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ABSTRACT: We investigate using a computational approach the
physical and chemical processes underlying the application of
organic (macro)molecules as fluorescence quenching sensors for
explosives sensing. We concentrate on the use of amine molecular
cages to sense nitroaromatic analytes, such as picric acid and 2,4-
dinitrophenol, through fluorescence quenching. Our observations for
this model system hold for many related systems. We consider the
different possible mechanisms of fluorescence quenching: Förster
resonance energy transfer, Dexter energy transfer and photoinduced
electron transfer, and show that in the case of our model system, the
fluorescence quenching is driven by the latter and involves stable
supramolecular sensor−analyte host−guest complexes. Furthermore,
we demonstrate that the experimentally observed selectivity of amine molecular cages for different explosives can be explained by
the stability of these host−guest complexes and discuss how this is related to the geometry of the binding site in the sensor.
Finally, we discuss what our observations mean for explosive sensing by fluorescence quenching in general and how this can help
in future rational design of new supramolecular detection systems.

■ INTRODUCTION
The quenching of a material’s fluorescence by the constituents
of explosives, such as picric acid (PA) or trinitrotoluene
(TNT), provides a cheap and convenient way of detecting
explosives (see Scheme 1), as well as sensing their

decomposition products in the environment. This approach
to explosive detection, inspired by earlier work on the sensing
of gases, small ions and biomolecules through fluorescence
quenching, has the potential to yield sensors with high
sensitivity and specificity through control of a fluorescent
material’s optical properties and the supramolecular interaction
between that material and the target explosive. Fuelled in part
by the uncertain times we live in, there is consequently a large
research activity focused upon the development of fluorescent
polymers,1−4 metal organic frameworks,5−12 metal organic

cages,13 nanoparticles,14−17 and (small) organic molecules18,19

for explosive sensing.
One such class of new systems for explosive detection

through fluorescence quenching are amine molecular
cages,20−23 synthesized through dynamic covalent imine
chemistry24 followed by imine reduction. Beyond sensing
explosives25,26 and other chemicals,27 amine molecular cages
show promise for application in catalysis28 and separation,29−32

because of the presence of an intrinsic internal cavity, as well as
the fact that they can be easily modified by synthetic chemistry,
and are soluble in common solvents and hence are easily
processable.
Mukherjee and Acharyya showed that one amine molecular

cage containing both secondary amine and strongly fluorescent
triphenylamine groups (see Figure 1A) had a strong specificity
for PA over other nitroaromatic molecules,25 where PA
quenched the cage fluorescence 5 times more strongly than
the next most potent fluorescence quenching explosive: 2,4-
dinitrophenol (24DNP, see Scheme 1C). They also found that
converting the secondary amine groups in the cage molecule
into tertiary amines, via a copper(I) catalyzed three-component
coupling reaction, results in the modified cage being less
specific for PA.26 The fluorescence quenching efficiency for
24DNP in the case of this so-called “decorated cage” is almost
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Scheme 1. Structures of Picric Acid (A), Trinitrotoluene (B),
2,4-Dinitrophenol (C), and Nitrobenzene (D)
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90% that of PA. In this paper, we focus on these amine cage
molecules as a model system to explore, from a computational
and theoretical point of view, the (photophysical) origin of
sensitivity and specificity in fluorescence quenching sensing.
We hope the insight obtained can help in the future rational
development of supramolecular fluorescent explosive sensors.
Quenching of the fluorescence of a sensor molecule after the

introduction of an analyte can either be the result of (i) energy
transfer or (ii) electron transfer between the sensor and analyte.
In the case of energy transfer, a real or virtual photon (Förster
resonance energy transfer, FRET, or Dexter energy transfer,
DET) is exchanged between the sensor and the analyte,
resulting in the transfer of the excited state from the former to
the latter (see Figure 2). Alternatively, an electron might be

transferred through photoinduced electron transfer (PET),
where the excited state of the sensor effectively reduces the
analyte (see Figure 2). In both scenarios fluorescence is
quenched, or at least shifted to a longer wavelength than the
original sensor fluorescence. In the case of FRET/DET this
quenching is due to fact that the excited analyte fluoresces at
much longer wavelength or does not fluoresce at all. In the case
of PET, in contrast, the excited state has been converted into a
charge-separated state, with an excess electron on the analyte
and a hole on the sensor, which cannot decay via the emission
of light without significant thermal activation.
One can distinguish between dynamic and static quenching,

where the fluorescence lifetime of the sensor is reduced after
addition of the analyte in dynamic quenching and does not
change in the case of static quenching. On the microscopic
level, the difference between both scenarios is thought to be
related to the question of whether the sensor and analyte form
a stable complex in the ground state (static quenching) or do

not and thus only collide, or more generally come close enough
for interaction, after the sensor has already been excited
(dynamic quenching). Experimentally it has been suggested,25

based on fluorescence lifetime measurements, that the
quenching in the case of the amine cages is, at least for PA,
static rather than dynamic in nature, suggesting a strong
interaction between sensor and analyte.
Here we use a combination of (time-dependent) density

functional theory ((TD)-DFT) and approximate couple cluster
theory (RI-CC2) calculations to shed light on the nature of the
exact microscopic quenching mechanism in these cages, the
reason why quenching is static and why the degree of
fluorescence quenching is much more pronounced for PA
than other analytes such as 24DNP, nitrobenzene (NB) and
TNT in the case of the cage with secondary amine groups. We
will also discuss why the decorated cage is less specific for PA
and more sensitive to other explosives. Finally, we will discuss
what one can learn about supramolecular explosive sensing
from these results and the potential role for computationally
guided rational design of such materials.

