
Imperial College London

Department of Computing

Co-operative Coevolution

for Computational Creativity:

A Case Study In

Videogame Design

Michael Cook

October 2015

Supervised by Simon Colton

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

1



The copyright of this thesis rests with the author and is made available

under a Creative Commons Attribution Non-Commercial No Derivatives

licence. Researchers are free to copy, distribute or transmit the thesis on

the condition that they attribute it, that they do not use it for commercial

purposes and that they do not alter, transform or build upon it. For any

reuse or redistribution, researchers must make clear to others the licence

terms of this work.

This work is my own. All other work has been referenced.

2



Abstract

The term procedural content generation (PCG) refers to writing software

which can synthesise content for a game (or other media such as film) with-

out further intervention from a designer. PCG has become a rich area of

research in recent years, finding new ways to apply artificial intelligence to

generate high-quality game content such as levels, weapons or puzzles for

games. Such research is generally constrained to a single type of content,

however, with the assumption that the remainder of the game’s design will

be fixed by an external designer.

Generating many aspects of a game’s design simultaneously, perhaps ulti-

mately generating the entirety of a game’s design, using PCG is not a well-

explored idea. The notion of automated game design is not well-established,

and is not seen as a task distinct from simply performing lots of PCG tasks

at the same time. In particular, the high-level design tasks guiding the cre-

ative direction of a game are all but completely absent in PCG literature,

because it is rare that a designer wishes to hand over such responsibility to

a PCG system.

We present here ANGELINA, an automated game designer that has de-

veloped games using a multi-faceted approach to content generation under-

pinned by a co-operative co-evolutionary approach which breaks down a

game design into several distinct tasks, each of which controlled by an evo-

lutionary subsystem within ANGELINA. We will show that this approach

works well to automate game design, can be ported across many game en-

gines and game genres, and can be enhanced and extended using novel

computational creativity techniques to give the system a heightened sense

of autonomy and independence.

3





5



Acknowledgements

Nine years ago I stood outside one of my first mathematics tutorials won-

dering if I would manage to finish my first degree year, let alone go on to do

a PhD. I asked someone I hadn’t met before if they could help me with a

question I was struggling with, and since that day Azalea Raad’s support,

respect, advice, teaching and love made it possible for me to make it through

the decade that followed, and ultimately submit this thesis. Thank you for

always having the patience to teach me new things, and the perseverance

to push through the hardest times with me. I wish I could dedicate a grand

truth about humanity to you, or a groundbreaking revelation about our

universe, but all I have is this text about videogames. It is not enough, but

nothing ever could be. I love you.

I am indebted to the rest of my family too, for letting me love games

and encouraging me to keep working with them. My brother, Andrew, has

always had something new to show me about videogames even when he was

a few years old watching me play games with an unplugged controller in his

hands. My mother, Michele, has provided an amazing foundation ever since

I was a child, and has been an inspiration throughout her life - I am proud

to be attending her university graduation in the same year as I submit this

thesis.

As for my father, Simon - it’s fair to say that had he not sat down to

fudge the wires into a ZX Spectrum as often as he did, I might not be here

at all. Had he not spent those nights in his shed building and upgrading

computers for me, or borrowing new bits of technology off of friends; had he

not suggested that I might enjoy Computer Science; had he not done these

or any other number of things, I would not have been come close to doing

any of the work contained within this document. More than anyone else,

this thesis is dedicated to him, because he is not able to be here to read it

for himself.

I’m privileged that over the course of this PhD I was able to meet hundreds

6



of wonderful, interesting people. This PhD has been influenced in so many

ways by developers, critics, players, designers, academics, artists and more,

and without so many people pitching in with their thoughts, opinions, ideas

and criticism this work would have been much less ambitious, much less

interesting, and much less fun. Thank you to everyone who I met (or tweeted

at) over the years and who helped make this work what it is today.

Thank you for reading this thesis. It’s been a weird five years, during

which time just about every assumption and opinion I’ve had about games

and academic research has been challenged in some form. While a lot of

this work now seems strange and alien to me, I think I am glad it is here,

collected into some kind of narrative. For all the issues I have with the

worlds of academia and games development that this work sits between,

it was a privilege to be involved in an area of games research still defining

itself, and all I can hope is that I contributed in some way to its development

and growth.

7



“The popular stereotype of the researcher is that of a

skeptic and a pessimist. Nothing could be further from

the truth! Scientists must be optimists at heart, in order

to block out the incessant chorus of those who say ‘It

cannot be done.’ ”

–Sid Meier’s Alpha Centauri

“We can only see a short distance ahead, but we can see

plenty there that needs to be done.”

–Alan Turing

8





10



Contents

1 Introduction 27

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 Contributions and Achievements . . . . . . . . . . . . . . . . 30

1.3 Breakdown Of The Thesis . . . . . . . . . . . . . . . . . . . . 30

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Background - Relevant Concepts in Videogames 34

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Game Classification . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 High-Level Classification . . . . . . . . . . . . . . . . . 36

2.2.2 Low-Level Classification . . . . . . . . . . . . . . . . . 37

2.3 Verbs and Game Mechanics . . . . . . . . . . . . . . . . . . . 41

2.3.1 Emotion and Meaning . . . . . . . . . . . . . . . . . . 43

2.4 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 Fun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.2 Self-Improvement . . . . . . . . . . . . . . . . . . . . . 48

2.4.3 Other Assessments of Games . . . . . . . . . . . . . . 49

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Background - Evolution 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Evolutionary Computation . . . . . . . . . . . . . . . . . . . 53

3.2.1 Initialising Evolutionary Algorithms . . . . . . . . . . 53

3.2.2 Evaluation & Selection . . . . . . . . . . . . . . . . . . 54

3.2.3 Recombination . . . . . . . . . . . . . . . . . . . . . . 55

3.2.4 Termination . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Coevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Competition and Co-operation . . . . . . . . . . . . . 58

3.3.2 Applications for Co-evolution . . . . . . . . . . . . . . 59

11



3.4 Evolutionary Art & Design . . . . . . . . . . . . . . . . . . . 61

3.4.1 Fitness and Interactivity . . . . . . . . . . . . . . . . . 62

3.5 An Example System . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Background – Generative Software And Games 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 History and Contemporary Application . . . . . . . . . . . . 69

4.2.1 Needs-Driven and Wants-Driven PCG . . . . . . . . . 69

4.3 Classification of PCG Systems . . . . . . . . . . . . . . . . . 72

4.3.1 Extensions to the PCG Taxonomy . . . . . . . . . . . 75

4.3.2 Dependent versus Independent . . . . . . . . . . . . . 76

4.3.3 Sequential versus Parallel . . . . . . . . . . . . . . . . 77

4.4 Case Study: Spelunky . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Evolutionary Procedural Content Generation . . . . . . . . . 80

4.5.1 Evolution and Online PCG . . . . . . . . . . . . . . . 80

4.5.2 Evolutionary Assistance – Mixed Initiative Tools . . . 83

4.6 Computational Creativity . . . . . . . . . . . . . . . . . . . . 85

4.6.1 The Challenge of Evaluation in Computational Cre-

ativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6.2 Evaluation Approaches in Computational Creativity . 86

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Coevolution in Arcade Game Design 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Coevolutionary Setup . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Species - Level Design . . . . . . . . . . . . . . . . . . 92

5.3.2 Species - Layout Design . . . . . . . . . . . . . . . . . 95

5.3.3 Species - Ruleset Design . . . . . . . . . . . . . . . . . 96

5.4 Example Games . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Full Designs . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.2 Partial Designs . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Coevolution of Genre-Specific Features 106

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

12



6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Coevolutionary Setup . . . . . . . . . . . . . . . . . . . . . . 110

6.4.1 Species - Powerup Design . . . . . . . . . . . . . . . . 110

6.4.2 Species - Level Design . . . . . . . . . . . . . . . . . . 114

6.4.3 Species - Layout . . . . . . . . . . . . . . . . . . . . . 116

6.4.4 Species Definition . . . . . . . . . . . . . . . . . . . . 117

6.4.5 Generation . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4.6 Fitness Criteria . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Example - Space Station Invaders . . . . . . . . . . . . . . . . 118

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Creative Art Direction in Coevolutionary Game Design 123

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Coevolutionary Setup . . . . . . . . . . . . . . . . . . . . . . 126

7.4.1 Phase - Predesign . . . . . . . . . . . . . . . . . . . . 126

7.4.2 Species - Media Arrangement . . . . . . . . . . . . . . 132

7.5 Sample Games . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.5.1 The Conservation Of Emily . . . . . . . . . . . . . . . 134

7.5.2 Hot NATO . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5.3 Sex, Lies and Rape . . . . . . . . . . . . . . . . . . . . 139

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Coevolution and Reflection-Driven Mechanic Design 143

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.3 Design Space: Reflective Mechanic Design . . . . . . . . . . . 145

8.3.1 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.3.2 Mechanic Generation . . . . . . . . . . . . . . . . . . . 147

8.3.3 Toggleable Mechanics . . . . . . . . . . . . . . . . . . 148

8.4 Coevolutionary Setup . . . . . . . . . . . . . . . . . . . . . . 149

8.5 Species - Verbs . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.5.1 Species Definition . . . . . . . . . . . . . . . . . . . . 150

8.5.2 Generation . . . . . . . . . . . . . . . . . . . . . . . . 151

8.5.3 Fitness Criteria . . . . . . . . . . . . . . . . . . . . . . 153

13



8.5.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . 154

8.5.5 Crossover and Mutation . . . . . . . . . . . . . . . . . 158

8.6 Species - Level Design . . . . . . . . . . . . . . . . . . . . . . 159

8.6.1 Generation . . . . . . . . . . . . . . . . . . . . . . . . 160

8.6.2 Fitness Criteria . . . . . . . . . . . . . . . . . . . . . . 161

8.6.3 Crossover and Mutation . . . . . . . . . . . . . . . . . 162

8.7 Sample Games and Mechanics . . . . . . . . . . . . . . . . . . 163

8.7.1 A Puzzling Present . . . . . . . . . . . . . . . . . . . . 163

8.7.2 Surprise and Emergence . . . . . . . . . . . . . . . . . 165

8.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9 Coevolutionary Game Design In The Wild 170

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.3 Design Space: 3D Exploration Games . . . . . . . . . . . . . 172

9.4 Coevolutionary Setup . . . . . . . . . . . . . . . . . . . . . . 175

9.4.1 Predesign Phase . . . . . . . . . . . . . . . . . . . . . 175

9.4.2 Species - Level Design . . . . . . . . . . . . . . . . . . 178

9.4.3 Species - Layout Design . . . . . . . . . . . . . . . . . 182

9.4.4 Species - Ruleset Design . . . . . . . . . . . . . . . . . 184

9.5 Entering Game Jams . . . . . . . . . . . . . . . . . . . . . . . 186

9.5.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.5.2 Role in Game Culture . . . . . . . . . . . . . . . . . . 187

9.6 Sample Games & Public Assessment . . . . . . . . . . . . . . 189

9.6.1 To That Sect . . . . . . . . . . . . . . . . . . . . . . . 189

9.6.2 Stretch Bouquet Point . . . . . . . . . . . . . . . . . . 190

9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10 Evaluation of Performance and Game Quality 194

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

10.2 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.2.1 Fitness and Perceived Game Quality . . . . . . . . . . 198

10.3 Expressive Power . . . . . . . . . . . . . . . . . . . . . . . . . 200

10.3.1 Expressivity At Genre Level . . . . . . . . . . . . . . . 200

10.3.2 Expressivity At Game Level . . . . . . . . . . . . . . . 201

10.3.3 A Note On Controllability . . . . . . . . . . . . . . . . 203

14



10.4 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

10.4.1 ANGELINA4 . . . . . . . . . . . . . . . . . . . . . . . 205

10.4.2 ANGELINA5 . . . . . . . . . . . . . . . . . . . . . . . 210

10.4.3 Trends Across Multiple Ludum Dare Entries . . . . . 213

10.4.4 Qualitative Review Analysis . . . . . . . . . . . . . . . 214

10.5 Cultural Impact . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10.5.1 ANGELINA as an Exhibit . . . . . . . . . . . . . . . . 218

10.5.2 ANGELINA as a Gendered Icon . . . . . . . . . . . . 218

10.6 Evaluation In Automated Game Design . . . . . . . . . . . . 220

10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

11 Related Work 224

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

11.2 Automated Game Design . . . . . . . . . . . . . . . . . . . . 225

11.2.1 Togelius and Schmidhuber . . . . . . . . . . . . . . . . 225

11.2.2 Game-O-Matic . . . . . . . . . . . . . . . . . . . . . . 228

11.2.3 Nelson and Mateas . . . . . . . . . . . . . . . . . . . . 231

11.2.4 Variations Forever . . . . . . . . . . . . . . . . . . . . 233

11.3 Computationally Creative Systems . . . . . . . . . . . . . . . 236

11.3.1 The Painting Fool . . . . . . . . . . . . . . . . . . . . 236

11.3.2 PIERRE . . . . . . . . . . . . . . . . . . . . . . . . . . 238

11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

12 Future Work 244

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

12.2 Code Generation For Artificial Subjectivity . . . . . . . . . . 245

12.3 Understanding Culture and Meaning . . . . . . . . . . . . . . 256

12.3.1 A Rogue Dream . . . . . . . . . . . . . . . . . . . . . 257

12.3.2 Illustrative Examples . . . . . . . . . . . . . . . . . . . 260

12.3.3 The Future . . . . . . . . . . . . . . . . . . . . . . . . 261

12.4 More Directions For Future Work . . . . . . . . . . . . . . . . 262

12.4.1 Code Generation For Mechanic Invention . . . . . . . 262

12.4.2 Developer Commentary And Devlogging . . . . . . . . 263

12.4.3 Third-Party Asset Development . . . . . . . . . . . . . 265

12.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

15



13 Conclusions 270

13.1 Reviewing Our Contributions . . . . . . . . . . . . . . . . . . 270

13.2 Shifting Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

13.3 Automated Game Design . . . . . . . . . . . . . . . . . . . . 274

13.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

16



List of Tables

10.1 Overall scoring for To That Sect (TTS) and Stretch Bouquet

Point (SBP). The first two columns show the position in the

final entry list (lower is better), while the second two columns

show the percentile this places the game in (higher is better).

There were 780 total submissions to this track. . . . . . . . . 212

10.2 Percentile data for To That Sect, ANGELINA5’s non-anonymised

December 2013 entry, Jet Force Gemini, its April 2014 entry,

and Cut And Upside, its August 2014 entry. . . . . . . . . . . 213

17



List of Figures

2.1 A simple puzzle from Braid [8]. The player drops down to

pick up the key, and then rewinds time backwards. The key,

unaffected by the rewind, follows the player back. . . . . . . . 38

2.2 A composite image showing the entirety of the game world

in Metroid. Image from [61]. . . . . . . . . . . . . . . . . . . . 40

2.3 A screenshot from Metroid, demonstrating how the Ice Beam

can augment player accessibility. The player-character is

standing on a frozen enemy in order to access a gap in the

wall on the left. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 A simple game mechanic from Spelunky. . . . . . . . . . . . . 41

2.5 A screenshot from Silent Hill 2, showing a reverse camera

angle that prevents the player from seeing what the character

sees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 A screenshot from By Your Side. . . . . . . . . . . . . . . . 45

3.1 Pseudocode for an evolutionary system. . . . . . . . . . . . . 53

3.2 Diagram of two crossover techniques. In both cases, black

lines denote crossover points where inheritance switches be-

tween parents p and q. pq is the resulting child solution. . . . 55

3.3 River Temple by Opah, an image created by the interactive

evolution software Picbreeder. . . . . . . . . . . . . . . . . . . 61

3.4 Nude #7, an evolved non-photorealistic rendering by Machado

et al. and Photogrowth. . . . . . . . . . . . . . . . . . . . . . 62

3.5 3D sculpture evolved by Latham’s Mutator program. . . . . . 63

3.6 A screenshot of Picbreeder’s user interface. . . . . . . . . . . 64

3.7 A simple maze evolved by our example evolutionary system.

The start tile S is green, and the exit tile X is red. . . . . . . 65

4.1 An unusual formation found in a particular Minecraft world. 71

18



4.2 An illustration by Derek Yu describing Spelunky’s level gen-

eration process [135]. . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 A sample Spelunky level, generated by Darius Kazemi’s in-

teractive generator [69]. The player starts in the second tile

from top-left. The exit in this level is in the bottom-left. . . . 79

4.4 A screen-sized template for a level in Spelunky, before ran-

dom adjustment (left) and after adjustment in-game (right),

from [135] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 A screenshot from Galactic Arms Race showing an evolved

weapon being fired. . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 A low-resolution sketch by a user (left) and two high-detail

visualisations of the sketch made by The Sentient Sketchbook

(centre and right). In the original sketch, black tiles denote

impassable areas, blue tiles denote resources, and white tiles

denote player starting locations. . . . . . . . . . . . . . . . . . 83

4.7 A screenshot from The Sentient Sketchbook. The user sketch

is on the left, and live suggestions appear on the right-hand

side of the screen. Options and metric information about the

sketch appear in the central column. . . . . . . . . . . . . . . 84

5.1 An untitled ‘steady-hand’ game designed by ANGELINA1. . 103

5.2 An untitled ‘Pac-Man-like’ game designed by ANGELINA1. . 103

5.3 Revenge, a partial game design by ANGELINA1. . . . . . . . 104

5.4 After Squad, a partial game design by ANGELINA1. . . . . . 104

6.1 Map segments that ANGELINA2 uses to compose larger map

tiles. Left: a border map segment that has exits left, above

and right. Right: a body map segment designed by hand. . . 109

6.2 A screenshot from Space Station Invaders, a game commis-

sioned by The New Scientist in 2012. . . . . . . . . . . . . . . 118

6.3 A compiled image showing the entirety of Level 1 from Space

Station Invaders. Red areas are impassable blockades that

can only be removed by finding a key. . . . . . . . . . . . . . 119

6.4 A compiled image showing the entirety of Level 3 from Space

Station Invaders. . . . . . . . . . . . . . . . . . . . . . . . . . 119

19



6.5 An annotated version of Figure 6.4 showing accessibility re-

gions for the first two stages. The red region, labelled A, is

the initially accessible region. The blue region, labelled B, is

accessible after the first powerup is collected. . . . . . . . . . 120

6.6 A smaller section of the level in Figure 6.4. The red line shows

the maximum possible jump height with the first powerup

from the player’s current position. It is slightly too short to

reach the next layer of platforms. . . . . . . . . . . . . . . . . 122

7.1 Three results from an example augmented image search of

UK Prime Minister David Cameron, to show the variation in

outcome. Left, happy. Center, no augmentation. Right, angry.128

7.2 An excerpt from the commentary for the game Hot NATO . 130

7.3 The template commentary filled in by the system. Some of

these phrases are conditionally dependent on the game, and

so do not always appear. . . . . . . . . . . . . . . . . . . . . 131

7.4 Images used in The Conservation of Emily . . . . . . . . . . 135

7.5 Screenshots from The Conservation of Emily. . . . . . . . . . 136

7.6 Some of the images used in Hot NATO . . . . . . . . . . . . . 137

7.7 Screenshots from Hot Nato. . . . . . . . . . . . . . . . . . . . 138

7.8 Some of the images used in Sex, Lies and Rape . . . . . . . . 140

7.9 Screenshots from Sex, Lies and Rape. . . . . . . . . . . . . . . 141

8.1 A reflection example showing an object’s Class being ob-

tained and declared methods and fields being extracted. . . . 146

8.2 A reflection example showing accesses to field objects and

other metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.3 A sample game mechanic. Pressing spacebar causes the player

to jump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.4 A template for a verb generated by ANGELINA4. . . . . . . 149

8.5 A template level used to evaluate game mechanics in AN-

GELINA4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.6 Pseudocode for ANGELINA4’s simulation algorithm. . . . . . 155

8.7 Post-level survey from A Puzzling Present . . . . . . . . . . . 164

8.8 Three levels from A Puzzling Present demonstrating the three

different mechanics in the game. . . . . . . . . . . . . . . . . 166

20



8.9 A segment of a level designed by ANGELINA4. The player

must climb up a high cliff face to reach the present. However,

the current mechanic does not appear to allow them to do so

directly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.10 By teleporting inside the solid wall, the player can exploit an

oversight in the game’s jumping code, allowing them to jump

directly inside the wall. . . . . . . . . . . . . . . . . . . . . . 169

9.1 Screenshots from a game made by ANGELINA5, showing an

in-editor view of the level (top) an in-editor close-up of the

game world (mid) and finally an in-game shot (bottom). . . . 174

9.2 Title screen from Cat That, a game designed during proto-

typing ANGELINA4. Note the cat-themed font used in the

title. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.3 A texture query on Twitter (top) followed by its responses

from ANGELINA’s followers (bottom). . . . . . . . . . . . . . 179

9.4 An image of an Ouroboros, an ancient symbol of eternity.

This image was the theme for the 2012 Global Game Jam. . . 188

9.5 The commentary generated by ANGELINA4 for the game To

That Sect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.6 Title screen from To That Sect. . . . . . . . . . . . . . . . . . 189

9.7 Title screen from Stretch Bouquet Point. . . . . . . . . . . . . 191

9.8 The commentary generated by ANGELINA5 for the game

Stretch Bouquet Point. The commentary was edited before

submission to Ludum Dare, to reduce the appearance of ar-

tificial generation and to obfuscate the author. The edited

version is shown in the second passage. . . . . . . . . . . . . . 192

10.1 The fitness of a population in ANGELINA2 throughout a

standard execution. The dotted line shows the maximum

fitness from a sample of randomly generated games, the size

of which is equal to the total number of games evaluated

across 400 generations of a standard ANGELINA2 execution. 196

21



10.2 The fitness of a population in ANGELINA5 throughout a

standard execution. The top line in blue shows the fitness

of the Zone Map species; the middle line in red shows the

fitness of the Placement species; and the lower line in yellow

shows the fitness of the Level Design species. . . . . . . . . . 197

10.3 Data showing frequencies of ranks for the comparative study. 199

10.4 Selected tweets following an article about ANGELINA in Eu-

rogamer. Many of the tweets referred to ANGELINA’s use

of public figures, as shown here. . . . . . . . . . . . . . . . . . 202

10.5 Mean fun (white circles) and difficulty (black circles) ratings

for the nth level of A Puzzling Present played. Higher ratings

are more fun/more difficult respectively. . . . . . . . . . . . . 207

10.6 Mean level fun and difficulty, broken down by ‘world’ (a group

of levels that share a mechanic) in A Puzzling Present. . . . . 208

10.7 Mean level fun and difficulty, broken down by game mechanic

and level design parameters. . . . . . . . . . . . . . . . . . . . 209

11.1 Screens from the Game-o-Matic. Top: A concept graph show-

ing related concepts. Bottom: A game based on that concept

graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

12.1 In this preference function, if i is negative, it is preferred

over j; the second conditional check is true if i < 0. . . . . . . 252

12.2 This preference function orders numbers from largest to small-

est. The first conditional returns a reverse ordering (-1) if the

first argument is smaller than the second. Note the copious

amount of unreachable code. This constitutes a compile-time

warning in C#, which is suppressed here. . . . . . . . . . . . 252

12.3 Reverse lexicographic ordering on characters. The first condi-

tional block is entered if the second argument, j, has a smaller

ASCII code than the first argument, i. This returns a correct

ordering (1). Otherwise, a reverse ordering is returned (-1).

As with Figure 12.2, there is much unreachable code here.

Also note that explicit casts to int types has caused a lot of

excess bracketing. . . . . . . . . . . . . . . . . . . . . . . . . . 253

22



12.4 A dummy class specification used for generating preference

functions. speed cannot have a negative value, but damage

can. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

12.5 An ordering on Item objects based on their speed variable. . 254

12.6 An ordering on Item objects based on their speed variable,

directly opposite to the one shown in Figure 12.5. A com-

pacted, human-translated version of this function is shown in

Figure 12.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

12.7 A retranslation of the generated code shown in Figure 12.6, to

more clearly show the inverse relationship with the function

in Figure 12.5. This is a direct functional translation of the

code in Figure 12.6 with unreachable or nonfunctional code

removed for readability. . . . . . . . . . . . . . . . . . . . . . 258

12.8 A screenshot from A Rogue Dream, given the input word ‘cat’.258

12.9 Google autocompletions for a partial search term question. . 259

12.10A screenshot from A Rogue Dream, given the input word

‘musician’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

12.11A screenshot from A Rogue Dream, given the input word ‘kid’.261

12.12A comment on an article about ANGELINA on Slashdot, a

popular discussion site on the Internet. The commenter is

implying that ANGELINA’s decisions are made using single

random numbers rather than any intelligent process, despite

the commentaries explaining otherwise. . . . . . . . . . . . . 265

23



Published Work

The work described in this thesis has also been published in the following

papers and articles:

• Multi-faceted Evolution Of Simple Arcade Games - Michael Cook and

Simon Colton - CIG 2011 - Material from this paper appears in chapter

5.

• Initial Results From Co-operative Co-evolution For Automated Plat-

former Design - Michael Cook, Simon Colton and Jeremy Gow -

EvoGames 2012 - Material from this paper appears in chapter 6.

• Aesthetic Considerations For Automated Platformer Design - Michael

Cook, Simon Colton and Alison Pease - AIIDE 2012 - Material from

this paper appears in chapter 7.

• Mechanic Miner: Reflection-Driven Game Mechanic Discovery And

Level Design - Michael Cook, Simon Colton and Azalea Raad - EvoGames

2013 - Material from this paper appears in chapter 8.

• Nobody’s A Critic: On The Evaluation Of Creative Code Generators -

Michael Cook, Simon Colton and Jeremy Gow - ICCC 2013 - Material

from this paper appears in chapter 8.

• Creativity In Code: Generating Rules For Videogames - Michael Cook

- ACM XRDS, 2013 - Material from this article appears in chapter 8.

• From Mechanics To Meaning And Back Again: Exploring Techniques

For The Contextualisation Of Code - Michael Cook and Simon Colton

- AI and Game Aesthetics Workshop, AIIDE 2013 - Material from this

paper appears in chapter 8 and chapter 12.

24



• Automating Game Design In Three Dimensions - Michael Cook, Si-

mon Colton and Jeremy Gow - AISB 2014 - Material from this paper

appears in chapter 9.

• A Rogue Dream: Automatically Generating Meaningful Content For

Games - Michael Cook and Simon Colton - Experimental AI in Games

Workshop, AIIDE 2014 - Material from this paper appears in chapter

12.

• Towards The Adaptive Generation Of Bespoke Game Content - Cameron

Browne, Simon Colton, Michael Cook, Jeremy Gow and Robin Baum-

garten - Handbook of Digital Games - Material from this book chapter

appears in chapters 5, 6 and 7.

• Playable Experiences at AIIDE 2014 - Michael Cook - AIIDE 2014 -

Material from this paper appears in chapter 9.

• Creating Code Creatively - Automated Discovery Of Game Mechanics

Through Code - Michael Cook - Videogames and Creativity, 2015 -

Material from this book chapter appears in chapters 5, 6 and 8.

Work from the thesis as a whole contributed to the following papers and

book chapters:

• On Acid Drops And Teardrops: Observer Issues In Computational

Creativity - Simon Colton, Michael Cook, Rose Hepworth and Alison

Pease - AISB 2014.

• Assessing Progress In Building Autonomously Creative Systems - Si-

mon Colton, Alison Pease, Joseph Corneli, Michael Cook and Maria

Teresa Llano - ICCC 2014.

• Towards The Automatic Generation Of Fictional Ideas For Games -

Maria Teresa Llano, Michael Cook, Christian Guckelsberger, Simon

Colton, Rose Hepworth - Experimental AI in Games Workshop, AI-

IDE 2014.

The following two journal papers are currently under review, and sum-

marise a large portion of the work described here.

25



• The ANGELINA Videogame Designer, Part I - Michael Cook, Simon

Colton and Jeremy Gow - Submitted to the Transactions on Compu-

tational Intelligence and AI in Games.

• The ANGELINA Videogame Designer, Part II - Michael Cook, Si-

mon Colton and Jeremy Gow - Submitted to the Transactions on

Computational Intelligence and AI in Games.

26



1 Introduction

The medium of videogames is constantly changing, as the state of the art

is pushed forward by both artists and technologists. In the latter case,

scientific research is often motivated by the needs of modern games [15], as

well as being the motivating force behind the creation of new kinds of games

[136]. More than any other cultural medium, videogames are inexorably

linked to what it is possible for computers to do.

The history of videogames is littered with examples of people writing

software to create parts of a videogame automatically. Sometimes these en-

deavours had technological motivations, efficiently compressing large games

inside small algorithms that would unfold as the game ran [36]. Some-

times they were motivated by artistic intentions, producing unpredictable

or pseudo-infinite spaces and systems [7]. The culture of procedural gener-

ation within videogames is approaching ubiquity, but it is also somewhat

stagnant. Players have become accustomed to the idea that simple kinds of

content can be generated, but the repetitive nature of these generators and

the kinds of content they generate have led to the notion of procedural gen-

eration being stereotyped as ‘random placement’ of basic game components

[59].

The thesis primarily describes an approach to automated videogame de-

sign centred on evolutionary techniques, and the development of a piece of

software called ANGELINA, which was built over the course of many itera-

tions and can be considered an ongoing development even past the comple-

tion of the work described here. ANGELINA is situated between the fields

of computational creativity, a branch of artificial intelligence concerned with

building software which can perform tasks via behaviours which we call ‘cre-

ative’, and procedural content generation, a broad field but normally defined

(as indeed we define it here) in terms of the videogames industry, referring

to software which can produce content for videogames automatically.

The work we present here approaches procedural generation with a new

27



perspective, with the aim of producing software capable of generating any

and all aspects of a videogame. In doing so, we shift the focus from how to

generate a piece of content in isolation, to how to generate many different

pieces of content that relate to one another in subtle ways. We will show that

co-operative co-evolution is an appropriate technique for this, that there

are ways to augment and extend this approach, and that there are many

interesting philosophical and technological issues that arise when tackling

this larger problem. We hope that in doing so we present an argument

for automated game design to be recognised as a research area distinct but

parallel to procedural content generation, with a unique set of problems and

opportunities to uncover.

In this chapter, we first present our motivation for undertaking the work,

and we discuss our position in the wider context of the games industry in

particular. We then provide a brief overview of the contributions that this

work has made, and an outline of the remaining chapters of the thesis.

1.1 Motivation

Videogames occupy a unique position in human history at the conflux of

cultural expression and technological progress. The development of a mod-

ern blockbuster game involves hundreds of highly-skilled people, millions

of dollars, and the leveraging of a huge variety of resources, from sym-

phony orchestras [63] to cutting-edge motion capture [11]; from Hollywood

actors [120] to experimental scientists1. Despite this huge variety of re-

sources employed in their production, videogames are becoming a popular

form of cultural and artistic expression, both on a local, personal level (as

evangelised by Anna Anthropy in [4]) as well as individual work becoming

financially successful and globally popular. For example, Braid [8] was de-

signed primarily by Jonathan Blow with contract work for art and music.

The game sold over half a million copies in its first few years. Gunpoint

[37] was similarly made by a single developer, Tom Francis, with musicians

and artists working on commission. Francis posted a blog after the game’s

releasing stating that Gunpoint had made its development costs back in 64

seconds, since the only cost besides the hours put in by people was the $30

cost of a game development tool three years previously [42]. While this is in

1Valve Software currently employs both in-house psychologists and economists.

28



some ways a comical exaggeration (the artists, musicians and Francis him-

self all had other forms of employment during this time so technically the

hours spent were free time work) it underlines the small-scale, low-budget

work that nevertheless is able to have huge impact in a market dominated

by products costing hundreds of millions of dollars to produce.

Automating the production of artefacts in creative domains is not a new

concept. It has often been attempted in media such as visual art [22], poetry

or music. However, there has not been a serious attempt to automate the

production of videogames. One reason for this may be their relative com-

plexity: their composition of music, artwork, narrative and programming

posing a great challenge to be tackled simultaneously. Gaming’s perceived

frivolity as a pastime may also contribute to a lack of attempts at automat-

ing their design. It is worth noting that the cultural media whose automa-

tion has been most often attempted by researchers are those which are held

up as traditional intellectual pursuits [65]. Regardless of the reasons for it,

the automation of game design is an exciting and desirable research question

for a number of reasons.

For Computational Creativity research, the meeting of creative media

and the complexity of artistic expression through interactive systems offers

myriad exciting research questions that will both improve our understanding

of creative systems and offer a challenging validity test for our models and

evaluation techniques. This thesis will provide a foundational body of work

for the area, and ultimately ask more questions than it answers, as research

often does.

For artificial intelligence at large, the automation of a fundamentally tech-

nological task – that of programming a game – forces us to reconsider one of

computer science’s most daunting unsolved problems: automated code gen-

eration. This thesis will show how automated game design offers a unique

platform for investigating this problem, and we will propose methods for

managing the complexity of it.

For the growing and diversifying group of videogame consumers, auto-

matic game design offers a long-term solution to a growing issue of content

scarcity in modern videogames, as well as offering a chance to produce games

that could not be designed today. This thesis will point to a future where

artificial intelligence software can express creative ideas, and will highlight

how they may ultimately be able to stand, alongside people, as autonomous

29



creators.

1.2 Contributions and Achievements

This thesis makes contributions to the state of the art in both computational

creativity and procedural content generation, as well as accomplishing sev-

eral milestones for the fields in terms of major achievements by generative

software.

• We developed ANGELINA, the first piece of computationally creative

software that tackles full-game creation. ANGELINA has designed

numerous games in different genres throughout the course of the work

described here, and its games have been played by tens of thousands

of people.

• In developing ANGELINA, we demonstrated that the evolutionary

programming technique of co-operative co-evolution (CCE) can be

applied to the task of videogame design in many different ways. We

show that CCE can be applied to many different game genres, to evoke

specific game features, to tackle artistic and creative tasks as well as

technical ones, and can produce emergent and subtle effects in what

it creates.

• We developed techniques for generating game content without inter-

mediate abstract data structures, through the direct manipulation and

generation of program code. This led to systems with a strong degree

of creative autonomy, and has influenced research directions in proce-

dural content generation.

• We have presented studies of computationally creative software engag-

ing with various groups, including the general game-playing public, in

multiple scenarios. This includes the first example of a piece of soft-

ware entering a public game jam alongside human game designers.

1.3 Breakdown Of The Thesis

We hypothesise that co-operative co-evolution is an appropriate technique

for generating complete videogames. We present ANGELINA in evidence of

30



this hypothesis, a piece of software built over many iterations, all of which

will be described in turn. We also hypothesise that an automated game

designer such as ANGELINA can be accepted within a creative community,

as an independent creator in its own right. This thesis will not provide proof

of this second hypothesis, but we will lay the foundations for this hypothesis

and show clear progress towards this goal.

We now step through the remaining chapters in turn and summarise their

contents. Chapters 2, 3 and 4 provide a background for the work in this

thesis, introducing concepts that are relevant to both of the fields which have

inspired and influenced the construction of ANGELINA and the research

surrounding it.

• Chapter 2 provides a foundational introduction to videogames, and

covers selected aspects of their history and the current state of the

art.

• Chapter 3 gives an overview of evolutionary computation, additionally

covering coevolution and the application of evolution to art and design

tasks.

• Chapter 4 considers generative software, particularly in the context of

videogames, and gives an extensive background on its use in design, as

well as research surrounding the generation of content for videogames.

Chapters 5, 6 and 7 describe the first three versions of ANGELINA,

and demonstrate a repeatable structure for automated game design systems

based on co-operative co-evolution.

• Chapter 5 describes ANGELINA1, a system which evolved simple ar-

cade games. This represents the first system we built which uses

co-operative co-evolution for the purposes of game design.

• Chapter 6 describes ANGELINA2, which took forward the ideas of

ANGELINA1 and applied them to a new design domain, Metroidvania

games. ANGELINA2 demonstrates the ability of our approach to

generate games with very genre-specific features, as well as showing

the flexibility of the techniques we use.

• Chapter 7 describes ANGELINA3, moving the system into Compu-

tational Creativity, extending ANGELINA2 to demonstrate how our

31



approach can be used to incorporate real-world ideas, concepts and

information into a game’s design.

Chapters 8, 9 and 10 extend the development of ANGELINA with two

major versions that make contributions both to the high-level philosophy

of Computational Creativity and the low-level technical cutting edge of

procedural content generation.

• Chapter 8 describes ANGELINA4, which uses code generation to gen-

erate game mechanics. It also shows how co-operative co-evolution

can give rise to surprising results and emergent behaviour between

individual evolutionary subsystems.

• Chapter 9 describes ANGELINA5, bringing together many of the gen-

erative techniques explored in various earlier versions of ANGELINA,

with a new emphasis on presenting the system as an independent,

autonomous game designer with an understanding of the real world.

We also present details of how ANGELINA5 entered the Ludum Dare

game design competition.

• Chapter 10 brings together a mix of evaluation techniques to provide

an evaluation of ANGELINA from many different angles, providing

results of studies and surveys, as well as analysis of ANGELINA along

technical and philosophical lines.

Chapters 11 and 12 look both at what has gone before, and what remains

to be done. We consider ANGELINA in the context of other work both in

Computational Creativity and procedural content generation, and look at

the questions that were opened as a result of this research, which we intend

to explore next.

• Chapter 11 presents related work to ANGELINA across both Compu-

tational Creativity and procedural content generation. We consider

other attempts to automatically generate games either in whole or

part, and other software developed to be taken seriously as a creative

entity.

• Chapter 12 looks at prototypes and open research questions that are

still being pursued as the work outlined in this thesis draws to a close.

32



We examine early results and the implementation of prototypes, and

theorise as to where this work might lead.

1.4 Summary

This chapter introduces the remainder of this thesis, which describes the

research and development of ANGELINA, a piece of software capable of de-

signing videogames autonomously. We provided a motivation for the work,

which will be further strengthened by the background chapters which fol-

low this one, situating the work as an extension of several lines of enquiry

and research. We then summarised the contributions of the thesis, which

we tackle in the later chapters of the thesis that provide details of AN-

GELINA’s implementation during various versions of the software. Finally,

we gave an outline of the thesis, providing an overview of what else follows.

33



2 Background - Relevant Concepts

in Videogames

2.1 Introduction

In this chapter, we introduce some important concepts related to videogames

and their design. These concepts will provide background for the work we

present in the main part of this thesis, as well as a basis for some of the

discussion of topics such as procedural content generation in chapter 4. This

is by no means a comprehensive overview of videogame history or design

theory; instead we limit ourselves to the most relevant topics for this thesis.

In §2.2 we describe some common methods for categorising videogames,

both according to the kinds of interactivity they offer as well as the more

specific design ideas the game contains. These classifiers divide important

background material as they describe established game archetypes which

will influence the implementation of versions of our automated game design

software. They also provide an opportunity to think about how designers

innovate within established genres, by making small changes to well-known

formulae. We will revisit this idea later from a computational standpoint

in chapter 8.

In §2.3 we introduce perhaps the defining feature of videogames as a

medium: game mechanics. We define mechanics, and its child concept verbs,

giving some simple examples from games to illustrate them. This section

will help us understand the underlying systems at work in the games gener-

ated by our game design system ANGELINA, and will also be particularly

relevant when discussing the generation and evaluation of game mechanics

in chapter 8.

In §2.4 we introduce approaches to measuring the worth of a videogame,

either in terms of how fun it is, what positive effects it might have on the

player, or other purposes games can fulfil. We explore some theories about

34



what gives games value, but also note that no single theory adequately

summarises what gives games their worth. This will influence our approach

to implementing game evaluation in ANGELINA, which we lay out in later

chapters in this thesis.

2.2 Game Classification

Games are typically classified according to which genre they belong to, in

line with other media such as film or music. The identification of artistic

movements or design philosophies in game design is less common, although

attempts have been made to identify them, such as Brendan Caldwell’s

identification of the punk movement in [13]. Caldwell refers to a quote by

independent developer thecatamites who is asked what inspires him and

responds:

Punk rock! Especially the DIY spirit of it, and the sense that

being amateurish didn’t necessarily mean just making cut-price

versions of bigger commercial stuff; it could be about trying to

find different ways of looking at it altogether.

Caldwell identifies punk as a movement within independent games devel-

opment, rising out of better development tools and distribution channels

which enable people outside the traditional games industry to make games

and make others aware of them. According to Caldwell, this ‘democratised

videogame development in the same way the lousy vocals and poor strum-

ming of the late seventies democratised the notion of forming a band ’.

Genres are the preferred classification for mainstream game criticism, re-

tailers, and general discussion, partly because of their deep rooting in the

popular culture of videogames. Genre classification in media can segregate

according to many different qualities. In film, for instance, genre can indi-

cate emotional tone as well as imply an audience or theme. Videogames are

subject to what we call high-level and low-level genre classification; high-

level genres tend to indicate the skill-set required to complete the game,

while low-level genre classifications are closer to an artistic movement, iden-

tifying common features or design ideas that players can expect from games

adhering to it. Below are some common classifiers, some of which are par-

ticularly relevant to the topics we will cover in the remainder of this thesis.

35



2.2.1 High-Level Classification

High-level genres indicate the skill-set required to play or enjoy a particular

game. Their generality can make them unhelpful classifiers, although they

are still a popular way of classifying games on major review sites such as

Metacritic1 or game stores such as Steam2. Some examples of high-level

genres are:

• Action Games - Games that typically rely on reflexes, accuracy

or dexterity. Many older games that were not electronic versions of

boardgames fell into this genre, such as Spacewar! [105] and Pong

[62]. This genre is now extremely broad, as any game that requires

real-time control of an object or group of objects can be described as

an Action Game.

• Adventure Games - Sometimes called Point-and-Click Adventures

to distinguish them from more action-oriented titles, adventure games

are story-driven puzzle games which try to connect combinatorial

problem solving to real-world logic. The Monkey Island [82] series

is a famous example, in which narrative obstacles are overcome using

items and information found throughout the world, while The Walk-

ing Dead [50] provides a more contemporary example of the genre.

This genre declined in popularity from the late nineties onwards, but

has experienced a revival in recent years.

• Role-Playing Games - Games in which the player is encouraged

to take on a character within a fictional universe, a feature inherited

from tabletop role-playing games such as Dungeons and Dragons [57].

Modern usage of the term more often refers to statistics-driven game

systems where player strength is a function of various numbers de-

scribing their abilities, personality or physical characteristics. These

systems were often features of games such as Dungeons and Drag-

ons, and have taken greater prominence in the transition to computer

games.

• Platform Games - While technically a subclass of action games,

platformer is such a broad classification that it is easy to consider

1http://www.metacritic.com
2http://store.steampowered.com/

36



it a high-level classifier. Primarily focused on the traversal of 2D or

3D worlds, platformers sometimes include combat, puzzles, or item

collection as game features or goals.

2.2.2 Low-Level Classification

The multitude of low-level classifications that exist for games make it impos-

sible to comprehensively cover them here. Instead, we describe those that

act as context for the work outlined in this thesis, either as domains that

ANGELINA works within, or domains with relevance to further research

questions or philosophical discussions.

Puzzle Platformer

In the past decade, the platformer genre experienced a surge in popularity as

the astronomic rise of independent and amateur game development largely

focused on the development of platform games. This is thanks in part to

the development of several game libraries geared towards the production of

platformers, such as Flixel and FlashPunk as well as the proliferation of the

genre during the late 1980s/early 1990s – children who had grown up playing

platformers were now developing games themselves [1]. The saturation of

the genre encouraged experimentation, and puzzle platformer-style games

emerged as a common subgenre as a result.

The primary components of platform games - moving and jumping - be-

came commonplace in the time since their emergence in the 1980s and are

now considered part of a general gaming skillset on which new concepts can

be built. Therefore, while early platformers such as Donkey Kong [88] fo-

cused on dexterity and jumping problems, modern platformers assume these

skills inherently in the player and focus more on learning new skills and us-

ing them in conjunction with the basic platforming skills to solve problems.

Puzzle platformers are games which rely on the player’s ability to use skills

to solve problems in a physical space, often applying concepts that are not

found in other games, thereby demanding learning and experimentation.

Puzzle platformers often introduce new rules or concepts that explicitly

build upon existing ones as the game progresses. In Braid [8] the player is

initially given the ability to rewind time indefinitely. This is used to undo

mistakes which cause the player’s death, such as mistiming jumps (a skill

37



Figure 2.1: A simple puzzle from Braid [8]. The player drops down to pick
up the key, and then rewinds time backwards. The key, unaf-
fected by the rewind, follows the player back.

inherent to the platform genre). Later, the player is introduced to objects

that are not affected by the reversal of time. This allows them to solve new

puzzles by making changes to the object, and then rewinding the rest of

the world to its original state. Figure 2.1 shows an example puzzle. The

player must retrieve a key from the bottom of a pit. The key is unaffected

by rewinding time. Therefore, by falling into the pit and grabbing the key

(first image) the player can rewind themselves back out of the pit while still

holding the key (second image).

38



Metroidvania

Metroidvania games are a subclass of platform games that put an emphasis

on exploration and item acquisition. The term is a portmanteau of two game

names, Metroid [68] and Castlevania [74], popularised by games journalist

Jeremy Parish. Neither Metroid nor Castlevania are considered the first

examples of such games, but they are landmark examples that defined the

subgenre.

Metroidvania games typically situate the player within a large game

world, of which only a small percentage is initially accessible to the player.

Figure 2.2 shows the size of the original Metroid game. The initial area

accessible to the player (that is, without obtaining items or bonuses of any

kind) accounts for less than 2% of the entire game world. By acquiring

items, the player can expand this accessible area, and find further items.

Combat is often a central feature in these games, as the items that expand

the player’s accessibility often also augment their ability to fight. Fight-

ing is necessary to progress through the game, although combat is largely

skill based and the collected items typically make combat easier rather than

being a requirement.

Some items exhibit basic lock/key mechanics, where physical obstructions

to progress (such as a locked door) are removed automatically when a par-

ticular item (such as a key) are acquired. More interesting items or abilities

have indirect effects that the player must experiment with to fully utilise,

however. For instance, in Metroid the player can find the Ice Beam item.

This allows the player’s shots to freeze an enemy in place, which in turn

allows the player to use it as a platform to stand on and gain additional

height or reach new areas, as seen in figure 2.3. This forces the player to

reconsider environments she has already passed through because the new

item may be applied to them to open up new areas. As a result, subtlety

and variation in items is celebrated in the genre.

Roguelikes

Roguelikes are a subclass of role-playing games, focusing on statistics-driven

turn-based combat, with less of an emphasis on story (although many mod-

ern roguelikes have narrative elements). The term roguelike is derived from

Rogue [127], a hugely influential game which defined the subgenre. While

39



Figure 2.2: A composite image showing the entirety of the game world in
Metroid. Image from [61].

many conflicting descriptions of roguelikes exist, modern games describing

themselves as part of the genre tend to select from a list of features, includ-

ing:

• Turn-based gameplay, meaning the player is giving indefinite time to

think before taking an action.

• Procedurally-generated content, particularly level generation.

• Permadeath, meaning that games cannot be saved and loaded to at-

tempt a situation differently.

• An emphasis on understanding the game through exploration and ex-

perimentation, rather than being taught explicitly how each game

system works.

Many of these features (such as permadeath and obscured game rules)

may lower some players’ quality of experience, modern roguelikes have al-

tered some of these features in order to present different or more approach-

able experiences. For instance, in Dungeons of Dredmor [46], permanent

40



Figure 2.3: A screenshot from Metroid, demonstrating how the Ice Beam can
augment player accessibility. The player-character is standing
on a frozen enemy in order to access a gap in the wall on the
left.

death (or permadeath) is optional, allowing players to save and load if they

wish. In FTL: Faster Than Light [48] there are no game rules or concepts

that are obscured from the player, for example. Nevertheless, obscurity and

difficulty is still prized by some parts of the roguelike community.

2.3 Verbs and Game Mechanics

Anna Anthropy describes a game in her book Rise of the Videogame Zinesters

as ‘an experience created by rules’ [4]. When we talk about rules in games

Figure 2.4: A simple game mechanic from Spelunky.

41



from a design perspective, we often discuss game mechanics. The term game

mechanic has many different (and conflicting) definitions in game criticism

and design. When used throughout this thesis, we will use it to mean the

following: a game mechanic is a system of rules which affects entities in the

game world. Figure 2.4 shows a simple game mechanic from Spelunky [47].

Spiders cling to the ceiling until a player passes underneath them, at which

point they drop down onto the player. This is one small set of rules that

makes up part of the game’s systems of rules as a whole, which affect the

whole game experience.

A verb is a special type of game mechanic which is initiated by a player

action. This could mean an explicit game interaction, such as pressing a

button to cause a particular system in a game to be altered in some way. It

can also refer to indirect causation, where the player interacts with another

system through a series of button presses to bring about a particular game

state.

As an example, in Super Mario, pressing the A button on the controller

causes the player character to jump up in the air. Jumping is a very basic

game mechanic, and integral to many types of game, particularly Platformer

games (§2.2.1). Jumping is a verb: pressing a button instantly causes the

desired change in game state, propelling the player upwards. In the same

game, if the player character falls on top of certain enemy types, that en-

emy will be damaged and change state in some way, often dying and being

removed from the game entirely. By positioning the player character above

another game object, the player is bringing about a subsequent game state,

where the character lands on top of the object. This mechanic allows the

player to clear their path of obstacles and enemies.

Some game mechanics are fundamental to all game types, while others are

highly specialised and only apply in very specific games. Very common or

important game mechanics such as jumping often become part of the shared

vocabulary of videogames, and become second nature to people who play

games regularly. Other game mechanics may be commonplace to players of a

particular type of game. In first-person shooter (FPS) games, a subset of the

action genre (§2.2.1), the act of moving left and right while looking forward

is called strafing. Strafing is an important ability in such games, as it allows

the player to look in an important direction while moving orthogonally to

it. While strafing is uncommon in games with less action or quick decision-

42



making, it is unusual for a modern FPS game to omit it.

