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We explore the photon population dynamics in two coupled circuit QED systems. For a sufficiently weak
intercavity photon hopping, as the photon-cavity coupling increases, the dynamics undergoes double
transitions first from a delocalized to a localized phase and then from the localized to another delocalized
phase. The latter delocalized phase is distinguished from the former one; instead of oscillating between the
two cavities, the photons rapidly quasiequilibrate over the two cavities. These intriguing features are
attributed to an interplay between two qualitatively distinctive nonlinear behaviors of the circuit QED
systems in the utrastrong coupling regime, whose distinction has been widely overlooked.
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A single quantum emitter strongly coupled to a quan-
tized electromagnetic field can induce a significant inter-
action among photons [1], which are usually very weakly
interacting. The Jaynes-Cummings (JC) model [2], typi-
cally realized in a cavity QED system, provides an intuitive
understanding. The nonlinearity of the energy spectrum of
the JC model causes an additional energy cost to put an
extra photon into the cavity [3], which gives rise to the
effective interaction energy of photons. When photons are
allowed to hop between nearby cavities forming a so-called
JC-Hubbard lattice, a new physics of strongly correlated
photons emerges [4–8]. In equilibrium, the JC-Hubbard
lattice shows critical behaviors that resemble the physics of
the Bose-Hubbard model [9,10].
An interesting consequence of the competition between

the qubit-cavity coupling and the photon hopping is a self-
trapping transition [11], as recently observed in an experi-
ment using two capacitively coupled superconducting
transmission lines and transmon qubits [12]. The self-
trapping transition in tunnel-coupled quantum systems
occurs when an on-site interaction energy becomes so
dominant that it prevents quantum tunneling through the
tunnel barrier [13–15]. Likewise, when the nonlinearity
induced by the qubit-cavity coupling exceeds the inter-
cavity photon hopping, the photon population dynamics
undergoes a sharp transition from a delocalized (tunneling)
to a localized (self-trapping) regime [11,12].
Meanwhile, the qubit-cavity coupling that is comparable

to a qubit transition frequency or a cavity frequency, the

so-called ultrastrong coupling (USC), has recently been
achieved in experiments [16–21]. In the USC regime, the
rotating wave approximation leading to the JC model is not
applicable; thus, the total excitation number is not conserved
[22–25]. The counterrotating (CR) terms,which are neglected
in the rotating wave approximation, play a crucial role in the
physics of strongly correlated photons induced by a light-
matter interaction. Equilibrium studies on the JC-Hubbard
lattice have shown that the USC leads to an Ising-type
quantumphase transition and an exotic phaseof light [26–29].
In this Letter, we explore the dynamics of strongly

correlated photons in two coupled circuit QED systems in
the USC regime. We examine the phase diagram in the
parameter space consisting of the qubit-cavity coupling and
the intercavity photon hopping. We find that as the photon-
cavity coupling increases, the dynamics undergoes double
transitions first from a delocalized to a localized phase
and then from the localized to another delocalized phase.
Moreover, the latter phase is characterized by the quasie-
quilibration of the photon population, despite that the
system is finite and closed. We explain the results based
on a competition between two qualitatively distinctive
nonlinear behaviors of the circuit QED systems in the
USC regime. One nonlinear regime, which is commonly
associated with the photon-blockade (PB) effect and
responsible for the first delocalization-localization transi-
tion, has been explored in various contexts in previous
works [1,3,30]. However, the other nonlinear regime,
responsible for the second localization-delocalization
transition and the quasiequilibration dynamics of
photon population, has been widely overlooked so far.
Interestingly, the same picture also explains the absence of
the photon blockade in single photon transfer dynamics
studied previously in Ref. [31]. We note that our findings
can be observed by combining existing circuit QED
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technologies used for the JC dimer experiment [12] and for
the realization of the USC regime [18,32,33].
Model.—Our system is described by the Rabi-dimer

model,

Ĥ ¼ ĤRabi
L þ ĤRabi

R − Jðâ†LâR þ â†RâLÞ; ð1Þ
consisting of the two Rabi interaction systems

ĤRabi
j¼L;R ¼ ω0â

†
j âj þ

Ω
2
σ̂zj − gðâj þ â†jÞσ̂xj ð2Þ

coupled to each other via the photon tunneling with
amplitude J. The left (L) and right (R) Rabi interaction
systems are assumed to be identical with the cavity
frequency ω0, the qubit transition frequency Ω, and the
qubit-cavity coupling strength g. The coupling strength J is
assumed to be sufficiently weak (J ≪ ω0) as in common
experiments [12]. The operator âj describes the field mode
of the cavity j, and Pauli operators σ̂x;y;zj describe the qubits.
Note that the Rabi Hamiltonian [Eq. (2)] contains the CR
terms, âiσ̂−i þ â†i σ̂