■ METHODOLOGY
Modeling the molecules and host−guest assemblies that
underlie sensing by fluorescence quenching is a significant
challenge. One needs to employ a theoretical method that can
sufficiently describe the weak dispersive interactions between
the cage host and analyte guest as well as the optical properties
of such assemblies and their constituent parts. The computa-
tional method must also be sufficiently computationally cheap
to allow for calculations on systems with tens to hundreds of
atoms. In practice, such a method does not currently exist and
the calculations in this paper instead use a combination of
methods. Ground state geometries are obtained using density
functional theory (DFT) calculations with the B3LYP33,34

hybrid density functional and its dispersion corrected version
B3LYP+D3,35 which includes an empirical correction that
improves the description of long-range attractive dispersion
forces. Vertical excitation calculations and excited state
optimizations for predictions of fluorescence energies are
obtained by TD-DFT calculations using the B3LYP or CAM-
B3LYP36 density functionals. CAM-B3LYP is an example of a
range-separated functional, where the percentage of Hartree−
Fock exchange included when calculating the exchange-
correlation energy for a certain volume element depends
upon the interelectronic separation. Use of this functional has
the advantage over calculations based on simpler hybrid
functionals, such as B3LYP, in that charge-transfer (CT-)
excitations are better described, as discussed in more detail
below. This improved description of CT-states comes at the
expense of an overall upward (blue) shift of the predicted
excitation spectrum and the absence of parameters for the
empirical dispersion correction in the literature for CAM-
B3LYP. Finally, we performed vertical excitation calculations
and even excited state relaxations using the approximate single
and doubles coupled cluster method RI-CC2.37,38 RI-CC2 is
inherently more robust and accurate than TD-DFT but also
computationally much more expensive, making RI-CC2
calculations tractable only as a benchmark for selected
structures.
As touched upon above, the description of charge-transfer

states can be problematic in TD-DFT. Specifically, the
excitation energies when there is negligible overlap between
the occupied and unoccupied orbitals involved will be severely

Figure 1. B3LYP/DZP-optimized 3D structures of the amine cage (A)
and cluster model 1 (B).

Figure 2. Illustration of fluorescence quenching through energy
transfer (top) and electron transfer (bottom). Electrons in red and
holes in blue.
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underestimated by nonhybrid or hybrid functionals with a small
percentage of Hartree−Fock exchange (e.g., B3LYP). A
diagnostic for such problematic CT-excitations is the Λ
diagnostic by Peach et al.,39 which for a given excitation takes
values in the range from 0, no overlap between the occupied
and unoccupied orbitals involved in the excitation, to 1,
complete overlap of the orbitals. Previous work by Peach et
al.39 suggests that TD-B3LYP excitations with a Λ value of less
than 0.3 should be treated with care. They also found that for a
density functional such as CAM-B3LYP, there was no
correlation between the Λ value and the quality of the TD-
DFT description of excitations. Indeed, CAM-B3LYP should
not suffer from problems describing CT-states due to the large
percentage of Hartree−Fock exchange included at large
interelectronic separations.
All B3LYP(+D3) calculations, except those used to extract Λ

diagnostic values, and all RI-CC2 calculations, were performed
using Turbomole 6.6.40,41 All CAM-B3LYP calculations, except
a selected number exploiting symmetry, and B3LYP calcu-
lations for Λ diagnostic values were performed using GAMESS-
US42 (version 1 May 2013 (R1)). The CAM-B3LYP
calculations with symmetry were performed using NWChem43

6.5. Unless otherwise stated, the B3LYP calculations used the
DZP44 basis-set, the CAM-B3LYP calculations the 6-
31G**45,46 basis-set and the RI-CC2 calculations either a
smaller def2-SVP47 or larger def2-TZVPP47 basis-set.
Some of the (TD-)DFT calculations were performed in the

presence of a dielectric screening model to include bulk solvent
effects. The relevant (TD-)B3YLP Turbomole calculations used
the COSMO solvation model,48 with all reported COSMO
energies including the outlying charge correction, while the
(TD-)CAM-B3LYP calculations in GAMESS-US that include
solvation used a combination of the PCM49,50 and SMD51

models. In both cases the solvent was dichloromethane
(DCM), modeled using a relative dielectric permittivity εr
value of 9 in the case of COSMO and 8.93 in the case of
PCM/SMD.
Estimates of the vibrational, rotational and translational

contributions to binding free energies, were based on the result
of numerical frequency calculations on the relevant structures.
No scaling was applied to the DFT frequencies but besides the
conventional approximation (below referred to as the harmonic
approximation), in which the contribution of every vibrational
mode to the vibrational entropy is described as a harmonic
oscillator, we also explored the approximation by Grimme52

