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Abstract. Electron correlation is an essential driver of a variety of relaxation

processes in excited atomic and molecular systems. These are phenomena which

often lead to autoionization typically involving two-electron transitions, such as the

well-known Auger effect. However, electron correlation can give rise also to higher-

order processes characterized by multi-electron transitions. Basic examples include

simultaneous two-electron emission upon recombination of an inner-shell vacancy

(double Auger decay) or collective decay of two holes with emission of a single

electron. First reports of this class of processes date back to the 1960’s, but their

investigation intensified only recently with the advent of free-electron lasers. High

fluxes of high-energy photons induce multiple excitation or ionization of a system

on the femtosecond timescale and under such conditions the importance of multi-

electron processes increases significantly. We present an overview of experimental

and theoretical works on selected multi-electron relaxation phenomena in systems of

different complexity, going from double Auger decay in atoms and small molecules to

collective interatomic autoionization processes in nanoscale samples.
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1. Introduction

Multi-electron relaxation processes are of fundamental importance for the understanding

of correlation in bound systems. Their study was stimulated for instance in connection

with the decay of the so-called hollow atoms, which can be produced in the course of

neutralization of slow highly charged ions at surfaces [1, 2] or upon irradiation of matter

by high-intensity X-ray free-electron lasers (FEL) [3]. The interaction between intense,

high-energy light pulses and matter has become a very active field of research and one

of today’s most exciting topics in atomic and molecular science. At high power densities

a large molecule or cluster can absorb a large number of photons, triggering the system

to undergo a transition to a highly excited state. Ionization is in this case strongly

interlinked with correlated electron dynamics, either due to multielectron collisions

with energy exchange or by autoionization processes related to interatomic Coulombic

decay (ICD), in which the energy acquired from relaxation of a vacancy on one cluster

constituent is transferred to a neighbor and utilized for its ionization [4].

What can possibly be considered as the first report of a three-electron relaxation

process was presented by Carlson and Krause in 1965 [5] who provided experimental

evidence for double Auger decay (DAD), in which two electrons are emitted upon

relaxation of a single inner shell vacancy. DAD emission may occur in two different ways.

In direct double Auger decay (DDAD), the two electrons are ejected simultaneously and

share the excess energy continuously with a pronounced preference of a U-shaped energy

sharing distribution that corresponds to the emission of one slow and one fast electron.

In contrast, cascade double Auger decay (CDAD) in which the two electrons are emitted

sequentially gives rise to a structured energy spectrum – each electron has a discrete

energy given by the energy difference between the initial, intermediate and final states

involved in the relaxation cascade. A number of theoretical and experimental studies

have been devoted to DAD in both atomic and molecular systems, and they show that

the contribution of the direct DAD driven by three electron correlation can indeed be

significant [6, 7, and references therein].

Another kind of three electron process is collective Auger decay (CAD) in which

two inner-shell vacancies are simultaneously filled by outer-shell electrons and a third

electron is ejected into the continuum.§ An analogous radiative process, in which a

double vacancy is filled by two electrons and a single photon is emitted is also known

[8, 9]. CAD was probably first observed in 1975 by Afrosimov et al [10] in collisions

of various ions with Ar atoms. More convincing experimental evidence was given by

Lee et al [11] in the case of resonantly excited Kr and by De Filippo et al in highly-

charged carbon atoms [12]. Theoretically, the CAD process is well understood in atoms

[9, 13]. The efficiency of CAD is usually very small, the branching ratio of CAD relative

to normal two-electron Auger decay ranging from 10−4 to 10−6. The larger value is

attained most often in low-Z atoms where 2s→ 1s shake-down processes dominate the

§ In existing literature, this relaxation transition is often termed double Auger decay, which may cause

confusion with the previously discussed process.
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relaxation due to the non-orthogonality of initial 2s and final 1s wave functions [14].

In high-Z atoms this effect is much less significant and CAD is driven purely by three-

electron correlation, leading to a substantial drop in efficiency. Compatible ratios were

observed for the cross sections of di- and trielectronic recombination, which represent

time-reversed processes related to normal and collective Auger decay, respectively. The

cross sections are therefore connected to the Auger rates by the principle of detailed

balance [15, 16].

Although CAD in atomic systems has been found to be extremely weak, under

favorable conditions the three-electron relaxation processes can become dominant decay

channels. An example of such a case is double inner-valence ionization in molecules.

For instance, the energy of doubly F(2s) ionized fluoromethane is well above the

triple-ionization threshold but all decay channels with at least one F(2s) vacancy are

energetically closed. Therefore, collective decay of the two initial vacancies represents

the only accessible non-radiative relaxation pathway. Recent ab initio calculations [17]

predicted a surprisingly short lifetime of about 3 fs, which is well within the range of

typical two-electron Auger decay. Excellent agreement of the calculated and measured

electron spectra provides experimental support for this rather astonishing result [17].

