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Abstract. We consider the valuation of a block of perpetual ESOs and the
optimal exercise decision for an employee endowed with them and with trading
restrictions. A fluid model is proposed to characterize the exercise process.
The objective is to maximize the overall discount returns for the employee

through exercising the options over time. The optimal value function is defined
as the grant-date fair value of the block of options, and is then shown by
the dynamic programming principle to be a continuous constrained viscosity
solution to the associated Hamilton-Jacobi-Bellman (HJB) equation, which is

a fully nonlinear second order elliptic partial differential equation (PDE) in the
plane. We prove the comparison principle and the uniqueness. The numerical
simulation is discussed and the corresponding optimal decision turns out to

be a threshold-style strategy. These results provide an appropriate method
to estimate the cost of the ESOs for the company and also offer favorable
suggestions on selecting right moments to exercise the options over time for
the employee.

1. Introduction. In recent years, employee stock options (ESOs) have been ex-
tensively used by companies as a form of compensation or reward to the employees
globally. An ESO is usually a call option issued by a company on its common stock,
granting the holder the right to buy a certain number of shares of the underlying
stock at a predetermined price, called the strike price, during a certain period of
time. In most cases, this period lasts several years. When the stock price goes up,
the holder can exercise the options to buy the stock at the strike price and then
sell it at the market price, thereby keeping the difference as profit. Obviously ESOs
serve as the incentive to the employees, encouraging them to strive for the benefits
of the company, boosting the stock price so that they can get more profit from
exercising these options.

With the cost of ESOs becoming increasingly significant to the companies in
the past decades, since 2004 it has been required by the Financial Accounting
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Standards Board that all the companies should estimate and report the grant-date
fair value of ESOs issued, which gives rise to the desire for a reasonable method
to evaluate ESOs. Meanwhile the employees need directions in exercising so as to
make the maximal profits. Consequently the discussion about the valuation and
related optimal strategy has become a focus in mathematical research of finance,
thereby covered by an extensive literature.

Furthermore, it’s worth pointing out that compared to standardized exchange-
traded options, ESOs have several unique features in different aspects (see [10]). In
general, ESOs are American-style call options, i.e., they can be exercised at any
time before expiration, with a long maturity ranging from 5 to 10 years, which
much exceeds that of standardized options. In addition, for the most part ESOs
involve a vesting period from the grant date, during which employees are prohibited
from exercising any of the options, in order to maintain their incentive effect for the
financial benefits of the company. On top of that, the transfer and hedging restric-
tions are also remarkable features which need handling with care. In most cases,
employees are forbidden either to transfer ESOs or to short sell the company stock
to hedge against their positions in those options. Hence they should exercise ESOs
before expiration or just leave them worthless at expiration, leading to an appealing
for instructions on how to work out the optimal strategy in order to maximize the
returns through exercising over time. Besides, other prominent features include job
termination risk, i.e. the risk of getting fired or leaving the company voluntarily in
the duration of ESOs, and a list of flexible contract items. In conclusion, all these
features result in the non-standardized ESOs’ operating in an incomplete market,
which causes the failure of the standard valuation methods for pricing options in a
complete market.

A variety of approaches have been proposed in the literature to get useful insights
and fruitful results into this problem. Earlier researches (see [2, 5, 6, 9]) are devoted
to studying the optimal exercise strategy under the assumption that the employee
would exercise the whole block of options at a single date. In this case, the optimal
strategy is independent of the quantity of options she holds, which turns out to
contradict the empirical evidence in which employees prefer distributed exercising
over time, rather than at a single date. By virtue of utility function measuring
personal risk preference, [7] establishes a multi-period model to examine the exercise
policy for a risk-averse employee under the discrete time framework. [11] makes use
of numerical examples based on utility models to illustrate the optimal exercise
boundary which relies on a group of factors, particularly the number of options
being held.

In this paper we consider the valuation of perpetual ESOs which can be exercised
at any time from the grant date on. The employee is prohibited from trading on the
underlying stock and there is a restriction on the instant exercise rate, which results
in an incomplete market. The stochastic optimal control approach is applied to
evaluate the block of ESOs and to find the optimal exercise policy for the employee.

Treating the number of options as continuous, we adopt a fluid model to charac-
terize the exercise process and restrict the exercise rate not to exceeding an upper
bound. It’s justified by the common perspective of companies that if a large quan-
tity of ESOs is exercised in a short period of time, the market stock price would
probably be depressed and causing harm to the company.

Our objective is to maximize the expected overall discount returns of ESOs
through exercising the options over time for the employee. To the best of our
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knowledge, all existing literature concerning ESOs including the aforementioned
papers aim at maximizing the employee’s expected accumulated utility attained
by exercising the options, thereby leading to the associated optimal exercise policy
based on the employee’s risk preference. The unique feature of our model is that
instead of pursuing utility maximization as in most literature, we target at maxi-
mizing the overall discount exercise returns, which naturally can be regarded as the
grant-date fair value of the block of ESOs. As a result, with this stochastic optimal
control problem solved, the value of ESOs and the corresponding optimal exercise
strategy can be determined at the same time.

We derive the HJB equation that is a fully nonlinear PDE of second order with
two variables and characterize the value function as its viscosity solution. Unlike
the usual cases, the boundary conditions are not Dirichlet or Neumann type. In
fact, the optimization process is terminated once the employee has exercised all
ESOs held, which puts a constraint on the state process. So we study the value
function under the constrained viscosity solution framework.

The rest of this paper is organized as follows. Section 2 formulates the pricing
model to characterize the valuation process as a stochastic optimal control problem
and gives the definition of the value function and the associated HJB equation.
Section 3 shows that the value function is the constrained viscosity solution of the
HJB equation. Section 4 discusses the comparison principle and the uniqueness of
the constrained viscosity solution. Section 5 considers some limit cases. Section
6 exploits a numerical simulation method to obtain the approximation of the val-
ue function, determines the optimal policy which emerges in threshold style, and
presents numerical examples to illustrate the impact of varying parameters on the
optimal policy with some financial explanations. Section 7 concludes.

2. Problem Formulation. (Ω,F , P ) is a complete probability space with a nat-
ural filtration {Ft}0≤t<∞ generated by a standard Brownian motion {Wt}. Let Xt

denote the stock price of the company at time t, following a geometric Brownian
motion

dXt = µXtdt+ σXtdWt, X0 = x (1)

where positive constants µ, σ represent the expected stock return rate and volatility
respectively.

Consider an employee who is granted a total number N shares of perpetual
American ESOs with the strike price K at time 0.