(below referred to as the harmonic + rotor approximation) in
which the contribution of low frequency modes (<100 cm−1)
was modeled as arising from free rotors rather than harmonic
oscillators (using ω0 = 100 cm−1 and α = 4). The latter
approximation corrects for the fact that the standard harmonic
approximation overestimates the contribution to the vibrational
entropy of low frequency modes. The nonelectronic part of the
free energies in the harmonic + rotor case was obtained by
subtracting (-T*Svib,harmonic) and adding (−T*Svib,harmonic+rotor) to
the value reported by the “freeh” module of Turbomole.
Finally, for reasons of computational tractability, in all cases the
nonelectronic parts of the free energies reported were
calculated by frequency calculations using the DZP basis-set
on B3YLP/DZP optimized geometries, even when the
electronic energies were calculated using def2-TZVP.

■ RESULTS AND DISCUSSION
We will now attempt to answer the questions about the nature
and mechanism of fluorescence quenching outlined at the end
of the introduction. However, before doing so we will first
explore our ability to predict the optical properties of the
isolated cage.

Optical Properties of the Isolated Cage. Optical
Absorption Spectrum of the Isolated Cage. The optical
absorption spectrum of the isolated amine cage was calculated
using both TD-DFT and RI-CC2 for the whole cage and also a
cluster model (1) comprising of one of the three edges of the
cage (see Figure 1B and Scheme 2). In the former case, we

considered (i) the conformation obtained from the solvate
single-crystal X-ray diffraction structure (CCDC number
1018380, C2 symmetry),25 (ii) the expected conformation in
solution obtained by using the inflation approach of Santolini et
al.,53 which models the effect of solvation on the cage
conformation in a mean field manner through a spherical
constraint on the cavity, and (iii) the lowest energy collapsed
conformer found in a conformer search53 (see Figure S1 in the
Supporting Information for the 3D B3LYP/DZP optimized
structures of the different conformers).
Concentrating first on the whole cage, Table 1 gives the

lowest vertical TD-B3LYP excitation energies, referred to below
as the optical gap, for the different models, where we also

Scheme 2. Structure of Cluster Model 1

Table 1. TD-B3LYP/DZP Predicted Lowest Vertical
Excitation Energy of the Amine Cage for a Structure
Obtained When Starting the B3LYP/DZP Ground State
Geometry Optimization from (i) the Experimental
Conformation of the Solvated Cage (XRD), (ii) the
Conformer Obtained Using the Approach of Santolini and
Co-Workers (Inflated), and (iii) the Lowest Energy
Conformer of the Cage (Collapsed)a

XRD inflated collapsed

− D DS D DS D DS

a 3.84 3.82 3.78 3.79 3.78 3.61 3.61
b 3.82 3.79

aFor all three structures we also considered the effect of using
Grimme’s DFT+D3 dispersion correction to DFT (D) and a
combination of the dispersion correction and the COSMO dielectric
screening solvation model (εr 9, DCM, DS). For the XRD structure
with C2 symmetry, the lowest vertical excitation energies belonging to
either of the two irreducible representations are shown. All values are
in eV.
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explore the effect of solvent and dispersion. It is apparent that
there are only very small differences in the predicted optical gap
when starting the preceding ground state optimization from
either the conformation of the solvate crystal structure or the
solution conformation predicted by Santolini et al.53 The
collapsed structure, corresponding to the lowest energy
conformation predicted by conventional conformer searching
algorithms, however, has a red-shifted optical gap. The addition
of a dispersion correction, which corrects for the absence of a
proper description of long-range dispersive interaction in DFT,
and a dielectric solvent model to represent bulk solvation, only
leads to minor changes in the optical gap in all cases. Finally,
ignoring the collapsed conformation, which is unlikely to exist
in the DCM solution used experimentally for the fluorescence
quenching studies, there is a decent match between the optical
gap of the amine cage and the experimental absorption onset of
the amine cage in solution (longest wavelength peak maximum
at ∼310 nm,25 4 eV).
Moving our focus to the cluster model 1, Tables 2 and S1

show that the TD-B3LYP predicted lowest vertical excitation

energies agree well with the results of more accurate and more
computationally expensive RI-CC2/def2-TZVPP calculations,
both in terms of the absolute values and the ordering of
excitations. The TD-B3LYP results for the cluster model 1 also
agree very well with those for the whole cage in Table 1,
validating the utility of the cluster model. The TD-CAM-
B3LYP excitation energies, in contrast to the TD-B3LYP
excitation energies, are, as to be expected from the literature, all
blue-shifted to slightly higher energy (0.5−0.7 eV), but again
match the RI-CC2 results in terms of excitation ordering.
Finally, the effect of the density functional used for the ground
state optimization on the TD-CAM-B3LYP vertical excitation
energies was found to be very small, while the effect of moving
from DZP to the larger def2-TZVP basis-set is also found to be
relatively small.
Fluorescence Spectrum of the Isolated Cage. Predictions

