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Abstract

A new arbitrary Polynomial Chaos (aPC) method is presented for moderately

high-dimensional problems characterised by limited input data availability.

The proposed methodology improves the algorithm of aPC and extends the

method, that was previously only introduced as tensor product expansion,

to moderately high-dimensional stochastic problems. The fundamental idea

of aPC is to use the statistical moments of the input random variables to

develop the polynomial chaos expansion. This approach provides the possi-

bility to propagate continuous or discrete probability density functions and

also histograms (data sets) as long as their moments exist, are finite and

the determinant of the moment matrix is strictly positive. For cases with

limited data availability, this approach avoids bias and fitting errors caused

by wrong assumptions. In this work, an alternative way to calculate the aPC

is suggested, which provides the optimal polynomials, Gaussian quadrature

collocation points and weights from the moments using only a handful of
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matrix operations on the Hankel matrix of moments. It can therefore be

implemented without requiring prior knowledge about statistical data anal-

ysis or a detailed understanding of the mathematics of polynomial chaos

expansions. The extension to more input variables suggested in this work,

is an anisotropic and adaptive version of Smolyak’s algorithm that is solely

based on the moments of the input probability distributions. It is referred

to as SAMBA (PC), which is short for Sparse Approximation of Moment-

Based Arbitrary Polynomial Chaos. It is illustrated that for moderately

high-dimensional problems (up to 20 different input variables or histograms)

SAMBA can significantly simplify the calculation of sparse Gaussian quadra-

ture rules. SAMBA’s efficiency for multivariate functions with regard to data

availability is further demonstrated by analysing higher order convergence

and accuracy for a set of nonlinear test functions with 2, 5 and 10 different

input distributions or histograms.

Keywords: Uncertainty Quantification, Non-Intrusive Polynomial Chaos,

Arbitrary Polynomial Chaos, Sparse Gaussian Quadrature, Anisotropic

Smolyak, SAMBA

1. Introduction

Non-Intrusive Polynomial Chaos methods (NIPC) are popular uncer-

tainty propagation techniques to determine the effect of aleatory input un-

certainties on complex computational models [1, 2]. Their success is mostly

due to the reduction in computational cost that can be achieved by expand-

ing continuous input Probability Density Functions (PDF) into a basis of

optimal orthogonal polynomials. The coefficients of the optimal polynomial
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basis functions can be determined non-intrusively from response function

evaluations, using either linear regression and sampling or quadrature based

approaches on tensor-product or sparse grids. A comparison of these two

NIPC approaches can be found in Eldred [3]. The list of parametric dis-

tributions, for which an optimal expansion exists, includes, among others,

the Gaussian, Uniform, Beta and Gamma distribution and is referred to as

‘generalised Polynomial Chaos’ (gPC), based on the Askey scheme [4, 5, 6].

In recent years, however, engineering applications have created a growing

demand for the extension of Polynomial Chaos techniques to more general

input distributions [7]. The gPC was extended to arbitrary input distribu-

tions by splitting the random space into piecewise elements and propagating

them locally using the Askey scheme [8, 9, 10, 11]. The splitting of the

random space allows to treat discontinuous input distributions [12], but it

comes at the cost of increased computational effort, especially for multiple

input variables. Approaches to find global polynomial expansions for arbi-

trary distributions have been developed based on Gram-Schmidt orthogonal-

isation [13, 14]. Unfortunately, the convergence of gPC and Gram-Schmidt

approaches both rely on the accurate availability of a parametric input PDF.

More recently, it was therefore suggested to base the Polynomial Chaos Ex-

pansion (PCE) on the raw moments by Witteveen [14]. Oladyshkin and

Nowak observed that as every set of random data, as well as a continuous

or discrete PDF, can be described using the moments without making any

assumptions about the shape or existence of a suitable probability distri-

bution, the moments provided a very general approach to propagate data

without requiring the determination of deterministic PDFs. Oladyshkin and
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Nowak [7] promoted this concept in the geo-sciences by successfully applying

it to identify uncertainties in carbon dioxide storage in geological forma-

tions [15, 16, 17] and also for robust design [18]. Moreover, Oladyshkin and

Nowak presented a derivation of the optimal orthogonal polynomials from the

moments. In the cases he reported, the convergence of the moment-based

expansion was significantly better that for any other polynomial expansion

[7] using fitted parametric PDFs.

The aPC formulation is especially useful for engineering Uncertainty

Quantification (UQ). First of all, it offers a simple to apply method for real

test data which are limited and bounded and can even be highly skewed or

multi-modal [7]. Moreover, it offers an efficient method to account for rare

events by propagating truncated heavy-tailed distributions. The main advan-

tage of the aPC formulation is, however, a new answer to the question of how

to deal with limited information for the input distributions. The construc-

tion of a parametric PDF in case the given data are limited always involves

assumptions and subjectivity. Even the concept of maximum entropy, which

was designed to deliver minimal subjectivity, imposes a specific shape on the

distribution and still remains subject to debate [19]. The aPC, on the other

hand, offers the possibility to propagate only the given information without

making assumptions. This is advantageous, because basing the PCE on a

wrong continuous PDF severely diminishes the convergence behaviour [7],

whereas the aPC will converge to the correct solution as long as the mo-

ments are determinate in the Hamburger sense, which is only seldomly not

the case as proven by Ernst [28]. He could show that the infinite lognormal

distribution is an exception. Later in this work, it will be shown through
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validation, that the truncated lognormal distribution is also determinate in

the Hamburger sense. Moreover, Oladyshkin and Nowak showed that only

moments are propagated in all Polynomial Chaos approaches. This is impor-

tant because even a well-determined input PDF will at best have the same

or similar first 2N moments as the aPC expansion of order N [15]. Hence,

the aPC offers the most reliable evaluation of the effect that limited input

data has on the model output. Despite the great benefits of aPC, the method

has not been widely used so far. In addition, the work has mainly focused

on mono-dimensional stochastic inputs [7]. This paper aims at resolving this

issue by suggesting a new version of aPC whose main focus is on multiple

arbitrary input distributions.

