
Using Functional Programming to Recognize Named Structure
in an Optimization Problem: Application to Pooling

Francesco Ceccon, Georgia Kouyialis, and Ruth Misener
Dept. of Computing, Imperial College London, South Kensington SW7 2AZ, UK

DOI 10.1002/aic.15308
Published online May 24, 2016 in Wiley Online Library (wileyonlinelibrary.com)

Branch-and-cut optimization solvers typically apply generic algorithms, e.g., cutting planes or primal heuristics, to expe-
dite performance for many mathematical optimization problems. But solver software receives an input optimization prob-
lem as vectors of equations and constraints containing no structural information. This article proposes automatically
detecting named special structure using the pattern matching features of functional programming. Specifically, we deduce
the industrially-relevant nonconvex nonlinear Pooling Problem within a mixed-integer nonlinear optimization problem and
show that we can uncover pooling structure in optimization problems which are not pooling problems. Previous work has
shown that preprocessing heuristics can find network structures; we show that we can additionally detect nonlinear pool-
ing patterns. Finding named structures allows us to apply, to generic optimization problems, cutting planes or primal heu-
ristics developed for the named structure. To demonstrate the recognition algorithm, we use the recognized structure to
apply primal heuristics to a test set of standard pooling problems. VC 2016 The Authors AIChE Journal published by Wiley

Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3085–3095, 2016

Keywords: optimization, automatic problem recognition, pooling problem, process networks optimization, functional
programming

Introduction and Literature Review

The pooling problem is an industrially-relevant nonconvex
nonlinear optimization problem minimizing cost on a feed-
forward network of input nodes, intermediate storage or pool
nodes, and output nodes.1 Variants of the pooling problem have
applications including2: crude oil scheduling,3–6 water net-
works,7 natural gas production,8,9 fixed-charge transportation
with product blending,10 hybrid energy systems,11 and multi-
period blend scheduling.12 The difficulty of the pooling problem
arises from the nonconvex bilinear terms representing linear
blending in the pools. These bilinear terms, which are necessary
for tracking quality across the network, typically multiply flow
rates and concentrations or flow fractions. It is possible to inte-
grate additional complexity into the pooling problem, e.g.,
allowing mutable topological decisions13,14 or nonlinear blend-
ing rules.15 A wide variety of pooling variants with generic pro-
cess networks applications can be found in MINLPLib.16

In solving process networks optimization problems there is a
common theme: it is much easier to solve large-scale instantia-

tions of the standard, archetypal pooling problem than it is to

solve variants including mutable topology, nonlinear blending,

or temporal aspects. For example, a recent primal heuristic per-

forms consistently well on the order of 10k variables and con-

straints,17 but the approach exploits the standard pooling

network structure and does not apply to pooling variants. Other

recent advances specially designed for the standard pooling

problem include: developing cutting planes,18,19 discretizing

the problem,20,21 and analyzing computational complexity.22,23

All of these approaches require knowledge of global problem

structure including network topology and node identity.
Previous work in mixed-integer optimization (MIP) has

found that using network structure can significantly help gen-

erate strong cutting planes.24 Automatically identifying these

embedded networks in large-scale optimization models is NP-

hard,25 but there exist several polynomial time approximation

algorithms to find good networks.25–27 State-of-the-art MIP

solver software, including MINTO28 and CPLEX use prepro-

cessing heuristics to automatically find these network patterns.

More recent work has considered detecting more complex

structures such as multi-commodity flow29 and recovering

variable meaning from flat MIP structures.30

Due to nonlinearities, deterministic global optimization

solvers do not currently infer pooling network structure and

therefore will solve the pooling problem and its variants via

branch-and-cut on the McCormick31 bilinear convex hull.32–38

Recent advances in solving pooling problems are therefore

unavailable to solver technology; without automatically

deducing global network structure, the solvers cannot incorpo-

rate primal heuristics or cutting planes based on process net-

work structure. But, for generic process networks problems,

Additional Supporting Information may be found in the online version of this
article.

This is an open access article under the terms of the Creative Commons Attribu-
tion License, which permits use, distribution and reproduction in any medium, pro-
vided the original work is properly cited.

Correspondence concerning this article should be addressed to R. Misener at
r.misener@imperial.ac.uk.

The copyright line in this article was changed on 16 June 2016 after original
online publication.

VC 2016 The Authors AIChE Journal published by Wiley Periodicals,
Inc. on behalf of American Institute of Chemical Engineers

AIChE Journal 3085September 2016 Vol. 62, No. 9



even locally-relevant, single equation reformulation toward a
pooling problem may expedite deterministic global optimiza-
tion solvers.39–41 Solver ANTIGONE37,38 will, in preprocess-
ing, eliminate variables, disaggregate bilinear terms, and add
Reformulation-Linearization Technique equations. Although
these local transformations never consider the whole optimiza-
tion problem, global solvers ANTIGONE, BARON, COU-
ENNE, and LINDO can solve an additional 10% of the
MINLPLib2 process networks problems after applying the
ANTIGONE preprocessing.41 Other best practices for solving
process networks problems with off-the-shelf software
includes asserting mass balances with the Reformulation-
Linearization Technique,42–45 disaggregating bilinear terms,46

and developing cuts from disaggregated bilinear terms.47,48

This manuscript proposes automatically recognizing pool-
ing structure within a mixed integer nonlinear optimization
problem (MINLP). The pooling structure inside of a generic
process optimization problem is a subset of the entire problem,
so specialized, pooling-specific, cutting planes will also be
valid bounds for the entire process networks problem. The
Results section of this article shows that primal heuristic solu-
tions to the standard pooling problem would be a good starting
point for primal heuristics for the entire optimization problem.
The wider goal may be stated as detecting named structures
within an MINLP optimization problem; Liberti49 posed this
broader challenge to researchers after seeing this work pre-
sented at the Oberwolfach MINLP workshop.