Over the last two decades, interatomic decay processes such as ICD [4] have

been studied intensively both theoretically and experimentally in weakly bound van

der Waals or hydrogen-bonded clusters [18]. Related collective decay processes of

multiply inner-valence ionized or excited clusters were recently proposed and observed

experimentally [19, 20, 21]. Despite the significantly weaker interatomic correlation

in van der Waals clusters as compared to molecules, it has been shown that higher-

order decay pathways can play an important role, particularly if the two-electron

radiationless decay channels are closed. Even the dissociative dynamics induced by

multiple ionization cannot fully quench the multi-electron relaxation. Very recently,

interatomic collective autoionization processes have been shown to play a dominant

role in resonantly irradiated helium clusters due to formation of a collectively excited

plasma-like state [22, 23].

Section 2 of the present review is devoted to the double Auger decay in atoms

and molecules and covers in detail both theoretical and experimental advances in the

field. Short account on the recently observed triple Auger decay is given in section 3.

Collective Auger decay in atoms and molecules is discussed in sections 4 and 5, followed

by a survey of multi-electron relaxation phenomena in clusters.

2. Double Auger decay

Of the multi-electron processes presented in the introduction, double Auger decay

(DAD) is the most thoroughly studied representative. Even though the process is,

of course, less probable than the ordinary single Auger decay (AD), it nevertheless

accounts for a sizable fraction of all relaxation processes of inner-shell vacancy states.

Therefore, it constitutes a practically accessible source of information about multi-
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electron correlations. It is particularly the direct double Auger (DDAD) process, in

which both electrons are ejected simultaneously, that is of interest in this context. In

the present section, we first review the theoretical description of DAD based on the

many body perturbation theory (MBPT). It provides an intelligible physical picture of

different mechanisms contributing to DAD and also guidance for distinguishing between

them by experiment. Then, an overview of available experimental and theoretical results

on DAD in different atomic and molecular systems is given.

2.1. Theory of DAD

Already in the pioneering work of Carlson and Krause [5] an attempt was made to explain

the observed DAD signal in terms of electron shake-off (SO), a transition induced by

changes in the effective charge. In this process, the primary Auger electron is ejected

rapidly after inner hole recombination and a subsequent transition of the secondary

electron to the continuum takes place due to the alteration of the atomic potential. The

probability of an electron vacating the nl orbital due to a sudden change of effective

charge by ∆Zeff can be estimated from the formula

Pnl = 1− |〈ψf |ψi〉|2, (1)

where ψi is the initial one-electron wave function of the nl electron in the field of an

effective charge Zeff and ψf is its final wave function for an effective charge Zeff + ∆Zeff .

It was immediately obvious that SO cannot fully explain DAD. For the Ne K vacancy,

the calculations gave an upper limit of 0.5% for the shake-off probability while the

measured relative abundance of Ne3+ was 8% [5]. Later theoretical calculations in

which SO was considered as the only DAD mechanism also strongly underestimated the

observed probabilities (see, e.g., Ref. [24]).

The first calculation of DAD rates in the framework of MBPT beyond the shake-off

model was performed by Simons and Kelly for the double 1s hole state of neutral lithium

[25]. More detailed analysis of the DAD transition amplitudes was performed by Amusia

and coworkers in a seminal work [26]. Three fundamental mechanisms contributing to

the decay were revealed – the sequential (cascade) pathway, simultaneous emission via

SO and knock-out (KO). The separation of SO and KO mechanisms was exploited by

Zeng et al [7, 27] to develop a practical method for the evaluation of DDAD rates, which

utilizes the distorted wave approximation and a large-scale configuration interaction

description of the successive ions.

In first order perturbation theory (PT), the single Auger rate is given by

A1
im =

4

km
|〈Ψ+

m|V |Ψi〉|2, (2)

where |Ψi〉 is the initial autoionizing level of the ion with charge q and |Ψ+
m〉 is the

momentum-normalized final continuum state of an ion with charge q+1 with an electron

in the continuum. km is the momentum of the Auger electron and V is the two-

electron interaction potential (Coulomb operator). Energy conservation εi = ε+m + k2
m/2
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is implied. The decay rate of a cascade double Auger (CDAD) can be evaluated by

subsequent application of the above formula for each cascade step as [26]

ACDAD
if = ~

∑
m

A1
imA

1
mf

Γm
, (3)

where Γm = ~
∑

f A
1
mf is the total decay width of the intermediate level |Ψ+

m〉. The

summation runs over intermediate energy levels of sufficiently long lifetime so that

the physical interpretation of sequential electron emission is meaningful. The energy

conservation law holds in each decay step, leading to a discrete energy distribution

between the two Auger electrons, and thereby to an electron spectrum which shows

distinct lines corresponding to energy differences between the initial and intermediate

and between the intermediate and final ionic levels.