of the fluorescence energy, where the energy of the lowest
energy singlet (S1) is minimized and the fluorescence energy is
obtained as the vertical difference between S1 and the ground
state S0 at this S1 minimum energy geometry (points B′ and B
in Figure 3), are only computationally feasible for cluster model
1. As can be seen in Table 3, relaxation of S1 with TD-B3LYP
yields a fluorescence energy that lies very close to experimental
fluorescence maximum for the cage of 2.85 eV (435 nm).
Calculation of Peach’s Λ diagnostic for S1 at this geometry (1),
however, yields a value lower than 0.3, strongly suggesting that

this good match to experiment is accidental and that (1) is an
artificial excited state minimum, which results from the spurious
energetic stabilization of CT-states (see below). This analysis is
further supported by the fact that a RI-CC2/def2-TZVPP
single point calculation on the TD-B3LYP S1 minimum energy
geometry predicts a lowest vertical excitation energy that is 0.6
eV larger than the TD-B3LYP fluorescence energy. Relaxation
of S1 using TD-CAM-B3LYP, which by design does not suffer
from the problem with describing CT-states, finds an
alternative minimum (2), which indeed does not correspond
to a CT-state. TD-B3LYP and RI-CC2/def2-TZVPP single
point calculations on that geometry yield fluorescence energies
that, at 3.18 and 3.27 eV, are slightly blue-shifted compared to
experiment.
S1 optimizations using RI-CC2/def2-SVP rather than TD-

DFT yield two different stationary points. We focus in the
remainder of this paper in terms of RI-CC2 obtained
geometries on the lower energy stationary point (4). See
section ESI-3 of the Supporting Information for a more in-
depth discussion of the RI-CC2 minima. TD-B3LYP and CC2/
def2-TZVPP single point calculations on this geometry yield
fluorescence energies of 3.04 and 3.13 eV respectively, both
lying close to the experimental fluorescence maximum, as well
as to the TD-B3LYP and CC2/def2-TZVPP single point values
for the TD-CAM-B3LYP S1 minimum (2) (3.27 and 3.16 eV
respectively). Just as at the latter geometry, S1 at stationary
point (4) is not a CT-state and use of TD-B3LYP is thus non
problematic. Section ESI-4 of the Supporting Information
discusses the energetic and structural changes associated with
excited state relaxation, including the good structural fit
between (2) and (4).
The lifetime predicted by the oscillator strength of the S1

excited state is 72−98 ns at the ground state geometry, 50−100
ns at relaxed excited state geometry (2) and 79−172 ns at (4).
The range of values predicted for each geometry results from
the fact that in TD-DFT the oscillator strength and other
properties depend on the gauge used to calculate them. These
values are approximately ten times as large as the experimental
lifetime (∼10 ns),25 suggesting perhaps a role of conical
intersections in the experimental de-excitation.

The Potential of Dynamic Quenching and the Isolated
Molecule Perspective. Energy Transfer. An overlap between
the fluorescence spectrum of the cage and the absorption
spectrum of the analyte is a key requirement for energy transfer
and, thus, fluorescence quenching, via FRET/DET to be
possible. To analyze the ability of the cage fluorescence to be
quenched through FRET/DET we thus need to compare the
predicted fluorescence signal for the cage from Table 3 with the

Table 2. Predicted Lowest Vertical Excitation Energies
Belonging to the a and b Irreducible Representations of the
Mukherjee Amine Cage Cluster Model 1a

TD-B3LYP RI-CC2/SV RI-CC2/TZ TD-CAM-B3LYP

a 4.07/3.99 4.40 (4.29) 4.18 4.60 (4.64)
b 3.83/3.69 4.18 (4.06) 3.86 4.52 (4.52)

aThe structure is optimized in the C2 point group using B3LYP/DZP,
whereas the vertical excitations are calculated using TD-B3LYP/DZP,
RI-CC2/def2-SVP, RI-CC2/def2-TZVPP and TD-CAM-B3LYP/6-
31G** respectively. In the case of RI-CC2/def2-SVP and TD-CAM-
B3LYP, results for calculations on a RI-CC2/def2-SVP and CAM-
B3LYP/6-31G** optimized geometry respectively are given in
parentheses, while for the case of TD-B3LYP results obtained with
the def2-TZVP basis-set are shown behind the slash. All values are in
eV.

Figure 3. Schematic showing the absorption (A → A′), excited state
relaxation (A′ → B′), and fluorescence (B′ → B) process occurring in
a material.
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optical gap of the analytes in Table S4. Such a comparison
shows that only for the conjugate base anion of the “acid”
analytes, e.g. the picrate anion in the case of picric acid, is there
likely to be an overlap between the fluorescence spectrum of
the cage and the absorption spectrum of the analyte. In the case
of NB and undissociated 24DNP and PA, the predicted optical
gap of the analytes is considerably larger than the predicted
fluorescence energy of the cage cluster model and the (virtual)
photons emitted by the latter are not energetic enough to excite
the former. This all appears in line with what would be
expected from the experimental spectra of both the cage and
analytes. Dynamic fluorescence quenching through energy
transfer, be it through FRET or DET, is thus predicted to only
be viable for “acid” analytes such as PA and 24DNP and then
only in the presence of a solvent or base that would (partially)
deprotonate them and give rise to the conjugate base anion. As
discussed in the Supporting Information (section 5), there is
some suggestion that water (for example, as an impurity
resulting from the fact that PA is typically stored wet) might be
able to do this.54,55

