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1 Introduction

The theory of large dissipative systems has a long and growing mathematical
history. Some of the classical literature one could find e.g. in [24] and [37]; see
also references there in. In this paper we focus on dissipative dynamics with non-
compact configuration space and their counterparts in noncommutative algebras.

A construction of Markov semigroups on the space of continuous functions
with an infinite dimensional underlying space well suited to study strong ergodicity
problems can be found in [51] in case of fully elliptic generators. More recently it
was extended to subelliptic situation in [16], [31] and Lévy type generators [35].
An interesting approach via stochastic differential equations one can find in [15]
and some recent extension to subelliptic generators in [50] (see also [4], [3] and
references therein). Another approach via Dirichlet forms theory which is well
adapted to L2 theory, can be found e.g. in [1], [45] and reference therein.

For symmetric semigroups, after a recent progress in proving the log-Sobolev
inequality for infinite dimensional Hörmander type generators L symmetric in
L2(µ) defined with a suitable nonproduct measure µ ([32], [25], [28], [26], [27],
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[43]), one can expect an extension of the established strategy ([51]) for proving
strong pointwise ergodicity for the corresponding Markov semigroups Pt ≡ etL,
(respectively in the uniform norm in case of the compact spaces as in [24] and refs
therein). One could obtain more results in this direction, including configuration
spaces given by infinite products of general noncompact nilpotent Lie groups other
than Heisenberg type groups, by conquering a (finite dimensional) problem of sub-
Laplacian bounds (of the corresponding control distance) which for a moment
remains still very hard.

The ergodicity theory in case when an invariant measure is not given in ad-
vance, in noncompact subelliptic setup is an interesting and challenging problem
which was initially studied in [16] and was extended in new directions in [31] de-
veloping further strategy based on generalised gradient bounds. We remark that in
fully elliptic case a strategy based on classical Bakry-Emery arguments involving
restricted class of interactions can be achieved. In case of the stochastic strategy
of [15], the convexity assumption enters via dissipativity condition in a suitable
Hilbert space and does not improve the former one as far as ergodicity is concerned;
(on the other hand it allows to study a number of stochastically natural models).
In subelliptic setup involving subgradient this strategy faces serious obstacles, see
e.g. comments in [6].

In noncommutative setup the development of mathematical description of in-
finite dissipative systems is much less developed. Some description of infinite
dimensional dissipative dynamics of jump type which are not symmetric with re-
spect to a given Gibbs state as well some results on theirs ergodicity can be found
in [54]; see also references therein and [23], [38], [14] on constructions associated to
classical Gibbs states (where interaction potential is classical). In [40] a construc-
tion and ergodicity results were provided for an interesting class where generator
of jumps part corresponds to a classical potential, but additionally the genera-
tor contains a conservative part corresponding to a different possibly nonclassical
potential. In general for an infinite dimensional system still no construction of
jump type dynamics exists which would be symmetric for a Gibbs state associated
to a generic nonclassical potential. Some interesting general constructions, based
on application of Dirichlet form theory [13], are provided in [44], [14] (see also
references there in).

A study of diffusion type dynamics providing a construction and ergodicity
results were given in [34], including generators associated to a family of noncom-
muting fields, but not apriori symmetric with respect to an L2 scalar product
associated to a given state.

Another recent examples of dissipative dynamics for infinite boson systems can
be found in [41] , [7].

One of the important techniques developed to study ergodicity of dissipative
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dynamics of infinite classical interacting systems is based on use of hypercontrac-
tivity property or its infinitesimal form encoded in Log-Sobolev inequality ([24]
and references therein). A noncommutative basis for such theory was introduced
in [42]. Since then, in noncommutative setup some progress was achieved in study-
ing certain directions ([9], [12], [11], [2]) with interesting new results emerging in
connection to quantum information theory ([29], [30]). Still many important tech-
nical aspects necessary to effective implementation of the theory remain elusive in
noncommutative world. (This includes e.g. product and perturbation properties
of Log-Sobolev inequality.)

In Section 2 and 3, we study finite and infinite dimensional systems for which
we construct dissipative dynamics described by Dunkl type generators and provide
certain basic ergodicity results. In section 4 we give an example of such dissipa-
tive dynamics in noncommutative setup. In section 5 we discuss some nonlinear
classical dissipative dynamics and theirs noncommutative counterparts. In Ap-
pendix we provide some discussion of monotone convergence in noncommutative
Lp spaces.

2 Dunkl type Markov Generators and Semi-

groups

In this section we discuss linear dissipative dynamics associated to Markov gener-
ators of the following form

L ≡
∑
i∈R
Li

defined on a dense domain of the space of bounded continuous functions C(Ω) on a
product space Ω ≡ ×i∈RΩi with Ωi ∼ Ω0 is a smooth manifold of finite dimension
n, where the indices i form a countable, possibly infinite, set R, and

Li ≡ T2
i − βi · Ti

with Ti ≡ ∇i +Ai , where ∇i denotes the gradient operator and

(Aif)l ≡
κ

xi,l
(f − f ◦ σi,l)

with σi,l ◦ σi,l = id σi,l(xi,l) = −xi,l , l = 1, . . . , n, are both acting on i-th coordi-
nate, while βi’s are dependent possibly on many coordinates and are continuously
differentiable. First of all we notice that we have