Let Yt denote the aggregated number of options she has exercised up to time t,
which is driven by the following differential equation

dYt = utdt, Y0 = y, (2)

where the exercise rate ut is our control variable, restricted in the control set Γ =
[0, λ] with constant λ > 0. In section 5, we will discuss the limitation as λ → ∞
to understand what would happen in the limit case. Obviously, {Yt}t≥0 is a non-
negative non-decreasing right-continuous process. Let S = (0,∞) × (0, N). Then
at any time t ∈ [0,∞), the pair of state variables (Xt, Yt) should belong to the state
space S̄.

Definition 2.1. A control u. is admissible with respect to the initial value (x, y) ∈ S̄
if and only if (i) u. is {F}t-adapted; (ii) ut ∈ Γ for all t ≥ 0; (iii) the corresponding
state process (Xt, Yt) ∈ S̄ for all t ≥ 0. Denote by A = A(x, y) the set of all
admissible controls.
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The admissibility requires that for all t ≥ 0, the control can only take values in the
control set Γ, depending on the available information up to time t, rather than the
indeterminate future, and meanwhile guarantees the state trajectory (Xt, Yt) ∈ S̄,
especially 0 ≤ Yt ≤ N . In fact, once Yτ attains N at time τ , it results in ut = 0 for
all t > τ . This kind of optimal control is called state space constraints control.

The expected discounted total payoff associated with strategy u. ∈ A is defined
by

J(x, y;u.) = E

[∫ ∞

0

e−ρt (Xt −K)
+
utdt | X0 = x, Y0 = y

]
, (3)

where ρ is the discount rate satisfying ρ > µ > 0 and G+ = max(G, 0). The
parameter ρ serves as a time scale factor, affecting the time horizon of exercising
the whole block of options. Moreover, larger ρ encourages quicker exercise actions
with permissible exercise rate.

The objective of the employee is to maximize the expected discounted function
from stock excierse. The value function is defined by

v(x, y) = sup
u.∈A(x,y)

J(x, y;u.). (4)

Define operators L and B of the value function

Lv = µxvx +
σ2

2
x2vxx − ρv, (5)

Bv = vy + (x−K)+. (6)

The HJB equation, for the optimal control problem, is

Lv +max
u∈Γ

(uBv) = 0, (x, y) ∈ (0,∞)× (0, N) (7)

which is equivalent to

Lv + λ(Bv)+ = 0, (x, y) ∈ (0,∞)× (0, N) (8)

Remark 1. If the value function v ∈ C2,1, one can show that it is a classic solution
to the HJB equation (8). We, however, in general do not know the smoothness of
the value function. We therefore use the concept of viscosity solution and prove
that the value function is the unique continuous constrained viscosity solution to
the HJB equation (8) in sections 3 and 4.

The Dirichlet boundary condition naturally follows from the definition of value
function,

v(0, y) = 0, 0 ≤ y ≤ N. (9)

At y = 0, N, we prescribe the following constrained boundary conditions

Lv +max
u∈Γ

(uBv) ≥ 0

in the viscosity sense, which means that the pair of state variables (Xt, Yt) should
belong to the state space S̄. In section 3, we will provide a rigorous definition
of constrained viscosity solution to the HJB equation associated with the above
boundary conditions.
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3. Value Function and Constrained Viscosity Solution. In this section we
focus on the value function and show it is a constrained viscosity solution of related
HJB equation (7). We first illustrate some properties of the value function to
prepare for the further study.

Lemma 3.1. The following assertions hold.
(i) For each x ∈ [0,∞), v(x, y) is non-increasing in y;
(ii) For each y ∈ [0, N ], v(x, y) is non-decreasing in x;
(iii) v(x, y) is Lipschitz continuous in (x, y) and

|v(x1, y1)−v(x2, y2)| ≤ min

{
λ

ρ− µ
, 2(N − y1)

}
|x1−x2|+(2x2+1)|y1−y2|, (10)

for any (xi, yi) ∈ [0,∞)× [0, N ] (i = 1, 2).

Proof. For a certain x ∈ [0,∞), suppose 0 ≤ y1 ≤ y2 ≤ N and we have A(x, y2) ⊂
A(x, y1). Let u. ∈ A(x2, y), then u. ∈ A(x2, y) implying

v(x, y1) ≥ J(x, y1;u.) = J(x, y2;u.).

Since u. is arbitrary, it follows v(x, y1) ≥ v(x, y2) which means (i) holds.
Similarly, for a certain y ∈ [0, N ], suppose 0 ≤ x1 ≤ x2 < ∞ and we have

A(x1, y) = A(x2, y). Denote by Xi
t the solution of (1) with initial values X0 = xi

for i = 1, 2. Then

Xi
t = xie

(
µ−σ2

2

)
t+Wt , (11)

with expectations E(Xi) = xie
µt, i = 1, 2.

For any u. ∈ A(x1, y) = A(x2, y), we have

J(x1, y;u.) =E

[∫ ∞

0

e−ρt
(
X1

t −K
)+

utdt

]
=E

[∫ ∞

0

e−ρt

(
x1e

(
µ−σ2

2

)
t+Wt −K

)+

utdt

]

≤E

[∫ ∞

0

e−ρt

(
x2e

(
µ−σ2

2

)
t+Wt −K

)+

utdt

]

=E

[∫ ∞

0

e−ρt
(
X2

t −K
)+

utdt

]
=J(x2, y;u.)

(12)

Due to the arbitrariness of u. , taking the supreme on both sides yields v(x1, y) ≤
v(x2, y) which justifies (ii).

We proceed to prove (iii) by showing that v(x, y) is Lipschitz continuous in both
x and y.

On one hand, given y ∈ [0, N ], let x1, x2 ∈ [0,∞). Without loss of generality,
we suppose x1 ≤ x2. Then from (12), for any u. ∈ A(x1, y) = A(x2, y), it follows

J(x1, y;u.) ≤ J(x2, y;u.). Define a stopping time τ = inf{t ≥ 0 :
∫ t

0
usds = N − y}.

In fact, us = 0 for all s ≥ τ . Thus

J(x2, y;u.)− J(x1, y;u.) =E

∫ τ

0

e−ρt
[(
X2

t −K
)+ −

(
X1

t −K
)+]

utdt

≤E

∫ τ

0

e−ρt
(
X2

t −X1
t

)
utdt

(13)
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Noting that 0 ≤ ut ≤ λ for all t ≥ 0, we have

E

∫ τ

0

e−ρt
(
X2

t −X1
t

)
utdt ≤λ(x2 − x1)

∫ τ

0

e−ρtEe

(
µ−σ2

2

)
t+Wtdt

≤λ(x2 − x1)

∫ ∞

0

e−ρteµtdt

=
λ

ρ− µ
(x2 − x1).