Some game mechanics are designed for specific games, to extend a game’s

ruleset in a particular way. They may be designed by altering existing

common mechanics in some way, or they may be completely novel. For

instance, Valve Software’s Portal relied on the titular portals as a core

gameplay mechanic. They allowed the player to designate two flat surfaces

in the game world such as walls or floors, which were then connected in

space by opening a ‘portal’ on each surface through which the player, or

any other object, could pass. This game mechanic has appeared in very few

games since then, but was explored in great depth by the series.

2.3.1 Emotion and Meaning

Recall the quote from Anna Anthropy’s Rise Of The Videogame Zinesters

which we began this section with: ‘a game is an experience created by rules’.

Rules, systems, mechanics and verbs are what set videogames apart from

other forms of media. They allow their players to interact with the game

and see the results - this allows players to explore and understand these

systems, and to infer things from how rules interact with one another.

Games can convey meaning and evoke emotion through the same tech-

niques used by other media like film and music. Horror games like Silent

Hill 2 [108] use cinematographic techniques similar to those used in horror

films to make the player feel uneasy, such as skewed or unusual camera an-

gles, or reverse camera angles where the player can’t see what the character

is about to walk into. Figure 2.6 shows an example of this. However, games

also have the unique ability to convey meaning through their systems and

rules, and Anthropy’s definition of games in these terms highlights how this

is a defining feature of the medium.

As we discussed earlier with respect to puzzle platformers, some mechan-

ics and verbs are fundamental to games and generally accepted as being

universal across certain genres. To give a very simple example, in two-

dimensional platform games, the game is viewed from the side, meaning

that objects fall downwards on the screen to simulate gravity. The player

knows that if they jump upwards, they will eventually fall down again. This

doesn’t communicate a complex emotion or message to the player, but is

nevertheless important because it establishes a connection between a game

system (objects falling down on the screen) and a real-world concept (grav-

43



Figure 2.5: A screenshot from Silent Hill 2, showing a reverse camera angle
that prevents the player from seeing what the character sees.

ity and physics).

Games can communicate non-literal meaning through systems, too. Alan

Hazelden’s By Your Side is a good example of a simple system of rules which

conveys a simple artistic message while still retaining the form of a game.

Initially the player appears to control two characters, a man and a woman,

but in fact the player is controlling the man, and the woman mimics the

man’s movement if there is no obstacle blocking her path. This can be used

to move one character without moving the other, and navigate the maze

to get both characters to the exits. Later in the game, the woman starts

performing the opposite move to the one the player enters for the man. The

change in the relationship between the two game entities also conveys a

change in the relationship between their analogues in real-life, and asks the

player to think about what the the system of mimicking or opposing actions

might represent.

2.4 Value

In order to design games, automatically or otherwise, we require some un-

derstanding of why people play games and what qualities good games have.

In academic circles this discussion is often prone to circular arguments and

44



Figure 2.6: A screenshot from By Your Side.

conflicting definitions of overloaded terms. We therefore aim only to give a

high-level overview of some leading theories regarding the worth of games.

We discuss each evaluation criterion used within ANGELINA, and the mo-

tivation for it, in subsequent chapters with reference to this section.

2.4.1 Fun

Koster and Learning as Fun

Raph Koster is an American game designer and theorist whose game credits

include the massively-multiplayer online games Star Wars: Galaxies and

Ultima Online. In 2004 he published an influential book on games entitled

A Theory Of Fun For Game Design [75]. It has received over 650 academic

citations to date and is frequently referenced in industry talks and criticial

discussions online. In a ten-year anniversary of the book, Koster states the

following:

Fun in games arises out of mastery. It arises out of comprehen-

45



sion. It is the act of solving puzzles that make games fun. With

games, learning is the drug. [75]

Koster’s assertion is that learning is what provides the core ‘fun’ feeling

players experience when playing games. He distinguishes this from other

experiences that may be conflated with fun, claiming they are in fact un-

related or outside of his definition of fun. ‘Comfort’, ‘Meditation’, ‘Story’

and ‘Practice’ are all concepts he excludes from fun, while noting that they

are ‘perfectly valid non-fun reasons to play games’.

The argument can be criticised somewhat for oversimplifying the defini-

tion of ‘fun’, yet it seems that learning is certainly one of the reasons that

people play games, if not the only one. Masocore games, which we discuss in

chapter 4, and roguelike games, which we have already discussed, put great

focus on obscure game systems that must be mastered through repeated

exposure and experimentation. A guide for the roguelike game Angband

states that:

Part of the fun of playing Angband is NOT knowing in advance

what an item, a monster or a spell will do... You get only one

chance to play the game without full knowledge, but you’ll have

many chances to play the game with full knowledge.

This is not the only kind of learning that players experience through

games, as Koster points out. Many games exist to encourage players to

understand them through the careful introduction of concepts gradually.

Figure 2.1 shows an example of gradual concept introduction in the context

of puzzle platformers, for instance. While we may not accept Koster’s theory

of fun as an all-encompassing one, learning is clearly one component of a

game’s enjoyability.

Critiques of Fun and Alternative Evaluation

Journalist, game designer and author of This Gaming Life, Jim Rossignol,

says of fun:

Games can be evocative, entertaining... I was playing Stalker

when it first [launched]... I was crouched behind a pipe, there

46



were monsters nearby, and I’d run out of ammo, and it was ab-

solutely terrifying... quite horrific. Is that fun? Is that summed

up by a three-letter word? ... I think it’s a lazy word. [104]

Fun is still an oft-used word to describe games that are considered en-

joyable or good in some way, and players often argue that such negative

experiences as described by Rossignol above are still fun in the sense that

they enjoy experiencing sensations of terror or fear within a simulation.

However, it is worth bearing in mind that videogames have evolved past

their origins as pure sources of entertainment.

Koster’s theory has been used in academic research relating to games. In

[125], the authors use machine learning as a means to evaluate videogame

rulesets, aiming to provide a ruleset which is neither too difficult nor too

easy to learn and adapt to. The authors explicitly cite Koster as the inspi-

ration for this approach. Other researchers, however, are concerned about

explicitly attempting to evaluate fun when generating parts of videogames.

For instance, Gillian Smith writes:

What designer is ever going to ask for a level that scores 0.742

on the “fun” scale? What does it mean for a level I create to be

0.2183 fun and a level that you create to be 0.5312 fun? How

is this meaningful feedback? Didn’t we both just fail? Do we

always want 100% “fun” content?

Smith’s objection is not to Koster’s theory specifically, but to the use

of quantitative measures of fun in the evaluation of games research. What

makes a game ‘fun’ is not widely agreed upon in games criticism, but even

if it were it seems unlikely that we could simply reduce the notion to a real

number. Like Rossignol, Smith also questions whether ‘fun’ should be the

foundational concept by which we judge videogame experiences. One might

liken it to evaluating films on the basis of how moving they are. Many films

are moving, many intend to be moving, and film is an excellent medium for

evoking such emotions in a person. But it cannot be said to be the primary

motivation for the medium as a whole, and directors may have many other

goals when creating a film.

47



2.4.2 Self-Improvement

McGonigal and Productivity

Jane McGonigal is an American author and game designer who specialises

in designing games with social or personal impact, with game design credits

on projects run by organisations like the New York Public Library and the

American Heart Institute. In 2011 she published Reality Is Broken [85], a

book whose core message was that the benefits of games are derived from

the social and psychological effects they have on the player, and that these

benefits could be leveraged to improve society and individuals. McGonigal

states that:

Games are showing us exactly what we want out of life: more

satisfying work, better hope of success, stronger social connec-

tivity, and the chance to be a part of something bigger than

ourselves. [85]

Many of the ideas espoused by McGonigal relate to multiplayer games and

the interaction between people, but some points affect all kinds of gaming,

particularly statements she makes in reference to productivity. In a TED

talk entitled Gaming can make a better world, she says (emphasis added):

You know there’s a reason why the average World of Warcraft

gamer plays for 22 hours a week, kind of a half-time job. It’s

because we know, when we’re playing a game, that we’re actually

happier working hard than we are relaxing, or hanging out. We

know that we are optimized, as human beings, to do

hard meaningful work. And gamers are willing to work hard

all the time, if they’re given the right work. [84]

The idea of humans being happier when working meaningfully can be seen

in the appeal of many abstract games that do not have any direct learning

involved in them, such as Bejewelled, a puzzle game in which players swap

neighbouring tiles on a grid. When three tiles of the same type form in

a row or column, those tiles disappear and new ones descend from above.

There are few rules besides this in the game, yet players will happily play for

many hours. Bejewelled 2 included an endless mode in which the player can

never lose, allowing the game to be played indefinitely for no other reason

48



than to interact with the game’s match-based puzzling. McGonigal calls

this ‘blissful productivity’ [85].

Similarly, many games balance repetitive content (sometimes referred to

as grind) with tangible progress. The ratio of progress to activity can be seen

to be closely linked with enjoyment for many types of game, particularly

role-playing games where a sensation of growth and gradual increases in

strength is integral to the game’s core mechanics.

2.4.3 Other Assessments of Games

Games as Escapism

Games are often described as a form of escapism, whereby an individual

immerses themselves in an alternative reality to avoid boredom, pain or

other discomfort. Jim Rossignol, who we referenced earlier in the context

of games as fun, says that escapism may be a fundamental part of who we

are as human beings. In an article on Warren Ellis’ blog [103], Rossignol

quotes philosopher Yi-Fu Tuan and summarises his argument thus:

What Tuan suggests is that we change the world around us be-

cause we are able to imagine things as they are not, as they

could be, or even as they may never be... Farming, then, is an

escape from the harsh nomadic existence of the hunter-gatherer.

Cooking is an escape from the ugly acts of evisceration of ani-

mals, and the unpleasant nature of many individual ingredients.

[103]

Rossignol identifies games as one of the purest examples of escapism,

possibly because of their highly structured nature.

Imagination is stimulated, exercised, by structuring itself against

something external. Modelling the world and seeing how it could

be. How it could be better, how it could be worse, how it could

be controlled. (Rossignol’s emphasis) [103]

While most media is passive, games allow the player the freedom to in-

fluence its systems through verbs, and achieve goals. Yet there remains

structure, objectives, direction, so that the player is not left aimless. Many

games are valuable precisely because they allow the player to immerse them-

selves within their fictional worlds and systems of rules.

49



Games as Self-Expression

Games are designed with varying degrees of player freedom. There are no

aspects of gameplay that are guaranteed to be controlled by the player in

every game. The term on-rails is used to describe games where the player’s

movement is automated, for instance. Visual novels often have entirely

linear narratives that can only unfurl in a single way. The ways in which

the player is afforded freedom in a game, then, are often very important as

they are the only ways in which the player can differ their experience from

that of another player.

Individualisation and self-expression through games has become more and

more important as online multiplayer and social gaming communities have

grown in popularity. The illusion of the player as the lone hero in the world,

capable of amazing feats, is no longer sustainable when there are millions of

others with an identical status. As a result, many multiplayer (often com-

petitive) games promote themselves on the basis that players can develop a

unique playing style that separates them from other players. Online games

often feature cosmetic shops where players can purchase items which alter

their appearance in-game. Often these cosmetic changes confer no gameplay

advantage, yet are still hugely popular. Valve Software operates cosmetic

stores in games such as DOTA 2 [116] and Team Fortress 2 [114]. In 2013,

Valve paid $10.3m in commissions alone to the makers of cosmetic items on

sale in these stores. Team Fortress 2 is affectionately referred to as ‘Amer-

ica’s #1 War-Themed Hat Simulator’ by Valve Software employees and fans

[113].

Self-expression can also be found in games in a more traditional sense.

Minecraft [99] is a three-dimensional exploration and crafting game where

players can break up the environment around them to gain resources which

can then be recombined into other objects. The game’s vast community

interact with one another frequently through streaming services such as

Twitch.tv3 and YouTube, and one common type of content shared between

players is video recordings of large construction projects, complex machinery

or simply feats of endurance. The game has a relatively low barrier to

entry, which has made the game very popular with children. As a result,

Minecraft has been used in education4 with one of the educational benefits

3http://www.twitch.tv
4http://minecraftedu.com/page/

50



being that it encourages children to act creatively and express themselves5.

Anecdotal evidence suggests that such activity may benefit children with

certain disabilities.6

2.5 Summary

In this chapter, we discussed some key background information about video-

games as a creative medium. We showed how games can be classified accord-

ing to different criteria, and gave examples of what kinds of classifications

are in common use. We will return to these classifications in later chapters

as we introduce our work in automated game design. We also defined game

mechanics as fundamental building blocks of game systems, and gave de-

tails about how specialised game mechanics called verbs allow the player to

interact with a game and influence these systems for its own ends. Verbs

and mechanics are one of the focal points of the work we present in this the-

sis, and chapter 8 in particular will reference this background knowledge as

we introduce work on generating and evaluating mechanics automatically.

Finally, we considered ways in which different critics and communities as-

cribe values to videogames, from fun to the improvement of society. While

all of these theories have weaknesses, they give us insight into why people

play games. This influences not only the work we propose in the thesis,

but will also become relevant in evaluatory chapters reflecting on the role

of automated game design in the future of the games industry.

5http://www.edutopia.org/made-with-play-game-based-learning-minecraft-video
6http://www.autcraft.com/

51



3 Background - Evolution

3.1 Introduction

In this chapter, we give some background on the idea of evolutionary com-

putation, a technique for solving combinatorial optimisation problems that

is commonly applied to projects throughout computer science. This chapter

will introduce techniques which are fundamental to the basic operations of

the systems which we present in later chapters.

In §3.2, we introduce evolutionary computation and give some background

on the origins of its terminology. We then describe a basic evolutionary algo-

rithm at a high level, and step through that description in turn, discussing

how evolutionary systems are initialised, executed, and how they termi-

nate. This description introduces much terminology that will be important

in subsequent chapters, which discuss multi-part evolutionary systems at

length.

In §3.3 we describe coevolution as a specalised kind of evolutionary compu-

tation. Co-evolution is the core technique used by the ANGELINA system.

We discuss its strengths and applications, and how it differs from standard

evolutionary computation. We also differentiate between competitive and

co-operative coevolution. The work described in this thesis primarily uses

the latter, however we introduce both here for the sake of completeness and

to highlight the difference that defines the co-operative approach.

In §3.4 we look at how evolutionary computation has been applied to

creative domains, in particular the production of artworks. We look at the

origins of evolutionary computation in art, and how it was extended from

focusing primarily on evolution to focusing primarily on artistic expression.

We look at different kinds of evolutionary art, and also the task of evaluating

artworks for fitness. The issues raised of evaluation in a creative domain,

will be directly applicable to the problems we encounter when evaluating

evolved videogames created by ANGELINA.

52



Finally, in §3.5 we describe a simple example system which evolves basic

two-dimensional mazes. This example uses much of the terminology and

concepts described in this chapter, and shows some problems and variations

that can occur when building an evolutionary system. Later in this thesis

we will be describing much more complex, multi-population co-evolutionary

systems, and this example serves as a simple introduction to how these

systems and their execution will be described.

3.2 Evolutionary Computation

Evolutionary computation is a term describing a class of algorithms for

solving optimisation problems. It derives its name, as well as much of its

terminology, from the process of organic evolution which inspired its design.

Evolutionary algorithms maintain a population of solutions to a particular

problem, which are evaluated for fitness of purpose, and selectively recom-

bined to produce a new population. This process is iterated upon until a

solution of sufficient fitness is found, or a minimum number of iterations has

passed. Listing 3.1 shows pseudocode for a generic evolutionary system. In

this section we will step through this algorithm and examine each line in

turn, giving an overview of how each line is implemented in evolutionary

systems.

I n i t i a l i s e a populat ion
Evaluate the populat ion
Do :

S e l e c t f i t t e s t from populat ion
Produce new genera t i on from f i t t e s t
Evaluate the new gene ra t i on
While not te rminat ing

Figure 3.1: Pseudocode for an evolutionary system.

3.2.1 Initialising Evolutionary Algorithms

Evolutionary algorithms explore a search space of solutions, S, to a partic-

ular problem. Solutions tend to have two representations - a genotype and

a phenotype representation. In biology, the genotype is an encoding of the

53



information required to produce a particular biological organism, through

DNA. A phenotype, meanwhile, is the physical expression of the organism

encoded by a genotype. Evolutionary computation mirrors this relationship

somewhat – a genotype refers to the low-level representation used to encode

information about a particular solution in a population, while a phenotype

is the ‘uncompressed’ realisation of the genotype, in its final form.

Evolutionary algorithms start with a population, P , of solutions drawn

from the search space S. This population is typically generated by randomly

assigning values to each genotype’s data. The population then goes through

an iterative process of selection and recombination. The representation of

a genotype is an important decision made by the system’s designer, as it

defines which aspects of a phenotype can be changed through evolution,

and the ways in which they can be changed. Simple data structures such as

lists and trees are often used – we describe an example system later in this

chapter which uses two-dimensional arrays to represent genotypes.

3.2.2 Evaluation & Selection

Evaluation is the process by which an evolutionary algorithm orders a popu-

lation, P , according to some objective function F . Typically, F is a function

which maps p ∈ P −→ [0, 1], although all that is really required of F is that

it expresses an ordering on the search space S. The evaluation of p ∈ P

under F is called p’s fitness.

Once P has been sorted using F , some kind of selection criteria is applied

to choose which members of P are recombined to produce the next genera-

tion’s population, P ′. A simple selection method might take the solutions

in order of fitness, from highest to lowest, recombining pairs in order until

a new population of sufficient size is created. If a pair of solutions from the

population are recombined to produce ten new solutions, for example, then

the top twenty percent of P are used to create P ′. A wide variety of selec-

tion criteria have been used in many different types of evolutionary system

such as roulette selection, where fitness represents the chance that a solu-

tion will get chosen, or universal sampling, where individuals are selected

proportional to their overall fitness.

In the analogy with biological evolution, the application of a fitness func-

tion is related to the notion of survival of the fittest, hence the terminology

used. In nature, the ‘fitness’ of an organism is directly related to its ability

54



Figure 3.2: Diagram of two crossover techniques. In both cases, black lines
denote crossover points where inheritance switches between par-
ents p and q. pq is the resulting child solution.

to procreate, so the process of selection and fitness evaluation are closely

related. Some types of selection criteria in evolutionary computation can

be less directly related to fitness, however, such as the probabilistic roulette

sampling mentioned above.

3.2.3 Recombination

After selecting a portion of the population P using a selection criterion and

the fitness function F , the selected members of P must be recombined to

create a new population P ′. This is typically done through two processes:

mutation and crossover.

Crossover takes a pair of solutions (p, q), or parents, from P and creates

a new solution, or child, pq by combining attributes from both p and q.

This can be done in any number of ways depending on the structure of P ’s

genotype. If the genotype contains individual pieces of data, values can be

inherited directly from a single parent, chosen probabilistically, or linearly

combined using averages of both parents. For larger data structures such as

lists or trees, more involved procedures are normally used instead of direct

inheritance. Figure 3.2 shows two common crossover techniques, one- and

two-point crossover. In this case, crossover points are chosen at random. A

child inherits the properties of one parent until it reaches a crossover point,

at which it switches and inherits from the second parent.

Mutation takes a single solution p from P and creates a child solution

simply by varying the properties of p randomly. This does not require

processes like one-point crossover as there is only one parent to inherit

55



from. Mutation can also be used after crossover has taken place to further

differentiate the child from either of its parents. Typically, a mutation rate

defines the probability that a given population member will be mutated (or

the probability that a gene within a population member will be mutated).

Normally this value is quite small - if too many of the new solutions are

mutated, the population can become too divergent. Divergence is a problem

because evolutionary systems are designed to converge through repeated

iteration and consistently picking the highest-fitness individuals through

selection. Mutation randomly alters an individual after the selection and

recombination process, meaning that it can easily make the individual less

fit. If this happens to too many individuals then the overall fitness of the

system doesn’t improve. A small amount of mutation, however, can be

important in exploring areas of the state space that simple crossover would

not normally consider.

A new population is formed using the children generated by the recom-

bination step. However, it may also contain other individuals as well, de-

pending on the design of the system. For example, steady state evolutionary

systems allow the parents from the previous generation to be included as

individuals in the following population along with their children. Many

evolutionary systems also include randomly generated individuals in new

populations, to improve the diversity of the population and stop the popu-

lation from stagnating around a local maxima.

In search, a local maxima is a solution which is much higher quality than

the solutions it is adjacent to in the search space, but is lower quality than

other maxima further away in the search space. This can cause problems for

search techniques like computational evolution, as they gravitate towards

areas of high fitness and avoid moving towards lower fitness solutions. If a

local maxima is isolated from other maxima, a system may settle on it and

not search further away for potentially better solutions. Mutation is one

way computational evolution tries to deal with this problem, by randomly

enforcing variation on solutions, and including new randomly generated

individuals also helps the system search further afield which can help find

new maxima in the case of stagnation.

56



3.2.4 Termination

An evolutionary system terminates when certain conditions are met, spe-

cific to the individual system. Common termination conditions are when a

certain minimum fitness is met, or a set number of generations has passed.

Evolutionary systems may also terminate based on properties of the popu-

lation as a whole, such as the average difference between each individual in

the population (being an indication of how stable the population currently

is). When a system terminates, the most fit individual in the current pop-

ulation is normally selected as the ‘output’ of the system. A system may

also sample from its population for multiple outputs.

3.3 Coevolution

In nature, coevolution describes a reciprocal relationship between two in-

dependent species where a change in one species causes a related change in

the other species. This can form mutually beneficial relationships, such as

the relationship between plants and the animals they rely on for pollina-

tion; it can also result in competitive relationships, so-called ‘evolutionary

arms races’ where predatory creatures evolve characteristics in response to

an evolutionary change in their prey, and vice versa.

In co-evolutionary computation, the evaluation of members of a popula-

tion is a mixture of both subjective and objective fitness criteria. Objective

criteria are the kind of fitness evaluations found in ordinary evolutionary

systems, and the fitness scores they return are independent of any other

part of the evolutionary system. Subjective criteria, however, evaluate an

individual according to its relationship with the rest of the population, or

members of other populations (often called species) in the case of a multi-

population system.

Highly fit individuals in a co-evolutionary system not only exhibit objec-

tively fit qualities but are also adapted to other individuals from either its

own population or specifically selected competing populations. This means

that two runs of the same co-evolutionary system can produce vastly dif-

ferent outputs, because the subjective criteria causes individuals to evolve

characteristics relative to the current population, which is initialised very

differently between two runs of a system because of the randomness that is

57



inherent in evolutionary computation.

3.3.1 Competition and Co-operation

To further the biological metaphor that runs throughout this chapter, coevo-

lution in nature can be classified as ‘co-operative’ or ‘competitive’ depending

on whether organisms are mutually benefiting from the coevolution (such as

animals helping plants pollinate, and benefiting from a source of food) or not

(as in the predator/prey ‘arms race’ example). Co-evolutionary approaches

to evolutionary computation can also be classified in such a manner.

Some co-evolutionary systems are designed to encourage competition be-

tween individuals or populations. In these systems, the fitness of an indi-

vidual is either mostly or entirely based on its subjective fitness relative to

other individuals. The individuals are therefore in competition with one

another: if one individual’s fitness increases, the fitness of the rest of the

population decreases, because they are performing less well in relation to

the increasingly fit individual. The term ‘arms race’ is often used to de-

scribe this relationship. Competitive coevolution is particularly effective at

producing solutions to problems involving multiple parties or antagonistic

relationships between solution spaces. For an example of the former, [109]

describes a system which co-evolves controllers for 3D creatures, whose fit-

ness was evaluated by whether they could catch a ball faster than their

opponent. For an example of antagonistic elements of a solution space,

[131] gives the example of a system which evolves a sorting network for

data, and simultaneously evolves harder input data sets for it. As the qual-

ity of the sorting networks improves, the data sets compete to be harder

for the network to handle. This competition drives up the quality of the

resulting sorting networks.

Co-operative co-evolutionary systems work differently. Instead of com-

peting between individuals in a population, co-operative co-evolutionary

systems maintain multiple populations whose individuals are evaluated ac-

cording to how well they co-operate with individuals from other populations.

This means that a co-operative co-evolutionary system represents the de-

composition of a large problem into several smaller problems, which are

solved individually. In order to evaluate the fitness of an individual from one

of the subpopulations, a member of each population is combined together,

to form a solution to the original problem. The quality of this synthesised

58



solution represents how well each individual co-operates with the others.

In [51] the authors describe a co-operative co-evolutionary system which

evolves neutral network designs by passing off the task of designing subnet-

works to different populations. Often co-operative co-evolutionary systems

perform this problem decomposition step automatically as a feature of the

system.

3.3.2 Applications for Co-evolution

In [131] Wiegand cites three motivations for the use of coevolution: infinite

or extremely large solution spaces, lack of objective measures, and highly

complex structures.

Large Solution Spaces

One of the strengths of evolutionary computation is its ability to find op-

timal solutions across very large solution spaces, by encouraging random

iterations on existing solutions, and maintaining diversity in its population.

However, extremely large or near-infinite solution spaces can exist which are

difficult for standard EC approaches to deal with. This often happens when

EC is applied to the product of two solution spaces, the result of which is

a space far larger than either of the originals. The task is no longer simply

finding optimal solutions in two spaces, but finding optimal solutions that

compliment each other in two spaces simultaneously.

Rather than aim to find globally optimal individuals, coevolution can

identify subsets of the solution space and then search for optimal individuals

within this smaller space. This is made possible by having different species of

a co-evolutionary system represent the original solution spaces which made

up the problem. The co-evolutionary system is then tasked with finding

intersections of these two spaces where interesting local optima exist, which

it does through the application of its subjective fitness criteria to compare

the interactions of different species.

In other words, suppose we have two search spaces, P and Q, and the

space created by the product of the two, PQ. PQ is too hard to search with

a standard evolutionary system looking for global optimisation, because it is

much larger than P or Q alone. Multi-population co-evolutionary systems

can represent P andQ as separate populations which co-evolve by evaluating

59



individuals p ∈ P and q ∈ Q against each other. In this way, the system

identifies fit individuals in the space PQ by separately identifying which

areas of P and Q are suited to each other (according to its subjective fitness

criteria).

Lack of Objective Measures

Evolutionary computation is often applied to global optimisation problems

where clear objective criteria for fitness exist. Even if a globally optimal

result may be hard to find in many cases, it is nevertheless clear when

one solution is better than another. However, many problems do not have

clear objective measures of quality, and single-objective single-population

EC approaches may struggled in these cases. [131] gives an example of such a

situation: evolving strategies for games, where potential strategies may beat

each other in an intransitive fashion. In such a situation a population cannot

be well-ordered under any single-objective fitness function, and individuals

cannot be easily separated from one another.

In [131] Wiegand posits that co-operative co-evolutionary systems natu-

rally tend towards finding Nash equilibria. A Nash equilibrium is a game

theory term describing a solution to a multiple-player game which is op-

timal in the sense that no player benefits from changing their strategy if

no-one else changes theirs. What this means for co-operative coevolution is

that it is capable of finding balanced solutions to problems where measures

of fitness may conflict or be non-monotonic in some way. As we will see

later, this is particularly apt for creative applications, where the notion of

optimality is often entirely absent.

Complex Structures

The earliest work in co-operative coevolution was aimed at decomposing

highly complex but also highly structured problems [101]. According to Wie-

gand, the primary motivation for this was the hypothesis that co-operative

co-evolutionary approaches would be able to optimise smaller substructures

in parallel more efficiently than a standard EC approach could optimise the

original structure in its entirety.

The authors in [101] focus on an example relating to function optimisa-

tion, where the target solution is a vector of values for parameters which

60



Figure 3.3: River Temple by Opah, an image created by the interactive evo-
lution software Picbreeder.

are fed into a complex function, the aim being to find a vector of input

parameters which maximise the value of the function. Potter and De Jong

show that a co-operative co-evolutionary approach, where each parameter

is assigned to a species, strongly outperforms a standard single-population

EC system for the problem [101].

A crucial element when dealing with complex structures is finding an

appropriate decomposition of the original problem structure. While some

problems have trivial decompositions (such as a vector of parameters being

decomposed into several single parameters) other structures, such as the

ones which we describe in this thesis, are more harder to break down.

3.4 Evolutionary Art & Design

The use of evolutionary computation in the production of artworks is very

well-established, perhaps moreso than any other creative domain that evo-

lution has been applied to. Art created using evolutionary computation

can vary between highly abstract, such as the work produced by Picbreeder

[107] in figure 3.3, or more representational, such as the non-photorealistic

rendering techniques shown in figure 3.4 by Machado et al.’s Photogrowth.

61



Figure 3.4: Nude #7, an evolved non-photorealistic rendering by Machado
et al. and Photogrowth.

Evolutionary art has also been widely exhibited – artists such as William

Latham have had their work installed in galleries around the world [78].

In [77], Lambert et al. cite Dawkins’ The Blind Watchmaker [35] as an

early populariser of computer-generated visuals with an evolutionary under-

pinning. Dawkins’ pictures of evolved biomorphs in his book showed that

evolutionary computation could produce organic forms as well as evoke sur-

prise and interest in the viewer. While Dawkins’ motivation was primarily

to demonstrate evolution as a natural phenomenon, later proponents of evo-

lutionary art such as William Latham explored the technique as an artform.

Figure 3.5 shows a 3D sculpture produced by Latham’s Mutator, an evolu-

tionary computation-driven tool for generating both static and moving 3D

art [123].

3.4.1 Fitness and Interactivity

Earlier in this chapter, we discussed how a population in an evolutionary

system is evaluated using a fitness function, which sorts a population and

influences which individuals will be chosen to produce the next generation of

individuals. As we mentioned when discussing coevolution, many problems

do not have objective measures of fitness which can be applied. In [40],

62



Figure 3.5: 3D sculpture evolved by Latham’s Mutator program.

Eigenfeldt et al. point out that this is particularly true of problems in

creative domains, where notions of optimality are often entirely absent.

Instead, evolutionary art systems are programmed with fitness functions

that represent subjective notions of fitness. These notions may come from

the programmer’s own personal aesthetics, as was the case with Dawkins’

biomorphs, or they may be generated by the software itself. Another com-

mon source for notions of fitness in evolutionary art is to derive them from

the users of interactive software. This process of interactive evolution does

away with traditional fitness functions, and instead asks a user to explic-

itly select images they like which are then used as the parents of a new

generation of images.

We have already shown an example image from Picbreeder in figure 3.3,

one of the most famous examples of interactive evolutionary art. The

Picbreeder website contains over 9500 images published by its users as end

results of interactive evolution. Figure 3.6 shows a screenshot of the evo-

lutionary interface presented to users. In the top-right is the source image

the user is developing, and in the center of the page are possible recombi-

nations or mutations of this image. By selecting ones which the user likes,

Picbreeder can generate further elaborations along the same lines, as well

as presenting more diverse possibilities to suggest new ideas to the user.

63



Figure 3.6: A screenshot of Picbreeder’s user interface.

3.5 An Example System

In this section, we describe a simple evolutionary system for creating mazes,

as a way of highlighting some of the concepts we have discussed above. We

define a maze as a two-dimensional grid of tiles, some of which are marked

as solid. Solving a maze consists of finding an unbroken path of non-solid

tiles from a start tile, S, to an exit tile, X. Figure 3.7 shows an example

maze evolved using the system we describe here. Recall Listing 3.1:

I n i t i a l i s e a populat ion
Evaluate the populat ion
Do :

S e l e c t f i t t e s t from populat ion
Produce new genera t i on from f i t t e s t
Evaluate the new gene ra t i on
While not te rminat ing

First, we choose a genotype representation appropriate to the pheno-

type. In this case, the representation is fairly straightforward: we use two-

64



Figure 3.7: A simple maze evolved by our example evolutionary system. The
start tile S is green, and the exit tile X is red.

dimensional arrays of booleans to represent a maze, with true entries in

the array corresponding to solid tiles in the maze grid. We initialise our

population by generating random arrays of booleans, with a 50% chance of

each tile initially being solid.

We then evaluate the initial population according to a fitness function of

some kind. A good maze has many different properties, but the simplest

might be that we require a long path from the start of the maze to the

exit. In order to normalise our fitness evaluation to the range [0, 1], we’ll

calculate the theoretical longest path for the maze, and then an individual’s

fitness will be how close its path length is to that. For our mazes, since

solid blocks occupy grid space, the longest theoretical path would be:

W ∗ (W + 1)/2

Where W is the width of the maze (assuming, as in our example, that

the mazes are square). Our fitness function, then, works as follows: it

calculates the length of the path from the start to the finish for the current

maze, using a simple A* search. Call this parameter length. The fitness f

of an individual maze is then:

length/(W ∗ (W + 1)/2)

65



We can sort our population according to this metric, assigning a fitness of

zero to mazes that do not have a path from start to finish. We then select

parents to generate a new population from. For this example, we will use

elitism – the top 10% of the population in terms of fitness will be selected

to produce the next generation. We take these pairwise, and generate new

mazes using recombination and mutation.

Since our phenotype is a two-dimensional array, we can use one-point

crossover to combine two mazes into a new maze design. To do this, we

randomly pick a point (rx, ry) in the maze array. Then the new child maze

is constructed as follows:

if(y < ry || (y == ry && x < rx)

child[x][y] = parent1[x][y];

else

child[x][y] = parent2[x][y];

This uses the selected point as crossover, reading left-to-right and top-

to-bottom to decide at which point inheritance switches between parents.

We can also randomly mutate a maze, by selecting grid points and flipping

their boolean value between solid and non-solid. We balance recombina-

tion and mutation in the new population, so that mutated mazes make up

approximately half of the new generation, while the remainder come from

crossover.

Our termination condition in this case is a fixed number of generations

- the maze generated in Figure 3.7 was evolved using a population of size

200 over 1000 generations. Many aspects of this evolutionary system can be

varied to influence the types of mazes generated, however. The source code

for this system, including visualization and parameters relating to some

other concepts discussed in this chapter (such as steady-state populations)

can be found at [30].

3.6 Summary

In this chapter, we introduced the field of evolutionary computation, involv-

ing techniques for solving combinatorial optimisation problems. We walked

through a basic evolutionary algorithm, identifying different stages in the

algorithm and giving examples of systems which exhibit these properties.

66



This basic algorithm will form the basis of many systems described in this

thesis. However, we are most interested in a specialised type of evolution-

ary algorithm called co-operative coevolution. We introduced this notion as

an extension of basic evolutionary computation, and discussed some of the

strengths of the approach. We then looked at how evolutionary computa-

tion is used, in particular in creative domains such as the visual arts. We

gave a brief introduction to evolutionary art, and discussed some different

ways in which the concept of fitness is dealt with in a domain for which

there are often no clear objective concepts of quality. This will be a familiar

topic that we return to later in this thesis, in the context of another cre-

ative domain – videogames. Finally, we described a very basic evolutionary

system to highlight some of the concepts we introduced in this chapter.

67



4 Background – Generative

Software And Games

4.1 Introduction

In chapter 2, we introduced videogames as a creative domain, described

methods for classifying games and assessing their value, and talked in detail

about certain genres of game which will feature prominently in this thesis. In

this chapter, we focus on one specific element of modern game development:

procedural content generation.

We begin by defining procedural content generation (henceforth PCG) in

§4.2, and describe the motivation behind its application to videogame de-

velopment, both historically and contemporaneously. The history of PCG

has had an important influence on the work described in this thesis. As

a game design concept, PCG is a crucial underlying technique in the tech-

nical contributions of this thesis’ work, as we show in chapters 5, 6 and

9. As a cultural concept, PCG’s prevalence in videogame culture and the

community’s familiarity with the technology is an important factor in un-

derstanding the response and perception of the work, which we discuss in

chapter 10.

In §4.3 we introduce a taxonomy proposed for procedural content genera-

tors, describing each classification in detail and giving examples of each type

identified by the taxonomy. We propose an extension to the taxonomy that

will have an impact on the work we describe in later chapters, and enable a

richer comparison of related work in chapter 11 by precisely describing the

contributions we make to procedural content generation with our approach.

To understand how procedural content generation is applied in a large

commercial game, we provide a case study of Spelunky in §4.4, a game

which is closely related to some of the game genres we highlighted in chapter

2 as being relevant to this thesis. Spelunky’s level design is not only a

68



classic example of procedural content generation in videogames, it is also an

example which relates directly to the level design system which we describe

in chapter 6.

In §4.5 we turn to a specific subtype of procedural content generators:

those which employ evolutionary algorithms, as described in chapter 3. We

show that while there are only a few examples of evolution being employed

within games, these examples are diverse and effective, including applica-

tions to intelligent design tools and commercial game releases. We show a

variety of evolutionary techniques in use, which sets the scene for our own

approaches, to be introduced in subsequent chapters.

4.2 History and Contemporary Application

The term procedural content generation (henceforth PCG) refers to any

generative software process that produces content for use in digital software,

usually video games. Content may be any asset used by the software in its

execution, from art to music to code segments. While PCG is used in many

creative mediums, its most common use is within videogames to help to

produce game content, such as levels or visual assets. This section will

give a background on the origin of procedural content generation within the

games industry and how its role has evolved over time to its current state.

4.2.1 Needs-Driven and Wants-Driven PCG

The use of PCG within games originally arose as a way of circumventing

technical restrictions, particularly those imposed by storage space limita-

tions. Whereas a game such as Pac-Man [90] would store its level designs

in data, this became impractical for games that wished to portray large

world spaces, such as the galaxies of Elite (1984) [36] or the fantasy worlds

of The Elder Scrolls (1994) [117]. Instead, data such as the arrangement

of planets in galaxies or the heightmaps of a continent could be computed

at runtime using seeded random number generators and carefully designed

generative algorithms which used random numbers as input.

A simple example is Braben and Bell’s use of the Fibonacci sequence to

generate planetary data in Elite. Fibonacci sequences are deterministic and

easily computed, requiring only two starting numbers (since every number

69



is the sum of the two preceding integers in the sequence). By relating in-

tegers in the sequence to features of the planet (such as mass, habitation

types, imports, exports, and so on) an entire planet could be stored as just

two digits. This huge compression allowed for the storage of vast num-

bers of planets, but in doing so Braben and Bell relinquished control over

the individual planets’ design, as their properties were inherited from the

pseudorandom output of whatever Fibonacci sequence generated them.

The loss of authorial control over content generated in such a way is

an interesting feature of procedural content generation in modern games

culture. Games are fundamentally interactive pieces of software, and so the

task of controlling what a player experiences is already harder than in other

creative fields such as film or music. If a film director wishes the audience

to see a specific thing, they point the camera at it. In a game, the player

is typically in control of what they experience. They may choose to visit

game areas in a different order, ignore certain tasks, or skip through plot

exposition. A game designer can choose to restrict the player’s freedom, of

course, but in doing so they may also reduce the player’s sense of freedom,

control and enjoyment.

PCG complicates the issue of authorial control even further, by removing

authorial control over certain areas of the game completely. In Spelunky, the

game’s designer cannot know the exact nature of the levels the player will

be asked to complete. Their PCG system defines a possibility space, which

they can control in a limited fashion by making adjustments to the PCG

system itself. Ultimately, however, they have no way of knowing for sure

what content will be generated when. We will show later in this chapter

how this can be used as a strength rather than a weakness, however.

We call the application of PCG to circumvent technical limitations, such

as the galaxy generation in Elite, needs-driven PCG, as it was initially

adopted to solve a problem rather than to provide an attraction to the

consumer. Needs-driven PCG still abounds in the modern games industry,

as it is frequently used to generate content that is technically infeasible to

generate by hand. A good example of this is the SpeedTree system [64] for

generating foliage, which has been used in many blockbuster games such as

The Elder Scrolls IV: Oblivion [119]. Manual design and placement of trees

which look unique and naturally ‘random’ is not only hard for a designer

to do, but also time-consuming and tedious, for a task that amounts to

70



set-dressing. Needs-driven PCG techniques neatly solve such problems.

The benefits of procedurally generating content go beyond merely over-

coming budget constraints, however. The vast galaxies of Elite were not just

technically impressive – they provided a major selling point for the game.

Games designed by hand had worlds that were easily exhaustible. Play-

ers could draw maps of the entire game space, and know everything there

was to know about a particular game. Elite’s vast galaxies were too big

to explore completely, and this offered a complexity and sense of scale that

had not been seen before in videogames. Procedural content generation has

consistently been used in this way: not simply to make a game take up less

space on a disk, but to offer a new kind of gameplay. We call this use of

PCG as a selling-point for games wants-driven PCG.

Possibly the most famous example of wants-driven PCG in modern video

games is the world generation of Mojang’s Minecraft [99], which situates

the player in a world made of cubes that can be destroyed, collected, placed

elsewhere and combined into new items. Minecraft’s worlds extend to eight

times the surface area of the Earth in size, each one randomly generated.

The potential size of the world is so vast in comparison to the area a player

will likely explore that they are sometimes described as pseudoinfinite.

Figure 4.1: An unusual formation found in a particular Minecraft world.

PCG’s role within the game is to offer unpredictable worlds to explore,

which accentuates the game’s themes of pioneering and survivalism. It also

71



engenders a sense of connection between the players and the PCG system

that generates the worlds, to the point where players will share the random

strings that seed a world with particularly interesting features so that others

can experience them1 (figure 4.1 shows a screenshot from one such shared

world seed). Here, PCG is not merely solving a content problem – it is

augmenting the mechanics of the game by adding in unpredictable content,

something that human designers could not provide without continuously

developing new content by hand.

Another way in which PCG can contribute to the worth of a game is by

producing content on such a large scale and with such diversity that a sensa-

tion of personalisation is created. Dwarf Fortress [43] generates a finite two-

dimensional world, in contrast to Minecraft’s pseudoinfinite spaces. Once

generated, Dwarf Fortress then continues to generate the world’s history,

founding civilisations with mythologies and successions of leaders. Though

simplistic and almost entirely random, the generative process is extensively

detailed, which leads to players investing heavily in the specific history of

the world they are playing in. Dwarf Fortress is often experienced by people

who do not play the game at all – the detail and variety in the worlds gener-

ated has made the game extremely popular among a community of gamers

who write reports of the games that they play (colloquially referred to as

Let’s Plays), which are often read by people with no interest in learning how

the game works. Without PCG, the game would have no unpredictability

in the worlds that the game takes place within, and hence unlikely to be

of interest in Let’s Play scenarios. Earlier in this chapter we discussed the

problem of relinquishing authorial control by using PCG to generate con-

tent. In Dwarf Fortress, the loss of control is a strength of the game – the

players feel invested in the fact that no-one else has possibly seen this world

before, and the act of reading world histories and inferring narratives from

the simple account of events is itself part of the game’s appeal.

4.3 Classification of PCG Systems

In the previous section, we offered a broad partitioning of PCG systems

based on the motivation for their use. More detailed classifications of pro-

cedural content generators exist, based on the features of the generator

1http://www.minecraftseeds.info/

72



itself, such as in [126], in which Togelius et al. put forward five axes along

which PCG systems can be classified. Most of these, as we describe below,

are not binary classifiers but rather linear gradients along which many dif-

ferent kinds of PCG systems may lie. We give the five axes below, along

with examples of games which fit at either ends of the spectra:

Online – Offline

An online PCG system may operate at runtime within the game, generating

content while the player consumes it, such as the level generation in Spelunky

[47] (see below). An offline PCG system may be used prior to the game

being released to generate static content the game will subsequently use

(such as the generation of a galaxy map in EVE: Online [44]). Offline PCG

systems are more likely to be needs-driven, since they solve a design-time

content problem, such as the generation and placement of trees, but the

player only experiences static content in the final game.

Necessary – Optional

Necessary PCG systems generate content which the player is guaranteed

to interact with on the critical path2 through the game. For example, the

levels in Spelunky are procedurally generated, and it is not possible to play

the game without experiencing the content produced through this system.

Optional PCG systems generate content which the player either chooses to

experience, or experiences in a way which is not vital to the completion

of the game. For example, optional quests in The Elder Scrolls V: Skyrim

[120] have a procedurally-generated component, but the content may not be

experienced by some players, depending on their chosen path through the

game.

Random Seeds – Parameter Vectors

Informally, this feature of the taxonomy describes how controllable the input

to the PCG system is. Some PCG systems derive their input from streams

of random data, such as world generators which use Perlin noise [98]. The

2In game design terminology the critical path refers to the minimum path from the start
to the finish of the game, i.e. content which is necessarily experienced by the player
in completing the game.

73



primary way of interacting with or varying these PCG systems is through

providing a random seed to the generator that drives the system. For in-

stance, Minecraft’s world generator works on this basis: players can provide

different seeds to the world generator, but cannot influence the process in

any other way. In contrast, some PCG systems use parameterised inputs,

allowing them to offer some control to players or designers. For instance,

map generation in the Civilization series [87] has many parameters that can

be altered prior to world generation that affect geographic factors such as

sea level, erosion rates or tectonic activity. These influence not only the

starting point of the world generation, but also the way the world develops

as it is generated, affecting the final output.

Stochastic – Deterministic

This feature is closely related to the feature Random Seeds/Parameter Vec-

tors above. Stochastic systems produce different pieces of content if they

are run multiple times, even if they are set to the same starting configura-

tion each time. Civilization’s world generator is an example of a Stochastic

system, as it produces a different world map each time it is run, even if the

settings are the same. In this case, the settings for the generator dictate

a particular style of generator, rather than guaranteeing a certain output.

Deterministic systems produce the same piece of content given identical in-

put parameters, although Togelius et al. do not consider the random seed

to be a parameter in this case (since all systems would be deterministic un-

der this definition). PCG systems which use random seeds, like the galaxy

generator in Elite[36] we described earlier in this section, would be an ex-

ample of a deterministic procedural generator. Given the same two initial

numbers, the resulting planet always has the same set of features.

Constructive – Generate-and-Test

Constructive PCG systems produce their content in discrete phases, addi-

tively contributing content until finished. These PCG systems are guar-

anteed to produce usable content at the end of the process, and normally

include expert knowledge embedded by a designer that ensures that usable

content is always the result. Spelunky ’s level generation (described in detail

in §4.4) adds content to a level in stages, and each stage preserves the level’s

74



playability without evaluation, meaning it is not possible for the generator

to produce content that is not usable. Generate-and-Test approaches, as

their name suggests, go through two phases – the generation of a piece of

content, and then an evaluatory phase which considers whether it is usable

or not. Whenever a piece of content is not usable, the Generate-and-Test

system will normally restart the generation of that piece of content from

the beginning. Generate-and-Test is not common in online PCG, because

players are often not willing to wait for a system to produce content, and

such systems provide no guarantees that content will be created within a

particular time period. Dwarf Fortress [43] uses generate-and-test in its

world generation phase, despite being an example of online PCG, because

its playerbase is willing to wait for a considerable time for a world to be

generated. The resulting worlds are often used for dozens of hours of re-

sulting gameplay, which also offsets the issue of waiting for a long period

for content to be generated.

4.3.1 Extensions to the PCG Taxonomy

In the previous section, we described a taxonomy for categorising search-

based procedural content generation systems according to the manner in

which they generate content. The classifiers help to define a wide space

of PCG systems and highlight many important distinctions between such

systems. The taxonomy speaks to the role of the PCG system within

the wider game (Online/Offline and Necessary/Optional), the variability

and repeatability of the system’s execution (Seeds/Vectors and Stochas-

tic/Deterministic) and the generative approach taken to content creation

(Constructive/Generate-and-Test). However, the taxonomy does not offer

a way to talk about PCG systems which are composed of multiple gen-

erators, or the ways in which multiple generators may interact. This is

understandable, as PCG systems tend to be perceived as black boxes whose

internal workings are not typically studied or analysed. However, this need

not be the case, and in order to analyse systems which autonomously de-

sign games, including the ANGELINA system we describe later, it will be

helpful to be able to talk about the degree to which the content generators

inside an autonomous game designer interact and execute in concert with

one another.

We propose two further classifiers for search-based procedural content

75



generation systems here. These new classifiers are based on the premise

that content generation often occurs in distinct stages, in which multiple

types of content may be generated. For example, Ed Key’s Proteus [71]

takes place on a procedurally generated island. While this can be thought

of as a single generator under the taxonomy in [126] that is online, seeded,

producing necessary content, and so on, it is also informative to consider it

as a system composed of many generative steps. For example, the heightmap

of the island is generated separately from the placements of the landmarks

or flora and fauna. These generation phases are not only distinct, but

interrelated, for instance the placement of content such as types of plant life

is dependent on the content generated in previous stages.

By considering such a system as performing many generative steps, we

can classify it in greater detail and build up a more expressive taxonomy

of procedural systems. This is particularly important when considering

automated game design systems that may tackle several generative tasks

simultaneously, such as the systems we describe in this thesis. For a series

of procedural content generation tasks, our new classifiers distinguish the

degree to which the tasks are interrelated (dependence-independence) and

whether the generative acts are interleaved (sequential-parallel). Both of

these features are useful in analysing our approach with ANGELINA as

well as distinguishing related work in automated game design from other

existing work in procedural content generation.

4.3.2 Dependent versus Independent

Independent PCG systems produce new content without reference to the

content which already exists within the game, either as output from other

generators, or statically placed by designers. For example, early versions of

the village placement algorithm in Minecraft ’s world generator forced the

placement of villages in the world, regardless of the surrounding geography.

This often resulted in villages that were embedded in the sides of moun-

tains, or otherwise completely disconnected from the main world space. By

contrast, Dependent PCG systems generate content with respect to the con-

text the content will eventually be placed in. Many games in the Roguelike

genre, such as the eponymous Rogue [127], place items and monsters in

levels after the level geometry has been generated, ensuring that content is

evenly spread throughout the world.

