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Abstract 

There is evidence from diffraction experiments that significant peak broadening is measured 

local to crack tips and this has been attributed to the development of geometrically necessary 

dislocations (GNDs) which are retained upon unloading. This is reasonable due to the stress 

singularity found locally at the crack which is expected to activate slip on favorably oriented 

slip systems, potentially resulting in plastic strain gradients and geometrically necessary 

dislocation development. Hence, a systematic study is presented here to ascertain the 

contributions of both elastic distortional strain and GND density to lattice deformation local 

to the crack at loaded and subsequently unloaded states.  

The results show that whilst elastic strains dominate lattice distortion in comparison to GNDs 

at the loaded state i.e. at the peak load applied, these strains are largely recovered upon 

unloading and the contribution from GND development subsequently dominates the 

broadening seen. Two initial crystallographic configurations were considered. In the example 

in which the crystal c-axis was oriented parallel to the loading direction, the <c+a> pyramidal 

systems contributed most to slip with <a> basal slip system contributing to a lesser extent. 

However, in the example where the c-axis was oriented perpendicular to the loading 

direction, the <c+a> pyramidal and <a> prismatic systems were the more significant 

contributors to slip and the <a> basal contributing to a lesser extent. However, basal, 

prismatic and c+a pyramidal slip systems were found to be active in both examples and this 

was attributed to significant lattice rotation driven by locally high stresses which enabled 

otherwise badly oriented slip systems to become favourable for slip. Finally, increases in 

GND density were seen upon unloading for c-axis orientation parallel with loading. This was 

attributed to the influence of <c+a> pyramidal slip on reverse plasticity leading to diffuse 

GND density distributions and significant resulting lattice strains compared to that from <a> 

prism slip loading  
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1. Introduction 

This paper aims to address elastic distortional strains and geometrically necessary dislocation 

(GND) content local to crack tips in single crystal titanium, and their role in lattice strain 

distributions and peak broadening. An x-ray with wavelength 𝜆, incident on a single crystal is 

diffracted by plane normals in that crystal that satisfy Bragg’s condition. The angle of 

diffraction, 𝜃 is obtained from Bragg’s law such that 

𝝀 = 𝟐𝒅𝐬𝐢𝐧𝜽           (1) 

where 𝑑 is the lattice spacing of the diffracting plane. The diffracted beam results in a point 

on a detector which translates to a delta function in intensity space representing the stress 

state of that plane. Assuming the plane is under zero stress, the delta peak remains in its ideal 

state. However, under an applied tensile or compressive stress, the lattice spacing 𝑑 increases 

or decreases respectively and this further results in respective left and right shift of that peak. 

Consequently, a combination of crystallographic orientations that experience differing stress 

states (tensile and compressive) lead to shifts in the delta peak by differing amounts, thus, 

leading to a distribution. This distribution is referred to as a broadened peak which is 

indicative of the local stress states in the diffraction volume and has contributions from 

elastic strains and GND density which of course are also elastic in origin.  

Previous work on FCC polycrystals by Erinosho et al. [1] has shown that both elastic 

deformation and GND density contribute to the broadened peak and that the contributions 

from GNDs potentially dominate measurements at large plastic strains. Furthermore, 

independent studies by Withers et al. [2] on peak width measurements (usually referred to as 

Full Width Half Maximum-(FWHM)) local to a crack tip show very high FWHMs which are 

hypothesized to significantly outweigh contributions from elastic deformation alone. 

Therefore, this work attempts to compute lattice distortion resulting from elastic strains and 

GNDs in view of relating this to experimental FWHM measurements. 

Experimental evidence by Sun et al. [3] has shown that significant peak broadening local to a 

crack tip is caused by plasticity which is retained upon unloading. This further supports our 

hypothesis that diffraction peak broadening is found to be dominated by contributions from 

the development of geometrically necessary dislocation (GND)-controlled lattice curvature 

compared to stress-controlled elastic distortions. Whilst both drivers are elastic in origin, we 

differentiate between them and their respective contributions to lattice strain distributions.  

Prior to investigating deformation local to a crack tip due to the effects of elastic distortions 

and development of GND-controlled lattice curvature, the context and review of relevant 

literature is first presented. 

