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Abstract

This paper investigates trends in asthma and COPD by using multiple data
sources to help understanding the relationships between disease prevalence, morbidity
and mortality. GP drug prescriptions, hospital admissions, and deaths are analysed
at clinical commissioning group (CCG) level in England from August 2010 to March
2011. A Bayesian hierarchical model is used for the analysis, which takes into account
the complex space and time dependencies of asthma and COPD, while it is also
able to detect unusual areas. Main findings show important discrepancies across the
different data sources, reflecting the different groups of patients that are represented.
In addition, the detection mechanism that is provided by the model, together with
inference on the spatial, and temporal variation, provide a better picture of the
respiratory health problem.
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1. Introduction

Asthma and chronic obstructive pulmonary disease (COPD) are the most common
chronic respiratory conditions worldwide, contributing to heavy social and economic
burden (World Health Organization, 2012).

The number of people suffering from asthma in 2014 was estimated to be 334
million around the world (World Health Organization, 2014) and this number is
projected to rise to 400 million by 2025. Around 250 000 deaths per year are caused
by the disease, with the majority of them considered to be preventable (Masoli
et al., 2004). COPD has a lower prevalence of 64 million people but much higher
mortality, with 3 million deaths annually, an estimated 6% of all deaths worldwide.
COPD is predicted to become the third leading cause of death by 2030 (World Health
Organization, 2014). In the UK, asthma affects 1 in 5 households, and COPD is the
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fifth leading cause of death after cancer and cardiovascular disease (Masoli et al.,
2004).

Asthma and COPD have similarities in symptoms and treatment and there may
be considerable overlap between these conditions making them difficult to distinguish
clinically (Drazen et al., 2015). Asthma commonly starts in childhood and is often
allergic in origin, while a large proportion of COPD is caused by smoking and
the condition starts in mid to later life. Common symptoms in both conditions
are shortness of breath and wheeze, with worsening of symptoms with respiratory
infections, with similarities in treatments of bronchodilators, steroids and antibiotics
for infections. Triggers for exacerbations, the major determinants of admissions and
possibly deaths are likely to be influenced by infectious disease trends and by common
environmental factors with a spatio-temporal structure, such as air pollution (Eeftens
et al., 2012).

A study of trends of these chronic respiratory diseases is important, as it allows a
better understanding of the characteristics of the disease, to determine whether health
policies or preventive measures are effective, and to identify high-risk populations
that might require additional care and treatments. A challenge, however, is the choice
of data to use for asthma and COPD analyses. Studies on mortality (Sin et al., 2006)
investigate only the highest degree of severity and findings may differ from those for
hospital admissions particularly for asthma (Hansell et al., 2003), which is a more
heterogeneous condition. Most studies have used data from secondary and tertiary
care, such as hospital admissions and emergency care data, but these will not capture
milder cases seen in primary care. It is estimated that only 20% of asthmatic patients
and less than half of COPD patients suffer from severe symptoms (Lindebeg et al.,
2006).

A useful addition to asthma and COPD research is the use of General Practice (GP)
drug prescription data which consist in the numbers of items that are prescribed in
England by GPs and are dispensed anywhere in UK or Europe. GP drug prescriptions
can be very relevant for asthma and COPD as these are long-term conditions that
are controlled by regular medication. These capture patients of any severity of the
disease, from mild to severe, and hence they can provide a general picture of the
respiratory health of the population at small area level. Only a few authors have
used GP drug prescriptions to investigate asthma and COPD trends (Hansell et al.,
2003; Naureckas et al., 2005; Vegni et al., 2005; Laurent et al., 2009; Sofianopoulou
et al., 2013).

In addition, the geographical trends of asthma and COPD have only been studied
by a few authors. Hansell et al. (2003) found COPD mortality, hospital admissions
and GP prescriptions for COPD were higher in urban areas and northern regions
of England, but less clear patterns were seen for asthma in comparisons using age-
sex standardised event ratios. Holt et al. (2011) analysed hospitalisations within
a Bayesian hierarchical framework, while other examples include Joo et al. (2007);
Centers for Disease Control and Prevention (2008); Lipton and Banerjee (2006) and



Nandram et al. (2000). Sofianopoulou et al. (2013) explored geographical patterns of
GP drug prescriptions, considering the Newcastle and North Tyneside area in the UK
as a study region. Studies (Hacking et al., 2011; Wells and Gordon, 2008; Hansell
et al., 2003) suggest that there is a significant difference of morbidity and mortality
within and between regions of the UK over the last 40 years. This needs to be taken
into account in order to both provide reliable statistical estimates, as well as to help
public health policy makers more clearly identify target areas with great needs and
improve disease prevention and treatment.