Identifying pooling problem structure hinges on pattern
matching. Patterns are defined by which variables and coeffi-
cients are expected in a constraint and by constraint bounds. The
implementation is in F#, a strongly typed functional program-
ming language targeting the .NET runtime environment. Pattern
matching, one of the most distinctive F# features, has many uses,
from decomposing data to control flow. The core concept is
defining how data is expected to look and acting accordingly.

This manuscript begins by defining the standard pooling
problem and introduces a canonical PQ-formulation. We pro-
pose the canonical formulation to avoid developing algorithms
specialized to each known formulation since there are many
similar formulations.1,43,44,50–52 The recognition algorithm

simultaneously converts the MINLP to canonical pooling form

and recognizes network structure. The article describes the

algorithm implementation; the online supplementary material

justifies why the algorithm is implemented in F#. After pre-

senting the results, the article concludes by generalizing the

work to other optimization problems.

Statement of the Archetypal Standard Pooling
Problem

This section defines the standard pooling problem using the

Table 1 notation.2 The first formulation, due to Haverly,1 is

the P-formulation:

min
x; y; z; p

X
i2I; l2L

ci xi; l2
X

l2L; j2J

dj yl; j2
X

i2I; j2J

ðdj2ciÞ zi; j

such that

Material

Capacities

AL
i �

X
l2L

xi; l1
X
j2J

zi; j � AU
i 8i 2 I

X
j2J

yl; j � Sl 8l 2 L

DL
j �

X
l2L

yl; j1
X
i2I

zi; j � DU
j 8j 2 J

8>>>>>>>>>>><
>>>>>>>>>>>:

Material

Balances

X
i2I

xi; l2
X
j2J

yl; j50 8l 2 L

X
i2I

Ci; k xi; l2pl; k

X
j2J

yl; j50 8l 2 L; k 2 K

8>>>><
>>>>:

Product

Quality

X
l2L

pl; k yl; j1
X
i2I

Ci; k zi; j � PL
j; k ð
X
l2L

yl; j1
X
i2I

zi; jÞ 8j 2 J; k 2 K

X
l2L

pl; k yl; j1
X
i2I

Ci; k zi; j � PU
j; k ð
X
l2l

yl; j1
X
i2I

zi; jÞ 8j 2 J; k 2 K

8>>><
>>>:

(P)

Ben-Tal et al.50 develop a mathematically equivalent Q-

formulation that introduces fractional flow rates qi; l5xi; l=P
î2I xî; l for arcs between an input i and pool l:

min
y; z; q

X
i2I; l2L; j2J

ci qi; l yl; j2
X

l2L; j2J

dj yl; j2
X

i2I; j2J

ðdj2ciÞ zi; j

such that

Material

Capacities

AL
i �

X
l; j

qi; l yl; j1
X
j2J

zi; j � AU
i 8i 2 I

X
j2J

yl; j � Sl 8l 2 L

DL
j �

X
l2L

yl; j1
X
i2I

zi; j � DU
j 8j 2 J

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Product

Quality

X
i; l

Ci; k qi; l yl; j1
X
i2I

Ci; k zi; j � PL
j; k ð
X
l2L

yl; j1
X
i2I

zi; jÞ 8j 2 J; k 2 K

X
i; l

Ci; k qi; l yl; j1
X
i2I

Ci; k zi; j � PU
j; k ð
X
l2L

yl; j1
X
i2I

zi; jÞ 8j 2 J; k 2 K

8>>>><
>>>>:

Simplex

X
i2I

qi; l51 8l 2 L
�

(Q)

The P- and Q formulations have variable bounds:

Table 1. Notation Used in Standard Pooling Problem

Formulations

Type Name Description

Indices i 2 f1; . . . ; Ig Input streams (raw materials
or feed stocks)

l 2 f1; . . . ; Lg Pools (blending facilities)
j 2 f1; . . . ; Jg Output streams (end products)
k 2 f1; . . . ; Kg Attributes (qualities monitored)

Variables nl Flow from input i to pool l
qi; l Flow from input i to pool l, as a

fraction of total flow into l
vi; l; j Flow from input i to output j

through pool l (vi; l; j5qi; l yl; j)
yl; j Flow from pool l to output j
zi; j Bypass flow from input i to output j
pl; k Level of quality attribute k in pool l

Parameters ci Unit cost of raw material feed stock i
dj Unit revenue of product j
AL

i – AU
i Availability bounds of input i

Sl Capacity of pool l
DL

j – DU
j Demand bounds for product j

Ci; k Level of quality k in raw material
feed stock i

PL
j; k – PU

j; k Acceptable composition range of
quality k in product j

3086 DOI 10.1002/aic Published on behalf of the AIChE September 2016 Vol. 62, No. 9 AIChE Journal



0 � qi; l � 1 8i 2 I; l 2 L

0 � xi; l � min fAU
i ; Sl;

X
j2J

DU
j g 8i 2 I; l 2 L

0 � yl; j � min fSl; DU
j ;
X
i2I

AU
i g 8l 2 L; j 2 J

0 � zi; j � min fAU
i ; DU

j g 8i 2 I; j 2 J

min
i

Ci; k � pl; k � max i Ci; k 8l 2 L; k 2 K

Combining the P- and Q-formulations, Quesada and Gross-
mann43 develop the PQ Cut and Tawarmalani and Sahinidis44

justify its utility. The PQ-formulation is equivalent to the Q-
formulation with the addition of the PQ Cut:

X
i2I

qi; l yl; j5yl; j 8l 2 L; j 2 J (PQ Cut)