76



The Dependent/Independent classifier is a linear rather than a binary

classifier. Some games exhibit high levels of dependence in their generation,

including Dwarf Fortress [43], whose world generation is performed in dis-

crete stages which use geographical and geological models to place rivers,

settlements and natural features according to the features of the generated

world’s topology. Other games exhibit some dependence in their genera-

tors but not as comprehensively, only having small amounts of information

shared between generators. For instance, Spelunky [47] places monsters and

items with little regard for level flow, but always ensures level exits are

accessible based on the level layout.

4.3.3 Sequential versus Parallel

Sequential generators act in distinct stages of generation, with PCG systems

acting one after another in sequence to produce content. This often facili-

tates dependent generation (as described above), as it allows for one phase

of content generation to completely finalise its output before the next type

of content generation begins. While this is largely a binary classification,

we can imagine generators which perform some computation in parallel but

whose generative steps are mostly performed sequentially – for example, a

system which generated a dungeon one room at a time, but fills each room

with content using parallel generators. Here, at the highest level, the dun-

geon is being generated sequentially, one room at a time. However, the

individual rooms are generated in a parallel fashion.

Most procedural content generation in commercial or hobbyist videogame

development is performed sequentially. We believe that the reasons for this

include a more direct analogy with human content generation such as level

design, as well as the fact that sequential systems have a conceptually sim-

pler system design. For example, ambient exploration game Proteus [71]

designs its islands in distinct generation phases which complete fully before

the next phase begins. Parallel examples are rare, but work in [70] using

multiple agents to lay content in a level simultaneously can be thought of

as a parallel content generation system. In this case, each agent is plac-

ing content at the same time, allowing interactions between the separate

content-generating agents.

77



Figure 4.2: An illustration by Derek Yu describing Spelunky’s level genera-
tion process [135].

4.4 Case Study: Spelunky

Spelunky [47] is a 2009 action-adventure game developed by Derek Yu for

the PC and later ported to the XBox 360 in 2012. Spelunky received huge

critical acclaim throughout its initial release and subsequent redevelopment

for console, and particular praise was given to its use of procedural content

generation in the platform genre. Yu envisaged the game as a combina-

tion of platform game and roguelike (see §2.2.1 and §2.2.2 respectively for

descriptions of these genres), pointing to games such as La Mulana and

NetHack as inspirations.

La Mulana is a popular Japanese platform game that belongs to a sub

genre of platform games that pride themselves on being extremely difficult

to play. The official guide to La Mulana cheerily states that “... players

learn to play this game as they get killed over and over. Many people

might give up!” While this may seem counterintuitive as a design ideal for

a piece of entertainment, these games (sometimes dubbed masocore games

[2]) enjoy a large following among gamers. Games in this genre tend to use

the replayability of a game as a tool for the player to learn with – because

the game’s content is static, the player can more easily relearn patterns and

understand how to quickly play the game.

Spelunky disrupts this notion by using procedural content generation to

automatically design game levels. Derek Yu describes the process by which

levels are designed in [135], which we paraphrase here. The world is com-

78



Figure 4.3: A sample Spelunky level, generated by Darius Kazemi’s inter-
active generator [69]. The player starts in the second tile from
top-left. The exit in this level is in the bottom-left.

posed of screen-sized templates which Yu creates himself beforehand, and

categorises them according to which directions they can be entered and ex-

ited from. The level generator then arranges a series of template screens

from the start point to the exit point, ensuring that the exit can be reached

from the start. Remaining sections of the map that were not filled in by the

generator are randomly assigned from the list of template tiles.

Figure 4.2 shows a high-level overview of a Spelunky level generation,

used with permission from [135]. The arrows indicate the path composed

of tiles selected by the level generator. The tiles marked with an X are tiles

which were not filled in on the initial generative step, as the player doesn’t

need to pass through them to reach the exit. These tiles are filled in with

randomly-selected templates, which may or may not be accessible to the

player. Figure 4.3 shows a level generated using an interactive tool based

on Yu’s original generator [69]. A line of highlighted tiles shows a path from

the beginning of the level (the second tile from the left in the top row) to

the exit (the bottom-left tile).

Notably, many gamers do not initially realise that Spelunky’s levels are

generated from such large template chunks. This is partly due to the high

number of templates added by Yu in the final game release, but another

contributing factor is the post-generation adjustment phase, where the level

79



Figure 4.4: A screen-sized template for a level in Spelunky, before random
adjustment (left) and after adjustment in-game (right), from
[135]

is randomly tweaked to change its layout without affecting how traversable

the level is. Figure 4.4 shows how a screen-sized template can be adjusted

randomly to change its visual signature, without altering how the tile slots

into the overall level design.

In a postmortem of the game’s development, Yu notes that platform

games tend to exhibit repetition and that “not much improvisation is re-

quired to play”. Procedural content generation is used to great effect here to

overcome this, which highlights how PCG can be used as a unique gameplay

element used by a designer, rather than a replacement for more content.

4.5 Evolutionary Procedural Content Generation

Computational evolution is not a commonly used technique in procedural

content generation. In particular, it is rarely used in online PCG, because

of a lack of guarantees that the system will produce output of a particular

quality, or within a given time. However, games exist which use content that

was evolved offline during its development, such as EVE Online’s galactic

map. Attempts in academic work to use evolution both online and offline

are more common. We describe some approaches in this section.

4.5.1 Evolution and Online PCG

Galactic Arms Race

Galactic Arms Race [45] is a multiplayer action game where players fight

each other in spaceships, gaining new and more powerful weapons over time.

80



Figure 4.5: A screenshot from Galactic Arms Race showing an evolved
weapon being fired.

The weapons the players find in the game are procedurally generated, and

have varying features such as the rate of fire, the shape and speed of the

projectiles, and the visual effects associated with the weapon when it fires.

Figure 4.5 shows a player firing an evolved weapon during gameplay. The

weapon generation uses neuro-evolution of augmenting topologies (NEAT)

[118] to adapt weapon characteristics to player preference while simultane-

ously maintaining diversity and novelty. The amount a weapon is used by a

player is interpreted by the system as an expression of preference, and acts

as the fitness function which directs the NEAT system.

New weapons appear in the game at major game milestones, such as the

defeat of a particularly strong enemy. These may be readymades from a

stock of pre-evolved content called the spawning pool, or a new weapon

evolved from the current population of weapons, which consists of any

weapon currently being used by a player in the game. This therefore uses

two kinds of player-driven selection – not only how often a player has fired

a weapon, but also whether or not they decided to continue carrying the

weapon, since players can swap out weapons at will for new ones.

Galactic Arms Race was originally envisaged as a research project [58],

but is still under development four years after the publication of the initial

research papers, and was recently accepted onto the Steam marketplace,

the largest digital download store for games. The commercial success of the

project demonstrates that evolution can have applications to online PCG

81



for games.

Racing Games

Evolutionary PCG has been applied to content generation in racing games

on more than one occasion. In [124], Togelius et al. present a level generator

for a racing game which tries to learn a model of the player before using

that model to guide an evolutionary algorithm in designing a race track. A

partially-optimal neural-network-based controller is trained on recordings

of a player controlling a car through several calibration tracks, in order to

develop the controller to more closely mimic the player’s behaviour. This

trained controller is then used by the system to evaluate tracks during the

evolutionary process. Since the trained controller models aspects of the

player’s racing style, the controller’s performance on unseen tracks can be

used to infer how well the player might perform on them. The tracks are

also evaluated according to other criteria, some of which interact with the

model of the player. For example, the top speed the player model obtains

when playing the track is affected by both the presence of straight sections

of track (which is independent of the player model), as well as the player’s

propensity to accelerate during such sections.

Evaluation of the results in [124] takes place mostly anecdotally by the

authors. Tracks evolved for different controllers are visually compared for

variation as an indication that the system is personalising the tracks, and

further compared to tracks evolved without a controller to show that adap-

tation is taking place.

In [14] Cardamone et al. present another designer for racetracks, this time

focusing not on a model of the player, but the qualities of the racetracks

themselves, independent of any particular playthrough. In particular, the

authors focus on diversity within an individual racetrack, maximising the

variation in types of track segment, driving speeds and turn rates. They

present multiple types of evolutionary track designer focusing on diversity

in each of these areas, and compare both single- and multi-objective evolu-

tionary approaches, showing that both methods were capable of producing

tracks that players rated highly.

The authors present an evaluation through player surveys, first showing

people pictures of the evolved tracks and asking them to express preference

over pairs of tracks. This was then followed up by multiple play sessions

82



Figure 4.6: A low-resolution sketch by a user (left) and two high-detail visu-
alisations of the sketch made by The Sentient Sketchbook (centre
and right). In the original sketch, black tiles denote impassable
areas, blue tiles denote resources, and white tiles denote player
starting locations.

where both evolved and hand-designed tracks were supplied to the partici-

pants. Responses from the participants were recorded in terms of pure track

preference, but also more specific features such as the perceived challenge

of a track. Evolved tracks were preferred overall, and results also indicated

they were seen as much more challenging than hand-designed tracks, par-

ticularly for less experienced players. This did not appear to affect player’s

willingness to replay the tracks, however, despite their difficulty.

4.5.2 Evolutionary Assistance – Mixed Initiative Tools

The Sentient Sketchbook is a mixed-initiative design tool for designing game

worlds, described in [80]. The tool works in a user-led fashion, initially

beginning with a low-resolution sketch of a game map by the user, which is

then translated to a greater level of detail by an evolutionary system, using

a NEAT technique similar to that employed in Galactic Arms Race. These

translations can be done in multiple styles: Figure 4.6 shows a user-drawn

map sketch alongside two different translations of the sketch at higher levels

of detail, generated by the tool. This translation method allows a designer

to roughly draw out important map features (such as inaccessible paths,

or approximate routes through a world) and have the lower-level detail of

a world, such as the natural flow of geographical features, handled by the

procedural content generator.

The Sentient Sketchbook is also capable of providing suggestions about

83



Figure 4.7: A screenshot from The Sentient Sketchbook. The user sketch is
on the left, and live suggestions appear on the right-hand side
of the screen. Options and metric information about the sketch
appear in the central column.

the current user sketch in real-time. Suggestions appear on the side of the

user’s screen, evolved by the system using novelty search [79], an evolu-

tionary computing technique which incorporates a preference for diversity

into its selection process. This results in suggestions which relate to the

user’s current sketch, but adapt it in a variety of different ways, with the

intention of serendipitously sparking new ideas in the designer, or possibly

accelerating the design towards a goal which the user already had in mind.

The Sketchbook is a good example of evolutionary techniques being ap-

plied to offline procedural content generation, and assisting in high-level

design tasks alongside a game designer. The Sketchbook is able to rapidly

provide natural-looking interpretations of abstract design ideas, and offers

suggestions to designers to lead the development of a game world in unex-

pected directions.

84



4.6 Computational Creativity

Computational Creativity is a field of artificial intelligence which concerns

itself with

...the philosophy, science and engineering of computational sys-

tems which, by taking on particular responsibilities, exhibit be-

haviours that unbiased observers would deem to be creative.

This description of the field, quoted from [29], carefully sets out many

important aspects of the field. Deconstructing creative activities into re-

sponsibilities allows them to be studied in isolation, and composed with one

another to build more complex systems. This pattern will be evident to

the reader in this thesis, as we build an automated game design system out

of diverse creative responsibilities that interact with one another to create

full games. The notion of unbiased observers touches on another important

area of the field, namely evaluation.

4.6.1 The Challenge of Evaluation in Computational

Creativity

Agreeing on whether something is creative or not is difficult for any group

of people to do, including among communities of creative people and within

the Computational Creativity community. A lack of consensus on what

constitutes creativity makes evaluating software which claims to be creative

difficult. We argued in [26] that this is due to creativity being an essentially

contested concept [52] – a term used to describe certain concepts where the

lack of agreement relating to the concept is inherent in the concept’s func-

tion in culture. That is, the fact that we disagree and debate the meaning of

terms such as justice, art and creativity is part of their value to society, be-

cause that discourse drives the development of these concepts and improves

society in doing so.

Even if we were able to agree on what constitutes creative activity, how-

ever, the issue remains that assessing how well a creative action is being

performed is still extremely difficult. This is particularly noticeable in Com-

putational Creativity when trying to assess the performance of a piece of

creative software. As Eigenfeldt et al. note in [40]:

85



Rational problem solving [in Artificial Intelligence] is evaluated

by comparison to some optimal solutions... Computational Cre-

ativity is faced with the dilemma that, while creative behaviour

is intelligent behaviour, such notions of optimality are not de-

fined.

While traditional artificial intelligence paradigms might use an optimal

solution as a benchmark, in Computational Creativity we cannot use the

notion of a ‘best’ painting or a ‘best’ videogame to compare the performance

of creative software against, because the idea of an optimal creative work is

anathema to most creative domains. This further complicates the process

of evaluating computationally creative software.

4.6.2 Evaluation Approaches in Computational Creativity

Product

In [102], Ritchie describes several criteria which can be used to assess a sys-

tem which generates content of some kind. The criteria are defined math-

ematically, and so can be applied precisely to a system, assuming certain

definitions can be made, such as a notion of ‘quality’ for the domain the sys-

tem works within (which can be problematic for reasons we outline above).

Many of the criteria refer to the system’s output directly, which Ritchie

calls the result set. This distinguishes the approach from ways of evaluating

systems which followed Ritchie, which we describe later, by focusing purely

on the system’s input and output, rather than the system itself.

The criteria given by Ritchie evaluate the system’s output along the lines

of typicality (the degree to which a particular artefact is an example of the

class of artefact which it is intended to belong in – does the joke generator

output things which look like jokes, for example) and value (a combination

of the perceived quality of an artefact and its novelty). Ritchie proposes

eighteen criteria in total.

Ritchie’s criteria are also the basis of the curation coefficient measure for

a piece of software’s performance. The curation coefficient is the proportion

of a system’s output that the system’s creator would be comfortable sharing

with others publicly as the work of the system, to be assessed as a creative

artefact. A curation coefficient of 1.0 implies that the system is capable of

working completely independently with no filtering or selection on the part

86



of the designer. Increases in curation coefficient, therefore, can be used to

argue that one system is improving, or better than another system, because

it is better at assessing the quality of what it is creating.

Process

Ritchie’s focus on the output of a system means that creative software is

treated as a ‘black box’ whose internal working is not important in evaluat-

ing its worth or success. In [25] Colton et al. present a model for describing

creative software according to the kinds of creative acts they perform. The

authors say:

It is clear that such [creative] acts can occur at the ground level,

whereby generative systems produce new artefacts such as the-

orems, pictures, compositions... However, it is also clear that

creative acts can occur at the process level, where new ways to

generate and assess artefacts are invented.

In other words, although the output of a system is a creative act, there

can also be creative activity that occurs internal to a computationally cre-

ative system. Often we find that this activity is as important, if not more

important, than the assessment of what the system creates. Colton et al.

propose four categories of creative act in the FACE model presented in

[25]: Framing, Aesthetics, Concepts and Expressions of concepts. Each act

can be performed at a generative level, meaning an activity that generates

examples of each of the four categories, or at a process level, where new

methods for generating examples are created by the system.

The FACE model recognises creative acts beyond the simple generation

of artefacts, which is important when evaluating whether progress has been

made in the development of creative software. The creativity of a system

(or indeed a person) does not always relate to the perceived quality of what

is produced. In [26] we introduce the notion of latent heat in Computa-

tional Creativity. This term describes the phenomenon whereby a piece of

software is iterated upon and improved in terms of its creative ability and

autonomy, but that resulting increase in independence initially results in a

lower quality output. This drop in quality ultimately disappears over time

as the software is further improved, but in the short term the system appears

87



to be producing worse quality artefacts despite being a more sophisticated

system internally. An assessment that only focuses on the system’s output

fails to recognise the steps forward made by such a system.

Perception

The proposed shift in focus from evaluating product to evaluating process

has not entirely been accepted by the Computational Creativity commu-

nity, and many different evaluatory methods are often used to give a mixed

picture of a system’s performance, such as in [89]. A lack of consensus is

no doubt partly down to creativity being essentially contested, as we men-

tioned earlier, and mixed approaches also help in providing many different

angles to consider a system from.

An emerging feature of evaluation alongside the system’s output and the

actions it performs to generate such output is the notion of the perception

of the system by consumers, critics, creatives and other stakeholders both

in and out of the creative domain the system works in. The interest in the

perception of a piece of software stems from the same line of thought that

led researchers to evaluate the processes within a system. In [19] Colton

states that:

As we developed The Painting Fool3, we began to understand

that when consumers of paintings assess them, they do not

strictly separate the process and the artefact.

In the previous two subsections we described approaches to evaluation

that focused on the quality of artefacts, and approaches that focused on the

processes which were undertaken to produce them. Colton’s assertion above

makes an important additional point, however: that outside of an academic

context, it is difficult for most people evaluating creative software to keep

the two separate.

Charnley et al further this point in [16], describing artworks in which

the information and context surrounding the artwork are more important

than the physical artefact itself. They refer to this as framing informa-

tion, and discuss how this information helps shape someone’s perception of

3The Painting Fool is a computationally creative artist developed by Colton over many
years. We discuss the work in chapter 11.

88



the artwork. Without context, an artwork may be hard to understand or

appreciate, or may not be recognised as a piece of art at all.

Although the perception of a piece of software is hard to judge quan-

titatively, we can look at major milestones in a project’s development as

indicators of how it is viewed in relation to other creative software, other

creative people, and the history and context of a creative domain – such

as acts of recognition from creative communities (accepting work into ex-

hibitions, for instance) or analysing the language used by people when dis-

cussing the software. Crucially, however, assessing the perception of a piece

of software relies on being open about its identity as a piece of software,

rather than staging anonymous Turing-style tests [129]. Pease and Colton

have argued strongly in the past against Turing-style tests for evaluating

creative software, citing reasons such as the fact that the test encourages

‘window-dressing’ and trickery to deceive evaluators into thinking a piece of

software is being more creative than it really is [97].

4.7 Summary

In this chapter, we introduced the concept of procedural content generation,

and gave a brief history of its role in videogame development. We identified

two types of motivation for the use of PCG in games – needs-driven and

wants-driven – and further classified PCG systems according to their design,

structure, application and execution. In doing so, we introduced two new

axes for classifying PCG systems: dependent-independent and sequential-

parallel. These will help us highlight the unique qualities automated game

design has as a research problem later in this thesis. We looked in detail at

Spelunky and its use of procedural content generation in creating its levels.

We looked at how its PCG system combines human-designed fragments in

new ways, and tweaks its levels to obscure the static nature of its starting

templates. Finally, we looked at the use of evolutionary techniques in proce-

dural content generation, considering both online and offline examples, as

well as its application to design tools. Later in this thesis we will use these

examples, and the taxonomy, to compare and contrast our approach with

other PCG systems, from both academia and the wider games industry.

89



5 Coevolution in Arcade Game

Design

5.1 Introduction

In this chapter, we describe ANGELINA1, the first iteration of ANGELINA

and the foundation for the ways in which ANGELINA develops through sub-

sequent chapters. ANGELINA1 focuses on creating the most simple game

archetype which we discussed in chapter 2: arcade games. The focus of this

chapter is the fundamental question: can co-operative coevolution (CCE)

be used as the basis for automated game design? We present ANGELINA1

as a proof of the basic concept, and then develop this with further study

through subsequent chapters and versions of the software. This chapter

will describe the design space ANGELINA1 occupies, the structure of its

internal CCE system, and the games it can produce.

In §5.2 we give details of ANGELINA1’s design space, describing the

motivation for some of our choices of problem to solve, and the preliminary

work which inspired this initial system design. This design space defines

the kinds of games that ANGELINA1 can design, and clearly divides up the

different tasks which we give to the various components of the CCE system

in this version of ANGELINA.

In §5.3 we describe each species in the CCE system of ANGELINA1 in

turn. We give details of the individual species’ design space, how it generates

its population, how each population is evaluated (according to the type of

game content the species deals with) and how generations are recombined

and mutated. We discuss in particular detail the evaluation approach taken

with simulating gameplay, as this is closely related to both our use of CCE

and the core challenge of automated game design: evaluating an entire game

design at once, to assess all generated parts of a game simultaneously.

In §5.4 we provide examples of games designed by ANGELINA1, including

90



screenshots and brief descriptions of their structure. Some of these games

are generated with complete autonomy, with the CCE system acting to

design each aspect of the games itself. Other games are designed with

partial hand-designed content, to show the flexibility of the system and to

give an indication of how species can respond to content changes within the

CCE system.

5.2 Design Space

In [125], Togelius and Schmidhuber describe a series of experiments in gen-

erating rulesets for videogames. We describe the work in greater detail in

chapter 11. This work inspired the foundation of ANGELINA1, in particu-

lar the design space it uses as a basis for generating games. While Togelius

and Schmidhuber focused on rulesets only, in a turn-based environment, we

built ANGELINA1 as a modular system capable of evolving multiple as-

pects of a game simultaneously, both evaluating and outputting games with

real-time gameplay.

The version of ANGELINA described in this chapter works in a design

space of arcade-like games. The games are played on a two-dimensional grid

of tiles, each of which can be either solid or empty. In this grid, a number of

coloured circles or entities are placed, as well as a single grey dot denoting

the player. There is always one player, but there may be any number, or

none, of each of the three entity types (red, blue, green).

Each of the three coloured entity types have movement behaviours asso-

ciated with them, chosen from a series of predesigned movement styles:

• Clockwise and Anticlockwise - the entity moves in an initially ran-

domised cardinal direction (north, south, east, west). When it hits

a solid tile, it rotates either clockwise or anticlockwise (depending on

the behaviour) and then continues in a straight line.

• RandomShort and RandomLong - the entity moves in a randomly

selected direction for a randomised period of time, before changing to

a random cardinal direction. The time period is randomised between

two limits, which are dependent on the specific behaviour.

• Static - the entity does not move.

91



The rules of these games are centred around collisions between tiles and

entities, or entities and other entities. All rules can be expressed in the

same basic 5-tuple format:

<Object1,Object2,Effect1,Effect2,ScoreChange>

Such rules are interpreted as having the following meaning within the game:

when an object of type Object1 collides with an object of type Object2,

apply the effect Effect1 to the first object, Effect2 to the second object,

and then add ScoreChange to the overall score. The object types are drawn

from the following:

• Player - A small grey circle controlled by the player using the arrow

keys.

• Red, Green or Blue - The three entity types described earlier, governed

by their own motion rules.

• Wall - Any solid tile that makes up the level layout.

The effect types represent self-contained mechanical concepts that can

be generically applied to both the non-player entities and the player itself.

The effects do not apply to wall objects, and so have no effect should a rule

be generated applying them. These effects are: Teleport, which chooses

a random empty tile on the map and moves the object to that position;

Kill, which removes the object from the game, causing a ‘Game Over’ if

that object was the player; Nothing, which has no effect but is useful for

defining rules which only affect one party.

5.3 Coevolutionary Setup

5.3.1 Species - Level Design

A Level is a 20 by 20 array of boolean values, where an entry of True

indicates that the tile at that position in the map is solid. Solid tiles are

represented as black squares in the figures in this chapter.

92



Generation

Levels are generated by randomly placing single tiles on the grid, with an

initial density of 0.4 – that is, there is a 40% chance that a tile will be solid

during the initial random generation phase. We prototyped many level

generators during this stage of our work [30], and experimented with many

different initial densities. 0.4 was found to give a good balance between

sparseness and overwhelming density.

Evaluation

Map designs are scored using two metrics which we call fragmentation and

domination. A map’s fragmentation score is equal to the number of islands

present in the map, where an island is a set of blocks that are adjacent to

one another and disconnected from both the wall and other islands. A map’s

domination score represents the number of tiles which dominate sections of

the map. A tile is said to dominate two other tiles if all paths between those

two tiles must pass through the dominated tile. A similar definition can be

found in [6]. In the vocabulary of game design, a dominating tile represents

a doorway or a corridor, i.e. a tile separating two regions of the map.

Calculating which tiles dominate others is costly to do, given that the

calculation must be performed on every tile in every map in the population

at every generation. We check if a tile is dominating by calculating how

many tiles are reachable from that tile in the map. We call this set of

reachable tiles a flood plain. For a tile, t, the flood plain is defined as:

fldplain(t,map) = |{t1 such that rchable(t, t1,map)}|

where

rchable(p, q,m)⇐⇒ ∃ a path from p to q in map m

We then modify the map to obtain mapmod by blocking out t and making

it inaccessible. We then perform the same calculation for a neighbour of t,

tnb, in the modified map mapmod.

mapmod = map[t = wall]

Where map[t = wall] represents a remapping of the map such that tile t is

93



now inaccessible. Therefore, tile t is a dominant tile for map if the modified

floodplain is more than one tile smaller than the unmodified floodplain, i.e.

fldplain(t,map) < fldplain(tnb,mapmod) + 1

Since we have only blocked off one tile in mapmod, if the floodplain is more

than one tile smaller then blocking t must also have blocked access to other

tiles. In other words, t dominates at least one tile. In general, fragmentation

controls the number of obstacles in a map, while domination controls the

openness of the play areas. These map-generation metrics are simple, but

include a range of arcade-style archetype maps varying from open arena-

based games, such as Pong [62] or variants of Snake1 with minimal obstacles,

to the more labyrinthine maps with maze-like properties such as those used

by Pac-Man [90] or Sokoban [60].

ANGELINA1 has two parameters: tfrag and tdom, which represent a tar-

get amount of fragmentation and domination respectively, to achieve in its

generated levels. We describe now the fitness calculation for fragmentation;

the calculation for domination is analogous with the replacement of the

necessary variables.

fragmentationF itness = 1−
|frag(m)− tfrag|

tfrag

This is clamped within the range [0, 1] to avoid negative fitnesses. This

calculates fitness as the distance of the fragmentation variable (frag(m)

for map m) from the target value. The same calculation follows for domi-

nation. The two values are then summed to achieve the overall fitness and

discounted according to whether the evolution is weighted more towards one

than the other. For the examples in this chapter, we weight the variables

equally:

fitness = 0.5× fragmentationF itness+ 0.5× dominationF itness

1No accepted citation for Snake exists, as the game has no definitive version. The reader
is directed to http://playsnake.org/ to play the game.

94



Crossover and Mutation

Levels are crossed over using three approaches: binary AND, in which a

square is solid in the child level if the square is solid in both parent levels;

binary OR, in which a square is solid in a child level if the square is solid in

either parent level; and what we call ‘scattered inheritance’, where a square

in the child is decided as follows:

mapchild[i][j] =

map1[i][j] if rnd() < 0.5

map1[i][j] otherwise

Wheremap1 andmap2 are the parent levels and rnd() is a random number

generator. ANGELINA1 uses each crossover technique once on a pair of

parents. No mutation is used in this species.

5.3.2 Species - Layout Design

A Layout is a 20 by 20 array of integer values, where the value 0 denotes

an empty space in the layout, value 1 indicates the starting position of the

player (there can only be one of these in a layout) and values 2 to 4 indicate

starting positions for entities of the other types. There can be multiple

entries of these in the layout, indicating many entities of the same type, or

no entries at all if that entity is not in the layout.

Generation

Layouts are generated by randomly placing an amount of the entity values

(2 to 4) in the array. The amount of each entity type placed is also randomly

selected from an interval set as a parameter to ANGELINA1. In the case

of the games shown in this chapter, for layouts generated by ANGELINA1,

between zero and 15 entities of a given type were allowed. More than 15

entities tended to result in an overcrowded level which was found to be hard

for ANGELINA1 to design rulesets for or evolve good layouts which don’t

conflict with the level geometry.

Evaluation

Layouts are scored using two metrics: sparseness and volume. These are

defined as follows: a layout is sparse if the average distance between two

95



NPCs is high. For a layout with n items in it (of any colour) the sparseness

of a layout is measured as:

2×

 n∑
i=1

n∑
j=1

dist(i, j)

× 1

(n× n− 1)

Where the dist function measures the Euclidean distance between two

items. Volume is the measure of how many entities there are on-screen. For

a map m, its volume is defined as:

vol(m) = |reds(m)|+ |greens(m)|+ |blues(m)|

Where colour(m) is the set of entities in map m with colour colour. The

layouts verify themselves by attempting to apply their layout to the highest-

fitness map in the current population, to ensure that they are producing

legal, playable layouts – that is, layouts which do not place entities over

obstacles such as walls. In this way, the layouts and the maps shape each

other’s development.

Crossover and Mutation

As with Levels, we use binary AND and OR crossover to combine layouts.

To avoid maps exceeding the placement limit for a layout, we then randomly

remove entities of each type until they meet the maximum entity placement

limit. In addition to these two techniques, for each pair of parents two

children are generated through colour set swapping, where a child inherits

the entire colour set for a particular entity from the parent. The parent to

inherit from is chosen randomly for each colour, and then all entities of that

colour are copied into the child.

5.3.3 Species - Ruleset Design

A Ruleset is a set of parameters that define certain features of a game,

including a list of Rule objects in the form of a 5-tuple, as we described

above. A Ruleset contains:

• A Score Limit, which is the target score a player must achieve to win

the game.

96



• A Time Limit, which is the number of seconds before the game ends

with a loss.

• A movement policy for each non-player entity (described earlier in the

chapter).

• A set of one or more rules, 5-tuples defining interactions between

objects.

We have already discussed how rules and movement policies are imple-

mented earlier in the chapter in section §5.2.

Generation

A Ruleset is generated by randomly assigning values to each parameter. In

the case of score and time limits, values are randomly generated within a

defined interval given as parameters to ANGELINA1. In the case of this

chapter, the minimum time limit is 20, and the maximum is 100, while the

minimum score limit is 1 and the maximum 100. These values were chosen

by playtesting randomly generated games as well as hand-designed games

using the same design space as ANGELINA1.

Rules are generated using the 5-tuple template described in §5.2 and

randomly assigning each part of the tuple from the possible options. Score

changes can either be +1, 0 or -1, also chosen randomly. The number

of distinct rules generated is randomly chosen in an interval defined for

ANGELINA1. For the examples in this chapter we use 1 as the lower bound

on the number of rules, and 4 as the upper bound. A value higher than 4

normally increases the likelihood of a high number of conflicting rules which

causes the increase in fitness to slow down greatly, in most cases failing to

reach acceptably fit solutions within a reasonable timeframe.

Evaluation

Rulesets are evaluated in two stages. The first checks for pathological situ-

ations and then assigns a zero fitness to those Rulesets. Rulesets which had

rules in where, for example, the only way to gain score was by the player

dying, were penalised in this way. Other penalties were less strong: Rulesets

which included rules for entities which were not in the current fittest layout

received a discount to their fitness by reducing the overall fitness by 50%.

97



In deciding on what form these checks should take, we took inspiration

from McGonigal’s definition [84] of a game’s components as a goal, a set

of obstacles and a feedback mechanism. In particular, we ensure the games

are directed towards a goal using score gain and provide an obstacle to the

player through the loss of score or death. These games shrink the state

space for rulesets, whilst retaining a core space of interesting rulesets that

can be explored through playouts. We also cull the lowest-scoring half of

the population and take the remainder through to the second stage, which

is a series of playouts.

In total, we simulate eight playouts of each game, one for each behaviour

which we list below plus two additional playouts of the final behaviour time,

adjusted for different levels of player reactivity. For each playout, we record

the score and whether or not the player died. A playout begins by fixing

a behaviour for the player-character using AI controllers, and optionally

adding in extra constraints to test different aspects of the game. The types

of playout are:

• Empty, where the player character is removed from the game and the

game is executed until the time limit (or, in rare cases, the score limit)

is met. This gives useful information on the game’s natural tendency.

For a game like Pong, this would result in a large negative score, while

a game like Pac-Man would return a zero score.

• Static, where the player is included in the game but does not move.

This might be considered a step up from an Empty playout. This

playout represents a worst-case for player behaviour (assuming the

player isn’t actively trying to lose).

• Random Walk, where the player mimics the NPC entity behaviour of

random walk. The player moves through the environment, changing

direction at random intervals, until the score or time limit is met.

• Pre-Collision, which are playouts identical to Random Walk ones ex-

cept that the player is collided with one or more types of entity before

the first time the game update loop is called. These playouts are use-

ful to compare to random walk as they are the extremes of player

involvement in the game. A game like Pac-Man yields very useful in-

formation from these playouts, as they include a perfect run (colliding

98



with all the pills completes the level) and a worst-case (colliding with

the ghosts ends the game).

• Long Play, which are identical to Random Walk playouts but are not

limited by time, to investigate how the score and game-over events

affect the game when less constrained.

• Guided, where the controller analyses the ruleset and detects first-

order relationships that would cause score gain, score loss, or death.

It then tries to avoid collisions that would cause score loss or death,

and plots paths towards collisions that would cause score gain.

This sort of information about the role of the player in the current ruleset

is used to filter out broken rulesets by detecting games which the player has

little or no effect on, or that are too easily won. This is done in a second

round of evaluation, where each ruleset is examined in turn and the score

data for their playouts analysed. We expect some or no progression between

the Empty, Static and Random Walk playouts, as they represent increasing

player involvement and our definition of a game is strongly geared towards

the player being the factor affecting the score. It is also useful to compare

pre-collision data, as if all playouts of this type tend towards a positive or

negative score, this can mean that a game’s rulesets are either too difficult

or too hard.

It isn’t possible to know a priori what the theoretical maximum score

is for a particular game design, because it can be a combination of various

factors that affect the level, layout and ruleset. As such, we calculate the

fitness of a Ruleset by considering the proportional difference between each

increasingly intelligent playout technique. If we call the six playouts we

list above Pn where n ∈ {1...6} in increasing numerical order, then for two

playouts Px and Py, Px is considered more intelligent than Py if x > y.

We calculate the score progression sp(x, y) as the proportional change in

score from Px to Py:

sp(x, y) =
Py

Px
− 1

This means that if the two playouts have the same score, this results in a

zero score progress; if the score decreases then a negative score progression

is calculated, otherwise positive. This value is clamped in the range [−1, 1],

99



meaning that if a playout more than doubles the previous score then no

additional score progression is calculated. The fitness of a ruleset is then

calculated as the average of the sum of score progressions:

fitness =
1

5

5∑
i=1

sp(i, i+ 1)

Crossover and Mutation

Crossover of two Rulesets selects a random number of rules from each par-

ent and adds them to the child’s rule list. It also randomly selects the other

parameters (NPC motion and time and score limits) randomly from each

parent as well. In addition to this, we mutate rulesets by randomly chang-

ing values in individual rules, and randomly regenerating parameters such

as the time or score limit. The mutation rate is 20%, chosen through ini-

tial experimentation with the evolutionary parameters. We also introduce

new randomly-generated rulesets into the population at a rate of 5% per

generation to avoid stagnation, chosen in the same way.

5.4 Example Games

This section includes descriptions of several games designed by ANGELINA1.

Two of the games are full designs by the system: the CCE system evolved

content for all of the species described in this chapter, with no hand-designed

content involved. This demonstrates ANGELINA1’s ability to design games,

and provides a basic indication that CCE can indeed be used as part of an

automated game design system. In addition to these games, we also describe

two partial game designs produced by ANGELINA1. In this case, some con-

tent was provided to the system in place of one of the CCE species, and the

remaining content was then evolved in response to this content.

This semi-automated approach was taken to illustrate that CCE’s modu-

lar structure allows for flexibility in the automated design process, allowing

people or other content generators to involve themselves in the process. We

also show that by adjusting the level design between the two partial game

designs, ANGELINA1 produces two very different game designs as a result.

Some of the games here have titles. Name generation was added during

the development of ANGELINA1 – it works by using a Markov chain using

100



a corpus of arcade game names to generate news ones. The corpus is limited

to fairly well-known games from the 1970s and 1980s, since ANGELINA1’s

inspiring games are from archetypal games of this era – such as Frogger [73],

Pong [62] and Pac-Man[90]. The Markov generator was trained on 2-grams

from the corpus of names, although frequently created game names that

were very similar to corpus names because of the small corpus size. We

rectify this in future versions of ANGELINA with much larger corpora and

more varied titling. Five randomly-selected examples from the generator:

Revolution, Skate Dance Dan, Street Fightmare, Golden, Final Adventure.

The games shown below have been curated, as indeed have most of the

example games presented in this thesis. In §4.6 we introduced the notion

of a curation coefficient, defining the proportion of a system’s output that

its creator assesses as being good enough quality to distribute or show as

demonstrative of the system’s potential. Higher curation coefficients suggest

that the system is better at independently assessing its work and creating

better output. Through generating and playing a large number of games,

we calculate the curation coefficient of ANGELINA1 to be approximately

0.33. That is, one-third of the system’s output are games good enough to be

shown to people as representative of the system’s potential performance. We

will assess the curation coefficient of each version of ANGELINA presented

in this thesis.

5.4.1 Full Designs

Untitled I

Figure 5.1 shows a dexterity-based ‘steady hand’ game (in which precision

movement is the primary test) designed by ANGELINA1. The red objects

are static and don’t move, but touching them causes the player to randomly

teleport around the level and gain a point. Touching the walls of the level

causes the player’s death. Gaining points increases the difficulty level, as

the player must rapidly work out where they have teleported to and avoid

touching any walls.

Untitled II

Figure 5.2 shows a Pac-Man-like game designed by ANGELINA1. The

player must collect the blue objects while avoiding the moving red objects.

101



Collecting a blue object gains the player a point and destroys the blue

object, while touching the red objects kills the player. This game design is

almost exactly the basic format of Pac-Man, although it is missing certain

mechanics such as power pills and screen wrapping.

5.4.2 Partial Designs

Revenge

Figure 5.3 shows a screenshot from a partial game design by ANGELINA1.

The hand-designed level design was provided to ANGELINA, and the rules

and layout were evolved. In this game, the player must avoid touching the

red dots, as they kill them. Touching the blue dots increases the player’s

score. Red dots teleport around the map rapidly, making it hard to avoid

them.

After Squad

Figure 5.4 shows a screenshot from a partial game design by ANGELINA1.

The level design was provided to ANGELINA, and the rules and layout were

evolved. In this game, the player must collect the blue dots by touching

them. However, the player can’t stop moving once they begin the game,

and touching the walls causes the score to drop. The blue dots hug the

walls as they move around, meaning the player must be very careful when

collecting them.

5.5 Summary

In this chapter, we described ANGELINA1, the first in a line of iterations

of the automated game designer ANGELINA. This provided a foundation

for the use of CCE in automated game design, and showed how a basic type

of game – in this case, arcade games – could be broken down into multiple

tasks and then solved individually by the species of a CCE system. We

discussed the design space, which was then extended into a CCE system

composed of three species: Layout, Level Design and Ruleset. We discussed

each species in detail, and showed example games produced by the system.

This helps to show our basic premise: that CCE can be used to automati-

cally design games, albeit with a curation coefficient that gives much room

102



Figure 5.1: An untitled ‘steady-hand’ game designed by ANGELINA1.

Figure 5.2: An untitled ‘Pac-Man-like’ game designed by ANGELINA1.

103



Figure 5.3: Revenge, a partial game design by ANGELINA1.

Figure 5.4: After Squad, a partial game design by ANGELINA1.

104



for improvement. This result propels us into the following chapters in which

we develop the use of CCE to tackle more specific kinds of problem, and

investigate automated game design from different angles, with different en-

gines, in different game genres – all of which we will see in the following

chapter, describing the next iteration of the software.

105



6 Coevolution of Genre-Specific

Features

6.1 Introduction

In this chapter we describe ANGELINA2, the second iteration of AN-

GELINA with a focus on creating Metroidvania-style platformers. The

change in genre necessitates a change in the internal structure of the CCE

system, and allows us to focus on a new question: can a CCE system de-

velop games which exhibit very specific genre features, rather than general

high-level game-like properties. This chapter will give an overview of the

system’s architecture and walk through in detail an example game designed

by the system.

In §6.2 we discuss the shift in genre and review the key identifying features

of Metroidvania games. We extend this into §6.3 in which we discuss the

design space chosen for ANGELINA2, the structure of the games designed,

and also discuss the engine which we use to implement these games in. This

includes important information on the structure of the games that we will

describe later in the chapter.

In §6.4 we step through the different species in ANGELINA2 in order, de-

scribing their composition as CCE species in terms of their structure, how

we generate new populations, how these individuals are evaluated, and how

the most fit individuals are subsequently recombined into new populations.

We describe the Powerup Set species, which develops the powers that un-

derpin the Metroidvania-esque features of the games; we describe the Level

Design species, which generates the levels the player has to explore; and we

describe the Layout species, which places the level start and exit, as well as

the player’s obstacles.

In §6.5 we give details about Space Station Invaders, a game commissioned

by the New Scientist and designed by ANGELINA2. We will show the

106



overall design of the game’s levels, but also go into detail to illustrate subtle

design features that emerge from the interaction between the various CCE

species. Finally, in §6.6 we summarise and conclude the chapter.

6.2 Motivation

In the previous chapter, we described ANGELINA, a basic system capable

of evolving simple arcade-like games using a co-operative co-evolutionary

approach. The games produced by this system are functional but generic.

Indeed, the term ‘arcade game’ is a very loose term itself in videogame

terminology generally, especially when compared to the more specific genre

stereotypes that we described in §2.2.1.

Having established the basic utility of co-operative co-evolution in the

previous chapter, in this chapter we turn to the more specific question of

whether can we use co-operative coevolution to create games which exhibit

specific genre features. We will describe ANGELINA2, a new version of

the software which develops the ideas and basic structure of ANGELINA11,

but refocuses the software on creating a different kind of game with highly

specific design features: Metroidvania games.

We described the history of Metroidvania games and their defining char-

acteristics in §2.2.2. Recall the following from our description:

Metroidvania games typically situate the player within a large

game world, of which only a small percentage is initially acces-

sible to the player... By acquiring items, the player can expand

this accessible area, and find further items.

This is the defining characteristic of Metroidvania games, and it is this

property that we aim to incorporate in the version of ANGELINA which we

describe in this chapter. In doing so, we will demonstrate that co-operative

coevolution can be used to evolve games with very specific gameplay features

or styles, in contrast to the higher-level design tasks of the previous chapter.

ANGELINA2 will also demonstrate how higher levels of detail in the design

space of CCE systems can result in emergent design features. This becomes

a continuing theme throughout the remainder of the work on ANGELINA

we are presenting in this thesis.

107



6.3 Design Space

This version of ANGELINA targets the Flixel game engine1. Flixel was

originally made as a library for ActionScript and Flash by game developer

Adam Saltsman. The engine encapsulated a lot of common concepts for

2D game creation in a simple framework, and targeted Flash, a widespread

platform that made distribution of games very easy. Flixel became a pop-

ular and widespread engine for game creation, and as a result Flixel has

been ported to many programming languages. This version of ANGELINA

produces games using the original ActionScript version of Flixel, while the

co-evolutionary system itself is implemented in Java.

The most common way to represent game levels in Flixel is through

tilemaps which are two-dimensional arrays of integers which Flixel automat-

ically converts into a grid of tiles. A tilemap is parameterised by a number of

variables: drawIndex, collideIndex, tileWidth and tileHeight. When

a tilemap is added to a game, Flixel parses the underlying integer array. If

the array contains a value v at co-ordinates (x, y) and if v > drawIndex

then a tile is added in the game world with the co-ordinates:

(x ∗ tileWidth, y ∗ tileHeight)

When collisions are processed between the tilemap and other objects in the

game world, a tile representing the array co-ordinates (x, y) is considered

solid if:

tilemap[x][y].value > tilemap.collideIndex

We use this feature of Flixel’s tilemaps to make unlockable doors in the

games produced by ANGELINA – the collideIndex is increased to make

tiles with a lower value non-solid.

As with ANGELINA1 described in the previous chapter, one of the species

in the CCE system designs the levels for the games produced by the system.

Previously the levels designed were very small: the games we described in

§5.4 were just twenty tiles in both width and height. By contrast, a medium-

sized game produced by the system we are describing in this chapter is eighty

tiles wide and forty-five tiles high. This poses two problems for the system

1http://www.flixel.org

108



Figure 6.1: Map segments that ANGELINA2 uses to compose larger map
tiles. Left: a border map segment that has exits left, above and
right. Right: a body map segment designed by hand.

if it were to modify maps at the resolution of individual tiles. Firstly, an

efficiency problem, since the state space is now considerably larger than

before. The second problem is an aesthetic one – levels designed at such a

high level of detail don’t look very pleasing to players because the system

does not have any way of assessing the aesthetics of the levels it designs.

As a result, the maps lack the organic feel that game levels often have when

designed by a person.

In order to mitigate this, in ANGELINA2 we implement a level generation

system similar to that used by Spelunky which we detailed in §4.4. In this

approach, a level is built out of tiles that are the size of a game screen.

Spelunky’s application of this technique involved a library of hand-designed

tiles which had been tagged with the directions the player could exit the

tile (those directions being any combination of above, below, left and right).

Rather than use this approach, we instead allow ANGELINA2 to decide on

tile accessibility itself, by composing the tiles itself out of one body tile and

one border tile. Figure 6.1 shows examples of body and border tiles. Body

tiles are a collection of hand-designed tile innards. The one shown in Figure

6.1 is a collection of single-block platforms scattered across the tile. The

border tiles are a set of every permutation of tile edge being blocked off –

Figure 6.1 shows a border tile which blocks the floor off with tiles, while

leaving the others open. There are sixteen border tiles in total, including all

four sides blocked off making the tile inaccessible, and all four sides open.

The levels are populated with enemies, although ANGELINA2 does not

109



simulate or evaluate combat, and as such the enemies are nuisances rather

than true obstacles. The player cannot die, but contact with the enemies

causes the player to be knocked backwards, which is often enough to dis-

rupt the player’s progress through the level by knocking them backwards off

platforms. Simulating gameplay is a major part of the evaluation process

for ANGELINA2, as it is with ANGELINA1, and the simulation of real-time

combat is particularly difficult. It also complicates how reliable the simula-

tions are, since combat can be resolved in many ways and there are many

different ways a player might approach combat situations. This would mean

simulating each playthrough many more times in order to balance effectively.

The simulation of combat and other real-time elements is mentioned in the

evaluation of our approach to ANGELINA in later chapters.

6.4 Coevolutionary Setup

6.4.1 Species - Powerup Design

In ANGELINA1, the main influence ANGELINA had over the game me-

chanics was the ability to define rules which governed collisions between

in-game objects. However, these rules involved the use of a lot of hand-

designed mechanical concepts such as random teleportation or killing. In-

deed, even the structure of rules and the notion of focusing on collisions

could be considered to be elements of static hand-design in the system. In

Chapter 11.3 we discussed the importance of system autonomy in Compu-

tational Creativity, and how the perceived creativity of a system is often

closely linked to how independent it is and how much control it has over

the artefact it is creating. In moving from ANGELINA1 to ANGELINA2,

we aimed to have ANGELINA rely less on game design knowledge from its

programmers.

In ANGELINA2 we change the focus of the system with respect to game

mechanics, from designing abstract game rules to designing smaller powerups

for the player to collect. The main motivation for doing this is to move away

from a mechanics species within ANGELINA which relies on hand-designed

components, as was the case with ANGELINA1, and instead design a species

which can solve a more detailed design problem. This also ties in closely

with the genre focus of ANGELINA2 – Metroidvania games – in which items

are important gates to play progress [133][132].

110



Species Definition

The Powerup Design species creates powerup sets. A powerup set P is a

list of powerup items:

P = {p1, p2, ..., pn}

A powerup is a game object with several important properties: an x and y

co-ordinate defining where the object is placed in the world, a variableTarget

and a variableChange. The latter two properties relate to how the powerup

changes the game when the player collects it. The variableTarget prop-

erty is selected from a list of hand-chosen game variables which already exist

in-code. These are:

• Player.jumpHeight - the height in pixels the player is lifted up when

the jump button is pressed.

• Player.gravity - the downward force applied to the player when they

are in the air.

• Game.collisionIndex - the tileset value that determines which tiles

are solid. Used for simulating locked doors.

The variableChange is a value which is applied to the variableTarget

when the powerup is collected. For example, a powerup with a variableTarget

of jumpHeight and a variableChange of 200 has the following method code

for being collected.

public void collectPowerup(){

player.jumpHeight = 200;

}

When generating a variableChange value for a new powerup, the value

is randomly selected in a certain range, and that range is dependent on

the variable being generated. For gravity and jumpHeight, the range is

between 0 and 500. The variables can’t take negative values in this version

of ANGELINA, so the lower limit is sensible. For the upper limit, values

higher than 500 have very little differential between them in terms of their

effect on the game.

111



Generation

The Powerup Design species generates a random number of powerups, be-

tween a minimum and maximum limit set by the designer. For the exam-

ples given in this chapter, we set the limits to ensure there is at least two

powerups (so that the system can assess progression and alternate order-

ings for collecting the powerups) and at most four, since for values larger

than this it is hard for the system to continue designing levels that con-

tinuously expand in accessibility. For each powerup, a random variable is

chosen from the list above, and assigned to the powerup’s variableTarget

property. The variableChange property is then randomly set conditional

on the variable’s type - the jumpHeight and gravity variables have a much

wider range (between 0 and 500 in the examples given in this chapter) while

the collisionIndex can only be between 0 and 4 because there are only a

few tiles indices in the game. Finally, a random position in the game map

is chosen for the powerup to spawn at.

Fitness Criteria

The acquisition of powerups is an important part of a Metroidvania game,

as we discussed earlier in this chapter. A powerup set is evaluated by

calculating all possible routes through the game. We define a route as an

ordered sequence of powerups which the player can collect in a path from

the start to the exit. A game may have multiple routes if powerups can be

collected in different orders and still reach the exit, although this happens

rarely in games made by ANGELINA2 because the levels are relatively small

and the number of powerup types is limited.