One important novelty of this work is a new algorithm which allows the

calculation of the optimal collocation points and weights, needed for Gaus-

sian quadrature, based on the moments only. All the quantities are calcu-

lated directly from the input data using only matrix operations performed

on the Hankel matrix of moments. The matrix relations were derived by

Mysovskih [20] for Gaussian quadrature with arbitrary weights and a sum-

mary was written by Gautschi, which can be found in Golub and Welsch

[21]. A quadrature-based NIPC approach, that is, a non-intrusive evaluation

of the Polynomial Chaos coefficients using Gaussian quadrature, is suggested

for higher dimensions, because various sparse quadrature rules, like Smolyak’s

algorithm, exist to alleviate the curse of dimensionality while maintaining ac-

curacy. In this work, Smolyak’s algorithm was adapted to combine multiple

univariate Gaussian quadrature rules to a single sparse multivariate quadra-

ture rule. Conventionally, Smolyak’s method is mostly used to sparsify a
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single univariate rule to multiple dimensions. To the authors’ knowledge,

this is the first work that describes the complete procedure from moments

to sparse multivariate PCE. In addition, the described methodology can be

useful outside the field of UQ, because it simplifies the calculation of any

anisotropic and adaptive Gaussian quadrature rule for multi-dimensional in-

tegrals (anisotropic meaning different weights in each direction and adaptive

meaning individual polynomial expansion orders for the input variables), as

it removes the need to refer to tabulated integration formulas. We also find

that the described algorithm is generally more comprehensive than the pre-

viously suggested algorithm of aPC, because it provides the user directly

with the optimal Gaussian quadrature points and weights, which are always

needed to evaluate the statistics of the posterior distributions. Due to the

fact that it is often difficult to differentiate between the various Polynomial

Chaos methods and their different methodologies in the field of UQ, we refer

to the described approach as SAMBA PC, which is an abbreviation of the

main traits of the method, namely: the Sparse Approximation of Moment-

Based Arbitrary Polynomial Chaos.

The paper is structured as follows: in Section 2, the mathematical foun-

dation and notation that are the baseline of SAMBA are laid out. The theory

of non-intrusive multi-dimensional PCEs is summarised and it is shown how

stochastic collocation methods use Gaussian quadrature rules to obtain the

expansion coefficients. In Section 3, SAMBA is explained in detail. Vari-

ous possible inputs are illustrated and the sparse Smolyak extension based

on only the moments to multiple dimensions is explained. In Section 4, the

method is validated for several non-linear input functions for truncated con-
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tinuous PDFs and histograms of increasing data size. The limitations which

should be considered when applying SAMBA regarding integration errors,

small data set error, convergence and higher levels are discussed in Section

5.

2. Theoretical Background

2.1. Multi-Dimensional Polynomial Chaos Expansions

Polynomial Chaos is an expansion approach which formulates a stochastic

model output f(ξ̄), dependent on a vector ofNU independent stochastic input

random variables ξ̄ = ξ1, ξ2, ..., ξNU
with space of events Ω, σ-algebra Λ and

probability measure Γ (formally, a stochastic process in the probability space

(Ω,Λ,Γ)), as a linear combination of NP stochastic multivariate orthogonal

polynomials Ψi(ξ̄) and deterministic coefficients αi

f (ξ1, ξ2, ..., ξNU
) ≈

NP∑
k=1

αk ·Ψk (ξ1, ξ2, ..., ξNU
). (1)

In case a full tensor product is used, the number of linear combinations terms

NP for a polynomial expansion of order p is truncated to:

NP =
(NU + p)!

NU !p!
. (2)

The multivariate orthogonal polynomials Ψk are calculated as products of

univariate orthogonal or orthonormal polynomials ψ
(i)
j

Ψk (ξ1, ξ2, ..., ξN) =

NU∏
i=1

ψ
(i)

I
(i)
k

(ξi) , k ∈ 1, NP . (3)

such that
∑NU

i=1 I
(i)
k ≤ NP ∀i. The superscript index in brackets ψ(i) refers

to the input random variable, and the subscript index to the order ψj of
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the orthogonal polynomial in the corresponding univariate basis. The rows

of the index matrix I
(i)
k contain the information, which order of each uni-

variate input polynomial basis contributes to a particular global multivariate

polynomial. For example, the 7th row of a three dimensional index matrix

corresponds to the polynomial product:

Ψ7 = ψ
(1)
0 · ψ(2)

2 · ψ(3)
0 ⇔ I

(1,..,3)
7 =

[
0 2 0

]
. (4)

The univariate orthogonal or orthonormal polynomials ψ
(i)
j with j ∈ 0, .., p

and ψ
(i)
0 = 1 need to be developed individually for each input random variable

ξi for i ∈ 1, .., NU and have to fulfill the orthogonality condition

∫
ξ∈Ω

ψ(i)
m (ξ)ψ(i)

n (ξ) dΓ = δmn ∀m,n ∈ 0, p. (5)

The nth polynomial for the input distribution i can be defined through its

n+ 1 polynomial coefficients p
(i)
n,j as

ψ(i)
n (ξ) =

n∑
j=0

p
(i)
n,jξ

j, n = 0, p. (6)

