.40 is considered Fair; a k between 0.41 - 0.60 Moderate, a k between 0.61 

- 0.80 Substantial and k of between 0.81 - 0.99 an Almost Perfect agreement. Sensitivity and 

specificity determinations (including 95% CI) were also generated. The McNemar test was 

used to assess discordance between the L1 VLP and L1L2 PsV binding results and the 

L1L2 PsV neutralisation assay results. The Mann-Whitney test was used for the comparison 

of L1 amino acid hydrophobicity and molecular weight scores between HPV16 and the non-

vaccine A9 genotype.  



 

 

 

 

 

3. Results 
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3.1 Cross-neutralising antibodies display a range of A9 inter-genotype 

specificities 

 

3.1.1 Background 

The current HPV L1 VLP vaccines, Cervarix® and Gardasil®, demonstrated a degree of 

cross-protection in clinical trials against genotypes closely related to the vaccine types, 

particularly HPV31 and HPV33 which are related to HPV16 in the A9 species group and 

HPV45 which is related to HPV18 in the A7 species group (Brown et al., 2009; Wheeler et 

al., 2012). Cross-protection is coincident with the detection of L1 cross-neutralising 

antibodies in the serum of vaccine recipients (Draper et al., 2011; Einstein et al., 2011a; 

Kemp et al., 2011) raising the possibility that cross-neutralising antibodies may be a 

surrogate, if not the immune effector, of vaccine-induced cross-protection. HPV vaccine-type 

immunogenicity studies use the detection of L1 binding antibodies as a surrogate for the 

presence of neutralising antibodies since a good correlation exists between the results 

obtained for the L1L2 PsV neutralisation assay and the less laborious L1 VLP ELISA (Dessy 

et al., 2008; Kemp et al., 2008) even though the different antigenic targets measure different 

antibody specificities (Schiller and Lowy, 2009). It is not known whether cross-reactive L1 

binding antibodies would act as a good surrogate for cross-neutralisation antibodies should 

the monitoring of such antibody specificities be a desirable adjunct to future vaccine 

immunogenicity studies or post-vaccine surveillance. 

 

The L1 VLP induced cross-reactive antibody response is poorly understood. The limited data 

from pre-clinical studies demonstrates that the generation of cross-neutralising antibodies is 

less frequent than type-specific neutralising antibodies and that titres are substantially lower 

(Bousarghin et al., 2002; Combita et al., 2002; Giroglou et al., 2001b; Ochi et al., 2008). 

These observations are in agreement with the cross-neutralisation data generated from 

testing human vaccinee sera (Draper et al., 2011; Kemp et al., 2011). It is not known 
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whether the cross-neutralising antibody response is a consequence of a low affinity 

interaction of an otherwise predominantly type-specific antibody or whether it represents a 

minor antibody specificity (or specificities), the generation and maintenance of which may be 

precarious over time. The HPV16 L1 VLP cross-neutralising antibody response also has a 

greater breadth, demonstrated by the potential to recognise all the non-vaccine A9 

genotypes whilst the HPV18 L1 VLP cross-neutralising response was essentially limited to 

recognition of HPV45 (Draper et al., 2011).  

 

3.1.2 Aim of chapter: To delineate the L1 VLP induced A9 cross-reactive antibody 

response  

 

3.1.3 Specific objectives  

1. Carry out a formal analysis of the vaccine-induced A9 cross-reactive L1 antibody 

response 

2. Use these data to describe the antigenic relationship between A9 L1 proteins 

 

3.1.4 Results 

The serum samples utilised in this project originated from two separate studies: Study-01 

and Study-02. In Study-01, serum samples were retrospectively collected from girls aged 13-

14, ca. 6 months after receiving the third dose of the Cervarix® vaccine as part of the UK’s 

school-based National HPV Immunisation Programme which commenced in September 

2008 (Draper et al., 2011). In Study-02, a Phase IV clinical trial comparing the 

immunogenicity of Cervarix® versus Gardasil®, serum samples were available from girls 

aged 12-15, collected 1 month after receiving the third vaccine dose (Draper et al., 2013).  

 

3.1.4.1 Seroreactivity of A9 Cervarix® vaccine antibodies to L1 and L1L2 antigens 

Study-01 serum samples (n=69) had previously been tested in the L1L2 PsV neutralisation 

assay for the presence of neutralising antibodies targeting the A9 HPV genotypes (16, 31, 
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33, 35, 52 & 58) (Draper et al., 2011) and were subsequently tested here for binding 

antibodies against L1L2 PsV and L1 VLP representing the A9 genotypes. The antigens used 

in the binding and neutralisation assays that represent a particular A9 genotype shared 

100% L1 amino acid sequence homology. 

 

All samples (n=69, 100%) were positive for antibodies targeting L1 and L1L2 antigens 

representing the vaccine type HPV16 in all three assay systems; however, differences in 

assay-specific seropositivity rates were apparent for the non-vaccine A9 genotypes (Table 

5). The L1 VLP binding assay had higher rates of seropositivity for HPV33, HPV35, HPV52 

and HPV58 in comparison to the L1L2 PsV neutralisation assay. The L1L2 PsV binding 

assay demonstrated similar rates of seropositivity compared to the L1L2 PsV neutralisation 

assay except for HPV58 where a significantly higher number of samples were positive for 

binding antibodies (Table 5). In addition all samples were tested for binding antibodies which 

target denatured L1 VLP representing HPV16 and HPV31. No samples were positive for 

antibodies which recognised denatured HPV16 L1 VLP and only one sample was positive 

against denatured HPV31 L1 VLP (n=1, 1.4%). 

 

There were good correlations observed between HPV16 antibody titres in the L1L2 PsV 

binding (Pearson’s r = 0.912; p <0.001) and L1 VLP binding (r = 0.833; p <0.001) assays 

compared to the L1L2 PsV neutralisation assay. However, there were minor differences in 

the titres generated by each assay system with a median 1.3-fold (IQR, 0.9 to 1.7; Wilcoxon 

paired signed-rank test, p = 0.005) increase in the HPV16 antibody titre observed in the 

L1L2 PsV binding assay compared to the L1L2 PsV neutralisation assay. In contrast a 

median 1.3-fold (IQR, 0.8 to 2.5; p = 0.051) decrease in antibody titre was observed in the 

L1 VLP binding assay (Table 5) compared to the L1L2 PsV neutralisation assay. 

 

Differences in the magnitude of the antibody titres between the three assay systems were 

more apparent for the non-vaccine genotypes (Table 5). Whilst HPV31 seropositivity for 



Table 5. Seroreactivity of L1 antibodies against A9 L1 and L1L2 targets in binding and neutralisation assays  
   Study-01 serum samples: Cervarix® vaccine recipients n=69 

       HPV Assay Seropositivity Antibody titre % of 16 titrec 
                N (%) p valuea Median (IQR) p valueb Median (IQR) 
              16 L1L2 PsV Neutralisation 69 (100) - 19,258 (11,730 - 28,132) - - 

 L1L2 PsV Binding 69 (100) - 23,031 (11,129 - 43,392) 0.005 - 
 L1 VLP Binding 69 (100) - 9,279 (7,290 - 44,719) 0.051 - 

       31 L1L2 PsV Neutralisation 60 (87.0) - 78 (40 - 173) - 0.38 (0.23 - 0.94) 
 L1L2 PsV Binding 55 (79.7) 0.361 229 (122 - 526) <0.001 0.82 (0.49 - 1.40) 
 L1 VLP Binding 58 (84.1) 0.810 623 (503 - 713) <0.001 5.45 (1.13 - 8.12) 
       33 L1L2 PsV Neutralisation 29 (42.0) - 10 (10 - 27) - 0.09 (0.05 - 0.19) 
 L1L2 PsV Binding 24 (34.8) 0.484 10 (10 - 197) 0.009 0.11 (0.04 - 0.38) 
 L1 VLP Binding 47 (68.1) 0.003 378 (10 - 640) <0.001 1.12 (0.20 - 3.85) 
       35 L1L2 PsV Neutralisation 15 (21.7) - 10 (10 - 10) - 0.07 (0.04 - 0.12) 
 L1L2 PsV Binding 20 (29.0) 0.434 10 (10 - 113) <0.001 0.10 (0.04 - 0.22) 
 L1 VLP Binding 42 (60.9) <0.001 329 (10 - 571) <0.001 0.75 (0.13 - 3.60) 
       52 L1L2 PsV Neutralisation 22 (31.9) - 10 (10 - 21) - 0.08 (0.04 - 0.13) 
 L1L2 PsV Binding 12 (17.4) 0.075 10 (10 - 10) 0.813 0.05 (0.03 - 0.12) 
 L1 VLP Binding 41 (59.4) 0.002 230 (10 - 485) <0.001 0.70 (0.13 - 3.43) 
       58 L1L2 PsV Neutralisation 10 (14.5) - 10 (10 - 10) - 0.06 (0.04 - 0.12) 
 L1L2 PsV Binding 26 (37.7) 0.003 10 (10 - 173) <0.001 0.10 (0.04 - 0.34) 
 L1 VLP Binding 45 (65.2) <0.001 282 (10 - 612) <0.001 0.97 (0.16 - 3.82) 
       For calculation purposes neutralisation titres of <20 and ELISA titres of <100 were assigned a value of 10  
IQR, inter-quartile range 
a p values generated by Fisher’s Exact with significant difference in seropositivity rates from the L1L2 PsV neutralisation assay highlighted in 
bold type  
b p values obtained using the Wilcoxon paired signed-rank test represent differences in L1L2 PsV binding and L1 VLP binding antibody titres 
from L1L2 PsV neutralisation titres with significant differences highlighted in bold. 
c Non-vaccine antibody titres represented as a % of the corresponding HPV16 titre 
 82
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 L1L2 PsV binding (n = 55; 80%; Fisher’s exact test p = 0.361) and L1 VLP binding (n = 58; 

84%; p = 0.810) were similar to the L1L2 PsV neutralisation assay (n = 60; 87%), antibody 

titres increased by a median 2.3-fold (IQR, 1.0 to 3.7; Wilcoxon paired signed-rank test, p 

<0.001) in the L1L2 PsV binding assay and by median 5.9-fold (IQR, 2.4 to 9.6; p <0.001) in 

the L1 VLP binding assay compared to the L1L2 PsV neutralisation assay. This tendency 

towards a stepwise increase in antibody titres between the L1L2 PsV neutralisation assay, 

the L1L2 PsV binding assay and the L1 VLP binding assay was also apparent with antigens 

representing HPV31, HPV35, HPV52 and HPV58 (Table 5). 

 

The antibody titres against non-vaccine A9 genotypes were very low in comparison with the 

titres against HPV16, with cross-reactive antibodies generally representing <1% of the 

HPV16 antibody titre in all three assay systems (Table 5). There was a trend towards an 

increase in the proportion of cross-reactive antibodies relative to the HPV16 response from 

the L1L2 PsV neutralisation, through the L1L2 PsV binding assay to the L1 VLP binding 

assay. For example, for HPV31 the median percentage of HPV16 titre was 0.38% (IQR, 0.23 

to 0.94%) in the L1L2 PsV neutralisation assay, increasing to 0.82% (IQR, 0.49 to 1.40%) in 

the L1L2 PsV binding assay and 5.45% (IQR, 1.13 to 8.12%) in the L1 VLP binding assay 

(Table 5).  

 

The utility of vaccine-induced cross-reactive binding antibody detection as a surrogate 

marker for the presence of cross-neutralising antibodies was assessed for L1 VLP and L1L2 

PsV antigens (Table 6). The L1 VLP and the L1L2 PsV binding assays demonstrated 

reduced sensitivity and specificity compared to the L1L2 PsV neutralisation assay. For 

example, both the HPV31 L1L2 PsV and L1 VLP binding assays had a sensitivity of 90% 

(95% CI, 80 to 96) and a specificity of 89% (95% CI, 52 to 100) and 56% (95% CI, 21 to 86) 

respectively, compared to the L1L2 PsV neutralisation assay. The lower specificity of the two 

binding antigens resulted partly from the detection of cross-reactive binding antibodies in the 

absence of cross-neutralising antibodies. For example, 4 serum samples tested positive for 



Table 6. Sensitivity and specificity of binding antibodies as a surrogate for A9 cross-neutralising antibodies  
              Study-01 serum samples: Cervarix® vaccine recipients n=69 

 

          
 Binding  Both Neutralisation + Neutralisation - Both Sensitivity Specificity   

HPV antigen positive Binding - Binding + negative (95% CI) (95% CI) ĸ (95% CI) p Value 
          
          31 L1L2 PsV 54 6 1 8 90% (80-96) 89% (52-100) 0.638 (0.397 - 0.879) 0.125 
 L1 VLP 54 6 4 5 90% (80-96) 56% (21-86) 0.416 (0.118 - 0.714) 0.754 
          33 L1L2 PsV 17 12 7 33 59% (39-77) 83% (67-93) 0.421 (0.205 - 0.638) 0.360 
 L1 VLP 24 5 23 17 83% (64-94) 43% (27-60) 0.233 (0.038 - 0.427) <0.001 
          35 L1L2 PsV 11 4 9 45 73% (45-92) 83% (71-92) 0.506 (0.276 - 0.736) 0.267 
 L1 VLP 13 2 29 25 87% (60-98) 46% (33-60) 0.200 (0.045 - 0.355) <0.001 
          52 L1L2 PsV 5 17 7 40 23% (8-45) 85% (72-94) 0.089 (-0.104 - 0.318) 0.064 
 L1 VLP 15 7 26 21 68% (45-86) 45% (30-60) 0.105 (-0.093 - 0.303) 0.001 
          58 L1L2 PsV 6 4 20 39 60% (26-88) 66% (53-78) 0.157 (-0.050 - 0.364) 0.001 
 L1 VLP 10 0 35 24 100% (69-100) 41% (28-54) 0.166 (0.059 - 0.273) <0.001 
          

p values obtained using the McNemar test represent discordance between the L1 VLP and L1L2 PsV binding results and the L1L2 PsV 
neutralisation assay results with significant discordance highlighted in bold. 
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HPV31 L1 VLP binding antibodies but negative for HPV31 cross-neutralising antibodies. 

This trend was apparent for the other non-vaccine genotypes and contributed to a moderate 

to poor inter-rater agreement between the L1 VLP binding assay and the L1L2 PsV 

neutralisation assay for the non-vaccine genotypes (Table 6). A lower number of samples 

were neutralisation negative but L1L2 PsV binding positive. For example, only 1 serum 

sample tested positive for HPV31 L1L2 PsV binding antibodies in the absence of HPV31 

cross-neutralising antibodies; however, the number of serum samples discordant in the 

same manner increased for HPV33 (n=7), HPV35 (n=9), HPV52 (n=7) and HPV58 (n=20). 

 

These data suggest that there are quantitative differences in the cross-reactive antibody 

responses measured by each system and/or target antigen. 

 

3.1.4.2 Hierarchical clustering of L1 and L1L2 antigen-derived serological data  

The serological data generated from the testing of the 69 Cervarix® vaccine sera from Study-

01 against L1 and L1L2 antigens representing the A9 genotypes were used to evaluate 

whether qualitative differences between the assay systems and/or antigens underpinned the 

observed quantitative differences. The approach used for this analysis involved the 

calculation of the Pairwise Euclidean distances from the L1L2 PsV neutralisation assay, L1 

VLP and L1L2 PsV ELISA serological data, generating distance matrices that were then 

clustered using a neighbour joining algorithm resulting in the creation of a serological and 

target antigen dendrogram for each assay system. The log10-transformed antibody titre data 

from each assay system were then represented by a heat map ordered according to the 

resulting serological and target antigen dendrograms (Figure 12). 

 

The increase in heat map colour intensity, from the L1L2 PsV neutralisation assay through 

the L1L2 PsV binding assay to the L1 VLP binding assay provides a visual representation of 

both the higher magnitude and breadth of the binding antibody response targeting the non-

vaccine A9 genotypes compared to the cross-neutralising antibody response. It also made 



Figure 12

Figure 12 Hierarchical clustering of L1 and L1L2 antigen derived serological data. Log10-transformed serological data (centre, heat map) were subjected to two-dimensional hierarchical
clustering and re-ordered according to serological (left) and target antigen (top) dendrograms constructed from the resulting distance matrix. The dendrograms were generated using a
neighbour joining algorithm and the antigen dendrograms are supported by bootstrapping of 500 pseudoreplicates. Distinctive clusters within the L1L2 PsV neutralisation serological
dendrogram are colour coded, with the corresponding sample in the L1 VLP and L1L2 PsV binding serological dendrogram retaining this colour designation. Key indicates log10 heat map
gradient. Bissett et al., Vaccine, 32:1139 (2014).
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apparent that the serological responses against an antigen representing a particular 

genotype were not uniform across the three assay systems. Eight clusters of sera with 

similar magnitude and breadth profiles were identified in the serological dendrogram 

generated from the L1L2 PsV neutralisation data. These clusters were labelled by colour in 

order to track how the sera clustered according L1L2 and L1 VLP binding profiles. The 

serological dendrograms based upon L1L2 PsV and L1 VLP binding titres permitted the 

formation of clusters but the ordering of individual sera bore little relation to each other or to 

the order within the serological dendrograms based upon L1L2 PsV neutralisation data 

(Figure 12). These observations indicated that the differences between each system and/or 

antigen were not purely quantitative and that qualitative differences also existed since the 

rank order of serum and target antigen were not duplicated across the three assays. 

 

Eight clusters (I – VIII) made up the serological dendrogram produced from the L1L2 PsV 

neutralisation data (Figure 13A), with samples in cluster I displaying the highest HPV16 

neutralisation titres and the broadest response, recognising all A9 non-vaccine genotypes 

(Figure 13B). In comparison, the samples in cluster IV had the lowest HPV16 titres and had 

a primarily type-specific response. These data support a generally quantitative relationship 

between the magnitude of the antibody response against HPV16 and the ability to recognise 

non-vaccine genotypes. However, a number or different antibody specificities are displayed, 

for example the serum samples within clusters II, V and VIII have similar intermediate titres 

against HPV16 but differ in breadth of response (Figure 13B). Cluster VIII samples 

predominantly recognising HPV31 only, whilst cluster V samples also recognise HPV52 in 

addition to HPV31 and cluster II samples recognise HPV31, HPV33 and HPV35. These data 

suggest that multiple cross-reactive antibody profiles are generated in response to 

vaccination with Cervarix®.  



Figure 13

A

B

       Median (IQR) serum neutralisation titers against indicated HPV pseudovirus 
                  Cluster N Breadth HPV16 HPV31 HPV33 HPV35 HPV52 HPV58 
                  I 13 High 74,295 (55,880 – 122,896) 482 (195 – 665) 54 (24 – 87) 22 (10 – 68) 21 (10 – 25) 20 (10 – 32) 
II 5 High 20,556 (20,032 – 20,559) 58 (51 – 98) 23 (10 – 27) 27 (25 – 49) 10 (10 – 25) 10 (10 – 10) 
III 7 Low 9,721 (5,959 – 12,954) 31 (27 – 33) 10 (10 – 10) 10 (10 – 10) 10 (10 – 10) 10 (10 – 10) 
IV 10 Low 6,953 (4,366 – 11,584) 10 (10 – 10) 10 (10 – 10) 10 (10 – 10) 10 (10 – 18) 10 (10 – 10) 
V 7 Medium 18,351 (17,026 – 25,055) 45 (42 – 84) 10 (10 – 21) 10 (10 – 10) 28 (25 – 35) 10 (10 – 10) 
VI 8 Medium 13,302 (11,612 – 17,578) 108 (57 – 166) 30 (25 – 37) 10 (10 – 10) 10 (10 – 10) 10 (10 – 10) 
VII 6 Low 8,275 (6,386 – 11,407) 87 (70 – 107) 10 (10 – 10) 10 (10 – 10) 10 (10 – 10) 10 (10 – 10) 
VIII 13 Medium 25,962 (21,195 – 40,113) 152 (90 – 399) 10 (10 – 26) 10 (10 – 10) 10 (10 – 10) 10 (10 – 10) 

  
 

Figure 13 Clustered analysis of L1L2 PsV neutralisation data. (A) Log10-transformed serological
data (centre, heat map) were subjected to two-dimensional hierarchical clustering and re-ordered
according to serological (left) and target antigen (top) dendrograms constructed from the resulting
distance matrix. The antigen dendrogram was generated using a neighbour joining algorithm and is
supported by bootstrapping of 500 pseudoreplicates. The serological dendrogram is labelled I-VIII
based upon intuitive clustering of the serological data. Samples labelled A-F within cluster I
subsequently used for enrichment. (B) Median (IQR, Interquartile range) neutralising antibody titres
of sera within indicated intuitive clusters against indicated A9 L1L2 PsV. Key indicates log10 heatmap
gradient. Bissett et al., Vaccine, 32:1139 (2014).
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3.1.4.3 The antigenic relationship between A9 genotypes based upon Cervarix® 

vaccine antibodies 

The hierarchical clustering of serological data permitted ranking of the L1 VLP and L1L2 PsV 

target antigens (Figure 12). This ranking was not influenced by differences in L1 amino acid 

sequence between the VLP and PsV representing a particular A9 genotype since both 

antigens shared a 100% sequence identity. HPV31 was the nearest antigenic relative to 

HPV16 independent of the representative HPV31 antigen or assay system; however, the 

order of the remaining non-vaccine genotypes did differ between systems. For example, in 

the L1L2 PsV neutralisation viral dendrogram, after HPV31, HPV33 was the next nearest 

antigenic relative to HPV16 but in the L1 VLP binding viral dendrogram HPV33 was the 

furthest relative from HPV16. HPV35 and HPV52 clustered together in the viral dendrograms 

produced from the L1L2 PsV neutralisation and L1 VLP binding data, suggesting a close 

antigenic relationship between these two genotypes; however, this relationship was not 

duplicated in the L1L2 PsV binding viral dendrogram. Bootstrap values supported these 

inter-genotype antigenic relationships which all differed somewhat from the inter-genotype 

genetic distance based upon L1 amino acid sequence (see Chapter 2, Figure 10). 

 

3.1.4.4 Enrichment of Cervarix® vaccine-induced A9 genotype antibody specificities  

The serological dendrogram analysis demonstrated multiple cross-reactive antibody profiles. 

To directly address whether the cross-reactive response consisted of multiple antibody 

specificities, selected sera were adsorbed on, and eluted from, L1 VLP representing the 

individual non-vaccine A9 genotypes. If cross-reactive antibodies are a minority population 

consisting of multiple specificities then such an approach should enrich for these specificities 

in preference to HPV16 type-specific antibodies (Figure 14A). For example, enrichment on 

HPV31 L1 VLP should result in the generation of an enriched fraction of antibodies with 

equivalent recognition for HPV31 and HPV16, and which may or may not also recognise 

other non-vaccine genotypes. If the cross-reactive antibody response is the consequence of 

a low affinity interaction of an otherwise predominantly HPV16 type-specific antibody, then 
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enrichment on HPV31 L1 VLP would yield antibodies which recognised HPV16 and HPV31 

at titres separated by a fold-difference similar in magnitude to the difference separating the 

pre-enrichment HPV16 and HPV31 titres.  

 

Six serum samples (A-F) were selected from cluster I of the L1L2 PsV neutralisation 

serological dendrogram for enrichment (Figure 13) since samples within cluster I 

demonstrated the greatest breadth of cross-neutralisation. The enriched fractions were 

subsequently tested in the L1L2 PsV neutralisation assay against HPV16, HPV31 and 

another relevant genotype which was determined from the pre-enriched neutralisation profile 

of each serum sample. HPV31 was chosen as the representative non-vaccine genotype 

since all 6 serum samples demonstrated cross-neutralisation of HPV31 pre-enrichment 

therefore HPV31 could be used to probe the separation of vaccine and non-vaccine antibody 

responses. The higher input volume required for the L1L2 PsV neutralisation assay 

restricted testing to three A9 genotypes; however, L1 VLP binding titres could be determined 

against all A9 genotypes prior to and post enrichment.  

 

The six sera were also enriched on HPV16 L1 VLP. As expected, enrichment yielded 

antibodies capable of neutralising (HPV16 & HPV31) and binding (all A9 genotypes) at 

equivalent titres compared to pre-enrichment titres. For example, serum A neutralised 

HPV31 at a titre of 211 prior to enrichment and at a titre of 621 post-enrichment on HPV16 

L1 VLP. Similar binding titres against HPV31 (Pre: 591; Post: 685) were also observed 

following enrichment on HPV16 (Figure 14B), confirming that cross-reactive A9 specificities 

are induced in response HPV16. The HPV16 neutralisation titre was reduced by a median 

1.6 log10-fold (IQR, 1.5 to 2.8; n=30) following enrichment on L1 VLP representing non-

vaccine A9 genotypes, confirming that cross-neutralising antibodies represent a minority 

population. Non-vaccine VLP enriched neutralising antibody titres against HPV16 were 

similar to the titres observed against the non-vaccine genotype used for enrichment. For 

example, antibodies in serum A when enriched on HPV31 VLP neutralised HPV16 and 
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HPV31 at titres of 861 and 795 respectively. Similar binding titres against HPV16 (709) and 

HPV31 (692) were also observed (Figure 14C) indicating that cross-neutralising antibodies 

have equivalent recognition of HPV16 and non-vaccine genotypes. 

 

The log10 transformed neutralisation and binding titres of the six sera (A-F) prior to 

enrichment and post L1 VLP enrichment were represented in heat maps, with the target A9 

antigens across the top and the L1 VLP used for enrichment down the left hand side (Figure 

15).  

 

The enrichment of sera A and B on L1 VLP representing non-vaccine A9 genotypes did not 

enrich for cross-neutralising antibodies which recognised another non-vaccine genotype. 

Enrichment of serum A on HPV31 or HPV58 yielded neutralising antibodies capable of 

recognising HPV16 and only the genotype used for enrichment. The pre-enrichment HPV31 

neutralisation titre of serum A was 211, increasing to 795 post-enrichment on HPV31 L1 

VLP; however, no HPV58 neutralising reactivity was detectable. Similarly for HPV58, the 

post-enrichment neutralisation titre of serum A increased to 6,188 (2,696 pre-enrichment) 

but HPV31 neutralising reactivity was not detectable. Enrichment of serum B on HPV31, 

HPV33, HPV35 and HPV58 yielded neutralising antibodies which appear to represent 

multiple antibody specificities that neutralised HPV16 and only the indicated non-vaccine 

genotype.  

 

Sera C and D antibodies enriched on HPV31 L1 VLP only neutralised HPV16 and HPV31 

whilst enrichment on HPV35 L1 VLP yielded neutralising antibodies capable of recognising 

HPV16 and HPV35 but not HPV31 (Figure 15). Serum C neutralising antibodies enriched on 

HPV33 L1 VLP demonstrated recognition of HPV31; however, this was in the absence of 

detectable HPV33 neutralisation.  



Figure 15

Serum A 16 31 33 35 52 58 16 31 33 35 52 58
PRE 4.6 2.3 1.3 1.4 1.5 3.4 4.8 2.8 2.8 2.8 2.8 2.9

16 VLP 4.4 2.8 3.4 5.6 2.8 2.8 2.9 2.8 3.4
31 VLP 2.9 2.9 1.0 2.9 2.8 2.5 2.5 2.5 1.0
33 VLP 2.5 1.0 1.0 2.8 2.5 2.8 2.8 2.8 2.8
35 VLP 1.0 1.0 1.0 2.7 1.0 1.0 2.8 1.0 1.0
52 VLP 1.0 1.0 1.0 2.8 1.0 1.0 1.0 2.6 2.5
58 VLP 3.4 1.0 3.8 3.7 1.0 2.8 2.8 2.8 3.5

Serum B 16 31 33 35 52 58 16 31 33 35 52 58
PRE 4.5 1.9 2.5 1.8 1.4 2.5 4.7 2.8 2.9 2.9 2.8 2.9

16 VLP 3.8 2.4 2.4 2.5 4.7 2.8 2.9 2.9 2.9 2.9
31 VLP 3.2 2.2 1.0 1.0 3.5 2.9 2.8 2.7 2.8 2.7
33 VLP 2.9 1.0 2.8 3.3 2.8 3.1 2.7 2.8 2.9
35 VLP 2.8 1.0 2.4 3.0 2.7 2.8 3.4 2.8 2.7
52 VLP 2.6 1.0 1.0 2.8 2.8 2.7 2.7 2.8 2.7
58 VLP 2.8 1.0 2.9 3.1 2.7 2.9 2.8 2.8 2.9

Serum C 16 31 33 35 52 58 16 31 33 35 52 58
PRE 5.6 2.4 1.3 1.8 1.4 1.4 5.2 2.8 2.8 3.4 2.8 2.9

16 VLP 4.7 3.0 5.0 2.7 2.8 3.4 2.8 2.8
31 VLP 3.6 3.0 1.0 3.4 2.5 2.8 2.1 2.8 2.7
33 VLP 2.7 2.1 1.0 2.9 2.7 2.9 2.8 2.8 2.8
35 VLP 2.5 1.0 1.9 2.9 1.0 1.0 3.3 1.0 1.0
52 VLP 2.4 1.0 1.0 2.8 1.0 2.6 2.6 2.8 2.6
58 VLP 2.5 1.0 1.0 3.4 1.0 2.8 2.9 2.9 2.8

Serum D 16 31 33 35 52 58 16 31 33 35 52 58
PRE 5.5 2.8 1.8 1.9 1.6 1.0 4.9 3.6 3.8 3.7 3.6 3.6

16 VLP 4.1 2.9 4.8 3.6 3.6 3.8 3.0 3.3
31 VLP 3.6 3.3 1.0 3.8 3.8 3.8 3.7 3.5 3.7
33 VLP 1.0 1.0 2.0 3.6 3.8 3.8 3.8 3.0 3.8
35 VLP 2.7 1.0 2.1 3.8 3.8 3.8 3.8 3.6 2.8
52 VLP 1.0 1.0 1.0 3.0 2.9 3.0 3.0 3.0 2.8
58 VLP 2.6 1.0 1.0 3.7 3.8 3.9 3.9 3.8 3.9

Serum E 16 31 33 35 52 58 16 31 33 35 52 58
PRE 4.3 2.6 2.1 1.4 1.4 1.3 4.5 2.9 2.8 2.8 2.9 2.9

16 VLP 4.0 3.0 4.7 3.4 2.8 2.8 2.8 2.8
31 VLP 3.3 3.3 2.2 3.7 3.0 2.9 2.9 2.9 2.9
33 VLP 2.5 2.5 2.8 2.9 2.8 2.8 2.7 2.8 2.8
35 VLP 1.0 1.0 1.0 2.8 2.8 2.8 2.8 2.9 2.9
52 VLP 1.0 1.0 1.0 2.7 2.7 2.5 2.6 2.7 2.7
58 VLP 2.5 1.0 1.0 3.5 2.9 2.9 2.9 3.3 3.0

Serum F 16 31 33 35 52 58 16 31 33 35 52 58
PRE 6.8 3.7 2.7 1.6 1.5 1.6 5.8 3.9 3.0 2.9 3.6 3.0

16 VLP 4.7 3.6 5.0 3.0 3.5 3.1 3.4 2.9
31 VLP 4.5 4.2 2.7 4.6 3.9 3.6 2.9 3.7 3.2
33 VLP 3.9 3.6 2.7 3.6 3.6 3.3 2.9 2.9 2.9
35 VLP 3.2 1.0 1.0 3.6 3.5 3.2 3.4 3.7 3.0
52 VLP 2.8 1.0 1.0 3.9 3.8 3.8 3.7 3.9 3.7
58 VLP 3.6 3.3 1.9 3.8 3.7 3.7 3.7 3.8 3.5
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Figure 15 Heatmaps of neutralising and binding antibody responses against A9 target antigens by L1
VLP enriched antibody fractions. The log10 transformed neutralisation and binding titres of the six sera
(A-F) prior to enrichment and post L1 VLP enrichment were represented in heat maps, with the target
A9 antigens across the top and the L1 VLP used for enrichment down the left hand side.
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Neutralising antibodies enriched from serum E and F exhibited cross-recognition of more 

than one non-vaccine A9 genotype (Figure 15). Enrichment of both serum E and F on 

HPV31 and HPV33 L1 VLP yielded antibodies capable of neutralising HPV16, HPV31 and 

HPV33. Enrichment of serum F on HPV58 L1 VLP also yielded antibodies capable of 

neutralising HPV31 in addition to HPV16 and HPV58. The HPV31 enriched antibodies from 

serum E and F neutralised HPV16 and HPV31 at similar titres but neutralised HPV33 at a 

lower titre, whilst antibodies enriched on HPV33 neutralised HPV16, HPV31 and HPV33 at 

equivalent titres. These differences in cross-recognition appear to demonstrate yet another 

level of antibody complexity induced in response to the Cervarix® vaccine.  