For the study of multi-electron correlation, simultaneous ejection of both Auger

electrons is the more relevant mechanism. DDAD rates can be calculated in second

order PT as [28, 27]

A2
if =

8

π

∫ kmax

0

dkf1

kf2

∣∣∣∣∣∑
m

∫∑
km

〈Ψ2+
f |V |Ψ+

m〉〈Ψ+
m|V |Ψi〉

εi − ε+m − k2
m/2

∣∣∣∣∣
2

. (4)

Here, |Ψ2+
f 〉 is the final state of an ion with charge q + 2 with two continuum electrons

and |Ψ+
m〉 defined above now plays the role of a virtual intermediate state. The energy

conservation reads εi = ε2+
f + k2

f1/2 + k2
f2/2 with kf1 and kf2 being the momenta of

the two Auger electrons. To avoid double counting of the continuum states, the upper

integration limit is set to kmax =
√
k2
f1/2 + k2

f2/2. It corresponds to an upper limit

Emax/2 in an integration over the energy with Emax = εi − εf . The summations over

intermediate states |Ψ+
m〉 include summation over all possible (q + 1) ion levels and

a summation/integration over a complete set of bound and continuum states of the

remaining electron. The vanishing denominator D = εi − ε+m − k2
m/2 is treated in the

usual way using

lim
η→0

(D + iη)−1 = PD−1 − iπδ(D), (5)

where P stands for the principal-value integration.

Direct evaluation of the expression (4) is extremely complex. To simplify the

calculations, two approximate formulae can be derived which correspond to the SO

and KO mechanisms, respectively. In the case of SO-driven transition, the DDAD rate

can be decomposed into the formula

ASO
if =

∑
m

A1
im|〈Ψ2+

f |Ψ
+
m〉|2, (6)

where A1
im is the single AD rate from the initial hole level i to an intermediate level m.

Since the SO picture relies on the sudden approximation, it properly describes DDAD in

the high-energy limit of the (primary) Auger electron. In this limit, practical evaluation

of the overlap integral in formula (6) is further simplified since the first Auger electron

need not be considered. In contrast to CDAD, the SO process leads to continuous
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energy sharing between the two outgoing electrons, i.e., each of the electrons may have

any kinetic energy between 0 and Etot. It can be shown that the most probable energy

distribution is strongly asymmetric with one fast and one slow electron [26]. The higher

probability of “shaking” of a slow electron rather than a fast one can be easily deduced

from Eq. (6) since the overlap integral between the continuum wave function of the

outgoing (secondary) Auger electron and a bound electron orbital decreases rapidly

with increasing energy of the emitted electron.

At a lower electron energy the KO mechanism, also referred to as virtual inelastic

scattering, usually prevails. It corresponds to a situation where the imaginary part

of Eq. (5) dominates the DDAD transition amplitude. Neglecting the real part, the

formula for the KO rate simplifies to [27]

AKO
if =

∑
m

A1
imΩmf (εim), (7)

where Ωmf (εim) is the dimensionless electron impact collision strength. It is related to

the inelastic scattering cross section σmf of the ’intermediate’ Auger electron from the

middle level m to the final level f as (see, e.g., [29])

Ωmf (ε) =
gmk

2

πa2
0

σmf (ε). (8)

Here, gm is the statistical weight of the intermediate state |Ψ+
m〉 and k is the momentum

of the incident electron. Formula (7) directly suggests a physical picture of the KO

mechanism. An Auger electron is emitted with an energy εim which satisfies the energy

conservation law for a transition from the initial level i to an intermediate level m. This

electron collides inelastically with another outer-shell electron, which is also ejected to

the continuum. This interpretation is further supported by the analysis of Simons and

Kelly [25], who showed that the imaginary contribution to the DAD transition amplitude

is at the expense of the single AD rate. Indeed, some decay events which begin as single

AD contribute to DAD due to the subsequent electron collisions. In the case of KO, the

energy sharing between the two electrons is again continuous, but is determined by the

collision process. As in the case of SO, there is a preference for one fast and one slow

electron. However, the KO energy spectrum is typically flatter in comparison with the

pronounced U-shape of the SO one [30, 31].