The statistics of Y (ξ̄) can be evaluated through the coefficients αk. The

mean and the variance of Y (ξ̄) are

μY = α1 σ2
Y =

NP∑
k=2

α2
k

〈
Ψ2

k

〉
. (7)

Similar formulas for skewness and kurtosis can be found in [22]. The coeffi-

cients αk can be found through the integral

αk =
1

〈Ψ2
k〉
∫
ξ∈Ω

Y
(
ξ̄
)
Ψk

(
ξ̄
)
dΓ
(
ξ̄
)
, (8)
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for k = 1, .., Np, which can be solved using Galerkin projection, collocation

or numerical integration. As the Ψk only consist of orthogonal polynomials,

they can be accurately integrated by using a Gaussian quadrature rule as

described in the next section. Although recent advances made by Navarro

[23] have shown that a multivariate PCE of polynomials Ψk can be derived

directly from dependent input variables using the Gram Schmidt method,

the method described above is only valid in general, if the random variables

are fully independent. Linear correlations between the input variables can

be removed in advance, for instance with the Karhunen Loève expansion [6].

2.2. Gaussian Quadrature Rules

The concept of Gaussian quadrature is to find p + 1 optimal Gaussian

collocation points ξi and weights ωi, such that their sum yields an exact

integral for polynomials of degree 2p+ 1 or less∫ b

a

f
(
ξ̄
)
dΓ
(
ξ̄
)
=

p∑
i=0

ωif (ξi). (9)

Multivariate quadrature formulas for multiple input random variables can be

formed from one dimensional quadrature rules. Only tensor product quadra-

ture and Smolyak’s method are used in this work, but the combination of

SAMBA with any other sparse quadrature is of course also possible. For

a set of NU random variables ξi with probability measure Γ the full tensor

product quadrature formula is∫ 1

0

...

∫ 1

0︸ ︷︷ ︸
NU

f
(
ξ1, ..., ξNU

)
dΓ ≈ (10)

≈
p1∑

j1=0

...

pNU∑
jNU

=0

f
(
ξj1 , ..., ξjNU

)(
ωj1 ⊗ ...⊗ ωjNU

)
.

9



In the literature, Gaussian-type quadrature formulas exist in many variations

to cover all types of arbitrary parametric input distributions [24]. The ap-

proaches range from tabulated formulas [25] to moment matching equations

[26] and the use of orthogonal polynomials [27]. For example, the Hermite

polynomials can be derived for the normal distribution, the Legendre poly-

nomials for the uniform distribution and the Laguerre polynomials for the

exponential distribution [25] as summarised in Table 1.

Distribution Interval PDF w(x) Polynomial

Uniform [−1, 1] 0.5 1 Legendre

Gaussian [−∞, ,∞] 1√
2π
e−

x2

2 e−
x2

2 Hermite

Exponential [0,∞) e−x e−x Laguerre

Table 1: Various orthogonal polynomials used for conventional Gaussian quadrature rules.

Another advantage of NIPC approaches using Gaussian quadrature is

that the optimal polynomials derived for uncertainty propagation can be

reused to obtain the expansion coefficients. Currently, however, such rules are

only readily available and described in detail in the literature for parametric

continuous probability distributions. In the following, it will be explained

how optimal Gaussian quadrature rules can be found based on the moments

using matrix relations derived by Mysovskih [20] and then be sparsified using

Smolyak’s rule.
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3. The SAMBA PC: Sparse Approximation of Moment-Based Ar-

bitrary Polynomial Chaos

3.1. Determing Gauss Quadrature Rules from Statistical Moments

Statistical moments are a quantitative measure to describe the shape of

a set of random samples or a probability distribution. The zeroth moment

represents the integral of the PDF, which is always one by definition, the

first moment the mean, the second the variance, the third the skewness, the

fourth the kurtosis and so on. For a continuous random variable ξ ∈ Ω with

PDF w(ξ) , the kth raw moment μk can be determined by integrating

μk =

∫
ξ∈Ω

ξkw (ξ)dξ. (11)

For a discrete random variable ξ ∈ Ωh with discrete PDF w(ξ), the kth raw

moment μk is

μk =
∑
ξ∈Ωh

ξkw (ξ) (12)

and for set of N samples (random draws or random measurement data)

ζ1, ..., ζN , the kth raw moment μk can be calculated with

μk =
1

N

N∑
i=1

ζki . (13)

In general, a convergent PCE can be found for any arbitrary probability dis-

tribution or set of random data if its Hankel matrix of moments (defined in

Eq. 15) is determinate in the Hamburger sense [28]. A given set of N sam-

ples is determinate in the Hamburger sense, if and only if all corresponding
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quadratic forms are strictly positive, that is if

det (M) =

∣∣∣∣∣∣∣∣∣∣∣∣

μ0 μ1 · · · μp

μ1 μ2 μp+1

...
. . .

μp μp+1 μ2p

∣∣∣∣∣∣∣∣∣∣∣∣
> 0, (14)

where the entries μk for k from 0 to 2p are the statistical moments.

Due to the generality with regard to the input that is achieved by basing

PCEs on the moments, one can consider continuous, discrete PDFs or even

data sets for which no probability distribution is defined, without requiring

a change of methodology. The idea to base PCEs on the moments has been

mentioned in several previous works [14, 7, 28, 29], but was most promi-

nently elaborated for UQ by Oladyshkin and Nowak [7]. The methodology

described by Oladyshkin and Nowak is tailored to a small number (less than

five) of uncertain input random variables. The algorithm described in the

following dates back to matrix relations derived by Mysovskih [20] described

in Golub and Welsch [21] and is more suitable for problems with more input

uncertainties. The algorithm can be divided into two steps:

1. the three-term recurrence for the optimal orthogonal polynomials is

found from the Hankel matrix of moments

2. the corresponding optimal Gaussian quadrature points and weights are

calculated from the three-term recurrence.