 

L1 VLP enrichment of serum B, D, E and F yielded binding antibodies which recognised all 

A9 genotypes independent of the L1 VLP used for the enrichment process (Figure 15), 

highlighting again the discrepancy between binding and neutralisation antibody specificity. 

The L1 VLP enrichment of serum A and C did not exclusively yield pan-reactive A9 binding 

antibodies since enrichment of both sera on HPV35 yielded binding antibodies which only 

recognised HPV16 and HPV35, a pattern which was duplicated in the L1L2 PsV 

neutralisation data derived from HPV35 enrichment of serum C. Both sera also yielded 

binding antibodies which recognised all A9 genotypes except HPV31 following enrichment 

on HPV58, a pattern which was also duplicated in the L1L2 PsV neutralisation data derived 

from HPV58 L1 VLP enrichment of serum A.   

 

Overall, these data suggest that cross-reactive antibodies represent a minor population of 

multiple specificities which exist within the total HPV16 antibody response generated against 

the Cervarix® vaccine. 

 

3.1.4.5 A9 L1 and L1L2 antigen serological bridging studies  

During the course of these studies a clinical trial was carried out, referred to as Study-02, 

from which both Cervarix® and Gardasil® vaccinee sera could be accessed. Study-02 serum 
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samples had previously been tested in the L1L2 PsV neutralisation assay for the presence of 

neutralising antibodies targeting all the A9 HPV genotypes (Draper et al., 2013). A group of 

forty-six sera (Cervarix® n=22; Gardasil® n=24), with high HPV31 cross-neutralising antibody 

titres, were selected for the remainder of the project and serological bridging studies were 

subsequently carried out using L1 and L1L2 antigens representing HPV16, HPV31 and 

HPV33. 

 

All samples, independent of HPV vaccine, were seropositive for antibodies targeting L1 and 

L1L2 antigens representing HPV16, HPV31 and HPV33 (Table 7). The exceptions to this 

were the detection of HPV33 cross-neutralising antibodies in the L1L2 PsV neutralisation 

assay (n=41; 89%) and the detection of antibodies which recognised denatured HPV16 or 

HPV31 L1 VLP. Sixteen samples, 5 Cervarix® and 11 Gardasil®, were found to be positive 

for antibodies which recognised denatured HPV16 L1 VLP with median 50% binding titres of 

234 (IQR, 161 to 276) and 157 (IQR, 137 to 250) respectively (calculated from the positive 

samples only), whilst a single Gardasil® sample (binding titre: 138) was positive against 

denatured HPV31 L1 VLP.  

 

A correlation was observed between the HPV16 antibody responses in the L1L2 PsV binding 

(Pearson’s r = 0.650; p <0.001) and L1 VLP binding (r = 0.727; p <0.001) assays compared 

to the L1L2 PsV neutralisation assay, similar to the HPV16 data derived from the Study-01 

samples. Differences in the magnitude of the HPV16 antibody response between the assay 

systems was also apparent again with the antibody titre decreasing by a median 1.5-fold 

(IQR, 1.2 to 2.6; Wilcoxon paired signed-rank test, p <0.001) in the L1L2 PsV binding assay 

and a median 3.0-fold (IQR, 2.2 to 5.0; p <0.001) in the L1 VLP binding assay compared to 

the L1L2 neutralisation assay. 

 

For HPV31 and HPV33, the L1 VLP binding assay generated the highest antibody titres, 

followed by a stepwise decrease in the L1L2 PsV binding assay then the L1L2 neutralisation  



Table 7. Seroreactivity against HPV16, HPV31 and HPV33 L1 and L1L2 targets in binding and neutralisation assays 
              Study-02 serum samples: Cervarix® n=22 and Gardasil® n=24 vaccine recipients 

       HPV Assay Vaccine Seropositivity Antibody titrea  % of 16 titrec  
                 N (%) Median (IQR) p valueb Median (IQR) 
       16 L1L2 PsV Neutralisation Cervarix 22 (100) 244,460 (159,575 - 360,654) - - 
  Gardasil 24 (100) 104,440 (79,636 - 220,963) - - 
  All 46 (100) 168,073 (87,716 - 333,266) - - 
        L1L2 PsV Binding Cervarix 22 (100) 174,668 (114,741 - 230,299) <0.001 - 

  Gardasil 24 (100) 71,073 (42,358 - 91,178) <0.001 - 
  All 46 (100) 92,880 (56,843 - 213,869) <0.001 - 
        L1 VLP Binding Cervarix 22 (100) 51,849 (39,675 - 117,928) <0.001 - 
  Gardasil 24 (100) 38,352 (32,906 - 46,728) <0.001 - 
  All 46 (100) 44,857 (34,392 - 100,440) <0.001 - 

       31 L1L2 PsV Neutralisation Cervarix 22 (100) 1,072 (693 - 2,273) - 0.59 (0.33 - 0.95) 
  Gardasil 24 (100) 767 (543 - 1,876) - 0.77 (0.56 - 1.21) 
  All 46 (100) 938 (618 - 2,070) - 0.70 (0.46 - 1.01) 
        L1L2 PsV Binding Cervarix 22 (100) 2,051 (1,680 - 3,155) 0.031 1.70 (1.06 - 2.74) 

  Gardasil 24 (100) 1,421 (971 - 2,137) 0.046 2.40 (1.62 - 3.40) 
  All 46 (100) 1,912 (1,265 - 2,299) 0.003 2.17 (1.12 - 2.84) 
        L1 VLP Binding Cervarix 22 (100) 2,326 (1,673 - 5,368) <0.001 8.88 (6.39 - 20.44) 
  Gardasil 24 (100) 2,301 (1,939 - 4,785) <0.001 8.78 (7.40 - 18.26) 
  All 46 (100) 2,312 (1,814 - 5,158) <0.001 8.82 (6.92 - 19.69) 
       33 L1L2 PsV Neutralisation Cervarix 20 (90.9) 97 (35 - 151) - 0.04 (0.01 - 0.06) 

  Gardasil 21 (87.5) 85 (36 - 174) - 0.07 (0.02 - 0.13) 
  All 41 (89.1) 86 (35 - 165) - 0.05 (0.02 - 0.10) 
        L1L2 PsV Binding Cervarix 22 (100) 372 (305 - 487) <0.001 0.25 (0.16 - 0.48) 

  Gardasil 24 (100) 372 (288 - 533) <0.001 0.64 (0.49 - 1.02) 
  All 46 (100) 372 (297 - 502) <0.001 0.50 (0.21 - 0.82) 
        L1 VLP Binding Cervarix 22 (100) 458 (376 - 1,304) <0.001 1.75 (1.43 - 4.98) 
  Gardasil 24 (100) 957 (489 - 1,345) <0.001 3.65 (1.87 - 5.13) 
  All 46 (100) 749 (442 - 1,362) <0.001 2.86 (1.69 - 5.20) 
       IQR, inter-quartile range. For calculation purposes neutralisation titres of <20 were assigned a value of 10 
a Antibody titres are presented as the median (IQR) 80% neutralisation titre or 50% binding titres  
b 

p values, obtained using the Wilcoxon paired signed-rank test, represent differences in L1L2 PsV binding and L1 VLP binding antibody titres from L1L2 PsV neutralisation titres. Significant 
differences are highlighted in bold. 
c HPV31 and HPV33 antibody titres represented as a % of the corresponding HPV16 titre 
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assay. This corresponded with a step-wise increase in the percentage of HPV31 and HPV33 

antibodies relative to the HPV16 response (Table 7). For example, for HPV31 the median 

percentage of the HPV16 titre was 0.70% (IQR, 0.46 to 1.01%) in the L1L2 PsV 

neutralisation assay, increasing to 2.17% (IQR, 1.12 to 2.84%) in the L1L2 PsV binding 

assay and 8.82% (IQR, 6.92 to 19.69%) in the L1 VLP binding assay. These data are in 

general agreement with the Study-01 serological data derived against antigens representing 

HPV16 and non-vaccine A9 genotypes. 

 

3.1.4.6 Neutralising specificities of HPV vaccine-induced antibodies  

L1 VLP enrichment of Study-01 serum samples demonstrated that cross-reactive 

specificities are a minority antibody population which consists of multiple specificities. A 

simpler method whereby L1 VLP representing HPV16, HPV31 and HPV33 were used as 

competing antigens in L1L2 PsV neutralisation assays was employed to corroborate these 

observations using Study-02 serum samples (n=12). This approach should reduce the 

antibody pool which targets the competing L1 VLP therefore reducing neutralisation potential 

of these antibody specificities in the downstream assay.  

 

Pre-incubation with HPV16 L1 VLP reduced neutralising antibody titres against HPV16, 

HPV31 and HPV33; however, pre-incubation with HPV31 or HPV33 L1 VLP did not reduce 

the HPV16 neutralisation titre (Table 8). Pre-incubation with HPV31 L1 reduced the 

neutralising antibody titres against HPV31 and HPV33 with 7 of the 12 serum samples 

demonstrating a ≥3-fold reduction in HPV33 neutralisation titres following pre-incubation with 

HPV31 L1 VLP. Pre-incubation with HPV33 L1 VLP reduced the neutralising antibody titres 

against HPV33 but had little impact upon HPV16 or HPV31 neutralisation titres. Antibody 

competition against L1 VLP demonstrated reduced sensitivity compared to L1 VLP antibody 

enrichment, in that the neutralising antibodies against the competing L1 VLP were not 

completely removed. Nevertheless these data are consistent with Study-01 antibody 



Table 8. Specificity of neutralising antibodies induced by HPV vaccines               
              Study-02 serum samples: Cervarix® n=6 and Gardasil® n=6 vaccine recipients 

 
Median (IQR) in neutralising antibody titre to indicated PsV Pre and Post addition of competing VLP  

  PsV 16 
 

 PsV 31  
 

PsV 33  

Competing 
antigen Pre Post Folda Pre Post Folda Pre Post Folda 

          
VLP 16 138,737 

(121,551 - 374,486) 
891  

(683 - 1,873) 
166  

(108 - 191) 
2,100 

(1,065 - 4,467) 
101 

(89 - 130) 
20  

(12 - 42) 
498 

(384 - 843) 
89 

(29 - 173) 
6 

 (4 - 8) 
          

VLP 31 138,737 
(121,551 - 374,486) 

179,942 
(125,149 - 439,678) ≤ 1 2,100 

(1,065 - 4,467) 
191  

(169 - 415) 
8 

 (5 - 11) 
498 

(379 - 722) 
82 

(27 - 538) 
5 

 (2 - 9) 
          

VLP33 138,737 
(121,551 - 374,486) 

383,132 
(139,921 - 781,250) ≤ 1 2,100 

(1,065 - 4,467) 
1,182 

(723 - 3,825) 
1.2 

 (0.9 -1.9) 
498 

(379 - 722) 
24  

(20 - 32) 
17  

(10 - 27) 
          

Interquartile range (IQR) 
a Fold reduction (Median and IQR) in neutralising antibody titre to indicated PsV by addition of VLP compared to no VLP control; Median and IQR are not 
presented when reduction in neutralisation titre ≤1-fold; Reductions of ≥3-fold are indicated in bold type. 
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enrichment data which demonstrated that multiple cross-neutralising antibody specificities 

appear to be present as a minor population within the total HPV16 antibody repertoire.  

 

 3.1.5 Discussion  

The cross-neutralising antibody responses generated against HPV16 L1 VLP in the 

Cervarix® and Gardasil® vaccines were compared with the responses measured against L1 

VLP and L1L2 PsV antigens in an indirect ELISA. The L1L2 PsV neutralisation assay only 

detects functional, neutralising antibodies whilst an indirect ELISA will detect all antibodies 

capable of binding to the target antigen irrespective of functionality. A good correlation was 

observed between the HPV16 antibody responses measured by ELISA (L1 VLP and L1L2 

PsV) and neutralisation assay, in agreement with the findings of previous studies (Dessy et 

al., 2008; Kemp et al., 2008; Safaeian et al., 2013b).  

 

Agreement between non-vaccine antibody responses measured by L1L2 PsV neutralisation 

assay and the L1L2 PsV or L1 VLP binding assays were weaker, with a stepwise increase in 

antibody titres observed from the L1L2 PsV neutralisation assay, through the L1L2 PsV 

binding assay to the L1 VLP binding assay. The higher antibody titres in the L1 VLP binding 

assay were accompanied by increased seropositivity of HPV33, HPV35, HPV52 and HPV58 

compared to the L1L2 PsV neutralisation assay. Data regarding the quantitative differences 

between ELISA and neutralisation assay formats for the measurement of cross-reactive 

antibody titres is limited. In one study, the immunisation of New Zealand white rabbits with 

L1L2 VLP representing HPV31 generated polyclonal anti-serum which cross-neutralised 

HPV16 L1 VLP in a haemagglutination inhibition assay (HAI) at an antibody level ca. 50-fold 

lower than the level which cross-reacted with HPV16 L1 VLP by ELISA (Xu et al., 2007).  

 

Increased seroreactivity measured by the L1 VLP ELISA has been attributed to the binding 

of antibodies to linear L1 epitopes exposed on denatured protein within the VLP 

preparations (Du et al., 2015; Schiller and Lowy, 2009). However, very limited reactivity was 
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observed when the vaccine sera were tested against denatured L1 VLP representing 

HPV31. These data indicate that whilst non-vaccine genotype binding antibodies primarily 

target conformational epitopes, their detection may not be an appropriate surrogate 

measurement for the magnitude and specificity of the cross-neutralising antibody response 

of vaccine sera.  

 

Study-01 serological data sets were subjected to hierarchical clustering in order to further 

examine the discrepancies between the cross-reactive antibody profiles. Such an approach 

has been used to evaluate the antibody specificities targeting HIV (Binley et al., 2004; Gray 

et al., 2009; Seaman et al., 2010; Shang et al., 2011), foot-and-mouth disease virus (Reeve 

et al., 2010) and avian influenza virus H5N1 (Lai et al., 2012). The serological profiles 

differed starkly between the L1L2 PsV neutralisation assay, the L1L2 PsV binding assay and 

L1 VLP binding assay. Samples which clustered together based upon similar A9 

neutralisation profiles subsequently cluster differently in the serological dendrograms 

produced by both sets of binding data. The hierarchical clustering also permitted the 

antigenic inter-genotype ranking of the A9 targets and found  that HPV31 was always the 

nearest antigenic relative to HPV16 but the order of the remaining genotypes differed 

between the three assay systems. These data indicate that the quantitative differences 

between the assays were underpinned by qualitative differences in the antibody specificities 

measured.  

 

A number of L1 MAbs demonstrate differential recognition of their epitopes displayed on L1 

VLP compared to L1L2 PsV (Christensen et al., 1996a; Christensen et al., 1996b; Culp et 

al., 2007; Rizk et al., 2008). For example, H16.J4 cross-reacts with L1 VLP representing A9 

genotypes HPV31, HPV33 and HPV35 (Christensen et al., 1996a) and cross-neutralises 

HPV31, HPV33 and HPV58 in an L1-based reporter transduction assay (Combita et al., 

2002) but poorly recognises its epitope on HPV16 L1L2 PsV antigens used in either an 

ELISA or neutralisation assay (Culp et al., 2007; Rizk et al., 2008). Structural differences are 
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apparent between L1 VLP and L1L2 PsV, with the latter containing a higher degree of 

disulphide cross-linking between L1 monomers within the capsid (Fligge et al., 2001). 

However, the epitopes recognised by the majority of type-specific neutralising L1 MAbs, 

such as H16.V5, appear not to be affected by the structural, and possible antigenic, changes 

to the capsid due to L2 inclusion (Culp et al., 2007). Consistent with this observation for 

type-specific MAbs, the polyclonal vaccine sera were all able to recognise both L1 VLP and 

L1L2 PsV antigens representing the vaccine type HPV16. It could reasonably be assumed 

that the majority of non-neutralising, cross-reactive antibodies bind conformational regions of 

L1 proteins which are not involved in (pseudo)virus entry as this would account for the 

increased seroreactivity in both binding assays compared to the neutralisation assay. In 

addition, the increased seroreactivity in the L1 VLP binding assay compared to the L1L2 PsV 

binding assay could be accounted for if a proportion of these antibodies targeted domains 

that are altered or occluded by the incorporation of L2 into the capsid, similar to the H16.J4 

MAb (Culp et al., 2007). 

 

Cross-reactive antibody titres were very low in comparison with the HPV16 antibody titres in 

all three assay systems. It was not clear from the antibody titre data alone whether cross-

reactivity was the consequence of antibodies that made up a minor percentage of the total 

HPV16 antibody repertoire or whether it was the consequence of reduced recognition by an 

otherwise HPV16 type-specific antibody specificity. This latter phenomenon was observed in 

the sole instance where L1 cross-neutralising MAbs have been identified, with effective 

cross-neutralisation of the A7 genotypes HPV18 and HPV45 requiring a higher IgG 

concentration compared to type-specific neutralisation (Smith et al., 2007).   

 

This uncertainty was addressed by utilising immobilised L1 VLP for the enrichment of a small 

panel of broadly cross-neutralising Study-01 sera. It was reasoned that since L1 VLP are the 

immunogens of the HPV vaccines this approach would allow the capture of the majority of 

L1-specific antibodies generated. This approach has previously been used to enrich for 
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broadly-neutralising antibodies induced in response to HIV infection (Gray et al., 2009; Li et 

al., 2007; Sather et al., 2009). HPV16 neutralising antibodies and cross-neutralising 

antibodies could be detected in the enriched fractions indicating that the immobilised L1 VLP 

appeared to maintain a reasonable degree of conformational integrity. Serum enriched on L1 

VLP representing non-vaccine genotypes demonstrated equivalent recognition of HPV16 

and the non-vaccine genotype used for the enrichment. This suggests that cross-neutralising 

antibodies form a distinct, minor component within the total vaccine-type HPV16 antibody 

repertoire and that cross-neutralisation is not the result of HPV16 type-specific antibody 

which exhibits low affinity interactions with non-vaccine genotypes. 

 

If cross-neutralising antibodies are a minority population and only a small pool of memory B 

cells express these specificities (Godi et al., 2015a), it is possible that their generation and 

maintenance over time is more precarious than those immune components that recognise 

vaccine type antigens. Consequentially, any potential contribution which these antibody 

specificities have to vaccine-induced cross-protection may also diminish over time. 

 

Cross-neutralising antibodies targeting HPV31 have been detected at 24 months in women 

who received three doses of the Cervarix® vaccine suggesting that these specificities do 

have a degree of longevity (Einstein et al., 2011a). A reduced-dose schedule did appear to 

effect the generation and/or maintenance of HPV31 cross-neutralising antibodies since 

seroconversion rates decreased from 63% following a three-dose schedule of the Cervarix® 

vaccine, to 50% following two doses with a further reduction to 24% following one dose 

(Safaeian et al., 2013b). However, both these studies were carried out in women, aged 18-

45 years, and it has been demonstrated that antibody responses to HPV vaccine decreases 

with age (Einstein et al., 2014). A two-dose schedule of Gardasil® in girls aged 9-13 years, 

who are the target age group for vaccination, demonstrated non-inferior vaccine type 

antibody levels compared to a three-dose schedule in women (aged 16-26) (Dobson et al., 
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2013). This increased immunogenicity observed in the younger age group may better 

support the maintenance of the cross-neutralisation antibody response. 

 

The hierarchical clustering of the serological data and enrichment data suggest that 

vaccination has the potential to elicit multiple cross-reactive antibody specificities but that 

these specificities vary between vaccine recipients. Variation in individual immune responses 

to vaccination has been observed for other vaccine-preventable viral infections. Vaccination 

with the recombinant HBV vaccine fails to elicit protective antibody levels in 5-10% of healthy 

adult recipients, with the differences in individual responses associated with diversity in 

human leukocyte antigen (HLA) genes (Wang et al., 2004). Polymorphisms in HLA genes 

are also associated with variation in the immune response to the live attenuated measles 

vaccine, where a proportion of individuals fail to either mount or maintain a protective 

response (Haralambieva et al., 2013). Such genetic components could impact upon an 

individual’s ability to process and present certain L1 epitopes following HPV vaccination. 

 

These data also suggest that the HPV16 L1 protein harbours multiple surface-exposed, 

immunogenic domains that share sequence and/or structural homology with other A9 

genotypes. Such domains appear to be common between HPV16, HPV31 and HPV33. The 

surface-exposed loops of the HPV16 L1 protein are antigenic targets for both neutralising 

natural infection antibodies and L1 MAbs (Carter et al., 2006; Fleury et al., 2009; Rizk et al., 

2008). Neutralising antibodies generated in response to HPV16 natural infection appear to 

preferentially target the DE, FG and HI loops over the EF loop, with antibody recognition of 

the BC loop infrequent (Carter et al., 2006). Cryo-electron microscopy has been used to 

identify the precise epitope footprints of several HPV16 L1 murine MAbs, which encompass 

amino acid residues in all five L1 loops (Guan et al., 2015; Lee et al., 2015) and recently a 

human HPV16 L1 MAb has been produced from a HPV vaccine recipient which recognises 

amino acid residues in DE and FG loops (Xia et al., 2016). 
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Overall these data support the notion that HPV vaccine-induced L1 cross-neutralising 

antibodies are a minor component of the total HPV16 antibody response, consisting of 

multiple antibodies with both distinct and overlapping specificities which exhibit equivalent 

recognition for HPV16. These findings indicate that HPV16 harbours immunogenic L1 

domains which share sequence and/or structural homology with the L1 proteins of the other 

A9 genotypes. Identification of such common domains will improve our understanding of L1 

capsid protein antigenicity and may offer the opportunity to improve the immunogenicity of 

such domains in future vaccines.  
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3.2 A9 intra-genotype L1 amino acid diversity is located in the 

surface-exposed loops 

 

3.2.1 Background 

The capsid of HPV PsV contains both viral structural proteins, the L1 which mediates 

attachment to the host cells (Buck et al., 2013) and the L2 which is essential for viral 

infectivity (Wang and Roden, 2013). HPV PsV resemble authentic HPV virions (Buck et al., 

2005) and are employed as surrogates in a range of in vitro and in vivo systems for the study 

of HPV antibody-mediated neutralisation and entry kinetics (Pastrana et al., 2004; Roberts et 

al., 2007). Each Alpha-7 and Alpha-9 species group genotype is represented by a single 

PsV. The majority of PsV also represent the genotype reference sequence, for example the 

L1 sequences of the PsV representing HPV18, HPV31, HPV33, HPV45, HPV52 and HPV58 

have a 100% amino acid sequence identity to the reference sequence L1 of their respective 

genotype (Ahmed et al., 2013).  

 

The utilisation of WGS technologies has increased the available data for HPV and permitted 

the classification of variant lineages and sublineage within a genotype based upon single 

nucleotide polymorphisms identified across the whole HPV genome (Chen et al., 2011, 

2013). The potential impact of this genetic variation on HPV capsid antigenicity has only 

been investigated for HPV16, where L1L2 PsV representing lineage-specific L1 variants 

demonstrated similar susceptibility to neutralisation by antibodies elicited against a L1 VLP 

representing a single L1 variant lineage (Pastrana et al., 2001). However, this study did not 

evaluate the impact of lineage-specific variation within the L2 protein. Given the increasing 

number of identified variant lineages and sublineages within a genotype it is unclear the 

potential impact that such variation may have upon capsid recognition by antibodies and 

how representative the PsV L1 and L2 amino acid sequences are of their respective 

genotypes. 
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3.2.2 Aim of chapter: To evaluate how representative the A9 PsV L1 and L2 protein 

sequences are of their designated genotype  

 

3.2.3 Specific objective 

� To carry out an analysis of intra-genotype A9 L1 and L2 amino acid variation 

 

3.2.4 Results 

3.2.4.1 Phylogenetic analysis of A9 L1 and L2 amino acid sequences  

HPV WGS derived (n=265) or partial sequences encompassing both the L1 and L2 genes 

(n=34) were identified and downloaded from the NCBI database for the A9 genotypes 

(HPV16/31/33/35/52/58). The L1 and L2 amino acid sequences were extracted and adjoined 

so both sequences were in the same reading frame. For example, the L1 (nucleotides from 

positions 5637 to 7154) and L2 (4235 to 5656) of the HPV16 reference sequence K02718 

were extracted and adjoined so that the stop codon of the L1 was directly followed by the 

start codon of the L2. The adjoined L1 and L2 amino acid sequences were analysed 

alongside their representative L1L2 PsV with the resulting phylogenetic trees, supported by 

bootstrap values of ≥80%, generated using a neighbour-joining algorithm. 