The fitness is calculated for a powerup set based primarily on the cumu-

lative distance between each powerup across all routes, calculated using A*

adapted for side-on platformers (taking into account jump height, gravity

and such). The fitness is also reduced based on factors like inaccessible

powerups and poor distribution across routes (such as having all powerups

accessible from the start of the game). We aim to maximise the travel time

between powerups and major game landmarks (the start, or the exit). As

such, for each stage in the route we calculate its fitness as a ratio of the

distance to the next stage to the length of the map’s diagonal. The length

of the map’s diagonal is not the maximum distance two route stages could

112



possibly be apart, but it represents a good distance without forcing the co-

evolutionary system to overfit the placement of powerups and exits so that

they all appear in the extreme limits of the levels.

For a powerup set P , and a set R of routes describing the possible different

orders in which powerups can be collected, define dist(r, i, j) as the distance

between the ith and jth powerup in the route r ∈ R. Let δ represent the

distance between the top-left and bottom-right corners of the map. The

distance-based component of a powerup’s set fitness is calculated as follows:

first, for each route r ∈ R, calculate the route’s individual fitness, f(r):

f(r) =

∑|r|−1
i=0 1− (dist(r, i, i+ 1)− δ)

|r|

Average out this for every route possible for the powerup set being evalu-

ated. ∑
r∈R

f(r)

|R|

This gives an average fitness for the routes possible with the current powerup

set, indicating average distribution across the map and how good the differ-

ent ways of exploring and completing the level are. There are also several

penalties that can be applied to a powerup set: if the same powerup is

included twice, for example, or if a powerup reduces the accessibility, then

the fitness is discounted by a fraction. If any powerups are completely

inaccessible or not part of any route, the fitness is also reduced.

Crossover and Mutation

When two powerup sets are crossed over to produce a child, one-point

crossover is used on the array of powerups, as described in §3.2.3. Mu-

tation is applied at the level of individual powerups within the powerup set,

and randomly selects one of the variables within the powerup and changes

it. If the variableTarget of the powerup changes, the mutation opera-

tor also randomly changes the variableChange value in case the type is

no longer compatible with the variable change (for example, setting the

collisionIndex to 300). The mutation rate for this is 5%. Another mu-

tation operator is applied to powerup sets with the same likelihood - this

operator has a chance to remove, replace or add powerups to a powerup set,

113



as long as the total number of powerups remains within the bounds set for

the system which we described above - between 2 and 4, for the experiments

reported in this chapter.

6.4.2 Species - Level Design

In §6.3 we described the notion of a tilemap, how it is implemented in Flixel

as a two-dimensional array of integers, and how we use this in ANGELINA2

to design levels using screen-sized map templates. This allows ANGELINA2

flexibility in the kinds of level it can design, while retaining an ordered, or-

ganised appearance in the level designs, because the individual components

have been designed by hand.

Species Definition

The Level Design species creates levels. A level L is a two-dimensional array

of integer pairs:

L = [(body1, border1), ..., (bodyn, borderm)]

A pair (p, q) at L[x, y] denotes a tile at screen co-ordinates (x×screenWidth,

y × screenHeight) which is composed of the body tile of index p and the

border tile of index q superimposed on one another, as per the description

in §6.3. This two-dimensional array of body and border indices represents

the genotype, since it has to be expanded by looking up the tile templates in

a database and copying them into the game’s tilemap before the level can

actually be played - this final tilemap being the phenotype form of the level

design.

Generation

Level designs are generated by randomly initialising the two-dimensional

array at a fixed height and width, with randomly-initialised pairs such that

the integers in the pairs are within the bounds of the tile database. The

array must be the same height and width for all members of the population,

because the nature of co-operative coevolution relies on being able to syn-

thesise a full game design using any members of each species. This means

that if two maps have different dimensions, combining them with the same

114



powerup sets may result in some powerups being outside of the game world

for some levels, but inside them for others. While we might expect an evo-

lutionary system to be able to solve this problem over time and co-evolve

solutions which have the same dimensions, it was not deemed to be an in-

teresting design problem to solve since it offers little impact on the kinds of

levels designed, and so we avoid unnecessary additional computing overhead

by setting the dimensions of the game level in advance of evolution.

Fitness Criteria

As we have already stated earlier in this chapter, a key feature of Metroid-

vania games is a slow growth in the size of the space the player can access in

the game world. The player should initially have access to a small portion of

the world, and then as subsequent powerups are collected the player should

be able to access new areas.

Similar to how the fitness of a powerup set is calculated, ANGELINA2

calculates all possible routes through the game in terms of the order in which

powerups are collected. At each stage of a route, ANGELINA2 recalculates

what fraction of the game world is now accessible to the player. The first

stage of the route is the beginning of the level, and new stages begin after

the collection of each powerup. For a level design L, there is a set R of routes

from start to finish, where max(R) is the fraction of the level accessible after

the exit has been reached, and min(R) is the fraction of the level accessible

before any powerups are collected. The fitness of L is defined as:∑
r∈R

max(r)−min(r)

|R|

That is, the difference between the maximally reachable fraction and the

initially reachable fraction, averaged out across all possible routes. This is

designed to encourage smaller initial fractions, and also penalises game de-

signs which have multiple routes which contain uninteresting possible routes

through the game, even if the other possible routes encourage exploration.

That is, it encourages a consistency in the degree to which exploration is

part of the gameplay, rather than having some routes which rely on explo-

ration, and others which shortcut it.

115



Crossover and Mutation

When two level designs are crossed over to produce a child, we employ

a technique we term parent-weighted crossover which randomly selects a

parent to be the dominant influence in the makeup of the child level design.

For two parents p, q, where p is the dominant parent, the contents of the

level design array in the child pq at indices (i, j) is:

pq[i, j] =

p[i, j] if rand() < limdom

q[i, j] otherwise

Where limdom ∈ [1, 0] defines the probability that the child will inherit

from the dominant parent. For the experiments outlined in this chapter,

we use limdom = 0.75. The high value and emphasis on a single parent

means that children only gradually change with each generation, which is

important in this case because of the structure of the phenotype. Single-

point crossover can work (reading from top-right to bottom-left as a single-

dimension array) but has the potential to lose contiguous segments of game

space. This approach produced better results in pilot experiments, where

largely finished game designs were tweaked with information from other

designs, rather than being spliced wholesale.

Mutation randomly selects a tile in the level design and replaces it with

a randomly-generated tile. The mutation rate is 10%.

6.4.3 Species - Layout

As described in chapter 5, ANGELINA1 contained a species which laid

out the game’s active entities and key objects like the player. This was

separate to the solid geometry of the level, as there are many different

configurations a single level can take, given the same ruleset but a different

layout. ANGELINA2 has a similar species working on the same principle.

We describe it in brief here for two reasons: its structure is largely similar

to that of ANGELINA1; and its role in the game is less important in this

version of ANGELINA.

116



6.4.4 Species Definition

The Layout species creates layout objects containing a two-dimensional ar-

ray of enemy starting co-ordinates, as well as the co-ordinates for the start

and end of the game (that is, the player start, and the exit location respec-

tively).

6.4.5 Generation

Layouts are generated by randomly initialising the co-ordinates for all ele-

ments in the layout, within the range set by the map width and height.

6.4.6 Fitness Criteria

The location of the start and exit have a large impact on the evaluation

criteria of both the level design and powerup set design species, and so play

a large role throughout the CCE system. In terms of their own fitness, we

calculate fitness as a composite of several factors, for a layout L represented

a single-dimension array of co-ordinates where the last two entries in the

array are the start and exit co-ordinates. First we calculate Lv, the pro-

portion of placement co-ordinates (for both the enemies and the start/exit)

which are valid: that is, not overlapping with solid space.

Lv(m) =

∑
l∈L

valid(l,m)

|L|

Where m is the map, or the phenotype of the level design, currently under

consideration, and valid(l,m) = 1 if the co-ordinates of point l are empty

space in the map m, and 0 otherwise. We also calculate Ld, which reflects

the degree to which enemies are evenly distributed across the map. Define

maxe as the number of enemies in the most-populated tile, and mine as the

number of enemies in the least-populated tile. We calculate Ld thus:

Ld = 1− (max−min)

This parameter is designed to discourage clustering in certain tiles and to

evenly spread enemy placements throughout the level. Note that the density

calculations do not take into account the placement of the player start or

the exit, as we are only interested in the even spread of enemies specifically.

117



Figure 6.2: A screenshot from Space Station Invaders, a game commissioned
by The New Scientist in 2012.

Crossover and Mutation

In order to perform crossover, one-point crossover is performed on the array

of enemy co-ordinates, and then the start and exit co-ordinates are ran-

domly assigned to the child layout from either of the two parents based on

a separate random check. Mutation randomly removes, or replaces an en-

emy co-ordinate, or adds a new one, up to a maximum limit of enemies. It

can also randomly generate a new start or exit co-ordinate. The mutation

rate is 10%.

6.5 Example - Space Station Invaders

In early 2012 ANGELINA was commissioned by the popular science maga-

zine The New Scientist to design a game for them [5]. We used the latest

version of ANGELINA2 at the time to create a science-themed Metroidva-

nia game (although the theme and visuals of the game were supplied by the

author). Figure 6.2 shows a screenshot from this game.

The game is composed of three levels that were generated separately and

compiled into a single game. The game levels in all cases are four screens

118



Figure 6.3: A compiled image showing the entirety of Level 1 from Space
Station Invaders. Red areas are impassable blockades that can
only be removed by finding a key.

Figure 6.4: A compiled image showing the entirety of Level 3 from Space
Station Invaders.

119



Figure 6.5: An annotated version of Figure 6.4 showing accessibility regions
for the first two stages. The red region, labelled A, is the initially
accessible region. The blue region, labelled B, is accessible after
the first powerup is collected.

wide and three screens high. Figure 6.3 shows a compiled view of the first

level for a better idea of the size of the game.

The levels generated for this game have familiar features that are com-

monly seen in games generated by this version of ANGELINA - the player

starts near the bottom of the map and initially finds jump powerups which

makes reaching the top of the level easier. The later powerups are typically

lock powerups which force the player to backtrack to find locked sections

that were passed earlier in the level.

Space Station Invaders has some levels which demonstrate interesting

properties of the co-evolutionary approach we took. Figure 6.5 shows an

annotated version of the level shown in Figure 6.4. The region marked A

is the area the player can initially access without any powerups. There is

only one powerup in this region: a jump height modifier which increases the

player jump height from 100 to 184.

Collecting this powerup increases the part of the map that is accessible,

now that the player can reach higher platforms. Now the accessible region

is the area A∪B on the annotated map. The value 184 may seem somewhat

arbitrary to the reader: why not 174, or 194, as long as it is high enough to

reach higher platforms? Figure 6.6 shows a zoomed in region of the lower

120



part of the map. The player is standing at the highest point on the lower

part of the level (region A in Figure 6.5). The red line in the image shows

how high the player can jump with a jump height of 184 from this position.

It is just lower than the upper-level platforms.

The preciseness of this value emerged through co-operation between the

level designer and the powerup designer. If different tiles were placed in the

level, it might be possible to gain more height and jump up to the higher

platforms. If the powerup gave any more jump height, it might be possible

for the player to bypass part of the level and leap to the next layer. Instead,

the player must find a second powerup (in the region marked B in Figure

6.5) to lower gravity enough to reach the upper levels.

This is not only a nice illustration of co-operative coevolution - it also

shows the power of giving ANGELINA more precision in designing its

powerups. We could imagine supplying ANGELINA2 with specific values

for each powerup, and only allowing it to select the type of powerup for a

given level design. But by allowing free variation in the powerup’s associ-

ated parameter, we give ANGELINA2 the ability to explore a larger state

space, and in turn find more interesting co-operations between the powerups

and other species, in this case the level design.

6.6 Summary

In this chapter we described ANGELINA2, the second iteration of the AN-

GELINA system which creates simple Metroidvania-style games using a

new CCE system. We began by motivating the work, describing the basic

features of a Metroidvania game. The objective with ANGELINA2 was to

show that CCE would be able to produce games which demonstrated these

key defining features. We described the system’s design space, introduc-

ing Flixel as a game library and describing our approach to constructing

2D levels through a series of overlaid tiles. We introduced three new CCE

species which make up ANGELINA2: Powerup Set Design, Level Design

and Layout Design. Each of these were described in terms of their structure

as an evolutionary system. Then, to conclude, we looked at a large game

created by ANGELINA2 and saw how the flexibility and modularity of CCE

allowed interesting properties to emerge in the resulting games.

121



Figure 6.6: A smaller section of the level in Figure 6.4. The red line shows
the maximum possible jump height with the first powerup from
the player’s current position. It is slightly too short to reach the
next layer of platforms.

122



7 Creative Art Direction in

Coevolutionary Game Design

7.1 Introduction

In this chapter we introduce ANGELINA3 which builds upon the AN-

GELINA2 system that we described in the previous chapter. It marks the

beginning of ANGELINA’s ability to make games about a real-world topic.

It does this in two ways: by adding a new predesign phase to the game

design process, in which ANGELINA3 prepares a theme and gathers me-

dia to use in the game; and by adding a new species to the CCE process

which organises the media within the game. We focus on the transition

from ANGELINA2 to ANGELINA3 in this chapter.

In section 7.2 we discuss the reasoning behind the additions made in AN-

GELINA3, particularly from a computational creativity perspective. This

leads us into section 7.3 in which we give more specific details about how

this motivation affects the space that ANGELINA3 works in.

In section 7.4 we describe the two major changes in ANGELINA3: the

introduction of a predesign phase and the addition of a new species to

the CCE system. The predesign phase selects a newspaper article to base

the game on, scours the Internet for various kinds of media and additional

metainformation from social media, and then collects this ready for the CCE

system to take over. We describe all of these processes in turn, and then

go through the Media Arrangement species which takes a lot of the output

of the predesign phase and evolves appropriate placements for it within the

game space.

Finally, in section 7.5 we give three examples of games made by AN-

GELINA3, exhibiting both the variety of the system’s output as well as

several important features such as the ability to bias the representations of

people in the games; the difficulties in dealing with sensitive subject mat-

123



ter; and how different elements of the newspaper article can contribute to

different kinds of media being retrieved. Finally, we summarise the chapter

and look forward to the following sections of the thesis.

7.2 Motivation

In chapter 4.6 we introduced several concepts integral to building creative

software. One of these concepts was handing over responsibility to software

as it is developed further. This process often involves carefully considering

the division of labour between designer and software in a computationally

creative program, and identifying areas that can be given over to the soft-

ware.

In a lot of practical applications as well as research into generating content

for videogames or boardgames the focus is on generating abstract content,

for example rulesets or arrays of data describing the layout of game levels.

Such content is often generated without knowledge of the context it is being

placed in – a level generator for a game about war typically generates levels

in much the same way as it might if the game were about romance or politics.

ANGELINA1 created games which were highly abstract in nature, using

primitive shapes and interactions to describe the game with. ANGELINA2

created many games with visual themes and context, but this was all sourced

from its designers rather than from ANGELINA2 itself.

This state motivated us, in designing ANGELINA3, to build a system

that was able to take on the responsibility of sound and visual design for

parts of its games. We drew further inspiration from work by Krzeczkowska

et al. in [76], in which art software generated collages of images based on

news articles drawn from the web pages of British newspaper The Guardian
1. The websites of newspapers serve as useful sources of data for creative

systems for a number of reasons. The data is ever-changing, making it

both a challenge from a research perspective, since it is less predictable, but

also making the results more surprising, potentially raising the likelihood

of serendipitous output as well. In addition, newspapers offer data which is

high quality and well-organised. Data on the Guardian news pages is tagged

and sorted according to the topics involved in the news story, and the text

can be relied on to be well-formed, varied in vocabulary, and largely correct

1http://www.guardian.com

124



in terms of grammar and spelling.

As we will see in this chapter, the results of interacting with real-world

data and embedding them into the games vastly increases the variety of the

system’s output, as well as making them more valuable as cultural arte-

facts, which is important for ANGELINA’s acceptance as a game designer

in the wider world. The motivation to have ANGELINA draw on and use

real-world knowledge pays into later work with ANGELINA5 also, a philo-

sophical successor of sorts to the work done in this chapter.

7.3 Design Space

The primary addition to the design space in ANGELINA3 in terms of the

structure of the game is the addition of several new kinds of level object

which act as a means of presenting sounds and images to the player. Two

kinds of objects, image triggers and sound triggers, are new parts of the

space ANGELINA3 explores when designing a game. An image trigger has

two components. The first is a rectangle defined by a 4-tuple < x, y, w, h >

where the first two parameters describe the co-ordinates of the top-left cor-

ner of the rectangle and the latter two describe the width and height re-

spectively. The second component of an image trigger is a filepath which

references an image to be displayed in the game.

The image is added to the game, stretched to meet the shape of the

rectangle defining it. Its alpha value is set to zero, meaning the image is

invisible at first. When the player sprite overlaps with the trigger rectangle

for the first time, the alpha value is interpolated to the maximum value over

a few seconds, fading the image into visibility.

Sound triggers act similarly to image triggers but have fewer parameters:

a 3-tuple < x, y, r > where r is the radius of a circle in pixels, and a filepath

pointing to the target sound file. The game triggers the sound effect the

first time the player comes within r pixels of the origin point (x, y). The

sound effect only plays once.

Games now come with a set of image and sound triggers which are added

to the game at runtime and triggered by the player as they play. There are

also additional parameters which are not evolved by the system and instead

are set during a predesign phase, which we explain in a following section.

These parameters are:

125



• A background image, which is displayed at all times behind the level,

slightly moving according to a weak parallax-like effect.

• A music file which plays looping in the background of the game.

• The game’s title, which is displayed at the start of the game.

7.4 Coevolutionary Setup

7.4.1 Phase - Predesign

In previous versions of ANGELINA, the software was entirely defined as a

CCE system. The start and endpoint of an execution of ANGELINA1 or

ANGELINA2 was the beginning and end of the evolutionary process respec-

tively. ANGELINA3’s design necessitates a new structure which allows for

preprocessing in which data can be gathered, filtered and added to the CCE

process before it runs. In the case of ANGELINA3, this predesign phase is

responsible for selecting a Guardian news story to focus on, analysing the

news story, and then gathering media to parameterise the CCE system that

runs in the main execution phase. In this section we describe this predesign

process and the systems at work.

The predesign begins by selecting a newspaper article from the website

of The Guardian. It does this by downloading the current headlines at the

time of execution, and ranking them according to several criteria. These

are:

Story novelty ANGELINA3 records the headlines of any story it has

read before, and ranks new stories higher than old ones. This is to avoid

repetition in the output of the system.

Tag novelty Each news story has tags attached which define the story’s

topics or theme. ANGELINA3 keeps a record of seen tags. If it encounters

a new tag, it ranks the related story more highly.

Person novelty ANGELINA3 also records any people it detects in news

stories it has read. We describe how it does this below. If it detects that

a news story includes someone it has not encountered before, it ranks the

126



story more highly. This is to encourage attention on emerging stories or

new characters in the narrative of the news.

Opinion shift ANGELINA3 uses Twitter to gauge public opinion on peo-

ple it detects in news articles. We describe this process below. If it detects a

large shift in public opinion about a person featured in a news story it ranks

a story more highly. This gives ANGELINA3 multiple points of influence

(both the news story, and social media) and helps it react to important or

controversial events.

The ordering above is least important to most. That is, ANGELINA3

will prioritise stories which include a shift in opinion about someone it has

a record of. If there are none of this type, it will look for new people, then

new tags, and then simply stories it hasn’t read. If it finds no such stories,

it will randomly select a headline. Ties are broken randomly, so that if two

stories contain opinion shifts about a person, ANGELINA chooses one of

them with equal probability.

We mentioned two key abilities in the above list: person detection, and

public opinion mining. ANGELINA3 assesses if a named person in a news

article is prominent or not by searching Wikipedia and checking if a page

exists about a person with the same name who is currently alive. We found

this approach to be effective in determining whether a name referred to

someone currently in the public eye or relevant to a news story. When

it detects a person it hasn’t seen before, it makes an entry in a database

file, along with a new value for the current public opinion of the person.

ANGELINA3 can similarly use Wikipedia to identify countries, using a list

of sovereign states.

Public opinion is assessed by querying social media, such as Twitter, for

completions of the phrase “< name > is...”, based on a technique proposed

in [130] which Veale term milking Google. The words following the phrase

are looked up in the AFINN sentiment word list [93], which ranks a list of

common words with a sentiment rating in {−5, ..., 5}, where -5 expresses

an extremely negative sentiment, and 5 an extremely positive one. AN-

GELINA3 averages out the sentiment rating of the tweets returning from

its search query, and adds this to a running average of opinion that is up-

dated each time the person is encountered in the news.

127



Figure 7.1: Three results from an example augmented image search of UK
Prime Minister David Cameron, to show the variation in out-
come. Left, happy. Center, no augmentation. Right, angry.

Once a story has been selected as the topic for a game, the headline,

subhead, body text and tags are downloaded to be used as starting points

for the next stage of predesign. ANGELINA3 then looks for visual and

aural media it can use inside the game. For each tag, and for each person

or country identified in the article, ANGELINA3 can perform searches to

extract images from both Google Images and Flickr. The latter is used

specifically for images related to countries, which act as backdrops to the

games. For people, the searches are augmented with emotionally-loaded

keywords as described in [31] according to the public perception of the

person recorded in ANGELINA3’s database. An example of the results of

such augmentation is shown in figure 7.1. A tag may be selected to be a

focused tag if it meets certain criteria – if a tag is mentioned in the headline

or if it is mentioned in the article more than ten times. In this case, the

image search will find additional images for this tag, and it will also impact

the generated commentary (see below).

Other searches use the article tags unchanged as search terms. The re-

sults, along with any pictures of people, form the image set that is part of

the output of the planning phase. These images are later selected at ran-

dom to be placed in the final game using the new species in ANGELINA3’s

CCE system, described below. ANGELINA3 also creates a sound set by

searching sound effect and recording libraries using tags from the article, on

128



the website FreeSound2. This results in a wide variety of recordings, from

spoken word to singing, from ambient environmental noise to staged sound

effects. Specific selections are made by sorting according to different metrics

provided by the site’s search engine: in this case we sort by the number of

times a sound effect has been downloaded and prioritise the highest first,

but we also avoid sound clips that are longer than one minute in length.

This is partly to reduce the file size, but also because shorter sound effects

tend to be more focused and expressive, which is useful because the player

will likely only experience them briefly as they move through the level. The

metric used for a particular execution is selected randomly by ANGELINA3

from the site’s list.

To complete the audio set, ANGELINA3 downloads a piece of music from

the website of Kevin Macleod3. Macleod organises his music according to

many criteria, including mood. ANGELINA3 performs a sentiment analysis

on the body text of the sourced Guardian article, using the AFINN database

of word sentiments [93] to assess individual words used, and to gain an

average sentiment for the article. Using this analysis, the system can select

an appropriate piece of music for the game by selecting either a randomly-

selected positive mood (such as bouncy or bright) if the average valence is

positive, or a randomly-selected negative mood (such as dark or unnerving)

if the average valence is negative.

Finally, ANGELINA3 generates a title for the game. This is done us-

ing two sources of information: first, several corpora of pop culture ref-

erences were assembled for ANGELINA3 to search through: the Internet

Movie Database Top 250 Films4, the Guardian Newspaper’s 1000 Best Al-

bums Ever5, several Top 100 games lists from major websites6, and a list

of proverbs and sayings7. This was combined with code written to ac-

cess the online rhyming dictionaries RhymeZone8 and WikiRhymer9. Tags,

countries and the surnames of people detected in news articles are selected

randomly and fed through the rhyming dictionaries. The resulting rhymes,

2http://www.freesound.org
3http://www.incompetech.org
4http://www.imdb.com/chart/top
5http://music.guardian.co.uk/1000albums
6Such as http://www.gamesradar.com/best-games-ever/
7http://www.phrases.org.uk/meanings/proverbs.html
8http://www.rhymezone.com/
9http://wikirhymer.com/

129



I was reading the Guardian website today when I came across a story titled
‘Obama to urge Afghan president Karzai to push for Taliban settlement’.
It interested me because I’d read the other articles that day, and I prefer
reading new things for inspiration. I looked for images of United States
landscape for the background because it was mentioned in the article. I
also wanted to include some of the important people from the article. For
example, I looked for photographs of Barack Obama. I searched for happy
photos of the person because I like them. I also focused on Afghanistan
because it was mentioned in the article a lot.

Figure 7.2: An excerpt from the commentary for the game Hot NATO

if any exist, are then matched against results in the pop culture corpus. If

any results are found, the rhyming word in the result is swapped out with

the tag, surname or country originally used in the search. This creates a

pun-like effect where a pop culture reference is related some way to the arti-

cle. Examples of titles are given later in this chapter in the example games

section.

Commentary Generation

In chapter 4.6 we discussed many different ways in which a piece of software

can demonstrate creative behaviour and increase the likelihood that others

perceive it to be creative. One important part of this is demonstrating an

understanding of the context in which its work exists, and being accountable

for the decisions it makes when acting creatively. A common way to do this

is to provide framing information with the created artefact.

Following on from work on computational poetry in [27], ANGELINA3

records key decisions made during the creation of each game, and creates a

‘commentary’ which frames part of the creative process. A template is used

as the basis for each commentary, with key segments replaced with prepared

text depending on the types of decision made, and key data from the news

story (such as the names of relevant people). An excerpt from a sample

commentary is shown in figure 7.2. The accompanying game is described in

more detail below in the subsection ‘Sample Games’.

The decisions recorded for the final commentary are as follows:

• The reason for selecting the news article initially (i.e. which metric

was used to decide it).

130



I was reading the Guardian website today when I came across a story ti-
tled HEADLINE. It interested me because ARTICLE-JUSTIFICATION. I
decided to make a videogame themed around the story.
I went online to look for resources I could use in my game. I looked for im-
ages of COUNTRY landscape for the background because BACKGROUND-
CHOICE-JUSTIFICATION. I also wanted to include some of the impor-
tant people from the article. For example, I looked for photographs of
PERSON-OF-INTEREST. I also focused on FOCUS-TAG because FOCUS-
TAG-JUSTIFICATION.
I wanted some appropriate music for the game, but I’m not very good at
choosing music (I think most of it sounds the same!). However, I made sure
to choose something MUSICAL-VALENCE because the story had that feel
to it. My thanks to Kevin for allowing me to use his music - you should
take a look yourself at www.incompetech.com.
I designed the rest of the game as I would normally. Soon I’d like to ex-
periment with capturing more of the story in the game design itself. For
instance, one sentence in the article said that ‘QUOTE’. It would be great if
I could convey important details from the article in the gameplay, not just
the illustrations.
If you play my game, I would really like to hear what you think of it. Email
me a short (100 words max) review to angelina@gamesbyangelina.org. One
day in the future I hope to use reviews to learn how to become a better
designer, so I need lots to practice my reading on!

Figure 7.3: The template commentary filled in by the system. Some of these
phrases are conditionally dependent on the game, and so do not
always appear.

131



• The reason for choosing the background image (i.e. whether it was

related to a person, or a country being mentioned).

• If at least one person is mentioned in the article, the reason why photos

of the person are happy or sad.

• The reason for focusing on a tag (if applicable).

• The reason for choosing the piece of music (i.e. whether the article’s

mood was positive or negative).

7.4.2 Species - Media Arrangement

As we have described already in this chapter, ANGELINA3 goes through

an extensive phase of analysis and media acquisition prior to designing its

games. When it has collected all of the media it needs to complete a design,

it begins evolving the layout, levels and powerups in much the same way

as ANGELINA2, described in the previous chapter. Unlike ANGELINA2,

however, ANGELINA3 features an additional species for laying out some of

the media collected in the predesign phase.

Species Definition

The Media Arrangement species creates arrangements. An arrangement A

is defined as two lists of objects, one of image triggers, and one of sound

triggers, described earlier in the section Design Space.

Generation

Arrangement generation is parameterised by an asset manager object which

contains references to all the images and sound effects downloaded during

the predesign phase. For each sound and picture, a trigger is generated and

added to the arrangement object. For images, the (x, y) origin is randomly

generated within the boundaries of the map, and the width and height

of the image are then randomly generated within a pre-defined minimum

and maximum pixel length. In the case of the example games shown in this

chapter, the minimum is 32 pixels and the maximum is 118. These numbers

are chosen through experimentation - any smaller than 32 and the image

is too small to make out, any larger and it is extremely difficult to find

132



an optimal placement for and therefore pointless trying to generate. The

aspect ratio of the image is always kept the same: to generate the height of

an image, we first randomly generate the width and then multiply by the

appropriate scale factor to ensure we are not skewing the image in any way.

For sound effects there is a similar minimum and maximum range, 20 and

100 pixels respectively. These were chosen as sensible limits to stop sound

effects being triggered prematurely or being too hard to trigger, since there

is no visual indicator to help the player discover them.

Fitness Criteria

For each image placement, we calculate its fitness as the percentage of the

image that is in accessible empty space. This means that fitness is reduced

for any part of the image that is covered by solid tiles, or is in inaccessible

regions of the level, or is entirely off the edge of the screen. We round the

dimensions of the image rectangle up or down to the nearest tile border,

which are multiples of eight, and then calculate which tiles match any of

these negative criteria, such as being covered by tiles. Call this calculation

inacc(image) for an image trigger image.

The fitness of an image set, IS, in which the ith image ISi is wi tiles wide

and hi tiles high is calculated as follows:∑|IS|
i=0 inacc(ISi)/(wi × hi)

|IS|

The process for evaluating sound placement is less precise since we are pri-

marily concerned with whether or not the sound can be triggered; whether

the trigger space is partially obscured is less important as there is no visual

content that can be blocked. The fitness of a set of sound triggers, SS,

is simply the proportion of the set whose trigger circle overlaps with the

accessible part of the level.

If we define SSf as the fitness of the sound trigger set and ISf as the

fitness of the image trigger set, the overall fitness is calculated as a weighted

average of the two based on the size of the respective sets, thus:

(SSf × |SS|) + (ISf × |IS|)
|SS|+ |IS|

133



Crossover and Mutation

The Media Arrangement species uses one-point crossover to recombine two

arrangements into one child. It does this by concatenating the sound and

image trigger sets together, and then picking a single point for crossover

within that larger set. This process involves two random choices: first,

it randomly chooses which parent is selected from first; then it randomly

selected whether to append the sound set to the end of the image set, or vice

versa. The child inherits placements from the first parent until a randomly-

selected point in the set is reached, after which point the child inherits from

the second parent instead.

Mutation randomly selects a property from a randomly-selected trigger

object (either sound or image) and then regenerates a value for that prop-

erty. It doesn’t affect filepaths, meaning that it will only affect the origin

co-ordinates x or y, or the dimensions, width and height for image triggers

and radius for sound triggers.

7.5 Sample Games

7.5.1 The Conservation Of Emily

The Conservation of Emily was developed on the 10th May 2012, based on a

news article titled Lord Mandelson confirms he is advising company accused

of illegal logging. The news article discussed Mandelson’s involvement with a

company who had cut down protected rainforests in Indonesia. The game’s

title is a pun on a 1964 film called The Americanization Of Emily, with the

word Conservation swapped in because it was one of the tags associated

with the news story.

Screenshots from the game are shown in Figure 7.5. Four images were

retrieved for use as in-game illustrations, which are shown in Figure 7.4.

Clockwise from top-left, the photos are: Peter Mandelson, the subject of

the news story, retrieved from an image search for his name; a collage of

animals with the words ‘help us’ written on it, retrieved from a search for

the story tag endangered species; a photo of a puppy and a kitten, retrieved

from a search for the story tag animals; and a photo of two people rappelling

down a skyscraper hanging a poster which says ‘Oil fuels war’, retrieved from

a search for the story tag Greenpeace.

134



Figure 7.4: Images used in The Conservation of Emily

There is only one sound effect in the game - the sound of a man screaming.

The music is a fairly dark and slow music track. The game can be played

online at

http://www.gamesbyangelina.org/aiide/emily

7.5.2 Hot NATO

Hot NATO was developed on the 20th May 2012, based on a news article

titled Obama to urge Afghan president Karzai to push for Taliban settle-

ment. The news article reports on discussions between US President Obama

and Afghan Prime Minister Karzai about the withdrawal of American and

NATO troops from Afghanistan and the handover to local forces. The

game’s title is a pun on the slang phrase Hot Potato, with the military force

NATO swapped in, chosen from one of the story’s tags.

Screenshots from the game are shown in Figure 7.7. Eight images were

retrieved for use as in-game illustrations, some of which are shown in Figure

7.6. The top two rows show photographs of people relevant to the news

135



(a) A photo of Peter Mandelson in-game.

(b) A photo of some animals. A scream plays when the player
triggers this image.

Figure 7.5: Screenshots from The Conservation of Emily.

136



Figure 7.6: Some of the images used in Hot NATO

story, in this case Karzai and Obama respectively. Notice how Karzai’s

photographs show him in more aggressive stances, while Obama is smiling

in the photos. This is down to ANGELINA3’s social media analysis which

told it that people disliked Karzai but liked Obama, and then the subsequent

augmented searches to achieve the happy and angry effects. The last row of

images are photographs of Afghanistan, depicting soldiers and helicopters.

There are two sound effects in the game: one is the sound of a very large

machine-gun spinning up and firing several volleys of bullets. The other

sound is a warning siren. The music is another dark and depressing music

track. The game can be played online at

http://www.gamesbyangelina.org/iccc12/hotnato

137



(a) A photo of Hamid Karzai.

(b) A photo of the Afghani countryside.

Figure 7.7: Screenshots from Hot Nato.

138



7.5.3 Sex, Lies and Rape

Sex, Lies and Rape was developed on the 8th May 2012, based on a news

article titled Rochdale gang found guilty of sexually exploiting girls. The

news article discussed the conviction of nine men charged with child abuse

offences in the UK. The game’s title is a slightly distasteful pun on the

1989 film Sex, Lies and Videotape, with the word rape swapped in from the

story’s tags.

Screenshots from the game are shown in Figure 7.9. Four images were

retrieved for use as in-game illustrations, some of which are shown in Figure

7.8. The images represent the themes of family, children and crime quite

appropriately. The fourth image, not shown in the figure but visible in

7.9b, was a Renaissance-era painting depicting the rape of Lucrece. While

partially a result that came about by chance, its inclusion is nonetheless

quite poignant given the game’s topic. Many other, less appropriate, images

might have come out of the image search.

While this game can be challenging to discuss or think about, it is inter-

esting as an example of ANGELINA3’s output, as it shows how the use of

unpredictable source material can lead to the system dealing with scenarios

which we might not normally present to the software in ordinary experi-

mentation. It also raises questions about the interaction between people,

software and culture, such as whether it is appropriate for a piece of soft-

ware to comment or reference such a sensitive event. We discuss issues such

as this further in a later chapter.

This game has just one sound effect: the sound of a woman singing a

children’s lullaby in Greenlandic. The music is dark and tense. The game

can be played online at

http://www.gamesbyangelina.org/aiide/slar

7.6 Summary

In this chapter we introduced ANGELINA3, the first effort to integrate au-

dio/visual content into the design process of ANGELINA. We described the

motivations for the software to take on more responsibility in the creative

process, and outlined how it did this by using data from the Internet, min-

ing media which it then integrated into a design. We described the new

139



Figure 7.8: Some of the images used in Sex, Lies and Rape

140



(a) The text under the child’s photo reads ‘Because Nothing
Matters More’.

(b) A Renaissance painting, Titian’s Rape of Lucrece, by the
level exit.

Figure 7.9: Screenshots from Sex, Lies and Rape.

141



structure of ANGELINA3, using a predesign phase to choose an article for

inspiration, analyse it and then acquire images, sound effects and music

from the web. We then showed how this was used in the CCE process to

create a game. We ended the chapter by giving example games produced

by ANGELINA3, putting them in the context of the article which inspired

them.

In the next chapter we’ll be taking forward the idea of adding creative

responsibility, examining how we achieve this by increasing the depth of

ANGELINA’s work, in contrast to ANGELINA3 which added more breadth

to the process. As we’ll see, both approaches improve ANGELINA as a

designer, in different ways.

142



8 Coevolution and

Reflection-Driven Mechanic

Design

8.1 Introduction

In this chapter we describe ANGELINA4, the fourth iteration of ANGELINA

which was build to design puzzle platformer games, which we introduced

in chapter 2. ANGELINA4 deviates from previous versions in its internal

structure and its major contributions. In previous chapters we described

how ANGELINA was expanded to take on more tasks as a designer, and

in doing so we examined how cooperative coevolution (CCE) allowed these

tasks to interrelate, as well as showing that evolutionary approaches could

work well on many different aspects of the game design task. We describe

here how we have eschewed breadth for depth, and present a system con-

sisting of just two generative subsystems which work at much finer levels of

detail.

In section 9.2, we discuss the motivation for building such a system, and

its relevance as part of ANGELINA’s development as a computationally

creative system. We refer back to earlier discussions of computational cre-

ativity and relate this thinking to the work described later in this chapter.

We complete the background for the chapter in section 8.3 by laying a

technical foundation, discussing the metaprogramming technique reflection

which underpins ANGELINA4, and describing the design space that AN-

GELINA4 searches in terms of its mechanic generation, which sits at the

center of the system’s capabilities.

In section 8.4, we give an overview of the evolutionary system in AN-

GELINA4. We describe the two species comprising the system – the me-

chanic generator, and the level designer – and give a detailed walkthrough of

143



the simulation algorithm that both species use to evaluate their output. Fi-

nally, in section 8.7 we show the results of ANGELINA4, first by describing

A Puzzling Present, an Android and Desktop game developed using levels

and mechanics designed by ANGELINA4, and then by giving a more de-

tailed example of how ANGELINA4 was able to produce results beyond the

scope of what its designers thought possible. We link this back to notions

of creativity in software.

8.2 Motivation

In §4.6 we introduced the area of Computational Creativity, and discussed

ways in which software can be designed to increase perceptions of it being

creative. Recall the definition of Computational Creativity from Colton and

Wiggins we quoted in §4.6:

The philosophy, science and engineering of computational sys-

tems which, by taking on particular responsibilities, exhibit be-

haviours that unbiased observers would deem to be creative. [29]

Taking responsibility for something means many different things for a

piece of software. It can mean that the software is performing more tasks;

it can mean that the software is less constrained in the ways it can undertake

those tasks; it can also mean that the software is in charge of evaluating

how well those tasks were completed. In progressing from ANGELINA1

to ANGELINA2 the tasks the system was in charge of remained somewhat

the same, but the freedom it had in completing those tasks was expanded

to allow it to have fine-grained control over certain elements of the game

design (such as the parameterisation of powerups). In progressing from AN-

GELINA2 to ANGELINA3, we explicitly expanded the task set ANGELINA

is capable of undertaking, in order to hand over the responsibility of visually

theming the game so that the system is in charge of it.

In this chapter, we return to the changes we made between ANGELINA1

and ANGELINA2 with respect to the game’s mechanics. By allowing the

system more specificity in how it designed powerups for the Metroidvania-

like games, we showed in chapter 6 that ANGELINA2 was capable of design-

ing games with interesting emergent properties as a result of co-operation

144



between different species. However, the way in which ANGELINA2’s me-

chanics were designed still relied heavily on designer input, in order to choose

the variables ANGELINA2 could affect, and to set the ranges within which

the system could act.

In this chapter we describe, ANGELINA4, a system developed to re-

duce the influence of external designer input and to examine the benefits

of a system which has more freedom in how and what it chooses to alter

in the game code when designing mechanics. As with ANGELINA2 and

ANGELINA3, ANGELINA4 designs small parts of the game’s mechanics,

allowing the player to alter game variables at runtime to affect the game’s

systems. Unlike previous versions, ANGELINA4 uses metaprogramming

techniques, explained in the next section, to select variables to modify it-

self, and the degree to which to modify them. This expands the design

space explored by ANGELINA from a few hand-picked variables to the

entire codebase of the template platformer game, giving it much greater

freedom.

There are numerous technical challenges that come with taking such an

approach; including how to explore a codebase programmatically; how to

simulate gameplay using mechanics not known a priori ; and, crucially, how

to evaluate game mechanics with no background knowledge about the nature

of the mechanics being generated. We deal with these issues in turn in the

following sections.

8.3 Design Space: Reflective Mechanic Design

8.3.1 Reflection

Reflection is a metaprogramming technique that allows a program to inspect

and modify its own code, or that of another program, at runtime. Many

modern languages support reflection-like behaviour, including Java and C#.

Figure 8.1 shows Java code using reflection to obtain a list of the methods

and fields declared within a particular class. Java’s reflective capabilities

allows for the use of Field and Method objects to retrieve information about

their associated fields and methods at runtime. Fields can have their value

accessed or set, including member fields of objects by passing a particular

object to the Field object, as shown in Figure 8.2.

Metaprogramming techniques can extend much further than this, to method

145



//A sample object of class type ’A’

A anObject = new A();

//A class object representing the class ’A’

Class aClass = anObject.getClass();

//The class object can be queried to get lists

//of declared fields and methods

Field[] fields = aClass.getFields();

Method[] methods = aClass.getMethods();

Figure 8.1: A reflection example showing an object’s Class being obtained
and declared methods and fields being extracted.

//For static fields, the parameter to getValue() can be null

Field staticField = aClass.getField("someStaticField");

staticField.getValue(null);

//For member fields, we pass the object

//that we wish to query the the value of

Field memberField = aClass.getField("someMemberField");

memberField.getValue(anObject);

//We may wish to check for additional metadata about the classes

//such as their visibility level or other field modifiers

//These calls return boolean values

Modifier.isStatic(memberField.getModifiers());

Modifier.isFinal(memberField.getModifiers());

Modifier.isPublic(memberField.getModifiers());

Figure 8.2: A reflection example showing accesses to field objects and other
metadata.

146



invocation, and in some cases the generation of executable code blocks or

the implementation of new classes. ANGELINA4 uses Field access only, so

to understand how it operates for the purposes of our system the examples

in figures 8.1 and 8.2 will suffice.

8.3.2 Mechanic Generation

In this thesis we have discussed the value in handing over responsibility to a

piece of software with regards to how a videogame is designed, and with each

successive version of ANGELINA, we have tried to hand over some kind of

new responsibility to the system. However, this has often necessitated the

use of intermediate representations to abstract the specific details of how a

mechanic is implemented. In ANGELINA1 we had premade code segments

that encapsulated the notion of an object being killed or teleported. In

ANGELINA2 we targeted a small set of hand-selected variables, such as

jumpHeight or gravity and allowed the system to choose which variable it

affected and how it affected them.

ANGELINA2’s generated mechanics were also not very complex in game-

play terms, as they came in the form of powerups which were collected once

and then always active. In other words, once a powerup had been collected

by the player, the change it made to the game was permanent - the player’s

jump height changed forever, and so on. In most action games, including

the Metroidvanias we drew inspiration from for ANGELINA2, at least some

of the player’s verbs are skill-based in some way. Recall the definition of a

player verb from §2.3:

A verb is a special type of game mechanic which is initiated by

a player action.

In §2.3 we described the Ice Beam from Super Metroid, which froze en-

emies into a solid block that could be used as a platform. In order to use

this to traverse the world, the player needs timing and precision to freeze

enemies in the right place.

There is a broader game design philosophy behind our motivation for

generating more complex mechanics too, regarding what makes games in-

teresting to play and interact with. In [94] game developer Jan Willem

Nijman states ‘you must give the player a reason not to push a button’.

147



//Called once every frame

public void update(){

if(FlxG.keys.justPressed("SPACE")){

//A negative velocity temporarily pushes the player up

velocity.y -= 200;

}

}

Figure 8.3: A sample game mechanic. Pressing spacebar causes the player
to jump.

By making all of ANGELINA2’s generated powerups permanent, the player

didn’t have to make any decisions. The powerups never even had negative

consequences, meaning that there was no decision whether or not to collect

them. In a sense, this makes the task of designing these powerups consider-

ably easier, since the system did not have to consider how the player might

use the powerup.

ANGELINA4 tackles both the simplicity of ANGELINA2’s powerups and

the abstracted nature of the work done so far in all versions of ANGELINA.

We do away with abstract representations of game concepts like death or

teleportation, in favour of a direct manipulation of pure game code. AN-

GELINA4 uses Reflection to examine, modify and execute game code at the

same level of detail that a programmer works at.

8.3.3 Toggleable Mechanics

ANGELINA4 generates simple player verbs that are attached to keyboard

buttons, such that when a button is pressed, a mechanic is activated in some

way. A simple verb might make the player jump when a button is pressed.

The code for a jumping verb is shown in figure 8.3, written in Java using the

Flixel game engine. ANGELINA4 uses a similar template to the one shown

in Figure 8.3 to design game mechanics. The major difference is that the

generated mechanics can be toggled on and off, meaning that the player can

switch between two states in order to change things about the game world

and overcome obstacles. For a variable someVariable and some method op

with inverse invop, the template code is shown in Figure 8.4.

That is, pressing the spacebar once causes the variable to be changed in

some way, and then pressing the spacebar again causes that change to be

148



public boolean toggled = false;

public void update(){

if(FlxG.keys.justPressed("SPACE")){

if(toggled){

op(someVariable);

} else{

invop(someVariable);

}

toggled = !toggled;

}

}

Figure 8.4: A template for a verb generated by ANGELINA4.

inverted. As an example, op might add a fixed number to someVariable

if it is of a numeric type, while invop subtracts the same value. This is

not perfectly reversible – if someVariable is changed by other code regions

between two spacebar presses, then the original state will not be reached by

the second press. However, it does offer a two-function verb to the player,

and this simple template can capture many mechanics in use in videogames.

Figure 8.4 shows the basic structure of verbs generated by ANGELINA4.

The following section will outline in detail how reflection is used to generate

these mechanics, and how they fit the structure shown in the figure.

8.4 Coevolutionary Setup

In previous chapters describing the different versions of ANGELINA, we

described the CCE systems in terms of the species, as the system ran as a

tightly-knit set of species which interacted with each other on a regular basis

after each iteration of the underlying evolutionary processes. ANGELINA4

is structured differently, using two evolutionary processes which act sequen-

tially. Typically, the mechanic generator precedes the level design, with the

latter only beginning execution after the mechanic generator has fully com-

pleted evolving a possible mechanic. However, it is also possible to run the

process in reverse, with level design occurring first, followed by mechanic

design. We discuss this later in the chapter.

The motivation behind this change for ANGELINA4 is that the mechanic

149



generation is a complex process that requires quite detailed simulation in

order to evaluate the resulting mechanics, and as a result is sandboxed in

a template level environment in order to provide a consistent way in which

to evaluate the generated mechanics. In past versions of ANGELINA, the

mechanical aspects of the CCE were more akin to tweaking an existing me-

chanic design rather than inventing something new from scratch. Just as the

collection of media content in ANGELINA3 was performed in a predesign

phase, we believe that mechanic design is also suited to a predesign phase,

in order to have the primary idea in place before the main game design is

attempted. We might envision CCE designers then making small balance

changes to the mechanic while the game is being designed, without changing

the fundamental mechanical idea at work.

In ANGELINA4, first the mechanic is designed during a predesign phase.

Then when a mechanic has been found, a series of level designs can be

created that use the mechanic. In this section, we will describe both the

act of designing and evaluating mechanics, and the resulting process of

designing levels for new, unseen mechanics. The result is a system which

can generate novel mechanics and then generate levels for them without

having any heuristics or ideas about how that mechanic might work. The

section that follows will show how ANGELINA4 was subsequently applied

to release a videogame based on its creations.

8.5 Species - Verbs

8.5.1 Species Definition

A Verb’s phenotype is the information required to create a simple toggleable

game mechanic similar to the one shown templated in Figure 8.4. The

phenotype consists of three parts: a Java Field object denoting the target

variable that will be changed; a function that describes a primitive operation

such as addition, or boolean inversion; and in the case that the function

is binary, the phenotype also includes a value which acts as the second

argument to the binary function (such as the value to be added to the

Field if the function is additive).

150



8.5.2 Generation

Operation and Value Selection The set of functions the system can

choose from include all common Java operations for arithmetic and Boolean

types that have an inverse, that is:

• Addition and Subtraction (Binary functions)

• Multiplication and Division (Binary functions)

• Double and Halve (Unary functions)

• Assign (Binary function)

• Invert sign (Unary function)

• Invert boolean (Unary function)

Most of these functions are self-explanatory. Double and Halve are present

in addition to the Multiplication and Division, inspired by a quote from

game designer Sid Meier, who is quoted by his colleague Soren Johnson in

a column in Game Developer magazine:

Double It Or Cut It By Half

...When making gameplay adjustments, developers should aim for

significant changes that will provoke a tangible response.

If a unit seems too weak, don’t lower its cost by 5%; instead, double

its strength. If players feel overwhelmed by too many upgrades, try

removing half of them... [66]

Continuing down the list of operations: assignment specifically sets the

field’s value to a fixed number. The original value is stored and then the

inverse of the function reverts the original value back.

In the case of binary functions, the values passed as parameters to the

operations for the numeric type fields are randomly generated in a fixed

range, similar to how they were generated for ANGELINA2. The range for

all numeric fields is [−500, 500], for the same reasoning as we gave in chapter

6:

151



For the upper limit, values higher than 500 have very little dif-

ferential between them in terms of their effect on the game.

Because we are now using a broader variable selection process that has

access to the entire codebase, we do now allow the selected values to be

negative. However, the upper and lower limits are still in place for the

above reason: that values beyond this range have little effect on any game

element, and they expand the search space significantly for little gain.