The importance of structural integrity in materials in the presence of flaws (defects) has 

driven extensive investigations into crack tip deformation fields. Further, the associated 

biaxial stress state found local to the crack tip inhibits higher plastic strains to be developed 

in comparison to a uniaxial stress state. On this basis, Rice and coworkers [4, 5] developed an 

analytical asymptotic prediction of stresses ahead of a crack tip in elastic-ideally plastic face 

centered cubic (FCC) and body centered cubic (BCC) single crystals. This theory has been 

further developed by Gupta [6] to include the effects of material anisotropy by studying 

hexagonal closed packed (HCP) materials. Catoor and Kumar [7, 8] investigated crack-grain 

boundary interactions in zinc bicrystals both experimentally and computationally by 

considering crack growth on the basal plane in zinc using in-situ fracture testing of pre-

cracked single crystals with emphasis on mechanisms that cause fracture. It was shown that 

the crystallographic orientation of crack growth direction on the basal plane influenced strain 
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to failure and the nature of fracture. Subsequently, Olarnrithinun et al. [9] used discrete 

dislocation analysis to study crack growth along the basal plane for two crack growth 

directions and showed that fracture toughness scales inversely with the tensile yield stress 

and is largely independent of plastic anisotropy. The issue of anisotropy effects at the crack 

tip was recently investigated by Kartal et al. [10] to evaluate the effects of crystallographic 

orientation and grain morphology on crack tip stress state and found that single crystal crack 

tip stresses largely remain independent of crystal orientation but that the plastic zone size and 

shape depends greatly upon it. Further studies include that by Biswas and Narasihman [11, 

12] who investigated crack tip fields in rate sensitive FCC single crystals; Lopez-Crespo et al. 

[13, 14] who address overload effects during fatigue crack growth in steel using synchrotron 

x-ray diffraction for both plane strain and stress conditions, and studies by Kaushik et al. [15, 

16] on experimental and finite element simulations of notch tip fields in magnesium single 

crystals.  

However, of particular interest to the current study are the effects of cracks on diffraction 

peak broadening resulting from plastic strains developed local to the crack tip, and more 

particularly, the development of geometrically necessary dislocations (GNDs) which have 

been reported to be retained upon unloading [2, 3, 17, 18]. Diffraction experiments local to a 

crack carried out on steel have shown the development of large FWHM local to the crack tip 

[2]. Hence, this paper utilizes the methodology presented in [1] to address the contribution of 

elastic distortions and GND development to peak broadening at the loaded and unloaded 

states respectively. Also, an analysis of the slip systems contributing to plastic strains 

observed local to the crack tip is presented in the context of GND development and the 

activity of individual slip systems.  

The crystal plasticity framework adopted is briefly described in §2 and the model used is 

presented in §3. §4 provides the methodology used to calculate the lattice distortion due to 

elastic strains and GNDs development in a defined process zone of an edge crack embedded 

in a 2-D plate. Finally, the results are presented in §5, discussion in section 6 and conclusions 

are presented in §7. 

2. Crystal Plasticity Framework 

The crystal plasticity framework adopted to investigate deformation in the process zone of a 

crack tip model is presented here. The framework used here was presented in previous studies 

by Erinosho et al. [19, 20] and is based on the kinematic decomposition of the deformation 

gradient 𝑭 into elastic (𝑭e) and plastic (𝑭p) tensors as laid out by Lee [21] such that 

𝑭 = 𝑭e𝑭p.           (2) 

For simplicity, a power law relationship between slip rate and resolved shear stress for a 

given slip system is adopted and given by  

�̇�𝜶 = �̇�𝟎 |
𝝉𝜶

𝐠𝜶
|
𝒏

𝐬𝐠𝐧(�̇�)          