 

The segregation of A9 genotypes into variant lineages was generally supported by the L1 

and L2 amino acid sequences (Figures 16A to 21A) and consensus sequences were 

derived for each variant lineage for comparison against the L1 and L2 sequences of their 

respective PsV (Figures 16B to 21B). There were, however, instances where the distinction 

between lineages were lost, for example the HPV52 sequences designated as variant 

lineage A, B or C by WGS analysis became intermingled and no longer segregated into 

three separate lineages based upon L1 and L2 amino acid sequence (Figure 20A). The 

further segregation of the A9 genotypes into variant sublineages was not supported by L1 

and L2 amino acid sequence (Figures 16A to 21A). For example, whilst the sequences of 

HPV16 variant lineage A generally clustered with sequences of the same sublineage (A1,  
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Figures 16 HPV16 L1 and L2 sequence diversity from PsV. (A) Phylogenetic tree constructed from concatenated L1 and
L2 amino acid sequences supported by bootstrap values ≥80% (n= 500 iterations), including representative sequences
from variant sublineages and the L1L2 PsV sequence. Variant lineages are represented by colours and sublineages by
colour-filled shapes. Grey filled circles represent sequences which do not have a sublineage designation. (B) The HPV16
L1 and L2 amino acid sequences of the reference and variant lineages (derived consensus) were compared against
L1L2 PsV. L1 sequences represented by lineage consensus: A, 42/69 = 61%; B, 7/10 = 70%; C, 6/12 = 50%; D, 3/29 =
10%. L2 sequences represented by lineage consensus: A, 13/69 = 19%; B, 5/10 = 50%; C, 6/12 = 50%; D, 10/29 = 34%.
Divergent amino acid positions are indicated by peaks representing the percentage of sequences within the variant
lineages which have the variable residue. The L1 surface exposed loop regions (light blue shading) and characterised L2
neutralising antibody epitopes (light pink shading) are also indicated.
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Figures 17 HPV31 L1 and L2 sequence diversity from PsV. (A) Phylogenetic tree constructed from concatenated L1
and L2 amino acid sequences supported by bootstrap values ≥80% (n= 500 iterations), including representative
sequences from variant sublineages and the L1L2 PsV sequence. Variant lineages are represented by colours and
sublineages by colour-filled shapes. Grey filled circles represent sequences which do not have a sublineage designation.
(B) The HPV31 L1 and L2 amino acid sequences of the reference and variant lineages (derived consensus) were
compared against L1L2 PsV. L1 sequences represented by lineage consensus: A, 4/13 = 31%; B, 8/13 = 62%; C, 10/17
= 59%. L2 sequences represented by lineage consensus: A, 4/13 = 31%; B, 5/13 = 38%; C, 8/17 = 47%. Divergent
amino acid positions are indicated by peaks representing the percentage of sequences within the variant lineages which
have the variable residue. The L1 surface exposed loop regions (light blue shading) and characterised L2 neutralising
antibody epitopes (light pink shading) are also indicated.
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Figures 18 HPV33 L1 and L2 sequence diversity from PsV. (A) Phylogenetic tree constructed from concatenated L1
and L2 amino acid sequences supported by bootstrap values ≥80% (n= 500 iterations), including representative
sequences from variant sublineages and the L1L2 PsV sequence. Variant lineages are represented by colours and
sublineages by colour-filled shapes. Grey filled circles represent sequences which do not have a sublineage
designation. (B) The HPV33 L1 and L2 amino acid sequences of the reference and variant lineages (derived
consensus) were compared against L1L2 PsV. L1 sequences represented by lineage consensus: A, 0/15 = 0%; B, 6/6 =
100%; C, 1/1 = 100%. L2 sequences represented by lineage consensus: A, 3/15 = 20%; B, 3/6 = 50%; C, 1/1 = 100%.
Divergent amino acid positions are indicated by peaks representing the percentage of sequences within the variant
lineages which have the variable residue. The L1 surface exposed loop regions (light blue shading) and characterised
L2 neutralising antibody epitopes (light pink shading) are also indicated.
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Figures 19 HPV35 L1 and L2 sequence diversity from PsV. (A) Phylogenetic tree constructed from concatenated L1
and L2 amino acid sequences supported by bootstrap values ≥80% (n= 500 iterations), including representative
sequences from variant sublineages and the L1L2 PsV sequence. Variant lineages are represented by colours and
sublineages by colour-filled shapes. Grey filled circles represent sequences which do not have a sublineage
designation. (B) The HPV35 L1 and L2 amino acid sequences of the reference and variant lineages (derived
consensus) were compared against L1L2 PsV. L1 sequences represented by lineage consensus: A,15/30 = 50%. L2
sequences represented by lineage consensus: A, 2/30 = 7%. Divergent amino acid positions are indicated by peaks
representing the percentage of sequences within the variant lineages which have the variable residue. The L1 surface
exposed loop regions (light blue shading) and characterised L2 neutralising antibody epitopes (light pink shading) are
also indicated.
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Figures 20 HPV52 L1 and L2 sequence diversity from PsV. (A) Phylogenetic tree constructed from concatenated L1
and L2 amino acid sequences supported by bootstrap values ≥80% (n= 500 iterations), including representative
sequences from variant sublineages and the L1L2 PsV sequence. Variant lineages are represented by colours and
sublineages by colour-filled shapes. Grey filled circles represent sequences which do not have a sublineage
designation. (B) The HPV52 L1 and L2 amino acid sequences of the reference and variant lineages (derived
consensus) were compared against L1L2 PsV. L1 sequences represented by lineage consensus: A, 7/9 = 78%; B, 5/8
= 63%; C, 1/3 = 33%; D, 2/5 = 40%. L2 sequences represented by lineage consensus: A, 5/9 = 56%; B, 4/8 = 50%; C,
0/3 = 0%; D, 3/5 = 60%. Divergent amino acid positions are indicated by peaks representing the percentage of
sequences within the variant lineages which have the variable residue. The L1 surface exposed loop regions (light blue
shading) and characterised L2 neutralising antibody epitopes (light pink shading) are also indicated.
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Figures 21 HPV58 L1 and L2 sequence diversity from PsV. (A) Phylogenetic tree constructed from concatenated L1 and L2
amino acid sequences supported by bootstrap values ≥80% (n= 500 iterations), including representative sequences from
variant sublineages and the L1L2 PsV sequence. Variant lineages are represented by colours and sublineages by colour-
filled shapes. Grey filled circles represent sequences which do not have a sublineage designation. (B) The HPV58 L1 and L2
amino acid sequences of the reference and variant lineages (derived consensus) were compared against L1L2 PsV. L1
sequences represented by lineage consensus: A, 16/32 = 50%; B, 2/5 = 40%; C, 5/6 = 83%; D, 3/6 = 50%. L2 sequences
represented by lineage consensus: A, 5/32 = 16%; B, 2/5 = 40%; C, 3/6 = 50%; D, 2/6 = 33%. Divergent amino acid positions
are indicated by peaks representing the percentage of sequences within the variant lineages which have the variable residue.
The L1 surface exposed loop regions (light blue shading) and characterised L2 neutralising antibody epitopes (light pink
shading) are also indicated.
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A2, A3 or A4 designated by WGS analysis) this level of segregation was no longer 

supported by bootstrap values (Figure 16A). There were also instances where sequences 

from one sublineage clustered with sequences of a neighbouring sublineage, for example 

the representative sequence of HPV16 variant sub-lineage D1 (HQ644257) clustered with 

D2 sequences. 

 

The L1L2 PsV representing each A9 genotype demonstrated the closest relationship, based 

upon L1 and L2 amino acid identity, to the variant lineage A sequences of their respective 

genotype with sequence diversity from the L1L2 PsV generally increasing in a stepwise 

manner in the subsequent variant lineages (Figure 22). For example, the variant lineage A 

of HPV31 demonstrated a sequence diversity of 0.15% compared to the HPV31 L1L2 PsV 

with sequence diversity increasing to 0.21% in variant lineage B and 0.62% in variant 

lineage C. The HPV52 L1L2 PsV was the most representative of its genotype demonstrating 

a median inter-lineage diversity of 0.10% (IQR, 0.10 to 0.41) whilst the HPV33 L1L2 PsV 

was the least representative (0.73%; IQR, 0.10 to 0.88). Overall, the L1 and L2 amino acid 

diversity from the A9 genotypes compared to their respective L1L2 PsV was low (<2%). 

 

3.2.4.2 A9 intra-genotype L1 and L2 amino acid diversity 

The consensus L1 and L2 amino acid sequence of each variant lineage were determined 

and compared, alongside the reference sequence, to the L1L2 PsV sequence for that 

particular genotype in order to identify major positions of amino acid variation within the L1 

and L2 proteins (Figures 16B to 21B). The L1L2 PsV representing HPV16 and HPV35 

demonstrated a small degree of sequence diversity compared to their respective reference 

sequences whereas the L1L2 PsV representing HPV31, HPV33, HPV52 and HPV58 had a 

100% L1 and L2 amino acid sequence identity to their respective reference sequence. The 

PsV of HPV35 differed from the HPV35 reference sequence (M12732) at a single L1 amino 

acid position, Ala2 (Figure 19B). The HPV16 PsV differed from the HPV16 reference 

sequence (K02718) at five L1 positions, Asp202, Ala266, Thr422, Ser423 plus a deletion at  
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position 440 and at a single position within the L2 at Asp43 (Figure 16B). The L1 and L2 

consensus sequences represented each variant lineage to different degrees. For example, 

the consensus L1 amino acid sequence for HPV16 variant lineage A represented 61% 

(n=42) of the sequences within this lineage indicating that the consensus represented the 

majority of circulating sequences (Figure 16B). In contrast, the consensus L1 amino acid 

sequence for HPV16 variant lineage D represented the minority of sequences (n=3; 10%) 

and whilst the consensus did represent circulating sequences, the lower number of those 

sequences demonstrated the increased diversity within this lineage.  

 

The comparison of the L1L2 PsV against the consensus L1 and L2 sequences derived for 

each variant lineage re-affirmed that all the A9 L1L2 PsV shared the highest degree of 

amino acid similarity with variant lineage A of their respective genotypes. The level of amino 

acid sequence diversity between the variant lineages and their representative L1L2 PsV 

differed between A9 genotypes but was generally low. The L1 consensus sequences 

representing HPV16 variant lineage A (Figure 16B) and HPV52 variant lineages A, B and C 

(Figure 20B) had a 100% amino acid identity to their respective PsV. The L1 consensus of 

HPV58 variant lineage C was the most diverse, with twelve amino acid positions which 

varied from the L1 sequence of HPV58 PsV (Figure 21B). The L2 consensus sequence of 

HPV16 variant lineage D contained the highest level amino acid diversity compared to the L2 

of its representative PsV, with eleven positions of amino acid variation (Figure 16B). In 

contrast the L2 consensus of HPV31 variant lineages A and B (Figure 17B), HPV35 variant 

lineage A (Figure 19B) and HPV52 variant lineage A (Figure 20B) had a 100% amino acid 

identity to their respective PsV. 

 

It was apparent that variant lineage L1 amino acid diversity from the L1L2 PsV could be 

located to the surface exposed loops regions (BC, DE, EF, FG and HI). For example, of the 

eleven positions of amino acid variation within the L1 of HPV58 variant lineage C, nine 

variant positions fell within loop regions with the DE loop harbouring three (V118I, S133G 
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and P137T), the FG loop four (K266T, A270P, D273 and V285G) and HI loop two (G532D 

and D357N) (Figure 21B). Amino acid diversity within the L1 loops was also observed in 

variant lineages which exhibited lower levels of amino acid variation compared to their 

respective L1L2 PsV. For example, the HPV33 variant lineage B had four amino acid 

positions of variation within the L1, three of which were located in loop regions (BC: T56N; 

DE: G133S; FG: T266K) (Figure 18B). The C-terminal portion of the L2 protein harboured 

regions of amino acid variation between variant lineages and their respective L1L2 PsV 

which was particularly apparent for the variant lineages B, C and D of HPV16 and HPV58 

(Figures 16B and 21B). For HPV16, this corresponded to ca. 90% of all L2 variation within 

lineages B, C and D being located in the C-terminal portion of the L2 protein. 

 

3.2.4.3 HPV31 intra-genotype L1 and L2 amino acid variation 

Despite the low level of L1 and L2 amino acid diversity between intra-genotype variant 

lineages it is unclear the potential impact that such variation may have upon capsid 

recognition by antibodies. The L1 consensus sequence of HPV31 variant lineages B and C 

demonstrated diversity from variant lineage A in the FG loop (Figure 17B). The HPV31 L1L2 

PsV and variant lineage A sequences have Thr residues at FG loop positions 267 and 274 

whilst in variant lineages B and C position 274 is an Asn and in variant lineage C position 

267 is an Ala (Figure 23A). The L2 amino acid sequences of variant lineages A and B have 

a 100% sequence identity to the HPV31 L1L2 PsV; however, variant lineage C has three 

amino acid substitutions within the L2 at positions 115 (V115I), 270 (I270M) and 377 

(V377L). HPV31 is a genotype for which a degree of vaccine-induced cross-protection has 

been demonstrated and cross-neutralising antibodies which recognised the HPV31 L1L2 

PsV are commonly detected in the sera of vaccinees, therefore it was reasoned that 

variation within the FG loop region may result in differential variant lineage susceptibility to 

cross-neutralisation.  
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Figure 23 HPV31 L1 and L2 variants. (A) Graphical representation of L1 and L2 
variant protein combinations. (B) Negatively stained EM images of HPV31 variant 
L1L2 PsV preparations. Infectivity represented by the TCID50 and particle diameters 
are indicated for each variant. (C) Side view (C) and top view (D) highlighting loops in 
close proximity to FG loop variant residues 267 and 274 highlighted in blue. The FG 
loop of monomer 1 (FG1) is coloured orange and neighbouring loops on the same 
(DE1 - dark pink; EF1 - red) or adjacent monomers (HI4 - light green; BC5 - yellow; DE5 
- light pink; HI5 - dark green) are indicated. The remaining surface exposed regions of 
the capsomer are coloured in light grey and core regions are coloured in dark grey. 
Lys279 and Lys362 are highlighted in black (D only). Bissett et al, J Virol, 89:7748 
(2015). 
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L1L2 PsV representing the HPV31 variant lineages A, B and C were generated in order to 

investigate the impact of amino acid sequence variation within the HPV31 FG loop. The 

three variant PsV, herein referred to as HPV31 A PsV, HPV31 B PsV and HPV31 C PsV 

produced similarly sized particles (ca. 50nm) which were infectious demonstrated by their 

individual TCID50 (Figure 23B). Modelling of the L1 variant amino acid positions onto the L1 

crystal structure demonstrated that the FG loop of monomer 1 (FG1) is adjacent to the BC5, 

DE1, DE5, EF1, HI4 and HI5 loops within the capsomer (Figure 23C). Positions 267 and 274 

of FG1 are also within close proximity (within 10 Å) to residue positions predominantly within 

the adjacent BC5, FG1 and HI5 loops including Lys279 within the FG loop and Lys362 within the 

HI loop (Figure 23D).  

 

The HPV31 variant PsV were tested against HPV vaccine serum from Study-02 (Cervarix® n 

= 22; Gardasil® n = 24) and both the HPV31 B and C PsV were more susceptible to cross-

neutralisation by vaccine-induced antibodies than the HPV31 A PsV (Table 9). The HPV31 

B PsV displayed a median 1.7-fold (IQR, 1.1 to 2.4 fold; Wilcoxon paired signed-rank test, p 

<0.001) increased sensitivity to cross-neutralising antibodies compared to that of the HPV31 

A PsV, while the HPV31 C PsV displayed a 1.4-fold (IQR, 1.1 to 1.6 fold; p <0.001) 

increased sensitivity compared to that of the HPV31 A PsV. The increased sensitivity of the 

HPV31 B and C PsV to cross-neutralising antibodies was independent of the HPV vaccine 

received. 

 

3.2.5 Discussion  

L1 and L2 amino acid sequences of the A9 HPV PsV were compared to available L1 and L2 

sequences to determine how representative these PsV were of circulating HPV sequences. 

HPV genotypes can be divided into variant lineages which can then be further subdivided 

into sublineages based upon whole genome sequence (Burk et al., 2013). This segregation 

within a genotype is based upon the analysis of lineage-specific single nucleotide 

polymorphisms (Chen et al., 2011, 2013). The phylogenetic analysis of the A9 sequences 



 

Table 9. Neutralisation sensitivity of variant HPV31 L1L2 PsV to HPV vaccine-induced antibodies 

  Median (IQR) neutralisation titres against indicated HPV31 PsV variants 

  HPV31 A  PsV  HPV31 B PsV  HPV31 C  PsV 

Vaccine n Titrea  Titre Fold Differenceb  Titre Fold Difference 

Cervarix® 22 1,026 (646 – 1,543)  1,469 (1,260 – 2,582)** 1.8 (1.1 – 2.5)  1,180 (923 – 1,721)* 1.3 (1.0 – 1.7) 

Gardasil® 24 712 (382 – 1,363)  1,016 (759 – 1,435)** 1.5 (1.1 – 2.3)  968 (659 – 2,249)*** 1.4 (1.1 – 1.6) 

All 46 885 (499 – 1,435)  1,273 (973 – 2,253)*** 1.7 (1.1 – 2.4)  1,096 (763 – 2,216)*** 1.4 ( 1.1 – 1.6) 
a Neutralisation data presented as the median (inter-quartile range, IQR) of the 80% antibody neutralisation titres generated from the 
2-5 data sets per serum. The Wilcoxon paired signed-rank test was used to compare neutralisation titres of the HPV31 B PsV and C 
PsV compared to the HPV31 A PsV. *p < 0.05; **p < 0.01; ***p < 0.001 
b Median fold difference (IQR) in the neutralisation titres of the HPV31 B PsV and C PsV compared to the HPV31 A PsV  
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conducted here demonstrated that there were sufficient diagnostic lineage-motifs within the 

L1 and L2 amino acid sequences to support segregation at the level of variant lineage; 

however, the further segregation into variant sublineage was not supported. The L1L2 PsV 

were classified as belonging to variant lineage A of their respective genotypes. This is not 

unexpected since the L1L2 PsV are either identical to (HPV31, HPV33, HPV52 and HPV58) 

or closely represent (HPV16 and HPV35) the reference sequence of their respective 

genotype. The reference will generally have been the first genome sequenced and as a 

consequence resides in the variant lineage A of a given genotype (Chen et al., 2011, 2013). 

 

The consensus sequence of each variant lineage highlighted the intra-genotype L1 and L2 

amino acid diversity in comparison with the representative L1L2 PsV; however, the majority 

of variant lineage consensus sequences represented only a proportion of circulating 

sequences. The representativeness of these lineage consensus sequences will be informed 

as additional sequence data becomes available. The number of L1 and L2 amino acid 

sequences representing a genotype and consequently the variant lineages within a 

genotype was disproportionate across the A9 genotypes. HPV16 was represented by the 

highest number of sequences and HPV33 was represented by the lowest number. HPV33 

variant lineage C was represented by a single sequence. Disproportionate representation of 

sequences inevitably introduces bias into this kind of assessment; however, the number of 

sequences used was sufficient to highlight variant lineage-specific diversity in comparison 

with the L1L2 PsV of that respective genotype. The intra-genotype diversity of HPV31, 

HPV35 and HPV52 was low for both the L1 and L2 indicating that at the level of amino acid 

sequence the L1L2 PsV were generally representative of their respective genotypes. In 

contrast, HPV16, HPV33 and HPV58 demonstrated increased intra-genotype diversity 

across the L1 and L2 compared to their respective L1L2 PsV; however, the difference was of 

a relatively low magnitude.  
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Divergent L2 amino acid positions in the variant lineages B, C and D of HPV16 and HPV58 

were predominantly located in the C-terminal portion of the protein. An L1-binding domain is 

located at positions 396 to 439 within the L2 protein of HPV11 (Finnen et al., 2003). The 

corresponding amino acids in HPV16 suggest that a putative L1 binding domain spans 

positions 412 to 455 of the L2 protein and would encompass the variable positions 420, 424 

and 443 within the HPV16 variant lineages B, C and D. Further studies are required to 

determine whether residue variation at these amino acid positions could potentially impact 

upon L1-L2 protein interactions.  

 

Intra-genotype variation within the L1 protein is mostly located in the surface exposed loop 

regions (Ahmed et al., 2013) and this was also observed when the consensus L1 sequences 

of each variant lineage were compared to the L1 sequences of their representative L1L2 

PsV. Variation in these L1 regions has the potential to alter loop surface topography 

between different variant lineages resulting in differential recognition by L1 antibodies. 

Consequently, a single L1L2 PsV may not be sufficient to represent the diversity within a 

genotype. The potential antigenic impact of variation within the L1 loops was investigated for 

the three variant lineages of HPV31 (A, B and C) that have amino acid polymorphisms within 

the FG loop, which is known to contain residues which contribute to type-specific neutralising 

MAb epitopes (Fleury et al., 2009).  

 

All three variant HPV31 L1L2 PsV were susceptible to vaccine-induced cross-neutralising 

antibodies with HPV31 B and C PsV demonstrating increased sensitivity compared to 

HPV31 A, although the difference between the three variants was of a low magnitude. An 

Asn274 is common to both variants B and C; however, the substitution from Thr to Asn is a 

relative subtle change as both amino acids have polar uncharged side chains and therefore 

it is unlikely that an Asn residue in itself has a critical role within this cross-neutralising 

epitope. The change of residue at position 274, near the tip of the FG loop, may result in 

local structural changes which increase recognition of more distal epitope residues. The 
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inter-genotype comparison of L1 pentamer crystal structures has previously demonstrated 

that a single residue difference between genotypes can shift loop structures by a few 

angstroms resulting in the altered presentation of L1 antigenic determinants between 

genotypes (Bishop et al., 2007).  The variant positions 267 and 274 are in close proximity to 

charged residues located in the BC, FG and HI loops. The corresponding residues of HPV16 

are involved in HPV binding to heparin sulfate which is an essential step for a successful 

HPV infection  (Richards et al., 2013) and cross-neutralising antibodies may function by 

abrogating this virus-host interaction.   

 

The precise criterion used to designate serotypes differs between virus families but is 

generally based upon an fold difference in antibody-mediated neutralisation titres between 

viral types: Adenovirus 8- to 16-fold (Heemskerk et al., 2005), Rotavirus ≥20-fold (Wyatt et 

al., 1982), Polyomavirus 4- to 100-fold (Pastrana et al., 2013). There are no currently defined 

criteria with which to designate HPV L1 serotypes. Geographical variants of HPV16 belong 

to a single serotype based upon a ≤4-fold difference in neutralisation titre between variants 

(Pastrana et al., 2001). Under this criterion the HPV31 variants lineages A, B and C should 

probably be considered as belonging to a single serotype since the significant differences in 

cross-neutralisation antibody titres observed between HPV31 variants lineages were of a low 

magnitude (<2-fold). This implies that for the testing of cross-neutralising antibodies, a single 

L1L2 PsV should be sufficient to represent HPV31. In a recent study, a single amino acid 

position within the HI loop of HPV45 appeared to influence the increased sensitivity to cross-

neutralisation of L1L2 PsV representing the variant sublineages A2, A3 and B1 in 

comparison with variant sublineages A1; however, although the differences were significant 

they were again of a low magnitude (ca. 3-fold) (Godi et al., 2015b). Whether L1 

polymorphisms have a greater impact upon the antigenicity of other genotypes is unclear.  

 

Overall, these date demonstrate that there is L1 and L2 amino acid sequence diversity 

between the A9 genotype variant lineages and their respective PsV. Despite this, L1L2 PsV 
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are relatively representative of a genotype based upon the available sequence data. These 

data also inform our understanding of the antigenicity of the HPV structural proteins 

demonstrating that the HPV31 variants belong to a single L1 serotype based upon 

recognition by vaccine-induced cross-neutralising antibodies.  
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3.3 Cross-neutralising antibodies recognise an L1 domain 

incorporating amino acid residues from the DE and FG loops of a 

single monomer 

 

3.3.1 Background 

Inter-genotype amino acid sequence variation is mostly concentrated on the surface 

exposed L1 loop regions (Carter et al., 2003; Chen et al., 2000) and appears to dictate the 

predominantly type-specific nature of the L1 neutralising antibody response (Bishop et al., 

2007). Both type-specific HPV16 natural infection antibodies and the majority of MAbs which 

neutralise HPV16 infectivity bind to one or more of these surface exposed loops (Carter et 

al., 2006; Christensen et al., 2001). L1 cross-neutralising antibodies which differentially 

recognise L1L2 PsV representing the non-vaccine A9 genotypes (Draper et al., 2011; 

Einstein et al., 2011a; Kemp et al., 2011) are generated in response to the HPV16 L1 VLP 

within the vaccine preparations and represent a minor component of the total HPV16 

antibody response (see Section 3.1.4.4) (Bissett et al., 2014). These data indicate that the 

L1 of HPV16 harbours immunogenic domains which share sequence and/or structural 

homology with the L1 proteins of closely related A9 genotypes. The identification of these 

common domains should inform the design and generation of chimeric PsV in order to test 

specific L1 domain recognition by cross-neutralising antibodies. 

 

3.3.2 Aim of chapter: To delineate the L1 domains recognised by inter-genotype cross-

neutralising antibodies 

 

3.3.3 Specific objectives 

1. Examine the L1 amino acid sequence diversity between PsV representing HPV16 

and the non-vaccine A9 genotypes using appropriate bioinformatic tools 
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2. Model the L1 amino acid sequence diversity between the PsV representing HPV16 

and the non-vaccine A9 genotypes on the pentameric L1 crystal structure of HPV16 

3. Design and generate PsV to test cross-neutralising antibody recognition of L1 

domains 

 

3.3.4 Results 

3.3.4.1 L1 amino acid diversity of A9 L1L2 PsV  

The L1 sequences of the non-vaccine A9 L1L2 PsV were analysed for amino acid identity, 

hydrophobicity, molecular weight and charge compared to the L1 sequence of HPV16 PsV, 

in order to identify L1 regions of inter-genotype diversity. Alignment of the L1 sequences 

(Figure 24) demonstrated that the level of non-vaccine A9 amino acid diversity from HPV16 

PsV was higher in the surface exposed loop regions, with a median diversity from HPV16 of 

35% (IQR, 29 to 36), compared to the α-helices and β-sheets contained in the L1 backbones 

which had a median diversity from HPV16 of 19% (IQR, 14 to 19). L1 amino acid insertions 

and deletions in the non-vaccine A9 L1L2 PsV compared to HPV16 PsV were observed, with 

positions harbouring insertions/deletions restricted to the loop regions and the L1 C-

terminus. The HPV52 L1L2 PsV had three amino acid insertions within the BC loop (Ser57, 

Gly58 and Gly60) whilst the PsV representing HPV31 (Pro60), HPV33 (Ala60) and HPV58 

(Asn60) had single amino acid insertions in the BC loop compared to the HPV16 PsV. Both 

HPV33 and HPV58 L1L2 PsV had a single amino acid deletion within the EF loop at Gly186. 

The HPV35 L1L2 PsV had a two amino acid deletion within the FG loop (Ser283 and Gly286) 

whilst the HPV52 PsV had a two amino acid insertion (Asn284 and Ser285) compared to the 

HPV16 PsV. The PsV representing HPV33, HPV52 and HPV58 all had single amino acid 

deletions within the HI loop at Thr355. In addition, amino acid deletions within the C-terminus 

were also apparent for HPV31 (Pro494) HPV33 (Thr486, Leu487, Gly488 and Pro494) HPV52 and 

HPV58 (Thr486, Leu487, Gly488, Pro494 and Thr496) compared to the HPV16 PsV.  



L1 Position 1 50

HPV16 PSV M S L W L P S E A T V Y L P P V P V S K V V S T D E Y V A R T N I Y Y H A G T S R L L A V G H P Y F
HPV31 PsV ● ● ● ● R ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● T ● ● ● ● ● ● ● ● ● S A ● ● ● T ● ● ● ● ● Y
HPV33 PsV ● ● V ● R ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● S ● ● S ● ● ● Y ● ● S ● ● ● ● ● ● ● ● ● ● ●

HPV35 PsV ● A ● ● R ● S N ● ● ● ● ● ● ● ● S ● ● ● ● ● ● ● ● ● ● ● T ● ● ● ● ● ● ● ● ● S ● ● ● ● ● ● ● ● ● ● Y
HPV52 PsV ● ● V ● R ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● S ● ● S ● ● ● Y ● ● S ● ● ● ● T ● ● ● ● ● ●

HPV58 PsV ● ● V ● R ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● S ● ● S ● ● ● Y ● ● S ● ● ● ● ● ● ● N ● ● ●

L1 Position

HPV16 PSV P I K K P N - - N - N K I L V P K V S G L Q Y R V F R I H L P D P N K F G F P D T S F Y N P D T Q R
HPV31 PsV S ● P ● S D - - ● P K ● ● V ● ● ● ● ● ● ● ● ● ● ● ● ● V R ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● E ● ● ●

HPV33 PsV S ● ● N ● T - - ● A K ● L ● ● ● ● ● ● ● ● ● ● ● ● ● ● V R ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

HPV35 PsV A ● ● ● Q D - - S - ● ● ● A ● ● ● ● ● ● ● ● ● ● ● ● ● V K ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● D ● A S ● ●

HPV52 PsV S ● ● N T S S G ● G K ● V ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● K ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● E ● ● ●

HPV58 PsV S ● ● S ● ● - - ● N K ● V ● ● ● ● ● ● ● ● ● ● ● ● ● ● V R ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

L1 Position

HPV16 PSV L V W A C V G V E V G R G Q P L G V G I S G H P L L N K L D D T E N A S A Y A A N A G V D N R E C I
HPV31 PsV ● ● ● ● ● ● ● L ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● F ● ● ● ● ● S N R ● ● G G P ● T ● ● ● ● ● ●

HPV33 PsV ● ● ● ● ● ● ● L ● I ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● F ● ● ● ● T G N K ● P G Q P ● A ● ● ● ● ● L
HPV35 PsV ● ● ● ● ● T ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● S N K ● V G ● S ● T ● ● ● ● ● ●

HPV52 PsV ● ● ● ● ● T ● L ● I ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● F ● ● ● ● T S N K ● ● G K P ● I ● ● ● ● ● L
HPV58 PsV ● ● ● ● ● ● ● L ● I ● ● ● ● ● ● ● ● ● V ● ● ● ● Y ● ● ● F ● ● ● ● T S N R ● P ● Q P ● S ● ● ● ● ● L

L1 Position

HPV16 PSV S M D Y K Q T Q L C L I G C K P P I G E H W G K G S P C T N V A V N P G D C P P L E L I N T V I Q D
HPV31 PsV ● ● ● ● ● ● ● ● ● ● ● L ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● S ● N ● I T ● ● ● ● ● ● ● ● ● K ● S ● ● ● ●

HPV33 PsV ● ● ● ● ● ● ● ● ● ● ● L ● ● ● ● ● T ● ● ● ● ● ● ● V A ● ● ● A ● P A N - ● ● ● ● ● ● ● ● ● ● I ● E ●

HPV35 PsV ● ● ● ● ● ● ● ● ● ● ● ● ● ● R ● ● ● ● ● ● ● ● ● ● T ● ● N A N Q ● K A ● E ● ● ● ● ● ● L ● ● ● L ● ●

HPV52 PsV ● ● ● ● ● ● ● ● ● ● I L ● ● ● ● ● ● ● ● ● ● ● ● ● T ● ● N ● N S G ● ● ● ● ● ● ● ● Q ● ● ● S ● ● ● ●

HPV58 PsV ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● T ● ● ● ● ● ● ● V A ● N ● N ● A A T - ● ● ● ● ● ● ● F ● S I ● E ●

L1 Position

HPV16 PSV G D M V D T G F G A M D F T T L Q A N K S E V P L D I C T S I C K Y P D Y I K M V S E P Y G D S L F
HPV31 PsV ● ● ● ● ● ● ● ● ● ● ● ● ● ● A ● ● D T ● ● N ● ● ● ● ● ● N ● ● ● ● ● ● ● ● L ● ● ● A ● ● ● ● ● T ● ●

HPV33 PsV ● ● ● ● ● ● ● ● ● C ● ● ● K ● ● ● ● ● ● ● D ● ● I ● ● ● G ● T ● ● ● ● ● ● L ● ● T ● ● ● ● ● ● ● ● ●

HPV35 PsV ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● D ● ● ● ● ● ● S ● ● ● ● ● ● ● ● L ● ● ● ● ● ● ● ● ● M ● ●

HPV52 PsV ● ● ● ● ● ● ● ● ● C ● ● ● N ● ● ● ● S ● ● D ● ● I ● ● ● S ● V ● ● ● ● ● ● L Q ● A ● ● ● ● ● ● ● ● ●

HPV58 PsV ● ● ● ● ● ● ● ● ● C ● ● ● G ● ● ● ● ● ● ● D ● ● I ● ● ● N ● T ● ● ● ● ● ● L ● ● A ● ● ● ● ● ● ● ● ●

L1 Position

HPV16 PSV F Y L R R E Q M F V R H L F N R A G A V G E N V P D D L Y I K G S - - G S T A N L A S S N Y F P T P
HPV31 PsV ● ● ● ● ● ● ● ● ● ● ● ● F ● ● ● S ● T ● ● ● S ● ● T ● ● ● ● ● ● ● - - ● ● ● ● T ● ● N ● T ● ● ● ● ●

HPV33 PsV ● F ● ● ● ● ● ● ● ● ● ● F ● ● ● ● ● T L ● ● A ● ● ● ● ● ● ● ● ● ● - - ● T ● ● S I Q ● ● A F ● ● ● ●

HPV35 PsV ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● T ● ● ● T ● ● A ● ● ● ● ● ● - - - - T ● G T ● P ● T S ● ● ● ● ●