Field Selection

Earlier in the chapter we introduced the concept of Reflection, and explained

how it can be used to find representations of fields declared in classes, as

well as getting and setting the current value of that field for a particular

class or object. We use this technique to select a variable to attach to each

Verb.

In order to select a field to target, we first collect all reachable fields from

the game’s codebase. A field F is reachable if there is a chain of references

starting with a static field that ends with a reference to F . We are limited,

in a technical sense, to objects which are referenced as class or instance fields

within the game. Local variables are not able to be referenced by the system,

because they require the code that references them to be inserted into the

same scope, and our analysis of the game codebase is not sophisticated

enough to do this – the generated Verb code is always placed in the same

place in the codebase, in the Player object’s update method.

Once we collate a list of field objects, we randomly select from this list

to generate a verb. If the object is statically referenced, we can create the

Field object straight away, and store it as part of the Verb population

member. The reason for this is that we don’t need to pass anything to the

Field.get() and Field.set() methods (recall Figures 8.1 and 8.2). In

the case of a field which is at some point referenced by an instance field

rather than a static field, we store a reference to the first point in the chain

of references that was non-static. For example, the player’s x co-ordinate

can be found through the following reference chain:

Registry.gamestate.player.x

Registry is a class which we can statically reference to access its gamestate

field. However, the gamestate field is set at runtime, so we can’t access any

152



Figure 8.5: A template level used to evaluate game mechanics in AN-
GELINA4.

further down this reference chain until the game is running. To circum-

vent this, we store a reference to the first non-static field in the chain –

Registry.gamestate – and then store the remainder of the reference chain

as a String which is unpacked at runtime to access the specific instanced

field.

8.5.3 Fitness Criteria

Evaluating the quality of a game mechanic is extremely difficult, and no

standard formal metrics exist – nor are they ever likely to in an objective

sense – that is, in the absence of directly interrogating players to evaluate

mechanics directly or machine learn preferences. The quality of a mechanic

is often intrinsically tied to subjective notions like enjoyment or satisfaction,

which are hard to define in a static fitness function. Mechanics may also be

linked to complex concepts like the conveyance of meaning or a message in

the game. Researchers have also strongly criticised research which attempts

to quantify notions like ‘fun’ for the purposes of fitness functions or similar

[111].

153



To avoid such criticisms ourselves, while still giving ANGELINA4 some

way of measuring the worth of a game mechanic, we focus on the concept

of utility. While there are examples of player verbs in games that serve no

utilitarian purpose (e.g. in Transistor [49] the player can hold a button

to hum a song, for example), on the whole verbs help the player overcome

obstacles, particularly in the genre we are working in with ANGELINA4,

puzzle platformers, which as we discussed in chapter 2 rely on the player

verbs manipulating the world to solve problems. Our metric, therefore, can

be summarised as considering whether the mechanic helps the player do

something they couldn’t do before.

To establish this for a given mechanic, we use the mechanic to try to solve

a previously-unsolvable level. Figure 8.5 shows a small, simple platformer

level. The player controls the Santa sprite, and must reach the present

on the right-hand side. In the example shown, this isn’t possible because

the player can only jump slightly above its own height. ANGELINA4 can

verify that this level is unsolvable by simulating gameplay and attempting

to exhaust gameplay traces, down to a certain level of detail.

8.5.4 Simulation

The simulation process works by exploring a possibility space represented

by different keypresses, doing so in a breadth first fashion, and exploring

a single keypress combination until nothing new is happening in the game

world. Listing 8.6 shows pseudocode for the simulation algorithm, which

we will now step through line by line.

ANGELINA4 maintains a list of game states that are yet to be explored

by the search algorithm. A game state is a representation of the game at

a certain point in time. For efficiency’s sake, this does not encapsulate the

entire game. Instead, we explicitly define what data needs to be stored in a

game state. In ANGELINA4’s case, we need only store information about

the player, but for more complex games we might need to record enemy

data, moving platforms or physics objects, logical states like locked doors

or completed objectives. Anything that might be affected by the game - or

by the generated code - needs to be stored.

Initially, the list of states only contains the starting state of the game.

As long as there are still states remaining, the algorithm will keep running

– if the algorithm runs out of states without the player sprite reaching

154



while(statelist.hasNext()){

nextState = statelist.next();

for(move in moveSet){

game.loadState(nextState);

game.applyMove(move);

}

if(isLegalState(game) and isNewState(game)){

statelist.add(game);

}

if(isTerminalState(game)){

return game.trace();

}

}

Figure 8.6: Pseudocode for ANGELINA4’s simulation algorithm.

the exit, it means the level was unsolvable. For each state in the list of

unexpanded states, the simulation will try every valid move in a previously-

defined move set. A move set is a list of button combinations which are valid

in the game. This is slightly different from simply pressing every button

individually, since this allows combinations of buttons such as pressing jump

while moving. However, it is a smaller list than every permutation of button

presses – pressing left and right simultaneously can never lead to meaningful

progress in the specific template puzzle platformer that ANGELINA4 is

considering.

For every valid move set in this list, the game reloads the current state

being considered, which sets the game’s state to where it was when the

state was originally recorded, setting things like the player position and

velocity. It then applies the selected move set to the game state. To do this,

ANGELINA4 simulates holding down all buttons in the move set, and then

lets the game run. While the game is running in this way, ANGELINA will

periodically take snapshots of the game state at intervals. This interval will

determine how accurate, and how slow, the execution of ANGELINA4 is.

More frequent snapshots will offer a higher-resolution search of the game

space, but generating more of these game states will cause the search space

to expand rapidly, delaying termination.

When a snapshot is taken, ANGELINA4 will consider whether the snap-

155



shot’s state of the game is old or new. There are two conditions to be met

that make a game state old. Another state must already have been seen

before which is identical to the current snapshot within some resolution.

For ANGELINA4, this means we compare all the game state data like the

player’s position, velocity or acceleration and see if they are less than a cer-

tain delta from any previously-seen state. This delta can be set to different

values to affect the detail level (and by extension, the accuracy and compu-

tational complexity) of the search. Through experimentation we found that

4 pixels – half the size of a level tile – was a good tradeoff delta value. This

means that a fairly comprehensive search is performed, without the search

being intractable on an average development machine.

If we find any states that are similar, we check the second condition. The

second condition is that the move history of the current snapshot must be

subsumed by this older state. Each state contains a list of the moves that

were made to reach this point in the simulation, and each time a new state is

made, it concatenates the current move onto the list of the parent state. The

previous state’s moveset, M , is subsumed by the current state’s moveset M ′

if the first n moves in M ′ are identical to M , where M is n moves in size. In

other words, if we have already reached this state previously with the current

history of moves, then the snapshot is not considered new. Otherwise, it

gets added to the state list for consideration.

As an example, if the player moves left, then right, then left again, it

will eventually reach places that it reached before simply by moving left. If

ANGELINA4 detects that the game is in the same state it was previously,

and it got there by using fewer buttons, it won’t bother adding a new

game state to the list. Additionally, we may also check if a state is legal.

ANGELINA checks that no exceptions have been thrown, for example, to

catch cases where mechanics are generated that crash the underlying game

engine.

ANGELINA4 keeps taking snapshots and simulating the current move’s

button presses. The distance between each snapshot is set by a parameter

in the simulator, and can be used to approximate a kind of reaction time

for the system, since the snapshot is also the point at which the simulator

can enter a new move from the moveset. The longer the period between

snapshots, the more time it takes the simulator to press another button,

somewhat simulating a player who does not react as quickly as one with a

156



shorter snapshot interval.

The system stops taking snapshots once no progress is being made. This

is assessed by comparing snapshots against other snapshots taken for this

move set. If the system reaches a snapshot that has already been taken for

this move set, we assume that the move set is no longer changing things

in the game (perhaps the player is running into a wall, or stuck in a loop

of jumping on the spot) and ANGELINA4 stops considering this move. It

then moves on to simulate other move sets in the list until no more are left,

and then continues onto the next state in the state list.

If, when simulating a move, the player reaches the objective – in our case,

they overlap with the exit object represented by the wrapped Christmas

present in Figure 8.5 - the state is considered to be successful, and the

move history of the current state is recorded as a solution to the level.

At this point, ANGELINA4 stops simulating. This simulation process can

easily detect that the level shown in figure 8.5 is unsolvable, as it eventually

exhausts its list of world states without reaching the present.

In order to evaluate a particular mechanic, ANGELINA4 adds the code

for the mechanic to the game’s codebase, using reflection, and then extends

the set of move sets used by the simulator to include pressing the button for

the new verb, as well as pressing the button in conjunction with jumping and

moving. ANGELINA4 can then run the simulation again on the previously

unsolvable level, this time using the new mechanic as one of the buttons

that can be pressed.

The fitness of a mechanic is 1 if the simulation manages to reach the

level objective – thereby completing the level. Otherwise, the fitness of a

mechanic is the percentage of the level that the mechanic made accessible.

The reasoning behind this decision is that as the mechanics enable the player

to access larger portions of the level, and as this portion becomes larger the

mechanic ultimately allows the player to reach the exit. However, this biases

the evolutionary process towards mechanics which affect reachability and

positioning. We can imagine a game mechanic that doesn’t help the player

move much further than before, but might allow very specific changes to

the game world, such as destroying blocks in the scenery to allow the player

to pass through walls. This is an area of the system that could be further

developed in future iterations.

157



Solvability

Note that when we say ANGELINA4 ‘exhausts’ its list of world states we

do not mean that ANGELINA4 truly proves that the level is unsolvable –

only that it exhausts the search space defined by the parameters of the sim-

ulation. The two variables that most strongly impact this are the interval

between snapshots, which affects how often the game is examined by the

simulation, and the delta measuring similarity between states, which affects

how often the search branches new nodes to explore. Setting these parame-

ters too high or too low can transform the simulation from a trivial exercise

to an intractably dense search. Our delta setting of 4 pixels and snapshot

intervals of around 2-8 snapshots per second (varying to represent different

reaction times) resulted in manageable solution times (under a second for a

300 tiles2 level).

However, it is possible that solutions exist which require a higher snap-

shot frequency, or that require the search to branch on lower-resolution

delta values. We believe this likelihood to be extremely low, particularly

for the kinds of mechanic that ANGELINA4 ultimately ended up generat-

ing – in fact, we encountered no mechanics which had unintended solutions

not known to ANGELINA4 through the simulation process. It is worth

noting that playtesting in commercial game development often fails to find

extremely detailed flaws in their games, resulting in ‘glitches’ which often

involve extremely precise ‘pixel-perfect’ movement on behalf of the player to

exploit. These glitches often appear in the speedrunning gamer subculture.

Having encountered no problems in the use of ANGELINA4, the potential

existence of solutions missed by the simulator therefore only contribute to-

wards a known challenge within game development, rather than being a

failing unique to ANGELINA4.

8.5.5 Crossover and Mutation

Crossover is difficult in this species because the structure of the phenotype

can be very different depending on the type of the Field being targeted. All

numerical types are compatible with one another (such as Double or Int),

but Booleans are not compatible with numerical types. In the case that

two numerical or two Boolean types are crossed over, we create a child verb

that has the Field target from one parent, and the operation and value

158



from the other parent, randomly selected between the two available. In the

case that a numeric type is crossed over with a boolean type, we create a

new child with the Field target from the numeric type, and a unary sign-

invert function for the operation. While not a perfect solution, it makes the

system flexible enough to deal with the full set of primitive types.

When mutating a verb, one of two mutations can take place: the root class

of the Field object can be searched again to find a new field to replace the

current one. This kind of mutation changes the specific field being altered,

but the search is local to the class already being selected, which means the

change is somewhat localised to a particular segment of the codebase. The

second mutation keeps the Field unchanged, and instead randomly reas-

signs the operation and the target value of the mechanic. The mutation rate

is 15%, a figure which we settled upon after performing some experiments

with no mutation at all, and a variety of increasingly high rates. Small

amounts of mutation were found to be useful without stopping the system

from converging on stable results.

8.6 Species - Level Design

In the previous section we described how mechanics are generated and eval-

uated using a template level. Searching a codebase for fields to modify,

and then modifying them automatically at runtime, leads to many compli-

cations, and ANGELINA4 commonly causes exceptions to be thrown and

errors to occur because it is modifying code without an understanding of

what might cause issues at runtime, such as null pointer exceptions or ar-

ray indexing exceptions. Evaluating mechanics generated in such a way is

therefore extremely difficult, but is made possible because of the clear-cut

evaluation offered by the template level. We generate a mechanic, and use

a static level to test it. The existence of a solution for that level acts as a

witness to the quality of the mechanic.

In this section we tackle an equally difficult problem: how can levels be

generated for a newly generated mechanic? Automatic level generation is

a common concept both in games research and commercial game develop-

ment, but such level generators are often built with a large degree of domain

knowledge supplied by the game designer, such as the hand-designed tem-

plates in Spelunky’s level designer, discussed in §4.4. For puzzle platformers,

159



levels are normally only solvable through the specific use of the mechanics

the game is built around. Knowledge about these mechanics can normally

be built into level generators, but in the case of ANGELINA4 we can’t

provide this knowledge, because the mechanics are being generated by the

system. The conflict, then, is between the need to embed domain knowl-

edge, contrasting with the fact that we don’t know the domain a priori,

because mechanics are being generated for the first time.

We overcome this by inverting the premise of the previous section: instead

of evaluating generated mechanics against static levels, we take a mechanic

and use it to evaluate generated levels.

8.6.1 Generation

In ANGELINA2 and ANGELINA3 we generated levels using hand-designed

templates. This was partly because of the large scale at which the levels

were being generated, as well as a concern that the resulting levels would

lack a feeling of organic design. For ANGELINA4, the levels being designed

are much smaller - the size of a single screen, compared to sixteen times that

for some of the levels generated by ANGELINA3. This is partly to accom-

modate the increased computational complexity in the simulation process,

however it also allows ANGELINA4 to generate levels on a per-tile basis. To

retain an overall sense of structure, rather than having ANGELINA4 place

single tiles, we allow it to place primitive shapes: horizontal and vertical

lines, and filled and unfilled boxes.

• A line is defined by five parameters: x and y co-ordinates, a Boolean

indicating whether the line is horizontal, an integer length, and an-

other Boolean indicating whether the line is made of tiles or of player-

killing spikes.

• A box is defined by four parameters: x and y co-ordinates, how long

the side of the box is (boxes are square, so only one parameter is

needed) and a Boolean indicating whether the box is filled with solid

tiles or whether only the perimeter of the box is solid.

Levels are randomly generated by starting with an empty level and then

adding a number of elements to the level, randomly selected between a

minimum and maximum number of elements (2 and 20 respectively for the

160



experiments described in this chapter). A level can therefore be represented

in genotype form as a list of shape primitives, using only their parameters to

define the level. The level’s phenotype is represented as a two-dimensional

array of integers. For a level L with tile width in pixels of t:

L[x, y] > 0

indicates that the tile at screen co-ordinates (x × t, y × t) is solid, with a

zero value in the array denoting empty space.

8.6.2 Fitness Criteria

As we discussed in the beginning of this section, the process of level design

inverts that of mechanic design. We apply the same simulation process to

a generated level, this time using a particular mechanic that we wish to

employ as the target criteria for this level design. We simulate attempting

to solve the level first without any additional mechanics, then again with

the new mechanic added. For a level L and move set M , solves(M,L)

indicates that the level L can be solved with the move set M . We write

Md to indicate the default move set used by ANGELINA4 which includes

moving and jumping, and we let m be a new mechanic.

If solves(Md, L) holds, then we assign zero fitness to the level, since we

can solve it with the default ruleset and it thus does not require the invented

mechanic at all. If neither solves(Md, L) nor solves(Md ∪m,L) hold, then

the level can’t be solved either way and also receives zero fitness. Otherwise,

assuming that solves(Md ∪m,L), ANGELINA4 tries to evaluate how well

this level fits the given mechanic.

There are three metrics this species is trying to optimise in the case that

a level passes the initial solvability test:

• How long a solution is in terms of pixels travelled on-screen (‘path

length’).

• How many times the new mechanic is used in the solution (‘mechanic

use’).

• How many actions, including the mechanic, are used in the solution

(‘discrete actions’).

161



In all three cases, the fitness is proportional to the absolute distance be-

tween the target value for the metric and the measured value in a given

solution. For example, if the target number of actions is targetActions

and the actual number measured in a simulation is measuredActions, then

the fitness is calculated as:

Math.max(1 - act, 0)

where

act = Math.abs(targetActions - measuredActions)/targetActions

Hence, if the target number is met, the fitness is 1, otherwise it scales to-

wards zero but never goes below zero fitness. The total fitness is a weighted

sum of the three metrics; in the example runs in this chapter, we weight

each metric equally, i.e. each contributing a third to the overall fitness.

An important additional note about the fitness calculation is that AN-

GELINA4 uses the least fit solution from a level as its final fitness. When

simulating the level, instead of terminating when a solution is found, it

records the number of actions in the solution and then continues simulating

until all paths of that length have been exhausted, adding any additional

solutions to the output. It calculates the fitness of all of these and then

returns the least fit one as the fitness. The reasoning behind this is that

the search process sometimes finds more convoluted solutions with the same

path length before it finds simpler ones, and since simpler solutions often

imply a lower fitness (because they don’t use the mechanic as much, or are

much shorter paths). Hence ANGELINA4 searches for all solutions of this

length before ruling on the level’s fitness.

8.6.3 Crossover and Mutation

Crossover of a Level object is performed by using one-point crossover on

the level space itself, reading left-to-right and top-to-bottom across the two-

dimensional array representing the level. This means that a point is picked

in the level space, and one parent contributes any shapes which begin before

this point, while the other parent contributes shapes which begin after this

point. A shape is considered to ‘begin’ at the point defined by its x and y

co-ordinates. In the case of all shape primitives used by ANGELINA4, this

is the top-left corner of the shape, so this makes sense for the top-to-bottom

reading we use on the array.

Mutation of a level object randomly selects shapes from its list and

162



changes their properties. It can alter the starting co-ordinates, as well as

flipping booleans such as the horizontal/vertical indicator on Line objects,

or the Boolean indicating whether a line is solid ground or player-killing

spikes. Elements can also be randomly added or removed, as long as this

does not take the number of shapes above or below the limits set by the

species at generation. The mutation rate is 20% – as with the mutation rate

for verb design, we settled on this rate after some experimentation with the

level designer. The figure is not intended to be particularly precise; rather,

some mutation is beneficial, and we found 20% to be a good resting point.

8.7 Sample Games and Mechanics

8.7.1 A Puzzling Present

A Puzzling Present is a puzzle platformer game, developed in Java and re-

leased in December 2012 for Android and Desktop platforms. It featured

three ‘worlds’, which were collections of levels that all shared a common

theme. Each world contained ten levels which were designed to be solved

using a particular mechanic. The three world mechanics, and the thirty

levels in the game, were all generated by ANGELINA4. The game was cov-

ered by the gaming and technical press, including features on Ars Technica,

New Scientist, Engadget and Gamasutra, and reached the Android Top 500

games. To date, it has been downloaded over 15,000 times.

A Puzzling Present, or APP, was also designed to act as a survey to as-

sess some of the aspects of ANGELINA4 as a designer of both mechanics

and levels. The levels had been designed with three different difficulty tiers

in mind, based on the reaction times needed to complete the level, which

ANGELINA4 assessed according to the simulation done during the level

generation process. At the start of the game, the player was asked if they

were willing to participate in post-level surveys about their experience. If

they consented, the level order was randomised to reduce bias introduced

due to learning effects or fatigue, and after each level, the player was pre-

sented with the screen shown in figure 8.7.

The mechanics generated were as follows:

• Gravity Inversion - when toggled on, gravity would change from a

downward force to an upward one, propelling the player towards the

163



Figure 8.7: Post-level survey from A Puzzling Present

ceiling. Toggling again would reverse the change.

• High Jump - when toggled on, the player’s jump height was doubled.

Toggling it again halved the jump height.

• Bounce - when toggled on, the player character became rubbery and

would bounce off surfaces, slowly gaining height as it did so. Toggling

it again reverted to a non-bouncy state.

Example Levels

Invert Gravity Figure 8.8a is a level generated for the Invert Gravity

mechanic. The player begins in the bottom-left corner, underneath the

holly, and must reach the present which is just above. The player can move

around the edge of the screen without much trouble, inverting gravity at

the far right of the screen to reach the top. When the player reaches the

point shown in the screenshot, there is a harder task to perform to complete

the level: the player must fall towards the holly and then invert gravity in

mid-air to fall upwards towards the present.

Bounce Figure 8.8b is a level generated for the Bounce mechanic. The

column of holly between the player and the exit is too high to jump over, and

the horizontal holly blocks prevent the player from performing a running

164



jump over the gap. In order to clear the holly, the player must jump off

the starting block, activate bounce, and then bounce off the floor to gain

enough height to clear the holly.

High Jump Figure 8.8c is a level generated for the High Jump mechanic.

The level involves two jumps which require the mechanic to be active: one

jump to reach the first level of blocks, by jumping at the far left of the level,

and a second jump to reach the exit at the very end. A third jump needs

to be made to cross a portion of holly halfway through the level, although

this can be done with a normal jump mode activated.

8.7.2 Surprise and Emergence

In chapter 6 we showed that the modular construction of the CCE system

in ANGELINA2 allowed for subtle game features to emerge as the different

evolutionary systems co-operated with one another. We attributed this not

only to the CCE’s structure, but also the level of detail afforded to the in-

dividual species in designing their target components. In ANGELINA4, we

have made another step forwards in terms of handing over creative respon-

sibility – now the system is capable of searching through a game’s codebase

and identifying interesting variable changes itself.

We have already shown through a description of A Puzzling Present that

this can generate an interesting variety of game mechanics, and discussed

how its use of elasticity properties exceeded the knowledge of its designers,

demonstrating the strengths of our more general approach. Below, we go

into more detail on another surprising output from the system.

Code Exploitation

Consider the following mechanic, which we termed teleportation, generated

by ANGELINA4:

165



(a) A level generated for the Invert Gravity mechanic.

(b) A level generated for the Bounce mechanic.

(c) A level generated for the High Jump mechanic.

Figure 8.8: Three levels from A Puzzling Present demonstrating the three
different mechanics in the game.

166



if(FlxG.keys.justPressed("X")){

if(toggled){

Registry.player.x += 70;

} else{

Registry.player.x -= 70;

}

toggled = !toggled;

}

This mechanic moves the player along the x-axis by a short distance either

left or right depending on whether the mechanic is currently toggled on or

off. This mechanic appears to be quite simplistic, and is less flexible than

teleportation-like mechanics as they typically appear in games. Normally

such mechanics allow the player to select where they end up, or have a larger

range.

After generating this mechanic, ANGELINA4 was tasked with designing

several levels which used it. When designing a level, ANGELINA4 logs a

sequence of actions that serve as a solution to the level, so that we are able

to understand the routes the system is using to solve each problem. It logs

these as a sequence of button presses, which in conjunction with a screenshot

of the level is normally enough to understand what has happened. When

generating levels for the teleportation mechanic, however, the solutions did

not immediately make sense to us as we reviewed the results. Often, levels

would involve scenarios such as the one depicted in Figure 8.9 in which the

player has to scale a large height to reach the exit, despite the new game

mechanic apparently only allowing lateral movement through the level.

Investigating further, we found that ANGELINA4’s solution to these lev-

els involved exploiting a bug in the core template game written by us. The

following code snippet approximates the code used for jumping in the tem-

plate game:

if(FlxG.keys.justPressed("SPACE")){

if(Registry.player.isTouching(FlxObject.FLOOR)){

Registry.player.velocity.x -= 100;

}

}

When the player presses the jump button, the game checks to see if they

167



Figure 8.9: A segment of a level designed by ANGELINA4. The player
must climb up a high cliff face to reach the present. However,
the current mechanic does not appear to allow them to do so
directly.

are touching the floor. This is done using Flixel’s built-in collision engine,

and we simply use a flag to say we want to know if there are collisions

below the sprite (the ‘floor’). If this check passes, then the player is pushed

upwards.

Figure 8.10 shows the effect of using the teleportation mechanic while

near a wall. Because the generated mechanic has no conditions or checks

on it, moving the player’s x co-ordinate forces them inside a wall. We

might intuit that this would leave the player stuck inside the wall; however,

because ANGELINA4 simulates gameplay by exhaustively pushing buttons,

it was able to discover that the player can continue to jump upwards while

inside a wall, because the collision system registers the player as standing

on a floor tile. Repeatedly jumping upwards from the state shown in Figure

8.10 propels the player upwards until they reach the top of the wall, where

they can safely reach the exit.

This is not what we might consider to be the intended use of the mechanic

– it relies on a secondary effect within the game (a weakness of the jumping

mechanic), an effect that is not documented as part of the core game’s

system either. It’s also an emergent property of the mechanic with certain

kinds of levels – this can’t be used as a technique in all levels, only those

168



Figure 8.10: By teleporting inside the solid wall, the player can exploit an
oversight in the game’s jumping code, allowing them to jump
directly inside the wall.

which involve the scaling of walls. This is an interesting result for two

reasons: it had no heuristics or mechanics to guide its use of this mechanic

in the first place, since it generated it itself; and secondly, it was dependent

on both the mechanic combined with pre-existing game systems that it had

no control over.

We discussed the value of surprise and novelty in assessments of compu-

tational creativity in chapter 4.6, and the discovery and use of the telepor-

tation mechanic certainly represents ANGELINA4 surprising its creators.

8.8 Summary

In this chapter, we described ANGELINA4, a system capable of inspecting,

modifying and executing Java code using metaprogramming techniques in

order to generate and evaluate game mechanics. We showed how evalua-

tion against a simple template level provided a good baseline to separate

useful mechanics from useless ones, and then reversed the process to design

levels by generating and testing them against mechanics. We described the

evolutionary structure of ANGELINA4, and then walked through an exam-

ple game – A Puzzling Present, an Android and Desktop game built using

mechanics and levels generated solely by ANGELINA4.

169



9 Coevolutionary Game Design In

The Wild

9.1 Introduction

In this chapter we describe ANGELINA5, the fourth iteration of ANGELINA

which incorporates some of the work from each of the previous versions,

and advances the software to a new stage in its development where it can

engage with communities of developers by entering game design contests.

ANGELINA5 was historically the first piece of software to enter a game jam

and compete with other people in designing a game.

In section 9.2, we provide the motivation behind ANGELINA5’s design

and the direction it takes the project. We discuss the importance of engaging

with a community of other creatives, and how we hypothesise it affects the

perception of a piece of software as a creative entity. In section 9.3, we

build on this motivation by describing in detail the technical groundwork for

ANGELINA5 and the design space that the system explores when designing

games.

In section 9.4 we outline the structure of ANGELINA5 as we have in

previous chapters, including details of a preliminary design phase that pre-

pares the system for designing a particular game, similar to that which we

described for ANGELINA3 in chapter 7.

In section 9.5, we describe the concept of a game jam, and in particular

we detail the Ludum Dare game jam, a popular game making contest which

we have entered ANGELINA5 in multiple times. We contextualise game

jams in the broader culture of games, and then in section 9.6 describe the

games ANGELINA5 ultimately ended up entering into Ludum Dare. Along

with an outline of each game, we also detail the response from the Ludum

Dare community and the rankings the games received after a process of

peer review. This informs later discussion of ANGELINA’s place in modern

170



games culture later in the thesis.

9.2 Motivation

So far in this thesis we have seen work motivated by the aim of produc-

ing software capable of designing games. This has been tackled on both

technical and artistic levels, considering issues such as the independence of

the software, its freedom in discovering new concepts, its ability to use and

understand elements of culture and the real world to express things. How-

ever, the act of designing games is only one part of being considered a game

designer. The broader aims of ANGELINA as a project are to investigate

how a piece of software can come to be accepted as a member of a creative

community. This means more than just the act of creating – it means cre-

ating in certain contexts, understanding communities, and interacting with

other people (and potentially software) who make up that community.

The most important motivation guiding the design of ANGELINA5 was a

desire to have the system take its first steps towards integrating itself with

a community of game developers. Until ANGELINA5, most people’s inter-

actions with the system were through playing games it had made, normally

games which had received media coverage in the specialist games or science

press. Encountering ANGELINA as a curio rather than a game designer,

we hypothesised, affects how someone perceives ANGELINA as a system,

and by extension the games that it produces.

Our intention with ANGELINA5, therefore, was to have the system proac-

tively engage with both game developers and game players, seeking exposure

in the same channels that a person might when starting off as a game de-

signer. A common way for game designers to improve their skills, meet other

designers and get people to play their games is to enter game jams. Game

jams are short contests in which entrants design games based on a given

theme in a short time period. In order to enter a game jam, ANGELINA5

needed to be designed in a way that would enable it to interpret any kind of

word or phrase as a theme. Engaging with the theme in the game’s design

is important for submitting a serious entry to the jam, and being able to

understand it on a basic linguistic level is the first step in doing this. We

discuss both this process, and the basis of ANGELINA5 as a CCE system,

in this chapter.

171



We took ANGELINA5’s entry to a game jam as an opportunity to ex-

amine people’s reactions to the system as well. There are reports of both

negative and positive bias associated with people responding to computa-

tionally creative software, some of which we have explored in section 4.6.

Entering a game jam for the first time, with a version of ANGELINA that

no-one had encountered before, allowed us to enter multiple games from

the system and assess the different reactions to them from people both in

the presence of, or absence of, an explanation of ANGELINA and how the

game was made. These reactions, as well as the surrounding responses to

ANGELINA as a system, will be important in the ongoing development of

the system, which we discuss as Future Work in chapter 12 later in the

thesis.

9.3 Design Space: 3D Exploration Games

ANGELINA5 is built as a plugin to the Unity game development environ-

ment1. Unity is an extremely popular, versatile and powerful game engine

that ships with a comprehensive development environment that is also eas-

ily extended by writing scripts that act as plugins to Unity itself. These

plugins can interact with both the engine itself as well as the tools, and

can modify Unity’s user interface to add additional menus. We use this to

somewhat customise Unity into having a frontend that allows for control of

ANGELINA4 more easily. Unity games can be deployed to web browsers, to

all major desktop operating systems as native applications, to every mod-

ern games console and handheld device, and most smartphone operating

systems including iOS, Android and Blackberry.

ANGELINA5’s domain is 3D exploration games, although the domain

is general enough to be expanded to many other more established game

genres, such as first-person shooters. ANGELINA5’s games consist of a

3D maze, in which several entities may exist, with different effects on both

each other and the player. The primary objective is to reach the level’s

exit, but there may be secondary tasks the player can complete, such as

collecting objects. Figure 9.1 shows three screenshots from a sample game.

The top two are screenshots from the game as seen in the Unity editor. The

maze-like organisation of the game can be seen clearly here, accentuated by

1http://www.unity3d.com

172



the first-person perspective (the bottom screenshot) which means that walls

obscure the player’s view of the rest of the space.

The levels are constructed from pre-designed tiles that are slotted to-

gether in a grid, similar to the system described in chapter 7 and the work

of Spelunky, described earlier in §4.4. Unlike ANGELINA3, each tile is as-

signed to a zone. Zones are defined by zone templates, which are collections

of media that zones have in common. A zone defines:

• A texture to display on the floor tiles.

• A texture to display on the wall tiles.

• A 3D model file to display as scenery (where applicable).

• A sound effect file to play as ambient noise in the zone.

Zones are generated after a predesign phase has acquired media assets

to choose from, which we describe in the following section. Some media is

chosen at random, while others may have specific reasons for their selection

depending on the knowledge ANGELINA5 has about the theme or the game

it is designing. We detail this selection criteria in the following section also.

The motivation behind such a design is to give structure to the individual

level sections that players pass through. A zone template with birdsong

sound effects and forest/tree textures might convey a natural area, whilst

concrete and car sounds might convey a city. This expands ANGELINA5’s

design space to be able to treat locations as an abstract concept. In the

past, ANGELINA has used the acquired media only if direct relationships

to input material (such as the tags on a newspaper article in ANGELINA3

- see chapter 7) could be established. This means that many more abstract

creative decisions, like deciding on a location for a game to be set in, are

hard to encode into the system. The introduction of zones, much like the

use of free-text input themes, is part of a bid to make ANGELINA5 a more

general, less specialised version of the software.

173



Figure 9.1: Screenshots from a game made by ANGELINA5, showing an in-
editor view of the level (top) an in-editor close-up of the game
world (mid) and finally an in-game shot (bottom).

174



9.4 Coevolutionary Setup

9.4.1 Predesign Phase

As with ANGELINA3, ANGELINA5 has a predesign phase which it uses

to prepare a theming for the game prior to executing the main CCE design

process. In ANGELINA3, the system began by scraping news articles from

the front page of The Guardian newspaper. This version of ANGELINA,

however, works by receiving a phrase or word which it uses as its theme.

This is to match the setup of game jams, which we give details of later. If

the inputted theme is a single word, then the predesign phase progresses

using that word as a theme. If the theme is longer than a single word,

ANGELINA5 will analyse the theme to try and extract the most promising

single word out of it.

Firstly, it looks up each constituent word in the phrase in a frequency

database of English words [72]. It ranks words according to their frequency,

culling any which are too common or too rare (more than 10,000 or less

than 50 mentions in the database, an interval we set after hand-curation

and experimentation). It then randomly chooses one of the remaining words

as a candidate theme. If none of the words match this interval, it will take

one of the more common words (a frequency of more than 10,000) and look

the word up in a word associations database. It then randomly chooses one

of these words and uses this as a theme. The word association database was

observed to provide more specific instances of a word in most cases, and so

selecting from this list often retrieves a theme that is usable. Finally, to test

that the chosen word – whether taken from the original theme or from the

word association step – is appropriate as a theme for a game, ANGELINA5

performs several test searches on its media databases, which we list below,

to see if it can find results for different kinds of media and linguistic data.

If it can’t find any results in one or more of its searches, it returns to word

association to select another candidate theme. If no theme can be found this

way, ANGELINA5 simply stops – although this is rare, as word association

provides many dozens of words of all kinds, including common nouns which

normally produce good results in searches.

Once a theme has been selected that meets the search criteria, the system

begins acquiring the media it needs to perform the main CCE design. Before

doing so, it creates a small set of associated words by performing another

175



Figure 9.2: Title screen from Cat That, a game designed during prototyping
ANGELINA4. Note the cat-themed font used in the title.

word association lookup with the final theme, and selecting the first ten

associations. These words are used as secondary search terms for many of

the visual and aural media searches performed by the system, and they can

help add variety to the content retrieved.

As with ANGELINA3, media is acquired from many different sources.

The system first obtains a font and a piece of music to accompany the

game. It does the former by searching DaFont2 for public domain or GPL-

licensed fonts whose name or description includes the theme word. While

simplistic as an approach, this often returns highly relevant fonts that add

theme and atmosphere to the title screen. Figure 9.2 shows a game themed

around cats, with a font that includes paw prints in the letters.

Music is selected by first associating emotions with the theme word, or

words related to it. We do this by using a secondary function of a web ser-

vice called Metaphor Magnet3, a product of Computational Creativity re-

search described in [130]. Metaphor Magnet uses Google N-grams to build

a database of common phrases, which are used to construct metaphori-

cal relationships, by extracting patterns of speech such as ‘as X as a Y ’.

Metaphor Magnet stores such relationships and uses them to understand

the connections between concepts. One of the other things it has mined

from the N-grams is emotions people express in response to things, from

patterns such as ‘X makes me feel Y ’. This data can be mined to under-

2http://www.dafont.com
3http://ngrams.ucd.ie/metaphor-magnet-acl/

176



stand common feelings expressed about a concept. ANGELINA5 uses this

to find out what emotions are most commonly associated with the primary

theme word.

Once it has a primary emotion (for example, people feel intimidated by

thieves) ANGELINA5 tries to connect this emotion to a musical theme. As

before, we use the Incompetech database of music as a source of background

music for ANGELINA5’s games. Incompetech provides emotional tags for

all of its songs, but the list is limited to the following:

Action, Aggressive, Bouncy, Bright, Calming, Dark, Driving,

Eerie, Epic, Grooving, Humorous, Intense, Mysterious, Mysti-

cal, Relaxed, Somber, Suspenseful, Unnerving, Uplifting

Metaphor Magnet’s emotional range is far broader than this, because it

mines natural language from the Internet. To resolve this, we perform a

narrowing process to map the found emotion to one of Incompetech’s. For

each emotion in the music database, we perform a search using DISCO4,

a semantic similarity tool for assessing how alike two words are in mean-

ing. The database emotion with the strongest similarity to the discovered

emotion is taken to be the target for the search, and we randomly choose a

piece of music with this emotion from Incompetech’s database.

ANGELINA5 then searches for 3D models and sound effects. The latter

search is performed similarly to the searches done for ANGELINA3 – we

use the FreeSound database and search using both the primary theme word

and its association set. We sort by average rating, and download sound

effects which are less than sixty seconds in length. We download multiple

sound effects for each theme word, so that they can be randomly chosen

from during the game design process. For 3D models, we use TF3DM5, a

database of free 3D models. ANGELINA5 searches the database for .OBJ

format models, as at the time this was the only file format that could reliably

be imported into Unity. Since the design of ANGELINA5, Unity’s support

for other model formats has improved considerably.

In order to create a title for the game, ANGELINA5 uses a combination

of rhyming dictionaries and a corpus of popular culture terms, in a similar

approach to the one used in ANGELINA3. To the existing corpora of film

4http://www.linguatools.de/disco/disco en.html
5http://tf3dm.com/

177



and music titles, we added a list of common English idioms. ANGELINA5

searches for words which rhyme with the primary theme word, or one of its

associations, and then searches for idioms or other cultural phrases which

include the rhyme, swapping it out with the theme word to create a pun.

All of the game names in this chapter are named through this process.

This concludes the online part of the media acquisition. As we described

in the Design Space section of this chapter (§9.3), ANGELINA5 uses what

we call zones to divide the game level up into differently-themed areas. Each

zone has certain scenery objects associated with it, as well as sound effects

and texture files. Unlike the other media used in its games, ANGELINA5

obtains the texture files locally from a large corpus of textures. These

textures are only identified by the name of the folder each group of textures

is contained within, such as wood, grunge or green.

In the event that the theme or its associations match any of these folders,

the textures inside are selected for use in the zone designs. However, this

tends not to happen often as the folder descriptors are not always very accu-

rate, and the words chosen do not cover all of the associations the textures

themselves might have. To mitigate these problems without researchers per-

sonally annotating the textures (which could possibly reduce the perception

of ANGELINA5 as an autonomous system), we instead enable ANGELINA5

to acquire additional labellings of each texture itself, by periodically upload-

ing a texture to Twitter and asking its followers to suggest descriptions of

textures. Figure 9.3 shows a screenshot from ANGELINA5 asking about a

texture, and some of its responses. ANGELINA5 searches this catalogue of

tags using the primary theme and the association set, and adds any match-

ing textures to a list from which ANGELINA5 will later make a selection

to add to the game. If there are no textures found, or not enough to fully

texture the game, it will choose randomly from the texture pool.

9.4.2 Species - Level Design

Species Definition

A Level is a two-dimensional array of tiles selected from a catalogue of

predesigned tiles. A tile itself is a two-dimensional array of integers, where

each entry in the array is one of the following:

178



Figure 9.3: A texture query on Twitter (top) followed by its responses from
ANGELINA’s followers (bottom).

179



• 0 - Empty space. Empty tiles are surrounded by 2-unit high walls

during the rendering phase of the game.

• 1 - Floor space. This is the main walkable area of a level or tile.

• 2 - Scenery space. As with empty space, no floor is placed, but no

walls are placed either. Scenery is explained below.

When a given tile is built into the game, walls are placed around the edges

of areas of empty space. Contiguous areas of scenery space are grouped

together and tagged, and then scenery models – as defined by a tile’s zone

allocation – are scaled appropriately and placed into each of the scenery

areas in the tile.

Generation

Level designs are generated by randomly initialising a two-dimensional ar-

ray, with a height, levelHeight, and width, levelWidth, predefined by a

person parameterising ANGELINA5 beforehand. Each entry in the array

is set randomly within the range of tile templates available. For the games

generated in this chapter, the tile library included eleven templates which

were each chosen with equal likelihood.

Fitness Criteria

ANGELINA5’s focus is on generating maze games, or games in which the

player is encouraged to explore a world for its own sake (sometimes called

walking simulators6). In both cases, the requirements for level designs are

fairly simplistic: the level should be a single contiguous space, and have a

large floor space (but not so large that it fills the entire level area with flat

ground). First we define two metrics, solidRatio and islandRatio, for a

level L.

Each tile template is a ten-by-ten grid of smaller unit-square tiles, which

are either empty, solid or scenery as described above. This means that a

level that is five tiles wide by five tiles high has 50 × 50 total tiles in it.

We define solid(L) as the number of non-empty, non-scenery unit-squares

in the entire tile array defining a Level. solidRatio is defined as:

6See: http://www.rockpapershotgun.com/tag/walking-simulator/

180



SR = (solid(L)/(levelHeight× levelWidth× tileSize2))

solidRatio = (targetRatio− |targetRatio− SR|)/targetRatio

Where tileSize is a reference to the size of a tile in Unity editor units.

targetRatio is a number, supplied to ANGELINA5 prior to execution, in

the interval [0, 1] which the ratio is evaluated in relation to, discounting

the fitness if it misses the target by being too large or small. In the case

that limitingFactor is 1, the optimal result for the Level Design species

to produce is a level which is entirely covered in solid floor space, with no

gaps or walls or scenery. This is obviously an uninteresting point to evolve

towards. For the games generated in this chapter, we use a limitingFactor

of 0.3, determined through experimentation to be satisfactory.

For the islandRatio measure, we wish to calculate the size of the largest

contiguous island as a percentage of the total possible floorspace. Call

island(L) the size of the largest contiguous island of solid space tiles in a

level L. islandRatio is then defined as:

islandRatio = island(L)/(levelHeight× levelWidth× 100)

To calculate the final fitness of a level L, we simply weight solidRatio

and islandRatio accordingly so they have different amounts of influence on

the fitness function. For the games produced in this chapter, we used the

following weightings:

fitness = 0.2× solidRatio+ 0.8× islandRatio

That is, we put an emphasis on the generation of levels with single contigu-

ous landmasses, and less emphasis on the size of that landmass. The fitness

for level designs is not very prescriptive and does not elicit very specific fea-

tures of games as was common in previous versions of ANGELINA such as

ANGELINA3. Nevertheless, the fitness function is more than sufficient for

the types of game currently being developed by ANGELINA5, and crucially

provides the basis for other species to co-operate with it in developing, for

instance, layouts which intersect appropriately with the level design species.

The other motivation behind the simplicity of the fitness function is to

lay a foundation for future work on the system, where ANGELINA5 can

181



embellish this fitness function with additional requirements which define a

smaller and more focused design space – such as adding on a metric which

measures the number of branching paths through the level, or the number of

dead-ends. This fitness function therefore represents the minimal baseline

that still operates well on its own, to allow the widest possible sculptable

space of fitness functions for ANGELINA5 to hopefully explore in future

work. We discuss this in chapter 12.

Crossover and Mutation

To crossover two Level objects, we perform a one-point crossover on the

array of tiles. To do this, we pick a point randomly in the first parent’s

Level array, and then read left-to-right, top-to-bottom through the array,

copying over the data to the child Level in each spot. When we reach the

crossover point, we transfer to the second parent and for all the remaining

array entries we copy from the second parent. This is similar to the approach

taken for ANGELINA3’s map crossover.

To mutate a Level, we randomly choose a number of tiles to mutate up

to a limit set for the system, in the case of this chapter that limit is 3.

For each mutation we then randomly select a tile in the Level that has not

yet been mutated and replace its index into the tile catalogue with a new

index. We don’t mutate the individual tiles themselves in order to retain

the hand-designed nature of the templates.

9.4.3 Species - Layout Design

Species Definition

A Layout is a collection of co-ordinates which specify the placement of

certain kinds of entities in the game world. A Layout always contains a

co-ordinate defining the start point for the player object, as well as a co-

ordinate defining the placement of the exit object. These two entities always

exist in any game made by ANGELINA5 regardless of other variables. It

also contains a list for each other game entity type, containing all the co-

ordinates defining starting positions for entities in the game world.

182



Generation

In order to generate a Layout, a random co-ordinate is generated for both

the start and exit points, within the range of the map width and height.

Then, for each of the entities in the game (currently preset for ANGELINA4

to be 2) it generates between 2 and 15 placements for each entity, again

chosen randomly across the width and height of the map.

Fitness Criteria

The primary fitness considerations relate to whether entities are placed on

solid ground, and accessibility for the player. We define playerSolid as

follows:

playerSolid =

{
1 if the player is on solid ground

1
distToSolid if the player is over empty space

Where distToSolid is the number of tiles between the player and the

nearest solid floor tile. This means that as the player is placed closer to

solid ground, the fitness increases, but never reaches the optimality of being

placed on ground in the first place. We further define a similar variable,

exitSolid, in the same way as playerSolid but in the case of the exit object

rather than the player.

We also perform similar checks for the entities. Let entitySolid(e) be the

score for a single entity, e, defined similarly to playerSolider and exitSolid,

and let E be the list of all entities, of all types, in the game. Let allEntitiesSolid

be defined as:

allEntitiesSolid =
∑
e∈E

entitySolid(e)

The final metric influencing Layout fitness concerns distance between the

player and the exit. In the case where the player or the exit is placed on

empty space, this returns a zero fitness.

Crossover and Mutation

To cross over two Layout objects, we randomly choose between the two

parents twice, to assign both the player start and exit location co-ordinates.

183



For the lists of entities, we use a one-point crossover for each of the lists

of entities. To mutate a Layout object, we randomly select a co-ordinate

from the entire Layout object – including the player and exit locations –

and regenerate its co-ordinate. When generating a new co-ordinate, there

is also a 50% chance that only one component of the co-ordinate will be

regenerated, i.e. the x co-ordinate is kept the same and only the y co-

ordinate is generated.

9.4.4 Species - Ruleset Design

Species Definition

A Ruleset is a collection of predefined behaviours which are assigned to

each of the in-game entities (other than the player and the exit) when the

game is run. These behaviours are similar to those used in ANGELINA1 to

define the non-player objects, governing things like their motion and their

interactions with the player. This species was originally designed to be very

simplistic in nature, so that it could be extended in the future with a system

more like ANGELINA4, described in the previous chapter. For the games

generated in this chapter, however, the species is used as we describe it here.

There are six behaviours in total, although some can be parameterised to

expand their variety. They are:

• Avoid - The entity moves away from objects of a certain type whenever

they are within a certain distance.

• Chase - The entity moves towards objects of a certain type whenever

they are within a certain distance.

• Collectible - The entity is destroyed upon contact with the player, and

the player’s score increases.

• FollowEdges - The entity moves in a straight line until it hits a wall,

at which point it turns either clockwise or counterclockwise.

• KillTarget - The entity destroys objects of a certain type upon contact.

If this object is the player, the game ends.

• Roam - The object moves in a random direction, changing direction

after a random period of time has elapsed.

184



An entity can be assigned one or more of these behaviours. A Ruleset,

therefore, is a list of lists of behaviours, with each list being a set of be-

haviours assigned to one general kind of entity. The behaviours are added

to each entity when the level starts.

Generation

In order to generate a Ruleset, a list of behaviours is randomly selected

for each entity type that exists in the game. A maximum and minimum

are set, and duplicate behaviours are not allowed to be generated. For the

games shown in this chapter, the minimum number of behaviours is 1 and

the maximum is 3.

Fitness Criteria

A Ruleset’s fitness is governed by three aspects: the first two are whether the

Ruleset includes a way for the player to gain score, and whether the Ruleset

contains a way for the player to die. We define these values as canScore

and canDie, with each variable having the value 0 if false (that is, there

is no way to score or no way to die respectively) and 1 if true. The final

metric, rulesF ired, is a measure of the number of rules that activated during

a simulated playthrough of the game. A playthrough of an ANGELINA5

game consists of the player object finding a path from start to finish, using a

standard A∗ search, deviating from its path to collect objects which provide

score if it comes within a certain distance, and moving out of the way of

objects that kill it if they come too close. During the playthrough, any time

an entity’s behaviour is executed for the first time, a flag is raised for that

behaviour. At the end of the simulation, we calculate the number of rules

fired as a proportion of the total number of rules in the Ruleset.

The final fitness of a Ruleset is a weighted sum of the three metrics

canScore, canDie and rulesF ired. The weights are:

fitness = 0.25× canScore+ 0.25× canDie+ 0.5× rulesF ired

These weights were set through experimentation, drawing inspiration from

the notion of a directed game laid out in chapter 5 with ANGELINA1:

in that a game should have a means of making progress and obstacles to

185



impede that progress. Weighting rulesF ired higher gives greater emphasis

to active rules in general rather than simple kill/score rules. This was seen

to increase variety in rulesets and avoid the system settling on the same

iteration of death and score gain only in every game.

Crossover and Mutation

Crossover of two Rulesets is dependent on the number of entities defined in

the game. If there is only one entity, then there is a single set of behaviours

in each Ruleset. In this case, we perform a one-point crossover on the

behaviours in the single entity’s list. In the case of two entities, we randomly

pick an entity list from each parent to produce the child Ruleset. In all other

cases, we perform an ordinary one-point crossover on the list of behaviour

lists; that is, we perform one-point crossover at the level of entities rather

than individual behaviours.

9.5 Entering Game Jams

9.5.1 Structure

A game jam is a co-ordinated event in which groups of people develop

games in a fixed timeframe (commonly 48 hours), either alone or in groups.

Some game jams are structured as contests, with judging and prizes, while

others are organised for the purposes of self-improvement, and to build

communities of game developers. Almost all game jams feature a theme

or restriction which must be incorporated into the games designed for the

event. These themes are used as creative aids, to focus people on a particular

task, make them explore unusual ideas, and avoid planning for the jam in

advance.