(14)

In addition, using integration by parts, we get

E

∫ τ

0

e−ρt
(
X2

t −X1
t

)
utdt =E

∫ τ

0

e−ρt
(
X2

t −X1
t

)
d

(∫
usds

)
=E

[∫ τ

0

usds · e−ρτ
(
X2

τ −X1
τ

)]
+ (ρ− µ)E

[∫ τ

0

(∫ t

0

usds

)
e−ρt

(
X2

t −X1
t

)
dt

]
(15)

Since
∫ τ

0
usds = N − y and ρ > µ, it follows

E

[∫ τ

0

usds · e−ρτ
(
X2

τ −X1
τ

)]
≤ (N − y)E

[
e−ρτ

(
X2

τ −X1
τ

)]
≤ (N − y)(x2 − x1)

(16)
and

E

[∫ τ

0

(∫ t

0

usds

)
e−ρt

(
X2

t −X1
t

)
dt

]
≤(N − y)E

[∫ τ

0

e−ρt
(
X2

t −X1
t

)
dt

]
≤(N − y)E

[∫ ∞

0

e−ρt
(
X2

t −X1
t

)
dt

]
=(N − y)

(x2 − x1)

ρ− µ
.

(17)

Substituting (16), (17) into (15) yields

E

∫ τ

0

e−ρt
(
X2

t −X1
t

)
utdt ≤ 2(N − y)(x2 − x1). (18)

Hence it follows from (13), (14) and (18),

J(x2, y;u.)− J(x1, y;u.) ≤ min

{
λ

ρ− µ
, 2(N − y)

}
(x2 − x1).

For the arbitrariness of u., we obtain

v(x2, y)− v(x1, y) ≤ min

{
λ

ρ− µ
, 2(N − y)

}
(x2 − x1). (19)

which indicates v(x, y) is Lipschitz continuous in x.
On the other hand, given x ∈ [0,∞), let y1, y2 ∈ [0, N ]. Without loss of general-

ity, we assume 0 ≤ y1 ≤ y2 ≤ N .
It’s clear that A(x, y2) ⊂ A(x, y1). From the definition of the value function (4),

for |y1 − y2| ≥ 0, there exists u. ∈ A(x, y1) such that

v(x, y1) ≤ J(x, y1;u.) + |y1 − y2|, (20)
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and

y1 +

∫ ∞

0

utdt = N. (21)

Set stopping time τ = inf{t > 0 : y1 +
∫ t

0
usds = y2} and define a control

ūt =

{
0, 0 ≤ t ≤ τ,
ut, t > τ.

It’s easy to see that ū. ∈ A(x, y2). Thus

|J(x, y1;u.)− J(x, y2; ū.)| =|E
∫ τ

0

e−ρt(Xt −K)+utdt|

≤E

∫ τ

0

e−ρtXtutdt

Using integration by parts, we have

E

∫ τ

0

e−ρtXtutdt =E

∫ τ

0

e−ρtXtd

(∫
usds

)
=E

(∫ τ

0

usds · e−ρτXτ

)
+ (ρ− µ)E

[∫ τ

0

(∫ t

0

usds

)
e−ρtXtdt

]
Note that

∫ τ

0
utdt = y2 − y1 and ρ > µ. It follows,

E

(∫ τ

0

usds · e−ρτXτ

)
≤ (y2 − y1)E(e−ρτXτ ) ≤ (y2 − y1)x

and

E

[∫ τ

0

(∫ t

0

usds

)
e−ρtXtdt

]
≤(y2 − y1)E

(∫ τ

0

e−ρtXtdt

)
≤(y2 − y1)E

(∫ ∞

0

e−ρtXtdt

)
=(y2 − y1)

x

ρ− µ
.

Hence,

|J(x, y1;u.)− J(x, y2; ū.)| ≤ 2x|y1 − y2|. (22)

Combining (20) and (22), we get

v(x, y1) ≤J(x, y1;u.) + |y1 − y2|
≤J(x, y2; ū.) + 2x|y1 − y2|+ |y1 − y2|
≤v(x, y2) + (2x+ 1)|y1 − y2|.

From the property in (ii),

|v(x, y1)− v(x, y2)| ≤ (2x+ 1)|y1 − y2|. (23)

By virtue of (19) and (23), for any (x1, y1), (x2, y2) ∈ [0,∞)× [0, N ], we have

|v(x1, y1)− v(x2, y2)| ≤|v(x1, y1)− v(x2, y1)|+ |v(x2, y1)− v(x2, y2)|

≤min

{
λ

ρ− µ
, 2(N − y1)

}
|x1 − x2|+ (2x2 + 1)|y1 − y2|.

This completes the proof.
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Now we introduce the sets of semicontinuous functions in S̄ and give the defini-
tions for viscosity solutions afterwards. Define

USC(S̄) = {v : S̄ → R ∪ {−∞} | v is upper semicontinuous},
LSC(S̄) = {v : S̄ → R ∪ {+∞} | v is lower semicontinuous}.

Definition 3.2. (Viscosity Supersolution and Subsolution)
(i) w(x, y) ∈ LSC(S) is a supersolution of (7) in S if and only if

Lφ+max
u∈Γ

(uBφ)
∣∣
(x0,y0)

≤ 0, (24)

whenever φ(x, y) ∈ C2,1 and w(x, y)− φ(x, y) has a local minimum at (x0, y0) ∈ S
with w(x0, y0) = φ(x0, y0);
(ii) w(x, y) ∈ USC(S̄) is a subsolution of (7) in (0,∞)× [0, N ] if and only if

Lφ+max
u∈Γ

(uBφ)
∣∣
(x0,y0)

≥ 0, (25)

whenever φ(x, y) ∈ C2,1 and w(x, y) − φ(x, y) has a local maximum at (x0, y0) ∈
(0,∞)× [0, N ] with w(x0, y0) = φ(x0, y0).

The definition of the constrained viscosity solution follows.

Definition 3.3. A continuous function w is a constrained viscosity solution of (7)
if it is both a viscosity supersolution of (7) in S and a viscosity subsolution of (7)
in (0,∞)× [0, N ].

Remark 2. In the definition of the viscosity subsolution, the minima (x0, y0) may
lie on the y = 0, N . This means that w is a viscosity solution in S and a viscosity
subsolution on the y = 0, N .

We have the following result for the value function.

Theorem 3.4. The value function v(x, y) is a continuous constrained viscosity
solution of (7), which satisfies (9).

Proof. We first show that v(x, y) is a viscosity supersolution.
Let the test function φ(x, y) ∈ C2,1(S) such that v−φ attains its local minimum

at (x0, y0) ∈ S and, without loss of generality, v(x0, y0) = φ(x0, y0). Then there
exists a neighborhood N(x0, y0) ∈ S of the point (x0, y0) satisfying

v(x, y) ≥ φ(x, y), ∀(x, y) ∈ N(x0, y0). (26)

Let (Xt, Yt) be the solution of (1), (2) with (X0, Y0) = (x0, y0) and the control
u. ∈ A(x0, y0). Define a stopping time τ by

τ = inf{t : (Xt, Yt) ̸∈ N(x0, y0}. (27)

For h > 0, by dynamic programming principle,

v(x0, y0) = sup
u.∈A(x0,y0)

E

[∫ h∧τ

0

e−ρt(Xt −K)+utdt+ e−ρ(h∧τ)v(Xh∧τ , Yh∧τ )

]

≥E

∫ h∧τ

0

e−ρt(Xt −K)+utdt+ Ee−ρ(h∧τ)v(Xh∧τ , Yh∧τ ).