 (3) 

where the slip rate ( �̇�𝛼) evolves on individual slip systems (𝛼) and depends on the reference 

strain rate, �̇�0
𝛼, resolved shear stress, 𝜏𝛼, and slip system strength, 𝑔𝛼. Note that there is some 

slip for all non-zero levels of shear stress in Eq. 3. However, the chosen value of exponent n 

ensures that below the critical value, the slip rate is effectively zero and only becomes 

significant once the critical level of stress is attained. Hardening is incorporated through the 

evolution of g

 in Eq. 3.  Whilst a range of latent hardening forms can be adopted as outlined 
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by Asaro [22], isotropic hardening is employed here for simplicity such that all slip systems 

undergo the same level of hardening equal to that developed on the slip system with the 

maximum slip. Hence, the slip system strength evolution is given by  

�̇�𝛼 = ℎ0(1 +
ℎ0𝛾sum

𝑞0𝑚
)𝑚−1(�̇�)

max
         (4) 

in which the accumulated slip is calculated from 

𝛾sum = ∑ (∫ �̇�𝛽𝑑𝑡)
𝑡

0

𝑁slip
𝛽=1

.         (5) 

The hardening properties used in the slip rule are summarized in Table 1 and the range of hcp 

slip systems incorporated in this formulation are shown in Fig. 1. The slip systems include 

the <a> basal, <a> prismatic, <a> pyramidal and the 1
st
 and 2

nd
 order <c+a> pyramidal 

systems and the slip strength of each system given by the critical resolved shear stress 

(CRSS) is specified in Table 2 obtained from Gong et al. [23].  

The development of GND density local to the crack tip forms an integral part of the current 

study. Hence, GND density is calculated using a decoupled approach which uses the plastic 

strains at integration points to calculate the Burger’s vector discontinuities which are 

translated to GND densities through use of the Nye tensor as follows 

∑ 𝒃G
𝛼 ⊗ 𝝆G

𝛼 ≡ Curl(𝑭p)𝑁
𝛼=1                      (6) 

where the GND densities are summed over all slip systems (𝛼) of edge and screw type and 

Curl(𝑭p) is calculated in the undeformed state. The left-hand term may be decomposed in 

terms of dislocations of edge and screw type by ∑ 𝒃G
𝛼 ⊗ 𝝆G

𝛼 ≡ ∑ (𝒃e
𝛼⊗ 𝝆𝑒

𝛼 + 𝒃s
𝛼 ⊗𝑁

𝛼=1
𝑁
𝛼=1

𝝆s
𝛼) where 𝒃𝑒 and 𝒃𝑠 represent edge and screw type Burger’s vectors and 𝝆𝑒 and 𝝆𝑠 are the 

edge and screw type GND densities respectively. Note that whilst both edge and screw 

components can in principle be considered, only the edge components are used in Eq. (6) in 

the present 2D analysis for the purposes of simplicity. 

The LHS of Eq. 6 can be written more specifically for HCP such that 

𝒃G
𝛼 ⊗ 𝝆G

𝛼 = (𝒃G
<a>basal⊗ 𝝆G

<a>basal) + (𝒃G
<a>pris

⊗ 𝝆G
<a>pris

) + (𝒃G
<a>pyra

⊗ 𝝆G
<a>pyra

) +

                      ( 𝒃G
<c+a>pyra

⊗ 𝝆G
<c+a>pyra

)                  (7) 

Eqs. (6) and (7) are under-defined and are solved using the L
1
 method, which considers the 

dislocation as a line through a volume. The dislocation line energy is then minimized by 

finding the dislocation configuration with the smallest total line length [24]. Note that it is 

important to account for the energies on the individual slip system types in the HCP 

formulation in order to capture the relative ease of GND accumulation on <a> type slip 

systems compared to the <c+a> slip systems.  

3. Crack tip model 

Crack Tip Model 

Fig. 2a shows the schematic of the 2-D model used to investigate deformation local to the 

crack tip. The plane stress model was built in ABAQUS with dimensions 100 × 100µm2 and 

an edge crack of length 𝑎 = 20µm was incorporated at h=50µm. Whilst a 3-D plane strain 

model could be adopted, 2-D plane stress is considered for computational efficiency. 
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Although this is  a simplification of a 3-D problem, it is widely adopted in the mechanics 

community as a good approximation to tackle crack tip problems. 

Further, a remote stress 𝜎0 = 60MPa was applied in the Y-direction and a region r was 

defined along the length of the crack. The schematic in Fig. 2a was then meshed as shown in 

Fig. 2b. A coarse mesh was adopted remote from the crack but local to the crack, a fine mesh 

is utilised in order to adequately capture the effects of the crack singularity. The region local 

to the crack was then discretized into two regions referred to as Regions A and B shown in 

Fig. 2b local to the crack. Note that Region A is circular with a diameter of 0.2µm while 

Region B is a subset of Region A. This model will now be used to investigate lattice 

deformation local to a crack tip due to elastic strains and GND development. 