Independent evaluation of the SO and KO rates by means of Eqs. (6) and (7),

respectively, neglects interference between the two mechanisms. Such an assumption is

certainly justified if one contribution dominates, which is the case of, e.g., the decay

of the Ar 2p vacancy [7]. For other systems such as Kr 3d the situation might be

more complicated due to the comparable strength of both contributions [27]. However,

studies of single-photon double photoionization (DPI) suggest that the two mechanisms

can be separated rather generally, possibly because of the quasiclassical nature of KO

contrasted with the purely quantum character of SO [30, 32].

Two-electron angular correlation patterns in double Auger decay were studied

theoretically by Amusia et al [26] and by Grum-Grzhimailo and Kabachnik [33]. The
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analysis revealed an important difference between simultaneous and cascade emission

mechanism. The angular distribution of cascade Auger electrons contains only even

spherical harmonics [34, 35]. It implies that the angular correlation pattern shows not

only axial symmetry with respect to the direction of emission of the first electron but

also a forward-backward symmetry. In the case of simultaneous process, this symmetry

can be broken by the occurrence of a minimum in the back-to-back emission for near

equal energy sharing between the two electrons [26, 33]. These properties were indeed

observed in rare gas atoms by Viefhaus and collaborators [36, 37].

2.2. Double Auger decay in rare gases

For a review of early studies on DAD see Ref. [38]. The first experimental observations

of DAD were based on measuring the ion yield following core ionization of different

rare gases [5, 39, 40, 41, 42, 43]. These experiments showed significant relative

abundances of ionic states of charges larger than two, making the rare gas atoms suitable

candidates for further studies of DAD. Subsequent measurements utilized electron-ion

[44, 45, 46, 47, 48] or electron-electron [49, 36, 37, 50, 51, 52, 53, 54, 55, 56] coincidence

techniques. These advanced approaches allowed for disambiguation between CDAD and

DDAD, utilizing the distinct characters of electron energy distributions.

For the Ne 1s core vacancy, the pioneering work of Carlson and Krause [5] gave the

branching ratio (BR) of DAD to the total decay rate as 8%. Later measurements refined

the value to 6% [43, 46]. In these two experiments, triple Auger decay to Ne4+ was also

detected, with a BR of approximately 0.3%. Viefhaus and coworkers [37] studied DAD in

Ne by means of angle-resolved time-of-flight electron-electron coincidence spectroscopy.

Although the DAD BR is not given by the authors, the approach makes it possible to

distinguish the direct and cascade decay pathways, based on the distinct character of

the respective energy spectra. For Ne, the measured coincidence spectrum shown in Fig.

1 exhibits continuous energy sharing between the two electrons, demonstrating that the

DAD is dominated by the direct process. Discrete structures characteristic of the decay

cascades are completely missing.

Further insight into DAD in Ne is provided by Hayaishi et al [57] who performed an

electron-ion coincidence study of resonant double Auger decay (RDAD) of the 1s−13p

resonance in Ne. The measured Ne2+ ion yield corresponding to RDAD was 33%,

but in contrast to core-ionized Ne, decay cascades are available for relaxation of the

studied resonance. Coincidence with threshold electrons made it possible to isolate the

contribution of the direct decay pathway with a BR of 6%. The similarity of the direct

double Auger BR for the core-ionized and core-excited states indicates that the process

is dominated by the KO mechanism. This conclusion is based on the reasoning that

excited electrons are more susceptible to SO than valence electrons. Therefore, if the SO

mechanism contributed significantly to the DDAD of the Ne(1s) hole state, the efficiency

would increase in the presence of the excited 3p electron through the participator decay

process. In the KO mechanism, the probability of the primary Auger electron to collide
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with valence electrons is higher than with the excited electron, which occupies a more

diffuse virtual or Rydberg orbital. Therefore, this mechanism involves predominantly

the valence electrons (spectator decay) and the presence of the additional 3p electron

does not significantly affect the probability of the decay process.

The experimental BR of 6% is in good agreement with the latest theoretical value

of 5.39% calculated by Kochur et al [58] by means of configuration interaction including

both core-core and core-Auger electron correlations. Similar CI-based calculations

of Kanngiesser and coworkers [46] included smaller numbers of configurations and

completely neglected the core-Auger electron correlation, leading to an underestimated

BR of 3%. Other available theoretical BR values include 0.5% estimated by Carlson

and Krause [5] considering solely the SO mechanism and 4% calculated by Amusia et

al [26] using MBPT theory. However, in the latter work, only the decay rate to the

2s−22p−1 channel was evaluated and the total DAD BR was then estimated assuming

uniform decay rates for the other relevant channels. The extremely small value obtained

by Carlson and Krause further confirms the dominance of the KO mechanism.