Canonical Representation for the PQ-Formulation

Beyond the P-, Q-, and PQ-formulations, there are several

other mathematically equivalent pooling problem formula-

tions.51,52 But we want to automatically translate every pool-

ing problem into just one formulation (here, the proposed

canonical PQ-formulation) and save implementation time by

specializing methodologies such as cutting planes to just one

formulation.
The proposed canonical PQ-formulation is equivalent to a

PQ-formulation that introduces auxiliary variables vi; l; j and

expands all product terms qi; l yl; j into vi; l; j.
17 The formulation

also uses the PQ Cut to replace each flow yl; j with the relative

sum of flows vi; l; j in every equation except for the PQ Cut and

the definition vi; l; j5qi; l yl; j. After rearranging terms, the

canonical PQ-formulation becomes:

min
y; z; q; v

X
i2I; l2L; j2J

ðci2djÞ vi; l; j1
X

i2I; j2J

ðci2djÞ zi; j

such that

Path

Definition

vi; l; j5qi; l yl; j 8i 2 I; j 2 J; l 2 L
�

Simplex

X
i2I

qi; l51 8l 2 L
�

Reduction

X
i2I

vi; l; j5yl; j 8l 2 L; j 2 J
�

Input

Capacities

AL
i �

X
l2L; j2J

vi; l; j1
X
j2J

zi; j � AU
i 8i 2 I

�

Pool

Capacities

X
i2I; j2J

vi; l; j � Sl 8l 2 L
�

Output

Capacities

DL
j �

X
i2I; l2L

vi; l; j1
X
i2I

zi; j � DU
j 8j 2 J

�

Product

Quality

X
i; l

ðCi; k2PL
j; kÞ vi; l; j1

X
i2I

ðCi; k2PL
j; kÞ zi; j � 0 8j 2 J; k 2 K

X
i; l

ðCi; k2PU
j; kÞ vi; l; j1

X
i2I

ðCi; k2PU
j; kÞ zi; j � 0 8j 2 J; k 2 K

8>>>><
>>>>:

(PQ)

The canonical PQ-formulation of the Figure 1 example pool-

ing problem is visualized in Figure 11. Rows represent con-

straints and columns denote variables. The canonical PQ-

formulation enables the pattern matching algorithm by allow-

ing the algorithm to focus on linear terms; bilinear terms only

appear in the PQ Path Definition constraints. Reformulating

products qi; l yl; j using vi; l; j implies that identifying pooling

constraints and building the network can be completed by pri-

marily analyzing linear equations. Expressing the material

capacity and product quality constraints with respect to only

variables v and z simplifies the network building step and

allows us to deduce parameter values for Ci; k; PL
j; k; PU

j; k.
The canonical PQ-formulation would perform badly in a

branch-and-bound framework due to possibly weak relaxa-

tions and poor interval arithmetic.34,37,46 But this article aims

to uncover structure in preprocessing, so it is sensible to

Figure 1. Example of a pooling problem.

The canonical PQ-formulation of this example is illus-

trated in Figure 11.

Figure 2. Steps required to create a canonical PQ-
formulation when the initial problem is
expressed as a P- or Q-formulation; formula-
tions detected via pattern matching are
transferred to canonical form.

AIChE Journal September 2016 Vol. 62, No. 9 Published on behalf of the AIChE DOI 10.1002/aic 3087



reformulate to a representation allowing easy network topol-

ogy discovery. Once the algorithm deduces underlying struc-

ture, it may reformulate toward representations designed for

whatever algorithm will best solve the problem.

Developing a Pattern Matching Method for
Uncovering Pooling Problem Structure

This section describes how to: (1) reformulate a pooling

problem to the canonical PQ-formulation, (2) identify the

pooling problem constraints in an optimization problem, and

(3) build a pooling problem network. We introduce the three

steps with respect to finding patterns; and subsequently

describe implementing the pattern matching algorithm using

functional programming. Note that the pattern matching algo-

rithm creates canonical pooling problems at the same time as

it identifies pooling problem constraints, so the manuscript

sections are coupled.
We take, as input, optimization problems with flat structure,

that is, optimization problems where the variables and con-

straints are represented only by positions in a vector and have

no associated identifier. The following discussion develops as

if every constraint and/or variable will fit into some pooling

meaning or another. But, under the hood, the implementation

splits the MINLP into two parts, a pooling problem and a

remaining optimization problem. The algorithm first assumes

that every constraint and variable does not belong to the pool-

ing problem and then, if it proves that the constraint or vari-

able fits a known pattern, moves the variable or constraint to

the pooling problem.

Converting to the canonical PQ-formulation

Figure 2 outlines steps transforming an optimization prob-

lem toward the canonical PQ-formulation. The original prob-

lem formulation is not known a priori, so when the algorithm

finds equations consistent with either a P or Q-formulation, it

transforms toward an equivalent PQ-formulation. One differ-

ence between the P- and PQ-formulations is that the former

uses flow rate variables nl whereas the latter introduces frac-
tional flow rate variables qi; l for arcs between an input i and

pool l such that nl and qi; l are related:

xi; l5qi; l

X
j2J

yl; j 8i 2 I; l 2 L (1)

To replace flow rates nl with qi; l, the algorithm first identi-

fies which variables are nl; it does this by looking for equality

constraints with constant coefficient 0 and all linear coeffi-

cients equal to either 11 or 21. Using the material balance

constraints, i.e.,
P

i2I xi; l2
P

j2J yl; j50 8l 2 L, it labels varia-
bles with 11 and 21 coefficients as nl and yl; j, respectively.
Then it introduces new variables qi; l for each variable nl and
replaces each nl using Eq. 1.

The algorithm subsequently eliminates variables pl; k by
noticing that, if it replaces nl in the Eq. 2 quality balance con-
straints, it can map each pl; k to the equivalent

P
i2I Ci; k qi; l:

pl; k

X
j2J

yl; j5
X
i2I

Ci; k xi; l

X
i2I

Ci; k qi; l

X
j2J

yl; j

 !
8l 2 L; k 2 K

X
i2I

Ci; k qi; l

 !X
j2J

yl; j

(2)

The Q-formulation is attained by replacing variables pl; k with
the relevant

P
i2I Ci; k qi; l. From the Q-formulation, we obtain

the PQ-formulation by taking all bilinear terms qi; l yl; j and, for
each yl; j, adding the PQ Cut; this step is similar to existing
algorithms.37,39,47,48 The last step in transforming to a canoni-
cal PQ-formulation is replacing, using the PQ Cut, each occur-
rence of yl; j in the material capacity and product quality
constraints with the sum

P
i2I vi; l; j.