4. Computing lattice distortion due to elastic strains and GNDs 

The methodology presented in [1] is adopted to examine the crystal lattice spacing distortions 

due to elastic strains and GND development at the crack tip. The lattice spacings between 

corresponding crystal planes change with elastic strain, and the elastic deformation gradient 

𝑭e may be used to determine the resulting lattice spacings due to elastic distortions as follows 

𝑎e
′

𝑎0
= |𝑭e𝒆1

c|,
𝑏e
′

𝑏0
= |𝑭e𝒆2

c |,
𝑐e
′

𝑐0
= |𝑭e𝒆3

c|                  (8) 

where 𝑎0 = 𝑏0 = 2.95 Angstroms and 𝑐0 = 4.68 Angstroms are the undeformed lattice 

lengths and 𝒆1
c, 𝒆2

c  and 𝒆3
c  are unit orthogonal vectors rotated into the (deformed) 

crystallographic configuration. That is, 

𝒆𝑖
c = 𝛥𝑹c𝑹0

c𝒆𝑖                      (9) 

where i =1, 2 and 3 correspond to the 𝑥, 𝑦, and 𝑧 directions respectively and 𝑹0
c  is a rotation 

matrix which maps the undeformed crystal to the local crystallographic configuration. 𝛥𝑹c 
which is obtained from the polar decomposition of 𝑭 maps the local crystal orientation into 

the deformed state. Full details of the crystal orientation mappings can be found in [1].  

Next, the lattice distortion due to GND development is required. Consider the anticlockwise 

Burgers circuit enclosed by d1, d2, d3 and d4 shown in Fig. 3a. The net Burger’s vector can be 

calculated using 

𝒅1 + 𝒅2 + 𝒅3 + 𝒅4 = 0 ⇒ ∮ 𝑭P
𝛤

𝑑𝑋 = 0                 (10) 

where 𝑭P is the plastic deformation gradient obtained in Eq. (2). A similar loop in a distorted 

plane shown in Fig. 3b shows an extra plane of atoms resulting in a net Burger’s vector, B. 

Using stokes law applied to our finite element framework, a length normalized Burger’s 

vector 𝑩𝑙 can be obtained around the path Γ on an infinitesimal surface, S, with normal n, 

with knowledge of the local plastic deformation gradient (Curl𝑭p) such that 

𝑩𝑙 ≅ Curl(𝑭P)𝒏
Δ𝐴

𝐿
.                                (11) 

A  is the surface area of each finite element and L is the associated length scale of the 

discretized region with normal n. Note, n is the unit normal to the slip plane in the reference 

configuration.  The region of interest (Region B) defined in Fig. 2b has a length of 0.08µm 

and was discretized into a 40 × 40 grid as illustrated in Fig. 4 in order to adequately capture 

the local variation of plastic strain. Thus, each discretized region which now has an 
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associated length scale of 𝐿~0.003µm was assumed to have constant strain. Consider a 

particular discretized region indicated in Fig. 4. The plastic strain gradient is calculated by 

adopting a non-local approach by considering the variation of plastic strain in two 

neighboring regions in the X- and Y-directions respectively. Note that 𝑩𝑙 can be calculated 

on any arbitrary plane with normal n in the HCP crystal using the 3-index system as 

demonstrated in [1] such that the contribution of the normalized Burgers vector discontinuity 

𝑩𝑙 to lattice deformation can then be calculated. Whilst the 3-index system is unconventional 

for HCP crystals, it provides a commonality in methodology across all crystal types. Hence, 

we adopt a lattice distortion gradient, F
gnd

, from [1] such that  

𝑭gnd =

(

 

1 + 𝑩𝑙1 ∙ 𝒆1
′ 𝑩𝑙2 ∙ 𝒆1

′ 𝑩𝑙3 ∙ 𝒆1
′

𝑩𝑙1 ∙ 𝒆2
′ 1 + 𝑩𝑙2 ∙ 𝒆2

′ 𝑩𝑙3 ∙ 𝒆2
′

𝑩𝑙1 ∙ 𝒆3
′ 𝑩𝑙2 ∙ 𝒆3

′ 1 + 𝑩𝑙3 ∙ 𝒆3
′)