Using (26), it leads to

φ(x0, y0) ≥ E

∫ h∧τ

0

e−ρt(Xt −K)+utdt+ Ee−ρ(h∧τ)φ(Xh∧τ , Yh∧τ ).
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Subtracting φ(x0, y0) from both sides and applying Ito’s formula, we get

0 ≥ E

∫ h∧τ

0

e−ρt [Lφ(Xt, Yt) + utBφ(Xt, Yt)] dt. (28)

For a fixed w ∈ Γ, we can choose a control u0. ∈ A(x0, y0) such that

w = lim
t→0

u0
t .

Then use this control u0. in (28) and divide both sides by h. Since w is arbitrary,
taking h → 0 yields

max
w∈Γ

[Lφ(x, y) + wBφ(x, y)] ≤ 0

which is equivalent to (25) implying v(x, y) is a supersolution.
It remains to show that v(x, y) is a subsolution.
Let φ(x, y) ∈ C2,1((0,∞)× [0, N ]) be a test function such that v − φ attains its

local maximum at (x0, y0) ∈ (0,∞)× [0, N ] and v(x0, y0) = φ(x0, y0). Similarly we
can find a neighborhood N(x0, y0) ⊂ (0,∞)× [0, N ] of (x0, y0) such that

v(x, y) ≤ φ(x, y), ∀(x, y) ∈ N(x0, y0). (29)

For any h > 0, there exists a control process uh. ∈ A(x0, y0) such that

v(x0, y0) ≤ h2 + E

∫ h∧τ

0

e−ρt(Xt −K)+uh
t dt+ Ee−ρ(h∧τ)v(Xh∧τ , Yh∧τ ),

where τ is a stopping time given by

τ = inf{t : (Xt, Yt) ̸∈ N(x0, y0)} (30)

and (Xt, Yt) is driven by (1), (2) with (X0, Y0) = (x0, y0). Using (29), we get

φ(x0, y0) ≤ h2 + E

∫ h∧τ

0

e−ρt(Xt −K)+uh
t dt+ Ee−ρ(h∧τ)φ(Xh∧τ , Yh∧τ ).

By Ito’s formula,

0 ≤ h2 + E

∫ h∧τ

0

e−ρt
[
Lφ(Xt, Yt) + uh

t Bφ(Xt, Yt)
]
dt.

Finally sending h → 0 yields

0 ≤ Lφ(x, y) + max
w∈Γ

{wBφ(x, y)} ,

which means (24) holds, namely v(x, y) is the subsolution.
So far we’ve completed the proof by concluding that v(x, y) is the constrained

viscosity solution of (7).

4. Comparison Principle and Uniqueness. In this section, we prove the com-
parison principle which enables us to verify the uniqueness of the viscosity solution.

Denote byM the set of symmetric 2×2 matrices and define F : R2×R×R2×M →
R,

F (X, r, p,M) = µxp1 +
σ2

2
x2m11 − ρr +max

u∈Γ
u ·

{
p2 + (x−K)+

}
(31)

where

X = (x, y), p = (p1, p2), M =

(
m11 m12

m12 m22

)
.

To prove the comparison principle, we need an alternative definition of con-
strained viscosity solution in terms of the notions of semijets as below.
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Definition 4.1. v : S̄ → R is a function.
The second order superjet(subjet) J2,+v(X̂)(J2,−v(X̂)) at X̂ ∈ S̄ is the set of
(p,M) ∈ R2 ×M satisfying,

v(X) ≤ (≥)v(X̂)+⟨p,X−X̂⟩+1

2
⟨M(X−X̂), X−X̂⟩+o(|X−X̂|2), as S̄ ∋ X → X̂.

Further, the closure J̄2,+v(X)(J̄2,−v(X)) is defined as the set of (p,M) ∈ R2 ×M
satisfying,

∃(Xn, v(Xn), pn,Mn) ∈ S̄ × R× R2 ×M → (X, v(X), p,M), as n → ∞,

where (pn,Mn) ∈ J2,+v(Xn)(J
2,−v(Xn)) for all n.

For the convenience in proof, we give another version of definitions for the vis-
cosity subsolution and supersolution which are equivalent to Definition 3.1.

Definition 4.2. (i) w(X) ∈ USC(S̄) is a subsolution of (7) in S̄ if and only if

F (X, v(X), p,M) ≥ 0

for X ∈ S̄ and (p,M) ∈ J2,+v(X) .
(ii) w(X) ∈ LSC(S) is a supersolution of (7) in S if and only if

F (X, v(X), p,M) ≤ 0

for X ∈ S and (p,M) ∈ J2,−v(X) .

In addition, we restate the following proposition from [4] to apply to our case in
the proof of the comparison principle thereafter.

Proposition 1. Let a locally compact set Ω ∈ R2 and vi ∈ USC(Ω) for i = 1, · · · , k.
Suppose ϕ(X1, · · · , Xk) is twice continuously differentiable(locally) in Ω × · · · × Ω
and the function v1(X1)+ · · ·+vk(Xk)−ϕ(X1, · · · , Xk) attains a local maximum at

(X̂1, · · · , X̂k) in Ω× · · · ×Ω. Then for each ε > 0, we can find Mi ∈ M satisfying,

(DXiϕ(X̂1, · · · , X̂k),Mi) ∈ J̄2,+vi(X̂i) for i = 1, · · · , k,

−
(
1

ε
+ ||A||

)
I ≤

 M1 · · · 0
...

. . .
...

0 . . . Mk

 ≤ A+ εA2

where the symmetric matrix A = D2ϕ(X̂1, · · · , X̂k) and its norm is given by ||A|| =
sup{|⟨Aξ, ξ⟩| : |ξ| ≤ 1}.

At this stage, we are ready to prove the comparison principle for the viscosity
subsolution and supersolution.

Theorem 4.3. Let v ∈ USC(S̄) is a subsolution of (7) in S̄ and v̄ ∈ LSC(S) is
a supersolution of (7) in S. Furthermore, suppose v,−v̄ satisfying the following
conditions:

1. v,−v̄ grow at most linearly in X, i.e. there exists a constant C > 0 such that,

v(X), −v̄(X) ≤ C(1 + |X|) for X ∈ S̄, (32)

2. v(0, y) ≤ v̄(0, y),
3. ρ > 2µ+ σ2.