Before moving to heavier rare gas atoms, it is interesting to note that signal

attributed to DAD with a BR of about 1% was also observed by Kreidi and coworkers

[59] in a cold target recoil ion momentum spectroscopy (COLTRIMS) study of relaxation

processes following 1s photoionization in neon dimer. The COLTRIMS method makes

it possible to detect in coincidence the two Ne ions originating from Coulomb explosion

of two-site di- or tricationic states of the dimer and to extract a complete kinematic

description of the decay event. Only the K − L2,3L2,3L2,3 DAD channel is observed

in the experiment because it leads to asymmetric breakup through radiationless charge

transfer (CT). CT occurs due to nonadiabatic coupling between the one-site Ne3+(2p−3)-

Ne states, populated by DAD of the core hole atomic state, and two-site tricationic

states Ne2+(2p−2)-Ne+(2p−1). The measured BR is in reasonable agreement with the

K-L2,3L2,3L2,3 partial DAD rate of 1.64% calculated by Kanngiesser et al [46].

For Ar 2p core vacancy states, the experiments based on ion yield measurements

indicated a BR of DAD relative to total decay rates around 10% [39, 42, 43]. This value

was also confirmed by the electron-ion coincidence experiment of Saito and Suzuki [45].

More recent experiments favor a slightly higher BR of 13-15% [47, 37, 56]. However,

the discrepancies do not significantly exceed the stated experimental uncertainties. The

contributions from direct and cascade processes were determined from multi-electron

coincidence experiment by Viefhaus et al [37] as 9.6% and 3.4%, respectively. These

results are in very good agreement with the calculations of Zeng et al [7] who applied Eqs.

(6), (7) and (3) to determine the direct and sequential DAD decay rates. Using large-

scale relativistic CI calculations in combination with the distorted wave approximation,

they obtained 12.0% and 2.9% for the DDAD and CDAD BR, respectively. As in the

case of Ne 1s decay, DDAD is found to be dominated by the KO mechanism. The

calculated SO probability is only 0.6% in excellent agreement with the early estimate

by Carlson and Krause [39]. This result also justifies an independent evaluation of the

two contributions to the direct decay pathway. Even in the strongest channels, the SO to
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KO ratio does not exceed 7%, which can be used as an upper estimate of the influence of

interference between the two mechanisms. As in the case of Ne, the dominant role of KO

is further confirmed by the spectator character of the resonant DAD of 2p core-excited

Ar [31].

Going from Ar 2p to Kr 3d ionization, the DAD BR increases to about 25-30%

[60, 43, 45, 47, 48, 32]. In sharp contrast to the lighter Ne and Ar atoms, the relaxation is

found to proceed almost exclusively by cascade decay [50, 54, 55]. This is demonstrated

in Fig. 2, where the diagonal stripes are dominated by intense discrete spots. This

observation is in notable contradiction with the calculations of Zeng et al [27]. Using

the same approach as for Ar, they obtained for the CDAD and DDAD branching ratios

similar values, namely 16.6% and 16.5%, respectively. Surprisingly, this accounts for the

total DAD BR of 33.1%, which is in satisfactory agreement with the measured value.

The picture of DAD of the Xe 4d vacancy is similar to that of Kr 3d. The measured

DAD BR of 20% [44, 43, 45, 51] is lower, but the decay is again dominated by the

cascade process [49, 61, 50, 51]. Penent et al [51] investigated the cascade in detail

using multielectron spectroscopy with a magnetic bottle spectrometer and showed that

the dominant path is rapid (6 fs) ejection of a slow Auger electron followed by the

emission of a faster second electron within about 23 fs. Post-collision interaction (PCI)

in the two-electron emission was studied by Lablanquie and coworkers [49]. On the basis

of the theoretical results of Sheinerman and Koike [62, 63, 64], the observed line shapes

distortions further confirm the cascade character of the decay with initial emission of

the slower electron. From the analysis of the second Auger electron line shapes the

lifetimes of the intermediate states were estimated to be about 11 fs. Recently, in-

depth investigation of PCI in DAD of Ar 2p and Kr 3d vacancies through a combined

theoretical and experimental approach was conducted by Sheinerman and coworkers

[65, 66, 67].

From the existing literature it is not possible to draw any definitive conclusion

about the disagreement between theory and experiment concerning the contribution of

DDAD to the decay of the Kr(3d) vacancy state. However, it is noted by Viefhaus et

al [50] that despite the high resolution of the most recent experiments, the data usually

cannot completely rule out that the observed discrete lines corresponding to CDAD

are superimposed on continuously distributed electron intensity originating in DDAD.

Fig. 3 represents a particularly illustrative example of the problem. To help solving

it, angle-resolving capabilities of multi-electron coincidence measurements have been

employed as an alternative way to distinguish between the direct and cascade pathways.