Electron Transfer. For fluorescence quenching of the cage by
the analytes through photoinduced electron transfer to be
feasible, the excited state ionization potential56,57 of the cage
(IP*, the potential associated with the reaction C+ + e− → C*,
where C+ and C* are cationic and excited versions of the cage
respectively) should be lower than the electron affinity of the
analyte (EA, the potential associated with the reaction A + e−

→ A−). A calculation of the excited state ionization potential of
the cage modeled using cluster model 1 and the combination of
TD-B3LYP and the def2-TZVP basis-set yields a value of −3.02
V vs the saturated calomel electrode (SCE) at the ground state
geometry and −3.22 V or −3.38 V vs SCE at the relaxed excited
state geometry, using geometry (2) or (4) respectively. These
values, as can be seen in Figure 4, are both significantly lower
than the predicted range of the vertical and adiabatic electron
affinities of the analytes, and the excited cage should thus be
able to photoreduce each of the analytes. Calculations with the
DZP basis-set instead of def2-TZVP give, as can be seen in
section 6 of the Supporting Information, slightly different
potential values but predict overall the same relative alignment
of the IP* of the cage versus the EA of the analytes.
Photoinduced electron transfer thus appears a viable dynamic
fluorescence quenching mechanism in the presence of all the
analytes.
The Potential of Static Quenching. We now consider the

likelihood of the formation of host−guest complexes with the
cage for the different analytes, as well as the optical properties
of such complexes and their potential role in fluorescence
quenching.

Analyte Adsorption in the Cage Host: The Role of the
Secondary Amine Groups. We considered the adsorption of
NB, 24DNP and PA in the cage host by means of docking
calculations using B3LYP+D3 on the combination of the
analyte guest and one of two cluster models of the cage; the
cluster model centered around the triphenylene unit used
above (1) and an alternative cluster model centered around the
benzene ring (2, see Figure 5 and Scheme 3). Use of these

cluster models in the docking calculations rather than the whole
cage will probably result in an overestimation of the calculated
host−guest binding (free) energies and stability constants
because the former are more flexible and less structurally
constrained than the latter. However, we expect at least the
predicted ordering of binding (free) energies and host−guest
complex stability constants for the different analytes to be the

Table 3. Predicted Fluorescence Energy of the Mukherjee Amine Cage Cluster Model 1a

TD-B3LYP

− S RI-CC2/SV RI-CC2/TZ TD-CAM-B3LYP

(1) 3.01 (0.20) − 3.84 3.62 3.89
(2) 3.18 (0.66) 3.16 3.49 3.27 3.68
(3) 3.41 (0.63) − 3.73 3.43 4.07
(4) 3.04 (0.63) 3.03 3.34 3.13 3.56

aStructure optimized without symmetry constraints using TD-B3LYP/DZP (1), TD-CAM-B3LYP/6-31G** (2), or RI-CC2/def2-SVP (3), and (4),
followed by single point calculation using the alternative set-ups and RI-CC2/def2-TZVPP (all single point results in bold). In the case of TD-
B3LYP, the value of the Λ diagnostic for the respective excitation (calculated using TD-B3LYP/6-31G**) is also given in between parentheses. The
TD-B3LYP values in the column labelled S were obtained using the COSMO dielectric screening solvation model (εr 9, DCM). All values are in eV.

Figure 4. Excited state ionization potential (IP*) of the cage, modeled
by cluster model 1, and electron affinities (EA) of the different
analytes. Vertical potentials represented as dashed lines and adiabatic
potentials as solid lines.

Figure 5. B3LYP/DZP optimized 3D structure of cluster model 2.
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same for the combination of cluster models and the whole cage
and suspect that the absolute differences will be small. Most
importantly, the use of the cluster models allows us to
efficiently sample the different binding sites, including non-
electronic contributions to the free energy, with good quality
basis-sets.
Besides the DZP basis-set used throughout the manuscript in

combination with B3LYP, we also consider calculations that
used the larger def2-TZVP basis-set, which should reduce the
basis-set superposition error (BSSE) relative to DZP. The
discussion below is based mostly upon the def2-TZVP results,
but Tables 4, 5, S6, and S7 also contain the results obtained
with the DZP basis-set. Furthermore, as discussed in the
Methodology section, we also considered two approximations
to the vibrational entropy contribution to the free energy; the
standard harmonic approximation and the harmonic + rotor
approximation by Grimme,52 in which the contribution of low
frequency vibrational modes is described in terms of rigid
rotors rather than harmonic oscillators.
Considering first the adsorption of neutral analytes in the

cage (see Figure 6A for an example for PA and cluster model
1), the host−guest binding (free) energies in Tables 4 and 5
(harmonic + rotor approximation) and S6 and S7 (standard
harmonic approximation) show that formation of a host−guest
complex is predicted in all these cases to be exothermic but
endergonic. Irrespective of the approximation used to calculate
the free energy, the nonelectronic contributions to the binding
free energy (entropy, zero-point energy etc.) are large and
opposite in sign to the electronic binding energy. As a result,
the room temperature stability constants for all analytes are
generally predicted to be significantly smaller than one. The