HPV52 PsV ● F ● ● ● ● ● ● ● ● ● ● F ● ● ● ● ● T L ● D P ● ● G ● ● ● ● Q ● ● N S ● N ● ● T V Q ● ● A F ● ● ● ●

HPV58 PsV ● F ● ● ● ● ● ● ● ● ● ● F ● ● ● ● ● K L ● ● A ● ● ● ● ● ● ● ● ● ● - - ● N ● ● V I Q ● ● A F ● ● ● ●

L1 Position

HPV16 PSV S G S M V T S D A Q I F N K P Y W L Q R A Q G H N N G I C W G N Q L F V T V V D T T R S T N M S L C

HPV31 PsV ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● M ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● V ●

HPV33 PsV ● ● ● ● ● ● ● E S ● L ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● V ● ● ● ● ● ● ● ● ● ● ● ● ● T ● ●

HPV35 PsV ● ● ● ● ● ● ● ● ● ● L ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● S ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● V ●

HPV52 PsV ● ● ● ● ● ● ● E S ● L ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● T ● ●

HPV58 PsV ● ● ● I ● ● ● E S ● L ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● T ● ●

L1 Position

HPV16 PSV A A I S T S E T T Y K N T N F K E Y L R H G E E Y D L Q F I F Q L C K I T L T A D V M T Y I H S M N
HPV31 PsV ● ● ● A N ● D ● ● F ● S S ● ● ● ● ● ● ● ● ● ● ● F ● ● ● ● ● ● ● ● ● ● ● ● ● S ● ● I ● ● ● ● ● ● ● ●

HPV33 PsV T Q V T - ● D S ● ● ● ● E ● ● ● ● ● I ● ● V ● ● ● ● ● ● ● V ● ● ● ● ● V ● ● ● ● E ● ● ● ● ● ● A ● ●

HPV35 PsV S ● V ● S ● D S ● ● ● ● D ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

HPV52 PsV ● E V K - K ● S ● ● ● ● E ● ● ● ● ● ● ● ● ● ● ● F ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● K ● D
HPV58 PsV T E V T - K ● G ● ● ● ● D ● ● ● ● ● V ● ● V ● ● ● ● ● ● ● V ● ● ● ● ● ● ● ● ● ● E I ● ● ● ● ● T ● D

L1 Position

HPV16 PSV S T I L E D W N F G L Q P P P G G T L E D T Y R F V T S Q A I A C Q K H T P P A P K E D P L K K Y T
HPV31 PsV P A ● ● ● ● ● ● ● ● ● T T ● ● S ● S ● ● ● ● ● ● ● ● ● ● ● ● ● T ● ● ● T A ● Q K ● ● ● ● ● F ● D ● V
HPV33 PsV P D ● ● ● ● ● Q ● ● ● T ● ● ● S A S ● Q ● ● ● ● ● ● ● ● ● ● ● T ● ● ● T V ● ● K E ● ● ● ● ● G ● ● ●

HPV35 PsV P S ● ● ● ● ● ● ● ● ● T ● ● ● S ● ● ● ● ● ● ● ● Y ● ● ● ● ● V T ● ● ● P S A ● K ● ● D ● ● ● ● N ● ●

HPV52 PsV A ● ● ● ● ● ● Q ● ● ● T ● ● ● S A S ● ● ● ● ● ● ● ● ● ● T ● ● T ● ● ● N ● ● ● K G ● ● ● ● ● ● D ● ●

HPV58 PsV ● N ● ● ● ● ● Q ● ● ● T ● ● ● S A S ● Q ● ● ● ● ● ● ● ● ● ● ● T ● ● ● T A ● ● K E ● ● ● ● ● ● ● ● ●

L1 Position

HPV16 PSV F W E V N L K E K F S A D L D Q F P L G R K F L L Q A G L K A K P K F T L G K R K A T P T T S S T S
HPV31 PsV ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● Y R ● R ● ● ● K A ● ● ● S ● P - S A ● T ● T
HPV33 PsV ● ● ● ● D ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● L - - - ● ● A ● P - ● S T R ● ●

HPV35 PsV ● ● ● ● D ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● R ● N ● R ● ● ● ● A ● P A S ● ● K K ●

HPV52 PsV ● ● ● ● D ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● Q ● R ● ● L - - - ● ● P ● S - S - A P P T
HPV58 PsV ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● S ● ● ● ● ● ● R L - - - ● ● S ● P - ● - T R A P

Strength of Disagreement with HPV16 PsV L1 : >99%

451 β-J α5 C terminus 500

0-20% 21-40% 41-60% 61-80% 81-98%

351 HI Loop β-I α2 400

401 α3 α4 450

301 G1 G2 β-H1 β-H2 350

201 α1 250

251 β-F FG Loop 300

100

101 β-D DE Loop 150

151 β-E EF Loop 200

Figure 24

N terminus β-B1 β-B2

51 BC Loop β-C

Figure 24 L1 amino acid alignment of A9 L1L2 PsV. The L1 sequences of the non-vaccine A9 genotypes were aligned against HPV16
using MegAlign (DNASTAR). A colour code represents the strength of disagreement between the non-vaccine genotypes and HPV16.
L1 amino acid positions with residue insertion or deletions compared to HPV16 are boxed. L1 structural and loop regions are also
indicated.
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The L1 loop sequences were analysed further to see whether the differences in amino acid 

sequence correlated with differences in charge, hydrophobicity and/or molecular weight 

between the L1L2 PsV representing the non-vaccine A9 genotypes and HPV16. The amino 

acid charge within the L1 loops was calculated using EMBOSS Pepinfo 

(www.ebi.ac.uk/Tools/seqstats/emboss_pepinfo/) and the differences in charge profiles 

compared to HPV16 were plotted onto the top view of the L1 capsomer (Figure 25A) using a 

colour-coded scale (Figures 25B to 25F). All of the non-vaccine A9 L1L2 PsV had a net 

positive charge in the DE loop compared to HPV16 due to additional positively charged 

residues: Arg135 (HPV31), Lys135 (HPV33), Lys134 (HPV35), Lys137, Lys141 (HPV52) and Arg135 

(HPV58) (Figure 24). The net charge within the other L1 loop compared to HPV16 differed 

between the non-vaccine A9 genotypes. For example, the net charge of the HPV33, HPV52 

and HPV58 BC loops did not differ from HPV16 as the positively charged Lys54 of HPV16 

was matched by the downstream Lys59 (HPV33), Lys61 (HPV52) and Lys59 (HPV58); 

however both HPV31 and HPV35 had a net negative charge compared to HPV16 in the BC 

loop due to an additional negatively charged Asn56 (Figure 24).  

 

The relative hydrophobicity score of the amino acids within the L1 loops were calculated by 

ProtScale software (web.expasy.org/protscale/) using the hydrophobicity scale determined 

by Eisenberg (Eisenberg et al., 1984). Differences in the hydrophobicity profiles of the L1L2 

PsV representing the non-vaccine A9 genotypes compared to HPV16 were plotted onto the 

top view of the L1 capsomer (Figure 26A) using a colour-coded scale. The hydrophobicity of 

the BC and HI loops differed between the non-vaccine PsV relative to HPV16 whilst all the 

DE and EF loops were hydrophilic and all the FG loops were hydrophobic (Figures 26B to 

26F). Significant differences in hydrophobicity relative to HPV16 were only observed for the 

DE loop of HPV58, the EF loops of HPV31, HPV35 and HPV52, the FG loop of HPV35 and 

the HI loop of HPV52 (Table 10). For example, the significant hydrophilic nature of the 

HPV58 DE loop relative to HPV16 appears to be due to the combined effects of two 

hydrophilic residues, Arg135 and Gln139 (Figure 24). 



Figure 25
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Figure 25 L1 loop amino acid charge profiles of non-vaccine A9 L1L2 PsV. (A) Top view of L1
capsomer with loop regions indicated for reference compared to the top view of non-vaccine A9
capsomers with divergent residues compared to HPV16 colour-coded. The L1 amino acid charge
for the A9 L1L2 PSV were calculated using EMBOSS Pepinfo
(www.ebi.ac.uk/Tools/seqstats/emboss_pepinfo/) using a window size of 9, HPV31 (B), HPV33 (C),
HPV35 (D), HPV52 (E) and HPV58 (F). L1 loop positions are coloured-coded where the non-
vaccine genotype contains an amino acid residue which has a positive (blue) or negative (red)
charge relative to the HPV16 residue in the corresponding position. Neutral residue positions are
colour-coded in grey.
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Figure 26

A B

C D

E F

Hydrophobicity

Figure 26 L1 loop amino acid hydrophobicity profiles of non-vaccine A9 L1L2 PsV. (A)
Top view of L1 capsomer with loop regions indicated for reference compared to the top
view of non-vaccine A9 capsomers with divergent residues compared to HPV16 colour-
coded. The L1 hydrophobicity scores for the A9 L1L2 PSV were determined using
ProtScale software (web.expasy.org/protscale/) with a window size of 9 and the scale
normalised from 0 to 1, HPV31 (B), HPV33 (C), HPV35 (D), HPV52 (E) and HPV58 (F).
Colour-coded scale is based upon the difference in L1 hydrophobicity score between
HPV16 and the non-vaccine genotypes with positive (hydrophilic – dark blue, light blue
and green) and negative (hydrophobic – red, orange and yellow) values proportionately
ranked. Residue positions with equivalent hydrophobicity to HPV16 are colour-coded in
grey.
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Table 10. A9 PsV L1 loop amino acid hydrophobicity and molecular weight  
      
  Hydrophobicity Molecular weight 
            

Loop L1L2 PsV Median scorea (IQR) Relative to HPV16 
p valueb Median weightc (IQR) Relative to HPV16 

p valued 
            

BC HPV16 0.636 (0.597 – 0.675) - 0.445 (0.408 – 0.463) - 

 HPV31 0.621 (0.600 – 0.662) Hydrophilic    0.948 0.422 (0.401 – 0.445) Lower    0.151 
 HPV33 0.650 (0.609 – 0.663) Hydrophobic  0.584  0.412 (0.388 – 0.445) Lower    0.085     

 HPV35 0.609 (0.577 – 0.665) Hydrophilic    0.490 0.430 (0.375 – 0.463) Lower    0.401     
 HPV52 0.648 (0.611 – 0.663) Hydrophobic  0.543 0.351 (0.321 - 0.444) Lower    0.002   

 HPV58 0.623 ( 0.589 – 0.670) Hydrophilic    0.725 0.425 (0.404 – 0.444) Lower    0.114     
      

DE HPV16 0.628 (0.592 – 0.694) - 0.369 (0.305 – 0.455) - 

 HPV31 0.603 (0.556 – 0.672) Hydrophilic    0.087 0.403 (0.310 – 0.480) Higher    0.276     

 HPV33 0.601 (0.570 – 0.672) Hydrophilic    0.125 0.389 (0.331 – 0.461) Higher    0.243   

 HPV35 0.601 (0.560 – 0.671) Hydrophilic    0.069 0.399 (0.332 – 0.459) Higher    0.170   

 HPV52 0.599 (0.570 – 0.672) Hydrophilic    0.105 0.411 (0.338 - 0.473) Higher    0.123   

 HPV58 0.580 ( 0.547 – 0.652) Hydrophilic    0.005 0.434 (0.354 – 0.480) Higher    0.032   
      

EF HPV16 0.684 (0.647 – 0.698) - 0.328 (0.296 – 0.364) - 

 HPV31 0.653 (0.633 – 0.676) Hydrophilic    0.031 0.329 (0.304 – 0.364) Higher    0.829    

 HPV33 0.683 (0.671 – 0.693) Hydrophilic    0.855 0.314 (0.269 – 0.373) Lower    0.518     

 HPV35 0.635 (0.615 – 0.667) Hydrophilic    0.006 0.350 (0.339 – 0.378) Higher    0.123    

 HPV52 0.626 (0.587 – 0.649) Hydrophilic  <0.001 0.340 (0.297 - 0.378) Higher    0.776    

 HPV58 0.679 ( 0.649 – 0.689) Hydrophilic    0.298 0.311 (0.289 – 0.373) Lower    0.844     
      

FG HPV16 0.669 (0.651 – 0.687) - 0.345 (0.288 – 0.399) - 

 HPV31 0.683 (0.671 – 0.702) Hydrophobic  0.143 0.352 (0.291 – 0.400) Higher    0.836    

 HPV33 0.679 (0.675 – 0.702) Hydrophobic  0.090 0.357 (0.289 – 0.388) Higher    0.871    

 HPV35 0.696 (0.680 – 0.712) Hydrophobic  0.006 0.363 (0.307 – 0.390) Higher    0.629    

 HPV52 0.682 (0.648 – 0.722) Hydrophobic  0.386 0.348 (0.296 - 0.387) Higher    0.693    

 HPV58 0.681 ( 0.652 – 0.702) Hydrophobic  0.355 0.368 (0.310 – 0.401) Higher    0.391    
      

HI HPV16 0.566 (0.554 – 0.676) - 0.441 (0.379 – 0.504) - 

 HPV31 0.595 (0.580 – 0.683) Hydrophobic  0.118 0.391 (0.351 – 0.454) Lower    0.209       

 HPV33 0.552 (0.529 – 0.592) Hydrophilic    0.142 0.447 (0.412 – 0.524) Higher    0.568    

 HPV35 0.542 (0.522 – 0.643) Hydrophilic    0.101 0.417 (0.331 – 0.503) Lower    0.608     

 HPV52 0.528 (0.509 – 0.557) Hydrophilic    0.007 0.506 (0.477 - 0.525) Higher    0.128     

 HPV58 0.556 (0.517 – 0.579) Hydrophilic    0.142 0.456 (0.434 – 0.493) Higher    0.463     
      IQR, inter-quartile range 

a The L1 loop hydrophobicity scores for the A9 L1L2 PsV were determined using ProtScale software      
(web.expasy.org/protscale/)  with a window size of 9 and the scale normalised from 0 to 1 
b p values obtained using the Mann-Whitney test represent difference in hydrophobicity scores of indicated 
non-vaccine A9 genotype compared to HPV16 with significant differences highlighted in bold 
c The L1 loop molecular weight scores for the A9 L1L2 PsV were determined using ProtScale software with 
a window size of 9 and the scale normalised from 0 to 1 
d p values obtained using the Mann-Whitney test represent difference in molecular weight scores of 
indicated non-vaccine A9 genotype compared to HPV16 with significant differences highlighted in bold 
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The ProtScale software was also used to determine the relative molecular weight scores of 

the PsV L1 loops with differences in molecular weight profiles compared to HPV16 plotted 

onto the top view of the L1 capsomer (Figure 27A) using a colour-coded scale. The 

molecular weight of the EF and HI loops increased or decreased relative to HPV16 

dependent upon the non-vaccine PsV whilst all the DE and FG loops were of a higher weight 

and all the BC loops were of a lower weight (Figures 27B to 27F). Significant differences in 

molecular weight relative to HPV16 were only observed for the BC loop of HPV33 and 

HPV52, and the DE loop of HPV58 (Table 10) which has a stretch of residues, Ser133 to 

Pro140, which are of a higher molecular weight then the HPV16 residues at the 

corresponding positions (Figure 24).  

 

3.3.4.2 Modelling of L1 loop amino acid diversity between HPV16 and non-vaccine A9 

PsV 

To determine whether the differences in amino acid profiles of the L1 loops between the 

non-vaccine A9 genotypes were predictive of structural changes compared to HPV16, 

homology models of the L1 capsomer representing the L1 amino acid sequence of each PsV 

were created for subsequent pairwise modelling, using SWISS MODEL 

(http://swissmodel.expasy.org/). The crystal structure of the HPV16 L1 capsomer (PDB 

code: 2R5H) was first used to create a homology model of the HPV16 PsV L1. The L1 

sequence of the HPV16 PsV differed from that of the crystal structure by three amino acids 

at positons Q177N and Q181N within the EF loop and position A266T within the FG loop but 

these did not adversely impact upon the quality of the predicted model which had a 

maximum GMQE score of 1.00. The HPV16 L1 capsomer crystal structure was 

subsequently used to make homology models from the L1 amino acid sequences 

represented in the non-vaccine A9 PsV, to which the L1 loop amino acid positions divergent 

from HPV16 were modelled (Figures 28A to 32A). The crystal structure of the HPV35 L1 

capsomer (PDB code: 2R5J) has also been resolved and was used to evaluate the structural 

accuracy of the HPV35 PsV L1 homology model based upon the HPV16 crystal structure.  
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Figure 27 L1 loop amino acid molecular weight profiles of non-vaccine A9 L1L2 PsV. (A)
Top view of L1 capsomer with loop regions indicated for reference compared to the top
view of non-vaccine A9 capsomers with divergent residues compared to HPV16 colour-
coded. The L1 molecular weight scores for the A9 L1L2 PSV were determined using
ProtScale software (web.expasy.org/protscale/) with a window size of 9 and the scale
normalised from 0 to 1, HPV31 (B), HPV33 (C), HPV35 (D), HPV52 (E) and HPV58 (F).
Colour-coded scale is based upon the difference in L1 molecular weight score between
HPV16 and the non-vaccine genotypes with higher (red, orange and yellow) and lower
(dark blue, light blue and green) molecular weight values proportionately ranked. Residue
positions with equivalent molecular weight to HPV16 are colour-coded in grey.
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Figure 28
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Figure 28 L1 homology model highlighting L1 loop amino acid diversity between HPV16 and HPV31 L1L2 PsV. (A) Top view of
HPV31 L1 homology model created using the crystal structure of the HPV16 L1 pentamer (Bishop et al., 2007) with amino acid
residues different from HPV16 highlighted in the BC (yellow), DE (pink), EF (red), FG (orange) and HI (green) loops. The GMQE
score is indicated (Biasini et al., 2014). (B) Top view of pairwise model generated by the superimposition of the L1 ribbon structure
from HPV31 (blue) onto the HPV16 L1 ribbon (orange) with RMS deviation value indicated. Loops with predicted structural
differences between HPV31 and HPV16 are highlighted. (C) Expanded view of predicted structural differences between loops with
the mean and standard deviation in Å between the loops indicated.
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Figure 29

BC

HI

EF

BC: 3.51Å ± 0.61Å

EF: 4.11Å ± 0.43Å

HI: 3.37Å ± 0.44Å

HPV33

GMQE: 0.98

BC

FG

EF

DE

HI RMS: 0.47Å

HPV16

HPV33

A B C

Figure 29 L1 homology model highlighting L1 loop amino acid diversity between HPV16 and HPV33 L1L2 PsV. (A) Top view of
HPV33 L1 homology model created using the crystal structure of the HPV16 L1 pentamer (Bishop et al., 2007) with amino acid
residues different from HPV16 highlighted in the BC (yellow), DE (pink), EF (red), FG (orange) and HI (green) loops. The GMQE
score is indicated (Biasini et al., 2014). (B) Top view of pairwise model generated by the superimposition of the L1 ribbon structure
from HPV33 (green) onto the HPV16 L1 ribbon (orange) with RMS deviation value indicated. Loops with predicted structural
differences between HPV33 and HPV16 are highlighted. (C) Expanded view of predicted structural differences between loops with the
mean and standard deviation in Å between the loops indicated.

134



Figure 30
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Figure 30 L1 homology model highlighting L1 loop amino acid diversity between HPV16 and HPV35 L1L2 PsV. (A) Top view of
HPV35 L1 homology model created using the crystal structure of the HPV16 L1 pentamer (Bishop et al., 2007) with amino acid
residues different from HPV16 highlighted in the BC (yellow), DE (pink), EF (red), FG (orange) and HI (green) loops. The GMQE
score is indicated (Biasini et al., 2014). (B) Top view of pairwise model generated by the superimposition of the L1 ribbon structure
from HPV35 (purple) onto the HPV16 L1 ribbon (orange) with RMS deviation value indicated. Loops with predicted structural
differences between HPV35 and HPV16 are highlighted. (C) Expanded view of predicted structural differences between loops with the
mean and standard deviation in Å between the loops indicated.
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Figure 31
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Figure 31 L1 homology model highlighting L1 loop amino acid diversity between HPV16 and HPV52 L1L2 PsV. (A) Top view of HPV52
L1 homology model created using the crystal structure of the HPV16 L1 pentamer (Bishop et al., 2007) with amino acid residues
different from HPV16 highlighted in the BC (yellow), DE (pink), EF (red), FG (orange) and HI (green) loops. The GMQE score is
indicated (Biasini et al., 2014). (B) Top view of pairwise model generated by the superimposition of the L1 ribbon structure from HPV52
(grey) onto the HPV16 L1 ribbon (orange) with RMS deviation value indicated. Loops with predicted structural differences between
HPV52 and HPV16 are highlighted. (C) Expanded view of predicted structural differences between loops with the mean and standard
deviation in Å between the loops indicated.

136



Figure 32
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Figure 32 L1 homology model highlighting L1 loop amino acid diversity between HPV16 and HPV58 L1L2 PsV. (A) Top view of
HPV58 L1 homology model created using the crystal structure of the HPV16 L1 pentamer (Bishop et al., 2007) with amino acid
residues different from HPV16 highlighted in the BC (yellow), DE (pink), EF (red), FG (orange) and HI (green) loops. The GMQE
score is indicated (Biasini et al., 2014). (B) Top view of pairwise model generated by the superimposition of the L1 ribbon structure
from HPV58 (red) onto the HPV16 L1 ribbon (orange) with RMS deviation value indicated. Loops with predicted structural differences
between HPV58 and HPV16 are highlighted. (C) Expanded view of predicted structural differences between loops with the mean and
standard deviation in Å between the loops indicated.
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The pairwise comparison of the homology model on to the crystal structure by 

superimposition demonstrated a RMS deviation of 0.68Å which indicated that the HPV35 L1 

homology model was structurally similar to HPV35 crystal structure. Pairwise model 

comparisons between the L1 homology model of the HPV16 PsV and the L1 homology 

models of each individual non-vaccine A9 PsV were performed by superimposition and 

generated a RMS deviation value in Å (Figures 28B – 32B).  Changes in loop structure 

between the two models which were greater than the RMS value were considered to be 

more accurate predictions whilst changes less than the RMS value were considered less 

precise.  

 

The BC and EF loops which are positioned on the outer rim of the capsomer were predicted 

to have the greatest degree of structural diversity between the non-vaccine A9 PsV and the 

HPV16 PsV. Structural changes in the BC loop were predicted for all non-vaccine genotypes 

except HPV35, with the shift in the non-vaccine BC loops compared to the HPV16 BC loop 

ranging from a mean 1.83 ± standard error 0.83Å for HPV58 (Figure 32C) to 4.45 ± 0.18Å 

for HPV31 (Figure 28C). These predicted structural changes may be attributable to the 

insertion of an additional amino acid into the BC loop of HPV31 (Pro60), HPV33 (Ala60), 

HPV52 (Gly60) and HPV58 (Asn60) in comparison to HPV16 (Figure 24). Structural changes 

in the EF loop were predicted for all non-vaccine A9 genotypes compared to HPV16 and for 

HPV33 and HPV58 these changes may be attributable to a single deletion at Gly186 resulting 

in mean EF loop shifts compared to HPV16 (Figure 24) of 4.11 ± 0.43Å and 1.17 ± 0.14Å, 

respectively (Figures 29C & 32C). These single amino acid deletions coincide with both 

HPV33 and HPV58 having lower molecular weight EF loops relative to HPV16 (Table 10). 

The structural changes predicted for HPV31, HPV35 and HPV52 are not attributable to 

either insertions or deletions and may result from differences in amino acid characteristics 

which render their EF loops more hydrophilic and of a higher molecular weight in comparison 

with the EF loop of HPV16 (Table 10).  
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Structural changes in the FG loop were only predicted for HPV35 and HPV52 with a mean 

FG loop shift compared to HPV16 of 2.65 ± 0.06Å and 3.31 ± 0.19Å, respectively (Figures 

30C – 31C). Both these genotypes had either a two amino acid deletion (HPV35: Ser283 and 

Gly286) or insertion (HPV52: Asn284 and Ser285) within the FG loop compared to HPV16 

(Figure 24). No amino acid residue insertions or deletions were apparent in the FG loops of 

HPV31, HPV33 and HPV58 and the L1 sequence difference between these genotypes did 

not impact upon FG loop structure compared to HPV16. Structural changes within the HI 

loop were predicted for HPV33, HPV52 and HPV58 resulting in mean HI loop shifts 

compared to HPV16 of 3.37 ± 0.44Å, 2.92 ± 0.13Å and 0.72 ± 0.15Å, respectively (Figures 

29C, 31C & 32C). These structural changes may be attributable to a single deletion at Thr355 

within the HI loops of HPV33, HPV52 and HPV58 compared to HPV16 (Figure 24). No 

structural changes were predicted for the DE loops of the non-vaccine genotypes despite L1 

sequence diversity which altered charge (Figure 25), hydrophobicity (Figure 26) and 

molecular weight (Figure 27) relative to DE loop of HPV16. Additionally, no amino acid 

residue insertions or deletions were apparent in the DE loops of the non-vaccine genotypes 

relative to HPV16 (Figure 24). Taken together these data demonstrated that the majority (11 

out of 14) of predicted structural differences between the L1 loops of the PsV representing 

HPV16 and the non-vaccine A9 were due to either insertions and/or deletions of amino acid 

residues within the loop regions compared to HPV16.  

 

3.3.4.3 Design and generation of chimeric PsV  

In section 3.1.4.3 the hierarchical clustering of serological data derived from testing 

Cervarix® vaccine antibodies in the L1L2 PsV neutralisation assay permitted ranking of the 

target A9 L1L2 PsV antigens. This demonstrated that the antigenic relationship between the 

HPV16 L1L2 PsV and the non-vaccine A9 PsV, based upon recognition by vaccine-induced 

cross-neutralising antibodies, was ranked as 31>33>58>52>35 with HPV31 ranked as the 

nearest antigenic relative to HPV16 and HPV35 as the farthest. This functional recognition 

profile was combined with the predicted structural shifts in the L1 loops between the PsV 
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representing HPV16 and the non-vaccine A9 PsV, in order to inform the design of chimeric 

PsV with inter-genotype loop swaps for testing the recognition of cross-neutralising antibody 

specificities (Figure 33). Prior to this analysis it was apparent that the DE loop was a 

candidate for further investigation due to the predicted structural similarity between the DE 

loop of HPV16 and DE loops of all the non-vaccine A9 genotypes. However, this analysis 

also demonstrated that HPV31, HPV33 and HPV58, the three closest antigenic relatives to 

HPV16, shared the commonality of having no predicted structural differences in the FG loop 

compared to HPV16, highlighting the FG loop as another candidate for further investigation. 

HPV31 has the closest antigenic relationship with HPV16 and these two genotypes share 

predicted structural similarity in the DE, FG and HI loops. These data taken together with the 

close proximity of the HI loop to the DE and FG loops on the apex of the capsomer (Figure 

25A) supported the additional selection of the HI loop for further investigation. 

 

A panel of chimeric L1L2 PsV with inter-genotype DE, FG and HI loop swaps in isolation or 

combination were designed and generated. HPV31 was used as the cross-neutralising 

antibody target. The choice of background control target was initially HPV51, an oncogenic 

HPV genotype from the A5 species group; however, whilst the inter-genotype FG loop 

switches between HPV51 and HPV31 resulted in L1 protein expression, no infectious PsV 

particles were formed. The A9 genotype HPV35 was subsequently chosen as the 

background control, since cross-neutralising antibodies which recognise HPV35 are sparse 

resulting in a distant antigenic relationship to HPV16 (Figure 33). The number of amino acid 

residues which required switching between HPV31 and HPV35 differed between the three 

loops (Figure 34A). The DE loop, which is the longest L1 loop spanning forty-four amino 

acids, only had five positions where the residue varied between HPV31 and HPV35 whilst in 

the HI loop nine of its sixteen amino acids were variable between the two genotypes. The 

FG loop varied at twelve amino acid positions, including a two amino acid deletion within the 

FG loop of HPV35 which corresponded with a Ser281 and Gly282 in the FG loop of HPV31. 

The L1L2 PsV with either a HPV31 or HPV35 backbone and single (DE, FG & HI) double  
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Figure 33 Antigenic relationship between A9 L1L2 PsV in combination with
L1 loop distance between HPV16 and non-vaccine A9 genotypes. The A9
L1L2 PsV antigen dendrogram, supported by bootstrapping of 500
pseudoreplicates, was derived from the hierarchical clustering of
neutralisation data from the testing of 69 sera from Cervarix® vaccine
recipients. The heatmap represents the predicted distance (mean Å)
between the L1 loops of HPV16 and the non-vaccine A9 genotypes. Key
indicates heatmap gradient of Å distance (0 to 5) from HPV16.
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Figure 34

HPV31 PsV 111 G Q P L G V G I S G H P L L N K F D D T E N S N R Y A G G P G T D N R E C I S M D Y K Q 154

HPV35 PsV 110 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● L ● ● ● ● ● ● ● K ● V ● N S ● ● ● ● ● ● ● ● ● ● ● ● ● ● 153

HPV31 PsV 263 H F F N R S G T V G E S V P T D L Y I K G S G S T A T L A N S T Y 292
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Figure 34 Chimeric L1L2 PsV (A) Amino acid alignment of HPV31 and HPV35 DE, FG and HI loops with variable positions between the two genotypes indicated. (B) Top 
view of L1 capsomer with variable positons between HPV31 and HPV35 within the DE (pink), FG (orange) and HI (green) loops highlighted. EM images of chimeric L1L2 
PsV preparations, infectivity represented by the TCID50 and particle diameters are indicated.  
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(DEFG, DEHI & FGHI) or triple (DEFGHI) loop swaps produced similarly sized particles 

which were infectious as demonstrated by their individual TCID50 (Figure 34B).  

 

3.3.4.4 Cross-neutralising antibody recognition of specific L1 domains 

The chimeric L1L2 PsV were tested against HPV vaccine sera from Study-02 (Cervarix® n = 

19; Gardasil® n = 17) alongside the wild-type HPV31 and HPV35 PsV, with differences in the 

neutralisation titres generated against the chimeric PsV compared against the wild-type PsV 

with the corresponding backbone (Figure 35).  