Then we have v ≤ v̄ in S̄.
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Proof. Following the idea in [4], assume, for contradiction, that there exists X∗ ∈ S̄
such that,

v(X∗)− v̄(X∗) ≥ 2δ > 0, for some δ > 0. (33)

Set ∂S = l1 ∪ l2 ∪ l3 where

l1 = {(x, 0)| 0 ≤ x < ∞}, l2 = {(0, y)| 0 ≤ y ≤ N}, l3 = {(x,N)| 0 < x < ∞}.
Let n⃗ = (0, 1) denote the outer normal vector of the unique constrained boundary
l3 and define Φ(X1, X2) = v(X1)− v̄(X2)− ϕ(X1, X2) where

ϕ(X1, X2) = |α(X1 −X2)− εn⃗|2 + ε(|X1|2 + |X2|2)
for X1, X2 ∈ S̄ and α > 1, 0 < ε < 1.

Due to the upper semicontinuity of Φ(X1, X2) and (32), we can find (Xα
1 , X

α
2 )

satisfying
sup
S̄×S̄

Φ(X1, X2) = Φ(Xα
1 , X

α
2 ) := Gα < ∞.

In the above notions we keep ε fixed and emphasize the dependence on α.
From Φ(Xα

1 , X
α
2 ) ≥ Φ(X∗, X∗), we get

Gα ≥ v(X∗)− v̄(X∗)− ε2 − 2ε|X∗|2 > δ > 0

if ε is sufficiently small. Therefore,

v(Xα
1 )− v̄(Xα

2 ) > δ. (34)

The inequality Φ(Xα
1 , X

α
2 ) ≥ Φ(X∗, X∗) also reads

|α(Xα
1 −Xα

2 )− εn⃗|2 + ε(|Xα
1 |2 + |Xα

2 |2)
≤v(Xα

1 )− v̄(Xα
2 )− v(X∗) + v̄(X∗) + ε2 + 2ε|X∗|2

≤Cε(1 + |Xα
1 |+ |Xα

2 |)
(35)

in which (35) follows from the assumption (32). Hence we have |Xα
1 |, |Xα

2 | ≤ Cε

with the constant Cε > 0 implying Xα
1 → Zε

1 , X
α
2 → Zε

2(along a subsequence) as
α → ∞. Observe that |α(Xα

1 −Xα
2 )− εn⃗| ≤ Cε (α → ∞), so we conclude Zε

1 = Zε
2 ,

rewritten as Zε and α(Xα
1 − Xα

2 ) → W ε (along a subsequence) as α → ∞. Here
Zε, W ε depend on ε.

Firstly, we show Zε /∈ l2. We argue by contradiction and suppose Zε ∈ l2. From
the upper semicontinuity of function Φ, we have

Φ(Zε, Zε) ≥ lim sup
α→∞

Φ(Xα
1 , X

α
2 ) ≥ δ,

but
Φ(Zε, Zε) = v(Zε)− v̄(Zε)− ε2 − 2ε|Zε|2 < 0.

This is a contradiction.
If Zε ∈ l3, Z

ε − ε
α n⃗ ∈ S. Further using Φ(Xα

1 , X
α
2 ) ≥ Φ(Zε, Zε − ε

α n⃗), we get

|α(Xα
1 −Xα

2 )− εn⃗|2 ≤v(Xα
1 )− v̄(Xα

2 )− v(Zε) + v̄(Zε − ε

α
n⃗)

− ε
(
|Xα

1 |2 + |Xα
2 |2 − |Zε|2 − |Zε − ε

α
n⃗|2

)
.

Sending α → ∞ yields the right side smaller than 0 which indicates α(Xα
1 −Xα

2 )−
εn⃗ = o(1). Thus Xα

2 = Xα
1 − 1

α (εn⃗+ o(1)) ∈ S and lim
ε→0

W ε = 0.

If Zε ∈ S, then for large α, Xα
1 , X

α
2 ∈ S. In order to apply Proposition 4.1 to

derive the contradiction. We rewrite ϕ as

ϕ(X1, X2) = [α(x1 − x2)]
2 + [α(y1 − y2)− ε]2 + ε(x2

1 + y21 + x2
2 + y22).
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Thus,

DX1
ϕ =

(
2α2(x1 − x2) + 2εx1

2α[α(y1 − y2)− ε] + 2εy1

)
, DX2

ϕ =

(
−2α2(x1 − x2) + 2εx2

−2α[α(y1 − y2)− ε] + 2εy2

)
.

There exist Mα
i ,M

α
2 ∈ M such that

(DX1ϕ(X
α
1 ), Mα

1 ) ∈ J2,+v(Xα
1 ),

(−DX2ϕ(X
α
2 ), −Mα

2 ) ∈ J2,−v̄(Xα
2 ),

and(
Mα

1 0
0 Mα

2

)
≤ 2(3α2 + 2ε)

(
I2 −I2
−I2 I2

)
+ 2

(
ε+

ε2

α2

)(
I2 0
0 I2

)
(36)

where I2 =

(
1 0
0 1

)
.

Set Mα
i =

(
mα

i ∗
∗ ∗

)
and Xα

i = (xα
i , y

α
i ) (i = 1, 2).

Since v is a subsolution of (7) in S̄ and v̄ is a supersolution of (7) in S. Note the
form of F in (31) and Definition 4.2, by Proposition 4.1 we can find λ0 ∈ Γ such
that

0 ≤µxα
1

[
2α2(xα

1 − xα
2 ) + 2εxα

1

]
+

σ2

2
(xα

1 )
2mα

1 − ρv(Xα
1 )

+ λ0

{
2α2(yα1 − yα2 )− 2αε+ 2εyα1 + (xα

1 −K)+
}
,

(37)

0 ≥µxα
2

[
2α2(xα

1 − xα
2 )− 2εxα

2

]
− σ2

2
(xα

2 )
2mα

2 − ρv̄(Xα
2 )

+ λ0

{
2α2(yα1 − yα2 )− 2αε− 2εyα2 + (xα

2 −K)+
}
.

(38)

Subtracting (38) from (37), we have

0 ≤2µα2 (xα
1 − xα

2 )
2
+ 2µε

[
(xα

1 )
2 + (xα

2 )
2
]
+

σ2

2

[
(xα

1 )
2mα

1 + (xα
2 )

2mα
2

]
− ρ [v(Xα

1 )− v̄(Xα
2 )] + λ0

{
2ε(yα1 + yα2 ) + (xα

1 −K)+ − (xα
2 −K)+

}
.

(39)

The inequality (36) yields

(xα
1 )

2mα
1 + (xα

2 )
2mα

2 =
(
xα
1 0 xα

2 0
)( Mα

1 0
0 Mα

2

)(
xα
1 0 xα

2 0
)T

≤2(3α2 + 2ε)(xα
1 − xα

2 )
2 + 2

(
ε+

ε2

α2

)[
(xα

1 )
2 + (xα

2 )
2
]
.