ΓLi(f) ≡ 1

2
(Lif2 − 2fLif) = |∇if |2 +

1

2κ
(Aif)2 − βi ·

1

2
(Aif

2 − 2fAif)
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We note that, unlike as in the diffusion case, the first order term gives a nontrivial
contribution. Since for A type component, we have

Ai,lf
2 − 2fAi,lf =

κ

xi,l
((f2 − f2 ◦ σi,l)− 2f(f − f ◦ σi,l))

= − κ

xi,l
(f − f ◦ σi,l)2 = −

xi,l
κ

(Ai,lf)2,

so we get

ΓL(f) ≡
∑
i

(
|∇if |2 +

∑
l

1

2κl
(1 + βi,l · xi,l)(Ai,lf)2

)
which is nonnegative if for all i, l we have

1 + βi,l · xi,l ≥ 0

Next we note that at a minimum point ω̃ for which components are outside reflec-
tion set, we have

−βi,l ·Ai,lf = +βi,l · xi,lκl

(
f ◦ σi,l(ω̃)− f(ω̃)

x2
i,l

)

Thus, assuming ∇i,lxi,l = 1, we have

(T2
i,l−βi,lTi,l)f = (ω̃)

∇2
i,lf(ω̃)+

2κl
xi,l
∇i,lf(ω̃)+

κl
x2
i,l

(f◦σi,l(ω̃)−f(ω̃))−βi,l·∇i,lf(ω̃)+βi,l·xi,l
κl
x2
i,l

(f◦σi,l(ω̃)−f(ω̃))

= ∇2
i,lf(ω̃) +

κl
x2
i,l

(1 + βi,l · xi,l)(f ◦ σi,l(ω̃)− f(ω̃)) ≥ 0

under the same condition for the coefficients as before. Using suitable limiting
procedure, one obtains similar result if any component of the minimum point
belongs to the reflection invariant set.
Hence we get the following condition for L being a Markov generator.

Theorem 1
Suppose for all i, l we have

1 + βi,lxi,l ≥ 0

Then
ΓL(f) ≥ 0
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and L satisfies the minimum principle, i.e. at a minimum point ω̃ ∈ Ω

(Lf)(ω̃) ≥ 0

Remark 1
Note that positivity of canonical quadratic form implies minimum principle for
functions f for which (f −min f)1/2 is in the domain of the generator.

Example 1
Suppose Ω ≡ RR and

Aif =
κ

ωi
(f − f ◦ σi)

with κ > 0 and σi(ω)j = (−1)δijωj . Supose

βi = a2n+1 ω
2n+1
i +

∑
m=2,..,2n

am ωmi + M̃ωi +
∑
O:O3i

bO
∏
k∈O

ς(ωk)

where a2n+1 > 0, am ∈ R, n ≥ 1, and bO ∈ R+, with finite sets O, and
supj

∑
O:O3j |bO| < ∞, where ς(x) = xχx∈[−1,+1] + χx∈[+1,∞] − χx∈(−∞,−1] and

with M̃ > 0. Then conditions of the above theorem are satisfied provided the
coefficients am, m = 2, .., 2n, are sufficiently small in absolute value. (It should be
clear that one can add to such β’s a sufficiently small continuous bounded func-
tions without harming the conditions of the theorem.)

Since L is densely defined and vanishes on constants, it is a Markov (pre-)generator.
Thus one can expect that, the corresponding semigroup Pt ≡ etL can be well de-
fined C0-Markov semigroup on the space of bounded (uniformly-)continuous func-
tions. If the dimension of the space is finite this is fine; in infinite dimensions this
requires more arguments which will be discussed later.

3 Generalised Gradient Bounds

Given a Markov semigroup introduced in the previous section and assuming that
it provides some mild smoothing properties, it would be interesting to consider a
problem when the following generalised gradient type bounds can be satisfied

Γ̃(Ptf)q ≤ Ce−mtPtΓ̃(f)q

where Γ̃ is a quadratic form involving first order operators, C ∈ R+, m ∈ R and
q ∈ [1

2 , 1] are constants independent of f and t ∈ R+. In particular one could ask

5



this question for the canonical Γ form associated to the Markov generator or a
form |Tf |2 ≡

∑
i |Tif |2. Similar bounds involving differential operators may have

a variety of applications including ergodicity theory (cf. [16]) or certain smoothing
properties of the semigroup (see e.g. [5], [17], [36], [6], [27] and references therein).
Even in the case of diffusion operators in finite dimensions it is a hard problem for
which a relatively satisfactory solution currently only exists in case of (products
of) Heisenberg type groups; for q = 1

2 the other groups constitute a formidable
challenge. Therefore one can expect that our case is even more challenging. Thus,
to gain at least some intuition, we discuss here a simplified situations starting from
a case of single field and one reflection.

With a function η such that η ◦ σ = −η and Xη = ε, for some constant
ε ∈ (0,∞), we set

Aσ(f) ≡ A(f) ≡ f − f ◦ σ
η

T ≡ X +A

and
L ≡ T 2 − βηT, with β > 0.