 .                           (12) 

Here, 𝑩𝑙1 , 𝑩𝑙2  and 𝑩𝑙3  represent the discontinuities on the (100), (010) and (001) planes 

respectively and  𝒆1
′ , 𝒆2

′ , and 𝒆3
′  are unit vectors [100], [010] and [001] rotated into the local 

crystallographic configuration. That is, 𝒆𝑖
′ = 𝑹0

𝑐𝒆𝑖 where i =1,2 3 and 𝑹0
𝑐  is a rotation matrix 

which maps the underformed crystal to its local crystallographic orientation. 𝑭gnd is then 

calculated in the deformed crystallographic configuration using 

𝑭gnd
′
= Δ𝑹c𝑭gnd                     (13) 

where Δ𝑹c represents lattice rotations from the local crystallographic configuration to the 

deformed state and, the lattice distortion due to GNDs is calculated using Eq. 8 by replacing 

𝑭e with 𝑭gnd
′
.  

Finally, the lattice spacing for all possible hkl planes in an HCP crystal can be obtained using 

[25] 

𝑑ℎ𝑘𝑙 =
√3

2
√

𝑎2

ℎ2+ℎ𝑘+𝑘2
+
𝑐2

𝑙2
.                              (14) 

5. Results 

5.1. Elastic response in process zone 

The lattice response to elastic strain local to the crack tip is investigated first. Although it is 

expected that stress singularity local to the crack tip should typically activate slip on 

favourably oriented slip systems, only the elastic strains developed due to the applied remote 

stress are obtained. The methodology in the previous section is applied to Region B shown in 

Fig. 2 to calculate the lattice spacings due to elastic distortions for the basal plane of each 

element shown. Note that all distances in Region B are measured from the reference point 

indicated in Fig. 2b and are normalized using the length of the region (0.08µm).  

Fig. 5 shows the lattice distortion due to elastic strains for differing crystallographic 

configurations at the loaded state (point B) illustrated in Fig. 5ai. The crystallographic 

configurations considered are shown in Figs. 5aii and 5aiii. Note that in Fig. 5aii, the c-axis in 

the HCP crystal is parallel to the loading direction but, in Fig. 5aiii, the c-axis is 

perpendicular to the loading direction. Fig. 5bi shows a schematic of the basal plane for 

which the lattice spacing due to elastic strains is calculated and shown in Figs. 5bii and 5biii.  
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Fig. 5bii shows the lattice spacings due to elastic strains on the basal plane for the initial 

crystallographic configuration shown in 5aii. In this configuration, the c-axis is parallel to the 

loading direction hence, an increase in the basal lattice spacing is expected. It is clear from 

Fig. 5bii that an increase is observed by noting the indicated ideal lattice spacing. The multi-

axial stress state (i.e. biaxial state) local to the crack tip gives rise to the compressive stress 

state seen along the crack path. Now, consider Fig. 5biii which shows the lattice spacings of 

the basal plane for the crystallographic configuration shown in Fig. 5aiii for which the c-axis 

is perpendicular to the loading direction. A reduction in the spacing between consecutive 

basal planes is expected, at least remote from the crack tip. However, similar to the previous 

example, a multi-axial stress state local to the crack tip results in the tensile stresses seen 

along the crack path. Since elastic strains upon unloading shown later are recovered, this 

paper now focuses on the effects of plasticity in the process zone. 

5.2. Plasticity in the process zone 

The CRSS on each slip system specified in Table 2 was adopted to determine the onset of 

plasticity. The resulting plastic strains developed local to the crack tip within Region B of the 

crack model are shown in Fig. 6 for the two crystallographic configurations considered at the 

loaded and unloaded states respectively. Figs. 6ai and 6aii show the accumulated slip for the 

example in which the c-axis is parallel to the loading direction in the loaded and unloaded 

states respectively. Similarly, the accumulated slip is shown for the example with the c-axis 

perpendicular to the loading direction at the loaded and unloaded state shown in Figs. 6bi and 

6bii respectively. It is clear from the accumulated slip fields shown that significant plastic 

strains develop local to the crack tip both at the loaded and unloaded states.  