As discussed in Sec. 2.1, the forward-backward symmetry of the two-electron angular

correlation patterns can be broken in the case of simultaneous emission. However, no

such breakdown was found in the Kr(3d) or Xe(4d) DAD spectra [50], in sharp contrast

to DAD of Ne(1s) and Ar(2p) vacancy states with prevailing simultaneous emission

[37, 36].
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2.3. Lithium-like atoms

Besides rare gases, the lithium atom, notably the Li∗(2s22p 2P 0) hollow resonance state

at 142.3 eV excitation energy, is another species particularly suitable to study DAD. As

a three-electron system, it represents the purest instance of multi-electron correlation.

Simultaneous two-electron emission is the only available radiationless pathway leading

to the Li2+ ion in its ground electronic state. Since the resonance energy is below

the lowest Li+∗ threshold, no intermediate states are available for the cascade pathway.

Hence, the analysis of DAD is greatly simplified and more transparent. As a few-electron

system, the lithium atom is also accessible to a less approximate theoretical description,

allowing for highly accurate calculations.

The one-step double autoionization of the Li∗(2s22p 2P 0) resonance was first

observed by Azuma et al [68] in a photoion yield spectra. The non-resonant double-

to-single photoionization ratio was estimated in this work as 1.3 ± 0.3%. Wehlitz and

coworkers [69] studied the resonance in a similar but more accurate photoionization

experiment in the photon energy range 141.5-143.5 eV. By analyzing the line profile of

the resonance in the Li+ and Li2+ photoion yield spectra, they determined the resonant

double ionization BR as 3.3%.

The first theoretical study of the DAD rate of Li∗(2s22p 2P 0) state was the

MBPT calculation with LS-coupled intermediate states by Simons and Kelly [25]. The

calculated DAD BR was 6.8%, i.e., by a factor of two larger than the experimental value.

The individual SO and KO contributions were identified as 53% and 32% of the DAD

rate, respectively. Remaining 15% of the intensity stem from terms of the transition

amplitude that cannot be associated with either of these basic mechanisms. A slightly

lower value of 5% for the DAD BR was obtained by Berrington and Nakazaki using

R-matrix theory [70].

A very accurate non-perturbative approach for three-electron atomic systems, based

on the time-dependent close-coupling (TDCC) method was developed by Pindzola et al

[71]. The electrons are described by a nine-dimensional wave function with a numerical

lattice representation of the radial dimensions and a coupled-channels expression for

the six angular dimensions. In this way, correlation effects among the three electrons

moving in the Coulomb field of the nucleus are fully taken into account. For the DAD

BR of Li∗(2s22p 2P 0), the method yielded the value of 3.7%, in excellent agreement with

the experimental value of Wehlitz et al [69].

Two-electron emission can also contribute to electron-impact ionization of Li or

Li-like ions in a process called resonant recombination auto double-ionization (RRADI):

e− + [A(1s22s)](q+1)+ −→ [A(1s 2s 2p nl)]q+,∗ −→ [A(1s2)](q+2)+ + 2e−.(9)

MBPT calculations of the RRADI cross sections in the Li isoelectronic sequence for

recombination through the 1s2s22p 3P intermediate states (population of the singlet

term is negligible in the recombination step) was conducted by Pindzola and Griffin

[28]. The lowest-order formulae (2) and (4) were used for the evaluation of single

and double Auger rates of the intermediate states, with certain higher-order effects
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being included through the use of multiconfigurational wave functions. Specifically,

for O4+(1s 2s22p 3P ) the calculations gave an upper limit for the DAD BR of 0.9%.

This is consistent with the experiment of Rinn et al [72] who did not detect any DAD

contribution to electron-impact ionization of O5+ but the determination was limited by

a noise level of at least 1%. However, the calculations suffer from large uncertainties

stemming from an unknown relative phase between the direct and exchange Coulomb

matrix elements entering Eq. (4). Furthermore, two different single particle basis sets

also yield notably diverse decay rates.

2.4. Double Auger decay in molecules

Double Auger decay in molecules poses an intrinsically even more intricate problem

than in atoms. Multiply charged molecular ions resulting from Auger decay are unstable

species prone to dissociation. Nuclear dynamics not only shifts and broadens the lines

in the electron spectra but the possible dissociation often leads to complex relaxation

pathways, namely in the cascade processes. An example was given already in Sec. 2.2 in

neon dimer, where atomic DAD results in a dissociative two-site ionic state through

radiationless CT. In larger molecules, the measured spectra are typically strongly

sensitive to the localization of initial inner-shell vacancies. Also, the known pace of

dissociation of autoionizing states can provide a natural in-built clock to measure the

electronic decay lifetimes in time-resolved experiments.