Then one has

(Tf) ◦ σ = −T (f ◦ σ), (Lf) ◦ σ = L(f ◦ σ).

Now for fs ≡ Psf , we have

∂sPt−s|Tfs|2 = Pt−s(−L|Tfs|2 + 2Tfs · TLfs)

= Pt−s(−2Γ(Tfs) + 2Tfs · [T,L]fs) ≤ Pt−s(2Tfs · [T,L]fs)

with use of −2Γ(Tfs) ≡ −L|Tfs|2 + 2Tfs · LTfs ≤ 0. Next note that

[T,L]g = [T, T 2 − βηT ]g = −β[T, η]Tg = −β(εTg + 2(Tg) ◦ σ)

Thus

∂sPt−s|Tfs|2 ≤ −2βPt−s(Tfs · (εTfs + 2(Tfs) ◦ σ)) (1)

Repeating our computation for fs ◦ σ ≡ (Psf) ◦ σ,

∂sPt−s(|(Tfs)|2 ◦ σ) = Pt−s(−L(|Tfs|2 ◦ σ) + 2(Tfs) ◦ σ(TLfs) ◦ σ) (2)

= Pt−s(−2Γ((Tfs) ◦ σ) + 2(Tfs) ◦ σ((TLfs) ◦ σ − L(Tfs ◦ σ)))

= Pt−s(−2Γ((Tfs) ◦ σ) + 2(Tfs) ◦ σ(([T,L]fs) ◦ σ))

≤ −2βPt−s((Tfs) ◦ σ · (2(Tfs) + ε(Tfs) ◦ σ)))
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Adding (1) & (2), we obtain

∂sPt−s(|(Tfs)|2 + |(Tfs)|2 ◦ σ) ≤ −2(2 + ε)βPt−s(|(Tfs)|2 + |(Tfs)|2 ◦ σ).

Integrating this differential inequality, yields

(|(Tfs)|2 + |(Tfs)|2 ◦ σ) ≤ e−2(2+ε)βt Pt(|Tf |2 + |Tf |2 ◦ σ).

Next, (although there is no doubt that what follows below can be done for general
case of classical (finite) Coxeter groups of Dunkl theory), to focus our attention
we consider the case of products of real lines each with a single natural reflection.
That is we consider

Tif ≡ (∇i +Ai)f

with ∇i denoting partial derivative with respect to i-th coordinate and

Aif ≡ κ
f − f ◦ σi

ωi

with a reflection defined by

(σiω)j ≡ (−1)δijωj

In this setup we note the following relation, in which we set fs ≡ Psf ,

∂sPt−s|Tifs|2 = Pt−s(−L|Tifs|2 + 2Tifs · TiLfs)

= Pt−s(−2Γ(Tifs) + 2Tifs · [Ti,L]fs)

≤ Pt−s(2Tifs · [Ti,L]fs)

where in the last step we have used the fact that

−2Γ(Tifs) ≡ −L|Tifs|2 + 2Tifs · LTifs ≤ 0.

We remark that in the current setup where all directions in the tangent space are
represented in the generator, we can afford to disregard otherwise vital nonpositive
term −2Γ(Tifs). Next we note that, by our current assumption

[Ti,Lj ]g = [Ti, T
2
j − βjTj ]g = −[Ti, βj ]Tjg

= −(∇iβj)Tjg −Ai(βj)(Tjg) ◦ σi.

Combining this with our previous bounds, we obtain the following relation

∂sPt−s|Tifs|2 ≤ −2Pt−s((∇iβi)|Tifs|2)−2Pt−s (Ai(βi) Tifs · (Tifs) ◦ σi)
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−2
∑
j 6=i

Pt−s ((∇iβj) Tifs · Tjfs)−2
∑
j 6=i

Pt−s (Ai(βj) Tifs · (Tjfs) ◦ σi)

As compared to a conventional situation, where reflections are not in the game,
we have now got a trouble in the form of terms containing reflected factors. In
case when βj =

∑
kGjkωk + ηj with Gii > 0 and Gjk sufficiently small, and ηj are

sufficiently small cylinder functions, at this point we could use quadratic inequality
to separate terms containing |Tifs|2 and get the following bound

∂sPt−s|Tifs|2 ≤ −2αPt−s|Tifs|2 + Pt−s
(
Ai(βi) |Tifs ◦ σi|2

)
+
∑
j 6=i

Pt−s
(
|∇iβj | |Tjfs|2

)
+
∑
j 6=i

Pt−s
(
|Ai(βj)| |(Tjfs) ◦ σi|2

)
with a constant

α ≤ inf
i

∇iβi − 1

2

∑
j 6=i
|∇iβj | −

1

2

∑
j

|Ai(βj)|


Solving this inequality with respect to Pt−s|Tifs|2, after integration with respect
to s ∈ [0, t] and using supremum bounds for the coefficients, we arrive at

|Tift|2 ≤ e−αtPt|Tif |2 + ‖Ai(βi)‖∞
∫ t

0
ds e−α(t−s)Pt−s|Tifs ◦ σi|2

+
∑
j 6=i
‖Ai(βj)‖∞

∫ t

0
ds e−α(t−s) Pt−s|(Tjfs) ◦ σi|2

At this stage, if Pt is a Markov semigroup, one can pass to the following supremum
bounds

‖Tift‖2∞ ≤ e−αt‖Tif‖2∞ + ‖Ai(βi)‖∞
∫ t

0
ds e−α(t−s)‖Tifs‖2∞

+
∑
j 6=i
‖Ai(βj)‖∞

∫ t

0
ds e−α(t−s) ‖Tjfs‖2∞

This relation allows us to show existence of a semigroup in infinite dimensions as
well as uniform ergodicity in sup norm if additionally α > 0 ([52], [16]).