Now consider Fig. 7 which shows the GND density in process zone (Region B). Two initial 

crystallographic configurations are considered and for each example, the GND density at the 

loaded and unloaded states is shown. It is clear in both examples that GNDs developed at the 

crack tip during loading (Figs. 7ai and 7bi) and remain upon unloading (Figs. 7aii and 7bii). 

Although the GND fields are different depending on the initial crystallographic configuration, 

it is evident in both cases that the presence of the crack leads to concentrations of GND 

development.   

Next consider Fig. 5 and 8 which compare the lattice distortion at the loaded state for the two 

initial crystallographic orientations considered, for which the elastic and GND distortion 

contributions are calculated using the methodology summarized in section 4. It may be seen 

that elastic distortional strains shown in Fig. 5 dominates at the loaded state, well over and 

above the contribution from GND development. However, Fig. 9 shows the lattice distortion 

distribution due to elastic strains and GND development upon unloading. In this instance, the 

elastic strains are mostly recovered at the unloaded state resulting in very limited 

contributions to lattice distortions due to elastic strains for both crystallographic 

configurations. However, at this state, the residual plastic strains result in GND development 

and the lattice contributions from GND density distributions become very significant.  

A systematic evaluation of slip developed on each slip system type is analysed for varying 

crystallographic configurations in order to show how deformation is accommodated local to 

the crack tip and also, to understand which slip systems contribute to the GND densities 

developed. Fig. 10 shows the accumulated slip on individual slip systems for the two 

crystallographic configurations considered. Consider first the example in which the c-axis is 

parallel to the loading direction. It is expected that only <c+a> pyramidal planes are 

favorably oriented for slip. However, it is clear that the basal systems also contribute 
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significantly and that the prismatic and <a> pyramidal systems are also activated local to the 

crack tip. Similarly, in the example where the c-axis is oriented perpendicularly to the loading 

direction, the prismatic and <c+a> systems are oriented favorably for slip. However, the basal 

systems and <a> pyramidal systems are also found to be activated local to the crack tip.  

Examination of the lattice rotations occurring for the crystallographic configurations 

considered shown in Fig. 11. Lattice rotation is measured in degrees and represents the 

rotation of the c-axis about the Z-direction. Note that positive and negative rotations are not 

distinguished. It is clear from Fig. 11 that significant lattice rotation is seen local to the crack 

tip thereby enabling otherwise badly oriented slip systems to become activated for slip. 

Hence, considering Fig. 10b in which the c-axis is parallel to the loading direction, it is clear 

from the rotation apparent in Fig. 11a that although only <c+a> systems are initially favoured 

for slip, basal systems also become activated. Further, the rotation also allows the activation 

of prismatic and <a> pyramidal slip albeit to a lower extent. This also applies to Fig. 10c such 

that rotations local to the crack tip allow the activation of otherwise inaccessible slip systems. 

6. Discussion 

Lattice distortions at crack tips due to elastic strains and GND density development 

respectively are evaluated in this paper. Although these individual contributions cannot be 

distinguished experimentally, the methodology presented by [1] provides the ability to 

differentiate the contributions from each mechanism. The development of plastic strain 

gradients and hence GND densities local to the crack tip are expected to translate to high 

GND densities which contribute to experimental diffraction peak broadening [2, 3, 17, 18]. 

Previous work by Erinosho et al. [1] demonstrates the methodology for differentiating 

between the contribution of elastic strains and GND development which of course, are also 

elastic in origin, to the overall lattice distortion. The methodology was applied here to 

consider a titanium single crystal with multi-axial (biaxial) stress state local to a crack tip. 

The motivation for this study was based on background experimental work that estimates the 

lattice strain Full Width Half Maximum (FWHM) local to a crack tip in polycrystal steel [2]. 

That study showed large FWHM local to the crack tip which was hypothesized to result from 

contributions other than elastic distortions alone.  