The objective of this study is to investigate trends in asthma and COPD at the
population level across England by using multiple data sources to help understanding
the relationships between disease prevalence, morbidity and mortality. We explore
spatial and temporal patterns of GP drug prescriptions, hospital admissions and
deaths, and we evaluate if different behaviours can be seen for different data sources
which underline different condition severity. We also focus on the detection of unusual
areas, i.e characterised by a temporal trend which deviates from the general one,
suggesting the presence of a policy or an emerged localised factor. In this analysis we
combine information on asthma and COPD, given the similarities in these conditions,
issues distinguishing between them (Drazen et al., 2015) and the fact that the GP
prescription dataset used does not provide information on diagnosis.

The remainder of the paper is structured as follows. Section 2 describes the
study design and the data sources used for the analysis, and Section 3 describes the
statistical modelling framework. In Section 4 the results of the study are presented,
followed by a discussion, and finally, Section 5 summarizes the main findings of the
paper, and suggests recommendations for future research.

2. Data sources

To gain a better understanding of asthma and COPD, we make use of three
different data sources: i) General practice (GP) drug prescription data of treatments
used for these conditions, which capture patients with mild to severe symptoms
and will give a general picture of the disease prevalence across the study region; i)
Hospital Episode Statistics (HES) admissions with primary diagnosis of asthma or
COPD; #ii) mortality data with asthma and COPD disease as cause of death. The
latter two data sources will inform on cases characterised by higher severity. We are
going to describe each data source in the rest of this section.

2.1. GP drug prescription data

The Prescription Cost Analysis (PACT) data are accessed from the NHS Busi-
ness Services Authority. These include the monthly prescriptions of all drugs from
8003 general practices across England from August 2010 onwards at a monthly
temporal resolution. In this study we use the prescriptions on Salbutamol, Ventolin
and Clenil Modulite,with corresponding British National Formulary (BNF) codes



1011ROAAAPAP, 0301011ROBEATAP and 0302000COBPABBF respectively. These
account for more than 90% of the total prescription of short acting beta2-agonist
(SABA), a class of drugs that relieves patients from bronchospasm which charac-
teristically occurs in acute symptoms (Drazen et al., 2015). Every GP is part of a
local clinical commissioning group (CCG), which is the authority responsible for local
healthcare services including local hospitals and NHS services, according to the 2012
Health and Social Care Act. GPs of the same CCG collaborate to evaluate local
needs, monitor services, set priorities and make area-specific decisions to promote
healthcare services for local residents. This suggests that GPs within the same CCG
should share similarities. Therefore, the available GP data are aggregated at CCG
(211 in England) level to be used for the analysis. The PACT data also contain the
number of patients registered within each GP, with information on age group and
sex. These are also aggregated at CCG level and they are used for the calculation of
the expected number of drugs which will be the offset for the analysis of GP drug
prescriptions.

2.2. HES and mortality data

Health data for England from August 2010 to March 2011 were obtained from the
Small Area Health Statistics Unit (SAHSU) at Imperial College London. Hospital
Episode Statistics (HES) admission data, supplied by the Health and Social Care
Information Centre contain the number of admissions with a primary diagnosis of
asthma or COPD, and may also include readmissions of the same patient. Mortality
data were also obtained from SAHSU, supplied by the Office for National Statistics
(ONS), derived from the national mortality registrations. The number of deaths with
underlying cause of death (UCD) of asthma or COPD was collected. International
Classification of Disease coding version 10 (ICD-10) was used for admission and
mortality coding throughout this time period and asthma and COPD were defined
as ICD-10 codes 490-496. Linkage between HES and mortality data to identify
individual patients was not possible. Population data were also obtained from the
Office for National Statistics, with individual-level information on age and sex and
these were used for the calculation of the expected number of cases. HES, mortality,
and population data were all aggregated to CCG level.

We have considered the same time period of August 2010 to March 2011 across
all three datasets.