Unbounded Drifts.

In what follows we would like to improve on that above by allowing nonlinear
unbounded drifts βi’s as well as getting suitable pointwise bounds. To this end
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we will keep on an assumption that symmetric parts (βj + βj ◦ σi) are zero or
sufficiently small. Now we propose to consider simultaneously reflected terms, as
follows

∂sPt−s|Tifs ◦ σi|2 = Pt−s(−L|Tifs ◦ σi|2 + 2(Tifs) ◦ σi · (TiLfs) ◦ σi) =

Pt−s(−2Γ(Tifs ◦ σi) + 2(Tifs) ◦ σi · ([Ti,L]fs) ◦ σi + 2(Tifs) ◦ σi · ((LTifs) ◦ σi − L(Tifs ◦ σi)))
= Pt−s(−2Γ(Tifs ◦ σi) + 2(Tifs) ◦ σi · {(−(∇iβi)Tifs −Ai(βi)(Tifs) ◦ σi) ◦ σi})

+
∑
j 6=i

2Pt−s((Tifs) ◦ σi · {(−(∇iβj)Tjfs −Ai(βj)(Tjfs) ◦ σi) ◦ σi})

+Pt−s2

(Tifs) ◦ σi ·

(βi + βi ◦ σi)Ti((Tifs) ◦ σi) +
∑
j 6=i

(βj + βj ◦ σi)Tj((Tifs) ◦ σi)

 .

Since with some constant C ∈ (0,∞), one has

|Tig|2 ≤ CΓi(g),

as long as γ ≡ supi
∑

j ||βj + βj ◦ σi||2∞ <∞, with the use of quadratic inequality
we see that

−2Γ(Tifs ◦ σi)

+2

(Tifs) ◦ σi ·

(βi + βi ◦ σi)Ti((Tifs) ◦ σi) +
∑
j 6=i

(βj + βj ◦ σi)Tj((Tifs) ◦ σi)


≤ C

2
γ|Tifs ◦ σi|2

This allows us to get

∂sPt−s|Tifs ◦ σi|2 ≤ −2Pt−s

((
(∇iβi) ◦ σi −

C

4
γ

)
|Tifs ◦ σi|2

)
−2Pt−s((Ai(βi) ◦ σi)(Tifs) ◦ σi · (Tifs))

−2
∑
j 6=i

Pt−s ((Tifs) ◦ σi · {(((∇iβj) ◦ σi) (Tjfs) ◦ σi +Ai(βj) ◦ σi (Tjfs))})

This together with similar bound for ∂sPt−s(Tifs) obtained before, yields

∂sPt−s(|Tifs|2 + |Tifs ◦ σi|2)

≤ −2Pt−s((∇iβi)|Tifs|2)− 2Pt−s

((
(∇iβi) ◦ σi −

C

4
γ

)
|Tifs ◦ σi|2

)
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−2Pt−s ((Ai(βi) +Ai(βi) ◦ σi) Tifs · (Tifs) ◦ σi)

−2
∑
j 6=i

Pt−s ((∇iβj) Tifs · Tjfs)−2
∑
j 6=i

Pt−s (Ai(βj) Tifs · (Tjfs) ◦ σi)

−2
∑
j 6=i

Pt−s (((∇iβj) ◦ σi) (Tifs) ◦ σi · (Tjfs) ◦ σi)−2
∑
j 6=i

Pt−s (Ai(βj) ◦ σi (Tifs) ◦ σi · (Tjfs))

We can simplify that by using the quadratic inequality to have

∂sPt−s(|Tifs|2 + |Tifs ◦ σi|2) ≤ −2MPt−s(|Tifs|2 + |Tifs ◦ σi|2)

+
∑
j 6=i

γijPt−s(|Tjfs|2 + |(Tjfs) ◦ σi|2)

provided that

(∇iβi) + (∇iβi) ◦ σi −
1

2
|Ai(βi) +Ai(βi) ◦ σi| −

1

2

∑
j 6=i

γij −
C

4
γ ≥M

and where we set
γij ≡ ‖∇iβj‖∞ + ‖Ai(βj)‖∞

Now we are in much better shape than before. This is because the first condition
allows for βi other than linear, for example including

βi = a2n+1ω
2n+1
i +

∑
l=2,..,2n

al ω
l
i + M̃ωi +

∑
k 6=i

Gikωk +
∑
O:O3i

bO
∏
k∈O

ς(ωk)

where a2n+1 > 0, n ≥ 1, and al, bO ∈ R, with finite sets O, and supj
∑

O:O3j |bO| <
∞, where ς(x) = xχx∈[−1,+1] + χx∈[+1,∞] − χx∈(−∞,−1] and finally with M̃ > 0.
Thus for such drift coefficients βi, integration with respect to s of our differential
inequality yields the following.

|Tift|2 + |Tift ◦ σi|2

≤ e−2MtPt(|Tif |2 + |Tif ◦ σi|2)

+
∑
j 6=i

γij

∫ t

0
ds e−2M(t−s)Pt−s(|Tjfs|2 + |(Tjfs) ◦ σi|2)

From this we get the the following bound as a simple implication.