Interpretation of the theme is often a crucial creative step in producing

an interesting game, particularly when trying to distinguish an entry from

potentially thousands of others. As an example, a game jam held in 2013

was run with the theme Ten Seconds. Entries to the jam included many

games incorporating time limits of some kind, ten seconds in length. Here

is a selection of alternative interpretations of the theme, entered into the

jam:

186



• The player controls an orphan asking for seconds of food. She must

find ten costumes to disguise the orphan and gain more food. [53]

• The player controls a second, someone who replaces someone else in a

duel. They go through several rounds of pistol duelling. [56]

• The game records ten seconds of microphone input from the player,

and procedurally converts it into a three-dimensional world. [122]

Above we can see evidence of subverting the theme using synonyms or inten-

tional misconstruing of the theme phrase – but in the last example we can

also see how non-obvious uses of the theme can give rise to new technical

developments as well as innovative artistic ideas.

9.5.2 Role in Game Culture

Game jams play a large role in the culture and community of game devel-

opers, particularly at independent and amateur level. In 2012, CompoHub7

recorded a total of 134 game jams taking place, including the Global Game

Jam8 and Ludum Dare9.

The Global Game Jam

The Global Game Jam has run annually since 2008, and focuses on teams of

developers that meet up at locations worldwide to develop games together.

In 2013 the jam was hosted simultaneously at 319 sites, with 16,705 people

registering to take part and 3,248 games submitted. The Global Game Jam

is known for posing unusual themes to its entrants – the 2012 theme was a

picture of an Ouroboros (see figure 9.4) rather than a phrase, and in 2013

the theme was an audio file which played the sound of a heartbeat.

Ludum Dare

Ludum Dare is a thrice-annual event that takes place in April, August and

December and has been running since 2002. Ludum Dare is split into two

events which run in parallel - the Competition Track which is a 48-hour event

in which solo developers make a game from scratch themselves, including

7http://www.compohub.net
8http://www.globalgamejam.org
9http://www.ludumdare.com/compo

187



Figure 9.4: An image of an Ouroboros, an ancient symbol of eternity. This
image was the theme for the 2012 Global Game Jam.

any art and sound assets; and the Jam Track which is a 72-hour event

in which the rules for the main competition are relaxed, allowing groups

of developers to work together, and existing assets to be used. In August

2013, 2,213 games were submitted; in December 2013, 2,064 games were

submitted.

After the submission period is over for Ludum Dare, a review period com-

mences lasting 22 days. During this period, anyone who submitted a game

in either track can enter ratings and leave comments on other submissions.

On the main rating page, games are ordered based on a ratio of the num-

ber of ratings they have received versus the number of ratings they have

given out, weighted so that this ratio is amplified at low numbers of ratings.

This means that people who have submitted a game are encouraged to rate

other games, since this is the fastest way of obtaining ratings for their own

submission.

Reviews are broken down into eight categories: Fun, Overall, Audio,

Mood, Innovation, Theme, Graphics, Humour. Note that Overall is a sep-

arate category, not an average of the other seven. Each category can be

left unrated, or given a score between 1 and 5. Reviewers are encouraged

to leave non-anonymous comments along with their reviews, but are not

obliged to. At the end of the review period the rankings are announced,

including breakdowns per category, separated into the competition track

and jam track.

188



This is a game about a disgruntled child. A Founder. The game only has
one level, and the objective is to reach the exit (the yellow cylinder). Along
the way, you must avoid the Tomb as they kill you, and collect the Ship.

I use some sound effects from FreeSound, like the sound of Ship. Using
Google and a tool called Metaphor Magnet, I discovered that people feel
charmed by Founder sometimes. So I chose a unnerving piece of music from
Kevin Macleod’s Incompetech website to complement the game’s mood.

Figure 9.5: The commentary generated by ANGELINA4 for the game To
That Sect.

Figure 9.6: Title screen from To That Sect.

9.6 Sample Games & Public Assessment

This section describes two games developed by ANGELINA5, both entered

into Ludum Dare 28, held in December 2013.

9.6.1 To That Sect

To That Sect was entered into Ludum Dare 28 in December 2013, with a

complete commentary generated by ANGELINA5, which can be found in

Figure 9.5. The commentary mentions the objectives of the game, including

the selections of objects in the game (‘tomb’s and ‘ship’s). It also highlights

the emotional connection between the theme and the music, in this case that

189



people feel charmed by founders, and that an ‘unnerving’ piece of music was

chosen as a result.

The connection between feeling charmed and feeling unnerved is a point

of interpretation for people. DISCO, the tool we mentioned earlier that we

use to match emotions to the music mood database, does not guarantee that

semantically similar words are all related in the same way. ‘Black’ is seman-

tically similar to ‘white’ because they both occur often in close proximity

to each other. However, the meaning of the two words can also be seen to

be entirely opposite. Despite this, the connections made using DISCO by

ANGELINA5 often seem to pass the sanity checks applied by reviewers and

players, in that any connection, whether antonymic or synonymic, is still

seen as a sign of understanding and potential meaning to be interpreted.

This also speaks to the power of commentaries and framing in increasing

the perception of creativity in the software.

To That Sect was also submitted with an additional text written by my-

self which detailed ANGELINA5’s backstory as a research project, and re-

quested that reviewers endeavour to treat the submission as they would any

other Ludum Dare entry:

Please rate this game as you would any other Ludum Dare game.

The main goal in To That Sect is to reach the game’s exit object, which

is on the other side of the game map from the player’s start point. They

can optionally collect floating cruise ships as they do so, although there is

no direct reward for doing this. Patrolling wizard-like figures will kill the

player if they come into contact with them. We give results and discuss

ANGELINA5’s performance in Ludum Dare in chapter 10.

9.6.2 Stretch Bouquet Point

Stretch Bouquet Point was also entered into Ludum Dare 28 with a partial

commentary edited from the one which was generated by ANGELINA5.

The original commentary can be found in Figure 9.8 along with the edited

version. No additional text was submitted, unlike the disclaimer attached

to the To That Sect entry, which we detailed above.

As with To That Sect, we can see that the connections made by DISCO

may not be immediately obvious to the reader – in this case, between feeling

190



Figure 9.7: Title screen from Stretch Bouquet Point.

bored and feeling aggressive. In this case, rather than this being a weakness

of DISCO we instead see this as an unfortunate side effect of using a limited

musical database as a source of music. Artists tend not to write music that

makes people feel bored, or is inspired by feeling bored, and so naturally

the range of emotions in the music database are semantically dissimilar to

the feeling of boredom. Aggressiveness was matched here as being the most

similar, but that doesn’t guarantee the similarity was very strong.

The main goal in Stretch Bouquet Point, as with To That Sect, is to reach

the game’s exit object, which is on the other side of the game map from

the player’s start point. The player must avoid ‘daughters’ – women who

wander the game and kill the player on contact. We give results and discuss

ANGELINA5’s performance in Ludum Dare in chapter 10.

9.7 Summary

In this chapter, we described ANGELINA5, the most recent iteration of

ANGELINA to date, which incorporated elements of previous versions of

ANGELINA as well as furthering our aims of building a piece of software

which is taken seriously as a participant in an active creative community.

We showed how the preliminary design phase introduced in ANGELINA3

191



This is a game about a lined page. A bridesmaid. The game only has one
level, and the objective is to reach the exit. Along the way, you must avoid
the Bridegroom as they kill you.

I use some sound effects from FreeSound, like the sound of bouquet. Using
Google and a tool called Metaphor Magnet, I discovered that people feel
bored by bridesmaid sometimes. So I chose a aggressive piece of music from
Kevin Macleod’s Incompetech website to complement the game’s mood.

This is a game about a bridesmaid. The objective is to reach the exit.
Along the way, you must avoid the Daughters as they kill you.

I use some sound effects from FreeSound, like the sound of wedding. People
feel bored by bridesmaids sometimes, so I chose a aggressive piece of mu-
sic from www.incompetech.com for the game. Let me know what you think.

Figure 9.8: The commentary generated by ANGELINA5 for the game
Stretch Bouquet Point. The commentary was edited before sub-
mission to Ludum Dare, to reduce the appearance of artificial
generation and to obfuscate the author. The edited version is
shown in the second passage.

192



can be retooled to work on more general input themes and words, and

how that enables computationally creative systems to enter game jams and

engage with communities of game designers by both demonstrating its work

and submitting that work to peer review. We introduced the notion of

a game jam and described Ludum Dare, a game jam which ANGELINA5

has entered multiple times to date, making ANGELINA5 the first piece of

software to do so. We discuss the reaction to ANGELINA5’s presence in

the world of game jams in later chapters by way of evaluating its impact on

creative communities and the perception of it as a creative actor.

193



10 Evaluation of Performance and

Game Quality

10.1 Introduction

ANGELINA is a project situated in both procedural content generation and

Computational Creativity, two fields which historically have struggled to

find reliable, agreed-upon methods of evaluation [67][111]. This means that

evaluations of ANGELINA tend to only focus on one particular dimension

of the system, and offering a complete picture is very difficult. Many aspects

of ANGELINA, particularly those relating to its creativity, are difficult to

evaluate objectively.

The lack of dependable and agreed-upon evaluation methods for proce-

dural content generation is particularly problematic for this thesis; AN-

GELINA is a complex multi-modular system composed of many procedural

content generators working in tandem, with an aim of creating a system

that is more than the sum of its generators. This means that the difficulty

of evaluating a single procedural generator is compounded and multiplied in

ANGELINA. However, this also provides us with an opportunity to investi-

gate how best to evaluate automated game design systems, and to explore

different ways in which we can gain insight into how well a system like

ANGELINA might be performing.

In this chapter, we offer a mixed approach to the evaluation of AN-

GELINA as an automated game designer. In the absence of universal eval-

uation methods, we instead perform many and varied individual studies of

particular aspects of the system, ranging from technical recordings of execu-

tion times through to qualitative surveys of games with players. In doing so,

we hope to offer both an insight into which evaluation methods offer more

potential for the field of automated game design, while simultaneously pro-

viding evidence for our hypotheses: that CCE, with our without supporting

194



subsystems, is a suitable approach for automated game design, and that

ANGELINA can be accepted as an independent game designer in its own

right.

There were many competing demands when building and evaluating AN-

GELINA as an automated game designer. Improvements to ANGELINA

comes largely through better fitness functions, less constrained generative

approaches, and more engagement with high-level issues of computational

creativity. As a result, while we show in this chapter that the underly-

ing evolutionary systems are functional and link them to the quality of the

games produced by ANGELINA, the chapter also focuses on many other

aspects of the system that contribute to the aim of establishing the system

so that it would be considered to be an autonomous, automated game de-

signer. The time constraints of this project have meant that we could not

explore all of these avenues equally, and we gave more weight to those areas

of ANGELINA that were perceived to be having the greatest impact on its

perception and performance as a game designer.

10.2 Fitness

A common way to evaluate evolutionary systems, which we introduced in

chapter 3, is to consider the change in fitness of a population on a standard

run of the system. The hypothesis is that the fitness function and design

of the system encourages gradual increase in fitness, and subsequently it

should be possible to show that higher fitness correlates to higher quality

games when assessed by players. Figure 10.1 shows fitness plotted over time

for a normal execution of ANGELINA2, which we described in chapter 6,

for a population of 200 game designs run over 400 generations. We can see

that fitness increases and plateaus as we would expect, although the early

phase of the system shows spiking in the fitness, at one point spiking to

higher than the final fitness. In non-CCE systems, we might expect the

fitness to increase monotonically. However, because the fitness in a CCE

system is the result of all species and their ability to co-operate with one

another, we often find that a single species finds a solution which is highly

internally fit, but has low co-operation. This can result in temporary rises

in fitness which drop off on the next generation as that species abandons

the high-fitness outlier in favour of a solution which is less internally fit but

195



Figure 10.1: The fitness of a population in ANGELINA2 throughout a stan-
dard execution. The dotted line shows the maximum fitness
from a sample of randomly generated games, the size of which
is equal to the total number of games evaluated across 400
generations of a standard ANGELINA2 execution.

co-operates better. This doesn’t necessarily mean that a solution with high

fitness in one species is a better artefact. ANGELINA always returns an

artefact selected from the final generation of its evolutionary run, as these

show the highest degree of co-operation between the species both in overall

fitness and in terms of the minimum fitness of any one species on its own.

Another reason for the very high spikes in the ANGELINA2 example is

that fitnesses were not normalised between zero and one. In more recent it-

erations of the software, fitness functions were more carefully designed to be

normalised in the [0, 1] range. This is useful in any evolutionary system, but

normalising fitness in CCE systems is, as we learned, particularly impor-

tant because the species should be accorded equal weight when considering

their fitnesses alongside each other. In ANGELINA2 some species’ fitnesses

had upper limits which far exceeded those of other species, meaning that

weights had to be applied to bring each species in line with one another.

This exacerbated the spiking problem however, as a spike in a species with a

high upper limit led to a disproportionate spike in overall summed fitnesses.

196



Figure 10.2: The fitness of a population in ANGELINA5 throughout a stan-
dard execution. The top line in blue shows the fitness of the
Zone Map species; the middle line in red shows the fitness of
the Placement species; and the lower line in yellow shows the
fitness of the Level Design species.

Since these spikes tend to occur in the early generations of an evolutionary

run, this didn’t affect the final output of ANGELINA2.

For comparison, figure 10.2 shows a similar fitness graph to the one shown

in figure 10.1, taken from a run of ANGELINA5, the iteration of AN-

GELINA described in chapter 9. ANGELINA5’s fitness functions were all

normalised in the range [0, 1], and as can be seen from the graph, the spikes

are far less pronounced. The graph shows three lines for each of the three

main species of the system, for zone maps, placements and level designs. We

can also see some peaks where fitness spikes upward for a generation, before

other species respond to the change and the fitness changes again. In this

case, the final resting fitness for all species is higher than any spikes, and

the spikes affect only the placement species. This may be because this is

the species that is most tightly coupled to other species in the CCE system,

being highly dependent on the level design species in particular.

In both cases, despite the spiking and early problems with normalised

fitness values, we can see the fitness does increase with the number of gen-

erations, and after enough generations have passed, we can see plateauing

and the settling of any fitness anomalies brought on by interactions between

197



species. Of course, an increase in fitness only shows that the fitness functions

are being maximised in the artefacts generated; it does not guarantee that

the content produced is of good quality. To determine this, we conducted

surveys with players, which we describe below.

10.2.1 Fitness and Perceived Game Quality

In chapters 5-9 we presented many descriptions of fitness functions for dif-

ferent versions of ANGELINA. These fitness functions expressed numerical

metrics for scoring the quality of a game – yet at the same time, we are aware

that there is no real objective measure for many features of a game. One

cannot put a precise number on how enjoyable a game is, or how reward-

ing an experience might be. We have been careful throughout this thesis

to restrict ourselves to fairly defensible fitness criteria, mostly concerning

generally good yet non-committal qualities of games (such as not instantly

killing the player) or genre-defining features that we intended to bring out

in the games (such as the level traversal and progression in Metroidvania

games which we discussed in chapters 2 and 6). In showing that the fitness

for ANGELINA2 rises and plateaus throughout the course of an evolutionary

run, we show a basic requirement for an evolutionary system’s performance.

However, showing that fitness increases is not the same as arguing that our

fitness criteria are effective.

We performed two studies using games produced by ANGELINA2 to as-

sess whether the fitness of a game correlated with perceived quality of the

game by players. The first, a pilot study, asked 180 players to play the

same game generated by ANGELINA2 and rate it between 1 and 5, while

providing qualitative feedback on the system itself. The primary focus of

the pilot study was on this feedback, in trying to improve the system for a

fuller study. We noted in the pilot study that players frequently referenced

aspects of the game not designed by ANGELINA2 as either points worthy

of praise or criticism, such as the quality of the control scheme, for example.

The pilot study highlighted an important fact about automated game

design and evaluation with players, namely that it is hard to assess in ad-

vance what players will assume about the system, and potentially difficult

to control what they evaluate. Instructing players to evaluate the game as a

whole means they may evaluate aspects of the game that the system had no

control over; but directing the player to evaluate particular elements of the

198



Best Rank Middle Rank Worst Rank

HighFitnessGame 19 9 11

MedFitnessGame 9 15 15

LowFitnessGame 11 15 13

Figure 10.3: Data showing frequencies of ranks for the comparative study.

game shapes their expectation and understanding of the software, and may

colour their evaluation by focusing on particular game aspects (i.e. they

may look for evidence of artificiality or weaknesses in the areas we ask them

to specifically evaluate).

The follow-up study took 35 of the study’s original participants and asked

them to play three games designed by ANGELINA2. We chose three games

with fitnesses that ranked approximately in the upper, lower and middle

third of average fitness distributions, corresponding to fitness values of 436,

183 and 310 respectively under the fitness calculations we used at the time.

These games were unlabelled and presented to the participants in a ran-

dom order. We then asked the participants to rank the games in order of

perceived quality after playing all three. Our hypothesis was that higher

fitness games should be preferable to players than lower fitness games. The

data from this study are shown in Figure 10.3.

For our study data, we found a greater proportion of high fitness games

were ranked highest: 49% compared to 25% for lower and medium fitness

games. However, the effect was not significant (chi-squared, p=0.15). We

found a very weak but insignificant rank correlation between fitness and

player preference, (Kendall’s τ = 0.11, p = 0.17). In both tests, we were

unable to reject the null hypothesis that higher fitness is unrelated to player

preference. Although these results are inconclusive, the data suggests to us

that there may be some effect of fitness on preference. Two major factors

in particular made it hard to come to firm conclusions here: first, the in-

fluence of the aforementioned inability to guarantee that the player is only

evaluating the software’s decisions which we encountered in the pilot study.

The second factor, which many participants explained in written feedback,

was that they felt the games were too similar. ANGELINA2 is the last

version of ANGELINA before we developed systems for redesigning visual

and aural content, which means that every game had the same look and

199



style, with similar objectives and enemies. The main varying factors were

placement and design – factors which are hard to quantitatively assess,

even for professional games journalists (we discuss some examples later in

§10.4). Increasing the system’s capacity for novelty and innovation may

help mitigate this, but it may also distract players from evaluating other

aspects of the game, i.e. by constantly changing the aesthetic properties, it

may be difficult for players to assess whether two games are actually any

different in terms of their underlying structural game design.

10.3 Expressive Power

Variety and expressive power is a theme in evaluation methods for both

computational creativity and procedural content generation. Ritchie’s cri-

teria, discussed in §4.6, states that systems should be able to create artefacts

that go beyond the set that their designers had in mind when designing the

system – the inspiring set [102] – while Colton et al’s FACE model consid-

ers systems capable of performing more and varied kinds of creative acts

to be superior to those performing fewer [25]. Meanwhile in procedural

content generation, Smith and Whitehead argue for expressive range to be-

come more prominent in the evaluation of procedural content generators in

[112], something which Smith emphasises more strongly in [111], which we

discussed earlier in chapter 2.

We argue that we can demonstrate ANGELINA’s expressivity at two

levels: first on a genre level, by demonstrating, as we have in previous

chapters of this thesis, the many different iterations of the software that

used the same core idea of co-operative co-evolution to automatically design

games in a plethora of genres and engines. This shows that ANGELINA and

the framework it is built on is flexible enough to work in many different kinds

of game genre. Secondly, we can show expressivity on an intra-genre level,

by demonstrating that individual iterations of ANGELINA are capable of

producing a variety of output.

10.3.1 Expressivity At Genre Level

In previous chapters we have described five major versions of ANGELINA,

from ANGELINA1 to ANGELINA5. These systems covered a variety of

game genres, including arcade games, Metroidvanias, newsgames, puzzle

200



platformers and 3D maze games. We specifically expanded the genres and

engines we worked in throughout the ANGELINA project so as to demon-

strate the strengths of the approach – in chapter 6, for example, we demon-

strate that CCE can be engineered to evolve very specific genre-defining

traits such as those in Metroidvania games, while in chapter 9 we showed

that with the right supporting pre-design systems CCE can competently

generate game jam entries from just a single theme word.

These distinct versions of the software demonstrate that the application

of CCE to game generation is not limited to one specific subdomain within

games – it is a general approach which, so long as the designer can sub-

divide the design problem into constituent generative parts, can generate

games flexibly and effectively. We have also shown that these games are not

theoretical prototypes. For instance, ANGELINA4’s work contributed most

of the design of A Puzzling Present, a Top 500 Android game, as well as

entries to the Ludum Dare game jam which were taken seriously by fellow

entrants. This demonstrates that ANGELINA’s genre-level expressivity is

not theoretical, but demonstrates capability across multiple videogame de-

sign domains.

10.3.2 Expressivity At Game Level

In §4.6, we described Ritchie’s criteria for evaluating creative software [102].

Ritchie references the notion of an inspiring set of examples which the

software is expected to be able to reinvent, and then defines some of his

criteria in reference to this set, such as Criterion 9:

• Criterion 9 ratio(I ∩R, I) > θ, for suitable θ

Here, Ritchie states that a suitable proportion of a system’s output should

be results which are not in the inspiring set I, and it goes on to say that

it is desirable if the system can surprise its creators in doing so. Different

versions of ANGELINA have surprised both us as designers and the wider

community of players in different ways throughout its development.

For players, much of this surprise factor comes through the aspects of

ANGELINA that interact with cultural and real-world concepts. The most-

discussed aspects of ANGELINA2, for example, are the ways in which the

system reacts to well-known people when it comes across them in newspaper

201



Figure 10.4: Selected tweets following an article about ANGELINA in Eu-
rogamer. Many of the tweets referred to ANGELINA’s use of
public figures, as shown here.

stories. For example, figure 10.4 shows some tweets which followed an article

about ANGELINA. The article itself refers to ANGELINA’s response to UK

politician Theresa May in its subheadline: ‘ANGELINA designs video games

- and thinks that Theresa May is the worst human being on the planet.’ [38].

One of the oft-discussed features of ANGELINA2 in online discussions is

the fact that it misinterpreted the phrase ‘Rupert Murdoch is responsible

for...’ as implying that Murdoch was a responsible person, and this resulted

in ANGELINA2 liking him and portraying him favourably in its games.

Another example would be the game Sex, Lies and Rape, made about a

news story concerning the arrest and conviction of child abusers. The use of

children’s lullabies in the game, and the photographs of children, represents

a kind of emotional impact that is well beyond what we originally considered

possible when designing ANGELINA2.

We can also show surprise and innovation on the technical side of design

as well, in terms of rules, level design and so on. In chapter 6, for example,

we highlighted a level designed by ANGELINA2 with extremely precise tile

arrangement and powerup design which forced the player to fully explore the

game world without allowing them to shortcut parts of the level and reach

higher areas. This level of precise interaction between the two CCE systems

202



far exceeded our expectations of CCE’s ability to promote co-operation

between different evolving populations, and was certainly surprising to us.

In chapter 8, we documented ANGELINA4’s ability to generate game

mechanics and subsequently design levels which required their use. We

showed in the chapter quite clearly that ANGELINA4 was able to invent

mechanics which surprised us significantly. One mechanic highlighted a

feature in the Flixel API that we were not aware existed, despite having

worked with the library for over two years at that point. Another mechanic,

while seemingly uninteresting initially, was used by ANGELINA4 to exploit

a bug in A Puzzling Present ’s codebase to allow the player to climb up

walls. The emergence of a secondary mechanic, which used an exploit in

the game’s code, represents a very powerful illustration of the strengths

of code generation and direct game simulation, and was possibly the most

surprising outcome of all the work described in this thesis.

It is worth noting that ANGELINA5, the most recent iteration of the

software, has experienced a drop in reported surprise from players over the

months leading up to the writing of this thesis. We attribute this to the sys-

tem entering the Ludum Dare game jam multiple times without any changes

to ANGELINA5’s ability as a game designer. This results in games which

are all of the same level of complexity. There is an interesting cultural obser-

vation to be made here, since game jams are often a place where people go

to improve their game development ability and demonstrate their progress

as a developer. ANGELINA5’s engagement with the community has led,

we believe, to the same expectation being held of the software, and the lack

of growth and progress has resulted in a drop in the perception of quality

or interest in its games. We hope to monitor and improve this in future,

as we discuss in chapter 12. Nevertheless, it is worth observing that an

apparent expectation of progress exists when people encounter automated

game designers multiple times over a long period.

10.3.3 A Note On Controllability

Another metric often mentioned in conjunction with generative software,

including procedural content generation, is how controllable a piece of soft-

ware is [18]. That is, if one wanted to direct the system in question to

produce a particular kind of artefact, how easy is it to parameterise the

system to do this, and how successful is the system in fulfilling the request?

203



We have done no such studies of controllability on any iteration of AN-

GELINA. This is because it runs contrary to our aims for the software: to

be as autonomous as possible and to create independently without being

directed or controlled. There are parameters that can be adjusted within

ANGELINA, and the fitness functions themselves exert pressure which di-

rects the software in certain directions. Ultimately, however, we are only

interested in those parameters if ANGELINA itself is able to change and

control them, something we discuss as future work in chapter 12.

In many ways, the appearance of controllability is a drawback for our

software. We aim to have ANGELINA situate itself in a game design com-

munity and work towards being recognised as an independent creator in that

community. As we have already discussed throughout this thesis, one of our

key motivations rapidly became the perception of the software as being cre-

ative. Showing or designing ANGELINA to be controllable by a person

would likely detract from this, and reduce the perception of the software

as independent and intelligent. ANGELINA is not the only computational

system in which the aim of preserving the perception of autonomy is of

utmost importance: Harold Cohen’s AARON [17] and the aforementioned

The Painting Fool [21] both prize this also.

10.4 Quality

Games are hard to assess quantitatively, as player enjoyment is highly sub-

jective and games as a medium encompass an incredibly broad range of

experiences aimed at an even broader audience. To highlight this, games

journalists have begun removing scores from their reviews of games because

they recognise the impossibility of affixing a numerical value to an assess-

ment of a game [86]. One way of assessing whether a game is enjoyable is

to simply ask players directly. We did such a survey multiple times through

the development of ANGELINA, including the Ludum Dare entries where

the responses might be considered a similar kind of assessment. We have

already given the results of one such survey in §10.2.1, which investigated

a correlation between fitness and perceived game quality. Below we detail

further studies with players evaluating games made by ANGELINA.

204



10.4.1 ANGELINA4

In chapter 8, we described A Puzzling Present, an Android and desktop

game designed primarily by ANGELINA4 using mechanics and levels gen-

erated by the system. The game contained logging software and opt-in

surveys to allow players to give feedback on levels as they played them. The

objective was to conduct a large-scale survey of players in order to gain

feedback on the types of mechanic generated by the system, in addition to

evaluating different metrics for level design. However, we were also con-

scious that interruptions to play, or overt presentation of the software as an

experiment rather than a game, could deter players from completing levels

or giving feedback and/or change the nature of the experiment, which is to

ask their opinion on games, not surveys. In designing the survey structure

around A Puzzling Present, we therefore made several tradeoffs to balance

these two factors, as follows.

All play sessions were logged in terms of which buttons the player presses,

at what times, which can be used to fully replay a given player’s attempt

at a level. In addition to this, upon starting the game for the first time,

the player was asked to opt-in to short surveys after each level. These

took the form of two multiple-choice rating tasks on a 1-4 scale, evaluating

enjoyability (fun) and difficulty. The screens for these rating tasks were

presented to the player upon reaching the exit to a level, assuming the

player had agreed to respond to surveys, although even in this case, they

could continue without responding to the survey.

75,614 sessions were recorded in total, across 5933 unique devices. When

asked to opt-in to surveys, 60.7% of users agreed. Those who opted-in

contributed 63.4% of the total session count. 92.3% of sessions played by

opt-in players resulted in at least one of the two questions being answered,

with 89.9% of sessions resulting in both questions being answered.

A Puzzling Present contained thirty levels, split into sets of ten that share

a common mechanic. The three game mechanics were higher jump, bounc-

ing and gravity inversion, all of which we described in detail in chapter

8. Each level required the game mechanic to be used to complete it, but

were generated using differing metrics for difficulty expressed through evo-

lutionary parameters within the level designer. These were broken down as

follows: two levels used a baseline setting determined through experimenta-

205



tion (‘Baseline’); two levels put stricter requirements on minimum reaction

times needed (‘Fast Reaction’); two levels selected for longer paths from

start to exit (‘Longer Path’); two levels selected for more mechanic use in

the shortest solutions (‘High Mechanic Use’); and two levels selected for

longer action chains in the solution (‘High Action’). This provided a variety

of the levels for the player to test, and allowed us to analyse feedback data

to assess these metrics for future use. To mitigate bias or fatigue introduced

as a result of experiencing certain levels or sets of levels before others, the

order in which a particular player experienced the levels was randomised

when the game was first started up. This was done by first randomising

the order of the game mechanics, and then randomising the order of the

ten levels within that set, thereby ensuring that all levels which share a

mechanic are experienced together, to provide a more cohesive experience.

Figure 10.5 shows the mean difficulty and fun ratings for the nth level

played as the people progressed through the 30 levels. These mean ratings

remained fairly consistent throughout the game, with the exception of the

30th level. As levels were presented randomly, we believe this is an effect of

the very low number of people still playing at this point – around a third

of the number who completed the first world. It may also be related to

the fact that after the last level the player knows there is nothing left to

do, and so may close the application before the level completion survey is

registered. The consistency detected in level ratings indicates that learning

or fatigue did not seem to have much effect on player experience. This

may be down to the interactivity of the artefact in question, and raises the

question of whether the evaluation of created artefacts is more consistent

when the survey participants are interactively engaged. We believe this may

be the case, provided that the game itself is enjoyable. A Puzzling Present

received mixed reviews from players but kept enough of them entertained

enough to complete at least one world in its entirety. We have seen evidence

of survey-based games that received very critical reviews from players [121].

Of course there is a tension here, because most academic groups do not

have the resources to develop polished games (A Puzzling Present included

here, being far from polished). Happily, this goal synergises with one of the

broader aims of automated game design, being the development of high-

quality and enjoyable games. The better the systems get at achieving this,

the more consistent the surveys and studies become.

206



Figure 10.5: Mean fun (white circles) and difficulty (black circles) ratings
for the nth level of A Puzzling Present played. Higher ratings
are more fun/more difficult respectively.

The number of players completing a given set (world) of ten levels for

a certain mechanic is consistent across the three game mechanics; 2259

completed World one, 2151 completed World two and 2219 completed World

three. The data show no bias towards players not completing any particular

one of the three worlds, suggesting that players left due to general fatigue

with the system as a whole, rather than the content generated by Mechanic

Miner. This may be down to the human-designed elements of the game

that were common throughout the three worlds – such as the interface,

control scheme, or artwork – and therefore not attributable to the output

of ANGELINA4.

Under statistical analysis of the survey scores, we found a moderate and

highly significant rank correlation between mean difficulty and enjoyability

(Spearman’s ρ = 0.56, p = 0.002). The relationship between the difficulty

of a level and the perceived enjoyability of a level is an interesting one to

consider. While we might expect an inverse relationship for an audience

who are easily frustrated with games, we also see many examples of games

in which challenge correlates to an enjoyable game – one’s mind may be cast

back to the discussion of Masocore games in chapter 2. We postulate that

the correlation between mean difficulty and enjoyability exists here because

the levels are, on average, too easy – the average difficulty rating across all

levels is just 1.45, on a scale of 1 to 4 – and so an increase in difficulty was

207



●

●

●

●

●

●

●

●

●

●

1.00

1.25

1.50

1.75

2.00

1.8 1.9 2.0 2.1 2.2 2.3
Mean fun

M
ea

n 
di

ffi
cu

lty world
● Invert gravity

High jump
Bounce

Figure 10.6: Mean level fun and difficulty, broken down by ‘world’ (a group
of levels that share a mechanic) in A Puzzling Present.

208



Group Mean Fun Mean Difficulty

High Jump 1.96 1.38
Invert Gravity 2.02 1.55
Bounce 2.03 1.42

Baseline 1.96 1.30
Faster Reaction 2.01 1.51
Longer Path 1.95 1.20
Higher Mechanic Use 2.03 1.60
Longer Solution 2.06 1.66

Figure 10.7: Mean level fun and difficulty, broken down by game mechanic
and level design parameters.

welcomed as it made the levels more interesting.

The mean fun and difficulty by world mechanic and level generation met-

ric are shown in Table 10.7. Variations in mean fun are very small between

groups, whereas mean difficulty shows greater separation, especially between

the metrics. An analysis of variance (ANOVA) showed highly significant

(p < 0.001) separate main effects for fun and difficulty with respect to both

factors. Post-hoc Tukey’s HSD tests suggested the following significant dif-

ferences between groups: a) the mechanics Invert Gravity and Bounce are

more fun than High Jump; b) the metrics Fast Reaction, High Mechanic

Use and High Actions are correlated with higher fun ratings than Baseline

and Longer Path; c) all differences in mean difficulty between mechanics,

and between metrics, are significant.

These results are notable not because they indicate ANGELINA4 is pro-

ducing games of a high quality, but because they correlate with what we

would expect from players who like this type of game playing puzzle plat-

formers designed by people (for background on the genre, recall our defi-

nition in §2.2.2). Participants in the A Puzzling Present survey were not

chosen from a pool; they self-selected, by downloading the game in the

first place. This means we can assume that the majority were interested

in playing a puzzle game, and might therefore associate difficulty with en-

joyment. The fact that players consistently played through all thirty levels,

and connected our metrics for difficulty with a higher enjoyment of the level,

suggests that ANGELINA4 was successful in producing a puzzle platformer

experience that the players were expecting, even if it was not to the highest

degree of quality.

209



However, the survey also raises questions about how to assess game qual-

ity en masse among large numbers of players without the direct supervision

of a laboratory environment. A Puzzling Present is not like most games de-

scribed in this thesis – it was not the singular creation of ANGELINA4, be-

cause it was modified and extended by us in order to present the game partly

as an experimental survey, with randomisation of levels which stopped AN-

GELINA4 from enforcing any kind of pleasing difficulty curve. Surveys, no

matter how optional or non-intrusive, ultimately require the intervention of

another designer in the game’s codebase, and they also interrupt the player’s

experience of the artefact produced by the automated game designer. This

may appear trivial given the nature of ANGELINA’s games at the moment,

but as the sophistication of automated game designers increases, the expe-

riences they offer will become more immersive, moving and impactful, and

intruding upon this with surveys and randomisation is likely to taint the

evaluation of an artistic or otherwise creative work.

Of course, much research exists which uses surveys or similar approaches

to acquire information about a game from players [12][55], and testing with

players is a crucial part of the game development process. However, in many

of these cases the aim is to understand the player’s reaction to specific el-

ements of a game (such as the control scheme), rather than an aesthetic

response to the work as a whole. By integrating a survey or questionnaire

into the cycles of play of a game designer by ANGELINA we are break-

ing the player’s connection with the game to ask them questions about

the very connection we are interrupting. Perhaps the kinds of evaluation

sought in automated game design are closer to late-stage playtesting where

a developer might watch a player play the game for an extended period of

time, without interruption, before asking for qualitative feedback during a

post-play interview. We are yet to explore these ideas through ANGELINA

but this may be a future direction for ANGELINA’s evaluatory process to

develop along.

10.4.2 ANGELINA5

In chapter 9, we described ANGELINA5’s entry into the Ludum Dare game

jam. In particular, we described the two games entered by the system in

December 2013. In this section, we give the results of this performance and

also include results from the following April 2014 game jam, too. Recall

210



that ANGELINA5 entered Ludum Dare twice in December 2013; once with

an anonymised entry which did not identify the game’s designer as a piece

of software, and once with a full description of ANGELINA5 attached. The

game Stretch Bouquet Point was anonymised, while To That Sect was not.

We hypothesised that repeated entries to the Ludum Dare game jam will

lead to a lowering of ratings for ANGELINA’s games, as the positive bias

is reduced due to repeated exposure to the system.

The ratings process for Ludum Dare works as follows: anyone who enters

a game into the jam may rate other games in eight categories: Overall, Fun,

Audio, Graphics, Mood, Innovation, Theme and Humour. Each category is

rated out of five, and ratings do not need to be entered for all categories.

While reviewers can rate any game they want, the most common way of

finding games to rate is to use the Play And Rate page on the Ludum Dare

site. This page displays games in an ordering dependent on two factors: how

many ratings that game has received, and how many ratings that game’s

designer has given out. The more ratings a designer gives, the higher their

game is placed on the Play And Rate page, until their game receives more

ratings and it sinks down again. This ratio is weighted such that games

with less than twenty ratings receive a boost. This is to weight it in favour

of games with fewer ratings, so that the final scores are more statistically

significant (and so that people get a more evenly distributed amount of

feedback).

There are some methodological complications here. Firstly, we can only

gain ratings for ANGELINA5’s games by reviewing games ourselves. We do

this by reviewing them as we would normally, but being careful to leave no

written comments that might sway a game designer one way or the other

(since it is common to visit and rate the game of someone who has visited

and rated you). The second complication is that we can’t be certain that

all ratings given for ANGELINA5’s games are equally diligent and honest

in reviewing the game. Ludum Dare operates on the basis of an ‘honour

code’ because it is possible to just deliver quick ratings on many games

without playing them, in order to boost your position in the Play And

Rate ordering. Finally, in the case of the anonymised entry, we needed to

ensure that both games would not rise to the top of the Play And Rate

page simultaneously, as the similarities between the games could become

more obvious. To mitigate this, we ensured that we reviewed games under

211



Ranking (TTS) Ranking (SBP) % (TTS) % (SBP)
Overall 500 551 36 29

Fun 515 543 34 30
Audio 211 444 73 43

Graphics 441 520 43 33
Mood 180 479 77 39

Innovation 282 525 64 33
Theme 533 545 32 30

Humour 403 318 48 59

Table 10.1: Overall scoring for To That Sect (TTS) and Stretch Bouquet
Point (SBP). The first two columns show the position in the
final entry list (lower is better), while the second two columns
show the percentile this places the game in (higher is better).
There were 780 total submissions to this track.

both accounts at separate times of the day, at least six hours apart. This

meant that each game rose to the top of the Play And Rate rankings, was

reviewed, and then sank again before the other game was pushed up.

Table 10.1 shows the standings for To That Sect and Stretch Bouquet

Point in Ludum Dare, as well as the percentiles this places each game in.

For all categories, with the exception of Humour, the non-anonymised entry

is ranked higher than the anonymised entry. We believe that Stretch Bou-

quet Point outperforms To That Sect on humour unintentionally, because

the audio content surprised and bemused many of its players, judging by

the comments left by them underneath the game’s entry. We believe that

this disparity in ratings shows that there is a clear positive bias towards cre-

ative software in the domain of videogames, which is at odds with similar

experiments conducted in other creative domains [40][89].

These results also give a rough estimation of game quality for ANGELINA5,

although the presence of positive bias does call this into question somewhat.

The bias is also evident in other areas of the ratings. For example, To That

Sect ranks in the 64th percentile for innovation, when the game is very

evidently not innovative at all. Combined with comments praising the in-

novative nature of ANGELINA5, this suggests that reviewers found it hard

to separate To That Sect from ANGELINA5 when reviewing, and ended

up rating the system rather than the game it had created, despite being

directly asked not to in the game’s description.

Despite this, we believe that some of the ratings can be considered hon-

212



% (TTS) % (JFG) % (CAU)
Overall 36 29 27

Fun 34 26 27
Audio 73 74 79

Graphics 43 36 30
Mood 77 81 -

Innovation 64 59 -
Theme 32 26 -

Humour 48 51 -
Coolness 67 63 26

Table 10.2: Percentile data for To That Sect, ANGELINA5’s non-
anonymised December 2013 entry, Jet Force Gemini, its April
2014 entry, and Cut And Upside, its August 2014 entry.

est and supportive. Discounting Innovation as anomalous, ANGELINA5’s

best-performing categories were Audio and Mood. This is a clear strength

of this iteration of ANGELINA, with good justification and selection of

music through emotive connections with Metaphor Magnet, and very tar-

geted sound effect selection which is made possible by the breadth of the

FreeSound database and the improvements made to ANGELINA’s ability

to break down, expand and interpret a game jam theme. Unfortunately, we

were unable to obtain individual ratings data for each reviewer that played

ANGELINA5’s games, and so cannot determine more revealing statistics

such as variance of each category.

10.4.3 Trends Across Multiple Ludum Dare Entries

ANGELINA entered Ludum Dare a further two times, in April 2014 and

August 2014, with no changes made to the system in that time. The results

for these entries are shown in Table 10.2 alongside To That Sect’s results,

this time in percentiles only.

Note the additional row here denoting ‘Coolness’ and the fact that the

third game entry does not contain ratings data for many of the categories.

Coolness represents the percentile the game’s designer is in when he or she

is ordered according to the number of games reviewed. We can see here that

in the August 2014 entry, we rated far fewer games than in the previous two

jams. This was due to unforeseeable commitments around the time of the

jam. This in turn leads to a lower billing on the Play And Rate games page,

and fewer ratings overall. This led to some categories not having enough

213



data to return ratings. As such, the ratings for Cut And Upside are less

reliable than the previous two entries. We nevertheless include them here

for completeness and to draw extensions to some of the trends we have

identified.

Most categories see some kind of drop from the debut entry To That Sect

to the subsequent entries. The Overall category in particular drops seven

percentage points down to the same level as the anonymised entry in the

original jam, suggesting that bias is reduced and people are more honestly

critical in their ratings upon repeated encounters with ANGELINA5. What

is interesting to note is that despite this drop, the ratings for Mood and

Audio remain high, actually increasingly slightly in the case of Audio (no

Mood rating is available for Cut and Upside so this is hard to tell defini-

tively). We believe this provides evidence for our claims that ANGELINA5

is considered to perform well in these categories and this is not necessarily

a case of bias.

One might be skeptical about the Audio rating, however, since AN-

GELINA5 is not creating the audio from scratch but searching and utilising

audio from various sources. We would argue that ANGELINA5 is demon-

strating skill in selecting and applying the sound effects and music in its

games, however, and this is evidenced by the fact that the ratings for the

Graphics category are far lower than Audio, and continue to get lower in

subsequent jams, despite ANGELINA5 using external graphics databases in

the same way it uses external sound databases. Here, the presence of pre-

made handcrafted content did not artificially increase the ratings in this

category. We claim that this shows that performance in the Audio and

Mood categories are more likely because of something that ANGELINA5

is doing that results in better games, and not merely a function of the

human-made content the system is leveraging.

10.4.4 Qualitative Review Analysis

In addition to the scores recorded by the Ludum Dare site, it is also worth

considering the written comments left by some reviewers underneath the

Ludum Dare submission. Reviews for To That Sect largely balanced posi-

tive with negative remarks. No comments were universally negative, tem-

pering any criticism with positivity. For example, one comment states that

“Angelina seems really good at creating an atmosphere with both sound

214



and visuals. But the game part of it seems a bit lacking still.” This praises

the game for its use of visual media and sound content, cushioning the blow

for the criticism that the gameplay of running around a maze and looking

for the exit is not as fun as they had expected or hoped. Another comment

states: “The game itself is too simple. It seem the AI got the mood, but

not the [game]play.” To That Sect highest rating was in the Mood cat-

egory. We consider this to be quite an achievement for the system, and

we believe that the process of music selection through emotion recognition

plays a particularly important role in making Mood one of ANGELINA5’s

strong points.

There are 33 comments in total on the page for To That Sect1. Sorting

them into four categories – entirely positive, entirely negative, mixed, and

neutral/other – we find that 18 of the 33 comments are entirely positive,

14 a mix of positive and negative comments, and 1 comment is neutral

(a suggestion about solving a technical bug in the game). None of the

comments are entirely negative.

Comments on Stretch Bouquet Point, where the reviewers did not know

that the author was a piece of software, have a different and altogether

more passive-aggressive tone. Some are outright negative, such as “this was

a rather annoying experience.” Others are more indirect in their criticism,

which we interpret as the commenter attempting to shield the developer

from directly being insulted while still noting their bemusement at the game.

One comment states, for example, “You made me feel something there.

Don’t make me put it into words though.” while another says “This was

certainly an experience.”

It’s possible that the tempered tone is because many entrants to Ludum

Dare are just starting out in game development, and reviewers do not wish

to directly insult or discourage novices or young people. Because the en-

tries are done through semi-anonymous usernames, it’s hard to tell where

a game is coming from, and reviewers may therefore be cautious before di-

rectly criticising someone’s work (the author has experience of this – direct

criticism of his own submissions to Ludum Dare come mostly from people

who know him well, and feel capable of discussing and sharing their opin-

ion frankly). It should also be noted that there are, of course, differences

between To That Sect and Stretch Bouquet Point. Stretch Bouquet Point

1http://www.ludumdare.com/compo/ludum-dare-28/?action=preview&uid=29184

215



includes much stranger and more powerful audio clips than To That Sect,

and is considerably less subtle – very loud chanting starts the second the

player begins the game. We did not select Stretch Bouquet Point to be the

anonymised entry – ANGELINA4 created both games in turn, and the first

game it created was always intended to be the non-anonymised submission.

Nevertheless, it is possible that had the games been swapped and Stretch

Bouquet Point been the non-anonymised submission, responses would have

been different. This is difficult to ascertain through open submission to

Ludum Dare, however.

There are 21 comments in total on the page for Stretch Bouquet Point2.

Sorting them into the same four categories as before – entirely positive,

entirely negative, mixed, and neutral/other – we see that 2 of the comments

are entirely positive, 4 are entirely negative, 3 are a mix of positive and

negative comments and the remaining 12 are categorised as neutral or other.

This includes comments with no content but implying a judgement on the

game, for example “Umm... .... ....” While the comment has no explicit

praise or criticism, the implication is that the game was confusing or strange

to the reviewer. We categorise these comments as neutral although even here

they lean towards a negative assessment.

The balance of comments between the two submissions definitely suggests

that people were less willing to be critical of ANGELINA’s entry to the

game jam when they were aware that it was created by a piece of software

developed in the course of scientific research.

ANGELINA’s entry to Ludum Dare 28 received some attention in the

game development world, in the press (such as [39]), social media and the

Ludum Dare community specifically3. The last comment on Stretch Bou-

quet Point, posted less than twelve hours before the results were announced,

reads “Hah. You’re a control, aren’t you?” – in other words, members of

the Ludum Dare community are now well aware that ANGELINA is enter-

ing the jam, and because its games all have a similar structure and visual

style, repeating the anonymised experiment was considered to be difficult if

not impossible.

The reviews for Jet Force Gemini have a similar tone to those for To

That Sect, although more of the comments convey an awareness of what

2http://www.ludumdare.com/compo/ludum-dare-28/?action=preview&uid=32167
3https://twitter.com/ludumdare/status/420677578383302656

216



ANGELINA is and some mention having played or read about its entries

in Ludum Dare 28. The game received 28 comments in total, which were

categorised as with the previous entries. 13 comments were entirely positive,

2 comments were entirely negative, and 11 comments were a mix of positive

and negative comments. The remaining 2 were neutral or unrelated - asking

for a Linux build of the game, for example.

The presence of two completely negative comments for Jet Force Gem-

ini suggest that the positive bias weakened slightly between ANGELINA’s

debut in Ludum Dare and its second entry. This argument is strengthened

by some of the comments explicitly stating that they perceived a drop in

quality or that Jet Force Gemini offered nothing new over ANGELINA’s

past entries. The version of ANGELINA5 that entered Ludum Dare 29 is

almost identical to the version which entered Ludum Dare 28 save for some

slight improvements to theme parsing and level design, and some bugfixes.

This all means that the games are very similar. Despite this similarity, other

reviewers felt that Jet Force Gemini was a better game than To That Sect,

and said so in their comments.

10.5 Cultural Impact

Research in the artifact generation paradigm of artificial intelligence [29]

often focuses on a search for objective quality metrics that can indicate how

good a piece of software is at producing things of worth. This is often quite

effective when the artifacts in question are in domains governed by precise

equations and the output can be quantifiably evaluated. As Eigenfeldt and

Pasquier note in [40], such notions of optimality are often lacking when

the output is a creative work, leading to a search for alternative evaluation

criteria, some of which we explored in §4.6. Another important factor is to

observe not the work itself but the influence of the work on the context it

is in, and to try and ascertain whether or not ANGELINA has affected the

modern culture of videogames, if at all.

217



10.5.1 ANGELINA as an Exhibit

In August 2014 ANGELINA5’s Ludum Dare entry, To That Sect, was fea-

tured in an exhibition at REVERSE in New York City4, hosted by a games

and arts group called babycastles5. The exhibition was described as an event

that:

...explores the the wonder, banality, comfort, humor, and terror

that can arise, often simultaneously, out of designed systems.

ANGELINA5’s presence in the event in particular is described as follows:

...even step into a world imagined, itself, by a system.

These somewhat charged descriptions of both the exhibition and the work

itself paint a particular picture of ANGELINA as something mysterious and

perhaps worthy of science fiction. Nevertheless, its inclusion as part of this

exhibition shows that the research itself is taken seriously as a new frontier

in the culture and art of videogames, even if ANGELINA5 itself is not yet

accepted as an individual creator – Michael Cook was listed as the primary

exhibiting artist, rather than the software itself.

10.5.2 ANGELINA as a Gendered Icon

ANGELINA’s name was originally chosen out of a desire for a humourous

acronym6 but after the project moved increasingly towards Computational

Creativity research and interacted more with the public, the fact that its

name is also a name given to people began to present issues of representation

and questions as to whether ANGELINA’s name was offering a false sense

of humanity to people who played its games or otherwise observed it. In

February 2014, Alexis Ong wrote an article for Dazed Digital entitled Ten

women reshaping modern tech in which it named ANGELINA alongside

female academics and artists. Ong opens the article describing those named

in the list as ‘exploding online gender stereotypes’ [96].