Using time-of-flight mass spectrometry and photoion-photoion coincidence

techniques, Hitchcock et al [73] showed that carbon 1s → 2π∗ photoexcitation in CO

produces a significant yield (about 32%) of doubly charged ionic fragments, indicating

the occurrence of resonant DAD. Three electron emission was detected in about 2% of

decay events. Detailed experimental analysis of the decay of the C(1s→ 2π∗) resonance

was afterwards conducted by Journel and coworkers [6]. They employed ion-ion-electron

and electron-electron coincidence techniques to study spectra of all products of four

different channels accessible via DAD: C+ + O+ + 2e−, (CO)2+ + 2e−, C2+ + O + 2e−

and C+O2+ +2e−. Both DDAD and CDAD mechanisms have been observed, including

complex sequential processes such as dissociation of the intermediate molecular ion

CO+∗ followed by autoionization of the oxygen fragment. A clear signature of the direct

process is provided by the nonzero intensity of electron emission in the energy region

where no (CO)+∗ intermediate states are found. The lower bound for the contribution

of the direct mechanism was determined as 20% of the overall DAD. For higher core-

excited resonances, DAD was found to proceed almost exclusively via cascade pathways

[74].

Eland and coworkers studied triple ionization in decay of core-ionized states of

methane [75], OCS [76] and carbon disulfide [77] by use of three-electron coincidence

spectroscopy. In CS2, the triple photoionization yield was found to be 12% for a photon

energy just above the S(2p) edge and 24% above the S(2s) edge. For comparison, in the

OCS molecule, ionization by a photon with energy just above the S(2p) edge leads to
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triple ionization only in 2% of the events, increasing no higher than 6% if the photon

energy is above the C(1s) and O(1s) edges. In the experiments, both DDAD and CDAD

have been detected, however, BR were not extracted by the authors.

The cascade processes were found to be characterised by emission of a very low

energy electron, therefore, selection of coincidence events where both Auger electron

energies are above certain values effectively eliminates the cascade mechanism from the

collected data. It allows for a thorough analysis of the DDAD spectrum and triply

ionized final states population. Methane provides a particularly useful example for

such a study because its very simple structure enables transparent identification of the

orbital character of the final states. It was found that the inner-valence C(2s)-like

orbital has a greater tendency to provide the Auger electrons than the outer-valence

electrons. Furthermore, doublet spin states are preferentially populated compared to

quartet states in the DAD from initially closed shells [76]. Analogous preference for

singlet over triplet doubly ionized final states has been reported previously for single

AD from closed-shell species [78, 79].

3. Triple Auger decay

In Sec. 2.2 we mentioned the possible observation of triple Auger decay (TAD) in the

neon atom [43, 46]. Recent outstanding experimental advances have made it possible

to detect such weak processes more reliably. In analogy to hollow lithium atoms,

the C+(1s2s22p2 2D,2P ) resonances of a singly charged carbon atom represent ideal

metastable states to study TAD. Indeed, for a five-electron configuration with a K

vacancy and four electrons in the L-shell, the simultaneous emission of three electrons is

the only radiationless mechanism available for the production of C4+ ions in the ground

electronic state. Detection of the helium-like C4+ ions therefore unambiguously identifies

direct TAD.

Müller et al [80] investigated single, double and triple ionization of C+ by single

photons in the energy range of 286-326 eV, i.e., in the region from the lowest-energy

K-vacancy resonances to beyond the K ionization threshold. Clear signatures of the

C+(1s2s22p2 2D,2P ) resonances were found in the triple-ionization channel. Since

alternative multi-photon and collision processes leading to the production of C4+

ions are ruled out as extremely weak in comparison with the single-photon resonant

excitation, the measurement provides clear experimental evidence for direct TAD with

BR approximately 0.013%. For comparison, the DAD BRs were determined as 2.59%

and 3.22% for the 2D and 2P terms, respectively. As the correlated dynamics of the

three unbound electrons in the external field of the closed-shell C4+(1s2) ion is not

complicated by sequential decay, TAD in C+ provides access to experimental study of

the so-called four-body Coulomb problem previously explored in triple photoionization

of Li [81].
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4. Collective Auger decay

An ion with two inner valence vacancies and several electrons in the outer shells will

most probably decay by two separate Auger transitions, each one filling a single vacancy.

However, there is a possibility for a three-electron Auger decay process in which the two

inner-shell holes recombine simultaneously and the total relaxation energy is carried

away by a third electron. In the present review, we call this process (three-electron)

collective Auger decay (CAD), referring to the collective recombination of two vacancies.