Lemma 1

‖Tift‖2∞ ≤ 2e−2Mt‖Tif‖2∞ +
∑
j 6=i

2γij

∫ t

0
ds e−2M(t−s)‖Tjfs‖2∞
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With this inequality via standard arguments, (see e.g. [16], [49], [51] and refer-
ences therein), one obtains finite speed of propagation of information which allows
to show the existence of the semigroup in infinite dimensions and under additional
assumptions existence of invariant measure and strong ergodicity. That is one has
the following result.

Theorem 2
Suppose M,γij ∈ R with γij > 0 and supi

∑
j γij <∞. Then the Markov semigroup

Pt is well defined in infinite dimensions. Moreover, if M > 0 and supi
∑

j γij > 0
is sufficiently small, then there exists m ∈ (0,∞) such that

‖Tft‖2∞ ≤ 2e−2mt‖Tf‖2∞

with
‖Tg‖2∞ ≡

∑
i

‖Tig‖2∞

In this case there exists a unique measure µ with finite moments such that

‖ft −
∫
fdµ‖2∞ ≤ e−2mtC(‖Tf‖∞)

for any cylinder function f with bounded ‖Tif‖2∞ with some constant C(‖Tf‖∞) ∈
(0,∞) independent of t ∈ (0,∞).

Now we get back to our symmetrised with respect to σi inequality in our claim and
notice that, at least when our Coxeter group generated by reflections is finite, one
could consider full symmetrisation to get after resummation the following Gronwal
type inequality

‖Tft‖2Cox ≤ e−2M̂tPt‖Tf‖2Cox +
∑
j 6=i

γ̂ij

∫ t

0
ds e−2M̂(t−s)Pt−s‖Tfs‖2Cox

with
‖Tg‖2Cox ≡

∑
i

∑
c∈Cox

|Tig ◦ c|2

A simple application of this yields the following bound.

Claim With some m̂ ∈ R

‖Tft‖2Cox ≤ e−2m̂tPt‖Tf‖2Cox
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One may expect that similar bound could be possible for square of a seminorm
in which we sum over i and composition with c is replaced by projections (on
subspaces obtained via symmetrisation subordinated to Cox). One may hope that
the last could possibly survive also in the case when the Coxeter group is infinite
(at least on some smaller class of functions which are sufficiently quickly decreasing
to zero with the size of c ∈ Cox). This is for a moment an interesting, challenging
and widely open problem.

Remark 2 A theory of dissipative semigroups generated by Dunkl type operators
associated to noncommutative groups was recently developed in [52] and [53] .

4 Quantum Dunkl Type Generators.

In this section we provide a description of linear dissipative semigroup with Dunkl
type generators in a noncommutative algebra A. While the principal objective
here is to provide a new noncommutative model, one could also potentially hope
for a possible application of such models to quantum information theory.
Let σj ∈ A, j ∈ I, be such that σ∗j = σj , σ

2
j = 1 and {σj , σk} = 0. Define maps

A 3 f → Sjk(f) ≡ σjfσk ∈ A.

Then we have
S2
jk = I and Sjk(fg) = Sjk(f)Skk(g) = Sjj(f)Sjk(g).

Define
ALjk(f) ≡ κjk(f −Sjk(f)) and ARjk(f) ≡ (f −Sjk(f))κ̃jk

with Sjj(κjk) = −κjk and Skk(κ̃jk) = −κ̃jk . Then we have

ALjk(A
L
jk(f)) = ALjk(κjk(f −Sjk(f)))

= κjk(κjk(f −Sjk(f))−Sjk(κjk(f −Sjk(f)))).

Since
Sjk(κjk(f −Sjk(f))) = −κjk(Sjk(f)−S2

jk(f)) = −κjk(Sjk(f)− f)
= κjk(f −Sjk(f))

we obtain

ALjk(A
L
jk(f)) = 0.

Similarly we have
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ARjk(A
R
jk(f)) = 0.

We also note that

ARjk(A
L
jk(f)) = ARjk(κjk(f−Sjk(f))) = (κjk(f−Sjk(f))−Sjk(κjk(f−Sjk(f))))κ̃jk

= (κjk(f −Sjk(f))− (κjk(f −Sjk(f))))κ̃jk = 0

and similarly

ALjk(A
R
jk(f)) = 0.

Next consider a derivation δl(f) ≡ [σl, f ],which satisfies

δl(σj) = 2σlσj(1− δlj).

Then, for l 6= j, k, we have

δl(Sjk(f)) = δl(σjfσk) = δl(σj)fσk + σjδl(f)σk + σjfδl(σk)

= −2σjσlfσk + σjδl(f)σk + σjf2σlσk = −σjδl(f)σk

= −Sjk(δl(f)).