þ
i with σ̂�i ¼ ðσ̂xi � iσ̂yi Þ=2, in addition to

the JC Hamiltonian. We focus our analysis on the resonant
case, ω0 ¼ Ω, where the effective photon-photon interac-
tion is strongest for given coupling strengths.
To investigate the photon-localization dynamics, we

suppose that the photons are initially localized in one cavity
[11–15]. Specifically, we mainly focus on the case where
the initial state is of the particular type jΨtotðt¼0Þi¼
jni;↓iLj0;↓iR, with ni > 10, where jn; σij denotes a prod-
uct state of a n-photon Fock state and a σ ¼ ↑;↓ qubit state
in the cavity j ¼ L, R. A few remarks are in order. (i) An
initial Fock state is just to simplify the discussion. We have
investigated the case of initial coherent states [34,35] and the
results are essentially the same (see the inset of Fig. 1) within
our parameter regime. (ii) A relatively large number of initial
photons (ni > 10 in our simulation) is required because
otherwise the localization time is known to become too short
(the localized phase disappears) [11].
We describe the photon localization-delocalization tran-

sition in terms of the unnormalized photon population
imbalance parameter, zðtÞ¼hN̂LðtÞ−N̂RðtÞi with N̂j ¼
â†j âj, and its time-averaged value zav ¼ ð1=TÞ R T

0 zðtÞ
with the “observation” time T. Note that for g=ω0 ≳ 1,
the total number of photons NtotðtÞ ¼ hN̂LðtÞ þ N̂RðtÞi can
be significantly different from the initial number ni of
photons, because the CR terms can generate (or destroy) a
considerable number of photons from (or to) vacuum. In
such a regime, the normalized photon population imbal-
ance, znormðtÞ ¼ f½NLðtÞ − NRðtÞ�=½NLðtÞ þ NRðtÞ�g, that
has been commonly used to distinguish the localized and
delocalized regime in the previous studies [11–15], can
severely underestimate the imbalance. In our simulation,
we set T ¼ 2 × 104=ω0, which is sufficiently long in the
parameter regime of interest (to be discussed in greater
detail below) to distinguish the localized and delocalized

phases. Details of the simulation method are provided in the
Supplemental Material [36].
Results.—Figure 1 shows the phase diagram of the photon

population dynamics in the g − J space determined by zav.
Note that for the Rabi dimer both g=ω0 and J=ω0 become
relevant even in the resonant caseωLðRÞ ¼ ΩLðRÞ, whereas for
the JC dimer at resonance the dynamics is solely governed by
the ratio J=g. The phase diagram exhibits a sharp distinction
between the localized regime, where the photons are self-
trapped, and the delocalized regime, where photons tunnel
between two cavities. More importantly, the phase boundary
is nonmonotonic. (i) There exists a critical value Jc ≈ 0.03ω0

of J, above which photons are delocalized for all g. Note that
Jc ≈ 0.03ω0 is small enough for the tunneling Hamiltonian
[Eq. (2)] to be valid for the cavity-cavity coupling. (ii) For
J < Jc, as g increases, the system undergoes recurrent
transitions, first from a delocalized to a localized phase at
gc1 and then from the localized to another delocalized phase
at gc2. The critical value of the first transition scales as
gc1 ∼ J

ffiffiffiffi
ni

p
, as already shown in Ref. [11]. The second

transition, on the other hand, happens at the critical value,
gc2 ∼ Jc=J (note that Fig. 1 is in a logarithmic scale), which
hardly depends on the initial photon number.
A semiclassical approach has been proposed in Ref. [11]

that describes the first transitionwell.However, it breaks down
for larger g and completelymisses the recurrent delocalization
transition. Developing a more general semiclassical method
(if any) will be an interesting issue on its own, and we leave
it open for future works. In passing, Ref. [12] ascribes the