 

The replacement of the HPV31 DE loop with that of HPV35 (Figure 35A) reduced cross-

neutralising antibody recognition of HPV31 by a median 4.2-fold (IQR, 2.0 to 6.5-fold; 

Wilcoxon paired signed-rank test, p < 0.001) with the combination of the HPV35 DE and FG 

loops having the greatest effect, resulting in a median fold decrease in cross-neutralising 

antibody recognition of 12.2-fold (IQR, 5.1 to 40.5-fold; p <0.001) compared to the wild-type 

HPV31 PsV (Table 11). The replacement of the HPV35 DE loop with the HPV31 DE alone 

had no significant effect on cross-neutralising antibody recognition of HPV35, producing a 

GMT of 25 (IQR, 21 to 31; p = 0.637) compared to wild-type HPV35 PsV titre of 22 (IQR, 18 

to 25) (Table 12). Only when the HPV31 DE loop was in combination with the FG loop of 

HPV31, with or without the HPV31 HI loop, did the cross-neutralisation titre reach wild-type 

HPV31 PsV levels (Figure 35A). 

 

The replacement of the HPV31 FG loop with the FG loop of HPV35, either alone or in 

combination with the DE and/or HI loops of HPV35, significantly reduced cross-neutralising 

antibody recognition of HPV31 PsV (Figure 35B) with the replacement of the FG loop alone 

resulting in a median fold decrease in cross-neutralising antibody recognition of 20.1-fold 

(IQR, 8.3 to 41.4-fold; p <0.001) compared to the wild-type HPV31 PsV (Table 11). 

Conversely, the introduction of the HPV31 FG loop into the HPV35 backbone significantly 

increased cross-neutralising antibody recognition of the HPV35 PsV and this effect was most  



Figure 35
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Figure 35 Neutralisation sensitivity of chimeric L1L2 PsV to HPV vaccine-induced antibodies. Colour-code indicates L1L2 PsV
constructs: HPV31 wild-type (white), HPV35 wild-type (grey), HPV31 backbone with HPV35 loop switches (blue) and HPV35
backbone with HPV31 loop switches (red). Bar graphs representing the geometric mean neutralisation titre of n=36 HPV
vaccine serum (Cervarix® n=19; Gardasil® n=17) against the (B) DE loop swap, (C) FG loop swap and (D) HI loop swap PsV.
Error bars represent neutralisation titre 95% confidence intervals. p values obtained using the Wilcoxon paired signed-rank test
represent differences in neutralisation titre for loop swap PsV constructs compared to wild-type PsV. The presentation of
neutralisation data is arranged by decreasing and increasing titers, with the neutralisation data against certain PsV constructs
necessarily reproduced within the graphs and across graphs A, B and C.
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 a Data presented as the geometric mean titres (GMT) and 95% confidence intervals (95% CI) of 
the antibody neutralisation titre generated by serum samples from HPV vaccine recipients 
(Cervarix n=19; Gardasil n=17; All n=36) 
b p values obtained using the Wilcoxon paired signed-rank test represent differences in 
neutralisation titre for loop swap PsV constructs compared to HPV31 wild-type PsV with significant 
differences highlighted in bold 
c Median and IQR fold-decrease in neutralisation titre for loop swap PsV constructs compared to 
HPV31 wild-type PsV  
 

Table 11. Neutralisation sensitivity of HPV31 L1L2 PsV with HPV35 DE, FG and HI switches 
switchesddqsfqwefqswitchessswitches      

     
Vaccine Loop 

Swaps 
Neutralisation titre 

GMT (95% CI)a 
p valueb Fold-decrease from wild-type  

Median (IQR)c 
     
     

Cervarix - 1,237 (942 – 1,624) - - 

Gardasil - 920 (653 – 1,295) - - 

All - 1,075 (868 – 1,332) - - 
     

Cervarix DE 264 (161 – 433) <0.001 5.3 (4.5 – 9.2) 

Gardasil  310 (228 – 421) <0.001 2.3 (1.5 – 3.6) 

All  285 (214 – 379) <0.001 4.0 (2.0 – 6.5) 
     

Cervarix FG 58 (35 – 96) <0.001 17.8 (8.2 – 39.8) 

Gardasil  75 (42 – 133) <0.001 20.1 (10.8 – 40.5) 

All  65 (45 – 94) <0.001 19.0 (8.3 – 41.4) 
     

Cervarix HI 1,319 (898 – 1,937)  0.091 0.7 (0.5 – 1.2) 

Gardasil  1,848 (1,153 – 2,962)  0.075 0.7 (0.5 – 0.9) 

All  1,546 (1,156 – 2,070)  0.002 0.7 (0.5 – 1.0) 
     

Cervarix DEFG 118 (70 – 199) <0.001 12.2 (6.9 – 24.3) 

Gardasil  65 (35 – 121) <0.001 11.2 (2.1 – 42.1) 

All  89 (60 – 132) <0.001 11.7 (5.1 – 40.5) 
     

Cervarix DEHI 489 (267 – 893) 0.002 3.2 (1.5 – 8.0) 

Gardasil  365 (234 – 570) 0.016 2.0 (1.0 – 2.9) 

All  426 (295 – 614) <0.001 2.1 (1.4 – 4.8) 
     

Cervarix FGHI 87 (51 – 147) <0.001 10.5 (4.8 – 24.1) 

Gardasil  122 (55 – 271) <0.001 9.5 (3.2 – 24.5) 

All  102 (65 – 159) <0.001 10.0 (3.4 – 25.2) 
     

Cervarix DEFGHI 173 (112 – 267) <0.001 7.7 (3.2 – 14.6) 

Gardasil  117 (70 – 195) <0.001 8.5 (2.2 – 21.0) 

All  143 (103 – 199) <0.001 8.5 (2.6 – 17.7) 
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a Data presented as the geometric mean titers (GMT) and 95% confidence intervals (95% CI) of 
the antibody neutralisation titre generated by serum samples from HPV vaccine recipients 
(Cervarix n=19; Gardasil n=17; All n=36) 

b p values obtained using the Wilcoxon paired signed-rank test represent differences in 
neutralisation titre for loop swap PsV constructs compared to HPV35 wild-type PsV with significant 
differences highlighted in bold 
c Median and IQR fold-increase in neutralisation titre for loop swap PsV constructs compared to 
HPV35 wild-type PsV  
 

Table 12. Neutralisation sensitivity of HPV35 L1L2 PsV with HPV31 DE, FG and HI 
switches      

     
Vaccine Loop 

Swaps 
Neutralisation titre 

GMT (95% CI)a 
p valueb Fold-increase from wild-type  

Median (IQR)c 
     
     

Cervarix - 22 (18 – 27) - - 

Gardasil - 21 (16 – 26) - - 

All - 22 (18 – 25) - - 
     

Cervarix DE 30 (22 – 40) 0.304 1.0 (1.0 – 1.4) 

Gardasil  21 (17 – 27) 0.477 1.0 (0.8 – 1.2) 

All  25 (21 – 31) 0.637 1.0 (0.8 – 1.4) 
     

Cervarix FG 291 (190 – 447) <0.001 13.8 (9.0 – 19.0) 

Gardasil  582 (366 – 928) <0.001 36.5 (10.8 – 63.6) 

All  404 (293 – 557) <0.001 17.2 (9.9 – 47.6) 
     

Cervarix HI 19 (16 – 23)  0.546 1.1 (0.8 – 1.3) 

Gardasil  26 (16 – 43)  0.461 1.0 (0.9 – 1.9) 

All  22 (18 – 28)  0.322 1.1 (0.9 – 1.5) 
     

Cervarix DEFG 4,603 (3,349 – 6,325) <0.001 239 (118 – 330) 

Gardasil  2,024 (1,255 – 3,264) <0.001 94.4 (28.6 – 229) 

All  3,122 (2,310 – 4,219) <0.001 156 (49.7 – 288) 
     

Cervarix DEHI 50 (31 – 80) 0.048 1.4 (0.9 – 3.0) 

Gardasil  40 (28 – 57) 0.055 1.6 (0.9 – 3.8) 

All  45 (34 – 60) 0.005 1.5 (0.9 – 3.3) 
     

Cervarix FGHI 170 (108 – 268) <0.001 10.5 (3.6 – 22.2) 

Gardasil  294 (180 – 480) <0.001 14.8 (9.7 – 25.8) 

All  220 (158 – 306) <0.001 13.2 (4.8 – 23.5) 
     

Cervarix DEFGHI 1,457 (1,024 – 2,074) <0.001 82.9 (34.9 – 183) 

Gardasil  1,075 (738 – 1,567) <0.001 69.3 (17.5 – 135) 

All  1,262 (979 – 1,627) <0.001 71.3 (19.7 – 151) 
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dramatic when the FG loop was in combination with the DE loop of HPV31, resulting in a 

GMT of 3,122 (IQR, 2,310 to 4,219; p <0.001) (Table 12).  

 

The replacement of the HI loop within the HPV31 backbone did not reduce cross-neutralising 

recognition and the replacement of the HI loop within the HPV35 backbone did not 

significantly increase recognition, compared to the respective wild-type PsV (Figure 35C). A 

significant decrease in HPV31 PsV recognition was only observed when the HPV35 HI loop 

was in combination with the HPV35 DE and/or FG loops, with the combination of the HI and 

FG loops resulting in a median fold decrease in cross-neutralising antibody recognition of 

10.5-fold (IQR, 3.4 to 25.2-fold; p <0.001) compared to the wild-type HPV31 PsV (Table 11). 

Cross-neutralising recognition of the chimeric HPV35 PsV only reached wild-type HPV31 

PsV levels when the HI loop of HPV31 was in combination with both the HPV31 FG and DE 

loops, producing a GMT of 1,262 (IQR, 979 to 1,627; p <0.001) (Table 12) compared to wild-

type HPV31 PsV GMT of 1,075 (IQR, 868 to 1,332) (Table 11). 

 

The cross-neutralising antibody recognition of the chimeric PsV with HPV31 backbones and 

HPV35 inter-loop swaps in comparison with wildtype HPV31 PsV was independent of the 

HPV vaccine received (Table 11). For example, the replacement of the HPV31 FG loop 

resulted in a median 17.8-fold (IQR, 8.2 to 39.8-fold; p <0.001) decrease in Cervarix® sera 

recognition and a median 20.1-fold (IQR, 10.8 to 40.5-fold; p <0.001) decrease in Gardasil® 

sera recognition (Table 11). Cross-neutralising antibody recognition of the chimeric PsV with 

HPV35 backbones and HPV31 inter-loop swaps was also independent of the HPV vaccine 

received (Table 12). For example, the replacement of the HPV35 HI loop by the HPV31 HI 

had no significant effect on recognition by either Cervarix® sera (GMT 19; IQR, 16 to 23; p = 

0.546) or Gardasil® sera (GMT 26; IQR, 16 to 43; p = 0.461) compared to wild-type HPV35 

PsV (GMT 22; IQR, 18 to 25) (Table 12). 
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3.3.4.5 Predicted epitope footprint of cross-neutralising antibodies  

The data generated from testing the chimeric PsV indicated that the FG loop is necessary for 

cross-neutralising antibody recognition and that the DE loop enhances this recognition. In 

order to predict the residues within the DE and FG loops which may be involved in the 

epitope footprint recognised by cross-neutralising antibodies induced against HPV16 L1 

VLP, the amino acid sequences of the DE and FG loops of HPV16, HPV31 and HPV35 were 

aligned (Figure 36A). Amino acid positions for which HPV16 (vaccine type) and HPV31 

(cross-neutralising antibody target) shared the same residue but HPV35 (background 

control) did not, were identified in the DE (Ala137) and FG loops (Ser281, Gly282, Ser283, Ala285, 

Ala288 & Ser290). Mapping of the residues onto the HPV31 L1 homology model (Figure 36B) 

demonstrated that these seven residues from a single monomer were in close proximity to 

each other within a domain on the capsid surface. Additionally, the positions of these 

residues were mapped alongside DE and FG loop residues which contribute towards a 

common epitope footprint recognised by type-specific, neutralising HPV16 MAbs (Figure 

36C) and the FG loop residue, Lys279, which mediates primary binding in HPV infection 

(Figure 36D). 

 

3.3.5 Discussion  

The L1L2 PsV representing the non-vaccine A9 genotypes harbour L1 antigenic domains 

which are recognised by cross-neutralising antibodies (Draper et al., 2011; Einstein et al., 

2011a; Kemp et al., 2011). It was reasoned that these antigenic domains would likely have 

similar conformational structure to HPV16, and that domains which differed from HPV16 are 

less likely to be targets for such antibody specificities. The amino acid alignment of the L1 

proteins from the non-vaccine A9 PsV against the HPV16 PsV L1 protein demonstrated, as 

expected, that the greatest degree of inter-genotype diversity from HPV16 was located 

within the surface exposed loops regions (Carter et al., 2003; Chen et al., 2000); however, 

the degree to which sequence diversity altered the predicted structure of the non-vaccine A9 
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loops in comparison with the HPV16 loops differed quite widely for each individual loop and 

between genotypes. 

 

The BC and EF loops are both located on the outer rim of L1 capsomer and whilst the BC 

loop takes up a discrete position lower down the capsomer stem, the EF loop is in close 

proximity to the HI loop (Bishop et al., 2007). The prediction of structural differences in the 

BC and EF loops of the non-vaccine genotypes, compared to HPV16, were common so it 

was reasoned that these two loops were unlikely to play a major role in a L1 domain 

recognised by cross-neutralisation antibodies. The greater degree of predicted structural 

similarity between HPV16 and the non-vaccine A9 genotypes observed for the DE, FG and 

HI loops, which are in close proximity on the apex of the capsomer (Bishop et al., 2007), 

indicated that these three loops are more likely to contribute towards a cross-neutralising 

antibody footprint. The HI loop which takes up a more peripheral position on the apex of the 

capsomer was predicted to be structurally different in three non-vaccine genotypes (HPV33, 

HPV52 and HPV58) whilst the FG loop was predicted to be structurally different in two non-

vaccine genotypes (HPV35 and  HPV52). No structural differences were predicted between 

HPV16 and any non-vaccine genotypes for the DE loop which is centrally positioned, 

encircling the lumen of the capsomer. 

 

The predicted differences in L1 loop structure between HPV16 and non-vaccine A9 

genotypes have to be interpreted with the caveat that these are predictions derived from the 

pairwise comparisons of L1 homology models. These models were created by the modelling 

of the L1 amino acid sequence from the A9 PsV onto the crystal structure of the HPV16 L1 

capsomer and whilst the individual A9 homology models were supported by a quality score 

(GMQE), they still represent models rather than the experimentally resolved crystal 

structures. Nevertheless homology modelling is a standard approach and has been used for 

H1N1 pandemic flu (Igarashi et al., 2010), HBV (Langley et al., 2007) and HIV (Kwong et al., 

2000) in order to predict the location of antigenic domains and sites of protein-protein 
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interactions. The crystal structure of HPV35 L1 capsomer was resolved alongside the crystal 

structure of HPV16 L1 capsomer and the superposition of HPV35 crystal on to that of 

HPV16 crystal identified structural differences in all the L1 loops between the two genotypes, 

with the change between the FG loops being the most dramatic (Bishop et al., 2007). Within 

this present study, the pairwise comparison between L1 homology models of HPV16 and 

HPV35 predicted a pronounced FG loop shift between the two genotypes, in accordance 

with the data derived from the comparison of the HPV16 and HPV35 crystal structures, 

implying that the L1 homology models have utility for the identification of potential structural 

differences. 

 

The distance between the L1 loops of HPV16 and the non-vaccine A9 genotype PsV were 

measured and used in conjunction with the L1 antigenic relationship between A9 genotypes, 

based upon recognition by vaccine-induced cross-neutralising antibodies, to inform the 

design of chimeric L1L2 PsV with inter-genotype loop switches. The L1 loops of HPV16 have 

been investigated extensively using L1 VLP as target antigens for type-specific antibody 

recognition. The insertion of foreign B-cell epitopes from HIV and HBV into individual L1 

loops identified the FG and HI loops as immunogenic regions of the L1 capsid (Carpentier et 

al., 2005; Sadeyen et al., 2003; Slupetzky et al., 2001). L1 VLP with point mutations and 

complete inter-genotype loop switches have identifying residues which contribute to the 

epitope footprints recognised by neutralising murine MAbs (Carter et al., 2003; Roth et al., 

2006; Ryding et al., 2007). However, the use of functional chimeric L1L2 PsV, which 

measure antibody specificities capable of neutralising PsV infectivity, has been limited to a 

single HPV16 construct with a HPV33 BC loop swap which was used to map the epitope of a 

HPV33 L1 MAb (H33.J3) (Roth et al., 2006).  

 

The novel chimeric L1L2 PsV constructs utilised in this study consisted of DE, FG and HI 

inter-genotype loop swaps between a cross-neutralising antibody target, HPV31, and a 

background control, HPV35. The choice of background control target was initially the A5 
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genotype HPV51 but no infectious PsV particles were formed following inter-genotype FG 

loop switches. This indicated that whilst the L1 loop regions may be fairly tolerant of 

manipulation, the impact of such changes upon regions involved in L1 protein interactions, 

and L1 and L2 protein interactions, is less well tolerated. By using two genotypes from within 

the A9 group (HPV31 and HPV35) to carry out inter-genotype loop swaps, infectious 

chimeric L1L2 PsV particles were successfully formed for the testing of cross-neutralising 

antibody recognition of specific L1 domains.   

 

The chimeric L1L2 PsV demonstrated that the FG loop is necessary and sufficient for the 

epitope footprints of a significant proportion of cross-neutralising antibody specificities. The 

DE loop enhances this recognition whilst the HI loop was not necessary for cross-

neutralising antibody recognition. The FG loop appeared to be the primary antigenic target of 

both type-specific natural infection and MAbs which target a variety of HPV genotypes 

(Carter et al., 2006; Christensen et al., 2001; Fleury et al., 2009; Ludmerer et al., 2000; 

Orozco et al., 2005; Roth et al., 2006). The epitopes of L1 MAbs, H16.J4 and 31.D24, which 

demonstrate cross-binding but not cross-neutralisation between HPV16 and HPV31 have 

also been mapped to the FG loop (Christensen et al., 1996a; Fleury et al., 2009).   

 

The structure of the FG loop can be divided into proximal and distal regions, with the early 

region (HPV16 numbering: Ala264 to Lys278) in close proximity to the peripheral BC and EF 

loops whilst the late region (Gly279 to Ser288) has a more central position, inserting between 

the DE and HI loops (Bishop et al., 2007). The FG loop contains a Lys278 which is conserved 

among all the A9 genotypes, except HPV52. It has been demonstrated for HPV16 that 

Lys278, alongside Lys361 from the HI loop, mediates primary binding to HSPG, the initial step 

required for successful HPV infection (Richards et al., 2013). Residues within the predicted 

footprint recognised by cross-neutralising antibodies, particularly Ala285, are in close 

proximity to Lys279 of HPV31 which corresponds to HPV16 Lys278. In vivo, the passive 

transfer of vaccine-induced L1 type-specific antibodies neutralised HPV16 PsV by 
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preventing this primary interaction between L1 and HSPG (Day et al., 2010) providing a 

possible mechanistic explanation of the antigenic targeting of the FG loop independent of 

genotype.  

 

The majority of L1 epitopes that have been identified to date are made up of residues from 

two or more L1 loops, although there are instances where a single loop has supported an 

epitope footprint; for example the BC loop alone is targeted by some HPV6, HPV33 and 

HPV16 L1 MAbs (Christensen et al., 2001; McClements et al., 2001; Roth et al., 2006). Two 

recent studies used cryo-electron microscopy to identify the precise epitope footprints of four 

neutralising HPV16 MAb, H16.V5, H16.1A, H16.14J and H263.A2, all of which were known 

to target the FG and HI L1 loops (Guan et al., 2015; Lee et al., 2015). These analyses 

demonstrated for the first time that residues from the DE loop constituted the core of each 

epitope, with additional residues contributed from the FG and HI loops and a minor number 

from the BC and EF loops. In this present study, the DE loop enhances cross-neutralising 

antibody recognition of the FG loop within the HPV35 L1 backbone. This enhancement may 

be due to DE loop interactions which support the correct presentation of the FG loop or may 

result from DE loop residues functioning as part of the epitope footprint. 

 

The HPV16 MAbs H16.V5, H16.1A, H16.14J and H263.A2 recognise unique epitope 

footprints; however, the positive overlap between footprints allowed the identification of 

residues from the DE (HPV16 numbering: Asn138 and Ala139), EF (Gln181), FG (Gly281, Ser282 

and Asn285) and HI (Ile348 and Lys361) loops common to all four footprints suggesting that a 

common epitope is shared by all four MAbs (Guan et al., 2015). The DE and FG residues 

predicted to contribute towards the cross-neutralising epitope footprint are located in the 

same region as DE and FG residues which contribute towards the common HPV16 type-

specific epitope footprint. Cross-neutralising antibodies display specificities that recognise a 

single non-vaccine genotype or multiple non-vaccine genotypes (see Section 3.1.4.4) 

(Bissett et al., 2014). It is feasible that these cross-neutralising antibody specificities target 
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distinct epitopes which share common amino acid residues thereby facilitating the 

recognition of multiple non-vaccine A9 genotypes. 

 

In this study, the L1 domains recognised by inter-genotype cross-neutralising antibodies 

have been delineated as the DE and FG loops and amino acid residues which potentially 

contribute to the cross-neutralising antibody epitope footprint have been identified. The 

cross-neutralising antibodies which target such L1 domains may play a fundamental role in 

HPV vaccine-induced cross-protection.  



150 
 

loops in comparison with the HPV16 loops differed quite widely for each individual loop and 

between genotypes. 

 

The BC and EF loops are both located on the outer rim of L1 capsomer and whilst the BC 

loop takes up a discrete position lower down the capsomer stem, the EF loop is in close 

proximity to the HI loop (Bishop et al., 2007). The prediction of structural differences in the 

BC and EF loops of the non-vaccine genotypes, compared to HPV16, were common so it 

was reasoned that these two loops were unlikely to play a major role in a L1 domain 

recognised by cross-neutralisation antibodies. The greater degree of predicted structural 

similarity between HPV16 and the non-vaccine A9 genotypes observed for the DE, FG and 

HI loops, which are in close proximity on the apex of the capsomer (Bishop et al., 2007), 

indicated that these three loops are more likely to contribute towards a cross-neutralising 

antibody footprint. The HI loop which takes up a more peripheral position on the apex of the 

capsomer was predicted to be structurally different in three non-vaccine genotypes (HPV33, 

HPV52 and HPV58) whilst the FG loop was predicted to be structurally different in two non-

vaccine genotypes (HPV35 and  HPV52). No structural differences were predicted between 

HPV16 and any non-vaccine genotypes for the DE loop which is centrally positioned, 
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The predicted differences in L1 loop structure between HPV16 and non-vaccine A9 

genotypes have to be interpreted with the caveat that these are predictions derived from the 

pairwise comparisons of L1 homology models. These models were created by the modelling 

of the L1 amino acid sequence from the A9 PsV onto the crystal structure of the HPV16 L1 

capsomer and whilst the individual A9 homology models were supported by a quality score 

(GMQE), they still represent models rather than the experimentally resolved crystal 

structures. Nevertheless homology modelling is a standard approach and has been used for 

H1N1 pandemic flu (Igarashi et al., 2010), HBV (Langley et al., 2007) and HIV (Kwong et al., 

2000) in order to predict the location of antigenic domains and sites of protein-protein 
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interactions. The crystal structure of HPV35 L1 capsomer was resolved alongside the crystal 

structure of HPV16 L1 capsomer and the superposition of HPV35 crystal on to that of 

HPV16 crystal identified structural differences in all the L1 loops between the two genotypes, 

with the change between the FG loops being the most dramatic (Bishop et al., 2007). Within 

this present study, the pairwise comparison between L1 homology models of HPV16 and 

HPV35 predicted a pronounced FG loop shift between the two genotypes, in accordance 

with the data derived from the comparison of the HPV16 and HPV35 crystal structures, 

implying that the L1 homology models have utility for the identification of potential structural 

differences. 

 

The distance between the L1 loops of HPV16 and the non-vaccine A9 genotype PsV were 

measured and used in conjunction with the L1 antigenic relationship between A9 genotypes, 

based upon recognition by vaccine-induced cross-neutralising antibodies, to inform the 

design of chimeric L1L2 PsV with inter-genotype loop switches. The L1 loops of HPV16 have 

been investigated extensively using L1 VLP as target antigens for type-specific antibody 

recognition. The insertion of foreign B-cell epitopes from HIV and HBV into individual L1 

loops identified the FG and HI loops as immunogenic regions of the L1 capsid (Carpentier et 

al., 2005; Sadeyen et al., 2003; Slupetzky et al., 2001). L1 VLP with point mutations and 

complete inter-genotype loop switches have identifying residues which contribute to the 

epitope footprints recognised by neutralising murine MAbs (Carter et al., 2003; Roth et al., 

2006; Ryding et al., 2007). However, the use of functional chimeric L1L2 PsV, which 

measure antibody specificities capable of neutralising PsV infectivity, has been limited to a 

single HPV16 construct with a HPV33 BC loop swap which was used to map the epitope of a 

HPV33 L1 MAb (H33.J3) (Roth et al., 2006).  

 

The novel chimeric L1L2 PsV constructs utilised in this study consisted of DE, FG and HI 

inter-genotype loop swaps between a cross-neutralising antibody target, HPV31, and a 

background control, HPV35. The choice of background control target was initially the A5 
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genotype HPV51 but no infectious PsV particles were formed following inter-genotype FG 

loop switches. This indicated that whilst the L1 loop regions may be fairly tolerant of 

manipulation, the impact of such changes upon regions involved in L1 protein interactions, 

and L1 and L2 protein interactions, is less well tolerated. By using two genotypes from within 

the A9 group (HPV31 and HPV35) to carry out inter-genotype loop swaps, infectious 

chimeric L1L2 PsV particles were successfully formed for the testing of cross-neutralising 

antibody recognition of specific L1 domains.   

 

The chimeric L1L2 PsV demonstrated that the FG loop is necessary and sufficient for the 

epitope footprints of a significant proportion of cross-neutralising antibody specificities. The 

DE loop enhances this recognition whilst the HI loop was not necessary for cross-

neutralising antibody recognition. The FG loop appeared to be the primary antigenic target of 

both type-specific natural infection and MAbs which target a variety of HPV genotypes 

(Carter et al., 2006; Christensen et al., 2001; Fleury et al., 2009; Ludmerer et al., 2000; 

Orozco et al., 2005; Roth et al., 2006). The epitopes of L1 MAbs, H16.J4 and 31.D24, which 

demonstrate cross-binding but not cross-neutralisation between HPV16 and HPV31 have 

also been mapped to the FG loop (Christensen et al., 1996a; Fleury et al., 2009).   

 

The structure of the FG loop can be divided into proximal and distal regions, with the early 

region (HPV16 numbering: Ala264 to Lys278) in close proximity to the peripheral BC and EF 

loops whilst the late region (Gly279 to Ser288) has a more central position, inserting between 

the DE and HI loops (Bishop et al., 2007). The FG loop contains a Lys278 which is conserved 

among all the A9 genotypes, except HPV52. It has been demonstrated for HPV16 that 

Lys278, alongside Lys361 from the HI loop, mediates primary binding to HSPG, the initial step 

required for successful HPV infection (Richards et al., 2013). Residues within the predicted 

footprint recognised by cross-neutralising antibodies, particularly Ala285, are in close 

proximity to Lys279 of HPV31 which corresponds to HPV16 Lys278. In vivo, the passive 

transfer of vaccine-induced L1 type-specific antibodies neutralised HPV16 PsV by 
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preventing this primary interaction between L1 and HSPG (Day et al., 2010) providing a 

possible mechanistic explanation of the antigenic targeting of the FG loop independent of 

genotype.  

 

The majority of L1 epitopes that have been identified to date are made up of residues from 

two or more L1 loops, although there are instances where a single loop has supported an 

epitope footprint; for example the BC loop alone is targeted by some HPV6, HPV33 and 

HPV16 L1 MAbs (Christensen et al., 2001; McClements et al., 2001; Roth et al., 2006). Two 

recent studies used cryo-electron microscopy to identify the precise epitope footprints of four 

neutralising HPV16 MAb, H16.V5, H16.1A, H16.14J and H263.A2, all of which were known 

to target the FG and HI L1 loops (Guan et al., 2015; Lee et al., 2015). These analyses 

demonstrated for the first time that residues from the DE loop constituted the core of each 

epitope, with additional residues contributed from the FG and HI loops and a minor number 

from the BC and EF loops. In this present study, the DE loop enhances cross-neutralising 

antibody recognition of the FG loop within the HPV35 L1 backbone. This enhancement may 

be due to DE loop interactions which support the correct presentation of the FG loop or may 

result from DE loop residues functioning as part of the epitope footprint. 

 

The HPV16 MAbs H16.V5, H16.1A, H16.14J and H263.A2 recognise unique epitope 

footprints; however, the positive overlap between footprints allowed the identification of 

residues from the DE (HPV16 numbering: Asn138 and Ala139), EF (Gln181), FG (Gly281, Ser282 

and Asn285) and HI (Ile348 and Lys361) loops common to all four footprints suggesting that a 

common epitope is shared by all four MAbs (Guan et al., 2015). The DE and FG residues 

predicted to contribute towards the cross-neutralising epitope footprint are located in the 

same region as DE and FG residues which contribute towards the common HPV16 type-

specific epitope footprint. Cross-neutralising antibodies display specificities that recognise a 

single non-vaccine genotype or multiple non-vaccine genotypes (see Section 3.1.4.4) 

(Bissett et al., 2014). It is feasible that these cross-neutralising antibody specificities target 
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distinct epitopes which share common amino acid residues thereby facilitating the 

recognition of multiple non-vaccine A9 genotypes. 