3. Statistical Analysis

The analysis is conducted within a Bayesian hierarchical framework that takes
into account the complex dependence patterns of asthma and COPD over space and
time. Bayesian methods have been extensively applied in epidemiological studies,
in order to summarise the spatial and temporal variations of the disease risk (Best
et al., 2005). Approaches within the spatio-temporal setting have been suggested by



many authors (Bernardinelli et al., 1995; Waller et al., 1997; Knorr-Held and Besag,
1998; Knorr-Held, 2000; Abellan et al., 2008).

The spatio-temporal model that we use in this paper, known as BaySTDetect, is
a recently developed method by Li et al. (2012) that is able to estimate spatial and
temporal patterns, and to also detect areas whose temporal pattern deviates from
the general one.

3.1. Model specification
The first level of the hierarchical model is given by

Y, ~ Poisson(uy E;) (1)

where Y;; and E; are the observed and expected counts in CCG i = 1,...,211 at
time points t = 1,...,8, corresponding to months August 2010, September 2010,. . .,
March 2011.

In the second level of the hierarchy, the rate u;; follows a mixture of two components
as follows:

log(uie) = 2 log( 1§ ) + (1= ;) log (&> ) (2)
where
log( ,ug ) =ag+h; +7 (Common Model) (3)
and
log( ,u?s ) =wu; + ki (Area-Specific Model) (4)

The Common Model (3) consists of spatial and temporal effects, h; and 7; respectively,
that are combined additively on the log scale, thus estimating the temporal pattern
to be the same for all areas. An overall intercept oy is also included.

To incorporate unusual temporal patterns that may occur in any particular month,
we allow for the selection of an alternative Area-Specific Model (4), which estimates
the temporal effects k;; independently for each area. An area-specific intercept u; is
also included in the model.

In the third level of the hierarchy, priors are specified for all model parameters as
follows:

ag ~ U(—00, +00) u; ~ N(0,1000)
hi ~ N(v;, 07) and v; ~ ICAR(W, 02) ki, ~ ICAR(Q, 0%)
n ~ ICAR(Q, 03) log(7,) ~ N(a, 5%)



For the Common Model, a spatial convolution prior based on the standard Besag-
York-Mollie formulation (Besag et al., 1991) is assigned to the spatial random effects.
This combines a spatially structured component that follows a conditional autore-
gressive prior (ICAR) (Besag, 1974), accounting for spatial correlation in the data,
and a spatially unstructured component following a Gaussian prior, accounting for
heterogeneity in the data. For the spatial ICAR prior, we specify the neighbourhood
structure by defining an adjacency matrix W of size N x N such that the diagonal
entries w; ; = 0 and the off-diagonal entries w; ; = 1 if areas ¢ and j share a common
boundary, and 0 otherwise. The temporal effects are assigned the temporal analogue
of the ICAR prior, thus accounting for the temporal correlation in the data. Similar
to the spatial ICAR prior, the temporal neighbourhood structure is defined through
a matrix Q, where ¢, = 1 if |h —t| = 1 and g5, = 0 otherwise, with h and ¢ indexing
units of time. For the Area-Specific Model, the same ICAR prior is assigned to the
temporal component k;;. In addition, a prior is assigned to the area-specific variances
o2, as an extra hirerachical level for identifiability reasons. For the overall intercept
ap and the area specific intercept u;, vague priors are specified.

A weakly informative half Normal prior N(0,1) is assigned to each of the parameters
on, 0y and o, (Gelman, 2006), while a N(«, %) prior is assigned to the log(cZ)
with parameters a and 3? following priors N(0, 1000) and N(0, 2.5?), based on
the specification by Li et al. (2012). As the latter prior is somewhat informative,
sensitivity analysis is carried out to assess the robustness of the results.

The model indicator z; follows a Bernoulli (0.95) prior, selecting estimates from
either the Common Model (z=1) or the Area-Specific Model (z=0). The parameter
0.95 reflects our expectations that only a small number of areas express an unusual
temporal pattern.

To classify areas as unusual, we use the posterior estimates of the indicator z;
representing how likely it is for area ¢ to follow the Common Model, i.e. to exhibit a
usual pattern in the risks, and we select the ones that satisfy the following condition:
r; < 0.05, where r; is the jth ordered posterior z;.

3.2. Applications

The model is fitted to all three datasets described in Section 2. In the prescription
model, Y;; is the number of GP drug prescriptions in CCG ¢ at month ¢t and E; are
the expected counts. Appropriate covariates are also included in (2) to adjust for
age and sex. As an indicator of age, we use the percentage of active population (age
group 15 to 64), while as an indicator of sex, we use the male to female ratio.