These two steps have to be performed individually for each input variable.

In this way the method allows a direct calculation of the optimal collocation

points and weights needed for Gaussian quadrature rules from a given set of
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moments. The Hankel matrix of the moments, required to perform the first

step, is defined as

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ0 μ1 · · · μp

μ1 μ2 μp+1

...
. . .

μp μp+1 μ2p

⎤
⎥⎥⎥⎥⎥⎥⎦
. (15)

Because the Hankel matrix is positive definite its Cholesky decomposition of

M = RTR can be computed, so that

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1,p+1

r22 · · · r2,p+1

. . .
...

rp+1,p+1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (16)

Mysovskih Theorem states that the entries of the inverse matrix R−1 of R

R−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s11 s12 · · · s1,p+1

s22 · · · s2,p+1

. . .
...

sp+1,p+1

⎤
⎥⎥⎥⎥⎥⎥⎦

(17)

form an orthogonal system of polynomials ψj according to the relation

ψj = s0jξ
0 + s1jξ

1 + ...+ sjjξ
j for j = 0, ..., p. (18)

To avoid the inversion of the matrix, Rutishauser [30] derived explicit analytic

formulas to obtain the polynomial coefficients of the orthogonal polynomials

sij from the Cholesky matrix entries rij. These relationships can be used to

determine the coefficients aj and bj of the three-term recurrence, according
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to which each orthogonal polynomial ψj (ξ) for j = 1, ..., p satisfies

ξψj−1 (ξ) = bj−1ψj−2 (ξ) + ajψj−1 (ξ) + bjψj (ξ) . (19)

The coefficients aj and bj in terms of rij are

aj =
rj,j+1

rj,j
− rj−1,j

rj−1,j−1

bj =
rj+1,j+1

rj,j
(20)

with r0,0 = 1 and r0,1 = 0. The knowledge of the three term recurrence

relation allows the calculation of the optimal collocation points and weights

for any orthogonal polynomial [21]. They can be calculated by describing

the three-term recurrence relation through a symmetric tri-diagonal Jacobi

matrix J , which is again positive definite:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1

b1 a2 b2 ∅
b2 a3 b3

. . . . . . . . .

∅ bp−2 ap−1 bp−1

bp−1 ap

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

The eigenvalues of J are the roots of the polynomial of order p and the

weights are found by

ωi = v21,i, (22)

where v1,i is the first component of the normalized eigenvector corresponding

to the ith eigenvalue.

3.2. Illustration of the Method for Continuous Distributions and Histograms

Using the method described above, the optimal collocation points for arbi-

trary continuous distributions can be calculated easily. Several examples for
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various distributions, both contained and not contained in the Askey scheme,

are displayed in Figure 1. It can be seen by comparing the graphs in Figure

Figure 1: Optimal Gaussian collocation points for a standard Normal, fat-tailed Student-t,

Uniform, Exponential (all three Askey scheme), Weibull and generalised Extreme Value

Distribution (both not Askey scheme).

1 that the Gaussian collocation points change their position according to the

input distributions. Unfortunately, they also change their position accord-

ing to the polynomial expansion order p, which is why Gaussian quadrature

rules are generally not nested. This means that lower order expansions can-

not be reused for higher orders. On the upside, optimal Gaussian quadrature

rules are more accurate than other quadratures using weights and collocation

points. They are most commonly used based on tabulated formulas. How-

ever, the use of tabulated formulas restricts Gaussian quadrature methods to

a limited set of continuous probability distributions. Moreover, it becomes

tedious to combine individual rules to obtain integrals for multi-dimensional

integrals with several different input distributions. Therefore, the examples
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in Figure 1 show that all Polynomial Chaos approaches already in existence

can be calculated using the SAMBA algorithm.

Figure 2: Optimal Gaussian collocation points for various mixed and multi-modal his-

tograms, numerically generated from overlapping distributions.

Not only parametric distributions, but also histograms can be propagated

using the moments without change in methodology. Figure 2 shows that a

moment-based arbitrary PCE can even be calculated for multi-modal, or

mixed probability distributions, as shown by the collocation points (dots)

in Figure 2. It is visible how the moment-based approach favours regions

in the input histograms of high probability. The input data can then be

propagated through the computational model with exponential convergence,

if the input-output mapping is analytic. In general, the rate of convergence

improves with increasing smoothness of the input-output mapping. Finally,

the moments of the posterior distribution can be trivially evaluated using

quadrature, since the SAMBA algorithm provides the optimal quadrature
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weights. If, however, the shape of the posterior PDF is desired, it can only

be obtained by sampling the PCE. A rough estimate of its shape can be

obtained using the input samples, but for more accurate illustrations of the

posterior PDF a refined random number generator based on the samples is

required.

3.3. Anisotropic Sparse Smolyak Grids Based on Moments

As the dimension of the problem increases, the computational cost grows

exponentially and the rate of convergence becomes slower. This is referred

to as the ‘curse of dimensionality’ [3]. To remedy this, sparse grids corre-

sponding to a nodal set with a significantly smaller number of nodes can be

used instead of the full tensor grids generated by the Gaussian quadrature

rules. In this way, the accuracy of the problem can be mostly preserved,

but with a lower number of evaluations required, so that the method can

be applied to complex and computationally expensive models. Sparse tensor

product spaces were first proposed by Smolyak [31]. The central principle of

Smolyak’s algorithm is to select a small number of the most important ele-

ments of a full tensor quadrature to represent the multi-dimensional function.