 

In this study, the L1 domains recognised by inter-genotype cross-neutralising antibodies 

have been delineated as the DE and FG loops and amino acid residues which potentially 

contribute to the cross-neutralising antibody epitope footprint have been identified. The 

cross-neutralising antibodies which target such L1 domains may play a fundamental role in 

HPV vaccine-induced cross-protection.  
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The HPV vaccines Cervarix® and Gardasil® have been licensed in over 100 countries since 

2006, following successful clinical trials which demonstrated efficacy against the 

development of cervical cancer precursors and other HPV-attributable diseases (Markowitz 

et al., 2012). Today at least 49 countries use the HPV vaccines as part of national 

immunisation programmes (Regan and Hocking, 2015) and the population level impact in 

early uptake countries is becoming apparent with Australia, the USA and the United 

Kingdom all reporting a significant reduction in vaccine type infections in vaccinated cohorts 

(Drolet et al., 2015; Kavanagh et al., 2014; Markowitz et al., 2013; Mesher et al., 2013; 

Tabrizi et al., 2012). Significant reductions in high-grade cervical abnormalities have also 

been reported in vaccinated cohorts in Australia and Scotland whilst in the USA a reduction 

in the detection of HPV16 and HPV18 in CIN2+ lesions has been observed in women who 

received at least one dose of the HPV vaccine (Brotherton et al., 2011; Hariri et al., 2015; 

Pollock et al., 2014). These population-based data support the findings from the vaccine 

efficacy trials. The duration of vaccine-induced protection is unknown but if it extends up to 

20 years it is estimated that a reduction in cervical cancer incidence of 82% is potentially 

achievable (Choi et al., 2010). 

 

No immune correlate of protection has been identified for the HPV vaccines, since vaccine 

type efficacy is very high and vaccine type breakthrough infections will be rare (Stanley et 

al., 2012). Neutralising antibodies which target the L1 are assumed to be the immune 

effectors of vaccine type protection. This is based upon evidence from passive transfer 

studies in animal PV models and the murine CVC model (Breitburd et al., 1995; Longet et 

al., 2011; Suzich et al., 1995), and through the observations that protection in human 

vaccinees is coincident with the detection of L1 neutralising antibodies in serum and 

cervicovaginal secretions (Einstein et al., 2009; Kemp et al., 2008). Neutralising antibodies 

that can block infection or subsequent viremia and bacteraemia, are the correlates or 

surrogates of protection for almost all prophylactic viral and bacterial vaccines (Plotkin, 

2010).  
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The characterisation of vaccine-induced antibody responses and their antigenic targets 

contributes to our understanding of vaccine-induced protection and is important for vaccine 

monitoring and the prediction of vaccine efficacy. The prophylactic HBV vaccines comprise 

recombinant hepatitis B surface antigen (HBsAg) (Coleman, 2006) and a serum antibody 

response (anti-HBs) of ≥10 IU/mL post-vaccination has been found to correlate with T helper 

cell mediated memory B cell induction upon challenge (Plotkin, 2010; Tuaillon et al., 2006). 

The anti-HBs response primarily targets epitopes within the immunodominant region of the 

HBsAg termed the “a” determinant. A glycine to arginine switch at position 145 of the “a” 

determinant has been found to alter the antigenicity of the HBsAg, reducing recognition by 

polyclonal anti-HBs and contributing to the emergence of HBV vaccine escape mutants in 

immunised individuals (Carman, 1997). Influenza vaccines contain either inactivated or live 

attenuated influenza virus and elicit neutralising antibodies which recognise the 

haemagglutinin (HA) (Reber and Katz, 2013). A serum HA antibody inhibition titre of 1:40 

has been found to correlate with a ≥50% reduction in the risk of acquiring influenza (Plotkin, 

2010). The majority of influenza neutralising antibodies are thought to target conformational 

epitopes in the Sa and Sb antigenic sites of the HA and amino acid changes in these regions 

results in escape from antibody-mediated neutralisation (Martinez et al., 2009). Monitoring 

the HA antigenicity of circulating influenza viruses contributes to the detection of 

antigenically novel viruses which informs the choice of vaccine strain (Gerdil, 2003). 

 

The HPV vaccine trials also demonstrated the partial efficacy of Cervarix® and Gardasil® 

against non-vaccine genotypes HPV31, HPV33 and HPV45, an additional benefit to the 

expected vaccine type protection (Brown et al., 2009; Schiller et al., 2012; Wheeler et al., 

2012). Cross-neutralising antibodies which target non-vaccine genotypes can be found in the 

sera of HPV vaccine recipients from clinical trials (Draper et al., 2013; Einstein et al., 2011a; 

Kemp et al., 2011; Toft et al., 2014) and national immunisation programmes (Barzon et al., 

2014; Draper et al., 2011). Furthermore, antibodies which recognise HPV31 and HPV45 can 

be detected in genital samples taken from the site of infection (Draper et al., 2013). This 
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latter study also demonstrated a strong positive association between the prevalence of 

cross-neutralising antibodies in its study population and cross-protection against persistent 

infection and CIN2+ attributable to non-vaccine genotypes from vaccine efficacy trials 

(Draper et al., 2013). This coincidental relationship between cross-protection and the 

detection of cross-neutralising antibodies in vaccinees led to the working hypothesis that 

cross-neutralising antibodies mediate cross-protection. 

 

In this present study, cross-neutralising antibodies which recognise non-vaccine A9 

genotypes were characterised as being a minor component of the total HPV16 antibody 

response, rather than a predominantly type-specific antibody specificity which exhibits a 

reduced recognition for non-vaccine genotypes. Cross-neutralisation appears to be mediated 

by antibody specificities which recognise single and multiple non-vaccine genotypes with 

equivalent recognition for HPV16. A greater breadth of cross-recognition tended to be 

associated with a higher magnitude of HPV16 neutralising antibody titre, supporting previous 

observations that the magnitude and breadth of the cross-neutralising antibody response 

generally increased in line with the vaccine type neutralising response (Draper et al., 2011; 

Draper et al., 2013; Kemp et al., 2011). If this small pool of cross-neutralising antibody 

specificities potentially contributes to vaccine-induced cross-protection then factors which 

effect vaccine immunogenicity such as age at the time of vaccination, reduction in vaccine 

dose or longevity of vaccine-induced antibodies, may impact upon this clinically beneficial 

effect. 

 

The long-term vaccine type immunogenicity of the HPV vaccines has been monitored in 

vaccine efficacy trial participants. Sustained immunogenicity of the Cervarix® vaccine has 

been reported up to 9.4 years post-vaccination in 15-25 year old women, with all vaccinees 

seropositive for HPV16 and HPV18 neutralising antibodies which was coincident with 

sustained vaccine efficacy against CIN1+ and CIN2+ (Naud et al., 2014). Seropositivity and 

vaccine type antibody titres remained high up to 9 years following vaccination with Gardasil® 
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in 16-23 year old women from the FUTURE II trial (Nygard et al., 2015), which demonstrated 

vaccine efficacy against CIN2+ and CIN3+ (Munoz et al., 2010). Cross-neutralising 

antibodies which target HPV31 and HPV45 have also been detected up to 24 months post-

vaccination in 18-45 year old women (Einstein et al., 2011a) and the detection of HPV31 

cross-neutralising antibodies has subsequently been reported up to 48 months post-

vaccination (Safaeian et al., 2013b). These data indicate that despite cross-neutralising 

antibodies representing a minor proportion of vaccine-induced antibodies their longevity is 

sustainable through several years of follow-up post-vaccination.  

 

Expanded licensure of the HPV vaccines to younger adolescents (9-15 years) was based 

upon immunogenicity bridging studies whereby the vaccine-induced immunogenicity of a 

younger age group was compared to the immunogenicity of 15-26 year old women for which 

efficacy had been demonstrated. Immunological non-inferiority is now recognised as a 

primary end-point for HPV vaccine immunobridging studies based upon the rationale that 

non-inferior immunogenicity of the younger age group will correlate with non-inferior efficacy 

(Lowy et al., 2015). The long-term follow up of females vaccinated with Cervarix® between 

the ages of 10-14 years not only demonstrated sustained vaccine-type immunogenicity up to 

6 years post-vaccination but also a higher magnitude of antibody response compared to 

females vaccinated between the ages of 15-25 years (Schwarz et al., 2014). Sustained 

vaccine-type antibody titres have also been demonstrated in 10-15 year old girls and boys 

up to 8 years post-vaccination with Gardasil® (Ferris et al., 2014), with age-related increases 

in vaccine immunogenicity compared to 16-23 year old women also reported (Block et al., 

2006). Data on the longevity of the cross-neutralising antibody response in adolescents is 

limited and does not extended past the detection of HPV31 and HPV45 cross-neutralising 

antibodies at 6 months post-third vaccine dose (Draper et al., 2013). The vaccine-type 

immunogenicity data suggest that the age at which the HPV vaccine is received impacts 

upon vaccine immunogenicity. The increased vaccine immunogenicity observed in younger 
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adolescents compared to women should result in the increased longevity of the cross-

neutralising antibody response in this group, the target population for vaccination.  

 

Reduced dose HPV vaccination schedules have recently been adopted by the national 

immunisation programmes of several countries including the United Kingdom (Donken et al., 

2015) following immunobridging studies which compared the vaccine immunogenicity of 2 

doses in girls versus 3 doses in women. Girls (9-14 years old) who received 2 doses of 

Cervarix® at months 0 and 6 demonstrated non-inferior vaccine-type antibody responses at 

month 7, 1 month post final dose, compared to women (15-25 years old) who received 3 

doses (Romanowski et al., 2011). The non-inferior vaccine immunogenicity of the younger 

age group extended up to at least 24 months post first dose. Vaccine-type antibody 

responses were non-inferior at month 7 in girls (9-13 years old) who received 2 doses of 

Gardasil® at 0 and 6 months compared to women (16-26 years old) who received 3 doses 

(Dobson et al., 2013). However, antibody responses were inferior for HPV18 at 24 months 

when compared to girls who had received 3 doses. The clinical efficacy of a reduced dose 

schedule of Cervarix® in women (18-25 years old) demonstrated that protection against 

incident HPV16 or HPV18 infection was independent of vaccine dose, suggesting that 2 

doses or even 1 dose may be as protective as 3 doses against vaccine type infection 

(Kreimer et al., 2015). 

 

Limited data are available on the impact of a reduced dose schedule on the cross-

neutralising antibody response and cross-protection. In one study, seropositivity for HPV31 

cross-neutralising antibodies at 4 years post-vaccination decreased from the 3-dose group to 

the 1-dose group (Safaeian et al., 2013b). Another study found that the cross-protective 

clinical efficacy of Cervarix® observed for 3 doses vs. 2 doses against incident HPV31, 

HPV33 and HPV45 infections combined, was similar when the 2 doses were delivered 6 

months apart; however, vaccine efficacy was lost in the groups which received 2 doses 

delivered 1 month apart or a single dose (Kreimer et al., 2015). Both these studies were 
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carried out in women (18-25 years old) and it is possible that the increased vaccine 

immunogenicity of the younger target group for vaccination may go some way to counteract 

the impact of a reduced dose schedule on the generation and maintenance of vaccine-

induced cross-neutralising antibodies. However, no data are available at present to support 

this assumption. 

 

Broadening the protection of HPV prophylactic vaccines has been an objective since the 

successful clinical trials of the Cervarix® and Gardasil® vaccines (Bosch, 2009), with the aim 

of turning the partial vaccine-induced cross-protection into complete vaccine type protection 

as observed for HPV16 and HPV18. Different approaches have been taken including the 

development of multivalent L1 VLP vaccine formulations, and the use of alternative L1 

antigens such as capsomers, L2-based vaccines and chimeric VLP (Chatterjee, 2014). A 9-

valent L1 VLP-based vaccine formulation (Gardasil®9) manufactured by Merck has recently 

completed successful clinical trials (Joura et al., 2015) and subsequently received approval 

from the US Food and Drug Administration (FDA) (Kirby, 2015). Gardasil9® contains L1 VLP 

representing the oncogenic genotypes HPV31, 33, 45, 52 and 58 in addition to the L1 VLP 

represented in the original Gardasil® vaccine (HPV16 and HPV18), plus genotypes HPV6 

and HPV11 which cause the development of anogenital warts (Lacey et al., 2006). This 

vaccine formulation has the potential to prevent ca. 90% of  cervical, vulvar, vaginal, and 

anal cancers (Li et al., 2010).  

 

The adoption of Gardasil9® by existing HPV immunisation programmes will be contingent 

upon its cost-effectiveness compared to Cervarix® or Gardasil® (Van de Velde et al., 2012). 

The manufacture of multivalent L1 VLP vaccines, both first and second generation 

formulations, is a complex and costly approach, factors which are prohibitive to their 

widespread introduction in low- and middle-income countries (Markowitz et al., 2012). A 2-

dose schedule for Cervarix® or Gardasil® has cut the cost of establishing and maintaining 

HPV immunisation programmes. It is not known whether a reduced-dose schedule of 
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Gardasil9® will be an effective alternative to the 3-dose schedule for which efficacy, safety 

and immunogenicity have recently been reported (Joura et al., 2015; Van Damme et al., 

2015). If Gardasil9® does supersede the current HPV vaccines, it will be at a point where 

several birth cohorts worldwide will have already received either Cervarix® or Gardasil®, 

therefore a better understanding of the cross-protection and the cross-neutralising antibody 

response induced by the current HPV vaccines remains of importance.  

 

HPV genotypes can be segregated into variant lineages and then further into sublineages 

based upon single nucleotide polymorphisms identified across the whole HPV genome 

(Chen et al., 2011, 2013). These variant lineages appear to exhibit differences in the risk of 

disease development following infection (Chen et al., 2014a; Chen et al., 2014b; Schiffman 

et al., 2010; Xi et al., 2014; Xi et al., 2012). Vaccine-induced cross-neutralising antibodies 

recognise antigenic sites on the L1 protein and variant-specific polymorphisms located within 

these sites have the potential to alter surface topography between different variant lineages. 

Consequently, differential L1 recognition by cross-neutralising antibodies may result in 

differential vaccine efficacy against non-vaccine A7 and A9 variants, altering the circulating 

viral variants in the post-vaccine era.  

 

In this present study the individual A9 genotypes have been represented by a single L1L2 

PsV and therefore a single L1 amino acid sequence. The potential antigenic impact of L1 

variation was investigated for HPV31, which is closely related to vaccine type HPV16 within 

the A9 species group. The partial vaccine efficacy against HPV31, which is coincident with 

the detection of HPV31 L1 cross-neutralising antibodies in the sera of vaccine recipients 

(Brown et al., 2009; Draper et al., 2013; Einstein et al., 2011a; Wheeler et al., 2012), has the 

potential to reduce the ca. 3.8% of cervical cancer cases attributable to HPV31 worldwide (Li 

et al., 2010). The variant lineages of HPV31 (A, B and C) demonstrate differential natural 

histories, with infection attributable to variant lineages A and B associated with an increased 
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risk of developing CIN2/3 whilst paradoxically variant C infections persist for longer (Xi et al., 

2012).  

 

The FG loop of HPV31 is an antigenic target for both type-specific and cross-reactive L1 

MAbs (Carpentier et al., 2005; Fleury et al., 2009) and contains two amino acid positions 

where the residues differed between variants A, B and C. The L1L2 PsV representing the 

three variants were all susceptible to neutralisation by vaccine-induced cross-neutralising 

antibodies. Variants B and C demonstrated increased sensitivity to cross-neutralisation 

compared to variant A, although this difference was of a low magnitude (<2-fold difference in 

neutralisation titre). A recent study examining Cervarix® cross-protection against variants of 

non-vaccine genotypes found no difference in vaccine efficacy against transient infection 

between HPV31 variants A/B and C (Harari et al., 2015). However, vaccine efficacy against 

persistent infection and/or CIN 2/3 progression was only demonstrated for variant C. The 

persistent infections and/or CIN 2/3 progression attributable to HPV31 variants A and B were 

pooled together for this analysis so it is unclear of the contribution of each variant lineage to 

these clinical events.  

 

The antigenic impact of naturally-occurring variation within the capsid proteins of HPV45 has 

recently been investigated and found that residue differences at a single amino acid position 

within the HI loop contributed to significantly different susceptibilities to cross-neutralisation 

(Godi et al., 2015b). L1L2 PsV representing variant sublineages A2, A3 and B1 exhibited 

increased sensitivity to cross-neutralisation (ca. 3-fold) whilst variant sublineage B2 

displayed a slight decrease in sensitivity compared to variant sublineage A1. Additionally, 

variant sublineages A2, A3 and B1 were more sensitive to cross-neutralisation by Cervarix® 

vaccine sera compared to Gardasil®, suggesting that there may be differences in the cross-

neutralising antibody specificities generated in response to Cervarix® compared to Gardasil®. 

No variant-specific differences in Cervarix® vaccine efficacy were observed for cross-

protection against transient or persistent infection, and/or CIN 2/3 progression, attributable to 
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HPV45 variant lineages A and B (Harari et al., 2015). It is as yet unclear as to whether the 

differential sensitivity of the L1L2 PsV representing variants of HPV31 and HPV45 to in vitro 

cross-neutralisation will have an impact at the population level following the introduction of 

the HPV vaccines. 

 

Cross-neutralising antibodies which recognised non-vaccine A7 and A9 genotypes originate 

from the vaccine type to which they have the closest genetic relationship (Scherpenisse et 

al., 2013). These data together with the observation that A9 cross-neutralising antibodies 

have equivalent recognition for HPV16 (Bissett et al., 2014) indicate that the L1 proteins of 

vaccine types harbour immunogenic domains which share sequence and/or structural 

similarity with the L1 proteins of non-vaccine genotypes. Studies of HPV31 and HPV45 L1 

variants indicate that amino acid residues in the FG and HI loops, respectively, influence 

cross-neutralising antibody recognition and may contribute to the epitope footprint 

recognised by these antibody specificities (Bissett et al., 2015; Godi et al., 2015b). The 

precise L1 epitope footprints recognised by several HPV16 type-specific MAbs have recently 

been identified using cryo-electron microscopy (Guan et al., 2015; Lee et al., 2015). For the 

first time, residues in the DE loop were identified as having a major contribution towards the 

footprint, alongside FG and HI loop residues, with minor contributions from residues in the 

BC and EF loops. No HPV L1 MAbs exist which have the potential to cross-neutralise A9 

genotypes so at present this approach cannot be used for the mapping L1 cross-neutralising 

epitopes.  

 

An alternative approach was utilised within this current study whereby the L1 proteins of the 

vaccine type HPV16 and the non-vaccine A9 genotypes were characterised in an attempt to 

identify regions recognised by cross-neutralising antibodies. Antigenic regions within viral 

proteins, such as the envelope protein of dengue virus or gp41 of HIV-1, have been 

characterised by the analysis of amino acid sequence properties such as charge and 

hydrophobicity which impact upon protein structure and stability (Bryson et al., 2009; 
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Fibriansah et al., 2015). The amino acid sequence diversity between HPV16 and the non-

vaccine A9 genotypes located within the L1 surface exposed loop regions was underpinned 

by differences in the charge, hydrophobicity and molecular weight. However, it was residue 

deletions and insertions within the amino acid sequences of the loops which had the biggest 

impact upon the predicted loop structures of the non-vaccine A9 genotypes in comparison 

with HPV16. 

 

The nearest antigenic relative to HPV16 within the A9 species group, based upon 

recognition by L1 cross-neutralising antibodies, is HPV31 whilst HPV35 is the farthest 

(Bissett et al., 2014). This differential recognition was exploited in the design of novel 

chimeric L1L2 PsV with HPV31 or HPV35 L1 backbones and inter-genotype loop swaps. 

These chimeric L1L2 PsV demonstrated that the DE and FG loops, which were predicted to 

be the most structurally similar between HPV16 and the non-vaccine A9 genotypes, are L1 

antigenic targets for cross-neutralising antibodies which recognise non-vaccine A9 

genotypes. Furthermore, specific residue differences between the DE and FG loop amino 

acid sequences of HPV16, HPV31 and HPV35 allowed the epitope footprint of cross-

neutralising antibodies to be postulated. The majority of residues predicted to contribute 

towards the cross-neutralising antibody footprint were located in the late region of the FG 

loop (HPV16 numbering: Gly279 to Ser288) and direct overlap exists with residues which 

contribute towards HPV16 type-specific footprints, including a recently characterised 

neutralising HPV16 human MAb (Xia et al., 2016) and several type-specific HPV16 murine 

MAbs (Guan et al., 2015). The generation of L1 MAbs which have the potential to cross-

neutralise A9 genotypes would further our understanding of these L1 regions recognised by 

cross-neutralising antibodies and their relationship to type-specific epitopes in the context of 

the L1 capsid.   

 

The clinical trials of Cervarix® and Gardasil® which demonstrated partial vaccine efficacy 

against non-vaccine genotypes were completed just under a decade ago (Schiller et al., 
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2012). A recent systematic review has suggested that cross-protection is occurring at the 

population level following the introduction of HPV vaccination programmes, demonstrated by 

the significant reduction in infections due to HPV31, HPV33 and HPV45 in vaccinated girls 

aged 13-19 years (Drolet et al., 2015). Furthermore, HPV31 infections in women vaccinated 

with Cervarix® has been found to be associated with a reduced detectability of HPV31 cross-

neutralising antibodies leading to the suggestion that the partial vaccine efficacy against 

HPV31 may be mediated by these antibody specificities (Safaeian et al., 2013a). In this 

study the DE and FG loops have been identified as the antigenic targets recognised by L1 

cross-neutralising antibodies which potentially have a role in HPV vaccine-induced cross-

protection. The monitoring of these antibody specificities in vaccine recipients may be useful 

at the population level for defining a correlate or surrogate of cross-protection.  

 

Understanding the immune system mechanisms which underpin vaccine-induced protection 

generally results from the accumulation of data from multiple studies which contribute 

towards the establishment of a scientific consensus. The identification of the L1 regions 

recognised by HPV vaccine-induced cross-neutralising antibodies contributes towards this 

understanding by identifying viral antigenic targets recognised by the host immune system. 
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Supplementary Table 1. Primer sequences 
    Name Target Application Sequence (5’ to 3’) 
        16 VLP L1 FOR Notl HPV16 L1 PCR GCGGCCGCATGTCTCTTTG 

16 VLP L1 REV Notl HPV16 L1 PCR GCGGCCGCTTACAGCTTAC 
16 VLP L1 FOR1 HPV16 L1 SEQ GCTGGTTTGGGCCTGTGTAG 
16 VLP L1 FOR2 HPV16 L1 SEQ CAGAACCATATGGCGACAGC 
16 VLP L1 FOR3 HPV16 L1 SEQ TCCAGCACCTAAAGAAGATCC 
16 VLP L1 REV1 HPV16 L1 SEQ AGCCGCTGTGTATCTGG 
16 VLP L1 REV2 HPV16 L1 SEQ GAATATTTGGGCATCAGAGGTAAC 
16 VLP L1 REV3 HPV16 L1 SEQ GTGCTGGAGGTGTATGTTTTTG 

31 VLP L1 FOR EcoRIa HPV31 L1 PCR GAATTCATGTCTCTGTGGCGGC 
31 VLP L1 REV SphIa HPV31 L1 PCR GCATGCTTACTTTTTAGTTTTTTTACG 

31 VLP L1 FOR1a HPV31 L1 SEQ CTGTGTTGGTTTAGAGGTAGGTC 
31 VLP L1 FOR2a HPV31 L1 SEQ AAGATGGGGATATGGTTGAT 
31 VLP L1 REV3a HPV31 L1 SEQ CTCCAAAGCCTGTATCAACCA 
31 VLP L1 REV4a HPV31 L1 SEQ TAAAAATTTGTGCATCTGAAGTAAG 
31 VLP L1 REV5a HPV31 L1 SEQ GAGGGAGGTGTGGTCAATC 

FastBac FOR pFastBac 1 PCR AACCATCTCGCAAATAAATAAGTA 
FastBac REV pFastBac 1 PCR GGGGAGGTGTGGGAGGTT 

M13 Forward (-40)b Bacmid PCR GTTTTCCCAGTCACGAC 
M13 Reverseb Bacmid PCR CAGGAAACAGCTATGAC 

35 L1 FOR HPV35 L1 PCR GGATCCATGGCTCTGTGGCG 
35 L1 REV HPV35 L1 PCR GGATCCTTAACTTTTTACTTTTCTACG 
35 L2 FOR HPV35 L2 PCR TCTAGAATGCGACACAAAAGGTCTAC 
35 L2 REV HPV35 L2 PCR CTCGAGTTAGACCGCCACAGAGAC 

35 L1 FOR1 HPV35 L1 SEQ GGTCAGCCATTAGGAGTAGGTA 
35 L1 FOR2 HPV35 L1 SEQ CGGGGACATGGTAGACACAGG 
35 L1 FOR3 HPV35 L1 SEQ TAACCTCCGATGCACAAATATTT 
35 L1 FOR4 HPV35 L1 SEQ CCTTACACCACCGCCTTCTG 
35 L1 REV1 HPV35 L1 SEQ GACCACGACCTACTTCAACTCC 
35 L1 REV2 HPV35 L1 SEQ ACCATGTCCCCGTCTTGTAGT 
35 L1 REV3 HPV35 L1 SEQ AAATATTTGTGCATCGGAGGTTA 
35 L1 REV4 HPV35 L1 SEQ CAGAAGGCGGTGGTGTA 
35 L2 FOR1 HPV35 L2 SEQ ACGACCCCCTGTAACTGTG 
35 L2 FOR2 HPV35 L2 SEQ TTATGAAGAAATCCCTATGG 
35 L2 FOR3 HPV35 L2 SEQ ATAGTAGAGTAGGTAATAAAC 
35 L2 FOR4 HPV35 L2 SEQ AACAGCAGGGCCAGACATTG 
35 L2 REV1 HPV35 L2 SEQ AACAGGGGCACCAGACTCAA 
35 L2 REV2 HPV35 L2 SEQ TTAGTTATATTATTGCTGTCTGTG 
35 L2 REV3 HPV35 L2 SEQ GCCCCTATAGCTTTTCCACTTC 
35 L2 REV4 HPV35 L2 SEQ AATGTCTGGCCCTGCTGTTAT 
L1 PsV FOR psheLL SEQ GTTTTGACCTCCATAGAAGACA 
L1 PsV REV psheLL SEQ TGTCCAGACTCATCAGCCTAAG 
L2 PsV FOR psheLL SEQ CTTAGGCTGATGAGTCTGGACA 
L2 PsV REV psheLL SEQ CATAGCGTAAAAGGAGCAACATAG 
FG PsV FOR PsV L1 SEQ GCTTCGGCGCCATGGACTTCAC 
FG PsV REV PsV L1 SEQ GCCCCAGCAGATGCCGTTGTTGT 
HI PsV REV PsV L1 SEQ CGCTGAACTTCTCCTTCAGGT 

31 PsV L1 A267T FOR HPV31 L1 Mutagenesis TTCACCAGGAGCGGCACCGTGGGCGAGAGCG 
31 PsV L1 A267T REV HPV31 L1 Mutagenesis CGCTCTCGCCCACGGTGCCGCTCCTGTTGAA 

    a Designed by Dr Eve Draper 
b Designed by Thermo Fisher Scientific  

Appendices 
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Supplementary Table 2. Accession numbers and source references 
   HPV Accession number(s) Reference 
      16 K02718 (Seedorf et al., 1985) 
 NC_001526 (Kennedy et al., 1991) 
 EU118173 (Kirnbauer et al., 1993) 
 U37217 (Icenogle et al., 1995) 
 AF125673 (Flores et al., 1999) 
 AF402678 Direct Submission (2001) 
 AF472508 - AF472509 Direct Submission (2002) 
 AF534061 Direct Submission (2002) 
 AF536179 - AF536180 Direct Submission (2002) 
 AY686579 - AY686584  (Chen et al., 2005) 
 FJ006723 Direct Submission (2008) 
 FJ610146 - FJ610152 (Lurchachaiwong et al., 2009) 
 EU918764 (Wu et al., 2009b) 
 HM057182 Direct Submission (2010) 
 HQ644234 - HQ644299 (Smith et al., 2011) 
 JQ004092 - JQ004099 Direct Submission (2011) 
 JQ067943 - JQ067944, JN565302 - JN565303  (Sabol et al., 2012) 
 AB818687 - AB818693, AB889488 - AB889494 (Kukimoto et al., 2013) 
 KF880690 Direct Submission (2013) 
 KF954093 Direct Submission (2013) 
   

31 J04353 (Goldsborough et al., 1989) 
 U37410 (Icenogle et al., 1995) 
 HQ537666 - HQ537687 (Chen et al., 2011) 
 KJ754561 - KJ754580 (Bissett et al., 2015) 
   

33 M12732 (Cole and Streeck, 1986) 
 EU918766 (Wu et al., 2009b) 
 HQ537688 - HQ537707 (Chen et al., 2011) 
 KF436865 (Burk et al., 2013) 
   

35 X74477 (Delius and Hofmann, 1994) 
 HQ537708 - HQ537730 (Chen et al., 2011) 
 JN104062 - JN104067 (Draper et al., 2011) 
 JX129485 - JX129488 (Marincevic-Zuniga et al., 2012) 
   

52 X74481 (Delius and Hofmann, 1994) 
 GQ472848 (Wu et al., 2010) 
 HQ537731 - HQ537751 (Chen et al., 2011) 
 AB819272 - AB819274 (Kukimoto et al., 2013) 
   

58 D90400 (Kirii et al., 1991) 
 FJ385261 - FJ385268, FJ407192,  

FJ407194 - FJ407195, FJ407199 - FJ407201 
(Wu et al., 2009a) 

 EU918765 (Wu et al., 2009b) 
 GQ472850 (Wu et al., 2010) 
 HQ537752 - HQ537777 (Chen et al., 2011) 
 AB819275 - AB819279 (Kukimoto et al., 2013) 
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a  b  s t  r a  c t

The highly efficacious human  papillomavirus  (HPV)  vaccines contain  virus-like particles  (VLP) represent-

ing  genotypes HPV16  and  HPV18, which  together  account for approximately  70% of cervical  cancer  cases.

Vaccine-type protection  is  thought  to be  mediated by  high  titer,  type-specific  neutralizing  antibodies.  The

vaccines  also  confer  a degree  of cross-protection  against  some  genetically-related  types  from the  Alpha-9

(HPV16-like:  HPV31,  HPV33,  HPV35,  HPV52,  HPV58)  and Alpha-7  (HPV18-like:  HPV39,  HPV45,  HPV59,

HPV68)  species  groups.  Cross-protection  is coincident  with  the  detection of  low  titer  serum  responses

against  non-vaccine  types  by  vaccinees.  Such  antibodies may  be  the  effectors  of cross-protection  or  their

detection may  be  useful as a correlate  or  surrogate.