In the admission model, Y;; are the observed cases of asthma and COPD admissions
in CCG ¢ at month ¢ and E; are the expected ones based on age and sex direct
standardisation using the whole of England as standard population. Similarly, in the
mortality model, Y;; is the observed number of deaths due to asthma or COPD in
CCG i at month t and E; is the corresponding expected number based on age and
sex direct standardisation using the whole of England as standard population.



The models are implemented in OpenBUGS using Markov Chain Monte Carlo
(MCMC) integration algorithms (Gilks, 2005). Three chains are run for each parameter
per model with different initial values for 80 000 iterations, from which 20 000 are
discarded as burn-in, and estimates are based on the remaining samples using only
every 5th iteration to limit autocorrelation. The simulations took around 17 hours
per model on an Intel Xeon processor 2.50GHz with 23.4 RAM. Convergence was
assessed through trace plots, BGR statistic, and Monte Carlo error.

4. Results & Discussion

4.1. Spatial Patterns

We provide maps of posterior rates to investigate the geographical patterns of
asthma and COPD across the three different data sources and evaluate whether these
share any similarities or differences. Figure 1a shows the residual relative risk of the
spatial component exp(h;) of the Common Model (2) for the GP drug prescriptions
across England during the period August 2010 to March 2011, while Figures 1b and
1c show the corresponding risk for HES admissions, and deaths respectively.

A clear pattern is observed across all datasets with a strong increasing effect from
south to north. High risk is focused mainly on the region that includes Liverpool,
Manchester, Leeds, and Sheffield, as well as on the region Newcastle and Durham,
with the highest risks being observed in the north east of England. Potential shared
risk factors may include deprivation, which is highest in urban areas of the north-east
and north-west, environmental factors such as air pollution and smoking prevalence
(Prescott and Vestbo, 1999; Lopez et al., 2006; Andersen et al., 2011). The north
west is the areas with the highest prevalence of smokers (HSCIC, 2015).

By comparing the risk distribution across different data sources, we observe that
for admissions and deaths, these are somewhat consistent (Figures 1b and 1c), while
for prescriptions important differences are highlighted (Figure 1a). This observation
is confirmed by the heatmap in Figure 1d which shows the correspondence across the
three data sources using the spatial relative risk; the area in light grey represents the
CCGs in England that share a low relative risk while the area in dark grey represents
the ones with a high relative risk. It is clear that the proportion of areas with a
low /high relative risk across all three data sources is relatively small compared to
the proportion of areas with a low/high relative risk among HES admissions and
mortality data. The correlation of the latter two was estimated to be 0.77, while
the corresponding correlations of GP drugs and mortality, and GP drugs and HES
admissions were close to 0.5.

Low risk is observed for admissions and deaths (Figures 1b and 1c¢) in the south
of England, and in the coastal areas. At the same time these areas exhibit high
prescription rates (Figure la). This suggests a number of hypotheses for further
investigation e.g. that higher prescription rates are a causal factor in lower morbidity
and mortality, that there are more patients with milder disease in the south-east
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Figure 1: Spatial patterns of chronic respiratory disease across England for GP drugs (a), admissions
(b), and deaths (c); heatmap showing correspondence across the three data sources (d)
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potentially related to lifestyle factors (lower smoking) and environmental factors
(lower air pollution), that deprivation results in higher morbidity and mortality but
lower use of primary care. Age-sex effects could also explain these differences; these
are accounted for at an aggregate level for drugs, through the inclusion of appropriate
covariates at the GP practice level in the model, since information was not available
at an individual level, while direct standardisation was used for admissions and
mortality.

Only a few CCGs in the south appear to have high admission and mortality
rates (Figures 1b and 1c), including Portsmouth and Southampton CCGs. Increased
smoking prevalence and high deprivation can be related to this. Unlike the rest
of big cities in England, London appears to have low prescription rates (Figure
la) potentially related to the low number of smokers in the area (HSCIC, 2015).
Comparing between mortality and admission spatial patterns, a stronger south to
north effect can be seen for mortality (Figure 1c), showing the south eastern and
central west parts of England as the least risky for disease death. Another region
which potentially represents a group of patients with mild symptoms is around the
Yorkshire area, where national parks are, and this area clearly stands out in the
admissions map (Figure 1b).