ANGELINA is frequently referred to using gendered female pronouns, a

practice that we ourselves have struggled to stop doing, since the natural

4http://reversespace.org/safety-in-nebulous-710-83/
5http://babycastles.com/
6‘A Novel Game-Evolving Labrat I’ve Named ANGELINA’

218



flow of conversation using a person’s name simply causes one to default into

speaking in such a way. Ong’s article created some discontent among many

people in the games industry who were aware of ANGELINA, as its publica-

tion came at a time of increasing awareness of diversity and representation

issues in the games industry [134]. Many, ourselves included, felt that in-

cluding a piece of software in such an article was problematic because it

took a spot that could easily have been occupied by a person who perhaps

deserved the spot more than a piece of software that had been accidentally

gendered at some point in the past.

This shows a different kind of impact on the domain of videogames, per-

haps one that we do not see very often but one that we feel will be seen

increasingly often as Computational Creativity research produces systems

which interact in such direct ways with communities of people. ANGELINA

is simultaneously seen as equal and unequal. As researchers, we struggle for

ANGELINA to gain validity and recognition as a game designer, but feel un-

comfortable when it gains recognition for other things, such as a humanity

that it lacks and can never possess, at least in a literal sense. Despite this,

other opinions have been voiced on the subject, such as by videogames and

social justice researcher Amanda Phillips, who wrote about ANGELINA af-

ter encountering the research at the AIIDE conference [100]. Phillips writes:

One particular line from Cook’s talk got me thinking: he said

one of his struggles is to get Angelina recognized as a legitimate

game designer. Against a backdrop of human women struggling

to achieve legitimacy in the games industry (and games jour-

nalism and gamer culture), the accident of Angelina’s gender

becomes quite a bit more complicated – and potentially problem-

atic. I’m looking forward to watching how this project develops

and thinking about how it might have a place in commentary or

even intervention on the current troubles in game development.

In Phillips eyes, the fact that ANGELINA is struggling for acceptance

as a game designer provides an interesting twist to its accidental gendering

as female, mirroring the difficulties faced by many women in the games in-

dustry to gain a similar level of acceptance that ANGELINA is searching

for. Both Phillips’ reaction and the collective reaction to Ong’s piece shows

that ANGELINA’s status in the games industry, while confusing and exper-

219



imental, is provoking discourse on topics that perhaps have not been faced

before. We see this as ultimately a positive outcome for the system, albeit

one we did not foresee when the system was originally conceived.

10.6 Evaluation In Automated Game Design

At the beginning of this chapter we stated that there existed no agreed-upon

routes to evaluation for procedural content generators, and that evaluation

in computational creativity research is still lacking in consensus. As a re-

sult, we tried as many different approaches to examining and evaluating

ANGELINA as possible, as a way of investigating how automated game

designers can be evaluated.

Generating complete games is not a straightforwardly technical task. The

outcome cannot simply be evaluated quantitatively in the absence of players

– the ‘observers’ in the definition of computational creativity we gave in

chapter 4. Attempting to evaluate using metrics like fitness alone do not

adequately capture whether or not an automated game designer is achieving

its goals. Fitness merely indicates that the underlying evolutionary systems

are functioning correctly, but as we saw from the follow-up studies, fitness

does not necessarily correlate with enjoyment, or the perception of quality.

Just as we augmented co-operative co-evolution with additional design

phases as ANGELINA developed further, we similarly adjusted our evalu-

atory approaches to capture higher-level qualities of the games being de-

veloped – such as the system’s ability to be novel, to create new ideas or

knowledge, or to act in ways that others would consider skilful, appreciative

or imaginative [20]. Examining whether the system is having an impact on

the creative community in which it is situated, for example, is a valuable

way of assessing whether a system is making progress at the highest level, on

a social or cultural level. Although this approach is perhaps impractical in

a general sense, smaller-scale kinds of impact are also revealing. The discus-

sion of surprise earlier in the chapter is a good shorthand for demonstrating

that an automated game design system is capable of producing output that

is innovative or unexpected in some way, even if that innovation is at a

more local level rather than innovation on a global scale (see Boden [9] for

a discussion of creativity on different scales).

Ultimately, we are most satisfied with our evaluations of ANGELINA

220



through peer review, through the ratings process of Ludum Dare. Al-

though there are interesting methodological complications to evaluating AN-

GELINA in this way, such as the nature of the reviewers’ self-selection or the

difficulty of obtaining voting data, it represents a promising method for the

future of evaluating automated game designers, particularly those working

in the context of computational creativity research (which we would argue

all automated game designers are, to some degree). Peer review through

game jams and similar events are powerful because they use a large popu-

lation of potential reviewers with a variety of experience in the medium as

creators; they provide a mix of qualitative and quantitative through numer-

ical ratings and verbal discussion; they offer the potential for ANGELINA

to reciprocate and participate in rating and reviewing in the future, too.

Ludum Dare’s structure as a system of creativity, interacting peers, reviews

and promotion for the winners, closely mimics ideas of social creativity de-

scribed by Saunders in [106]. In the future such evaluations might offer both

evaluation and new research opportunities at the same time, by examining

the system’s relationship with the community it finds itself in.

10.7 Summary

We began this chapter by claiming that evaluation is difficult in the fields of

research that this work is situated within, namely Computational Creativity

and procedural content generation. This led us, over the course of the

work described in this thesis, to pursue a variety of different evaluatory

methods. While none of these methods leads to a strong conclusion about

ANGELINA’s ability to design games of high quality autonomously, we

believe that our mixed evaluation approach shows many different facets

of ANGELINA, and shines a light on the many and conflicting aspects of

research in automated game generation, which future research in the area

will surely encounter as well.

We looked at the improvement of fitness scores as an indication of an

evolutionary system’s performance, and then compared this to surveys done

with players about perceived game quality to see if a connection could be

made. The connection was difficult to make, which we believe is partly due

to the simplicity of the games generated by ANGELINA2, but also sheds

light on the complications of evaluating automatically designed games, with

221



participants finding it hard to critique only the parts of the game that were

designed by the software.

Taking inspiration from both procedural content generation literature and

Computational Creativity research, we considered the expressive range of

ANGELINA. We argued that the breadth of ANGELINA’s output through-

out the course of this thesis shows the wide applicability of computational

co-evolution and our methodology of breaking procedural generation tasks

into smaller evolutionary systems. We also discussed expressivity at a lower

level, showing that ANGELINA is capable of surprising its audience and its

creators, both intentionally and unintentionally.

We extended the discussion of game quality that began when considering

evolutionary fitness, and looked at two further surveys we conducted to

assess ANGELINA4’s sense of level design and difficulty, and ANGELINA5’s

interactions with the peer review system of Ludum Dare. In both cases, we

find that firm conclusions are hard to draw, but we also see indications that

ANGELINA is capable of designing levels that people find interesting and

enjoyable to play, and that despite the unclear evaluation conditions raised

by the surveys of ANGELINA2, there are still strengths to the system that

reviews are able to identify, as evidenced by the reviews of ANGELINA5’s

Ludum Dare entries and their high ratings for Mood and Audio.

Finally, we discussed cultural impact, perhaps the hardest aspect of a

project to evaluate. How has ANGELINA impacted the culture and thought

processes behind videogames, if at all? We discussed two aspects in partic-

ular, relating to its struggle to be recognised as an individual artistic entity,

and the response to it being treated as a gendered entity by the technology

and videogames community. We believe that as we push ANGELINA’s in-

teractions with creative communities further, through projects like Ludum

Dare, we will see more of these issues arise as people encounter and interact

with the system in different ways.

Evaluating such a large and multi-faceted project is difficult, and this

chapter does not offer firm answers to many of the questions raised in this

thesis. For this reason, the reader may find more answers in Chapter 12 in

which we discuss the future work that is likely to lead from the unanswered

questions that remain. Many of the issues raised in this chapter directly

influenced the intended trajectory of future work.

222



223



11 Related Work

11.1 Introduction

Throughout the background chapters of this thesis, we introduced many

important concepts and prominent research that inspired and directed the

development of our project. ANGELINA has roots in many different areas,

including videogames, computational creativity theory and computational

evolution. In this chapter, we take the opportunity to more specifically

consider work related to ANGELINA and look at our work in the context

of these other projects.

In section 11.2, we look at work undertaken in the field of procedural

content generation to implement automated game design systems, some fo-

cusing on specific elements of a game’s design, others attempting a more

holistic approach similar to that attempted by us with ANGELINA. We

assess the kinds of activities these different projects undertake when de-

signing or generating content, and consider how ANGELINA differs from

each, both from a technical standpoint as well as a cultural and creative

one. Often we find that while the technical aims of the projects align with

those of ANGELINA, the overriding philosophical objectives of our work

continue to set it apart from contemporary research, and the desire to have

the software accepted as a game designer in the future provides a unique

motivation behind some of our design decisions in contrast to other work.

In section 11.3 we consider projects from the field of Computational Cre-

ativity, and look at how they developed over time, and how they dealt with

issues of evaluation. In particular, we focus on how the two systems – the

artificial painter The Painting Fool and the artificial soup chef PIERRE –

dealt with evaluation directly with the public, and how they interacted with

communities of experts and laypeople/consumers alike. While not directly

comparable in the traditional sense of ‘related work’, the results from the

two systems offer interesting comparisons for ANGELINA nonetheless.

224



11.2 Automated Game Design

11.2.1 Togelius and Schmidhuber

In [125] the authors describe an unnamed system, henceforth referred to

as TS, which designs simple 2D arcade games. We mentioned this system

earlier in chapter 5 – it served as the inspiration behind ANGELINA1 as

well as other work outlined later in this section. We describe below the

design space of the TS project, as it has been influential as a baseline for

automated game design tools since, including ANGELINA. The following is

an edited description of the design space from [125]:

• The game takes place on a discrete grid with dimensions 15×15.

• Each cell on the grid is either free space or a wall.

• A game will run for a finite number of time steps, starting at t = 0

and continuing until either t = tmax, score >= scoremax or the flag

agentdeath has been set.

• At the beginning of a game, one of the cells (randomly selected among

the 4×4 centralmost cells) contains the agent. At any time step, the

agent can and must move one step either up, down, left or right.

• At the beginning of a game, zero or more cells are occupied by things.

These cells are randomly chosen from the free space on the grid, except

that no thing starts closer than two steps from the agent. Every thing

can be either red, green or blue. Things can, but do not have to, move

one step every time step.

• Each colour has an associated movement logic that determines how

things of that colour move; a collision effects table determines what

happens to things when two things of the same or different colours

collide, or when a thing and the agent collide; a score effects table

determines how the score changes when a collision between two things

or between a thing and the agent occurs.

The design space of ANGELINA1 inherits many of these features. We use

the terminology entity in place of ‘thing’.

225



TS begins by randomly generating a population of game rulesets, by set-

ting the values for the game’s specification to random values. This popula-

tion is then evolved over 100 generations, and each generation is evaluated

using neural network player controllers which attempt to learn the game’s

ruleset through repeated play. The evaluation measures how quickly, and to

what degree, the neural network was able to learn how to play and win the

game, if at all. This is inspired by Koster’s Theory of Fun [75] in which he

states that fun in videogames is derived directly from how difficult or easy

the game is to learn and how much learning potential it continues to afford

over time. We discussed Koster’s work earlier in chapter 2.

The learning process and design of the neural networks was such that a

typical evolved controller ‘sometimes wins the game, and other times fails

through some mistake of varying severity’ [125], thus achieving a balance

between trivial failure and trivial optimisation for most game rulesets. The

fitness rewarding the performance of a neural network is the fraction of

the player’s final score for that run divided by the target scoremax. Thus,

controllers that make progress in gaining score are rewarded more until

they eventually complete the game. The best fitness achieved through the

evolution of player controllers for a given number of generations indicates

how rapidly the neural network evolution was able to find controllers which

performed well at the game, which the authors argue informs how learnable

the game is and thus how fun.

The authors note that ‘in the current rule space, the vast majority of

games are unplayable’ in the sense that they are either far too hard or far

too easy for a human player, regardless of the neural network performance.

They cite several examples of good, curated games however, including Chase

The Blue (a human-assigned name) where the player must catch a blue

object twice in a short timeframe.

While ANGELINA1 inherits the design space from TS, it expands on it

considerably, attempting to lay out the initial configuration of game ele-

ments as well as design parts of the levels. This was later developed in

subsequent versions of ANGELINA to more deeply alter and vary parts

of a game such as the specific value of variables governing game mechan-

ics, or the aesthetic and decorative aspects of the game. This progresses

ANGELINA as an automated game designer on both a technical level (in

systems such as ANGELINA4, see chapter 8) and an artistic or creative

226



level. It should be noted however that TS only aims to design rulesets, and

the authors make no claims of it being an automated game designer.

The philosophy of using learning and neural networks as evaluators also

differs considerably from the approach we have taken. ANGELINA1 also

used player controllers to evaluate evolved game designs. However, these

controllers were statically defined to have certain properties which were

intended to investigate particular aspects of the games. Learning is an ap-

pealing means to evaluate game designs because it is extremely generalisable

across all kinds of game, and is fairly high-level in terms of its application

(it doesn’t differentiate strategic thinking from reflex action, which is useful

in comparing games of different types).

We avoid using learning as a metric in ANGELINA for two reasons pri-

marily. Firstly, we don’t believe learning-as-fun adequately captures enough

elements of why people play games, and certainly doesn’t capture why peo-

ple design games. While it might help to evaluate a game in retrospect,

people have very different motivations for designing games, and this is some-

thing we ultimately wish to capture in ANGELINA. Games can be designed

to express a view, convey a message, instil a feeling or sensation in the player,

experiment with an aesthetic or mechanic, or for the designer’s own learning

and self-improvement. While ANGELINA’s evaluatory process is simplistic

currently, we intentionally kept it basic so that it can be built on in the

future by the system itself. We want to keep our own prescription of what

constitutes fun or quality in a game to a minimum.

The second reason is that learning is difficult to quantify. TS represents

an interesting approach to the problem and a good attempt at using learn-

ing in a concrete generative system. Nevertheless, it’s hard to connect a

simple neural network’s ability to learn to that of a person, particularly

when paired with a fitness function that only deals with score, and Schmid-

huber’s ‘Theory of Artificial Curiosity’ which further complicates the model

by adding in subjective theories of robotics. Learning is a complex process

that we don’t fully understand, and while we believe it will be useful in

future work in the field of automated game design, it feels premature to

use it now. With that said, we expect models of learning to be useful in

designing difficulty curves and balancing games in the future of our work.

227



11.2.2 Game-O-Matic

In [128] Treanor et al. describe the Game-o-Matic (GOM), a tool for au-

thoring videogames by describing relationships between objects that will be

in the game. The tool was originally developed to help journalists rapidly

develop newsgames that express ideas or elements of a news story. The

emphasis was on developing a tool that was usable by non-programmers,

but still capable of developing interesting, playable games that conveyed

something meaningful about an event or a situation.

Game-o-Matic’s development is based on a philosophy of game design

called proceduralism, not to be confused with procedural content generation

which we described in chapter 4. Proceduralism is a term proposed by game

designer and critic Ian Bogost to describe an approach to game design in

which the game’s systems convey the meaning of the game, rather than its

appearance or presentation. In [10] Bogost writes of proceduralist games:

In these games, expression is found in primarily in the player’s

experience as it results from interaction with the game’s me-

chanics and dynamics, and less so (in some cases almost not at

all) in their visual, aural, and textual aspects.

Bogost also makes other claims about proceduralist games in [10] (in-

cluding, interestingly, “the strong presence of a human author” which is

of relevance to this thesis in a broader sense perhaps). However the pri-

mary factor is the belief that meaning is conveyed through mechanics and

systems, rather than the audio and visual content of the game.

The process of interacting with the GOM begins by drawing up a concep-

tual diagram of the relationship the user wishes to express through a game.

Figure 11.1 shows an example of such a diagram. Nodes in the graph rep-

resent objects in the world; in the figure, the concepts are related to a food

chain of corn, cows, burgers and humans. Vertices in the graph represent

relationships between concepts. Corn feeds cows, cows make burgers, and

humans eat burgers.

This graph is then taken by the Game-o-Matic and processed to create

a game. The system attempts to find graphics in a database that match

the concept nodes; if no graphics can be found then coloured circles with

text labels are used. The relationships linking concepts are then mapped

228



Figure 11.1: Screens from the Game-o-Matic. Top: A concept graph show-
ing related concepts. Bottom: A game based on that concept
graph.

229



by the system to known mechanics in GOM’s database. These mechanics,

when combined with thematic information from the game’s concept graph,

form what the authors call micro-rhetorics; small independently-meaningful

units of gameplay. For example, if a cow touches a corn and the corn

disappears, this conforms to the micro-rhetoric of the cow eating the corn.

This relationship is meaningful in isolation, but can also be inserted into

a larger game to supply meaning to a bigger system. Figure 11.1 shows

one such game, along with the concept graph tools that are supplied with

versions of GOM. Here, the relationship between corn and cows is in the

larger context of a system in which cows can be eaten by people in the

form of burgers. The connections between these elements all contribute to

a particular kind of game and a particular kind of meaning (even if, as in

this case, that meaning is quite simple).

On a technical level, GOM and ANGELINA share some similarities in

that they both aim to produce complete games and design multiple aspects

of the games – GOM designs both the game’s mechanics as well as its visual

content, for example. The GOM works sequentially, designing each aspect

of the game in stages, while ANGELINA attempts to design all aspects

of its games simultaneously, allowing content produced by one part of the

system to influence potentially all other content generation processes, and

to be influenced in turn by those systems too.

On a philosophical level, the aim of the GOM project is to create a tool

that is used by people to design games, positioning the GOM as a design

assistant rather than a standalone game designer. This is an elementary

distinction of ANGELINA and the GOM. People are frequently contracted

to create games in which they have no creative input themselves, for ex-

ample. In the case of software, however, it is important to consider the

sources of knowledge and data, particularly when considering the creativity

of a piece of software. The GOM relies heavily on the input concept graph

to make sense of the world it is depicting and understand the relationships

between objects. ANGELINA, meanwhile, aims to work from much looser

input information and to try and mine this knowledge about the real-world

itself.

While this might seem like a minor difference, relating knowledge about

the real world to a system of game mechanics is something we consider to

be an AI-complete task [32]. The authors of the GOM carefully created

230



a database of micro-rhetorics specifically relating game mechanics to real-

world concepts, and even with this rich background of hand-crafted data

the GOM can only recognise 17 relationships between objects in its input

concept graphs. Although ANGELINA’s results are often bizarre or hard

to interpret, it demonstrates a fundamental difference in the goals of the

two projects.

It should be noted that at no point do the authors claim that the GOM is

a computationally creative system, nor do the project aims include claims

of creativity. The GOM is a powerful tool for enabling people to design

a wide array of games with little programming knowledge. ANGELINA,

meanwhile, is a project which aims to produce an autonomous, standalone

system capable of designing games and being recognised and treated as a

game designer. At this early juncture in the field of automated game design

the systems seem similar, but we feel that as the field develops, projects

such as the GOM and ANGELINA will be seen as pursuing separate but

complementary research directions in the field.

11.2.3 Nelson and Mateas

In [92] Nelson and Mateas describe an unnamed system which generates

simple microgame in the style of WarioWare [95]. WarioWare was a game

composed of many microgames, in which the player had only a few seconds

to complete a simple task such as pressing a button a number of times

or guiding a car around a racetrack. The microgames all take place on a

single screen – the player has to assess and complete the task in a matter

of seconds, so simplicity is essential.

The system presented in [92] (hereby referred to as NM) takes a verb and

noun pair as a primitive description of the game (such as ‘shoot ducks’) and

then creates a simple single-screen microgame based on the input words.

The authors express two aims for games created by NM:

The game should “make sense” in terms of the roles its thematic

elements are playing, and it should be “reasonably close” to what

the user requested.

NM employs a database of pre-made mechanics which are tagged with

certain verbs or actions, contextualised based on the role of the player in

231



each scenario (thus a game where one object chases another might relate to

‘attacking’ if the player is controlling the chasing object, but ‘escaping’ if

the player is controlling the object being chased). NM searches ConceptNet

[81] to find the verb in the database that has the shortest number of links

to the verb chosen by the user (as explained below). Once a verb has been

chosen, the mechanic it is associated with it selected as the core of the game.

The mechanics have defined nouns that they require in order to complete

a game. To use the previous example of one object chasing another – called

Avoid in the authors’ work – this requires two objects, one to be chased

and another to do the chasing. Three competing criteria are used to select

nouns:

We choose nouns from those for which we have sprites that meet

the constraints of the game and are close to what the player

requested. [92]

By “constraints of the game”, the authors mean that the chosen nouns

should be close to nouns in ConceptNet with certain properties associated

with the game mechanics in the hand-crafted database. The Acquire me-

chanic template involves two nouns, with the player controlling one noun

and collecting multiples of the other noun. According to [92], the two nouns

should be connected in ConceptNet via the relationships DesireOf – in other

words, the player object desires the secondary noun according to Concept-

Net. As with the verbs, the noun selection is also traded off against whether

the nouns are close to the original request by the player. Distance of nouns

is measured using hypernym/synonym relationships in WordNet.

Although NM designs smaller games with fewer components than AN-

GELINA, the two systems have similar approaches and the use of Concept-

Net and WordNet to narrow free input down to a database of understood

concepts feels closer in spirit to our approach with ANGELINA of designing

a system that can ostensibly design a game about anything. Our approach is

partly distinguished by the development of Mechanic Miner, as described in

chapter 8, as this allows us to progress ANGELINA past the point of need-

ing hand-designed game mechanics and enables it to generate mechanical

concepts on its own.

ANGELINA’s use of CCE to design game elements simultaneously also

sets it apart from NM, since this again allows different game elements to

232



interact with one another and influence the process of game design. This is

less integral for NM since there are few interrelated parts, and the stripped-

down nature of the microgames means there is less of an emphasis on the

design of large spaces. Nevertheless, it is another feature that sets the two

systems apart.

Finally, as with all systems described in this subsection, the authors of

[92] do not explicitly intend for NM to be recognised as a creative system,

nor do they aim to identify the software as an independent game designer.

Although largely a philosophical stance, this has clearly impacted the devel-

opment trajectory of ANGELINA and raised the importance of things such

as commentary and framing generation in the system, something which is

not present in systems like NM. This is not a weakness in any of the other

systems; it simply highlights the contrasting aims of ANGELINA and other

proto-automated game design projects.

11.2.4 Variations Forever

In [110] Smith and Mateas describe Variations Forever (VF), a ‘ruleset gen-

erator’ which uses answer set programming (ASP) [83] to explore a design

space of simple 2D arcade games. Unusually for academic research, VF

is framed as both a game and a research project. As a game, VF tasks

the player with exploring a search space of game mechanics by playing and

completing short generated games. As games are completed, new game con-

cepts are unlocked in the design space, allowing the player to potentially

uncover them on repeated playthroughs. The authors cite the independent

videogame ROM, CHECK, FAIL [41], a game in which several mechanical

and decorative elements rapidly change between famous game archetypes,

as inspiration.

A major contribution of the work in [110] was the introduction of answer

set programming to the space of procedural content generation techniques

and automated game design, which the authors argued offered many ap-

pealing features for generative software. ASP allowed for constraints to

the design space to be easily and precisely defined, allowing a space to be

‘sculpted’ either automatically or by a user. Much of the paper is spent

underlining the advantages of ASP and offering an introduction to working

with it as a language. We will avoid going into detail about the precise

implementational details here and instead limit ourselves to a higher-level

233



description of VF’s operation.

Much like ANGELINA1 and elements of later ANGELINA versions, VF’s

design space includes many distinct categories of game content with discrete,

hand-designed values for the system to choose between. For example, the

game’s level space can wrap toroidally like a level from Pac-Man, wrap

spherically or not wrap at all. While the entire design space of VF is not

given in the paper, below is a selection of the design choices made by the

system:

• Agent colour.

• Selection of which agent is controlled by the player.

• Behaviour of non-player agents.

• Movement style of player agent.

• Collision effects between agents and other agents, or agents and ob-

stacles.

Like ANGELINA1, VF is inspired by the work described in [125], which

is evident through the shape of the games produced by it. Nevertheless the

system does have slightly more flexibility – the ASP solver can choose, for

instance, to have fewer kinds of agents, and there is a slightly wider space

of control schemes and mechanics.

Variations Forever differs from ANGELINA in several important regards.

Firstly, the generative system is a game in itself, so the aim of the project is

to apply the generative nature of the system to provide many different game

experiences for a single player. This is often a question raised in the context

of ANGELINA – whether it will ever be released as a standalone system so

that people can play many generated games made just for them. However,

the aim of the ANGELINA project is to produce a system which behaves

as a game designer might; producing finished, static games that are played

by everyone in the same way. This distinction is important for several other

computational systems such as The Painting Fool [21] and AARON [17].

VF is also difficult to analyse from a technical standpoint because ASP

is a monolithic process that is hard to pick apart without describing the

underlying processes at work in an answer set solver. Even then, such a

solver treats all decisions equally – the decision of whether the player is a

234



red object or a blue one is the same as whether the objective of the game

is to kill or to avoid being killed, and so on. Treating the systems as black

boxes, ANGELINA and VF are similar pieces of software that both design

games, albeit very different kinds of games. ANGELINA’s internal struc-

ture, however, is more modular and more easily broken down into smaller,

comprehensible conceptual pieces. Although from a software engineering

standpoint the systems are both very flexible in different ways, ANGELINA

has a more readily understood narrative of how it produces games, with a

process that is perhaps closer to how people imagine themselves producing

games.

This confers no technical benefit, but from a philosophical and cultural

perspective, it enhances ANGELINA’s attempts to become accepted as a

game designer. The ineffable nature of intelligent software and algorithmic

processes to laypeople (and even to computing experts not versed in partic-

ular fields of AI) is a real barrier when attempting to argue that a piece of

software is engaging in creative activity – activity that is strongly associated

with being human. The ‘readability’ of ANGELINA’s internal processes, in

contrast to systems like VF, is a strength that helps in it being accepted as

an independent designer.

Finally, VF’s games are less sophisticated and polished in some ways

than those of ANGELINA. While the authors make no attempt to do so,

VF’s games are nevertheless lacking in real-world context or connection, do

not have names or other framing information, and remain very abstract.

Abstraction in game design is not an artificial trait nor an indication of

poor quality, but we would argue that ANGELINA’s push to design games

which have a connection to the physical world and human culture shows

sophistication in certain areas of game design that comparable systems such

as VF lack.

VF is notable in being the only system in this subsection to explicitly

refer to computational creativity and connect itself with the research, noting

that one of its results was novel to the authors and highly unexpected. The

publication of [110] precedes that of work on the FACE model and other

contemporary methods for evaluating computationally creative systems. We

evaluate VF in [34] using the FACE model [25], and it remains an interesting

example of an automated design system from both a videogames and a

Computational Creativity perspective.

235



11.3 Computationally Creative Systems

11.3.1 The Painting Fool

The Painting Fool is a computationally creative painter and artist. The aim

of the project is commonly stated as ‘to have the system taken seriously as

an artist in its own right, one day’1. The system is largely the work of Simon

Colton, who has also used The Painting Fool as a platform for investigating

broader questions of computational creativity [27].

The development of The Painting Fool has taken the system from a se-

ries of experiments in rendering, composition and the technical details of

painting, through to more current issues of creative autonomy, ideation and

cultural relevance. In this section, we are particularly interested in the

ways in which The Painting Fool has been exposed and evaluated by exter-

nal groups. The Painting Fool is not the only artificial artist to have been

evaluated by the public or other stakeholders, however the project’s original

aims of autonomy, independence and integration in a creative community

have directly inspired and influenced the development of ANGELINA.

In [28] Colton and Ventura describe an exhibition called You Can’t Know

My Mind which was held in Paris in 2013. The exhibition featured demon-

strations of several computational creativity systems, but its primary pur-

pose was to exhibit work by The Painting Fool. The exhibition lasted for

a week, and included live portraiture by the system, which would ask those

attending the exhibition to sit for a painting, but would not always paint

portraits depending on fluctuations in the system’s internal ‘mood’.

The exhibition was carefully designed to introduce the exhibition’s visitors

to the notion of computationally creative software. Posters were put up

explaining some of the behaviour of the software, and the motivations behind

it, and some aspects of the system were anthropomorphised (such as the

aforementioned ‘mood’) to try ‘to enable [the public] to make an informed

opinion about whether it was appropriate to call the software ‘uncreative’

or not.’ The authors of [28] note that, after talking to many of the attendees

of the exhibition, they received no salient answers as to why the software

should be considered uncreative, which the authors believe ‘indicates how

well we handled public perception of The Painting Fool during the festival’.

1http://www.thepaintingfool.com/

236



Dedicating an exhibition to the output of a single piece of software is

a significant achievement, and can be seen as taking a major step towards

integrating the software with an artistic community, and subsequently being

seen as an artist in its own right, as a part of that community.

While ANGELINA has never had an exhibition dedicated to its games

alone, this is uncommon for game designers in general. ANGELINA4’s To

That Sect was included as part of an exhibition in New York by Babycas-

tles2, which describes itself as an ‘independent games arcade’ and has wide

cultural influence in the videogames community and organises many exhi-

bitions and events around the world. Although we might see exhibitions

as analogous in the worlds of art and videogames, one could argue that a

closer equivalence to a dedicated art exhibition would be for ANGELINA

to have a booth at a major games event such as GamesCom, Penny Arcade

or Indiecade. Booths dedicated to a single game developer are common,

and offer a way for the general public to both interact with a game designer

and to see both its past, current and sometimes future work. For now this

remains a goal for the future of this project.

An interesting contrast to consider between The Painting Fool and AN-

GELINA is the relationship between the system in question and the medium

that it targets. The aim of The Painting Fool project is to have those who

interact with it appreciate the output of the software, and view The Painting

Fool itself as one might view any other artist. The ANGELINA project has

very similar aims, but because videogames are already an inherently techno-

logical medium, submissions of ANGELINA’s work often confuse whether

they are evaluating ANGELINA itself or the games produced, as we dis-

cussed in chapter 10. Part of the motivation behind ANGELINA4 entering

a game jam is that it strengthens the position of the system as a creator

and a designer, rather than an intermediate procedural generation system.

ANGELINA4 has a Ludum Dare account, enters games, receives ratings

like any other designer. In doing so, we try to reinforce the notion that

ANGELINA is a system that deserves to be treated equally with other de-

signers, in the same way that The Painting Fool looks to be treated as an

artist.

2http://babycastles.com/

237



11.3.2 PIERRE

PIERRE is a computationally creative culinary tool designed by Morris et

al. and first presented in [89]. It is notable in the context of this thesis as

it is one of only a few computationally creative to have been evaluated in a

public context.

PIERRE is built on a foundational inspiring set, a term the authors bor-

row from Ritchie’s terminology which we discussed in section 11.3. The

inspiring set in this case is a database of 4,748 existing soup recipes which

the authors collected from online cookery websites such as the Food Net-

work3. The authors manually parsed each recipe into a common format by

normalising ingredient measures. In addition to formatting the recipes, the

ingredients were also roughly categorised both at a high-level (whether they

were fruits, vegetables, seasonings and so on) and at lower levels (vegeta-

bles might be subclassed into leafy vegetables, root vegetables, etc.). For

each ingredient, statistics on that ingredient’s usage is also calculated over

the entire corpus of recipes, such as the maximum amount used, minimum

amounts, standard deviation and so on.

PIERRE uses a genetic algorithm to generate new recipes through one-

point crossover and random mutation, with the initial population drawn

directly from the initial inspiring set of pre-made recipes. The recipes are

evaluated using multi-layer perceptrons (MLPs) trained on the user rat-

ings of the recipes which formed the original inspiring set, with additional

randomly-generated recipes added in with a zero-rating to add more breadth

to the MLP training, since even a bad recipe on a cookery website is likely

to be of at least a minimum level of quality.

In [89], the authors perform several evaluations of the software, including

assessing the software’s performance in terms of Ritchie’s criteria from [102].

They compare their original inspiring set of 4,748 recipes with a more refined

set of only 594 chilli-based recipes, and then compared the generated recipes

output by each system. The authors looked for what they called rare n-

grams. A rare n-gram is defined as:

a combination of n ingredients that does not occur in the in-

spiring set and does not contain a rare (n-1)-gram as a sub-

combination

3www.foodnetwork.com

238



They noted interesting results, such as the chilli inspiring set weight-

ing the recipes towards a certain style of ingredient combinations (which

they deemed a ‘chilli profile’) and hypothesised that inspiring sets might be

blended to combine flavour profiles.

A particularly interesting element of PIERRE’s evaluation is the inves-

tigation into the presentation of the recipes and the responses from the

general public, as well as selected survey participants. PIERRE’s raw out-

put is a list of ingredients and their quantities. These quantities are often

counterintuitive to a person familiar with cookery, for two reasons: first,

they are often extremely specific, asking for 2.87 teaspoons of a particular

ingredient, for example; second, they often ask for unusual or negligible

amounts of ingredients, such as 0.26 of a slice of bacon in a huge pot of

soup.

The authors designed PIERRE to be able to render its output slightly

differently when presenting them to the public - it generated titles for its

recipes (such as Soup Over Bean Of Pure Joy or Exotic Beefy Bean) and

rounded its ingredient amounts to normalise their appearance, adding in

common phrases such as a dash of to replace certain values. In a survey of

38 participants, they found that there was no significant difference in rating

the recipes regardless of whether they were presented in their ‘raw’ form or

when adjusted and made more presentable. However, when submitting ten

of the recipes to the website Food.com4 the authors found a very different

response, noting that:

the online community was outraged enough by some of the in-

gredient quantities (e.g. a dash of green beans) – which, though

absurd by human standards, would not negatively affect taste

– that even without [considering] the quality of [the recipes]...

they removed our recipes from the site and suspended our ac-

count. [89]

It should be noted that these recipes were submitted to the site anony-

mously, akin to ANGELINA4’s anonymised Ludum Dare submissions. There

are clear parallels here; both systems are submitting their output for eval-

uation by a community of enthusiasts at the very least, with many users

probably considered highly experienced or expert in the domain. In both

4http://www.food.com/

239



cases, the output is met with some level of disbelief and confusion. How-

ever, the authors note an important fact that sets PIERRE’s experience

apart from ANGELINA4’s – the users of Food.com are asked to rate recipes

without necessarily cooking or tasting them. The authors refer to this as

the ‘raw’ presentation of the work as opposed to the ‘cooked’ version, and

posit that there are analogous states in other creative domains. By contrast,

Ludum Dare entries must be playable, and so people were able to interact

directly with the finished version of ANGELINA4’s work.

This is an important distinction. PIERRE’s attempt to introduce a dash

of green beans put people off and angered them. Most of ANGELINA4’s

game design is not explicitly mentioned in the game’s commentary, because

games are designed to be experienced through interaction and play. One

side effect of this is that ANGELINA4 does not have to draw attention to

many of its design decisions, and so choices that players might find strange

– such as making the collectible objects move away from the player so they

can’t be caught – remain unnoticed by the player. If something does not

directly impede the player in a videogame, it seems reasonable that they

are willing to ignore it or not comment on it. If ANGELINA4 doesn’t draw

attention to it either, then it allows the system to get away with adding its

own equivalent of a dash of green beans to the mix.

PIERRE is the only example of a computationally creative system that

we are aware of which has entered its output to be rated and compared

directly against the output of humans working in the same field – HR [24]

is a comparable example, perhaps; a mathematical discovery system which

invented an integer sequence which was included in the Encyclopedia of

Integer Sequence. While Food.com is not a contest in the same vein as

Ludum Dare, the ratings of a recipe influence where it appears in search

results and how likely readers of the site are to find or read it.

11.4 Summary

In this chapter we reviewed several projects related to ANGELINA either in

overall aims, technology used, or issues encountered. We looked at contem-

porary attempts to automate game design in various ways and to various

degrees, and compared their approaches with the methodology we employed

for the ANGELINA project. We also considered how ANGELINA’s place-

240



ment within the field of Computational Creativity altered its aims compared

to other automated game designers. We also looked at projects in the field

of Computational Creativity specifically, and considered their interactions

with the general public and practitioners of their chosen medium. Ulti-

mately, ANGELINA’s engagement with the videogame community is a mix

of success and failure, something which seems common throughout other

projects with similar goals of integration within a creative community.

The related work described in this chapter motivated and contrasted with

ANGELINA throughout its development, but importantly they also con-

tributed to the thinking that drives the future of the project. In the next

chapter we will cover future work plans which will show the influence of

many of the works in this chapter on the directions we wish to take the

project in the near future.

241



242



243



12 Future Work

12.1 Introduction

In this chapter, we bring together some recurring themes from the thesis

and point out how they lead into the future for ANGELINA, Computa-

tional Creativity, and the emerging field of automated game design. For the

most part, these future directions are already being worked on in some small

way by us, mostly through the development of prototypes and small exper-

iments that help to identify the potential of the idea. We take a somewhat

optimistic attitude to the topics covered in this chapter, looking forward to

what the future might hopefully hold.

In section 12.2, we tackle issues of perception on a deep technical level,

by proposing a system which would allow ANGELINA to make subjective

decisions during the creative process without relying on the opinions of its

creators, social media, or random number generation. We describe some

early results with such a system, and posit that further work could lead to

a large step forward for the perception and autonomy of creative systems

like ANGELINA.

In section 12.3, we explore another technical question with higher-level

implications, namely how to embed real-world knowledge and an under-

standing of culture into the mechanical systems that make up a game. We

describe how, so far, ANGELINA has largely kept the design of its games

and the surface-level theming completely separate, and discuss how it might

be possible to merge the two and produce more meaningful, deeper expe-

riences as a result. We describe a prototype game, A Rogue Dream, that

makes some initial steps towards achieving such a result.

We then discuss smaller points of future work that are less developed in

section 12.4. In particular, in section 12.4.1 we discuss how ANGELINA4’s

mechanic generation could be extended with richer code generation abilities,

allowing it to generate more complex game mechanics that affect games in

244



more interesting ways. In section 12.4.2, we discuss ideas for extending

ANGELINA’s use of commentary and framing information throughout its

development process to heighten engagement with players. In section 12.4.3,

we pose the question of whether ANGELINA could contract and collaborate

with other people to create content for use in its games, and the new research

questions that could open up.

12.2 Code Generation For Artificial Subjectivity

In chapter 8, we described in detail ANGELINA4, and the metaprogram-

ming system within it that allowed it to select, alter and evaluate the code-

base of a videogame in order to invent new game mechanics. We believe that

code generation has enormous potential for automated game design, and it

also drives forward computational creativity research by opening up oppor-

tunities to have software invent using the same language that the writers of

the software themselves invented.

Throughout this thesis, we have described many fitness functions that

work as selection mechanisms in the various evolutionary species that AN-

GELINA is composed of. A common discussion point when talking to people

about ANGELINA was the source of these fitness functions, and whether

they express the subjective belief of us, the system’s designers, about how a

game should look or function. This was often seen as limiting the perceived

creativity of the software, since it was strongly influenced by the subjective

beliefs of someone else.

This led to two philosophies being employed when designing fitness func-

tions for ANGELINA – one way was to aim for justifiable objective stan-

dards where they existed, for example in ANGELINA2, the use of powerups

to traverse a level design is a recognised trope of the Metroidvania genre

(recall our discussion of the genre in §2.2.2), or in ANGELINA4 where we

used utility as a measure of how good a game mechanic was. Alternatively,

we would try and make the fitness functions as general as possible to encom-

pass many different subjective aims for a game. This is most clearly seen

in ANGELINA5 where the fitness functions are defined to be intentionally

broad so as to not restrict the system too much with the subjectivity of

us as designers. This latter approach is perhaps less successful, as it re-

sults in games that are lacking in focus on a particular style and often feel

245



underdeveloped as a result.

Subjectivity is important to creative work – the subjective decisions made

by a creator are often what defines the work and provides the human connec-

tion that people value so much. Yet our attempts to introduce subjectivity

from external sources, such as the integration of social media opinions in

ANGELINA2, were largely met with bemusement and treated as a curio,

rather than something that was of the system itself, e.g. [91]. If we are to

incorporate subjectivity within ANGELINA, then the source of that sub-

jectivity cannot be another person – it has to come, somehow, from the

software itself. The question of how to achieve this remains open. Some

researchers feel it is fruitless to claim that software can express subjective

opinion; others feel that while expression of opinion is possible, it is hard

to escape the Catch-22 situation of embedding personal opinion within the

system in the course of achieving this.

Generating Preference Functions

We have begun to investigate alternative solutions to the problem of intro-

ducing subjectivity into ANGELINA, by generating preference functions –

code segments which express a preference between two objects – for use in

computationally creative software. This means that judgements about part

of the creative process, such as which members of a population to select

in an evolutionary system, can be made by the system without any overt

involvement from the system’s designers.

Our existing prototype system generates simple methods, modelled after

the java.util.Comparator interface in Java. Comparators take two ob-

jects, x and y, of a certain type, and then return one of three values which

obey some ordering <ord:

• -1 if x <ord y

• 0 if x =ord y

• 1 if x >ord y

Where <ord is defined implicitly by the code of the preference function,

such as sorting level designs according to the distance between the start and

the exit. All of ANGELINA’s fitness functions that we have defined in this

246



thesis are written in code as comparators that order populations in this way.

Comparators are very useful in a wide variety of programs, but are simple

to generate because they can only return three values. This makes them a

good target domain for experiments towards simple subjectivity generation.

Our prototypical system generates code segments in the C# language

using an evolutionary system, with a fitness function that assesses whether

a particular piece of code is a ‘better’ opinion than another. This might seem

counterintuitive – to express a meta-level opinion on opinions is presumably

to allow our own subjectivity into the system. To mitigate this problem,

we have defined several metrics that measure certain features of an opinion

without expressing judgements on the nature of the opinion being expressed.

These metrics capture what we believe people would consider to be general

properties of defensible opinions. That is, these features describe opinions

that one may disagree with, but that are not open to attack on the basis of

logical inconsistency or vagueness. The metrics are:

Specificity The specificity of a preference function f for a set of artefacts

A is defined as:

1−
|0f |
|P |

with
P = {(a, b) | (a, b) ∈ A×A ∧ a 6= b}
0f = {(a, b) | (a, b) ∈ P ∧ f(a, b) = 0}

Specificity is expressed as the proportion of pairings within A×A for which

f expresses a definite preference; that is, f(a, b) does not return zero. Note

that P excludes identity preferences, but it does not assume transitivity on

f and it includes reflexive preference, i.e. f(a, b) and f(b, a).

Transitive Consistency The transitive consistency of a preference func-

tion f for a set of artefacts A is defined as:

|Tf |
|Q|

247



with

Q =

{
(a, b, c)

(a, b, c) ∈ (A×A×A)

∧ a 6= b ∧ b 6= c ∧ a 6= c

}
Tf = {(a, b, c) | (a, b, c) ∈ Q ∧ tightf (a, b, c)}

Where tightf holds for a triple (a, b, c) if the triple is transitively non-

contradictory under the preference function f . That is:

a ≥p b ∧ b ≥p c =⇒ a ≥p c

or any permutation thereof. Transitive consistency is a measure of how well

the preference function is internally consistent. A high transitive consistency

means that the preference is well-ordered, and expresses a preference that

doesn’t contradict itself. As with other metrics, this is not inherently good

or bad. Low transitive consistency can imply that the preference selects

based on unconnected or competing features in the artefacts, which is not

uncommon in everyday preferences (indeed, it is quite common in some

cases, such as deciding between complex multi-objective alternatives like

voting in an election).

Reflexivity The reflexivity of a preference function f for a set of artefacts

A is defined as:

|Pr|
|P |

with

Pr = {(a, b) | (a, b) ∈ P ∧ f(a, b) = −f(b, a)}

Reflexivity is a measure of how dependent f is on the ordering of its ar-

guments. A high reflexivity suggests that the preference being expressed

is not dependent on the arguments being supplied to it. This discourages

arbitrary or randomised judgements in generated code.

Agreement

Two preference functions f1 and f2 are said to be in {k,n}-agreement iff:

k ≤
|Pf1,f2 |
|P |

248



with

Pf1,f2 =

(a, b)

(a, b) ∈ P ∧(
f1(a, b) = f2(a, b) ∨
f1(a, b) = 0 ∨ f2(a, b) = 0

) 
Where |P | = n. That is, the proportion of pairs (a, b) for which f1 and f2

either evaluate the same value or one of them has no preference, is greater

than k for a set of inputs of size n. Two preference functions are in strict

{k,n}-agreement iff:

k ≤

∣∣∣P s
f1,f2

∣∣∣
|P |

with

P s
f1,f2

= {(a, b) | (a, b) ∈ P ∧ f1(a, b) = f2(a, b)}

The above definition states that the functions precisely agree on preference

for at least k ∈ [0, 1) of the set of possible pairings. This is a good measure

of how close two preference functions are on the same sample of inputs.

Generating Preferences

For the preference functions we give here as examples, we used the following

combination of metrics for our fitness function:

fitness(f) = 0.5× reflexivity(f)

+ 0.25× specificity(f)

+ 0.25× consistency(f)

This was developed through manual experimentation – reflexivity was

found to be very important in evolving functions which operated on the

arguments to the function rather than making arbitrary calculations that

did not rely on what was being evaluated. Again we stress that this objective

function is not considered optimal or better in any way. Specificity may be

more important in some domains, while totally unimportant in others, for

instance – it depends on the nature of the preference functions that the

programmer wishes to generate. In our case, reflexivity was found to be

important in ensuring a perception of defensibility in the resulting preference

249



functions. A high weighting for reflexivity might be preferable in many

application domains, this will need to be seen in further development and

use of these criteria.

Because of the nature of code generation, particularly our code generator’s

implementation, it is possible for a code segment to either fail compilation,

or to throw exceptions during evaluation. While industrial code generation

is often structured to never produce non-compiling code, our code generation

is not prohibited from dividing by zero, for example, because it used a

variable without checking its contents first. We catch and ignore any errors

in this process and assign a negative score to the code segment as a result.

Crossover of two code segments uses one-point crossover on the list of

code statements making up the segment. This is currently acceptable for

the subspace of the programming language specification we cover, although

if local variables are introduced in the future, this approach will need revi-

sion to avoid constantly introducing scope errors (where a local variable is

referenced in the latter half of a function, but its declaration was not carried

over during crossover). Mutation is applied by randomly regenerating one

of the code statements in the list of statements. As with crossover, once

the system’s focus moves to more complex method constructions, a more

fine-grained mutation process may be required that is capable of making

small changes to individual statements in a method.

In order to speed up the evolutionary system, we compile an entire popu-

lation of preference functions simultaneously, passing each comparator as a

separate file along with the template comparators they inherit from. If errors

are thrown during the compilation of a particular comparator, they do not

affect the compilation of the other files passed. Testing of this batch compi-

lation method showed it was far more efficient than single-file compilation,

even when done in parallel, because most of the overhead of compilation is

in initialising and shutting down the compiler itself. This may change in

the case of generating extremely large code blocks, but we do not expect it

to be an issue in the near future.

Example Preferences

Figures 12.1, 12.2 and 12.3 show three preference functions generated using

our approach. Their captions describe the purpose of each method, since the

actual code is often hard to read and contains unnecessary code segments

250



that are either never evaluated or have no impact on code flow. These

examples were generated from a population of 20 code segments over 15

generations of evolution. When evaluating the preference functions, we

supplied a test set of 100 random integers (or characters, depending on the

function’s type) for the preference function to be tested on.

These figures were generated on simple primitive types, integers and char-

acters. To demonstrate generation of preferences for more complex objects,

we used a template class shown in Figure 12.4, which describes a simple

Item class from a videogame. Items have damage and speed statistics, a

name, and may or may not be droppable. A compact, human-rewritten

version of a generated preference function can be seen in Figure 12.5.

To demonstrate the application of the Agreement metric, Figure 12.7

shows a human-rewritten version of another preference function generated

using the system. However, this function was generated with a modified

fitness function:

fitness(f) = 0.25× reflexivity(f)

+ 0.125× specificity(f)

+ 0.125× consistency(f)

+ 0.5× {0, 100} − agreement(f, a1)

Where a1 is the preference function shown in Figure 12.5. In other words,

the fitness function has been augmented to evolve functions which strongly

disagree with the preference function a1. The resulting function, shown in

Figure 12.7, is the inverse of the function shown in Figure 12.5. This was

evolved from the same starting point as all the other functions shown in this

section, simply with the augmentation of the agreement metric. Although

the original source of the function is again very complex, shown in Figure

12.6, the underlying functionality is accurate. We believe this demonstrates

considerable power and flexibility in the metrics.

The Future

The flexibility that this kind of preference generation would provide us in

building a system that can generate its own reasoning for its decisions, even

251



public int compare(int i, int j) {

if ((i < i)) {

return 0;

return 0;

}

if (((j + i) < j)) {

i = i;

return -1;

}

else {

j = -491;

return 1;

}

return 0;

}

Figure 12.1: In this preference function, if i is negative, it is preferred over
j; the second conditional check is true if i < 0.

public int compare(int i, int j) {

if ((i <= j)) {

return -1;

j = ((i * 335) % j);

}

else {

return 1;

j = j;

}

return 1;

return -1;

}

Figure 12.2: This preference function orders numbers from largest to small-
est. The first conditional returns a reverse ordering (-1) if the
first argument is smaller than the second. Note the copious
amount of unreachable code. This constitutes a compile-time
warning in C#, which is suppressed here.