(40)

Then by substituting (40) into (39),

0 ≤− ρ[v(Xα
1 )− v̄(Xα

2 )] + (2µ+ 3σ2)α2 (xα
1 − xα

2 )
2
+ 2σ2ε (xα

1 − xα
2 )

2

+ (2µ+ σ2)ε
[
(xα

1 )
2 + (xα

2 )
2
]
+ σ2 ε

2

α2

[
(xα

1 )
2 + (xα

2 )
2
]

+ λ0

{
2ε(yα1 + yα2 ) + (xα

1 −K)+ − (xα
2 −K)+

}
.

(41)

Recall that we have

Xα
1 , X

α
2 → Zε = (z̄ε, z̃ε), α(Xα

1 −Xα
2 ) → W ε = (w̄ε, w̃ε) as α → ∞.

and
|Zε| ≤ Cε, lim

ε→0
W ε = 0. (42)
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Noting v(X∗)− v̄(X∗) > 0, thus by sending α → ∞ and ε → 0, the inequality (35)
leads us to,

lim
ε→0

2ε|Zε|2 ≤ v(Zε)− v̄(Zε). (43)

Using (34), due to the upper semicontiuity of v − v̄, taking α → ∞ we get

v(Zε)− v̄(Zε) > δ > 0. (44)

Letting α → ∞, (41) yields,

0 ≤ −ρ[v(Zε)− v̄(Zε)] + (2µ+ 3σ2)|W ε|2 + (2µ+ σ2)2ε|Zε|2 + 4λ0εz̃
ε.

Now making use of (42)—(44) and the fact that ρ−2µ−σ2 > 0, z̃ε ∈ [0, N ], further
taking ε → 0, we obtain

0 ≤ −(ρ− 2µ− σ2)δ < 0

which is a contradiction.

Remark 3. In the inequality (41), all the terms are less than or equal to 0 as
α → ∞ and ε → 0 except for (2µ+ σ2)ε

[
(xα

1 )
2 + (xα

2 )
2
]
. Thus we need a technical

condition such as ρ > 2µ + σ2 to get the contradiction. We think this is not a
necessary condition, so further research could be done to remove this condition.

Now we state the main theorem regarding the value function in the sense of the
constrained viscosity solution.

Theorem 4.4. The value function v(x, y) is the unique continuous constrained
viscosity solution of (7) in S̄ that grows at most linearly in (x, y) and verify (9).

Proof. Let v1 and v2 be two constrained viscosity solutions of (7). Since v1 and v2

are subsolution and supersolution respectively, by Lemma 4.1, we get v1 ≤ v2. On
the contrary, we have v2 ≤ v1 since v2 and v1 are subsolution and supersolution
respectively. So we conclude v1 = v2.

5. The Limit Case as λ → ∞. In this section, we consider the limitation as
λ → ∞ to understand what would happen in the limit case. For each λ > 0,
vλ(x, y) is the value function of the previous optimization problem particularly
with the control set Γλ = [0, λ] and Aλ(x, y) corresponding to the admissible set
given in Definition 2.1. From (7), the HJB equation governing vλ(x, y) is given by

Lvλ + max
u∈Γλ

u · Bvλ = 0, (x, y) ∈ [0,∞)× [0, N ]. (45)

Then we have the following helpful results.

Lemma 5.1. (i) vλ(x, y) increases with respect to λ; (ii) vλ(x, y) is bounded for
all λ > 0;
(iii) vλ(x, y) converges to v∞(x, y) pointwise as λ → ∞.

Proof. (i) In fact, for any 0 < λ1 < λ2 < ∞, we have Aλ1(x, y) ⊂ Aλ2(x, y).
Recall the value function

vλi(x, y) = sup
u.∈Aλi (x,y)

E

[∫ ∞

0

e−ρt (Xt −K)
+
utdt

]
, i = 1, 2,

which implies vλ1 ≤ vλ2 .
(ii) For any ε > 0, we can find ū. ∈ Aλ(x, y) such that

vλ(x, y) ≤ E

∫ τ

0

e−ρt (Xt −K)
+
ūtdt+ ε
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where the stopping time τ = inf{t ≥ 0 : Yt = N} and Xt, Yt are governed by (1),
(2) with control ū..

Then using integration by parts, it follows

vλ(x, y) ≤E

∫ τ

0

e−ρtXtūtdt+ ε

=E

∫ τ

0

e−ρtXtd

(∫
ūsds

)
+ ε

=E

(∫ τ

0

ūsds · e−ρτXτ

)
+ (ρ− µ)E

[∫ τ

0

(∫ t

0

ūsds

)
e−ρtXtdt

]
+ ε

≤(N − y)E
(
e−ρτXτ

)
+ (ρ− µ)(N − y)E

(∫ τ

0

e−ρtXtdt

)
+ ε

(46)

Note that
E
(
e−ρτXτ

)
≤ x,

and

E

(∫ τ

0

e−ρtXtdt

)
≤ E

(∫ ∞

0

e−ρtXtdt

)
≤ x

ρ− µ
.

Substituting them into (46) and taking ε → 0, we obtain

vλ(x, y) ≤ 2x(N − y).

(iii) For any (x, y) ∈ [0,∞) × [0, N ], sending λ → ∞, the convergence of vλ(x, y)
as λ → ∞ directly follows from (i), (ii). We denote it by v∞(x, y).

We proceed to give more insight into the limit case by the theorem below.

Theorem 5.2. Let vλ be the unique constrained viscosity solution of (45). Then
vλ → v∞ as λ → ∞ and v∞ is the unique viscosity solution satisfying

max{Lv∞,Bv∞} = 0, (x, y) ∈ [0,∞)× [0, N ] (47)

with boundary condition

v∞(0, y) = 0, 0 ≤ y ≤ N (48)

v∞(x,N) = 0, 0 ≤ x < ∞. (49)

Remark 4. In fact, by sending λ → ∞, we just remove the restriction on the
exercise rate with all the other conditions maintained. It’s conceivable that without
this restriction the employee would simply select an optimal moment to exercise the
whole block of options at a time. In this case, every single option is treated equally
and thus can be viewed as a standard perpetual American option. Moreover, the
value function should take the form

v∞(x, y) = (N − y)v̄(x), (x, y) ∈ [0,∞)× [0, N ], (50)

where v̄(x) represents the initial value of the corresponding standard perpetual
American call option whose value has an analytical solution (see [8]).

To prove the previous theorem, we need this proposition (see [4]) which works
well in the convergence analysis of viscosity solutions.

Proposition 2. Let Ω ⊂ RN be locally compact, v ∈ USC(Ω), z ∈ Ω, and (p,M) ∈
J2,+v(z). Suppose also that vn is a sequence of upper semicontinuous functions on
Ω satisfying

1. there exists xn ∈ Ω such that (xn, vn(xn)) → (z, v(z)),
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2. if xn ∈ Ω and xn → z ∈ Ω, then lim
n→∞

vn(xn) ≤ v(z).