That is Sjkis a reflection in the sense of [52], [53] (in the direction of “tangent
vector” δl).
Using this we can introduce the following generalised derivations

Tf ≡ ∇f +A(f)

with components Tl ≡ ∇l +Al , l ∈ I, defined by ∇l = δl and

Al ≡ ALjk +ARjk

We define an operator

Llf ≡ T2
l f = (δ2

l + δlAl +Alδl)f ≡ L0f + {∇l,Al}f

and its associated quadratic form

ΓLl(f) ≡ 1
2(Ll(f∗f)− Ll(f∗)f − f∗Ll(f)).

Note that
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ΓLl(f) ≡ −(δl(f))∗δl(f) + Γ{δl,Al}(f)

where

Γ{δl,Al}(f) ≡ 1

2
({δl,Al}(f∗f)− {δl,Al}(f∗)f − f∗{δl,Al}(f))

= Γ{δl,ALl }
(f) + Γ{δl,ARl }

(f).

Since, using reflection property δl(Sjk(f)) = −Sjk(δl(f)), we have

{δl,AL
l }(f) = 2κjkδl(f) + δl(κjk)(f −Sjk(f))

so

1

2
({δl,AL

l }(f∗f)− {δl,AL
l }(f∗)f − f∗{δl,AL

l }(f)) = 2[κjk,f
∗]δl(f)+

1

2
(δl(κjk)(f

∗f −Sjk(f
∗f))− δl(κjk) (f∗ −Sjk(f

∗)) f − f∗δl(κjk)(f −Sjk(f))) .

The second part on the right hand side can be represented as follows

1

2
(δl(κjk)(f

∗f −Sjk(f
∗f))− δl(κjk) (f∗ −Sjk(f

∗)) f − f∗δl(κjk)(f −Sjk(f)))

= −1

2
δl(κjk)(f

∗ −Sjk(f
∗)) · (f −Sjk(f))

+
1

4
δl(κjk)(Sjk(f

∗)(Sjk(f)−Skk(f)) + (Sjk(f
∗)−Sjj(f

∗))Sjk(f))

+
1

2
([δl(κjk), f

∗](f −Sjk(f))).

In particular we see that for a special case j = k, we obtain

1

2
(δl(κjk)(f

∗f −Sjk(f
∗f))− δl(κjk) (f∗ −Sjk(f

∗)) f − f∗δl(κjk)(f −Sjk(f)))

= −1

2
δl(κjj)(f −Sjj(f))∗ · (f −Sjj(f)) +

1

2
([δl(κjj), f

∗](f −Sjj(f)))

and hence, we have

Γ{δl,ALl }
(f) = −2([κjj,f ])∗δl(f)− 1

2
δl(κjj)(f −Sjj(f))∗ · (f −Sjj(f))

+
1

2
([δl(κjj), f

∗](f −Sjj(f))).
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Similarly, we have

Γ{δl,ARl }
(f) = 2δl(f

∗)[κ̃jk, f ]+

1

2
((f∗f −Sjk(f

∗f))δl(κ̃jk)− (f∗ −Sjk (f∗)) δl(κ̃jk)f − f∗(f −Sjk(f))δl(κ̃jk))

and

1

2
((f∗f −Sjk(f

∗f))δl(κ̃jk)− (f∗ −Sjk (f∗)) δl(κ̃jk)f − f∗(f −Sjk(f))δl(κ̃jk))

= −1

2
((f∗ −Sjk(f

∗))(f −Sjk(f)))δl(κ̃jk)

+
1

4
((Sjk(f

∗)(Sjk(f)−Skk(f)) + (Sjk(f
∗)−Sjj(f

∗))Sjk(f)) δl(κ̃jk))

+
1

2
(f∗ −Sjk(f

∗))[δl(κ̃jk), f ].

Again, for j = k 6= l, we can simplify this expression as follows

1

2
((f∗f −Sjk(f

∗f))δl(κ̃jk)− (f∗ −Sjk (f∗)) δl(κ̃jk)f − f∗(f −Sjk(f))δl(κ̃jk))

= −1

2
((f∗ −Sjj(f

∗))(f −Sjj(f)))δl(κ̃jj) +
1

2
(f∗ −Sjj(f

∗))[δl(κ̃jj), f ].

Hence we get

Γ{δl,ARl }
(f) = −2(δl(f))∗[κ̃jj , f ]− 1

2
(f −Sjj(f))∗ · (f −Sjj(f))δl(κ̃jj)

+
1

2
(f∗ −Sjj(f

∗))[δl(κ̃jj), f ]

Assuming

κjj = κσl and κ̃jj = κ̃σl,

combining our calculations we arrive at

ΓLl(f) = −(1− 2κ− 2κ̃)(δl(f)∗)δl(f)

which is nonpositive provided 2κ+ 2κ̃ ≤ 1. Thus an operator

Lf ≡ T2f ≡
∑

lT
2
l f

is Markovian. We remark that in general the operators Tl may not commute
(and thus we are in general setup of [53]).
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5 On Nonlinear Dissipative Dynamics.