This  study evaluated  whether  cross-neutralization  of HPV types  from  the  Alpha-9  species  group  is

mediated by  antibodies  with  a  predominantly  type-restricted  specificity  for  HPV16  that  nevertheless

exhibit low  affinity  interactions  with  non-vaccine types, or  by  antibody  specificities  that  demonstrate

similar recognition  of vaccine  and non-vaccine  types but  are  present at  very  low levels.

Antibodies  generated following  Cervarix® vaccination  of 13–14 year  old girls  were  evaluated  by

pseudovirus neutralization,  VLP ELISA and  by enrichment  of target  antigen  specificity  using VLP-

immobilized  beads.  Two-dimensional  hierarchical clustering  of serology data demonstrated  that  the

antibody  specificity  profile generated by  VLP ELISA  was both quantitatively  and qualitatively different

from  the  neutralizing antibody  specificity  profile.  Target-specific  antibody  enrichment  demonstrated

that  cross-neutralization  of non-vaccine  types  was  due to a minority  of antibodies  rather  than by

the  weak  interactions  of a  predominantly  type-restricted  HPV16  antibody  specificity. Furthermore,

cross-neutralization of non-vaccine types  appeared to be  mediated by  multiple  antibody  specificities,

recognizing single  and  multiple non-vaccine  types,  and whose specificities  were not predictable  from

examination  of the serum  neutralizing  antibody  profile.  These data  contribute  to  our understanding  of

the  antibody  specificities  elicited following HPV vaccination and have  potential implications  for vaccine-

induced  cross-protection.

Crown  Copyright  © 2014  Published by  Elsevier  Ltd. 

1.  Introduction

The human papillomavirus (HPV) vaccines, Cervarix® and

Gardasil®,  comprise virus-like particles (VLP) based upon the major

capsid protein, L1, of  HPV16 and HPV18. Both vaccines are highly

efficacious at preventing persistent infection and more progressive

∗ Corresponding author. Tel.: +44 20 8327 6169.

E-mail address: simon.beddows@phe.gov.uk (S. Beddows).

disease associated with HPV16 and HPV18 [1,2].  Antibodies capa-

ble of neutralizing pseudoviruses representing HPV16 and HPV18

can be detected in  the  serum and cervicovaginal secretions of vac-

cinees [3–5]. Together with passive transfer studies demonstrating

that immune sera, purified IgG or  monoclonal antibodies (MAbs)

can protect animals against papillomavirus challenge [6–8],  has  led

to the  reasonable assumption that vaccine-induced type-specific

protection is  mediated by neutralizing antibodies [9,10].

A degree of cross-protection has also been demonstrated against

some closely-related types within the Alpha-papillomavirus

species groups, Alpha-9 (HPV16-like: HPV31, HPV33, HPV35,

HPV52, HPV58) and Alpha-7 (HPV18-like: HPV39, HPV45, HPV59,

HPV68) [1,2]. Cross-protection is  coincident with the detection

of cross-neutralizing antibodies against these types in  the serum

0264-410X Crown Copyright © 2014 Published by Elsevier Ltd. 
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and cervicovaginal secretions of vaccinees [4,11–13].  Whether

such antibodies are effectors, or their detection has some utility

as a correlate or  surrogate of vaccine-induced cross-protection is

uncertain.

The antibody response following VLP immunization has been

measured using a  VLP enzyme-linked immunosorbent assay

(ELISA) [14],  a pseudovirus-based neutralization assay [15] and

a competitive Luminex® immunoassay (cLIA) [16].  Different

antibody specificities are  measured by each of these assays but

the nature of  any potential discrepancies are  not fully under-

stood [9,11]. The cLIA assay uses the type-restricted murine MAb

H16.V5 [17], whose human homologue appears to  be  the majority

specificity generated during natural infection [18] and is  assumed

to constitute a  high proportion of the antibodies elicited during

vaccination.

The magnitude and breadth of the vaccine-induced serum neu-

tralizing antibody response against non-vaccine types generally

increases with the vaccine-type response [4,12,13].  It is  unclear

whether cross-neutralization within the Alpha-9 group is  facili-

tated by antibodies other than the H16.V5-like human homologue

or that this antibody exhibits some degree of cross-recognition not

present in the murine version.

In this study we attempted to dissect the serum antibody

response generated against non-vaccine types from the Alpha-9

group following Cervarix® vaccination in  order to  further describe

the antibody specificities responsible for cross-neutralization.

2.  Material and methods

2.1. Study samples

Serum samples (n =  69) were collected from 13 to  14 year old

girls a median 5.9 months following their third dose of Cervarix®

[12].

2.2. L1L2 pseudovirus neutralization assay

L1L2 pseudoviruses representing vaccine-relevant Alpha-9

types (HPV16, HPV31, HPV33, HPV35, HPV52 and HPV58) and

carrying a luciferase reporter were expressed from transiently

transfected 293TT cells, purified and characterized as previously

described [12]. The equivalent of a Tissue Culture Infectious Dose

50% (TCID50) was  estimated using the Spearman–Karber equation

and a standardized input of 300 TCID50 was used for all pseu-

doviruses [12,15].  Serum samples were subjected to 4-5 serial

dilutions and the 80% reciprocal neutralization titer estimated by

interpolation. A panel of six serum samples were retested against

the six pseudoviruses (n = 36; Pearson’s r =  0.976; p < 0.001) and

demonstrated good inter-assay reproducibility.

2.3. L1 VLP ELISA

L1 VLP were expressed using the Bac-to-Bac® Baculovirus Sys-

tem (Life Technologies), as previously described [20],  wherein the

L1 genes shared 100% amino acid sequence identity with the L1

genes of the  Alpha-9 pseudovirus clones [12].  The L1 VLP were

used as target antigens in a ELISA, as previously described [4].

Serum samples were subjected to  4–5 serial dilutions and the 50%

reciprocal binding titer estimated by interpolation. Good inter-

assay reproducibility was demonstrated by retesting a  panel of six

serum samples against the six L1 VLP (n  =  36; Pearson’s r = 0.947;

p < 0.001).

2.4. Hierarchical clustering of serology data

Serological and viral dendrograms were generated by calcu-

lating the pairwise Euclidean distances for the Log10-transformed

pseudovirus neutralization assay and VLP ELISA data, generating

distance matrices that were then clustered using a  neighbor-

joining algorithm (http://evolution.genetics.washington.edu/

phylip.html). The resulting viral dendrograms were bootstrapped

by resampling the sera data to  generate 500 pseudoreplicates. Den-

drograms were viewed using FigTree 1.3.1 (http://tree.bio.ed.ac.uk/

software/figtree/). The serological data were then represented by

a heat map  ordered according to the resulting serological and viral

dendrograms.

2.5. Antibody adsorption and elution from L1 VLP

VLP (HPV16 10 �g; non-vaccine type 5 �g) were coupled to

magnetic sepharose beads (GE Healthcare) overnight at 4 ◦C.

Antibody adsorption and elution were performed as described

elsewhere [21,22] with minor modifications. Sera for adsorption

were diluted five-fold in Dulbecco’s modified Eagle medium

(DMEM) containing 10% fetal bovine serum (FBS) (Life Technolo-

gies) and incubated with beads for 1 h at room temperature. The

post-adsorption serum fraction was  separated from the beads

using a magnetic rack before being subjected to a  second round

of adsorption using a freshly coupled bead set. Both bead sets

were then washed three times in DMEM containing 10% FBS.

No residual antibody activity was  detectable in the final washes.

Antibodies were eluted using 0.1 M glycine–HCI (pH 2.9–1.9) and

neutralized with 1 M  Tris–HCI, pH 9 (GE Healthcare). The pooled

eluted antibody fractions were concentrated using Vivaspin 500

columns (GE Healthcare). Each serum was  also subjected to two

rounds of adsorption on, and elution from, beads coupled with

10 �g BSA which was  used as a  control for non-specific activity;

when eluted fractions were tested against the HPV16 pseudovirus

they were found to have levels of neutralizing antibody below the

detection threshold.

2.6. Statistical methods

Pearson’s correlation was  used to  evaluate the relationship

between HPV16 antibody titers. Fisher’s exact test was used to

determine whether the proportion of sera reactive against a  par-

ticular non-vaccine type differed between the two assay systems.

Tests were 2-tailed where appropriate and performed using Stata

12.1 (Statacorp, College Station, TX).

3. Results

Sixty nine serum samples from Cervarix® vaccinees, previously

tested in the pseudovirus neutralization assay against vaccine-

relevant Alpha-9 types [12] were tested against VLP representing

the same HPV types by ELISA.

3.1. Antibody titers measured in pseudovirus neutralization assay

and VLP ELISA

As in the pseudovirus neutralization assay [12], all sera (n =  69,

100%) tested positive for HPV16 antibodies by VLP ELISA. A sig-

nificant correlation was observed between the antibody titers

generated by the pseudovirus neutralization assay (median 19,258

[inter-quartile range, IQR, 11,730–28,132]) and VLP ELISA (9279

[7290–44,719]) (Pearson’s r = 0.833; p  <  0.001).

For non-vaccine types, there were differences between antibody

titers generated in  the VLP ELISA and the pseudovirus neutral-

ization assay. While the number of samples positive for HPV31

antibodies in the VLP ELISA (n =  58; 84%) and pseudovirus neu-

tralization assay (n =  60; 87%) were similar (p =  0.810), antibody

titers of sera positive in both assays were higher in  the VLP ELISA

(median 651 [IQR 576–771]) than in the pseudovirus neutralization

http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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Fig. 1.  Hierarchical clustering of L1L2 pseudovirus neutralization data.

Log10-transformed pseudovirus neutralization data (centre, heat map) were subjected to two-dimensional hierarchical clustering and re-ordered according to  serological

(left)  and pseudovirus (top) dendrograms constructed from the resulting distance matrices. The serological dendrogram is labeled I-VIII based upon intuitive clustering of

serological data whereas the pseudovirus target dendrogram clusters are supported by  bootstrapping of 500 pseudoreplicates.

assay (96 [50–203]) (p <  0.001). More serum samples were posi-

tive for  HPV33 antibodies by  VLP ELISA (n = 47; 68%) than by the

pseudovirus neutralization assay (n =  29; 42%; p = 0.003) with dual

positive titers higher in  the VLP ELISA (600 [374–735]) than in the

pseudovirus neutralization assay (29 [25–54]) (p <  0.001).

These data suggest that there were quantitative differences

between the pseudovirus neutralization assay and VLP ELISA and/or

target antigens, particularly for non-vaccine types. We  next sought

to evaluate whether these data also reflected qualitative differ-

ences.

3.2. Hierarchical clustering of serological data

Two-dimensional antigenic dendrograms were constructed by

hierarchical clustering of the pseudovirus neutralization assay

(Fig. 1) and VLP ELISA (Fig. 2)  data. The target antigens (L1L2 pseu-

dovirus or L1 VLP) were clustered horizontally while the sera were

clustered vertically against a  heat map  representing the Log10-

transformed antibody titer data. This approach allowed us to  sort

the pseudovirus neutralization and VLP ELISA data into clusters of

sera  displaying similar antigenic profiles.

The magnitude and breadth of the individual serum neutral-

izing antibody responses against vaccine and non-vaccine types

permitted intuitive clustering (Fig. 1). Serum samples in  Cluster I

displayed the highest HPV16 neutralization titers and the broadest

coverage of non-vaccine types, while Cluster VI included sam-

ples that had intermediate HPV16 neutralization titers and whose

breadth of reactivity extended to HPV31 and HPV33 (Table 1).

These data support a  generally quantitative relationship between

the level of antibodies in  vaccinee sera against HPV16 and an ability

to recognize non-vaccine types. However, there also appeared to be

a number of antibody specificities displayed. Samples within Clus-

ters II, V and VI for example exhibited differential neutralization

of HPV33, HPV35 or  HPV52, in addition to HPV31 despite similar

HPV16 antibody titers.

The serological dendrogram based upon VLP ELISA binding titers

(Fig. 2) permitted the formation of branches but the ordering of

individual sera bore little relation to the arrangement in the sero-

logical dendrogram based upon the pseudovirus neutralization

data.

The hierarchical clustering of antibody responses also permit-

ted the ranking of the target antigens. Pseudoviruses HPV31 and

HPV33 were the nearest antigenic relatives to HPV16 followed by

HPV58 (Fig. 1). HPV52 and HPV35 pseudoviruses clustered together

suggesting a  close antigenic relationship between these types. The

antigenic dendrogram based upon VLP ELISA data (Fig. 2) was
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Fig. 2.  Hierarchical clustering of L1 VLP binding data.

Log10-transformed VLP binding data (centre, heat map) were subjected to  two-dimensional hierarchical clustering and re-ordered according to  serological (left) and

pseudovirus (top) dendrograms constructed from the resulting distance matrices. VLP target dendrogram is  supported by  bootstrapping of 500 pseudoreplicates.

broadly similar such that the nearest antigenic relative to HPV16

was HPV31, followed by two separate clusters of HPV33 and HPV58,

and  HPV35 and HPV52. These inter-type antigenic relationships

had good bootstrap support and differed somewhat from the inter-

type genetic distances based upon L1 amino sequence (Fig. 3).

3.3. Enrichment of vaccine and non-vaccine antibody specificities

Potential differences in cross-neutralizing antibody specificity

were addressed by  adsorption on, and elution from, individual non-

vaccine type VLP. We reasoned that if cross-neutralization was

due to antibodies that constitute a  minor fraction of the total vac-

cine antibody repertoire, such an approach should enrich for these

specificities in preference to type-specific HPV16 antibodies. Six

serum samples (A–F) were selected from Cluster I (Fig. 1) for enrich-

ment and the neutralization titers against pseudoviruses HPV16,

HPV31 and another relevant type were determined prior to  and

post enrichment. Antibodies enriched on non-vaccine type VLP dis-

played a  range of different cross-neutralizing specificities (Fig. 4).

The enrichment of sera A–D on a  particular non-vaccine type VLP

did not also enrich for antibodies against another non-vaccine type.

Enrichment of serum A  on HPV31 or HPV58 VLP yielded antibodies

Table 1

Differential pseudovirus neutralization responses informed by hierarchical clustering.

Cluster n Median (IQR) serum neutralization titers against indicated HPV pseudovirusa

HPV16 HPV31 HPV33 HPV35 HPV52 HPV58

I 13 74,295 (55,880–122,896) 482 (195–665) 54  (24–87) 22  (10–68) 21  (10–25) 20 (10–32)

II  5 20,556 (20,032–20,559) 58  (51–98) 23  (10–27) 27  (25–49) 10 (10–25) 10 (10–10)

III  7 9721 (5959–12,954) 31  (27–33) 10 (10–10) 10 (10–10) 10 (10–10) 10 (10–10)

IV  10  6953 (4366–11,584) 10 (10–10) 10 (10–10) 10 (10–10) 10 (10–18) 10 (10–10)

V  7 18,351 (17,026–25,055) 45  (42–84) 10 (10–21) 10 (10–10) 28  (25–35) 10 (10–10)

VI  8 13,302 (11,612–17,578) 108 (57–166) 30 (25–37) 10 (10–10) 10 (10–10) 10 (10–10)

VII  6 8275 (6386–11,407) 87  (70–107) 10 (10–10) 10 (10–10) 10 (10–10) 10 (10–10)

VIII  13 25,962 (21,195–40,113) 152 (90–399) 10 (10–26) 10 (10–10) 10 (10–10) 10 (10–10)

a Median (IQR, interquartile range) neutralizing antibody titers of sera within indicated intuitive clusters against indicated HPV pseudoviruses.
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Fig. 3. Distance matrix based upon L1 amino acid sequence used for both Alpha-9

pseudoviruses and VLP, generated using a neighbor-joining algorithm and sup-

ported by bootstrap values.

capable of recognizing HPV16 and only the type used for enrich-

ment. For example, the pre-treatment titers against HPV31 and

HPV58 were 211 and 2696, respectively. Enrichment on HPV58 VLP

increased the  titer against HPV58 to 6188 but no HPV31 antibody

reactivity was  detectable. Serum B which demonstrated post-

enrichment neutralization activity against HPV31, HPV33, HPV35

and HPV58 appeared to comprise multiple antibody specificities

that recognized HPV16 and only the indicated non-vaccine type.

Enrichment of sera C and D on HPV35 VLP yielded antibodies capa-

ble of recognising HPV16 and HPV35, but not HPV31.

Antibodies enriched from serum E and F exhibited cross-

recognition of more than one non-vaccine type. The enrichment

of serum E on HPV31 or HPV33 VLP yielded antibodies capable

of recognizing HPV16, HPV31 and HPV33 pseudoviruses. Serum F

when enriched on HPV31, HPV33 and HPV58 demonstrated neu-

tralization of HPV31 pseudovirus to  a  comparable level, and serum

F antibodies enriched on HPV31 or HPV33 VLP had similar titers

against HPV33.

The HPV16 titer dropped by a  median 1.8 Log10 (IQR 1.7–2.8;

n = 13) fold following enrichment on non-vaccine VLP. Enriched

antibody titers against HPV16 were similar to  the titers observed

against the  type used for enrichment, for example antibodies in

serum A when enriched on HPV31 VLP neutralized HPV16 and

HPV31 at titers of 861 and 795, respectively.

Antibodies enriched from serum samples A–F, were also tested

against L1 VLP representing the same HPV types (Supplementary

material S1). Antibody binding titers further confirmed the obser-

vations that non-vaccine type antibodies are a minority species

which display similar reactivity against HPV16 and non-vaccine

types and again highlighted discrepancies between binding and

neutralizing antibody specificity.

4. Discussion

We undertook a proof of concept study to investigate the cross-

neutralizing antibody specificities generate in response to HPV

vaccination. Cross-neutralizing antibodies are elicited in response

to both licensed vaccines, Cervarix® and Gardasil® [4,11–13] and

this is coincident with differential degrees of vaccine-induced

cross-protection [1,2],  although a  direct link between the two

observations has  not been established. The characterisation of the

cross-neutralizing response beyond antibody titer has been limited

to studies of avidity [23] and the vaccine-type specificity of cross-

neutralizing antibodies [24].  Sera from Cervarix® vaccinees were

chosen since it  is  this vaccine that appears to elicit the broadest

cross-neutralization of non-vaccine types [4].

In  the present study, sera  from Cervarix® vaccinees were shown

to have high antibody titers with broad reactivity against L1 VLP

with homologous L1 sequences to those of the pseudoviruses.

HPV16 neutralizing antibody titers were similar to those gener-

ated in  the VLP ELISA corroborating observations in other studies

[5,25].  Agreement between antibody reactivity against L1L2 pseu-

doviruses and L1 VLP representing non-vaccine HPV types was

weaker with VLP ELISA antibody titers generally an order of  magni-

tude higher than the corresponding pseudovirus neutralizing titers

[4,26].

To examine the discrepancy between cross-reactive antibody

profiles, both sets of serological data were subjected to  hierarchi-

cal clustering. This approach has been used for the evaluation of

HIV [27–30],  foot and mouth disease virus [31] and H5N1 avian

Influenza virus [32] antibody specificities, but we believe this is

the first time that this approach has been used to  examine HPV

vaccine antibody specificity. Differences between pseudovirus neu-

tralizing and VLP binding antibody profiles were stark. There are

likely several confounding factors that contribute to this outcome

including technical differences between the assays and differences

between the range of binding and neutralizing antibody specifici-

ties generated. Thus, while L1 VLP binding may  be  a  useful surrogate

for type-specific vaccine antibody responses [25] they may  not

be a similarly useful surrogate for neutralizing antibody reactivity

against non-vaccine types.

A number of murine MAbs are capable of binding L1 VLP but

lack the ability to neutralize the homologous L1L2 pseudovirus

[17,33–35].  For example, MAb  H16.J4 cross-reacts with L1 VLP

representing various HPV types by ELISA [17],  cross-neutralizes

HPV31, HPV33 and HPV58 in an L1-based reporter transduction

assay [36], but poorly recognizes its epitope on HPV16 L1L2 pseu-

doviruses [34,35].  Conversely, the neutralizing type-specific MAb

H16.V5 appears to recognize its epitope on L1 VLP and L1L2 pseu-

doviruses to a  similar extent [35].  It  is reasonable to assume,

therefore, that the majority of non-neutralizing antibodies in  vac-

cine sera that recognize VLP representing non-vaccine types, bind

to portions of the L1 protein not  involved in (pseudo)virus entry or

to domains that become altered when L2 is  incorporated into the

capsid.

There was some agreement in  the antigenic inter-type ranking

of target HPV types. For both L1 VLP and L1L2 pseudovirus anti-

gens, HPV31 was  ranked as the nearest relative to HPV16, and

both HPV33/HPV58 and HPV35/HPV52 appeared to  share some

antigenic similarity, at least based upon reactivity of  antibodies

generated against the archetypal Alpha-9 group type, HPV16. Some

of these antigenic similarities could have been predicted from the

distance matrix based upon the L1 amino acid sequence (HPV33

and HPV58), while some could not (HPV35 and HPV52).

Hierarchical clustering of the pseudovirus neutralization data

also suggested that Cervarix® vaccination elicits multiple cross-

reactive antibody specificities. The underlying basis for individuals

generating such a  range of cross-reactive antibody specificities

is  unclear. There may  be a genetic component [37] that could

impact on an individual’s ability to process certain immunogenic

epitopes displayed on the vaccine antigens but identifying such

contributing factors is  challenging. In an attempt to examine the

multiplicity of this cross-neutralizing response, we performed anti-

body enrichment of sera using L1 VLP immobilized onto beads and

then tested the eluted fractions against relevant pseudoviruses. The

enrichment of antibody specificities using this approach appears

to suggest that cross-reactive antibodies formed a  distinct, minor-

ity specificity within the vaccine-induced antibody repertoire and

were not a consequence of a  low affinity interaction of an otherwise

predominantly type-specific antibody.

The enriched fractions displayed a  range of cross-neutralizing

antibody specificities including those that recognize multiple non-

vaccine types and those that recognize only single non-vaccine

types. The cross-neutralizing specificities of the enriched antibody
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Fig. 4.  L1L2 pseudovirus neutralization titers prior to  and post antibody enrichment on  non-vaccine L1 VLP.

Serum  samples (A–F) were enriched on  VLP representing non-vaccine A9 types. The neutralization titer against pseudoviruses (PsV) representing HPV16, HPV31 and another

relevant type were determined for the serum samples prior to  and post enrichment.
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fractions could not have been predicted from the neutralization

profile of the  source serum. These data suggest that there are mul-

tiple immunogenic sites  on the surface-exposed domains of the

HPV16 L1 protein that share sequence and/or structural homol-

ogy with other Alpha-9 types. These regions may  include the

variable loops DE, FG and HI that appear to be  common tar-

get domains of  antibodies generated by natural HPV16 infection

[38].

There are several potential shortcomings to  this work. Only

six sera were evaluated from individuals given Cervarix® vac-

cine. Caution should therefore be employed when attempting to

extrapolate these findings to the majority of HPV vaccinees. Extend-

ing this work to include sera from both Cervarix® and Gardasil®

vaccinees will support a more robust evaluation. The target anti-

gens for the enriched antibodies were L1L2 pseudoviruses whereas

the antigens used for the enrichment were L1 VLP which may

have introduced some bias in  the antibody specificities being

measured. This approach was used for two reasons. First, in

our hands, the expression and purification of L1 VLP generates

purer populations of antigen than the corresponding purifica-

tion of L1L2 pseudoviruses. Second, the immunogens used in

the HPV vaccines are L1 VLP and so the use of L1 VLP as the

immobilized antigen should have allowed capture of the major-

ity of L1-specific antibodies able to recognize a  particular HPV

type. The recovery of high titer cross-neutralizing antibodies fol-

lowing enrichment on non-vaccine VLP appears to support the

maintenance of  some VLP conformational integrity following bead

immobilisation.

If cross-neutralizing antibodies form a  tiny minority of the anti-

bodies elicited following HPV vaccination it is possible that their

generation and maintenance is more precarious than those of vac-

cine type antibodies. HPV31 cross-neutralizing antibody can be

detected at  18  months after the third Cervarix® vaccine dose sug-

gesting some degree of stability in this regard [26].  A two-dose

schedule may  also be an issue for the generation and maintenance

of a sizeable cross-neutralizing antibody fraction. While HPV16

antibody titers following a  two dose schedule appear to be non-

inferior to  those following a  three dose schedule [19],  the impact

on the generation of antibodies to non-vaccine types is unclear.

Understanding the potential impact of prior infection on vaccine

antibody responses [23] and differences between the specificities

of antibodies generated following vaccination and during natural

infection will also be important.

Overall, these data support the notion that antibody neutraliza-

tion of non-vaccine types by Cervarix® vaccine sera is due to a  small

fraction of antibodies exhibiting different but overlapping specifici-

ties, rather than a predominantly type-specific antibody specificity

that nevertheless exhibits a  small degree of cross-recognition of

non-vaccine types. Identifying the HPV16 L1 domains responsible

for their generation and perhaps improving HPV16 VLP immuno-

genicity toward the generation of such antibodies will be important

if the development of high titer neutralizing antibodies targeting

non-vaccine types is considered to  be a  desirable outcome of HPV

vaccination.
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ABSTRACT

We investigated naturally occurring variation within the major (L1) and minor (L2) capsid proteins of oncogenic human papil-

lomavirus (HPV) genotype 31 (HPV31) to determine the impact on capsid antigenicity. L1L2 pseudoviruses (PsVs) representing

the three HPV31 variant lineages, variant lineages A, B, and C, exhibited comparable particle-to-infectivity ratios and morpholo-

gies. Lineage-specific L1L2 PsVs demonstrated subtle differences in susceptibility to neutralization by antibodies elicited follow-

ing vaccination or preclinical L1 virus-like particle (VLP) immunization or by monoclonal antibodies; however, these differences

were generally of a low magnitude. These data indicate that the diagnostic lineage-specific single nucleotide polymorphisms

within the HPV31 capsid genes have a limited effect on L1 antibody-mediated neutralization and that the three HPV31 variant

lineages belong to a single L1 serotype. These data contribute to our understanding of HPV L1 variant antigenicity.

IMPORTANCE

The virus coat (capsid) of the human papillomavirus contains major (L1) and minor (L2) capsid proteins. These proteins facili-

tate host cell attachment and viral infectivity and are the targets for antibodies which interfere with these events. In this study,

we investigated the impact of naturally occurring variation within these proteins upon susceptibility to viral neutralization by

antibodies induced by L1 VLP immunization. We demonstrate that HPV31 L1 and L2 variants exhibit similar susceptibility to

antibody-mediated neutralization and that for the purposes of L1 VLP-based vaccines, these variant lineages represent a single

serotype.

Human papillomaviruses (HPVs) have a double-stranded
DNA genome of approximately 8 kb which is replicated via

host cell polymerases with an error rate of ca. 2 � 10�8 base sub-
stitutions per site per year (1), substantially lower than that found
in the majority of single-stranded RNA viruses (ca. 1 � 10�3 base
substitutions per site per year) (2). Despite the low evolutionary
rate of the HPV genome, variants have arisen over time, leading to
the generation of distinct intragenotype lineages classified by a
sequence difference of 1 to 10% across the whole genome (3). The
single nucleotide polymorphisms (SNPs) that allow segregation of
these variants into distinct lineages can be found in each gene/
region, with the highest number accumulating in the noncoding
regions (NCR1, NCR2, and URR) and the lowest number accu-
mulating in structural (L1 and L2) genes (4).

The HPV structural genes encode the major (L1) and minor
(L2) proteins that form the nonenveloped icosahedral viral capsid,
which comprises 72 pentameric L1 capsomers, and each capsomer
has an upper estimate of one L2 protein (5). The L1 protein me-
diates attachment to host cells (6), while the L2 protein is essential
for subsequent viral infectivity (7).

The humoral immune response following natural HPV infec-
tion predominately targets conformational epitopes on the sur-
face-exposed loop regions of the L1 protein (8, 9). Seroconversion
generally occurs 6 to 18 months after infection, with low levels of
L1 antibodies being detected in 50 to 70% of individuals (10, 11).
It is not clear whether antibodies induced by natural infection
protect against subsequent reinfection by the same HPV genotype,
but increasing evidence indicates that high antibody titers can be
associated with a reduced risk of reinfection (12–15).

The L1 protein can self-assemble into virus-like particles

(VLPs), which are the basis of the current prophylactic HPV vac-
cines, Cervarix and Gardasil (16). Clinical trials have demon-
strated the high degrees of efficacy of both vaccines against infec-
tion and cervical disease associated with vaccine genotypes HPV
genotype 16 (HPV16) and HPV18. A degree of vaccine-induced
cross-protection against closely related genotypes, particular
HPV31, HPV33, and HPV45, has also been demonstrated (16–
18). HPV vaccine type-specific protection is assumed to be medi-
ated by L1-neutralizing antibodies, which can be detected in the
serum and cervicovaginal secretions of vaccinees (16, 19–22). The
role of L1-neutralizing antibodies in mediating cross-protection is
less clear, although a recent study reported an association between
the presence of HPV31 cross-neutralizing antibodies and a re-
duced risk of HPV31 infection (23). Next-generation L1 VLP-
based vaccines aim to extend the breadth of coverage by incorpo-
rating an increased number of L1 VLPs (24, 25).

Intragenotype variation within the L1 protein is generally lo-
calized to the surface-exposed loop domains (26), akin to the ma-
jority of intergenotype variation (27, 28). Data informing the po-
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tential impact of such variation on L1 antigenicity are limited to
HPV16, where L1L2 pseudoviruses (PsVs) representing lineage-
specific L1 variants were neutralized to a similar extent by anti-
bodies elicited against a single L1 VLP (29). However, the impact
of a common Thr-to-Ala switch at amino acid residue position
266 within the FG loop of HPV16 was not evaluated, nor was
variation within the corresponding L2. Another study found that
an FG loop-specific neutralizing monoclonal antibody (MAb),
H16.E70, had reduced recognition for HPV16 L1 VLP bearing a
Thr at amino acid residue 266, indicating that variation within this
region can impact antigenicity (30).