Then there exists x̂n ∈ Ω, (pn,Mn) ∈ J2,+vn(x̂n) such that (x̂n, vn(x̂n), pn,Mn) →
(z, v(z), p,M).

Next we show v∞ is the unique viscosity solution of (47)—(49).

Proof of Theorem 5.2. Note that S = (0,∞)× (0, N) and define

L(x, y, r, p,M) = µxp1 +
σ2

2
m11 − ρr,

B(x, y, p) = p2 + (x−K)+,

where M = (mij)2×2 ∈ M and p = (p1, p2) ∈ R2.
First, we claim v∞ is a viscosity subsolution of (47). Given (x, y) ∈ S, (p,X) ∈

J2,+v∞(x, y), we have vλ(x, y) → v∞(x, y) as λ → ∞. Then for all (xλ, yλ) →
(x, y), ∣∣vλ(xλ, yλ)− v∞(x, y)

∣∣
≤
∣∣vλ(xλ, yλ)− vλ(x, y)

∣∣+ ∣∣vλ(x, y)− v∞(x, y)
∣∣

≤K (|xλ − x|+ |yλ − y|) +
∣∣vλ(x, y)− v∞(x, y)

∣∣ → 0, (λ → ∞).

From Proposition 2, we can find (xλ, yλ) ∈ S, (pλ,Mλ) ∈ J2,+vλ(xλ, yλ), such that

((xλ, yλ), v
λ(xλ, yλ), pλ,Mλ) → ((x, y), v∞(x, y), p,M),

L(xλ, yλ, v
λ(xλ, yλ), pλ,Mλ) → L(x, y, v∞(x, y), p,M),

B(xλ, yλ, pλ) → B(x, y, p).

Since vλ is a subsolution of (45), it leads to

L(xλ, yλ, v
λ(xλ, yλ), pλ, Xλ) + λ[B(xλ, yλ, pλ)]

+ ≥ 0. (51)

To show v∞ is a subsolution of (47), we need to verify

max{L(x, y, v∞(x, y), p,X), B(x, y, p)} ≥ 0. (52)

If B(x, y, p) ≥ 0, then (52) naturally holds. If B(x, y, p) < 0, we can find a suf-
ficiently large Λ such that B(xλ, yλ, pλ) < 0 for all λ > Λ. From (51), it follows
L(xλ, yλ, v

λ(xλ, yλ), pλ, Xλ) ≥ 0. Sending λ → ∞, we get L(x, y, v∞(x, y), p,X) ≥ 0
implying (52) is true.

Analogously, we apply the lower semicontinuous version of Proposition 2 to show
v∞(x, y) is a supersolution of (47).

Given (x, y) ∈ S and (p,M) ∈ J2,−v∞(x, y),there exists (xλ, yλ) ∈ S, (pλ,Mλ) ∈
J2,−vλ(xλ, yλ) such that

((xλ, yλ), v
λ(xλ, yλ), pλ,Mλ) → ((x, y), v(x, y), p,M)

L(xλ, yλ, v
λ(xλ, yλ), pλ,Mλ) → L(x, y, v(x, y), p,M)

B(xλ, yλ, pλ) → B(x, y, p).

Again, since vλ is a supersolution of (45), we have

L(xλ, yλ, v
λ(xλ, yλ), pλ, Xλ) + λ[B(xλ, yλ, pλ)]

+ ≤ 0. (53)

Thus,

L(xλ, yλ, v
λ(xλ, yλ), pλ, Xλ) = −λ[B(xλ, yλ, pλ)]

+ ≤ 0. (54)
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To showv∞ is a supersolution of (47), we have to verify

max{L(x, y, v∞(x, y), p,M), B(x, y, p)} ≤ 0. (55)

In fact letting λ → ∞ in (54) yields L(x, y, v∞(x, y), p,M) ≤ 0. On the other hand,
if B(x, y, p) > 0, we have λ(B(xλ, yλ, pλ))

+ → ∞ as λ → ∞. By virtue of (54), we
obtain L(x, y, v(x, y), p,X) = −∞ which is impossible. Therefore, B(x, y, p) ≤ 0
and (52) holds.

Finally (48) and (49) naturally follow from the boundary condition for vλ and the
uniqueness can be justified by similar arguments as we use in the previous analysis
for vλ.

6. Optimal Exercise Decision and Numerical Simulations. In this section,
we apply the finite difference method to numerically approximate the value function
and the associated optimal control.

6.1. The Optimal Exercise Decision. Under the viscosity solution framework,
the standard verification theorem in [3] enables us to define the optimal exercise
rate u∗(x, y) in terms of the value function v(x, y).

Noting Γ = [0, λ], from (7) it’s straightforward to see that in order to attain the
maximum, u should take value 0 whenever Bv ≤ 0, otherwise equal λ.

We define no-exercise region and exercise region as

NR := {(x, y) : Bv(x, y) ≤ 0}, (56)

ER := {(x, y) : Bv(x, y) > 0}, (57)

It naturally leads us to define the optimal exercise rate u∗(x, y) by

u∗(x, y) =

{
0, if (x, y) ∈ NR,
λ, if (x, y) ∈ ER.

(58)

In fact, the above control can be verified to be optimal, namely maximizing our
objective function to achieve the value function. Also it’s exactly the feedback
control well known in dynamic programming theory.

The previous analysis sheds light on the dependence of the optimal exercise rate
on the availability of the value function. However due to the difficulty in getting
the analytical solution, we apply the numerical simulation approach to approximate
the value function, the two separate regions and the optimal exercise decision.

6.2. Numerical Scheme. It is reasonable to deduce that the employee would
exercise all the remaining options at the largest permissible exercise rate λ when
the stock price has gone high enough, namely, beyond some large M > 0. Under
this assumption, it would take a period of N−y

λ to fully exercise the options held.

Let vM (x, y) which is defined on the bounded domain [0,M ] × [0, N ] be the
approximate solution of v(x, y). It’s easy to see that vM (x, y) → v(x, y) as M → ∞.
We give another boundary condition on x = M for vM (x, y),

vM (M,y) =E

[∫ N−y
λ

0

e−ρtλ(Xt −K)+dt
∣∣X0 = M,Y0 = y

]

=

∫ N−y
λ

0

λe−ρtE
[
(Xt −K)+

∣∣ X0 = M
]
dt

=λM

∫ N−y
λ

0

e−(ρ−µ)tQ(d1)dt− λK

∫ N−y
λ

0

e−ρtQ(d2)dt

(59)
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in which

d1 =
ln M

K + (µ+ σ2

2 )t

σ
√
t

,

d2 = d1 − σ
√
t,

Q(x) =
1√
2π

∫ x

−∞
e−

θ2

2 dθ.