Identifying pooling problem constraints

Coupled to transforming the optimization problem into the
canonical PQ-formulation is the challenge of understanding
each constraint and variable with respect to the pooling prob-
lem. This identification step enables the network extraction.
Similar to the previous section, constraint and variable identi-
fication focuses on pattern matching. We show how to use the
constraints to gain more problem information.

Identifying Reduction and Path Definition Constraints.
. Path Definitions, vi; l; j5qi; l yl; j, are easy to find. The algo-
rithm uses the Path Definitions to find which yl; j is assigned to
each vi; l; j and then identify Reduction Constraints:

X
i2I

vi; l; j

 !
2yl; j50 8l 2 L; j 2 J (3)

Specifically, we find Reduction Constraints by first grouping
vi; l; j using Path Definitions, i.e., aggregate vi; l; j with the corre-
sponding yl; j, and then look for constraints where path flows
vi; l; j have coefficients 11 and yl; j has coefficient 21. Finding
these Reduction Constraints helps identify variable subscripts
since every vi; l; j has the same ðl; jÞ indices as the yl; j variable.
Figure 3 visualizes the Eq. 3 reduction constraints for the Fig-
ure 1 example problem. Recall that constraints are identified

Figure 3. Coefficients in reduction constraints.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

3088 DOI 10.1002/aic Published on behalf of the AIChE September 2016 Vol. 62, No. 9 AIChE Journal

http://wileyonlinelibrary.com


in tandem with transforming to the PQ-formulation. Variable
vi; l; j replaces any bilinear terms qi; l yl; j uncovered in this
anaysis.

Identifying Flows Through Pools. Identifying the reduc-

tion and path definition constraints (Eq. 3) allows the algo-
rithm to find what pool l corresponds to each variable and
parameter. We define a set vðl̂Þ5 vi; l; jjl5l̂

� �
where all the

vi; l; j are grouped by l and follow the process visualized in Fig-

ure 4. Observe that path definitions vi; l; j5qi; l yl; j identify term
pairs qi; l and yl; j which must have the same pool index l. For
each flow qi; l, we collect all flows yl; j appearing jointly in path
definitions and obtain a set of yl; j for each qi; l (Figure 4b). The
algorithm subsequently aggregates the qi; l with matching

flows yl; j (Figure 4c). After finding vðlÞ 8 l 2 L, we tag Pool
Capacity constraints by recognizing Eq. 4 as a sum of vi; l; j

variables over a set v(l):X
i2I;j2J

vi; l; j � Sl 8l 2 L (4)

Identifying Input and Output Capacities. Next, the algo-
rithm identifies what input i or output j indices correspond to
each variable by differentiating the Input Capacity (Eq. 5)

from the Output Capacity (Eq. 6) constraints. Recall that the
algorithm has already identified the flow variables vi; l; j,
Reduction Constraints (Eq. 3), and Pool Capacity constraints
(Eq. 4), so the remaining vi; l; j sums with all coefficients 11
must be either Input or Output Capacity constraints:

AL
i �

X
l2L; j2J

vi; l; j1
X
j2J

zi; j � AU
i 8i 2 I (5)

DL
j �

X
i2I; l2L

vi; l; j1
X
i2I

zi; j � DU
j 8j 2 J (6)

To identify Input Capacity constraints we define set vðl̂; ĵÞ5
vi; l; jjl5l̂; j5ĵ
� �

where all the variables vi; l; j are grouped by
ðl; jÞ pairs. The algorithm easily constructs sets vðl; jÞ by using
the Path Definitions to aggregate vi; l; j corresponding to the
same yl; j. To find the Input Capacity constraints, observe that
all vi; l; j variables in Eq. 5 are sums over ðl; jÞ and therefore
each vi; l; j in the sum will correspond to a different ðl; jÞ pair.
So the algorithm tags input capacity constraints as those where
every variable vi; l; j belongs to a different set vðl; jÞ.

Identifying Output Capacity constraints (Eq. 6) is analogous
to tagging the Input Capacity constraints; we define set vðî; l̂Þ

Figure 4. Visualization for grouping path flow variables into set v(l) where all vi; l; j have the same l.

We do not know the original network diagrammed in (a) but we can use, (b), the Path Definition constraints to group each flow

yl; j with corresponding qi; l . All the sub-networks connected to pool l, (b), have identical yl; j network connections, so we obtain a

sub network around each pool, (c).

Figure 5. The Output Capacity (black) and Product Quality (green) constraints use the same variables but have dif-
ferent coefficients.

In this example, the first two Product Quality constraints match the first Output Capacity equation and the last two Product Qual-

ity Constraints match the second Output Capacity constraint. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

AIChE Journal September 2016 Vol. 62, No. 9 Published on behalf of the AIChE DOI 10.1002/aic 3089

http://wileyonlinelibrary.com


5 vi; l; jji5î; l5l̂
� �

and construct all the sets vði; lÞ by using
the Path Definitions to aggregate vi; l; j corresponding to the
same qi; l. Output Capacity constraints are sums over vi; l; j

where every variable vi; l; j belongs to a different set vði; lÞ.
After finding the Input and Output Capacity constraints, the

algorithm labels the extra variables appearing in Eqs. 5 and 6
as zi; j. If there are input or output nodes which are not con-
nected to any pool, there may be unidentified inputs i or out-
puts j; the extra zi; j variables identify these input i or output j
nodes which transmit or receive, respectively, bypass flows.

Identifying Quality Constraints. The only remaining
equations to identify in the canonical PQ-formulation are the
Product Quality constraints. Product Quality equations have
the same variables as the Output Capacity constraints (Eq. 6),
but the Output Capacities always have coefficient 11, while
the Product Quality constraints each have coefficient Ci; k2

PL
j; k or Ci; k2PU

j; k.
The algorithm tags the k quality constraints associated with

output j by looking for Product Quality constraints where the
same variables appear with different coefficients, an example
is illustrated in Figure 5. The jKj3jJj product quality con-
straints are used to deduce input and output qualities,
Ci; k; PL

j; k; PU
j; k; Section describes this procedure. We assume

that each of the jKj qualities are given in the same order for
every one of the Product Quality constraints.