acid analytes 24DNP and PA, however, can also protonate the
secondary and tertiary amines in the cage, forming proton-
transferred complexes with an ionic contribution to the host−
guest interaction. Concentrating on the case of PA, it is evident
from the data in Tables 4 and S6 that protonating the tertiary
amine leads to a host−guest complex (PT-3) that is
considerably less stable than that for neutral PA. However,
protonating the secondary amine of the cage is predicted be
exergonic and to lead to the formation of a proton transferred
complex (PT-2, see Figure 6B) with a host−guest stability
constant that is considerably larger than one and many orders
of magnitude larger than that for adsorption of neutral PA.
Similarly, for 24DNP, protonation of the secondary amine in

the cluster model of the host, with consequent deprotonation
of the 24DNP, is predicted to result in a much more stable
complex than the neutral case, with the formation of the
proton-transferred complex being consistently mildly exergonic.
The stabilization in the case of 24DNP relative to the neutral
guest case is smaller than that for PA, which is to be expected,
as PA is a stronger acid than 24DNP. Overall, based on the
predicted stability constants for both adsorption sites, even if
these are slightly overestimated with respect those in the actual
cage because of the less constrained nature of the cluster
models, the concentration of the analyte-cage host−guest
complex relative to free analyte is thus expected to be larger for
PA than for 24DNP and many orders of magnitude more than
that in the case of NB. Moreover, while the different
combination of approximations (DZP vs def2-TZVP, harmonic
vs harmonic + rotor) yield slightly different absolute values, all
methods predict a similar relative ordering of (binding) free
energies and stability constant values for the different analytes.
The secondary amine groups in the cage thus allow the cage

to act as a base and deprotonate the acid analytes (e.g., PA and
24DNP). This not only results in the formation of more stable
host−guest complexes, but also the generation of the conjugate
base anion of the analyte. The latter is strongly endergonic in
the absence of the adsorption of the analyte in the cage (see
Supporting Information, section 8). In other words, the cage is
not a strong enough base to deprotonate for example, PA,
without the added stabilization of the electrostatic interaction
between the deprotonated analyte and protonated cage. Some
of the free conjugate base anions in solution, formed for
example by dissociation by trace water, however, can adsorb in
the cage though the binding (free) energies and stability
constants are predicted to be worse than those of the neutral
case and at equilibrium most free conjugate base anion would
be not adsorbed. The generally more negative binding energies

Scheme 3. Structure of Cluster Model 2

Table 4. B3LYP+D3 Predicted Host−Guest Binding Energies, Binding Free Energies Calculated within the Harmonic + Rotor
Approximation and Stability Constants for Complexes between the Different Analytes and the Cage Modeled by the Cluster
Model 1a

guest type ΔEbind ΔGbind,298 Kbind,298

NB N −0.69/−0.49 0.02/0.23 5 × 10−1/ 1 × 10−4

24DNP N −0.93/−0.60 −0.16/0.18 4 × 102/ 8 × 10−4

PT-2 −1.37/−0.95 −0.54/−0.12 1 × 109/ 1 × 102

PA N −1.08/−0.59 −0.26/0.22 3 × 104/ 2 × 10−4

PT-3 −0.22/−0,21 − −
PT-2 −1.72/−1.28 −0.86/−0.42 3 × 1014/ 1 × 107

aAll values are in eV, DZP and def2-TZVP results are given before and after the slash respectively, and all calculations used the COSMO dielectric
screening solvation model (εr 9, DCM). For binding free energies and stability constants calculated within the standard harmonic approximation see
Table S6.
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and larger host−guest stability constants for cluster model 2
probably arise from the fact that the three secondary amine
groups are located around the central benzene ring such that
the explosive guest can be both close to the benzene ring for
π−π interactions, as well as form short contacts between NO2/
O(H) groups and amine hydrogen atoms. Finally, while we did
not explicitly model the case of the Mukherjee decorated cage
where the secondary amines have been converted into tertiary
amines, we are confident, based upon the above data, that in
this cage the acid analytes will not be deprotonated and that the
differences in stability constants and analyte−cage host−guest
complex concentrations for the different analytes will be a lot
smaller.
Energy and Electron Transfer in the Host−Guest Complex.

TD-DFT calculations on the ground state geometries of the
different host−guest complexes between the analytes and the
cage discussed above were then performed, using CAM-B3LYP
rather than B3LYP because of the potential for CT-states in
these systems. In all cases these calculations show that the
lowest singlet excited state (S1) is predicted to be a state in
which the excited electron resides on the analyte, while the hole
is located on the cage (see Figure 7). Such a CT-state is how
one would expect a photoinduced charge transfer to appear in a
host−guest supramolecular complex. Excited states that are
predominantly localized on the analyte guest, the natural end
point of energy rather than electron transfer in a host−guest
complex, lie higher in energy than the CT-state(s) by ∼0.1−0.4
eV (see Table S10 in the Supporting Information). Finally,
excited states that predominantly involve the cage host (the
type of states that are initially excited by absorption of light), lie
even higher in energy. The energetic ordering of excited states
predominantly involving the analyte and the host is in line with
what one would expect from the results of TD-(CAM)-B3LYP
calculation on isolated molecules, presented in Tables 2 and S4.