252



public int compare(char i, char j) {

if ((((int)(j)) <= ((int)(i)))) {

return 1;

return -1;

}

else {

i = ((char)(((((int)(i)) -

((int)(i))) * (((int)(j)) -

((int)(j))))));

return -1;

}

return 0;

return 0;

}

Figure 12.3: Reverse lexicographic ordering on characters. The first condi-
tional block is entered if the second argument, j, has a smaller
ASCII code than the first argument, i. This returns a correct
ordering (1). Otherwise, a reverse ordering is returned (-1). As
with Figure 12.2, there is much unreachable code here. Also
note that explicit casts to int types has caused a lot of excess
bracketing.

public class Item{

public bool droppable;

public string name;

public int damage;

public int speed;

}

Figure 12.4: A dummy class specification used for generating preference
functions. speed cannot have a negative value, but damage

can.

253



public int compare(Item i, Item j){

i.name = j.name;

if ((j.speed > i.speed)){

i = j;

return 1;

}

else{

return -1;

j.name = j.name;

}

i.cost = (i.speed / i.speed);

}

Figure 12.5: An ordering on Item objects based on their speed variable.

public int compare(Item i, Item j){

if ((i.speed == j.speed)

== (i.speed >= j.speed))

j = j;

return -1;

}

if ((i.droppable != j.droppable)

!= (i.droppable || i.droppable)){

return 1;

j.name = j.name;

}

else {

return 1;

j.speed = ((i.speed * i.speed)

- (i.speed + j.speed));

}

if (((i.speed * j.speed) > j.speed)){

return -1;

return 1;

}

else {

return -1;

j = i;

}

}

Figure 12.6: An ordering on Item objects based on their speed variable, di-
rectly opposite to the one shown in Figure 12.5. A compacted,
human-translated version of this function is shown in Figure
12.7

254



if the reasoning is ultimately arbitrary, is considerable. It not only allows

ANGELINA to make decisions about objects it has never seen before (for

example, if ANGELINA invents a new kind of game object, we cannot offer

heuristics to evaluate it since we don’t know anything about the object

a priori). It also allows ANGELINA to reason about its decisions and

hopefully will lead to an increased perception that the software is acting

creatively and independent of us as its designers.

There are two important avenues along which to extend this work: first,

to generate more complex preference functions that express richer opinions,

using method calls to other parts of the codebase, and intermediate value

calculations to allow for more interesting branching within a preference func-

tion. We acknowledge this is a considerable task, and code generation is not

simple – however even small advances in this area could lead to new and

interesting applications.

The second avenue is researching methods for the system to verbally com-

municate to a person what the plain-English effect of a preference function

is. This is relatively important particularly for commentary generation,

but also potentially for communicating this information in-game (consider

a generated preference that governs how an NPC reacts to players – the

game should be able to explain to the player what this means so that they

can react to it). We believe that this is extraordinarily difficult. Not only

does this imply the system is able to explain the functional performance of

the code line-by-line, which is a complex task on its own, but it also means

the system may need to relate the meaning of the code to the surface-level

theme of the game. That means it should not only be able to know that a

variable is important to a preference function, but it needs to understand

that this variable represents, say, a player’s knowledge of magic, or their

public approval rating, or their current high score.

Providing a system with governance over its own subjectivity is a major

step forwards for the autonomy and creativity of a system like ANGELINA.

It opens up the potential for new kinds of framing information [26] that

justify decisions, it allows the system to play with its own opinions and

generate contrary examples that go against a particular preference function

(as we saw earlier by leveraging the agreement metric), and it increases

the perception that this software is acting alone or at the very least is the

majority stakeholder in the creative artefacts it produces.

255



12.3 Understanding Culture and Meaning

As we saw in chapter 4, much work in procedural content generation focuses

on generating the parts of games that are represented by abstract data –

level designs, rulesets, layouts for parts of the game. This kind of content

can be transferred between games, regardless of the game’s theme, setting,

meaning or relation to the real world. Since ANGELINA3, we have been

interested in bringing an understanding of real-world concepts and cultural

ideas into the automated game design process, and letting ANGELINA

work such things into its games – this encompasses a large amount of AN-

GELINA’s functionality, from reading the Guardian newspaper to inspire

newsgames in ANGELINA3 through to using corpora of proverbs and say-

ings to create pun titles for ANGELINA5’s games.

Understanding and being able to use knowledge about how the world

works is important to an automated game design system, if it is to design

games that reference situations, people and ideas that the player can relate

to. Such understanding provides an opportunity not only to demonstrate

intelligence and creativity (by creating artistic work that appeals to human

experiences), but to have real impact on both individuals and society at

large, by making statements and observations about the world at large and

challenging the player’s views and ideas about how the world is.

While we made some progress in this area through the many iterations

of ANGELINA, it was largely constrained to using real-world knowledge

on a level that was completely detached from the rest of the game. Visual

redesigns in ANGELINA3’s newsgames do not affect the mechanics of the

game to convey a political or social message; the game jam themes inputted

to ANGELINA5 do not filter through to shaping the objectives of the game

on a functional level. In [4], Anna Anthropy describes games as ‘experiences

shaped by rules’. A central hypothesis to the work we intend to do in the

future is that this definition of rules compels us to find deeper ways of

connecting real-world knowledge to games, embedding this knowledge in its

rules, its systems and its design, to produce experiences that are interesting

and perceived as creative works.

256



12.3.1 A Rogue Dream

A Rogue Dream is a prototype game designed to demonstrate the potential

for extending ANGELINA’s use of real-world concepts. The game begins by

asking the player for a noun, completing the phrase ‘Last night, I dreamed

I was a...’. The noun is used to theme the game in a very simple sense,

primarily surface-level visual theming, but reflecting an understanding of

the given noun without the use of hand-designed databases within A Rogue

Dream.

Figure 12.8 shows a screenshot from the game, with the input word ‘cat’.

The player character is represented by a cat in the center of the screen. The

water droplets are enemies, and hurt the player if they come into contact

with them. The grey objects are long grass, which heal the player if they

pick them up. At the bottom of the screen, the game indicates that the

player has a special ability – to throw, attacking an enemy at range.

These abilities along with non-player characters (NPCs) were generated

by the game in response to the input word by using a technique called

Google milking. The phrase was coined by Veale [130] to describe a process

of sending incomplete questions to Google as search terms and then scraping

the autocomplete suggestions from Google to find what people commonly

type to complete the question. Autocompletion suggestions for the incom-

plete question ‘why do cats always’ are shown in Figure 12.9. Veale noticed

questions phrased in this way are actually valuable sources of information,

because they report beliefs held by the person asking the question. The

question ‘why do cats always land on their feet’ is asked by someone who

believes that this is true, or has observed this happening directly, but this

information is not explicitly written down on websites because the informa-

tion is too obvious to arise in everyday discussion.

We adjust the technique of Google milking to extract more targeted in-

formation to generate game content with. Having fixed the player to be the

input noun, a cat for example, we then mine Google using specific questions

to extract information that will work to generate certain kinds of content.

For example, Why do cats hate... is milked in order to obtain nouns that

might function as enemies in the game (in this case, Why do cats hate water,

leading to water droplets being used as enemies). Why do cats eat... or Why

do cats like... are used to obtain nouns that would function as sources of

257



public int compare(Item i, Item j){

if (i.speed <= j.speed) {

return -1;

}

else{

return 1;

}

}

Figure 12.7: A retranslation of the generated code shown in Figure 12.6, to
more clearly show the inverse relationship with the function in
Figure 12.5. This is a direct functional translation of the code
in Figure 12.6 with unreachable or nonfunctional code removed
for readability.

Figure 12.8: A screenshot from A Rogue Dream, given the input word ‘cat’.

258



Figure 12.9: Google autocompletions for a partial search term question.

health points or score (in this case, Why do cats eat grass, leading to grass

as a health collectible in the game – of course, in reality cats eat grass for

a very different reason, but our approach only connects the verb eat to the

game mechanic of health gain).

The images are generated for A Rogue Dream using Spritely, a tool we

wrote in Java that searches several online image corpora – Google Im-

ages, Open Clipart and Wikimedia Commons. Spritely augments its im-

age searches, adding on words like ‘cartoon’ and ‘silhouette’ to the origi-

nal search terms, in order to obtain simple images which are easily scaled

down to the size of a sprite. It downsamples the image, optionally applying

colour palettes (which A Rogue Dream does not use), and then outputs a

low-resolution pixel art sprite. We open sourced Spritely as a tool for game

developers1.

Finally, A Rogue Dream will attempt to generate a special ability for the

player, based on several keywords being detected in Google milking searches.

These are hard-coded to relate to specific in-game mechanics. For example,

if a synonym of the word throw or shoot appears in a Google milking search,

the ‘ranged attack’ mechanic may be selected, which allows the player to

damage an enemy without being adjacent to it in the game world. In the

1https://github.com/gamesbyangelina/spritely

259



Figure 12.10: A screenshot from A Rogue Dream, given the input word ‘mu-
sician’.

cat game, Google milking returns the autocompletion Why do cats always

throw up. This erroneously is identified by the system as indicating that cats

can throw certain kinds of objects, and thus the ‘ranged attack’ mechanic

is selected with the name ‘throw’.

12.3.2 Illustrative Examples

A Rogue Dream’s reliance on volatile, noisy data means that it does not

always find results, and even when it does, they do not always make sense –

as we can see from the earlier example of a cat throwing up. To give an indi-

cation of its effectiveness, we performed an experimental run of the system

on 30 words, picked from three Top Ten lists of animals, jobs and countries2.

60% of the words resulted in a full skinning of the game (i.e. the player,

enemy and collectible item all succeeded in finding images), while 96% of

the words resulted in all but one game element being properly skinned. In

terms of quality, we performed a curation coefficient analysis as described

in [29] – we measured what proportion of the results we would be willing

to show to someone as acceptable output of the system. We considered

66% of the results to be good and worthy of showing others. The remaining

third were let down either by bugs in the system, misinterpretation of terms

through Spritely, or through bizarre or unusual output from Google.

2http://www.thetoptens.com/lists/

260



Figure 12.11: A screenshot from A Rogue Dream, given the input word ‘kid’.

It should be noted that the three categories we chose – jobs, animals

and nations – are all things to which sentience can be ascribed, or are

spoken in terms of being sentient. This affects the nature of Google results

significantly. A Rogue Dream certainly doesn’t work on all words, or even all

nouns. Nevertheless we consider it an interesting starting point for further

expansion.

Below we give two further examples of full games, in addition to the cat

example already given:

• Kid - The player controls a small child. They must avoid schools,

which damage them, and collect friends, which heal them. Figure

12.11 shows a screenshot from this game.

• Musician - The player controls a man blowing a trumpet. They

must avoid Kenny G albums, which damage them, and collect long

hair. Figure 12.10 shows a screenshot from this game.

12.3.3 The Future

While A Rogue Dream is only a simple prototype, we believe that relat-

ing real-world concepts to the vocabulary of videogames is set to become

the defining problem in automated game design. By focusing primarily on

content which has no relation to real world content, modern approaches to

procedural content generation have avoided encountering this problem up

until now. But automating the entire process of game design forces us to

261



address it, and raises questions of what new technologies, tools and game

designs might be possible if we have software which can generate content

with an awareness of its real-world meaning.

When a player watches Mario bump into a mushroom and the subsequent

chain of events that occurs – the mushroom disappears, Mario grows in size –

they understand what has happened without anyone telling them explicitly.

Anna Anthropy has written, at length, about how Super Mario Bros.’ first

level explains many of the game’s mechanics without writing anything on

the screen [3], and much of why it does this relies on both the game designer

and the game player having a shared understanding of how the real world

works and how to communicate that through shapes on a screen. Reaching

the same level of shared understanding with a piece of software will be a

serious step forward both for computational creativity and for automated

game design.

12.4 More Directions For Future Work

12.4.1 Code Generation For Mechanic Invention

In chapter 8, we described ANGELINA4 and showed how the system was

capable of inventing new game mechanics, designing levels which exploited

those mechanics, and even discovering emergent properties of its own code

base that surprised us as the creators of the system. This shows the huge

potential for code generation to have an impact on the future of game design,

and also the potential for it to transform ANGELINA into a system that

can influence the creative domain it is situated in, by making discoveries

and influencing creative thinkers in its domain of game design.

Currently, ANGELINA4’s code generation is limited to the modification

of variables and does not generate larger code blocks or attempt to invent

new game objects. There are many open areas of inquiry that we hope to

look at in the future, including the generation of new objects with usefulness

in solving game tasks, the development of more complex code segments

that affect the game in more fundamental ways, and building a system

which can identify places within a game’s code to insert newly generated

code. This last point is particularly complex – in ANGELINA4 we assume

that any generated code will be placed in a particular part of the player

object’s class file, activated whenever a button is pressed. In practice, game

262



development often necessitates that code is spread across many class files,

in many different areas, in order to ensure data visibility, encapsulation

or simply that the ordering of execution doesn’t cause bugs. These are

all complex concepts and will require many challenges to be overcome in

program analysis and general game playing [54].

We have begun developing extensions to ANGELINA5 in the Unity game

engine that emulate ANGELINA4’s ability to generate and test code. Unlike

ANGELINA4, this new implementation can generate short code segments

rather than simple variable adjustments. Unity’s engine also means that

playouts can be viewed as they run, giving a better idea of what the gen-

erated code is doing to the game. However, the tradeoff is that the system

is much slower as a result. Code generation, compilation and execution are

all slower in C# under Unity than in Java as with ANGELINA4. Unity

is also a more complex use-case because the API is more general and less

geared towards particular kinds of games, as was the case with the Flixel

engine we used for ANGELINA4. We believe this may make discovering

simple game mechanics harder, as more code is required to cause similar

effects to Flixel. Overall, there are many complications to pursuing this line

of research, however we deem it to be valuable enough to warrant continued

efforts.

12.4.2 Developer Commentary And Devlogging

We believe that the focus on commentary and framing throughout the

growth of ANGELINA served the system well and increased the percep-

tion of creativity among observers. We also think it is useful in increasing

the value of the artefacts produced by the system, and increasing interest in

the games from the people playing them. We intend to develop and extend

this emphasis on framing throughout the development process, mimicking

the act of ‘devlogging’ that many game developers do through social media

and blogging. The act of chronicling creative decisions while the artefact

is still being created is not common in Computational Creativity, but in

game development it increases the value of the resulting artefact, and offers

insight into the creativity of the person developing the game in question.

In particular, we hope to implement two behaviours: adding developer

commentary to finished games, and blogging about the ongoing progress of a

game’s design. Developer commentary is the act of embedding information

263



about the game’s design into the game itself, normally as audio logs that can

be played over the top of the normal game audio. Many modern games use

this as an opportunity to shed light on certain aspects of a game, cut content,

or creative decisions. Games made by small teams have used the technique

to great effect, such as Gunpoint [37], but equally very large teams have

also used developer commentary. For instance, Valve Software’s Portal 2

[115] included commentary from many members of the development team,

including programmers, designers, artists and sound engineers. Because

developer commentary is often targeted to particular areas of the game or

certain actions the player performs, it can provide much more detailed and

targeted insight than a general commentary is able to. This should increase

the information conveyed to the player, and hopefully raise their estimation

of the game and their perception of the software that created it.

Blogging about a game’s development allows for a different kind of com-

mentary on the creative process. It allows players and potential players to

see how a game is being developed actively, and to gain insight on decisions

made by the software not retrospectively but while those decisions are still

influencing the direction of the game. This might be an opportunity to

demonstrate the intelligence and skill of the software more directly, and it

also mitigates the concern that the software may be lying to the player in

its commentaries – something which has come up in discussions with play-

ers of ANGELINA’s games in the past. For example, Figure 12.12 shows

a comment from an online discussion about ANGELINA’s games, which

states that the commenter does not believe ANGELINA when it justifies

its choice of music or other design decisions, even when expicitly justified

in commentaries and framing information.

Blogging also offers a chance for ANGELINA to do something it has not

done to this point, namely generating interest in a game that it hasn’t

released yet. As the development cycles become longer for ANGELINA’s

games, and the system potentially involves third parties such as musicians

and artists in the generation of its content, this opens up the opportunity

for ANGELINA to generate excitement about something it has produced

prior to its release. This is a new kind of interaction for computationally

creative software that will be interesting to explore.

264



Figure 12.12: A comment on an article about ANGELINA on Slashdot, a
popular discussion site on the Internet. The commenter is
implying that ANGELINA’s decisions are made using single
random numbers rather than any intelligent process, despite
the commentaries explaining otherwise.

12.4.3 Third-Party Asset Development

In developing A Puzzling Present, we worked with an artist to create pro-

motional material such as store art for the game. This was to provide a

professional front to the game so as to increase the pool of users and gain a

larger volume of data. Contracting artists and musicians temporarily is very

common in game development, and many solo game developers will work

with contractors to complete parts of a game design they are not as skilled

in. Generating art and music has been a persistent problem for ANGELINA

and we believe this will continue to be a theme in automated game design.

One possible solution might be to take the same approach that people do

when designing games, and contract out these problems to other people, or

other software such as The Painting Fool [21].

For most research problems, such a solution might be considered avoiding

the problem, by simply conceding that the software can and should seek out

the assistance of a skilled person instead of trying to find techniques to solve

the problem itself. However, from a Computational Creativity standpoint,

we can view this approach in a different light. Communicating with other

creative people and engaging in the same creative problem is an interesting

task for a piece of software to undertake, particularly when the software,

not the people, is the driving creative force. To our knowledge, all research

in mixed-initiative creativity, which we discussed in chapter 4, assumes that

a person is the primary motivating force behind the creative act. In our

case, a piece of software takes on that role.

265



Our intention would be to give ANGELINA a budget and connect it with

pre-selected individuals who are happy to fulfil requests sent to them by

ANGELINA via email. ANGELINA will be able to identify simple art and

music assets it requires, send a specification to an appropriate contractor,

and also respond to simple questions. Dialogue between the two parties is

important in establishing this as a creative activity – ANGELINA could

offer fixed questions it can respond to or topics it can talk more about, in

the style of interactive fiction, to clarify elements of the specification. The

contractor then produces the piece, and sends it to ANGELINA via email.

The system could then analyse the piece to assess how much it meets its own

expectations, perhaps asking for small modifications if it considers changes

necessary. Finally, the content is placed into a game.

This dialogue between creative actors provides a platform for researching

new interactions in a creative process, and putting more leadership respon-

sibilities onto ANGELINA, as well as investigating how people react to

working with a piece of software in a scenario in which they are perhaps

more equal in creative input. It also has the potential to feed forward into

framing and commentary, by providing ANGELINA with more opportuni-

ties to discuss the decisions it made and the ways game content came about.

While definitely experimental, we are interested in pursuing this as a new

direction in the philosophy of Computational Creativity.

12.5 Conclusions

In this section, we brought together some of the open threads of investigation

that this thesis has presented, and looked at them in the context of ongoing

future work. In many cases, we were able to highlight prototypes that point

to promising new areas of expansion for ANGELINA and related research,

such as the prototype roguelike game A Rogue Dream which trials new

flexible methods for obtaining real-world knowledge that could feed into

game designs at a systemic and structural level.

We also expanded the emerging theme of code generation present in AN-

GELINA4, first by proposing it be used to augment ANGELINA’s creative

ability rather than the games themselves by generating code that can make

subjective judgements. This plays into the common Computational Cre-

ativity narrative of ‘handing over responsibility’ to the software by slowly

266



removing the influence of its designers from the creative process. Alongside

this, we also proposed the extension of the mechanic invention work started

with ANGELINA4, extending it to make it a major component of future

versions of ANGELINA, alongside the evolutionary game design aspects.

We also highlighted a number of areas of future work that we intend

to explore but have not yet had a chance to develop very far. Extending

existing areas of ANGELINA such as its framing and commentary, as well

as offering the possibility for ANGELINA to co-ordinate creative activity

with other people, both offer interesting areas of development that make

ANGELINA more valuable as a game designer, but also further the field

of Computational Creativity at the same time. Altogether, we hope these

future directions will lead to ANGELINA becoming more dependent, and

viewed in a more positive and respectful light, as it moves towards becoming

a truly independent game designer.

267



268



269



13 Conclusions

Computational Creativity is a flourishing field of research, and the range of

techniques used and media it covers is expanding rapidly. Prior to the work

described in this thesis, videogames had received relatively little attention

in this field, despite being (in our opinion) the most important cultural

medium of the 21st century. As we have seen throughout the presentation

of ANGELINA, however, videogames are the perfect medium for Compu-

tational Creativity to investigate: highly complex, requiring many smaller

creative tasks, offering the potential to investigate creativity in the design

of systems as well as static pieces.

In this thesis, we presented our work building and developing ANGELINA,

a system which autonomously designs videogames. The system has been de-

veloped across many iterations, each one focusing on a different aspect of

game design, or a new research question uncovered by previous iterations.

Over five distinct versions of ANGELINA, we developed games in many

different languages, engines, platforms and genres. ANGELINA has been

responsible for designing levels, enemy layouts, rulesets, game mechanics,

visual themes, soundscapes and framing its own games in a cultural context.

Perhaps most importantly, we showed that this work can have a real impact

on the culture of games, by interacting directly with game designers, game

players, and game critics.

In this chapter we review some of the contributions we opened the thesis

with, and reflect on the aims of the project.

13.1 Reviewing Our Contributions

In Chapter 1, we presented several contributions which we stated would be

covered during the thesis. Here we review these with reference back to the

work presented in the chapters preceding this.

270



• Our primary practical contribution is the development of ANGELINA

itself. Through chapters 5, 6, 7, 8 and 9, we charted the development

of the system from developing simple arcade games to fully 3D ex-

periences. The chapters included examples of games made by each

system, showing the variety of game types we have tackled through-

out. This has laid a broad foundation for future work in automated

game design by offering baseline examples for future systems to be

compared against.

• We showed that co-operative co-evolution is a sufficient technique for

automated game design through the presentation of the simplest itera-

tions of ANGELINA in chapters 5 and 6. However, through the course

of our work, we believe we have also made a case that co-operative

co-evolution can be enhanced by phases of analysis and preparation

before the main design activities take place. We showed this first

in chapter 7 where ANGELINA3 downloaded newspaper articles and

broke them down to find further assets to use in its games. The

strongest case we made was in the last iteration of ANGELINA in

chapter 9, where the system’s ability to enter a game jam relied on

the fact that ANGELINA5 was capable of taking a single word or

phrase as input and expanding that into the basis of an entire game

design. Preliminary design phases in conjunction with a core CCE

design system appear to provide a good basis for automated game

design.

• In chapter 8, we introduced a novel technique for generating game

mechanics through the direct inspection, modification and execution

of code. This allowed ANGELINA4 to generate puzzle platformer lev-

els with unique game mechanics without the need for intermediate

abstractions of the game world. This innovative approach led to sur-

prising results, emergence in the designed mechanics, and has opened

up new avenues of research for us in the future. We believe it may lead

to a new phase of procedural content generation, as well as having a

major influence on the state of the art in Computational Creativity

research [33].

• In chapter 10, we went into detail regarding studies we had mentioned

in earlier chapters describing the various versions of ANGELINA.

271



These studies covered ANGELINA’s interactions with a range of stake-

holder groups, including game developers, not just in the context of

evaluating the output of our research, but also in examining the inter-

actions between artists working in a medium and a piece of compu-

tationally creative software seeking acceptance in the same medium.

This is rare in Computational Creativity, and to our knowledge no

such interactions have occurred in the field of videogame design. In

the case of Ludum Dare, these interactions with a creative community

represented the first time that a piece of software had entered a game

design contest primarily aimed at people. We believe that the work

we have presented here will provide a basis for future studies for other

automated game design research, as well as our own.

13.2 Shifting Aims

As might be expected, this project changed considerably as we developed

ANGELINA through its many iterations. We began with a desire to inves-

tigate co-operative co-evolution in automated game design, and as can be

seen from the early chapters, we initially were mostly focused on the abstract

data of videogames – level designs, rules, layouts. Most of these areas have

been approached in procedural content generation projects before, albeit

in individual aspects rather than as a concurrent system like ANGELINA,

which attempts to generate all aspects at once. As our research progressed,

we found ourselves faced with new and exciting questions, raised by expo-

sure to a wider variety of game designers and critics, some of which we quote

in background chapters 2 and 4.

Videogames are no longer distractions designed to attract more quarters

for arcade machine owners. They are a medium of expression as broad

as film or music1, and like film and music, they are increasingly becoming

accessible to everyone. Better development tools and the near-ubiquity of

the Internet in the western world has enabled thousands of people to begin

developing games who would not have considered the practice even a decade

or so ago. The full title of Anna Anthropy’s book [4], which we quoted in

chapter 2, reads: Rise of the Videogame Zinesters: How Freaks, Normals,

1Of course, many videogames are still made to draw in quarters, and this is no bad
thing. But they now represent only a portion of what games are today.

272



Amateurs, Artists, Dreamers, Dropouts, Queers, Housewives And People

Like You Are Taking Back An Art Form. This explosion in accessibility,

and the formation of a diverse array of subcultures in game development,

gave us considerable pause for thought as we contemplated future directions

for ANGELINA.

The overriding philosophy behind our development of ANGELINA was to

keep adding responsibilities to the system, no matter how difficult those new

responsibilities might sound to implement. In doing so, we uncovered new

questions about computationally creative systems, about automated game

design, and about building software that people would respect and treat as

a creative individual. Influenced by our exposure to so many different game

development scenes, we began to ask what it would mean for ANGELINA

to express ideas, views about the world, or messages in the games that it

creates. We pursued this through ANGELINA3 and ANGELINA5, while

still pursuing technical innovations with our code generation work in AN-

GELINA4. In the future, we hope to research ways to combine these two

broad arms of automated game design, in order to build games in which the

message of the game and the mechanics of the game’s systems are intricately

linked. These new ideas and challenges will be ultimately what separates

automated game design from procedural content generation, allowing it to

stand alone as a distinct subfield of research within videogames.

Developing ANGELINA has also brought us into the world of game devel-

opment, as engineering an automated game designer typically necessitates

that its designer also understands the game engines the system will be de-

signed within. This has led us to be closer to the world of game development

than we originally expected, and blurred the lines between independent de-

veloper and academic researcher. A Puzzling Present, the Android game de-

veloped during ANGELINA4 as a subproject, was a collaboration between

ANGELINA and us, and functioned as an entertaining game as well as

demonstrating cutting-edge games research. We believe that this approach

to research, while not suitable for every researcher, offers a new way to make

games research relevant without the need to appeal to commercial potential.

Researchers can do cutting-edge work that pushes the boundaries of both

technology and art, and make that work meaningful by directly engaging

with the game-playing public. We have observed one other group of people

who work according to a similar process, over the years of research described

273



in this thesis: the same independent game developers Anthropy describes in

[4]. We have fostered relationships with many developers through the course

of this research, and their willingness to embrace new ideas and develop new

technologies is encouraging and offers a promising future of collaboration

between researchers and independent developers.

13.3 Automated Game Design

The development of ANGELINA involved overcoming many challenges.

These challenges were a mix of technical, philosophical, engineering and

cultural obstacles, and while we don’t claim to have perfected the art of

constructing automated game designers, we believe there are useful lessons

to take away from this project for researchers looking to build automated

game designers in the future.

More than any other area of games research, automated game design re-

lies on people being able to play the results of the work done. While many

research projects result in highly specialised games or software that can

only run on a few computers, or that is too large and library-dependent

to distribute, automated game design research cannot operate in this way.

Priority must be given to producing games that are easily distributed and

playable in as many ways as possible, to make large-scale surveys and feed-

back gathering as simple as possible. At each stage of ANGELINA we made

sure to select engines and libraries that facilitated this: Monkey HTML5 for

ANGELINA1; Flixel and Flash for ANGELINA2 and ANGELINA3; Java

and LibGDX for ANGELINA4; and Unity for ANGELINA5. Ultimately, all

of these platforms were as good as each other.

Automated game design is less about the individual generative compo-

nents, and more about what happens at the intersections of those compo-

nents. That is to say, we consider questions such as ‘What is the best way to

design a level?’ to be less important than ‘How does a level design influence

the design of the rest of the game?’ Using existing generative techniques for

the individual generative tasks, where possible, is preferable to attempting

to reinvent those techniques or find small iterative improvements. Many of

the individual generative approaches in ANGELINA are derived from ex-

isting methods for generating that content in isolation – a good example

of this would be ANGELINA2’s level design which uses tiles in a similar

274



manner to Spelunky, whose level design we covered in chapter 4. The focus

can then shift from procedural generation tasks to the question of how these

disparate tasks can be brought together, overlapped with one another, and

solved as a composite problem by a game designer. An automated game

designer is more than the sum of its generators – this is why we believe the

field to be distinct, yet parallel, to procedural content generation research.

We also found that maintaining modularity in the system’s design, and

adopting an iterative design process, made it easier to rapidly develop AN-

GELINA, hand over creative responsibility, and extend it into new versions

(ANGELINA3 was built directly on top of ANGELINA2’s codebase, and

ANGELINA4 used the basic platforming engine and some of its generative

components). ANGELINA’s modularity is largely thanks to the structure

of co-operative co-evolution, with each species being a distinct section of the

software. New species were similarly easy to integrate into the system with-

out affecting the existing species. The iterative design process – building

new versions of ANGELINA regularly that refocus on new problem areas

– helped us to incrementally hand over responsibilities to the system. In

particular, we used Colton’s approach of ‘climbing the meta-mountain’ [23],

a term he uses to describe the process of examining a creative system, iden-

tifying areas in which a person is influencing the software’s execution, and

then adding new capabilities to the software to allow it to take on this task.

This process is extremely valuable when building automated game de-

signers. Games are complex, multi-faceted artefacts with many different

creative and technical tasks involved in their production. Climbing the

meta-mountain allows small steps to be made, identifying the fringes of the

software’s current responsibility. Examining the involvement of people in

the software also helps clear out bias in selecting areas of the system to

develop. This helped us avoid iterating only on well-known areas of content

generation, and encouraged us to focus on all aspects of game design equally.

As a result, different versions of ANGELINA improve on areas from pro-

gramming game mechanics to creating artistic directions for the game, and

this variety helped uncover new and interesting problems to subsequently

tackle.

275



13.4 Conclusion

In this chapter, we reviewed the contributions we laid out in chapter 1

and linked them back to the work that has been presented in the thesis.

Our contributions range from practical demonstrations of ideas through

to technical contributions of new approaches to content generation. We

have also contributed methodological ideas about how best to structure

automated game design systems, and how software can interact with groups

of people in creative contexts.

We also reflected on the development of ANGELINA, and how although

its core research thrust remained, we believe we have diversified ANGELINA

as a system and opened up new research directions as time has gone on,

largely inspired by changes to the medium of videogames that have hap-

pened in parallel with ANGELINA’s own development. We believe that we

have laid out some foundational ideas for people who wish to pursue auto-

mated game design in the future, as a fusion of computational creativity and

procedural content generation, but we also hope that we have demonstrated

that this area is rich in problems to be solved, and many areas have not even

had the most preliminary of initial work done in them. Automated game

design is a new frontier for games research, one that does not have the usual

plethora of obvious applications to games as an industry, but one that holds

many promising new ideas, philosophical research directions, and potential

contributions to videogames as a medium. We hope to have shown why this

is a good thing over the course of this thesis.

The opening of this thesis includes two quotes, one from a videogame that

lauds the optimism of scientists. The second, by Turing, comes at the end

of the paper which proposed what is now called the Turing Test for artificial

intelligence [97].

“We can only see a short distance ahead, but we can see plenty

there that needs to be done.”

We find this quote to be no less true now, sixty years after it was first

written, as it was then, as the horizons of artificial intelligence continue to

expand and we find new and confusing challenges to face. We hope that

this thesis has broadened the reader’s vision of what is ahead, and similarly

expanded the view of landmarks on the horizon to be worked towards.

276



277



Bibliography

[1] Nels Anderson. Why are so many indie darlings

2D platformers? http://www.above49.ca/2010/07/

why-are-so-many-indie-darlings-2d.html, 2010.

[2] Anna Anthropy. Masocore games. http://auntiepixelante.com/?p=11.

[3] Anna Anthropy. Level design lesson: To the right, hold on tight, 2009.

[4] Anna Anthropy. Rise Of The Videogame Zinesters: How How Freaks,

Normals, Amateurs, Artists, Dreamers, Drop-outs, Queers, House-

wives, and People Like You Are Taking Back an Art Form. SEVEN

STORIES PRESS, 2012.

[5] Jacob Aron. Ai designs its own video game.

http://www.newscientist.com/article/mg21328554.900-ai-designs-

its-own-video-game.html, 2012.

[6] D. Ashlock, C. Lee, and C. McGuinness. Search-based procedural

generation of maze-like levels. Computational Intelligence and AI in

Games, IEEE Transactions on, 3(3):260–273, Sept 2011.

[7] Tom Betts. An Investigation of the Digital Sublime in Video Game

Production. PhD thesis, University of Huddersfield, 2014.

[8] Jonathan Blow. Braid, 2008.

[9] M.A. Boden. The creative mind: myths & mechanisms. Basic Books,

1991.

[10] Ian Bogost. Persuasive games: The proceduralist style.

http://www.gamasutra.com/view/feature/132302/persuasive games the .php.

[11] Team Bondi. L.A. Noire, 2011.

278



[12] Paul Cairns and Anna L. Cox. Research Methods for Human-

Computer Interaction. Cambridge University Press, New York, NY,

USA, 1st edition, 2008.

[13] Brendan Caldwell. Punk’s not dead. http://www.

rockpapershotgun.com/tag/punks-not-dead/, 2012.

[14] Luigi Cardamone, Daniele Loiacono, and Pier Luca Lanzi. Interactive

evolution for the procedural generation of tracks in a high-end racing

game. In GECCO, 2011.

[15] Alex Champandard. Realistic Autonomous Navigation in Dynamic

Environments. PhD thesis, University of Edinburgh, 2002.

[16] John Charnley, Alison Pease, and Simon Colton. On the notion of

framing in computational creativity. In Proceedings of the 3rd Inter-

national Conference on Computational Creativity, 2012.

[17] Harold Cohen. Aaron. http://aaronshome.com/aaron/index.html,

2012.

[18] Simon Colton. Automated Theory Formation in Pure Mathematics.

PhD thesis, University of Edinburgh, 2001.

[19] Simon Colton. Creativity versus the perception of creativity in com-

putational systems. In Proceedings of the AAAI Spring Symposium

on Creative Systems, 2008.

[20] Simon Colton. Seven catchy phrases for computational creativity re-

search. In Margaret Boden, Mark D’Inverno, and Jon McCormack,

editors, Computational Creativity: An Interdisciplinary Approach,

number 09291 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany,

2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[21] Simon Colton. The painting fool. http://www.thepaintingfool.com/,

2012.

[22] Simon Colton. The painting fool: Stories from building an automated

painter. In Jon McCormack and Mark dInverno, editors, Computers

and Creativity, pages 3–38. Springer Berlin Heidelberg, 2012.

279



[23] Simon Colton. The painting fool: Stories from building an automated

painter. In Jon McCormack and Mark d’Inverno, editors, Computers

and Creativity, chapter 1, pages 3–38. Springer, Berlin; Heidelberg,

2012.

[24] Simon Colton, Alan Bundy, and Toby Walsh. Automatic invention of

integer sequences. In Henry A. Kautz and Bruce W. Porter, editors,

AAAI, pages 558–563. AAAI Press / The MIT Press, 2000.

[25] Simon Colton, John Charnley, and Alison Pease. Computational Cre-

ativity Theory: The FACE and IDEA models. In Proceedings of the

Second International Conference on Computational Creativity, 2011.

[26] Simon Colton, Michael Cook, Rose Hepworth, and Alison Pease. On

acid drops and teardrops: Observer issues in computational creativ-

ity. In Proceedings of the 7th AISB Symposium on Computing and

Philosophy, 2014.

[27] Simon Colton, Jacob Goodwin, and Tony Veale. Full-FACE poetry

generation. In Proceedings of the Third International Conference on

Computational Creativity, 2012.

[28] Simon Colton and Dan Ventura. You can’t know my mind: A festival

of computational creativity. In Proceedings of the Fifth International

Conference on Computational Creativity, 2014.

[29] Simon Colton and Geraint A. Wiggins. Computational creativity:

The final frontier? In Proceedings of the European Conference on AI,

2012.

[30] Michael Cook. Evomaze - a simple evolutionary system.

https://github.com/gamesbyangelina/EvoMaze.

[31] Michael Cook and Simon Colton. Automated collage generation – with

more intent. In Proceedings of the Second International Conference

on Computational Creativity, 2011.

[32] Michael Cook and Simon Colton. From mechanics to meaning and

back again: Exploring techniques for the contextualisation of code.

In Proceedings of the AIIDE Workshop on Artificial Intelligence and

Game Aesthetics, 2013.

280



[33] Michael Cook, Simon Colton, and Jeremy Gow. Nobody’s a critic:

On the evaluation of creative code generators. In Proceedings of the

Fourth International Conference on Computational Creativity, 2013.

[34] Michael Cook, Simon Colton, and Jeremy Gow. The ANGELINA

videogame design system, part i. In Computational Intelligence and

AI in Games, IEEE Transactions on, 2015 (Under Review).

[35] Richard Dawkins. The Blind Watchmaker. Norton & Company, 1986.

[36] Frontier Developments. Elite, 1980.

[37] Suspicious Developments. Gunpoint, 2013.

[38] Christian Donlan. Plastic soul: One man’s quest to build an ai

that can create games. http://www.eurogamer.net/articles/2013-04-

02-plastic-soul-one-mans-quest-to-build-an-ai-that-can-create-games,

2013.

[39] Christian Donlan. Can an AI win a game jam?

http://www.eurogamer.net/articles/2014-01-14-can-an-ai-win-a-

game-jam, 2014.

[40] Arne Eigenfeldt, Philippe Pasquier, and Adam Burnett. Evaluating

musical metacreation. In Mary L. Maher, Kristian Hammond, Ali-

son Pease, Rafael Pérez, Dan Ventura, and Geraint Wiggins, editors,

Proceedings of the Third International Conference on Computational

Creativity, page 140–144, Dublin, Ireland, may 2012.

[41] Farbs. ROM, CHECK, FAIL, 2008.

[42] Tom Francis. Gunpoint recoups development costs in 64

seconds. http://www.pentadact.com/2013-06-18-gunpoint-recoups-

development-costs-in-64-seconds/, 2013.

[43] Bay 12 Games. Dwarf fortress, 2006.

[44] CCP Games. Eve online, 2003.

[45] Evolutionary Games. Galactic arms race, 2010.

[46] Gaslamp Games. Dungeons of dremor, 2011.

281



[47] Mossmouth Games. Spelunky, 2009.

[48] Subset Games. Ftl: Faster Than Light, 2012.

[49] Supergiant Games. Transistor, 2014.

[50] Telltale Games. The Walking Dead, 2012.

[51] N. Garcia-Pedrajas, C. Hervas-Martinez, and J. Munoz-Perez. Cov-

net: A cooperative coevolutionary model for evolving artificial neural

networks. Transactions on Neural Networks, 14(3):575–596, 2003.

[52] Eugene Garver. Rhetoric and essentially contested arguments, 1978.

[53] Sam Geen. 1 + 10 more, 2014.

[54] Michael Genesereth and Nathaniel Love. General game playing:

Overview of the aaai competition. AI Magazine, 26:62–72, 2005.

[55] Jeremy Gow, Simon Colton, Paul A. Cairns, and Paul Miller. Mining

rules from player experience and activity data. In Mark Riedl and

Gita Sukthankar, editors, AIIDE. The AAAI Press, 2012.

[56] Jay Griffin. The duellists, 2014.

[57] Gary Gygax and Dave Arneson. Dungeons and dragons, 1974.

[58] Erin J Hastings, Ratan K Guha, and Kenneth O Stanley. Evolving

content in the galactic arms race video game. In IEEE Symposium on

Computational Intelligence and Games, 2009.

[59] Claire Hosking. Opinion: Stop dwelling on

graphics and embrace procedural generation.

http://www.polygon.com/2013/12/10/5192058/opinion-stop-

dwelling-on-graphics-and-embrace-procedural-generation, 2013.

[60] Hiroyuki Imabayashi. Sokoban, 1981.

[61] Metroid World Map image. Nes maps. http://www.nesmaps.com.

[62] Atari Inc. Pong, 1972.

[63] IO Interactive. Hitman: Blood Money, 2006.

282



[64] Inc. Interactive Data Visualization. Speedtree.

http://www.speedtree.com/, 2002.

[65] Colin Johnson. The creative computer as romantic hero? or, what

kind of creative personae do computational creativity systems exem-

plify? In Proceedings of the Third International Conference on Com-

putational Creativity, 2012.

[66] Soren Johnson. Analysis: Sid meier’s key design lessons.

http://www.gamasutra.com/view/news/23458/Analysis Sid Meiers Key Design Lessons.php,

2009.

[67] Anna Jordanous. Evaluating Computational Creativity:A Standardised

Procedure for Evaluating CreativeSystems and its Application. PhD

thesis, University of Sussex, 2012.

[68] Makoto Kano, Gunpei Yokoi, Hiroji Kiyotake, and Yoshio Sakamoto.

Metroid, 1986.

[69] Darius Kazemi. Spelunky generator lessons.

http://tinysubversions.com/spelunkyGen/, 2013.

[70] Manuel Kerssemakers, Jeppe Tuxen, Julian Togelius, and Georgios N.

Yannakakis. A procedural procedural level generator generator. In

IEEE Conference on Computational Intelligence and Games, 2012.

[71] Ed Key and David Kanaga. Proteus, 2013.

[72] Adam Kilgariff. Bnc database and word frequency lists.

http://www.kilgarriff.co.uk/bnc-readme.html.

[73] Konami. Frogger, 1981.

[74] Konami. Castlevania, 1986.

[75] Raph Koster and Will Wright. A Theory of Fun for Game Design.

Paraglyph Press, 2004.

[76] Anna Krzeczkowska, Jad El-hage, Simon Colton, and Stephen Clark.

Automated collage generation with intent.

283



[77] Nicholas Lambert, William Latham, and Frederic Fol Leymarie. The

emergence and growth of evolutionary art: 1980–1993. In ACM SIG-

GRAPH 2013 Art Gallery, SIGGRAPH ’13, pages 367–375. ACM,

2013.

[78] William Latham. Mutator event website. http://latham-

mutator.com/category/events/.

[79] Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolu-

tion through the search for novelty alone. Evol. Comput., 19(2):189–

223, 2011.

[80] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. Sen-

tient sketchbook: Computer-aided game level authoring. In Proceed-

ings of the ACM Conference on Foundations of Digital Games, 2013.

[81] Hugo Liu and Push Singh. Conceptnet: A practical commonsense

reasoning toolkit. BT Technology Journal, 22:211–226, 2004.

[82] LucasArts. The Secret of Monkey Island, 1990.

[83] Victor W. Marek. Stable models and an alternative logic program-

ming paradigm. In In The Logic Programming Paradigm: a 25-Year

Perspective, pages 375–398. Springer-Verlag, 1999.

[84] Jane McGonigal. Gaming can make a better world (ted talk).

http://www.ted.com/talks/jane mcgonigal gaming can make a better world,

2010.

[85] Jane McGonigal. Reality Is Broken: Why Games Make Us Better and

How They Can Change the World. Penguin Group , The, 2011.

[86] Michael McWhertor. About kotaku reviews, 2009.

[87] Microprose. Sid Meier’s Civilization, 1991.

[88] Shigeru Miyamoto. Donkey kong, 1981.

[89] Richard Morris, Scott Burton, Paul Bodily, and Dan Ventura. Soup

over bean of pure joy: Culinary ruminations of an artificial chef. In

Proceedings of the Third International Conference on Computational

Creativity, 2012.

284



[90] Namco. Pac-man, 1975.

[91] Kathryn Nave. Meet angelina, the game-designing ai who

loves rupert murdoch. http://www.wired.co.uk/news/archive/2014-

01/20/angelina-gaming-ai, 2014.

[92] Mark J. Nelson and Michael Mateas. Towards automated game de-

sign. In Proceedings of the 10th Congress of the Italian Association

for Artificial Intelligence, 2007.

[93] Finn Årup Nielsen. A new anew: Evaluation of a word list for

sentiment analysis in microblogs. Computing Research Repository,

1103.2903, 2011.

[94] Jan Willem Nijman. The art of screenshake.

https://www.youtube.com/watch?v=AJdEqssNZ-U.

[95] Nintendo. Warioware, 2003.

[96] Alexis Ong. Ten women reshaping modern tech.

http://www.dazeddigital.com/artsandculture/article/18631/1/the-

top-ten-women-taking-over-tech, 2014.

[97] Alison Pease and Simon Colton. On impact and evaluation in compu-

tational creativity: A discussion of the turing test and an alternative

proposal. In Proceedings of the AISB symposium on AI and Philoso-

phy, 2011.

[98] Ken Perlin. Improving noise. In Proceedings of the 29th Annual

Conference on Computer Graphics and Interactive Techniques, SIG-

GRAPH, 2002.

[99] Markus Persson and Jens Bergensten. Minecraft, 2011.

[100] Amanda Phillips. Dispatch from a com-

puter science conference: My time at aiide14.

http://gamertrouble.wordpress.com/2014/10/07/dispatch-from-

a-computer-science-conference-my-time-at-aiide14/, 2014.

[101] Mitchell A. Potter and Kenneth A. De Jong. A cooperative coevo-

lutionary approach to function optimization. In Proceedings of the

International Conference on Evolutionary Computation, 1994.

285



[102] Graeme Ritchie. Some empirical criteria for attributing creativity to

a computer program. Minds and Machines, 17(1), 2007.

[103] Jim Rossignol. Guest informant: Jim rossignol.

http://www.warrenellis.com/?p=13469, 2011.

[104] Jim Rossignol and John Walker. The rock, paper, shotgun electronic

wireless show, episode 37, 2011.

[105] Steve Russell. Spacewar!, 1962.

[106] Rob Saunders. Multi-agent simulations of social creativity. Talk given

at the PROSECCO Autumn School on Computational Creativity,

2013.

[107] Jimmy Secretan, Nicholas Beato, David B D Ambrosio, Adelein Ro-

driguez, Adam Campbell, and Kenneth O Stanley. Picbreeder: evolv-

ing pictures collaboratively online. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, pages 1759–1768.

ACM, 2008.

[108] Team Silent. Silent hill 2, 2001.

[109] Karl Sims. Evolving 3d morphology and behavior by competition.

Artificial Life, 1(4):353–372, 1994.

[110] Adam M. Smith and Michael Mateas. Variations forever: Flexibly

generating rulesets from a sculptable design space of mini-games. In

IEEE Conference on Computational Intelligence and Games (CIG),

2010.

[111] Gillian Smith. The seven deadly sins of

PCG research. http://sokath.com/main/

the-seven-deadly-sins-of-pcg-papers-questionable-claims-edition/,

2013. expanded from a panel discussion at the Foundations of Digital

Games conference 2013.

[112] Gillian Smith and Jim Whitehead. Analyzing the expressive range of

a level generator. In Proceedings of the FDG Workshop on Procedural

Content Generation in Games, 2010.

286



[113] Valve Software. Team fortress blog - history.

http://www.teamfortress.com/history.php.

[114] Valve Software. Team fortress 2, 2007.

[115] Valve Software. Portal 2, 2012.

[116] Valve Software. Dota 2, 2013.

[117] Bethesda Softworks. The elder scrolls ii: Daggerfall, 1994.

[118] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks

through augmenting topologies. Evolutionary Computation, 10(2),

2002.

[119] Bethesda Game Studios. The Elder Scrolls IV: Oblivion, 2007.

[120] Bethesda Game Studios. The Elder Scrolls V: Skyrim, 2011.

[121] Georgia Tech. Gwappy bird. http://www.newgrounds.com/portal/view/647126,

2014.

[122] themushroomsound. Wormholes, 2014.

[123] Stephen Todd and William Latham. Mutator: a subjective human

interface for evolution of computer sculptures. IBM United Kingdom

Scientific Centre, 1991.

[124] Julian Togelius, Renzo De Nardi, and Simon M. Lucas. Towards au-

tomatic personalised content creation in racing games. In Proceedings

of the IEEE Symposium on Computational Intelligence and Games,

2007.

[125] Julian Togelius and Jrgen Schmidhuber. An experiment in automatic

game design. In Proceedings of the IEEE Conference on Computa-

tional Intelligence in Games, pages 111–118, 2008.

[126] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and

Cameron Browne. Search-based procedural content generation: A tax-

onomy and survey. IEEE Trans. Comput. Intellig. and AI in Games,

2011.

287



[127] Michael Toy, Glenn Wichman, Ken Arnold, and Jon Lane. Rogue,

1980.

[128] Mike Treanor, Bryan Blackford, Michael Mateas, and Ian Bogost.

Game-o-matic: Generating videogames that represent ideas. In Pro-

ceedings of the Third Workshop on Procedural Content Generation in

Games, 2012.

[129] Alan M. Turing. Computing Machinery and Intelligence. Mind, 1950.

[130] Tony Veale. From conceptual “mash-ups” to “bad-ass” blends: A

robust computational model of conceptual blending. In Proceedings

of the Third International Conference on Computational Creativity,

2012.

[131] R. Paul Wiegand. An Analysis of Cooperative Coevolutionary Algo-

rithms. PhD thesis, George Mason University, 1999.

[132] Castlevania Wikia. Simon’s quest inventory.

http://castlevania.wikia.com/wiki/Simon

[133] Super Metroid Wikia. List of items in super metroid.

http://metroid.wikia.com/wiki/List of items in Super Metroid.

[134] Mike Williams. 1reasontobe panel shows female devs still struggling

for equality. http://www.gamesindustry.biz/articles/2013-03-28-

1reasontobe-panel-shows-female-devs-still-struggling-for-equality,

2013.

[135] Derek Yu. The full spelunky on spelunky, 2012.

[136] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE Multi-

Media, 19(2):4–10, April 2012.

288