Building the pooling problem network

Once all constraints and variables have been labeled, build-
ing the pooling network is almost trivial. We tag each network
node with respect to an input i, pool l or output j; we also asso-
ciate each node with (possibly infinite) capacity bounds. The
algorithm also determines network flow arcs using path varia-
bles vi; l; j together with Eqs. 4–6 to find all inter-node connec-
tions. Figure 6 shows a path from input 2 to output 7 to pool 4
from the Figure 1 example.

Finding Input Cost and Output Revenue. The objective
of a pooling problem is to minimize cost. After transformation
to the canonical PQ-formulation, the objective has the form:X
i2I; l2L; j2J

ðci2djÞ vi; l; j1
X

i2I; j2J

ðci2djÞ zi; j5
X

i2I; l2L; j2J

ci; j vi; l; j1
X

i2I; j2J

ci; j zi; j

(7)

where ci; j5ci2dj. We already know the variables vi; l; j and zi; j

and their associated node indices, Linear Program (8) decom-
poses the ci; j parameters into input costs ci and output revenue

dj. The solution to LP (8) may produce different values for ci

and dj than the original network, but the objective value will

the be same.

min
c; d

X
i2I

ci1
X
j2J

dj

s:t: ci2dj5ci; j 8i 2 I; j 2 J

ci � 0 8i 2 I

dj � 0 8j 2 J

(8)

Finding Input and Output Qualities. Just as parameters ci

; dj are not directly in Eq. 7, pooling problem parameters Ci; k;
PL

j; k; PU
j; k are not directly present in the canonical PQ-

formulation. To find these input and output quality parameters,

define DL
i; j; k5Ci; k2PL

j; k and DU
i; j; k5Ci; k2PU

j; k and re-write the

Product Quality constraints:X
i; l

DL
i; j; k vi; l; j1

X
i2I

DL
i; j; k zi; j � 0 8j 2 J; k 2 K (9)

X
i; l

DU
i; j; k vi; l; j1

X
i2I

DU
i; j; k zi; j � 0 8j 2 J; k 2 K (10)

Linear Program (11) deduces equivalent numerical values for

Ci; k; PL
j; k, and PU

j; k. Here we assume that the indices of the

input nodes i, output nodes j, and tracked qualities k are

known. We also assume that a Product Quality constraint for

Figure 6. Path from input 2 to output 7 through pool 4.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 7. If a constraint matches a pattern described
in Sections &, execute an action to transform
or identify a constraint.

3090 DOI 10.1002/aic Published on behalf of the AIChE September 2016 Vol. 62, No. 9 AIChE Journal

http://wileyonlinelibrary.com


ði; j; kÞ only exists if input i and output j are connected indi-
rectly or via a pool.

minimize
C;PU ;PL

X
i2I;k2K

Ci; k1
X

j2J;k2K

PL
j; k1

X
j2J;k2K

PU
j; k

subject to Ci; k2PL
j; k5DL

ijk 8i 2 I; j 2 J; k 2 K

Ci; k2PU
j; k5DU

ijk 8i 2 I; j 2 J; k 2 K

(11)

Solving LP (11) may produce different values for Ci; k; PL
j; k,

and PU
j; k than in the original problem, but the feasible space

defined by the constraints is identical.

Implementation Sketch

This section sketches implementing the algorithm; the
online supplementary material gives more details. We describe
data structures, discuss IO facilities, show how to implement
the algorithms.

Data structures

A pooling network is characterized by its inputs, pools, out-
puts, and arcs. Mathematical optimization problems are
defined by a set of variables, an objective function, and a set
of constraints; MINLP may also have an associated pooling
network. The online supplementary material defines several
modules and types which generically represent MINLP opti-
mization problems. The most general module, Problem, has
a record field to contain a PoolingNetwork. When the
algorithm initiates, the PoolingNetwork field is None.
After the implementation terminates, PoolingNetwork
contains the standard pooling network and the constraints

field holds additional equations irrelevant to a standard pool-

ing framework.

Reading and writing problems

The implementation reads input problems in OSiL format;

OSiL is a widely supported optimization format and is easy to

parse since it is based on XML.53 We provide two distinct out-

put formats: the first writes the pooling network to a Graphviz

file and the second writes the pooling network to a Dey and

Gupte17 formatted AMPL data file. The Graphviz file output,

which may be subsequently converted to an image, generated

the results shown in this article.

Transforming and identifying constraints

The implementation concurrently: (1) reformulates a pool-

ing problem to the canonical PQ-formulation and (2) identifies

the pooling problem constraints in an optimization problem.

All functions transforming and identifying constraints follow a

common pattern: scan every constraint and, if it matches a

given pattern, execute an action. Figure 7 illustrates the proce-

dure and the online supplement gives more specific details.

Actions can be as simple as updating the constraint type or as

complex as replacing a variable in the whole problem.

Building the network

The final implementation phase is building the network. We

begin by building inputs, pools, and outputs from the con-

straints. As shown in Figure 8, node capacities are either the

constraint upper bound or otherwise infinite. Finally, we need

to find the price and quality specifications for both the inputs

Figure 8. Building nodes from capacity constraints.

Table 2. Results on Standard and Extended Pooling Problems
54

Problem Network found? Same as original? Qualities Notes

Adhya 1 Yes Yes Yes
Adhya 2 Yes Yes Yes
Adhya 3 Yes Yes Yes
Bental 4 Yes No No Missing one input not connected to pool
Bental 5 Yes No No Duplicate inputs with infinite capacity
Foulds 2 Yes No No Missing inputs not connected to pool
Foulds 3 Yes No Yes Duplicate infinite capacity inputs; Different input cost and quality
Foulds 4 Yes No Yes ”
Foulds 5 Yes No Yes ”
Haverly 1 Yes No No Missing input not connected to pool
Haverly 2 Yes No No ”
Haverly 3 Yes No No ”
RT 2 Yes No No Duplicate outputs
EPA Small Yes Yes Yes Original problem modified to include output capacities
EPA Midsize Yes Yes Yes ”
EPA Large Yes Yes Yes ”

AIChE Journal September 2016 Vol. 62, No. 9 Published on behalf of the AIChE DOI 10.1002/aic 3091



and outputs; we find these parameters by solving LPs (8) and

(11).