The idea behind this is that most often the low-order interactions between

the input variables are the most important ones. Similar to the full ten-

sor Gaussian quadrature being improved with higher polynomial levels, the

Smolyak quadrature can be improved by increasing a parameter called the

level [32].

Most works, see for instance example [3, 33], cite the Smolyak formulas

based on polynomial interpolation at the extrema of the Chebyshev poly-

nomials (Clenshaw-Curtis nodes). Similarly, Smolyak formulas based on
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Gaussian nodes in the literature are often only explained based on a sin-

gle univariate rule. The following Smolyak is adapted for multiple univariate

optimal Gaussian quadrature rules all based on moments. The Nu sequences

of one-dimensional quadrature rules {U ij}j=1,...,Nu are denoted as

U ij =

mij∑
k=1

f(ξ
ij
k )ω

ij
k , (23)

where mij j ∈ {1, ..., Nu} is the maximum order, individually chosen for

a quadrature, in case an adaptive quadrature is wanted (adaptive meaning

that individual orders for the input distributions can be realised). For the

Smolyak quadrature based on moments, the set of nodes corresponds to the

eigenvalues of the matrices J . The Smolyak quadrature based on different

input distributions is calculated with the formula

A (Nu + l, Nu) =
∑
l+1
≤|i|≤
l+Nu

(l − 1)l+Nu−|i|

⎛
⎝ Nu − 1

l +Nu − |i|

⎞
⎠⊗NU

k=1 U
ik (24)

where l is the level. It is used to control the accuracy of the result, similar

to the order in full Gaussian quadrature. For the same number of uncertain

inputs, increasing the level l may make for a better accuracy, but it comes

with an exponential growth of the number of points. The term |i| is the norm
of the vector i = {i1, ..., iNu} which also stands for the sum of a row j of the

index matrix I
(k)
j :

|i| =
Nu∑
k=1

ik =
Nu∑
k=1

I
(k)
j . (25)

Equation (24) is a linear combination of the tensor products, where only a

small number of nodes is used, but the interpolation properties for Nu = 1
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are preserved for higher dimensions [34]. The array of sparse grid points

H(Nu + l, Nu) can be obtained through the following formula:

H (Nu + l, NU) =
⋃

l+1≤|i|≤l+Nu

(ξ̄i1 × · · · × ξ̄iNu ), (26)

where the ξ̄ij aremij+1 points used by the quadrature U ij for j ∈ {1, ..., Nu}.
The Fourier coefficients αk can be calculated either by sparse integration of

αk =

∫
Ω

f
(
ξ̄1, ..., ξ̄Nu

)
Ψk (ξ1, ..., ξNu) dΓ (27)

or by linear regression

α̂ = argmin
[
ᾱTψ (ξ)− Ȳ

]2
, (28)

where Y =
[
f
(
ξ̄0
)
, ..., f

(
ξ̄Nsp

)]
and Ψ (ξ) =

[
ψ0 (ξ) , ..., ψNsp (ξ)

]
with Nsp as

the number of sparse points. The minimum of Equation (28) can be solved

by defining

A =

⎡
⎢⎢⎢⎣

ψ1 (ξ1) · · · ψ1 (ξNu)
...

. . .
...

ψNsp (ξ1) ψNsp (ξNu)

⎤
⎥⎥⎥⎦ (29)

and solving (
ATA

)
α̂ = ATY. (30)

The regression approach becomes increasingly useful for higher levels. The

coefficients are useful in case the shape of the posterior distribution is of in-

terest. If only the moments of the posterior distribution E
[
fk
]
are required,

they can be obtained more easily by using the sparse quadrature formulas

directly on the formula for the kth moment. For a model f they can be
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calculated by sparsely integrating

E
[
fk
]
=

∫ 1

0

...

∫ 1

0︸ ︷︷ ︸
NU

(
f (ξ1, ..., ξNU

)− E
[
fk−1

])k
dΓ. (31)

A comparison of the increasing computational effort of the lowest level Smolyak

quadrature with full tensor Gaussian quadrature of third order is shown in

Figure 3.

Figure 3: Number of collocation points for level 1 Smolyak and 3rd order full tensor.

3.4. Numerical Example and Implementation Advice

The following two dimensional example illustrates how SAMBA can be

implemented in matrix format. To obtain simple numbers two continuous

distributions, namely the standard normal and the uniform distribution, are

chosen: N (0, 1) and U (0, 1) and the Smolyak quadrature is chosen at level

1. The resulting sparse Smolyak index matrix for l = 1 is:

Il+1≤|i|≤l+Nu =

⎡
⎢⎢⎢⎣

1 1

1 2

2 1

⎤
⎥⎥⎥⎦ . (32)
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For more than 10 input variables, it is recommendable to calculate the in-

dex matrix recursively because the memory consumption of saving the full

combination matrix becomes very high. Using the SAMBA algorithm from

Section 3, first the collocation points corresponding to each input variable

can be calculated

X(i1) =

⎡
⎢⎢⎢⎣

0 −1 −1.73

0 1 0

0 0 1.73

⎤
⎥⎥⎥⎦ X(i2) =

⎡
⎢⎢⎢⎣

0.5 0.21 0.11

0 0.79 0.5

0 0 0.88

⎤
⎥⎥⎥⎦ (33)

and then the corresponding weights

W (i1) =

⎡
⎢⎢⎢⎣

1 0.5 0.16

0 0.5 0.66

0 0 0.16

⎤
⎥⎥⎥⎦ W (i2) =

⎡
⎢⎢⎢⎣

1 0.5 0.28

0 0.5 0.44

0 0 0.28

⎤
⎥⎥⎥⎦ , (34)

where the superscript index in brackets refers to the random variable. Recall

that i1 represents the first column of the index matrix in Equation (32)

while i2 goes through the second one. The sparse collocation points can then

obtained with

ξ̄j =
⋃

2≤i1+i2≤3

χi1 × χi2 (35)

which is in detail:

[0]× [0.5] , [0]×
⎡
⎣ 0.21

0.79

⎤
⎦ ,

⎡
⎣ −1

1

⎤
⎦× [0.5] , (36)
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so that the array of sparse collocation points becomes

ξ
(i)
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.5

0 0.21

0 0.79

−1 0.5

1 0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (37)

For the conventional Smolyak algorithm, it can happen that in higher di-

mensions the same point is repeated several times. If that happens, the

same points can be summarised to one position to decrease the number of

necessary model runs, but the weights have to be added together. The cor-

responding sparse weights can be calculated through the tensor product

ω̄j = kS · (⊗Nu
k=1W

ik
)

j = {1, 2, 3} (38)

where kS is the Smolyak counting coefficient

kS = (−1)
l+Nu−

Nu∑

i=1
I
(i)
j

⎛
⎜⎝ Nu − 1

l +Nu −
Nu∑
i=1

I
(i)
j

⎞
⎟⎠ (39)

which is in detail:

−1 ·
Nu∏
i=1

[1]⊗ [1], 1 ·
Nu∏
i=1

[1]⊗
⎡
⎣ 0.5

0.5

⎤
⎦, 1 ·

Nu∏
i=1

⎡
⎣ 0.5

0.5

⎤
⎦⊗ [1], (40)

so that the array of sparse integration weights becomes

ω
(i)
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

0.5

0.5

0.5

0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (41)
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The mean and standard deviation of the posterior distribution of a model f

can then be calculated through the scalar products

μ = f
(
ξ̄(1), ξ̄(2)

) ◦ ω̄, σ =
(
f
(
ξ̄(1), ξ̄(2)

)− μ
)2 ◦ ω̄. (42)

Several more examples of anisotropic grids, obtained from the moments of

one Gaussian and one Weibull probability distribution, are shown in Figure

4.

Figure 4: Symmetric and asymmetric moment-based Gaussian Smolyak grids at level 3 in

2D and 3D including PDFs used for the directions.
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4. Method Validation

4.1. Method Validation using Non-Linear Multivariate Functions

In this section the method is demonstrated using a set of different input

distributions and the results are validated against Monte Carlo Simulations

with 107 samples. The used multivariate test functions are listed in Table

2. As shown by the 2D cross sections in Figure 5, the test functions were

chosen to cover a wide range of possible response surfaces exhibiting for

instance sinusoidal behaviour or exponential growth. To demonstrate the

high potential of Smolyak’s quadrature the two lowest possible levels were

used. For accuracy comparison, also full tensor Gaussian quadrature of 3rd

order was performed.

# f (ξ1, ξ2, ..., ξN)

1
∑N

i=1 ξi

2 exp
(∑N

i=1 ξi

)
3

N∑
i=1

sin (ξi − 0.5)

4 1

/
N∑
i=1

(ξi − 1)2

Table 2: Multivariate test functions f used for 5 and 10 input random variables.

The stochastic input random variables used for 5D and 10D testing are

listed in Table 3. The ten distributions used for validation are the Normal

(N), Uniform (U), Cauchy (t) or also called student-t with one degree of

freedom, Lognormal (Nlog), Weibull (Wb), Exponential (exp), Gamma (Γ),

Beta (β), generalised Pareto (gPD) and generalised Extreme Value distribu-

tion (gEVD). To include the effect of the fat tails of the Cauchy distribution,
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Figure 5: 2D response surfaces of the four multi-dimensional nonlinear test functions

including level 2 moment-based Smolyak grids for one Gaussian and one Weibull input

distribution.
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it was not only truncated but also squeezed to a shorter x range by calcu-

lating t(1000x) instead of t(x). In this way a long part of the tails can be

considered. The selected set of distributions does not only comprise Askey-

scheme, but also more unusual distributions. From a conventional point of

view, setting-up a sparse quadrature rule for this case would be difficult, but

for SAMBA there is no difference to the use of a single univariate Gaussian

rule. Similarly, also the truncation of the distributions can be performed

without effort. For the continuous case, merely the integration boundaries

need to be adapted.

Input Parametric PDF

ξ1 N(μ = 0, σ = 0.1)[−1,1]

ξ2 U(a = 0, b = 0.1)[0,0.1]

ξ3 Nlog(μ = 0, σ = 4)[0,1]

ξ4 Wb(a = 0.12, b = 1.5)[0,1]

ξ5 t(ν = 1, xt = 1000x)[−0.5,0.5]

ξ6 exp(μ = 0.1)[0,1]

ξ7 Γ(a = 2, b = 0.1)[0,2]

ξ8 β(a = 1, b = 10)[0,1]

ξ9 gPD(θ = 0, σ = 0.1, k = 3)[0,2]

ξ10 gEV D(μ = 0, σ = 0.1)[0,1]

Table 3: Probability distributions used for the input random variables ξi during testing

with their parameters (e.g. μ, σ, a, b) and the used truncation interval [l, r].

The relative errors compared to Monte Carlo for five input distributions

are shown in Table 4 and for 10 distributions in Table 5. It can be seen that
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despite the asymmetry, the sparse asymmetric Smolyak quadrature results in

maximum relative errors of order 10−1 and minimum relative errors of order

10−3 for the standard deviation. The full tensor quadrature is more accurate,

but it needs significantly more points. The results in Table 4 and 5 are based

f(ξ1, .., ξ5) MCS σref Tensor εrel SAMBA εrel SAMBA εrel

N = 5 · 107 N = 1024 N = 11 N = 65

P = 3 l = 1 l = 2

1 0.281289 0.000182 0.000182 0.000182

2 0.491630 0.000142 0.040644 0.001254

3 0.267742 0.000139 0.008996 0.000065

4 0.021974 0.000015 0.006559 0.000021

Table 4: Relative error of standard deviation for five different input distributions compared

to MC reference solution.

on the moments calculated from continuous distributions.