FIG. 1. Phase diagram for the average photon population
imbalance zav for the initial state j20;↓iLj0;↓iR. Inset: zav at
J=ω0 ¼ 0.01 for different initial states and damping conditions.
The filled circle is for the Fock state j20;↓iLj0;↓iR, the empty
circle for the coherent state j ffiffiffiffiffi

20
p

;↓iLj0;↓iR, and the empty
diamond for j20;↓iLj0;↓iR with finite cavity damping time
τγ ¼ 104=ω0 (averaged over 300 quantum trajectories).
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first delocalization-localization transition to a classical-to-
quantum transition in the sense that the collapse and revival
emerges in the localized regime when either cavity is initially
populated with a coherent state, while the delocalized regime
is characterized by classical oscillations.
Even more interesting is the dynamical characteristics of

the second delocalized phase, clearly distinguished from
the first one. To see this, let us turn to the photon number in
each cavity NLðRÞðtÞ and the photon population imbalance
zðtÞ in the USC regime, presented in Figs. 2(a) and 2(c).
The two cavities share almost the same number of photons
at any time t after the transient time dynamics; see the inset
of Fig. 2(a). That is, the fluctuations around zav ¼ 0 are
highly suppressed. It is intriguing to find that the system
starting from an imbalanced photon population distribution
between the cavities rapidly equilibrates to share an equal
number of photons, given that our model includes only
two lattice sites without any contact to a bath. The
quasiequilibration of photon dynamics is accompanied
by the depolarization of the qubits, hσzLðRÞðtÞi ∼ 0; see

Fig. 2(d). Experimentally, the qubit depolarization is a
useful signature of the quasiequilibration as the qubit state
is usually easier to probe than the cavity photon number.
The effect is referred to as quasiequilibration because a

closedquantumsystem requires a recurrence of dynamics at a
finite time τr [39].However, it is remarkable that according to
our numerical simulation τr ≫ T ¼ 104ω−1

0 . For the circuit
QED system, the transmission line resonator and the trans-
mon qubit have a few gigahertz frequency, while relaxation
rates are typically in a few megahertz. Therefore, τr is much

longer than any time scales relevant to the experiment,
practically equivalent to τr → ∞. We also note an interesting
resemblance to the recently predicted quasiequilibration
between two identical finite quantum systems [40], where
a common temperature and small fluctuations around the
time average of any observables are key features. Our finding
also provides a concrete example to the recent discussion of
the equilibration in a closed quantum system [40,41].
Discussions.—We provide qualitative explanations for

the dynamical features of the Rabi-dimer model based
on the peculiar properties of the dressed states of single
Rabi models.
At g ¼ 0, the eigenstates of the Rabi Hamiltonian ĤRabi

[see Eq. (2)] are a product state jnij↑ð↓Þi of a cavity field
mode and a qubit. Namely, the field mode is decoupled
from the qubit and its dynamical behavior is harmonic
(i.e., linear). As g=ω0 grows from zero until g=ω0 ≲ 1,
the JC terms start to take effect and play a dominant
role over the CR terms. It leads to the coherent super-
position of jnij↑i and jnþ 1ij↓i and the correspondingffiffiffi
n

p
-dependent splitting of eigenvalues. The nonlinearity

in this range of coupling g is thus characterized by theffiffiffi
n

p
dependence of the energy levels. The so-called JC

nonlinearity induces an effective photon-photon interaction
and is known to cause the photon-blockade effect [11].
In the opposite limit (g=ω0 → ∞ at resonance and

g=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
→ ∞ in general), the ðΩ=2Þσ̂z term is negligible,

and the eigenstates of ĤRabi have the form jn;�g=ω0ij�i;
where jn; αi ¼ eαâ

†−α�âjni for a complex number α is a
displaced Fock state and j�i is a σ̂x eigenstate. The field
mode is thus linear again and the energy spectrum is
harmonic [42,43]. One important difference (compared
with the g ¼ 0 case) is that the photon number fluctuations
in each eigenstate are huge (eventually diverge with g).
As g=ω0 decreases from the infinity to g=ω0 ≳ 1, the
ðΩ=2Þσ̂z term tends to induce transitions between
jn;�g=ω0ij�i, whose transition amplitude is determined
by hn;−g=ω0jn; g=ω0i ∝ e−2g