4.2. Temporal patterns

The general temporal patterns in England from August 2010 to March 2011 under
the different datasets considered in the study can be seen in Figure 2, which plots
the component exp(~;) of the Common Model (2).
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Figure 2: Temporal trends in chronic respiratory disease across different data sources

Generally, there was a seasonal pattern in the monthly risk for asthma and COPD
across all data sources over the period August 2010 to March 2011 however the trends
show important discrepancies. The highest risk was recorded around Christmas across



all data sources. This is likely to represent peaks in respiratory infections, especially
influenza and respiratory syncytial virus (RSV) that peak around this year. These
result in increased respiratory symptoms from mild to severe and cause exacerbations
of disease that are occasionally fatal (Fleming et al., 2015). The lowest peak was
recorded in August for all three data sources, a period when people are on holidays,
away from their homes. The raise in the rates across all datasets around September
coincides with the start of term at schools.

By comparing temporal trends across different data sources, we observe that there
is a high temporal variation for mortality, whereas this is lower for admissions and
prescriptions. Interestingly, a time lag is apparent between admissions and mortality.
The highest peak for admissions is December, whereas for mortality is January and
this might reflect the group of admissions which were then followed by death.

4.3. Detection of unusual areas

Finally, we obtain the posterior estimates of the indicator z; for each model and
we classify areas as unusual based on the rule described in Section 3.1.

For GP drug prescription and mortality data, no areas were detected as unusual,
meaning that all posterior estimates of the parameter z; were above our a prior:
threshold value of 0.05. When ranking areas by probability, the Isle of Wight was
the area with the smallest probability of following either the common prescriptions
temporal pattern (with a probability of 0.13), or the common mortality temporal
pattern (with a probability of 0.11). Looking at the temporal patterns for this area in
Figure 3, we see that for prescriptions, a flat pattern is apparent, indicating low rates
with no peaks throughout the whole time period (Figure 3a), while for mortality, a
near exponential increase is observed, which after December 2010 exceeds the national
death rates importantly (Figure 3c). The corresponding plot for the admissions shows
a stable pattern (Figure 3b), similar to the one for prescriptions (Figure 3a).

After investigating the CCG of Isle of Wight, we found that an intervention was
implemented in order to reduce the high prevalence of long respiratory diseases in
the area, which was combined with an excess expenditure on respiratory medication.
The project entitled ‘Isle of Wight Respiratory Inhaler Project’, led by the National
Institute for health and Clinical Excellence (NICE), involved training of healthcare
professionals in the use of the inhaler, patient training, and assessment of the inhaler
technique. According to the results reported in 2009, the costs on selective beta-
agonists fell by 22.7%, the number of prescriptions fell by 25.2%, the emergency
admissions due to asthma were reduced by 50%, and associated deaths by 75% (NICE,
2015; The Pharmaceutical Journal, 2011).

Given the above, the flat pattern in prescriptions seen in Figure 3a is well
supported, as well as the one for admissions (Figure 3b). However, the increasing
temporal trend in deaths in Figure 3c which peaks in the last month of the study
period generates questions. Since the findings reported by NICE consider only
asthmatic patients, meaning that COPD patients that use the same medication are
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not represented, further analysis is required for the CCG of Isle of Wight separately
on asthma and COPD in order to understand the underlying causes of the mortality
trend. Additional data need to be also analysed in order to see the progression of
the rates long after the intervention was implemented. Moreover, COPD is often
misdiagnosed as asthma due to the similar symptoms that these two diseases share,
and also depending on the availability of spirometry (Walker et al., 2006). This calls
for further investigation into the misdiagnosed cases of COPD as asthma in the CCG
of Isle of Wight which might be an adverse effect of the project.

On the other hand, four areas were detected as unusual using a 0.05 threshold
level for hospital admissions model: Harrow, Hillingdon, Redbridge and Southampton.
The time plots in Figure 4 show the temporal trends for each unusual area, compared
to the general temporal trend.
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Figure 4: Unusual temporal trends under HES admissions data
As it can be seen, the corresponding areas do not follow particularly extreme

patterns, but there are discrepancies from the common one that the model identifies
as important. For instance, although Harrow in general exhibits lower than the
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average national admission rates due to asthma or COPD, an unusual high peak is
observed in August, as well as one in November, which months are considered safe
for the rest of England. Hillingdon, on the other hand appears to have an extreme
decrease in March 2011. Redbridge shows a different pattern in prescriptions from
the other areas in that prescriptions increase in early November. London is a city
known for its diversity, and for the population movements within it, hence it is not
easy to make conclusions as to what has happened in those CCGs. Factors such as
differences in local population characteristics, or differences in the quality of hospital
care and the support people receive to manage their condition across time could be
responsible.