The great advantage of SAMBA is that histograms can also be used. For

this reason, sample sets were drawn from all input distributions ξ1, ..., ξ10.

The obtained histograms were propagated directly through the test func-

tions. To investigate the effect that the size of the input data set has on the

accuracy of the solution, a Monte Carlo Simulation using SAMBA one thou-

sand times for random draws with different seed numbers was performed.

The accuracy was estimated with a comparison to a brute-force Monte Carlo

solution with 107 samples. The propagated histogram bin sizes range from 10

to 106 random samples, which were drawn from the truncated input distribu-

tions characterised in Table 3. The obtained convergence plots are shown in
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Figure 6. The plots show the minimum and maximum error occurring in the

Monte Carlo Simulation as upper and lower bound of the occurring relative

error. Thus, the upper and lower lines in Figure 6 represent 100% confidence

interval. The results in Figure 6 show that a 10% maximum relative error

f(ξ1, .., ξ10) MCS σref Tensor εrel SAMBA εrel SAMBA εrel

N = 5 · 107 N ≈ 1.05 · 106 N = 11 N = 231

P = 3 l = 1 l = 2

1 0.685013 0.000428 0.000428 0.000428

2 3.171731 0.000064 0.220369 0.035225

3 0.497968 0.000407 0.025444 0.000376

4 0.009219 0.000675 0.071664 0.005869

Table 5: Relative error of standard deviation for ten different input distributions compared

to MC reference solution.

can be obtained from as few as 100 input samples for the standard devia-

tion. Moreover, it was found that the convergence of the solution’s accuracy

depends on the number of input distributions. For more input distributions

the general accuracy decreases. All the same, one digit accuracy can still be

obtained for 100 samples. However, the accuracy decreases to a mere 2 digits

for 105 samples for 5 inputs, whereas it reaches 3 digits for 105 samples for 2

inputs. In conclusion, the results show that decent estimates of probabilistic

output quantities can be obtained even if only small data sets are used as

input distributions.
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Figure 6: Relative error with 100% confidence intervals of standard deviation for full

tensor Gaussian and Smolyak’s method for increasing sample size for 2 and 5 different

input distributions.
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5. Applicability and Limitations

The mathematical simplifications offered by SAMBA come with certain

limitations, which should be taken into account if the method is to be used

accurately. First of all, it has to be noted that the use of the moments be-

comes less reliable for higher order polynomials. The results in the following

section indicate that for a given number of inputs level 10 should not be

exceeded. The origin of this effect can easily be seen, if the moments are

obtained using numerical integration. As the calculated moments become

higher, the integration error will cause an increasing deviation from the cor-

rect values. If the moments are obtained from data, smaller data size of the

input data will also result in lower overall accuracy. Moreover, it should be

taken into account that the response surface should be smooth in order to

use Smolyak quadrature.

5.0.1. Integration Errors

If the moments are obtained from continuous distributions using numer-

ical integration, integration errors have to be considered. In the author’s

experience, the use of state-of-the-art adaptive numerical integration tech-

niques will allow an accurate calculation of the first 50 moments without

exceeding error thresholds of 10−6. For example, for two continuous Gaus-

sian input distributions the polynomials up to order 28, that means at least

the first 56 moments can be integrated accurately. Therefore, up to 25 differ-

ent continuous input distributions at level 2 can be considered with SAMBA

without large integration errors. Moreover, the accuracy of the numerical

integration depends on the chosen probability distribution and the length of
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the integration interval. For heavier tailed distributions, the moments grow

significantly faster. In case the integration fails to converge to the required

accuracy, it is possible to truncate the probability distributions. For exam-

ple, by considering the normal distribution on the interval [−10, 10] instead

of on the interval [−∞,∞] integration errors can be significantly reduced,

whereas the the major part of the PDF remains unchanged.

5.0.2. Small Data Set Errors

No integration errors occur, if the moments are obtained from histograms.

However, the calculated moments will deviate more from what could be as-

sumed their true value, the higher the moment becomes and the smaller the

given data set is. Nevertheless, the calculated moments are at least based

on the actually available information. In case the wrong distribution is cho-

sen for a set of samples, the higher moments up to infinity will deviate even

more from what can be considered their accurate value. As was shown in

the method validation section using a Monte Carlo Simulation on SAMBA

for different sample sizes, even small sample sizes result in good estimates

of the moments of the posterior distribution. More evidence of the superior

convergence of the aPC and several examples demonstrating it can be found

in Oladyshkin and Nowak [7].

5.0.3. Convergence

As mentioned before, PCEs based on moments converge if the input ran-

dom variables are independent, have finite moments and are determinate in

the Hamburger sense. The determination of the Hamburger sense is espe-

cially important if the aPC is applied for fat-tailed PDFs, because if very long
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truncated fat tails are considered, the moment matrix can become indetermi-

nate in the Hamburger sense. This may stop the method from converging to

the correct solution as demonstrated in Ernst et al. [28]. The rate of conver-

gence improves with increasing smoothness of the input-output mapping. In

the cases reported by Oladyshkin and Nowak the convergence of data based

aPC was superior to expansions based on incorrect parametric distributions.

The crucial factor that decides whether the aPC will be more accurate than

a fitted parametric PDF is the suitability of the fitted distribution. In case

a given sample is small and not representative of the distribution, a fitted

distribution will create a larger error than the direct use of the moments.