2=ω2
0Lnð4g2=ω2

0Þ, where Ln is
the nth Laguerre polynomial. The exponential suppression
of the transition amplitude between states, j�i, due to a
state-dependent displacement of an oscillator, j�g=ω0i,
known as the Franck-Condon effect [44–47], leads to an
exponential suppression of the energy splitting between
jn;�g=ω0ij�i, and it governs the nonlinearity of the field
mode in this range of g. It is stressed that in this range the
CR terms play a crucial role and enable the vacuum to
“erupt” a large number of photons.
The key observation in the above discussions is that one

can expect two qualitatively distinctive nonlinear phases of
the Rabi model and a transition between them at g ∼ ω0 (the
actual transition point may vary depending on details, such
as J). We will refer to them as the photon-blockade and
photon-eruption (PE) phases, respectively. To examine the
distinction more closely, we introduce the photon number
variance χ ¼ hN̂2i − hN̂i2 of the eigenstates and the level

FIG. 2. (a) The photon population dynamics of a Rabi dimer
with J=ω0 ¼ 0.01 and g=ω0 ¼ 2, where the gray (black) line
corresponds to hNLðRÞðtÞi. (b) The photon population dynamics
of a single Rabi model with g=ω0 ¼ 2, where the gray (black) line
corresponds to the initial state jni ¼ 20;↓i (jni ¼ 0;↓i). Insets
of (a) and (b): The corresponding transient dynamics, with the
number of vacuum-generated photons ΔN ∼ 7.5. (c) The photon
population imbalance hzðtÞi and (d) the qubit polarization hσzRðtÞi
in the right cavity for J=ω0 ¼ 0.01 and g=ω0 ¼ 0.01 (gray), 0.2
(thin black line), and 2 (thick red line).
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spacing variance ζ¼ð1=KÞPkE
2
kþ1;k−½ð1=KÞ

P
kEkþ1;k�2;

where Ekk0 ≡ Ek − Ek0 are the differences between eigene-
nergies Ek and Ek0 , and K are the number of considered
eigenstates (ideally K ¼ ∞). Naturally, ζ characterizes the
nonlinearity of the system. One can distinguish the two
distinct nonlinear phases as a competition between the
nonlinearity ζ and the photon number fluctuation χ. For
g=ω ≥ 1, the photon number variance of the eigenstates
follows that of the coherent Fock state with a coherent
amplitude of g=ω0; that is, χ ∝ ðg=ω0Þ2 [48]. As expected
from the above discussions and illustrated in Fig. 3(a), χ
monotonically increases, whereas ζ first increases but then
decreases. For relatively small g=ω0, the nonlinearity
dominates over the photon number fluctuations. It leads
to the effective photon-photon interaction—hence, the PB
phase. For larger g=ω0, on the other hand, the photon
eruption due to the CR terms gives rise to the large photon
number fluctuations, which diminish the effective photon-
photon interaction—hence, the PE phase.
Now it is fairly straightforward to understand the phase

diagram in Fig. 1 and the corresponding photon population
imbalance dynamics in Fig. 2 of the Rabi-dimer model. For
example, consider the case of J=ω0 ¼ 0.01. In the weak-
coupling regime (g=ω0 ≪ 1), the system is sufficiently
linear and photons oscillate back and forth between the two
cavities. As g=ω0 increases, the JC nonlinearity sets in, and
when g=ω0 > 0.1, photons are localized in one cavity due
to the PB effect. As the coupling increases further so that
g=ω0 > 1, the Franck-Condon nonlinearity dominates and
the system enters the PE phase. In this regime, the photons
are delocalized again. Unlike the g=ω0 ≪ 1 limit, however,
the number of photons in each cavity does not oscillate in
time but quasiequilibrates over the two cavities. We remark
that the true g=ω0 ≫ 1 limit has not been observed in our
actual simulation of the Rabi dimer because of the immense
computational cost for large g. In such a limit the system
becomes completely linear and should exhibit oscillations
at a finite frequency (comparable to J).