The fourth area that was detected as unusual in terms of admission trends
is Southampton. This is one of the few areas on the South Coast that show an
increased risk for severe symptoms and deaths due to asthma and COPD (Figure 1).
Interestingly, it seems that the low risk observed in Figure 4 from December onwards
is the outcome of an intervention that was implemented in order to address the excess
number of admissions in the CCG of Southampton. Wilkinson et al. (2014) found
that 34 patients were responsible for 22% of the total COPD admissions over a 3-year
period. The authors present an admission avoidance strategy that was constructed
for this group of patients, and as a result the readmission rate fell from 13.4 to 1.9%.

5. Conclusions & further recommendations

In this paper we have investigated the spatial and temporal patterns of asthma
and COPD, with a special focus on the detection of areas that follow an unusual
temporal pattern compared to the general one, by using effective high quality datasets,
aggregated by CCG which is meaningful for healthcare practices. There are two main
conclusions we have drawn from our study.

First, we have shown that multiple data sources representing different degrees of
disease severity give a more comprehensive picture of the respiratory health problem
with potential implications for healthcare. Some similarities across the different
datasets both in the spatial and temporal variation are indicated, however also
important discrepancies are apparent reflecting the different groups of patients that
are represented.

Second, the detection mechanism that is provided by the model we used, together
with inference on the spatial, and temporal variation, can aid health care professionals
and public health practitioners identify target areas, assess a policy impact or the
quality provided by hospitals, and hence develop effective prevention programs to
improve population health.

A strong aspect of the modelling approach is that it identifies unusual behaviour
not only in terms of increased risk, but also in terms of any risk pattern that deviates
from the expected one. Additionally, it only detects areas when a certain criterion is
met, and the specification of this depends on how conservative we want to be. In the
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original paper the model was applied on annual data by Li et al. (2012), while here
we used monthly data as we were interested in the seasonal pattern of asthma and
COPD. A great advantage of the additive model specification is that it allows for
such flexibility, through the temporal random effects which account for unmeasured
covariates that vary across time. Li et al. (2012) chose a Bayesian False Discovery
Rate (FDR) to adjust for multiple testing, following Newton et al. (2004). Alternative
FDR approaches have been suggested by other authors (Storey, 2003; Muller et al.,
2006; Whittemore, 2007; Catelan et al., 2010). Here, we chose to adopt a standard
classification rule, as we believe that the above FDR rule does not apply in our case,
given the small number of positives we have. Besides, it is argued whether there is a
need to perform multiple testing correction within a Bayesian framework (Gelman
et al., 2012).

Asthma and COPD are jointly considered in the analysis, as the indication of
the disease was not possible for the prescriptions, and one of our objectives was to
compare between the different data sets. A next step is to separately explore asthma
and COPD trends for all ages and for children, adults and elderly to see if our findings
hold for these conditions individually, and to better understand the temporal patterns
of the areas found to be unusual. Further analysis should formally investigate possible
confounders, effect modifiers and causal factors such as deprivation, smoking, seasonal
respiratory virus activity and service access, and to also adjust for socio-economic
status, as this is likely to affect the spatial patterns. It is relatively easy to introduce
covariates into the BaySTDetect model to start to explore some of the hypotheses
as to why some CCGs differ from national trends. As an example we introduced a
variable to represent deprivation - the Index of Multiple Deprivation (IMD) score,
which was initially available at LSOA level for England. This was aggregated at
CCG level, and then converted into a categorical variable of 5 levels (quintiles) which
was introduced into the model through dummy variables. The results showed no
important effect; the exponential of the posterior estimates of the coefficients of the
dummy variables varied from 0.99 to 1.02 with all credible intervals including 1. The
inclusion of deprivation in the model did not affect the posterior estimates of the
other parameters, nor the areas that were detected as unusual.

In addition, a multivariate modelling approach will be considered, which could
provide a more comprehensive picture of the trends and potential outbreaks of the
disease, by borrowing information across different data sources. Finally, it would be
useful to know the exact temporal point at which an unusual observation occurs, and
the model should be modified to adjust for this.
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