An interesting outcome of the current work is the increase in GND density seen upon 

unloading for a specific orientation seen in Fig. 7. This is explained by examining the slip 

fields associated with each crystallographic orientation considered. Consider first the 

orientation in which the c-axis is perpendicular to the loading direction. Prismatic systems are 

favourably oriented for slip and rigid body rotation further leads to slip on the basal systems 

and limited slip activity on the pyramidal systems. Because of the relative ease of activating 

prism slip, the plastic straining is highly localised, reflecting a similarly localised distribution 

of lattice straining (Fig 8b). Whilst the GND density marginally increases in this orientation 

during unloading due to reversed slip, as do the lattice spacings, the influence of reverse 

plasticity is small. In the other orientation which has its c-axis parallel to the loading 

direction, the first factor is that c+a slip is hard to activate; a much higher resolved shear 

stress is needed, and the orientation largely precludes slip on other systems. Because of the 

crystal orientation and the intensification of stress at the crack tip, c+a slip is developed on 

loading generating a rather more diffuse but heterogeneous field of slip leading to a more 

diffuse distribution of GND density (Fig. 7ai) and hence lattice spacing change (Fig. 8a). On 

load reversal, given the high stresses achieved (giving rise to high elastic strains), a 

significant Bauschinger effect is anticipated with revered slip which similarly only activates 
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at large reversed stress. A quite substantial increase in GND density results on load reversal 

which remains much more diffuse than that for prism slip. These conditions give rise to the 

resulting diffuse distribution of lattice strain changes which are more significant than those 

for the prism slip loading. However, the absolute magnitude of GND density for the prism 

slip loading is rather similar to that for the c+a loading; the significant difference results from 

the more diffuse distribution of high GND density which occurs for the c-axis loading. This is 

further evident from the plastic strain fields seen in Figs. 10bv and 10cv. Similar differences 

between the loaded and unloaded states attributed to crack closure effects were also observed 

by Sun et al. [3] in steel.  

The role of twinning has so far been neglected in the current study. Deformation by twinning 

is important to help accommodate lattice deformation in poorly oriented crystals for slip. For 

example, twin nucleation is likely to be activated in circumstances where the crystal c-axis is 

parallel to the loading direction. The manifestation of twinning is a large local lattice rotation 

to enable the activation of twin planes in order to accommodate slip. Whilst studies on 

magnesium by Kaushik et al. [15, 16] show the importance of twinning on deformation local 

to a crack tip, it is however ignored in this study.  

7. Conclusions 

An investigation into crack tip deformation is presented for single crystal titanium using 

crystal plasticity. A remote stress was applied to a 2-D single crystal plane stress model 

which was finely meshed local to the crack tip. A region of interest was selected local to the 

crack tip and an investigation into the elastic strains and development of GND density was 

carried out.  

Evidence from diffraction experiments local to a crack tip show significant peak broadening 

typified by an increase in lattice distortion after unloading. This is reasonable due to stress 

singularity local to the crack tip which is expected to activate slip on favorably oriented slip 

systems. Thus, a systematic study was carried out to ascertain the contribution of elastic 

distortional strains and GND density to lattice deformation local to the crack tip at the loaded 

and unloaded states. The lattice distortion due to elastic strains was calculated from the 

elastic deformation tensor whilst the contribution of GNDs to lattice deformation was 

obtained by evaluating the contribution of the open Burger’s vector to deformation. 

The results show that whilst elastic strains dominate lattice distortion in comparison to GNDs 

at the loaded state i.e. at the peak load applied, these strains are mostly recovered upon 

unloading and the contribution from GNDs developed subsequently dominate the peak 

broadening seen. Two initial crystallographic configurations were considered. In the example 

in which the c-axis was oriented parallel to the loading direction, <c+a> pyramidal 

contributed mainly to slip and <a> basal slip to a lesser extent. However, in the example 

where the c-axis was oriented perpendicular to the loading direction, the <c+a> pyramidal 

and <a> prismatic systems were the more significant contributors to slip and the <a> basal to 

a lesser extent. However, all slip systems were active in both cases and this was attributed to 

lattice rotations driven by locally high stress and slip which enabled otherwise badly oriented 

slip systems to become favorable for slip. 