It would allow us to solve the numerical approximation for vM (x, y) by the following
finite difference scheme.

Let H = (h, k) be a partition of the bounded domain [0,M ] × [0, N ] with h, k
representing the step sizes for x, y respectively. Define (xi, yj) = (ih, jk) for i =

0, 1, · · · ,m, j = 0, 1, · · · , n, wherem = M
h and n = N

k . Let v
M
i,j be the approximation

for vM (xi, yj) with discretization operators LH , BH defined by

LHvMi,j = µih
vMi+1,j − vMi,j

h
+

σ2

2
i2h2

vMi+1,j − 2vMi,j + vMi−1,j

h2
− ρvMi,j ,

BHvMi,j =
vMi,j+1 − vMi,j

k
+ (ih−K)+.

Substituting them into (8) yields,

LHvMi,j + λ(BHvMi,j)
+ = 0 for i = 1, · · · ,m− 1, j = 0, 1, · · · , n− 1.

On the boundary, we have

vM0,j = 0, j = 0, 1, · · · , n,
vMi,n = 0, i = 0, 1, · · · ,m.

In addition, vMm,j is given by (59) with y = jk for j = 0, 1, · · · , n .
The non-linear iteration method is applied here and we resort to the iteration

formula in [1] to deal with the non-linear term F+. With the ith iterative result F i

known, it gives (
F i+1

)+
= F i+1I{F i>0}, i = 0, 1, · · ·

where the indication function I{F i>0} = 1 if F i > 0, otherwise equals 0.

Consequently with the lth iterative solution vM,l obtained, we solve vM,l+1 using
the following equations,

LHvM,l+1
i,j +λ(BHvM,l+1

i,j )I{BHvM,l
i,j } = 0, for i = 1, · · · ,m−1 and j = 0, · · · , n−1.

6.3. Numerical Examples. In the sequel, we demonstrate some numerical ex-
amples obtained using the above simulation scheme, trying to examine the value
function and the corresponding optimal control through their approximations.

Data used for numerical tests are:

µ = 0.1, σ = 0.3, ρ = 0.15, λ = 1, K = 2, M = 5, N = 30. (60)

The graph of the value function v(x, y) shown in Fig.1 confirms the results in
Lemma 3.1. Clearly the more options the employee holds, corresponding to a smaller
y, the more returns she could possibly gain from these options and results in a higher
cost of these options for the company. It’s the same with the case when the stock
price x gets relatively high.
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Figure 1. The value function v(x, y)

Now recall our discussion about the optimal exercise decision. It’s clear that the
optimal control u∗ totally depends on Bv. Fig.2 shows that the threshold boundary
specified by Bv = 0 separates the entire region into two parts.
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0

5

10

15

20

25

30
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ER

Figure 2. The regions NR, ER and the threshold boundary

The region NR to the left of the boundary corresponds to u∗ = 0 where the
employee is not supposed to exercise any option, but hold and wait. While in ER
to the right, u∗ should attain λ suggesting the employee exercise the options at the
largest permissible rate at once.

Indeed it sheds light on the optimal exercise decision for practitioners in the
financial market. For an employee holding (N −y) shares of options, once the stock
price goes beyond a specific level given by the boundary, usually termed a threshold,
she should take action to exercise, otherwise take no action. Such threshold-style
strategy is rather appealing for practitioners due to its simplicity to grasp and
implement.

In addition, we are interested in the impact of varying model parameters on the
optimal exercise decision, with more numerical examples to follow.

6.3.1. Impact of varing ρ on u∗. Let the discount factor ρ take values 0.15, 0.18, 0.21
and fix the values of other parameters as in (60). In Fig.3, the region ER tends to
become larger with the threshold boundary moving upward while ρ increases. In
fact, a larger ρ implies deeper discount in the future, thus leading to earlier exercise
for the employee.

6.3.2. Impact of varing µ on u∗. Fig.4 illustrates the threshold value for different y
with the stock return rate µ = 0.1, 0.12, 0.14 and others maintained. Obviously, a
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Figure 3. Impact of varing ρ on u∗
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Figure 4. Impact of varing µ on u∗

larger µ encourages the employee to hold the options and wait more patiently since
it suggests a stronger increasing capacity for the stock price.
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Figure 5. Impact of varing σ on u∗

6.3.3. Impact of varing σ on u∗. The shift of the threshold boundary is shown to
be non-monotonic with respect to σ, as in Fig.5 where we take σ = 0.3, 0.8, 1.1. In
essence, a relatively higher stock volatility σ implies both more opportunity and
higher risk for the future stock mounting. When the employee still holds plenty
of options, i.e. a small y, she would pay more attention to the potential high risk,
resulting in more exercise pressure. Otherwise, with a few options yet to exercise,i.e.
a large y, she would wait longer and expect more exercise returns due to a larger σ.

6.3.4. Impact of varing λ on u∗. Fig.6 demonstrates the relationship between the
optimal control and the upper bound of the exercise rate. Intuitively, a larger λ
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Figure 6. Impact of varing λ on u∗

gives the employee more freedom to choose exercise rate, which makes her more
patient and expect more returns from exercising, thus leading to larger NR and
smaller ER which is confirmed by Fig.6 with λ taking values 1, 2, 3.

7. Conclusions. In this paper we consider the valuation and optimal exercise s-
trategy of perpetual American employee stock options. Adopting a fluid model
with restricted exercise rate to govern the exercise behavior, the value function is
defined as the maximum of the expected overall discount returns realized through
exercising the ESOs over time. This optimum value can be viewed as the initial
cost of these ESOs for the company and thereby determines the optimal strategy
for the employee. We derive the HJB equation governing the value function by the
dynamic programming approach and stochastic analysis theory. Some properties
of the value function are investigated in the sense of constrained viscosity solution.
Due to the unavailability of the analytical solution to the HJB equation, we ap-
proximate the value function and the corresponding optimal control by numerical
simulation. Furthermore, we analyze the impact of the varying parameters on the
exercise decision accompanied by some financial explanations. The obtained results
provide the reasonably estimated costs of ESOs for the company and the helpful
suggestions for the employees on how to select right exercise moments to achieve
most returns.

The nonstandard ESOs have involved many other outstanding features (see[10]
for details), especially the risk that the employee would possibly get fired or leave
the company voluntarily before the maturity of ESOs. It is interesting to investigate
how such job termination risk would affect the employee’s exercise behavior, which
we hope to incorporate it into our future model. On the other hand, considering that
most utility-based literature target at utility maximization to derive the optimal
strategy for agents in an incomplete market, it is reasonable to shift our goal to study
utility maximization strategy with trading constrains and seek other appropriate
ways to give the fair price of ESOs. Much research and efforts are expected in this
direction as well.
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