5.0.4. Higher Orders

SAMBA is a pseudospectral projection method using an adaptive and

anisotropic Smolyak sparse grid rule. This means that the quantities of in-

terest are formulated as a spectral expansion in multivariate orthonormal

polynomials and the Fourier coefficients α are calculated with a sparse nu-

merical quadrature rule. This formulation is known to lead to large errors

in the higher order Fourier coefficients, due to internal aliasing [35] , if the

expansion level is increased for the same number of input parameters.

To find the maximum order at which SAMBA as proposed in this work can

be used for increasing expansion orders, the numerical integration examples

as proposed in [36] were reproduced and tested for rising expansion level l.

The two-dimensional test functions used in [36] are repeated in Table 6 .

Figure 7 shows the resulting relative error in the standard deviation for

increasing level compared to 108 Monte Carlo simulation samples. To em-

phasize the fact that SAMBA can be used for continuous distributions and
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# f (ξ1, ξ2)

1 ξ101 ξ102

2 eξ1+ξ2

3 sin (5 (ξ1 − 0.5)) + cos (3 (ξ2 − 1))

4 1
/(

2 + 16(ξ1 − 0.1)2 + 25(ξ2 + 0.1)2
)

Table 6: Test cases used in Constantine [36] to demonstrate errors in higher order Fourier

coefficients.

discrete sample sets, the left side of Figure 7 shows the convergence assum-

ing 2 independent continuous uniform distribution U [−1, 1] as inputs. The

right side shows the use of two different and independently created random

sets of 50 samples drawn from U [−1, 1] using a random number generator.

Since the samples are not identical and the sample size is very small, the

resulting expansion is not symmetric. In general the following behaviour can

be observed:

- The ill conditioning of the mapping from moments to recurrence coeffi-

cients prevents expansion orders of higher levels than 21 for the contin-

uous case and level 19 if only 50 samples are given. Consequently, the

effect of the data set error on the ill-posedness of the problem is not

too large. The main reason that the method fails for higher levels than

20 is that the Cholesky decomposition is no longer positive definite. At

order 21 the first eigenvalue of the Hankel matrix of moments becomes

negative, namely -4e-17.

- The accuracy of the solution is reduced by the sample size. Since the
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continuous expansion uses the same distributions as the Monte Carlo

solution, the accuracy achieved using only 50 samples is smaller. The

use of the moments provides better results, if the accurate underlying

parametric distribution cannot be determined.

- The method converges to the correct solution for increasing level, even

if only 50 data points are used.

- The maximum accuracy is reached for lower levels than 10 in case only

limited information is available about the input distribution.

- The use of sparse methods can be preferable, if data is very limited.

The reason is that the additional effort spent on the tensor product is

no use, if the overall possible accuracy is bounded by the limitation in

input information. If this is the case, the maximum possible accuracy

can be reached significantly faster and with lower computational effort

using SAMBA.

An illustration of how the error for the individual coefficients grows for

increasing order is given by Figure 8. The figure shows the magnitude of the

relative error in the Fourier coefficients for function 3 from Table 6. It can

be seen that the Fourier coefficients are highly accurate for lower levels. The

maximum error is only of magnitude e−4 for polynomial orders lower than

11, i.e. level 10 in Smolyak. For higher levels the error in the coefficient

increases to around 100%. Comparing these results with the convergence

behaviour from Figure 7 leads to the conclusion that the increasing error in

the coefficients does not result in an additional error, because no increase in

relative error can be seen for higher orders. The error remains constant. For
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Figure 7: Relative error of standard deviation for increasing order compared to 108 Monte

Carlo samples.
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all cases the error in the standard deviation stagnates for higher levels. This

means that the additional computational effort for higher levels will most

likely not result in improved accuracy.

Figure 8: Magnitude of the relative error in sparse Fourier coefficients based on moments

compared to tensor product coefficients .

In summary, the use of Smolyak’s quadrature in SAMBA is justified and

preferable to full tensor product methods, if the method is applied to a case

where only scarce information is available for 10-20 input random variables.

The coefficients up to level 10 can be determined accurately. Higher levels

are not likely to result in improved accuracy. In case accurate paramet-

ric distributions can be determined, the use of the SPAM [36] is therefore

recommended.
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6. Conclusion

The contribution of this work is a new algorithm called SAMBA that

simplifies the calculation of sparse multivariate Gaussian quadrature rules,

based on multi-dimensional aPC expansions for any combination of contin-

uous, discrete or histogram input random variables if input data is scarce.

The algorithm’s main advantage with respect to the previous aPC method

is that it provides all values required to solve NIPC expansions using Gaus-

sian quadrature, that is, the collocation points, weights and coefficients of

the optimal orthogonal polynomials, in a fully comprehensive and easy-to-

implement form. This is achieved by providing all quantities required using

matrix operations on the Hankel matrix of moments. In order to alleviate

the curse of dimensionality, the optimal Gaussian grids were sparsified us-

ing Smolyak’s method. A sparse anisotropic and adaptive Smolyak quadra-

ture was developed for multiple Gaussian quadrature rules based on only

the moments for different input variables. It allows the sparse integration

of functions of independent and arbitrarily distributed continuous, discrete

and or histogram random variables and not only independent and identi-

cally distributed continuous random variables for smooth response surfaces.

The given rule is not-nested, but, as it is Gaussian, it provides the high-

est possible accuracy among all quadrature based multi-dimensional integra-

tion methods. The method’s efficiency, accuracy, higher order convergence

and dependence on data availability were demonstrated for moderately high-

dimensional stochastic test cases using a set of multivariate and non-linear

test functions.
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