It was also found that for the case of an edge crack within a single crystal with c-axis 

orientation parallel with the loading direction, unloading (following loading) was found to 

lead to considerable increases in local GND density, resulting in a consequent marked 

increase in lattice strains, whereas rather limited change under unloading was observed for 
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the case in which the crystal c-axis was normal to the loading. Such marked differences may 

manifest themselves in diffraction experiments.  
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 Table 1 

Material properties of Titanium used in the slip rule calibrated using single crystal Titanium mechanical response in Gong et 

al. [23] 

ℎ0 n 𝛾0̇ m 𝑞0 

0.0025GPa 50 1s
-1 0.245 70MPa 

 

   
Fig. 1. The range of HCP slip systems incorporated into the crystal plasticity calculations each having CRSS values 

specified in Table 2. 

 

Table 2 

Slip system properties of Titanium obtained from Gong et al. [23] 

 Basal Prismatic <a>Pyramidal <c+a>Pyramidal 

CRSS (MPa) 208 180 474 474 

 

(a) 

 

(b)  

 

Fig. 2. (a) Schematic of 100 × 100µm2 2-D single crystal plate with an embedded edge crack of length 𝑎 = 20µm. The 

plate is meshed as shown in (b) and two regions of interest are defined. Region A is circular with diameter 0.2µm and 

Region B is a subset of A and has dimensions 0.08 × 0.08µm2. 
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(a) 

 
(b) 

 
Fig. 3: Schematic diagram showing a plane of atoms indicating (a) a closed Burger circuit with zero resultant dislocation, (b) 

an open Burger’s circuit with a residual dislocation of geometric consequence shown by the vector B. 

 

 

 

 

Fig. 4. Schematic of the discretization process used to calculate GND density. The plastic deformation gradient (curl Fp) is 

calculated in each discretized region using the detailed non-local approach similar to that adopted by [1]. 
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(ai) 

 

(aii) 

 

(aiii)   

 
(bi) 

 

 
 

(bii) 

 

(biii) 

 
Fig. 5. Basal lattice spacings in Angstroms due to elastic strains for the crack tip model shown in Fig. 2. The loading 

condition is shown in (ai), and the initial crystallographic configurations are shown in (aii) and (aiii). An example showing a 

typical basal plane is shown in (bi) and the lattice distortions due to elastic straining are shown for the corresponding 

crystallographic configurations in (bii) and (biii).  

 

 

 

 

  
 

 

 

(ai) 

 

(aii) 

 

 

 

 

(bi) (bii) 
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Fig. 6. Contour distribution of accumulated plastic strain for the two initial crystallographic configurations considered at the 

loaded and unloaded states.  

   

 

 

 

(ai)  

 

(aii)  

 
 

 

 

(bi) 

 

(bii) 

 
Fig. 7.  Contour distribution of GND density in Region B illustrated in Fig. 2b. The densities are measured in Log10(m

-2)  

and are shown for each crystallographic configuration at the loaded and unloaded states. Note, the L1 minimization method is 

used and only the edge components of dislocations are used in Eq. (6) to obtain GND densities. 

 

 

 

 

        GND Contributions 

 

 

 

(a) 
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(b) 

 

Fig. 8.  Basal lattice spacings (Angstroms) due to elastic strains and GND development at the loaded state for the two initial 

crystallographic orientations shown.  Refer to Fig. 5 for the basal lattice contributions from elastic distortions.
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(ai) 

 

(aii) 

 

 

 

(bi) 

 

(bii) 

 

Fig. 9. Basal lattice spacings (Angstroms) for basal plane due to elastic strains and GND development at the unloaded state 

for the two crystallographic orientations shown. 

(ai) 

 
 

(aii) 

 

(aiii) 

 

(aiv) 

 

(av) 

 

(bi) 

 
 

 

 

 

(bii) 

 

(biii) 

 

(biv) 

 

(bv) 

 

(ci) 

 

(cii) 

 

(ciii) 

 

(civ) 

 

(cv) 

 

Fig. 10. Contour distribution of accumulated slip on individual slip systems for the crystallographic orientations shown at the 

unloaded state.  For both configurations, basal plane slip  is shown in (bii) and (cii), prismatic plane slip  in (biii) and (ciii), 

<a>  pyramidal plane slip in (biv) and (civ) and finally, the <c+a> pyramidal slip in (bv) and (cv). 
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(a) 

 

(b) 

 

 

 

 

  
Fig. 11. Contour distribution of lattice rotation (Δ𝑹c) measured in degrees for the crystallographic orientations shown.  

 
 