To begin we mention first that in [48] an interesting nonlinear dissipative dynamics
of jump type was introduced and studied for infinite interacting systems of classical
spins on a lattice. The generator of this dynamics is formally given by

Lf ≡
∑

l∈Zd
(El − I)(f)

where

Elf ≡ 1
β logEX+le

βf

with EX+l denotes a conditional expectation given a configuration of the system
in Zd \ {X + l} associated to a Gibbs measure and β ∈ R \ {0}. (The elementary
operator in the sum can be understood as a Glauber type generator corrected
by the relative entropy part.) One can show that the corresponding semigroup
Pt ≡ etL preserves unit and positivity and it was demonstrated there that ,under
suitable mixing condition, the corresponding dynamics is exponentially ergodic
([48]. Without getting into more detail, (a more extensive description can be
found in [55]), such kind of dynamics could prove to be interesting in relation to
certain optimization problems, (see also a work [39] for some other application of
nonlinear averages to economy).

A desire to construct and understand nonlinear noncommutative dissipative
dynamics led to the paper [33] where in particular the following result was proved.
For Ei, i = 1, ..., n, being linear, positive and unital operators on a C∗ algebra A,
we define L : D(F )→ A,

L(x) =
∑n

i=1 αi logEi(e
x)− x,

with
D(F ) = Asa ∩K(x, r) ≡ {y ∈ A :‖ x− y ‖< r}, r > 0,
and αi ≥ 0,

∑n
i=1 αi = 1. Note that L−(er−1)I is strictly dissipative, because

‖ logEi(e
x2)− logEi(e

x1) ‖≤ er ‖ x2 − x1 ‖,

and so,

∀ϕ ∈ J(x2 − x1) ≡ (tangent functionals at x2 − x1)

R〈ϕ, F (x2)− F (x1)〉 =
n∑
i=1

αiR〈ϕ, logEi(e
x2)− logEi(e

x1)〉− ‖ x2 − x1 ‖
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≤
n∑
i=1

αi ‖ logEi(e
x2)− logEi(e

x1) ‖ − ‖ x2 − x1 ‖≤ (er − 1) ‖ x2 − x1 ‖ .

Moreover, one point dissipativity also holds
∀x ∈ D(F )\{0}∀ϕ ∈ J(x)

R〈ϕ, F (x)〉 =
n∑
i=1

αiR〈ϕ, logEi(e
x)〉− ‖ x ‖≤

n∑
i=1

αi ‖ logEi(e
x) ‖ − ‖ x ‖≤ 0.

Hence we have the following result (see [33] for details).

Theorem 3 The operator

L(x) =

n∑
i=1

αi logEi(e
x)− x,

generates a Lipschitz semigroup St : D(F ) → D(F ) which is contractive and
preserves unit and positivity, i.e. (St)t≥0 is a conservative Markov semigroup.

It is a challenging problem to obtain an infinite dimensional extension of this result
and ergodicity theory for the corresponding semigroup.

Remark 3 It is also an interesting open question, if it could be possible to extend
a classical nonlinear annealing algorithm of [55] to study a challenging problem of
determining ground states for large interacting quantum systems.

A theory of nonlinear dissipation for infinite dimensional interacting systems has
been developed over time in [21], [18] and recently in [19]. In particular in the
last work we have used log-Sobolev inequality to provide a solution of Reaction-
Diffusion type problem when, first of all the underlying space is infinite dimensional
and secondly, when one can have different type of mixing. That is we have studied
a system

∂tui = Liui + (βi − αi)

k q∏
j=1

u
αj
j − l

q∏
j=1

u
βj
j

 ,

where i = 1, . . . , q; αi, βi ∈ R+, βi 6= αi;and Li an operator which models how the
ith substance diffuses, with a key assumption being that these generators satisfy
log-Sobolev inequality

µ

(
f2 log

f2

µf2

)
≤ ciµ(f(−Lif))
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with a given probability measure µ and a constant ci ∈ (0,∞) independent of a
function f .

This inequality played in the past an essential role in development of ergodicity
theory for infinite spin systems on a lattice, (see e.g. [47], [24]), and it is expected
that it will be similar in the discussed case of R-D systems ([20]).

As we mentioned in the introduction a general theory for log-Sobolev inequality
and associated hypercontractivity property for corresponding linear dissipative
semigroups in noncommutative algebras was introduced and initially studied in
[42]. In general there is still a number of elements well known for classical case,
but hard to get in the noncommutative case. One of them, the equivalence of log-
Sobolev inequality to Sobolev-Orlicz type inequalites (as introduced in [8]), was
recently obtained in [2], but still there are many other (including perturbation and
product property) awaiting to be understood. One of possibly promising direction
of the progress should be the one including the systems with classical potentials
for which jump type dynamics can be well defined for the infinite system. In this
case one can expect that for any local observable f we have the following limit

lim
n→∞

Ein . . . Ei1f = ω(f)

where Ej denotes a completely positive map given by a generalised conditional
expectation which is symmetric in L2,1/2(ω) space, with suitable sequence (ik)k∈N
”going infinitely many times through each site of a lattice” in the sense of [51].
(In the Appendix at the end of the paper we discuss briefly some matters related
to this and other type of limits involving generalised conditional expectation given
by completely positive map.)