HPV31 is closely related to HPV16 within the alpha 9 species
group and is associated with ca. 3.8% of cervical cancer cases
worldwide (31). The full-genome sequence analysis of HPV31 has
led to the delineation of three distinct variant lineages: A, B, and C
(4). Infections due to HPV31 lineage variant A or B have been
associated with an increased risk of development of cervical intra-
epithelial neoplasia grades 2 and 3 (CIN2/3), yet, somewhat par-
adoxically, infections with lineage variant C appear to persist for
longer periods (32, 33). Differences in the natural history between
variants of other HPV genotypes have also been observed (34, 35).
The relative infectivity of variants or the ability of variants to dif-
ferentially disrupt cellular differentiation is a possible virological
factor which can contribute to the disparities in variant pathology
(3). One study suggested that the genetic background of the host
may also play a role, since African-American women were found
to be less likely to clear a HPV31 lineage variant C infection than a
lineage variant A infection, yet there was no difference in the like-
lihood of clearing a lineage variant A over C infection in Caucasian
women (33).

Two nonsynonymous, lineage-specific SNPs within the L1 of
HPV31 are located within the FG loop at positions 267 and 274
(26). The FG loop of HPV31 has been shown to be an important
antigenic domain targeted by both type-specific and cross-reac-
tive L1 MAbs (36, 37). In the present study, we generated addi-
tional HPV31 L1 and L2 sequences and synthesized representative
antigens in order to investigate the potential impact of this varia-
tion. Such data should improve our understanding of the poten-
tial biological impact of naturally occurring HPV31 variation.

MATERIALS AND METHODS

Study samples. Residual vulva-vaginal samples that had been collected
from 16- to 24-year-old females who were undergoing chlamydia testing
in England and that had previously been confirmed to be HPV31 DNA
positive using the Hybrid Capture 2 HPV DNA test (Qiagen) and the
Linear Array HPV genotyping test (Roche) (38) were selected for L1 and
L2 sequencing. Cervical cell samples from HPV31 DNA-positive women
(ages, 19 to 76 years) attending gynecological care at the San Gerardo
Hospital (Milan, Italy; ethical approval study code 08/UNIMIB-HPA/
HPV1) following a cytological diagnosis of atypical squamous cells of
undetermined significance (ASCUS) or low-grade squamous intraepithe-
lial lesions (LSILs) were available for L1 and L2 sequencing. Serum sam-
ples were available from HPV31 DNA-positive women within this cohort.
Serum samples were available from 12- to 15-year-old girls 1 month after
receiving three doses of Cervarix or Gardasil HPV vaccine (20). A panel of
HPV31 MAbs was available as either ascitic fluid or tissue culture super-
natant (39).

Sequencing of HPV31 capsid genes. The L1 gene (bp 5443 to 7119
[40] or the FG loop region from bp 6141 to 6476; numbered according to
the HPV31 reference sequence with GenBank accession number J04353)
and the L2 gene (bp 3921 to 5725) were amplified with Platinum Taq
high-fidelity DNA polymerase (Life Technologies) and sequenced using

an ABI 3730 genetic analyzer. Sequence data were collated using DNAS-
TAR Lasergene (v9.0) software (DNASTAR, Inc.). Additional HPV31 L1
and L2 sequences were downloaded from the National Center for Biotech-
nology Information (NCBI; http://www.ncbi.nlm.nih.gov/; GenBank ac-
cession numbers HQ537666 to HQ537687 [4], U37410 [41], and J04353
[42]) and analyzed using the neighbor-joining tree algorithm, with boot-
strap values (n � 500 iterations) being generated using the MEGA (v6)
program (43). HPV31 L1 variant residues were mapped to the surface of
the HPV16 capsomer crystal structure (PDB accession number 2R5H)
and analyzed using the Swiss-PDP viewer algorithm (v4.0; Deep View)
(44).

L1 VLPs. HPV31 L1 VLPs were expressed using a Bac-to-Bac baculo-
virus system (Life Technologies) and purified on an iodixanol (Sigma-
Aldrich) gradient as previously described (45). The L1 protein was visu-
alized by SDS-PAGE, the gel was stained with SimplyBlue SafeStain (Life
Technologies), and the L1 protein concentration was determined by com-
parison with a standard curve derived from known input concentrations
of bovine serum albumin. Gel analysis was carried out using ImageJ soft-
ware (U.S. National Institutes of Health; http://imagej.nih.gov/ij) to de-
termine the L1 concentration of the gradient fractions. VLP formation
was confirmed by electron microscopic analysis of negatively stained par-
ticles. The HPV31 L1 VLPs shared a 100% amino acid sequence identity
with the amino acid sequence of the L1 protein of the HPV31 reference
sequence (GenBank accession number J04353) of lineage variant A. Site-
directed mutagenesis with a QuikChange kit (Stratagene) was employed
to generate L1 sequences representing lineage variants HPV31 B and
HPV31 C. The L1 VLPs were used as target antigens in an enzyme-linked
immunosorbent assay (ELISA), as previously described (20, 45). The
panel of HPV31 MAbs was tested at a standardized input concentration of
250 �g/ml of mouse IgG for all MAbs except 31.D24, for which the start-
ing input concentration was 20 �g/ml. The MAbs were subjected to serial
dilutions, the IgG concentration which resulted in a 50% maximal bind-
ing optimal density (OD) was estimated by interpolation, and the results
are presented as the 50% binding concentration.

Mouse immunizations. VLPs were adsorbed onto aluminum hydrox-
ide (Alhydrogel; Brenntag Biosector) before addition of the monophos-
phoryl lipid A (MPL)-based Sigma adjuvant system (Sigma-Aldrich).
BALB/c mice were injected intramuscularly with 2 �g of VLPs on day 0
and day 14, before a terminal blood sample was taken at day 21. Pretreat-
ment blood samples were taken from all mice prior to the initial immu-
nization. A total of 10 mice were immunized with either HPV31 A VLPs,
HPV31 B VLPs, or HPV31 C VLPs over three separate immunization
schedules. All animal husbandry and procedures were carried out in strict
accordance with United Kingdom Home Office guidelines, were governed
by the Animals (Scientific Procedures) Act of 1986, and were performed
under licenses PPL 70/7412 and 70/7414.

L1L2 pseudoviruses. A bicistronic psheLL vector (46) containing
codon-optimized HPV31 L1 and L2 genes from the HPV31 reference
sequence (GenBank accession number J04353) of lineage variant A was
expressed and purified on an iodixanol (Sigma-Aldrich) gradient as pre-
viously described (47). The L1 and L2 genes from lineage variants HPV31
B and HPV31 C were either synthesized by GeneArt (Life Technologies)
or generated by site-direct mutagenesis with a QuikChange kit (Strat-
agene). Particle formation and particle size were determined by electron
microscopic analysis of negatively stained particles. The L1 concentra-
tions of PsV stocks were estimated by semiquantitative L1 Western blot
analysis using CamVir-1 antibody (Abcam, United Kingdom), and the
50% tissue culture infective dose (TCID50) was estimated using the Spear-
man-Karber equation as previously described (47). Particle-to-infectivity
(PI) ratios were determined on the basis of an estimated particle amount
of 3 � 107 particles per ng L1 protein (http://home.ccr.cancer.gov/lco
/production.asp), with the ratio being normalized for the input volume
and the TCID50. The presence of the L2 protein and the reporter gene
(luciferase) in purified PsV stocks was confirmed by qualitative L2 West-
ern blot analysis using HPV16 L2 antipeptide-containing sera (amino
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acids 17 to 36) and qualitative PCR (bp 1222 to 1641; pGL4.51; Promega)
following DNA extraction (QIAamp DNA blood minikit; Qiagen), re-
spectively. The PsV neutralization assay was performed as previously de-
scribed (48) with minor modifications (47). A standardized input of 100
TCID50s was used for all PsVs, and samples were subjected to serial dilu-
tions, with the antibody titer or concentration resulting in an 80% reduc-
tion of the luciferase signal (in relative light units) produced by the control
wells containing PsV only being estimated by interpolation. HPV anti-
body control reagents were included in each assay run (49) alongside
heparin (H-4784; Sigma-Aldrich), which was used as a positive inhibitor
control. The median neutralization titer and interquartile range (IQR) for
the positive-antibody-control reagent (high-titer HPV16/18) were as fol-
lows: for HPV31 A PsVs, 231 (IQR, 173 to 337; n � 14); for HPV31 B PsVs,
462 (IQR, 387 to 671; n � 10); and for HPV31 C PsVs, 500 (IQR, 354 to
589; n � 12). The negative-antibody-control reagent (HPV negative) had
a titer of �40 in all assays (n � 42).

Statistical analysis. The Wilcoxon paired signed-rank test was used to
compare neutralization titers using Stata (v12.1) software (StataCorp,
College Station, TX).

Nucleotide sequence accession numbers. The HPV31 L1 and L2 se-
quences generated in this study were assigned the following GenBank
accession numbers: KJ754561 to KJ754580.

RESULTS

HPV31 L1 and L2 amino acid variation. Full-length HPV31 L1
and L2 sequences were represented by contemporary English (n �

17) and Italian (n � 3) sequences, in addition to available NCBI
database sequences (n � 24). Analysis of the aligned, concate-
nated L1 and L2 sequences demonstrated three distinct clusters
consistent with the lineages HPV31 A, HPV31 B, and HPV31 C
(Fig. 1A). Lineage A contained 14 sequences, including the

FIG 1 HPV31 L1 and L2 variation. (A) Phylogenetic tree constructed from concatenated L1 and L2 nucleotide sequences, including representative sequences
from lineages A (J04353), B (HQ537677), and C (HQ537682). (51) and bootstrap values of �95%. (B) Site-specific amino acid (aa) covariation within the L1 and
L2 proteins. N, number of sequences in the phylogenetic tree represented by each L1 and L2 combination.
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HPV31 reference sequence (GenBank accession number
J04353), and 7 of these demonstrated variation from the refer-
ence sequence in L1 (T432S) and a single sequence demon-
strated variation within L2 (I270M) (Fig. 1B). All 13 sequences
in lineage B demonstrated variation from the reference se-
quence at L1 amino acid position 274 (T274N) within the FG
loop, while 4 sequences also varied at position 194 (S194T) and
1 varied at position 432 (T432A). Five sequences exhibited
variation from the reference sequence at L2 position 362
(T362A). Lineage C contained 17 sequences, all of which dem-
onstrated variation from the reference sequence at L1 amino
acid positions 267 (T267A) and 274 (T274N) within the FG
loop and L2 positions 115 (V115I), 270 (I270M), and 377
(V377L); 5 sequences also varied from the reference sequence
at L2 amino acid position 269 (N269D).

Sensitivity of variant HPV31 L1L2 PsVs to antibody-medi-
ated neutralization. L1L2 PsVs representing lineage variants
HPV31 A (GenBank accession number J04353), HPV31 B, and
HPV31 C were generated from the consensus L1 and L2 sequences
representing each lineage and bore the major L1 variant residues
(at positions 267 and 274) and L2 variant residues at positions 115,

270, and 377 (Fig. 2A). All three lineage variant PsVs, here referred
to as HPV31 A PsVs, HPV31 B PsVs, and HPV31 C PsVs, gener-
ated similarly sized PsV particles of about 50 nm and produced
comparable PI ratios of ca. 102 (Fig. 2B). The PsV preparations
also contained the L2 protein and the luciferase reporter plasmid
(data not shown).

The HPV31 variant PsVs were tested against sera from girls
who received either the Cervarix or the Gardasil (n � 46) HPV
vaccine (Table 1). Both HPV31 B and C PsVs were more sensitive
to neutralization than HPV31 A PsVs. HPV31 B PsVs displayed a
median 1.7-fold (IQR, 1.1- to 2.4-fold; Wilcoxon paired signed-
rank test, P � 0.001) increased sensitivity to vaccine-induced
cross-neutralizing antibodies compared to that of HPV31 A PsVs,
while HPV31 C PsVs displayed a 1.4-fold (IQR, 1.1- to 1.6-fold;
P � 0.001) increased sensitivity compared to that of HPV31 A
PsVs. The increased sensitivity of HPV31 B and C PsVs to cross-
neutralizing antibodies was independent of the HPV vaccine re-
ceived (Table 1).

All three HPV31 variant PsVs were susceptible to neutraliza-
tion by a small panel of longitudinal serum samples (collected at 0,
6, 12, and 18 months) from women naturally infected with HPV31

FIG 2 HPV31 L1 and L2 variants. (A) Graphical representation of L1 and L2 variant protein combinations. Site-specific amino acid alterations from the
reference (HPV31 A; top sequence, open squares) are indicated using the residue position and resulting amino acid sequence code (filled squares). (B) L1L2
pseudovirus preparation characterized for the median (IQR) particle dimension, infectivity, and L1 concentration. (C) Median (IQR) L1 VLP dimensions (for
particles �40 nm in diameter) and L1 concentrations.
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(Table 2). Median antibody neutralization titers against HPV31 A,
B, and C PsVs were 576 (IQR, 391 to 1,144), 839 (IQR, 587 to
1,899), and 882 (IQR, 337 to 1,895), respectively.

Immunogenicity of variant HPV31 L1 VLPs. HPV31 L1 VLPs
bearing L1 variant residues T267A and T274N (Fig. 2A), here
referred to as HPV31 A, HPV31 B, and HPV31 C VLPs, were
expressed and used to immunize BALB/c mice. All three prepara-
tions contained VLPs of various sizes, ranging from ca. 20 nm to
up to 60 nm in diameter, with VLPs of �40 nm in diameter con-
stituting 30% of the HPV31 B VLP preparations, 37% of the
HPV31 A VLP preparations, and 57% of the HPV31 C VLP prep-
arations (Fig. 2C).

The three variant PsVs demonstrated differential susceptibility
to neutralization by mouse polyclonal serum containing antibod-
ies to HPV31 VLPs (Fig. 3). Both HPV31 B PsVs (median log10

neutralization titer, 4.27; IQR, 3.75 to 4.55; Wilcoxon paired
signed-rank test, P � 0.008) and HPV31 C PsVs (median log10

neutralization titer, 4.18; IQR, 3.86 to 4.49; P � 0.007) were more

sensitive to neutralization by sera containing antibodies to HPV31
A VLPs than the homologous HPV31 A PsVs were (median log10

neutralization titer, 4.09; IQR, 3.54 to 4.26). HPV31 A PsVs were
less sensitive to neutralization by sera containing antibodies to
HPV31 B VLPs (median log10 neutralization titer, 3.74; IQR, 3.53
to 4.07; P � 0.031), while HPV31 C PsVs demonstrated increased
sensitivity (median log10 neutralization titer, 4.12; IQR, 3.96 to
4.53; P � 0.028) compared to that of HPV31 B PsVs (median log10

neutralization titer, 3.98; IQR, 3.69 to 4.22). Both HPV31 B and C
PsVs had similar sensitivities to neutralization by sera containing
antibodies to HPV31 C VLPs (for HPV31 B PsVs, median log10

neutralization titer, 4.42 [IQR, 4.04 to 4.35]; for HPV31 C PsVs,
median log10 neutralization titer, 4.34 [IQR, 4.08 to 4.55]), while
HPV31 A PsVs demonstrated a reduced sensitivity (median log10

neutralization titer, 4.01; IQR, 3.84 to 4.14; P � 0.021). There were
also differences in the magnitude of the antibody response on the
basis of reactivity against homologous PsVs, with HPV31 C VLPs
(median log10 neutralization titer, 4.34; IQR, 4.08 to 4.55) being
slightly more immunogenic than HPV31 A VLPs (median log10

neutralization titer, 4.09; IQR, 3.54 to 4.26; P � 0.018) and HPV31
B VLPs (median log10 neutralization titer, 3.98; IQR, 3.69 to 4.22;
P � 0.006).

Antigenicity of variant HPV31 L1 VLPs and L1L2 PsVs.
HPV31 L1 MAbs against immunogens representing the HPV31
reference sequence (GenBank accession number J04353) were
previously generated (39). The majority of MAbs were raised
against L1L2 VLPs; the exceptions were MAbs 31.D24 and 31.A19,
where L1 VLP immunogens were used. Generally, all the type-
specific MAbs bound L1 VLPs and L1L2 PsVs representing the
lineage variants A, B, and C at similar 50% binding concentrations
(in micrograms per milliliter) by ELISA; the exceptions to this
were MAb 31.F16, which demonstrated a higher binding concen-
tration against the HPV31 B PsVs than the HPV31 A PsVs, while
both MAb 31.H12 and MAb 31.H17 bound L1 VLPs representing
HPV31 lineage variants B and C at lower concentrations than L1
VLPs representing HPV31 lineage variant A. Although the cross-
reactive MAbs (MAbs 31.D24, 31.B5, 31.C19, and 31.E22) bound
the L1 VLPs, they did not bind or neutralize the L1L2 PsVs (Table
3). All type-specific MAbs were able to neutralize the three variant
PsVs to similar orders of magnitude (Table 3). HPV31 C PsVs
demonstrated an increased sensitivity, ca. 3.5-fold, to neutraliza-
tion by FG loop MAb 31.F16 and a ca. 4.0-fold increase in sensi-
tivity to neutralization by MAb 31.H17 (epitope unknown) com-
pared to the sensitivity of HPV31 A and B PsVs (Table 3).

The three neutralizing FG loop MAbs (MAbs 31.B1, 31.F16,

TABLE 1 Neutralization sensitivity of variant HPV31 L1L2 PsVs to HPV vaccine-induced antibodies

Vaccinee group
No. of serum
samples HPV31 A PsV titera

HPV31 B PsVs HPV31 C PsVs

Titer Fold differenceb Titer Fold difference

Cervarix vaccinees 22 1,026 (646–1,543) 1,469 (1,260–2,582)c 1.8 (1.1–2.5) 1,180 (923–1,721)d 1.3 (1.0–1.7)
Gardasil vaccinees 24 712 (382–1,363) 1,016 (759–1,435)c 1.5 (1.1–2.3) 968 (659–2,249)e 1.4 (1.1–1.6)

All vaccinees 46 885 (499–1,435) 1,273 (973–2,253)e 1.7 (1.1–2.4) 1,096 (763–2,216)e 1.4 (1.1–1.6)
a Neutralization titer data are presented as the median (IQR) 80% antibody neutralization titers generated from the 2 to 5 data sets per serum sample.
b Median (IQR) fold difference in the neutralization titers for HPV31 B PsVs and HPV31 C PsVs compared to the neutralization titer for HPV31 A PsVs.
c P � 0.01 using the Wilcoxon paired signed-rank test.
d P � 0.05 using the Wilcoxon paired signed-rank test.
e P � 0.001 using the Wilcoxon paired signed-rank test.

TABLE 2 Neutralization sensitivity of variant HPV31 L1L2 PsVs to
serum antibodies induced by natural infection

Sample
Detected
variant

Time point
(mo)

Neutralization titera

HPV31 A
PsVs

HPV31 B
PsVs

HPV31 C
PsVs

P1 HPV31 A 0 3,987 11,084 5,591
6 1,363 2,284 2,870
12 1,144 2,057 1,895
18 391 2,616 401

P2 HPV31 C 0 — — —
6 148 113 104
12 68 54 58
18 106 106 93

P3 HPV31 C 0 — — —
6 1,890 661 882
12 637 587 542
18 337 377 232

P4 HPV31 C 0 486 1,357 337
6 549 727 893
12 1,497 620 2,378
18 NA NA NA

P5 HPV31 C 0 638 1,899 679
6 837 667 2,193
12 511 839 1,208
18 576 982 1,235

a —, neutralization titers of �50 were assigned a value of 25 for calculation purposes;
NA, not available.
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and 31.H12) recognize conformational epitopes which encom-
pass variant amino acid position 267 and are adjacent to amino
acid 274 (Fig. 4A). The FG loop of monomer 1 (FG1) is adjacent to
the BC5, DE1, DE5, EF1, HI4, and HI5 loops within the capsomer
(Fig. 4B), and residues 267 and 274 are within close proximity
(within 10 Å) to residue positions predominantly within the ad-
jacent BC5, FG1, and HI5 loops (Fig. 4C and D). These include
lysine residues at position 279 within the FG loop and position 362
within the HI loop.

DISCUSSION

This study attempted to evaluate the potential impact of nonsyn-
onymous SNPs within the HPV31 L1 and L2 genes on capsid
protein antigenicity and immunogenicity. We generated addi-
tional HPV31 L1 and L2 sequences to supplement those already
available and created L1L2 PsVs and L1 VLPs representing lineage

variants A, B, and C to evaluate lineage-specific immunogenicity
and antigenicity, including susceptibility to antibody-mediated
neutralization.

All three variant L1L2 PsVs were susceptible to neutralization
by vaccine-induced cross-neutralizing antibodies. HPV31 B and C
PsVs demonstrated an increased sensitivity to neutralization com-
pared to that of HPV31 A PsVs, but the difference was of a low
magnitude. The cross-protection afforded by the current prophy-
lactic vaccines is an unexpected additional benefit, although no
correlate of protection has been defined (10). If cross-neutralizing
antibodies are determined to be the immune effectors of vaccine-
induced cross-protection, it is important to demonstrate that the
contemporary circulating HPV31 variants, represented by L1L2
PsVs, do not exhibit resistance to cross-neutralization by such
antibody specificities.

FIG 3 Heat maps representing the potential of serum from mice immunized with variant HPV31 L1 VLPs to neutralize variant HPV31 L1L2 PsVs. The log10

neutralization titers of sera from BALB/c mice (n � 10) following variant HPV31 VLP immunization carried out over three separate schedules are presented as
the averages for two data sets per sample. The key on the right indicates the log10 heat map gradient. P values, obtained using the Wilcoxon paired signed-rank
test, represent differences in median neutralization titers from homologous variant VLP and PsV pairs. *, P � 0.05; **, P � 0.01; NS, no significant difference (P �

0.05).

TABLE 3 Sensitivities of variant HPV31 L1 VLPs and L1L2 PsVs to MAbsa

Epitope MAb Structure Specificity Neutralizing

MAb IgG concnb (�g/ml)

L1 VLP ELISA L1L2 PsV ELISA L1L2 PsV neutralization

A B C A B C A B C

FG loop 31.B1 C TS Yes 1.01 0.49 0.53 4.48 4.85 3.78 9.48 7.17 6.34
31.D24 L XR No 0.041 0.016 0.013 — — — — — —
31.F16 C TS Yes 0.050 0.038 0.035 0.0075 0.11 0.0061 0.31 0.35 0.090

31.H12 C TS Yes 0.93 0.28 0.29 1.09 1.78 1.37 0.25 0.52 0.58

Unknown 31.A19 C TS Yes 1.63 1.89 1.57 1.65 4.27 3.28 3.71 3.59 1.44
31.B5 L XR No 28 26 21 — — — — — —
31.C19 C XR No 25 15 25 — — — — — —
31.C24 C TS Yes 19 18 16 23 37 38 31 38 11
31.E16 C TS Yes 12.00 5.99 7.28 7.70 8.16 12.00 79 104 66
31.E22 L XR No 207 167 153 — — — — — —
31.H17 C TS Yes 0.26 0.068 0.089 0.37 0.72 0.41 0.204 0.156 0.051

a Epitope location, structure (C, conformational; L, linear), specificity (TS, type specific; XR, cross-reactive), and MAb neutralizing potential were taken from the work of Fleury et
al. (39). —, MAbs for which binding or neutralization concentrations could not be determined at the highest input concentrations (by ELISA, 250 �g/ml for all MAbs except
31.D24, for which the highest input concentration was 20 �g/ml, and by neutralization assay, 125 �g/ml for all MAbs except 31.D24, for which the highest input concentration was
10 �g/ml). Concentration values in bold indicate a �3-fold difference from the concentration obtained for the antigen representing HPV31 variant A for a single MAb within an
assay format.
b For the L1 VLP ELISA and L1L2 PsV VLP ELISA, the 50% binding concentration; for L1L2 PsV neutralization, the average 80% neutralization concentration. All results are
averages from 2 to 3 experiments per assay format.
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The increased sensitivity of HPV31 B and C PsVs to cross-
neutralization suggests that the Asn residue at position 274, which
is common to both variants, enhances the recognition of HPV31
L1 epitopes by cross-neutralizing antibodies produced against
vaccine HPV16 L1 VLPs. It is unlikely that the Asn residue in itself
has a critical role within a cross-neutralizing epitope, since the
switch from Thr and Asn is a relatively subtle change, as both
amino acids have polar uncharged side chains. However, the
change of residue at position 274, near the tip of the FG loop, may
result in local structural changes which increase the level of recog-
nition of more distal epitope residues.

Subtle differences in variant antigenicity were identified when
the activities of a panel of HPV31 MAbs against the HPV31 lineage

variants was tested in a neutralization assay. HPV31 C PsVs dem-
onstrated increased sensitivity to neutralization by the FG loop
MAb 31.F16 in comparison to that of both HPV31 A and B PsVs,
indicating that the double residue switch at positions 267 (T267A)
and 274 (T274N) impacts MAb 31.F16 epitope recognition. It has
previously been demonstrated by comparison of L1 pentamer
crystal structures from different genotypes (HPV11, HPV16,
HPV18, and HPV35) that L1 antigenic determinants can be al-
tered by a shift of a few angstroms within the loop as a result of a
single residue substitution (28).

In contrast, the other two FG loop MAbs (MAbs 31.B1 and
31.H12) neutralized all variants to a similar extent. These data
corroborate previous data from a bacterial cell surface display

FIG 4 Crystal model surface highlighting HPV31 FG loop variant residue locations. (A) Linear amino acid epitope footprint of HPV31 FG loop MAbs. (B) Side
view highlighting loops in close proximity to FG loop variant residues 267 and 274. (C and D) Top view of loop ribbons. Circled areas indicate regions within a
10-Å radius of residues 267 (C) and 274 (D), as determined by the Swiss-PDP viewer algorithm. Blue, lysine residues at positions 279 and 362; orange, FG loop
of monomer 1 (FG1); black, residues 267 and 274. Neighboring loops on the same monomer (dark pink, DE1; red, EF1) or adjacent monomers (dark green, HI4;
yellow, BC5; light pink, DE5; light green, HI5) are indicated. The remaining surface-exposed regions of the capsomer are colored in light gray, and core regions
are colored in dark gray.
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model which demonstrated that these three MAbs recognize over-
lapping, yet distinct, FG loop epitopes (36). Residues 267 and 274
are in close proximity to the Lys279 and Lys362 residues or near
the Lys54, Asn57, Lys60, and Lys367 residues. The corresponding
residues of HPV16 are involved in HPV binding to heparin sulfate
(50), which is an essential step for a successful HPV infection, and
the FG loop MAbs may neutralize by abrogating this virus-host
interaction.

The panel of HPV31 MAbs bound all three variant L1 VLPs,
when used as target antigens in an ELISA format, indicating that
the residues at positions 267 and 274 were not critical in the
epitope footprints recognized by this panel of MAbs. However,
when variant L1L2 PsVs were used as the target antigens, the 50%
binding concentration of the four cross-reactive MAbs (MAbs
31.D24, 31.B5, 31.C19, and 31.E22) could not be determined due
to the reduction in epitope recognition. This observation implies
that inclusion of the L2 protein within the PsV capsid alters L1
epitope exposure and therefore impacts L1 protein antigenicity. It
has been reported that a subset of HPV16 MAbs demonstrated
reduced binding to L1L2 PsVs compared to L1 VLPs, with the
differential binding being thought to be as a result of L2 altering
the conformation or availability of L1 epitopes (51). These find-
ings imply that the capsids of native HPV virions, represented by
L1L2 PsVs and the L1-only VLPs within the prophylactic vaccine
preparations, differ in their L1 antigenicity.

All three variant L1L2 PsVs were susceptible to neutralization
by the HPV31 VLP antibodies generated in mice; however, differ-
ences in neutralization sensitivity were evident. Both HPV31 B
and C PsVs demonstrated increased sensitivity to antibody-medi-
ated neutralization in comparison to HPV31 A PsVs, irrespective
of the variant L1 VLPs used as the immunogen. These findings are
in line with those of a previous study of HPV16 variants which
demonstrated that sera containing antibodies raised against an
HPV16 European variant were able to neutralize pseudoviruses
representing a range of geographical variants of HPV16, with a
�4-fold difference in neutralization titer between the homolo-
gous and heterologous types being detected, leading to the con-
clusion that HPV16 variants belong to a single serotype (29).

The criterion used to designate serotypes is generally based
upon a fold difference in antibody-mediated neutralization titers
between viral types, which differ in magnitude and range between
virus families: for adenovirus, 8- to 16-fold (52); for rotavirus,
�20-fold (53); and for polyomavirus, 4- to 100-fold (54). For
HPV there are no currently defined criteria with which to desig-
nate L1 serotypes. It is reasonably clear that HPV genotypes in-
duce high-titer, type-specific neutralizing antibody responses
which represent different serotypes (55–57). However, for lineage
variants, the relationship between L1 sequence and antigenicity is
less clear (29, 58).

Although HPV31 lineage variants demonstrated differences in
susceptibility to neutralization by antibodies elicited by vaccina-
tion or preclinical L1 VLP immunization and MAbs, the differ-
ence was �4-fold, and under this criterion, as defined for HPV16
(29), HPV31 variants should be considered to belong to a single
serotype. This implies that the choice of a representative HPV31
L1 sequence for VLP-based vaccines is not critical.

Given the relatively low prevalence of HPV31 (59), only a small
panel of serum samples from HPV31 DNA-positive women was
available. These data suggest that all three HPV31 lineage variants
were susceptible to neutralization by antibodies derived from nat-

ural infection. However, further work will be required to address
this issue appropriately by utilizing a larger panel of samples with
an equal representation of variant lineages.

There are potential shortcomings to this work. L1 VLP immu-
nizations were carried out using a relatively small number of ani-
mals, and while all three constructs induced neutralizing antibod-
ies against all three variant PsVs, the variability inherent in using
small groups of animals may have concealed subtle differences in
immunogenicity. Although HPV L1L2 PsVs have been used
widely to monitor antibody responses to vaccines and natural in-
fection (22, 47, 48, 60), as well as elucidate steps in the entry
process (61–64), there are likely to be some differences between
how these behave in vitro and how authentic HPV31 lineage vari-
ants behave in vivo, although this is a limitation of most PsV-based
systems.

Despite these caveats, these data suggest that HPV31 lineage
variant PsVs display similar sensitivities to recognition by anti-
bodies elicited following vaccination with the current HPV vac-
cines and after preclinical HPV31 L1 VLP immunization, indicat-
ing that HPV31 variants belong to a single L1 serotype. Such data
may be useful to guide modeling of the impact of the current L1
VLP vaccines and informing postvaccination surveillance pro-
grams. These data also inform our understanding of the antige-
nicity of the HPV structural proteins.
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