Calculations on cluster model 1 with an adsorbed picrate
anion give results that lie extremely close to those of the PT-2
PA cluster model 1 host−guest complex. Again the lowest
excited state is a CT-state with the hole located on the cage and
the excited electron on the picrate. This suggests, besides that
the effect of the transferred proton on the photophysics itself is
very small, that the origin of the conjugate base anion,
deprotonated after adsorption on the cage or, before
adsorption, by water in solution, has no influence on the
photophysical mechanism of static quenching.

Perspective. We have found that quenching of the
fluorescence of the amine molecular cage by explosive analytes
must be the result of photoinduced electron transfer, be it
through collision or after host−guest complex formation.
Energy transfer, while often invoked in the form of FRET to
explain fluorescence quenching, is predicted for the combina-
tion of amine molecular cages and nitroaromatic explosives to
only be feasible for the conjugate base anion of acid explosives.
Moreover, in the absence of water or other solvents that
promote dissociation, it is expected that the concentration of
free conjugate base anion of an acid explosive is always orders
of magnitude lower than the concentration of the explosive
bound in a host−guest complex by the cage.
For PA and 24DNP, our calculations predict that effectively

all the explosive molecules will be present in the form of a

Table 5. B3LYP+D3 Predicted Host-Guest Binding Energies, Binding Free Energies Calculated within the Harmonic + Rotor
Approximation and Stability Constants for Complexes between the Different Analytes and the Cage Modeled by Cluster Model
2a

guest type ΔEbind ΔGbind,298 Kbind,298

NB N −0.87/−0.60 −0.17/0.10 8 × 102/ 2 × 10−2

24DNP N −0.75/−0.49 −0.03/0.23 3 / 1 × 10−4

PT-2 −1.20/−0.91 −0.45/−0.16 4 × 107/ 5 × 102

PA N −1.21/−0.79 −0.47/−0.05 8 × 107/ 6
PT-2 −1.82/−1.41 −1.03/−0.63 3 × 1017/ 4 × 1010

aAll values in eV, DZP and def2-TZVP results are given before and after the slash respectively, and all calculations used the COSMO dielectric
screening solvation model (εr 9, DCM). For binding free energies and stability constants calculated within the standard harmonic approximation see
Table S7.

Figure 6. B3LYP/DZP optimized 3D structures of the neutral (A) and
PT-2 proton transfer (B) picric acid−cluster model 1 host−guest
complex.

Figure 7. Overview of the major one-electron Kohn−Sham orbital
excitations (e.g., HOMO → LUMO) contributing to the lowest
energy TD-CAM-B3LYP singlet excited state for the PT2 proton
transferred picric acid−cluster model 1 host−guest complex, clearly
showing the charge-transfer character of the excited state. The
percentage values besides the arrows indicate the contribution of a
specific one-electron Kohn−Sham orbital excitation to the excited
state (contribution with a magnitude of less than 5% not shown). The
use of green and purple signifies the different phases of the relevant
orbitals; orbital plots were generated with a contour value of 0.02.
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host−guest complex (Kbind,298 ≫ 1), which supports the
experimental observation of static quenching for the PA/
24DNP−secondary amine cage system. For the other explosive
considered, NB, our calculations predict that the majority of the
explosive will be present in the free form and the case for static
versus dynamic quenching is less clear based on the stability
constants and the percentage of explosives complexed alone.
However, when taking into account that the dynamic Stern−
Volmer quenching constant is the product of the quenching
rate constant and the inherent fluorescence lifetime of the cage
and the fact that the latter is very small (∼10 ns experimentally,
50−170 ns from static TD-DFT calculations, see above), the
lack of dynamic quenching for NB might be related to this
short fluorescence lifetime. Another contributing factor might
be that NB has the smallest electron affinity of all explosives
and thus the smallest driving force for photoinduced electron
transfer, which, in the framework of Marcus theory, suggests
that it might also have a relatively small rate constant for
electron transfer.
Assuming, following Kasha, rapid energy transfer from higher

excited states to the lowest excited state, the photophysical
mechanism of static quenching in the host−guest complex is
predicted in all cases to be due to electron transfer rather than
energy transfer; i.e. the lowest excited state of the analyte-
sensor host−guest complex has charge-transfer character. Free
conjugate base anions of the acid explosives, e.g., picrate, can
quench the cage fluorescence through FRET/DET. However,
when adsorbed, PET dominates because the attractive
electrostatic interaction between electron and hole stabilizes
charge-transfer states relative to local excited states. Hence in
contrast to Acharyya and Mukherjee, we do not believe that
FRET/DET at close proximity explains the “super-quenching
ability of PA” for the amine cage.
Overall, it appears to us that the selectivity of the cage with