Appendix. Towards the Martingale Convergence Theorem
in Noncommutative Lp Spaces:

At this point it is interesting to notice the joint monotonicity inequalities for
Lp,1/2(ω) norms obtained in [2], with ω ≡ Tr(ρ·) ≡ Tr(P−1·) where P = P ∗ > 0
with TrP−1 = 1.

Theorem 4 : ∀α ∈ [0, 1],∀r = 2n, n ∈ N

Tr|ϕ(P )−(1−α)/rϕ(f)ϕ(P )−α/r|r ≤ Tr|P−(1−α)/rfP−α/r|r ≡ ‖f‖P−1,α,r

where ϕ is a Completely Positive Mapping.

Let
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〈f, g〉P,α ≡ Tr(P−(1−α)f∗P−αg) = Tr((P−α/2fP−(1−α)/2)∗(P−α/2gP−(1−α)/2))
and
EX,α(f) ≡ TrX(γ∗X,α,LfγX,α,R)
with
γX,α,R ≡ P−(1−α)(TrXP

−1)−(1−α) ≡ γ∗X,1−α,L . Then we have

〈EX,α(f), EX,α(g)〉EX,α(P ),α = Tr(EX,α(P )−(1−α)EX,α(f)∗EX,α(P )−αEX,α(g))
with
EX,α(P ) = TrX(((TrXP

−1)−α)P−αPP (1−α)(TrXP
−1)−(1−α)) =

= TrX((TrXP
−1)−1) = (TrXP

−1)−1.
In particular for α = 1

2 , we have that EX,α(·) is a completely positive map.

The Product Case.

We consider first a product state given by
P ≡ ⊗nk=1Pk

where Pk ≡ PXk ∈ AXk , k = 1, . . . , n, are commuting positive matrices s.t.

TrXkP
−1
k = 1, and for n > j ∈ N set P≥j ≡ ⊗jk=1Ik ⊗

n
k=j+1 Pk and P≥n ≡ I.

Then, we have∏j
k=1EXk,α(P ) ≡ E≥j,α(P ) = P≥j

In the current situation γXk,α,R ≡ P−(1−α)(TrXkP
−1)−(1−α) = P

−(1−α)
Xk

EXk,α(f) = TrXk(P−αXk fP
−(1−α)
Xk

) = TrXk(P−1
Xk
f).

In a special case α = 1
2 , we will omit the index α writing EXk(f) ≡ EXk,1/2(f)

and ‖f‖r ≡ ‖f‖1/2,r. The monotonicity result above, yields
‖E≥j(f)‖E≥j(P )−1,r = ‖EXjE≥j−1(f)‖EXjE≥j−1(P )−1,r

≤ ‖E≥j−1(f)‖E≥j−1(P )−1,r

For j = n, we have
‖E≥n(f)‖E≥n(P )−1,r = ‖E≥n(f)‖I,r
and
E≥n(f) = Tr(P−1f) ≡ ω(f).

Naturally this can be generalised to infinite product states with the claim that
limj→∞ ‖E≥j(f)‖E≥j(P )−1,r = |ω(f)|

for any local observable f .
Next consider a family of completely positive operator of the form

EX(f) = TrX(γ∗XfγX), X ⊂⊂ R
which are symmetric in L2(ω) ≡ L2, 1

2
(ω) and unital. Let us assume that there

exists a commutative subalgebra Ac such that γX ∈ Ac and EX(Ac) ⊆ Ac .
Suppose a family
{EX}X∈R0 , for some countable R0 ( R, is ergodic in the sense that
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∀f ∈ Ac lim
n→∞

EXn . . . EX1(f) = ω(f) (3)

and
∀g ∈ A0 , with a dense subalgebra A0 ⊂ A, ∃n ∈ N EXn . . . EX1(g) ∈

Ac ∩ A0.
Then, for f = EXm . . . EX1(g) ∈ Ac ∩ A0 given by g ∈ A0 with some m ∈ N, we
have

limn→∞EXn . . . EX1(f) = ω(f) = ω(EXm . . . EX1(g)) = 〈l, EXm . . . EX1(g)〉2,ω.
Since by our assumption EX are symmetric and unital, by induction we get
〈EXm(l), EXm−1 . . . EX1(g)〉2,ω = 〈l, EXm−1 . . . EX1(g)〉2,ω = 〈l, g〉2,ω = ω(g).

In particular this idea can be used for system with classical interaction, i.e. when
for f ∈ A0

ω(f) ≡ limΛ→R Tr(e−UΛf)/Tr(e−UΛ)
with
UΛ ≡

∑
X∩Λ6=∅ΦX , and ΦX ∈ Ac ∩ A0 with supi∈R

∑
X⊂R, X3i ‖ΦX‖A <∞;

and one is given a family
{TrX : X ⊂ R, |X| <∞|Tr(TrX(f)) = Tr(f), TrXTrX(f) = TrX(f),TrX(l) = l} .

When restricted to Ac, the corresponding structure reduces to the one known
in the classical Gibbs measure theory. In particular all EX act as the classical
conditional expectations and one can formulate for them conditions which assure
the ergodicity (3) holds (cf. [24]).

In similar spirit one can also discuss more general sequences (EΛn : Λn ⊂ Λn+1).
◦
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[24] A. Guionnet and B. Zegarliński, Lectures on logarithmic Sobolev in-
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