Results and Discussion

We tested the implementation on three sets of input OSiL53

files: the 70 large-scale standard pooling Dey and Gupte17

examples, the 16 standard and extended Misener et al.54 exam-

ples, and the 1342 MINLPLib2* tests cases. For each test set,

we read in a flat optimization problem and try to produce a

pooling network.

The implementation successfully deduces the original net-
work structure for all 70 Dey and Gupte17 examples, i.e.,
large-scale, standard pooling problems with up to 40 input, 30
pool, and 50 output nodes. The associated optimization prob-
lems have up to 11,442 variables and 12,883 constraints.
These are the largest pooling problems solved to date and we
therefore have effectively no size limitation for the detection
methodology.

Table 2 completely documents the results on the standard
and extended pooling problems from Misener et al.54 The

Figure 9. Reconstructed network for MINLPLib2 test
case Lee1.

This network is mathematically equivalent to the origi-

nal Lee1 network which has 5 rather than 20 input

nodes. The original network has five input nodes with

infinite capacities; the implementation cannot distin-

guish this from five input nodes for each of the pools

(all of which still have infinite capacities).

Figure 10. Pooling problem found in the wastewater02m2.

Figure 11. Visualization of the canonical PQ-formulation
for the Figure 1 example pooling problem.

Black boxes represent a coefficient equal to 1, red boxes

a coefficient of 21 and green boxes all other nonzero

coefficients. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]*http://www.gamsworld.org/minlp/minlplib2/html/; Accessed July 2015.

3092 DOI 10.1002/aic Published on behalf of the AIChE September 2016 Vol. 62, No. 9 AIChE Journal

http://wileyonlinelibrary.com
http://www.gamsworld.org/minlp/minlplib2/html/


implementation has no problem excluding the nonlinear Envi-
ronmental Protection Agency15 blending rules from considera-

tion. The pooling problems in this test set are less stylized and
not consistently defined as the Dey and Gupte17 test set, so
observe that, although we get a pooling network for all the

problems, it is not necessarily the original pooling network.
Running our implementation on the 1342 test cases in MIN-

LPLib2, three produce complete pooling problems and 78

more produce a pooling-like network. The first two problems
are from Lee and Grossmann.55 The original optimization
problems are generalized pooling problems with mutable net-

work topology, but the implementation finds an equivalent
standard pooling problem. Figure 9 shows the network pro-
duced for Lee1; this is mathematically equivalent to the origi-

nal Lee1 network because the input capacities are infinite.
The third completely reconstructed problem is Haverly. The

Haverly test case did not do as well in the Misener et al.54

test suite; this result reminds us that our hunt for pooling prob-
lems within a larger optimization problem is ultimately a

heuristic.
As an example of the 78 additional problems where the

implementation finds a pooling-like network, we discuss the
wastewater02m2 wastewater network problem.56 As illus-

trated in Figure 10a, the wastewater problem no longer has a
feed-forward network because flows exiting the treatment

units (T1 and T2) may be sent through the treatment units
again. The pooling problem we find in Figure 10b is exciting
because it has flattened the wastewater treatment problem into

a pooling problem. The two extra inputs and outputs illustrated
in Figure 10b could be made equivalent to the original topol-
ogy by using some of the additional constraints in the auxiliary

problem, see Figure 10c. Note in Figure 10c that the number
of pipes entering/exiting pools is the same as the number of

pipes entering/exiting the treatment units in Figure 10a.
The 16 standard and extended Misener et al.54 examples

and the 78 MINLPLib2 test cases with network structure can

be addressed with off-the-shelf solver software,37 but the 70

large-scale standard pooling Dey and Gupte17 examples are

currently out of reach for solver software. To test the potential

of using the Dey and Gupte17 heuristic in tandem with our

pattern-finding approach, we compare using performance

profiles57:

tp; s � Performance metric; i:e:; best feasible solution;

for problem p by solver s 2 S

rp; s �
tp; s2 min p2P tp; s0 : s0 2 S

� �
min p2P tp; s0 : s0 2 S

� � ; s 2 S

qsðsÞ5
1

np
size p 2 P : rp; s � s

� �
After finding the structure in the Dey and Gupte17 test set, we

initialized ANTIGONE, and several of the Dey and Gupte17

approximation algorithms (U1, U2, U4, U5) and ran each for

30 min. Figure 12 shows the advantage of using the new heu-

ristic in comparison to the built-in ANTIGONE heuristics for

this problem class.
Although our pattern-matching algorithm coupled with the

Dey and Gupte17 heuristic is much more powerful than the

heuristics currently in ANTIGONE, we have not added the

new pattern matching code to ANTIGONE because, at this

point, the pattern-matching time significantly slows down

ANTIGONE performance on non-pooling problems. But we

are still very interested in these new results because we know

that there are several cutting plane approaches for the pooling

problem under development.18,19 Once both cutting plane and

heuristic approaches are well-developed for the pooling prob-

lem, finding large pooling problems will be even more advan-

tageous. Furthermore, this article proves that optimization

researchers can easily continue studying the more stylized

standard pooling problem since we can find pooling structure

within larger, flat MINLP.

Conclusions

This article has explored, for the first time, the possibility of

finding special named structure within an MINLP optimization

problem; this significantly extends work by the MIP commu-

nity that has shown how to find network structure for better

primal heuristics and cutting planes. We are specifically inter-

ested in the range of novel techniques which have been devel-

oped for the standard pooling problem and wanted to see how

far we could get in recognizing pooling structure within a gen-

eral MINLP. We have shown that we can detect all standard

and extended pooling problems in the literature and that we

can find pooling networks in 6% of MINLPLib. We have also

shown that, after detecting the pooling problem in the flat

MINLP, we can apply a good heuristic approach to get a good

approximation solution.