One remaining question is how the relatively simple
system of a Rabi dimer can have a quasiequilibration state.
To address this issue, we note that the initial localized Fock
state jΨtotð0Þi involves a wide range of eigenstates jEtot

l i
(labeled by an integer index l), as demonstrated in
Fig. 3(b). Combined with the nonlinearity, which makes
the energy spectrum Etot

l highly irregular, it leads to the
unusually long recurrence time. Indeed, τr ≫ T in both
nonlinear phases (the PB and PE phases); see Fig. 2.
The crucial difference between the two nonlinear phases

is the photon number fluctuations: In the PB phase the
photon hopping J becomes irrelevant, while in the PE
phase the enhanced photon number fluctuations enable J to
equilibrate photons over the two cavities. To see this, we
examine hN̂jðtÞi:

hN̂jðtÞi ¼
X

ll0
e−iEll0 thΨtotð0ÞjEtot

l ihEtot
l0 jΨtotð0Þi

× hEtot
l jN̂jjEtot

l0 i: ð3Þ
Recall that the spectrum involved in the sum is macroscop-
ically wide and highly irregular. Then the off-diagonal terms
with the fast oscillating factor e−iEll0 t tend to cancel each
other. At long time scales (ω−1

0 ≪ t ≪ τr), one thus expects

hN̂jðtÞi ≈
X

l

jhΨtotð0Þjψlij2hψljN̂jjψli ¼ const: ð4Þ

Since the system is symmetry under L ↔ R, the eigenstates
jEtot

l i are either symmetric or antisymmetric. Therefore, one
has hEtot

l jN̂LjEtot
l i ¼ hEtot

l jN̂RjEtot
l i, and, hence, hN̂LðtÞi ¼

hN̂RðtÞi (i.e., quasiequilibration) in the PE phase. In the PB
phase, the eigenstates jEtot

l i are highly localized on either
cavity. The overlap with the initial states hΨtotð0ÞjEtot

l i is
negligible for those states jEtot

l i localized on the right cavity.
It implies that hNLðtÞi ∼ ni and hNRðtÞi ∼ 0 in the PB phase.
So far we have ignored the A2 term due to the electro-

magnetic vector potential A of the cavity field [49,50],

ĤA ¼ D
X

j

ðâj þ â†jÞ2; ð5Þ

whereD ∝ g2. Herewe show that in circuitQED systems the
term does not affect our results. Note that the overall
Hamiltonian ĤþĤA is equivalent to the model in Eq. (1)
up to the unitary transformation Ŝ ¼ exp½rPjâ

†
j â

†
j − H:c:�;

with r defined by e4r ¼ 1þ 4D=ω0. But the parameters
are renormalized as ω0 → ~ω0 ¼ ω0e2rg → ~g ¼ ger and
J → ~J ¼ Je2r: Therefore, the A2 term tends to decrease
the reduced qubit-cavity coupling ~g= ~ω0 by factor e−r

keeping the reduced cavity-cavity coupling ~J= ~ω0 the same.
For the true atom-light coupling, the Thomas-Reiche-Kuhn
(TRK) sum rule leads toD=ω0 > ðg=ω0Þ2, and the dynami-
cal features we have discussed above are very difficult to
observe experimentally. However, in circuit QED systems
the underlying physics of qubit-cavity coupling is different:

FIG. 3. (a) The level-spacing variance ζ (black filled circles,
using the left vertical axis) for the 400 lowest levels and the photon
number variance χ (solid lines, using the right vertical axis) for the
20 lowest levels of the Rabi model. For g=ω0 > 1, the photon
variance increases with ðg=ω0Þ2, as indicated by the dashed
line. (b) The overlaps between an initial state jΨðt ¼ 0Þi ¼
jni;↓iLj0;↓iR and eigenstates of the Rabi-dimer Hamiltonian.
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either theTRKsum rule does not apply or the couplingD has
an additional suppression factor [49]. Therefore, theA2 term
does not affect the relevant parameter region.
Remarks.—We have mainly focused on the unitary

dynamics of the double Rabi systems. In realistic experi-
ments, it is expected that the cavity damping time τκ (divided
by hN̂i) or the qubit decoherence time τϕ sets the observation
time T for the recurrent delocalization and quasiequilibra-
tion transition. Note that the recent state-of-the-art experi-
ments [12,17–19,32] have realized τκ; τϕ > 104=ω0. We
have briefly examined the cavity damping effect [36] based
on the quantum jump approach [51] and taking into account
the nontrivial interplay between the damping 1=τγ and the
strong coupling g. As illustrated in the inset of Fig. 1, the
localized phase becomes less prominent (as noted in
Ref. [11]), but our main result survives small damping.
We leave open further extensive studies of the damping
effects on the photon localization-delocalization.
We have explored the photon population dynamics in a

system of two coupled circuit QED systems in the USC
regime. For g≳ ω0, the recently observed localized photon
dynamics [12] gives way to quasiequilibration dynamics.
It reveals a new qualitatively distinctive nonlinear behavior
of the circuit QED system.
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