secondary amine groups is not due to any unique photophysical
properties, but rather the fact that the cage forms the most
stable host−guest complexes with PA. Specifically, the
predicted stability constants increase in the same order
(Kbind,298, NB < Kbind,298, 24DNP < Kbind,298, PA) as the experimental
fluorescence quenching efficiency. Further evidence for the
crucial role of the host−guest stability constant and its large
size comes from the nonlinearity observed in the Stern−
Volmer plot for PA and the amine cage, which is expected for
large host−guest stability constants, as well as the experimental
observation of a new feature in the absorption spectrum of the
amine cage at ∼420 nm after addition of PA. The latter we
expect based on our calculations to be the lowest energy
excitation that is predominantly localized on the picrate anion,
as the overall lowest energy CT-state is expected to have a
rather weak intensity. The only minor complication with the
∼420 nm absorption feature is that, as discussed above and in
the Supporting Information, the same feature might arise from
PA dissociation by trace water.
The explanation in terms of analyte-sensor host−guest

stability constants is also consistent with the change in
selectivity for PA observed experimentally after converting
the secondary amine groups into tertiary amine groups. While
we have not explicitly calculated the host−guest binding free
energies for the decorated cage, our work suggests that
removing the secondary amine groups eliminates the ability
to form PT-2 complexes and that the neutral host−guest
complexes for the different explosives all have very similar
binding free energies and stability constants. Indeed, the

experimentally measured Stern−Volmer constant for PA and
the decorated cage (3.1 × 104 M−1)26 is lower than that for the
cage with secondary amine groups (2.2 × 105 M−1),25 although
one should be careful not to overinterpret these specific
experimental numbers. The two experiments use different
solvents (tetrahydrofuran vs dichloromethane) and one can
argue about the suitability of the model used to extract the
constants. Still in the case of the decorated cage, it thus appears
that it is not more selective for other nitroaromatics, but instead
less selective for PA.
Moving our attention to explosive sensing in general, our

calculations suggest that static quenching via the formation of
stable complexes between explosives and an otherwise
fluorescent sensor (macro)molecule is a powerful approach.
Because the strength of quenching appears to be directly
determined by the strength of the complex formed and the
fraction of explosive bound, it is easy to conceptualize how to
improve the selectivity for a given explosive by increasing the
explosive−sensor complex binding strength through careful
binding site design. In the case of phenol-based molecules (PA,
24DNP), this involves the presence of strategically located
amine groups or related Lewis bases. For example, the
selectivity of metal−organic frameworks based on amine
group containing ligands12,58 as fluorescence quenching sensors
for PA might also involve the formation of such explosive-
sensor host−guest complexes. However, for other explosives
this might involve different functional groups or a different size
or shape of binding pocket.
The second obvious combination of requirements for static

quenching through PET is that the sensing (macro)molecule is
electron rich, such that it has a shallow excited-state ionization
potential and thus a large driving force for PET, while at the
same time highly fluorescent in the absence of a quencher.
Systems based around triphenylamine units obviously fulfill this
requirement, but the same should hold for (macro)molecules
based around many other conjugated electron-rich fragments,
especially if bulk side groups prevent dimerization of such
fragments and thus self-quenching through H-aggregate
formation. Indeed a recent review,18 discusses a wide range
of small molecules that act as explosive sensors via fluorescence
quenching that combine a conjugated electron-rich fragment
with bulky side groups. Similarly, polymers that act as efficient
fluorescent quenching sensors for explosives are based on
electron-rich fragments that do not pack efficiently and hence
minimize self-quenching.1,4

Finally, fluorescence-quenching sensors for explosives based
on energy transfer are probably generally harder to achieve than
those based on electron transfer (i.e., FRET/DET rather than
PET), at least for sensing nitroaromatics. The fact that
absorption onset values of all nitroaromatics, phenol based
(e.g., PA) or not (e.g., TNT), lie close to those of many
potential conjugated fluorescent fragments, means that sensor
molecules based on such fragments should display only a very
limited Stokes shift to be able to transfer energy via FRET/
DET to such nitroaromatics. A likely exception to this scenario
is the case of the phenol based acid explosives. In these systems,
as discussed above, deprotonation and conjugate base anion
formation results in a sufficient red-shift of the absorption onset
to make FRET/DET a more realistic option by significantly
increasing the maximum amount of Stokes shift a sensor
molecule can undergo and still excite those deprotonated
analytes. As a result, we think the exact solvent system used in
fluorescence quenching experiments can have a critical
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influence on the extent and mechanism of quenching, especially
when sufficiently polar or basic to form significant amounts of
conjugate base anions in solution, and needs to be carefully
considered. The fluorescence quenching mechanism in dry
organic solvents is likely to be different than that in water.

■ CONCLUSIONS

In conclusion, we show that fluorescence quenching of amine
molecular cages by nitroaromatic explosives in nonpolar
solvents is the result of the formation of a stable supramolecular
complex with a lowest excited state with charge-transfer
character. We demonstrate that the high sensitivity and
specificity for picric acid of such an amine molecular cage
with secondary amine groups is the result of the formation of a
very stable proton-transferred complex, involving protonation
of the secondary amine and formation of an adsorbed picrate
anion, and is thus linked to the chemistry and geometry of the
adsorption site. Moreover, we discuss how trace water could be
responsible for picrate anion formation in this and other
systems. Finally, we analyze the more general requirements for
explosive sensors based upon static fluorescence quenching and
discuss that sensors based on dynamic fluorescence quenching
by energy transfer are difficult to achieve other than for acid
explosives in very polar solvents because of constraints on the
maximum allowed Stokes shift of the sensor.
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