Acknowledgments

This work is supported by EPSRC DTP funding to G.K.,

a Royal Academy of Engineering Research Fellowship to

R.M., and EPSRC Grant EP/M028240/1.

Literature Cited:

1. Haverly CA. Studies of the behavior of recursion for the pooling
problem. ACM SIGMAP Bull. 1978;25:19–28.

Figure 12. Performance profile showing the advantage
of using the pattern-finding algorithm for the
Dey and Gupte17 standard pooling test set.

This performance profile shows the improvements possi-

ble in using the U1, U2, U4, and U5 approximations

proposed by Dey and Gupte17 with respect to the built-

in ANTIGONE heuristic after our code found the pool-

ing problem in the flat MINLP. [Color figure can be

viewed in the online issue, which is available at wileyon-

linelibrary.com.]

AIChE Journal September 2016 Vol. 62, No. 9 Published on behalf of the AIChE DOI 10.1002/aic 3093

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


2. Misener R, Floudas CA. Advances for the pooling problem: model-
ing, global optimization, and computational studies. Appl Comput
Math. 2009;8(1):3–22.

3. Lee H, Pinto JM, Grossmann IE, Park S. Mixed-integer linear pro-
gramming model for refinery short-term scheduling of crude oil
unloading with inventory management. Ind Eng Chem Res. 1996;
35(5):1630–1641.

4. Li J, Li A, Karimi IA, Srinivasan R. Improving the robustness and
efficiency of crude scheduling algorithms. AIChE J. 2007;53(10):
2659–2680.

5. Li J, Misener R, Floudas CA. Continuous-time modeling and global
optimization approach for scheduling of crude oil operations. AIChE
J. 2012a;58(1):205–226.

6. Li J, Misener R, Floudas CA. Scheduling of crude oil operations
under demand uncertainty: a robust optimization framework coupled
with global optimization. AIChE J. 2012b;58(8):2373–2396.

7. Galan B, Grossmann IE. Optimal design of distributed wastewater
treatment networks. Ind Eng Chem Res. 1998;37(10):4036–4048.

8. Selot A, Kuok LK, Robinson M, Mason TL, Barton PI. A short-term
operational planning model for natural gas production systems.
AIChE J. 2008;54(2):495–515.

9. Li X, Armagan E, Tomasgard A, Barton PI. Stochastic pooling prob-
lem for natural gas production network design and operation under
uncertainty. AIChE J. 2011;57(8):2120–2135.

10. Papageorgiou DI, Toriello A, Nemhauser GL, Savelsbergh MWP.
Fixed-charge transportation with product blending. Transport Sci.
2012;46(2): 281–295.

11. Baliban RC, Elia JA, Misener R, Floudas CA. Global optimization
of a MINLP process synthesis model for thermochemical based con-
version of hybrid coal, biomass, and natural gas to liquid fuels.
Comput Chem Eng. 2012;42:64–86.

12. Kolodziej SP, Grossmann IE, Furman KC, Sawaya NW. A
discretization-based approach for the optimization of the multiperiod
blend scheduling problem. Comput Chem Eng. 2013;53:122–142.

13. Meyer CA, Floudas CA. Global optimization of a combinatorially com-
plex generalized pooling problem. AIChE J. 2006;52(3):1027–1037.

14. Misener R, Floudas CA. Global optimization of large-scale pooling
problems: quadratically constrained MINLP models. Ind Eng Chem
Res. 2010;49(11):5424–5438.

15. Misener R, Gounaris CE, Floudas CA. Mathematical modeling and
global optimization of large-scale extended pooling problems with
the (EPA) complex emissions constraints. Comput Chem Eng. 2010;
34(9):1432–1456.

16. Bussieck MR, Drud AS, Meeraus A. MINLPLib—a collection of
test models for mixed-integer nonlinear programming. INFORMS J
Comput. 2003;15(1):114–119.

17. Dey SS, Gupte A. Analysis of MILP techniques for the pooling
problem. Oper Res. 2015;63(2):412–427.

18. D’Ambrosio C, Linderoth J, Luedtke J. Integer Programming and
Combinatoral Optimization: 15th International Conference, IPCO
2011, New York, NY, USA, June 15-17, 2011. Proceedings, chap-
ter Valid Inequalities for the Pooling Problem with Binary Varia-
bles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011:117–
129.

19. D’Ambrosio C, Linderoth J, Luedtke J, Miller A. Strong convex
nonlinear relaxations of the pooling problem. http://minlp.cheme.
cmu.edu/2014/papers/linderoth.pdf, 2014.

20. Gounaris CE, Misener R, Floudas CA. Computational comparison of
piecewise-linear relaxations for pooling problems. Ind Eng Chem
Res. 2009;48(12):5742–5766.

21. Castro PM, Teles JP. Comparison of global optimization algorithms
for the design of water-using networks. Comput Chem Eng. 2013;52:
249–261.

22. Boland N, Kalinowski T, Rigterink F. A polynomially solvable case
of the pooling problem. arXiv.org, 2015.

23. Haugland D. The computational complexity of the pooling problem.
J Glob Optim. 2015:1–17.

24. Van Roy TJ, Wolsey LA. Solving mixed integer programming
problems using automatic reformulation. Oper Res. 1987;35(1):
45–57.

25. Brown GG, Wright WG. Automatic identification of embedded net-
work rows in large-scale optimization models. Math Program. 1984;
29(1):41–56.

26. Bixby RE, Fourer R. Finding embedded network rows in linear pro-
grams I. Extraction heuristics. Manag Sci. 1988;34(3):342–376.

27. G€ulpinar N, Gutin G, Mitra G, Zverovitch A. Extracting pure net-
work submatrices in linear programs using signed graphs. Discrete
Appl Math. 2004;137(3):359–372.

28. Nemhauser GL, Savelsbergh MWP, Sigismondi GC. MINTO, a
mixed INTeger optimizer. Oper Res Lett. 1994;15(1):47–58, 1994.

29. Achterberg T, Raack C. The MCF-separator: detecting and exploit-
ing multi-commodity flow structures in MIPs. Math Program Com-
put. 2010;2(2):125–165.

30. Salvagnin D. Detecting semantic groups in MIP models. In: Integra-
tion of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CPAIOR), Lecture Notes in
Computer Science, 2016.

31. McCormick GP. Computability of global solutions to factorable non-
convex programs: part 1-convex underestimating problems. Math
Program. 1976;10(1):147–175.

32. Sahinidis NV. BARON: a general purpose global optimization soft-
ware package. J Glob Optim. 1996;8(2):201–205.

33. Achterberg T. SCIP: solving constraint integer programs. Math Pro-
gram Comput. 2009;1(1):1–41.

34. Belotti P, Lee J, Liberti L, Margot F, W€achter A. Branching and
bounds tightening techniques for non-convex MINLP. Optim Method
Softw. 2009;24(4–5):597–634.

35. Lin Y, Schrage L. The global solver in the LINDO API. Optim
Method Softw. 2009;24(4–5):657–668.

36. Berthold T, Gleixner AM, Heinz S, Vigerske S. Analyzing the com-
putational impact of MIQCP solver components. Num Algebra Con-
trol Optim. 2012;2(4):739–748.

37. Misener R, Floudas CA. GloMIQO: global mixed-integer quadratic
optimizer. J Glob Optim. 2013;57(1):3–50.

38. Misener R, Floudas CA. ANTIGONE: algorithms for coNTinuous
integer global optimization of nonlinear equations. J Glob Optim.
2014;59(2–3):503–526.

39. Liberti L, Pantelides CC. An exact reformulation algorithm for large
nonconvex NLPs involving bilinear terms. J Glob Optim. 2006;
36(2):161–189.

40. Liberti L, Cafieri S, Tarissan F. Reformulations in mathematical pro-
gramming: a computational approach. In: Abraham A, et al., editors,
Foundations of Computational Intelligence Volume 3, volume 203 of
Studies in Computational Intelligence. Berlin: Springer, 2009:153–
234.

41. Misener R, Smadbeck JB, Floudas CA. Dynamically-generated cut-
ting planes for mixed-integer quadratically-constrained quadratic pro-
grams and their incorporation into GloMIQO 2.0. Optim Method
Softw. 2014;30(1):215–249.

42. Sherali HD, Adams WP. A Reformulation-Linearization Technique
for Solving Discrete and Continuous Nonconvex Problems. Noncon-
vex Optimization and Its Applications. Dordrecht, Netherlands:
Kluwer Academic Publishers, 1999.

43. Quesada I, Grossmann IE. Global optimization of bilinear process
networks with multicomponent flows. Comput Chem Eng. 1995;
19(12):1219–1242.

44. Tawarmalani M, Sahinidis NV. Convexification and Global Optimi-
zation in Continuous and Mixed-Integer Nonlinear Programming:
Theory, Applications, Software, and Applications. Nonconvex Opti-
mization and Its Applications. Norwell, MA: Kluwer Academic Pub-
lishers, 2002.

45. Karuppiah R, Grossmann IE. Global optimization for the synthesis
of integrated water systems in chemical processes. Comput Chem
Eng. 2006;30:650–673.

46. Tawarmalani M, Ahmed S, Sahinidis NV. Product disaggregation in
global optimization and relaxations of rational programs. Optim
Eng. 2002;3:281–303.

47. Zorn K, Sahinidis NV. Computational experience with applications
of bilinear cutting planes. Ind Eng Chem Res. 2013;52(22):7514–
7525.

48. Zorn K, Sahinidis NV. Global optimization of general non-convex
problems with intermediate bilinear substructures. Optim Method
Softw. 2014;29(3):442–462.

49. Liberti L. https://www.mfo.de/document/1543/preliminary_OWR_
2015_46.pdf. Open Problems Session at the Oberwolfach MINLP
Workshop, 2015.

50. Ben-Tal A, Eiger G, Gershovitz V. Global minimization by reducing
the duality gap. Math Program. 1994;63:193–212.

51. Audet C, Brimberg J, Hansen P, Le Digabel S, Mladenovic N. Pool-
ing problem: alternate formulations and solution methods. Manage
Sci. 2004;50(6):761–776.

3094 DOI 10.1002/aic Published on behalf of the AIChE September 2016 Vol. 62, No. 9 AIChE Journal

http://minlp.cheme.cmu.edu/2014/papers/linderoth.pdf
http://minlp.cheme.cmu.edu/2014/papers/linderoth.pdf
http://https://www.mfo.de/document/1543/preliminary_OWR_2015_46.pdf
http://https://www.mfo.de/document/1543/preliminary_OWR_2015_46.pdf


52. Alfaki M, Haugland D. A multi-commodity flow formulation for
the generalized pooling problem. J Glob Optim. 2013;56(3):917–
937.

53. Fourer R, Ma J, Martin K. OSiL: an instance language for optimiza-
tion. Comput Optim Appl. 2010;45(1):181–203.

54. Misener R, Thompson JP, Floudas CA. APOGEE: global optimiza-
tion of standard, generalized, and extended pooling problems via lin-
ear and logarithmic partitioning schemes. Comput Chem Eng. 2011;
35(5):876–892.

55. Lee S, Grossmann IE. Global optimization of nonlinear generalized dis-
junctive programming with bilinear equality constraints: applications to
process networks. Comput Chem Eng. 2003;27(11):1557–1575.

56. Castro PM, Matos HA, Novais AQ. An efficient heuristic procedure
for the optimal design of wastewater treatment systems. Resour Con-
servat Recycling 2007;50(2):158–185.

57. Dolan ED, Mor�e JJ. Benchmarking optimization software with per-
formance profiles. Math Program. 2002;91:201–213.

Manuscript received Dec. 8, 2015, and revision received May 1, 2016.

AIChE Journal September 2016 Vol. 62, No. 9 Published on behalf of the AIChE DOI 10.1002/aic 3095


	l
	l
	l
	l
	l
	l
	l