In existing literature, the transition is often referred to as double Auger decay which

may, however, cause confusion with the process discussed in the previous sections.

Different CAD transitions are depicted in Fig. 4. The most widely studied case

(I) results in the ejection of electrons with about twice the normal Auger energy. It

is found to be typically orders of magnitude slower than the competing two-electron

transition. Consequently, the literature on CAD is much less extensive than that on

DAD. Nevertheless, a number of both experimental and theoretical studies have been

conducted. Furthermore, recent findings show that the extent of CAD can increase

under favorable conditions. Indeed, there exist doubly inner-valence ionized states for

which CAD is the only non-radiative decay process available. Particularly in molecules

the CAD rate can be greatly enhanced by very strong configuration interaction in

the valence and sub-valence shells, reaching values comparable with the ordinary two-

electron AD. The CAD probability relative to the AD one is the most important quantity

to assess the significance of this relaxation process. In the following, we use the notation

R3 = ΓCAD/ΓAD for the ratio between the total CAD and AD rates if both processes

are available for a given metastable state.

4.1. Experimental evidence for CAD in atoms

A CAD LL − MMM transition was first proposed in 1971 as an explanation for a

peak corresponding to the electron energy Ee = 500 eV, observed by Ogurtsov et al [82]

in the spectrum of electrons produced in Ar+ − Ar collisions. However, the spectral

feature itself was later questioned as an apparatus effect by Rudd and coworkers [83],

who observed no such signal in similar measurements.

More convincing experiment was performed in 1975 by Afrosimov et al [10], who

studied the decay of two L2,3 vacancies produced in collisions of N+, N+
2 , Ar+ and

Cl+ ions with Ar atoms. In these collisions, the two vacancies are created in Ar,

with the exception of collisions with Cl+ where the L2,3 holes are produced with high

probability in the Cl atom. In both cases, sequential decay by two ordinary L −MM

Auger transitions is found to be almost completely dominant. The observed relative

probability of the LL−MMM CAD transition lies in the range 10−3−10−4. Assuming

that the lifetime of the double L-vacancy state with respect to the two-electron L−MM

transition is comparable to that of the single vacancy state (i.e., 10−14 − 10−15 s), the

CAD lifetime can be estimated as 10−10 − 10−12 s. In the same group, KK − LLL

CAD of double core hole states of C and N was observed in analogous ion-atom collision
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experiment [84]. The measurement yielded comparable relative CAD intensities, namely

2.2× 10−4 for C and 3.1× 10−4 for N.

The KK − LLL CAD in nitrogen was also observed by Moretto-Capelle and

coworkers [1] as weak features between 570 eV and 950 eV in the electron spectrum

from slow bare N7+ ions approaching a Si surface. In a similar experiment, Folkerts

et al [2] studied electron spectra arising from collisions of C6+ and N7+ ions on a Ni

surface, also detecting distinct peaks at about twice the ordinary Auger energy (i.e.,

around 592 eV). In this type of experiment, the bare ions already possess the required

inner-shell holes and outer electrons are captured from the metal surface. The capture

process is very efficient and many electrons are attached into the L-shell before the inner

holes can decay. Rapid capture is vital for potential observation of CAD since at least

three electrons in the L-shell are necessary for the collective decay to be possible. The

measured spectra made it possible to determine the R3 ratio as (3.4 ± 0.6) × 10−4 for

carbon and (3.1 ± 0.4) × 10−4 for nitrogen [2]. Comparing to the very similar CAD

probabilities measured by Afrosimov et al [84] given above, these numbers suggest a

complete filling of the L-shell in bare ion-surface collisions prior to the recombination

of the core holes. This conclusion is further supported by the energy positions of the

corresponding peaks in the electron spectra, which indicate large shielding of the core

charge by the L spectator electrons.

Another way to prepare ions with electronic configurations allowing KK − LLL

transitions is beam-foil excitation, where a swift ion beam interacts with a thin foil. In

contrast to the slow ion-surface collision experiments, Auger electrons from the target

foil cannot obscure the spectra since Auger electron emission from the fast projectile

takes place with energies in the laboratory frame well above 10 keV. Electron emission

from collisions of C3+ ions with carbon foils of various thickness was studied by De

Filippo et al [12] using a time-of-flight technique. A weak structure is visible in the

collected spectra at the flight time corresponding to an energy of (647 ± 110) eV in

the projectile reference frame. Even though the energy position is displaced compared

to the value of 592 eV given by Folkerts et al [2], the results are compatible within the

experimental error margins and the KK−LLL CAD is the only conceivable explanation

for the observed electrons. The R3 ratio could not be determined since the normal Auger

peak is not visible for kinematic reasons.

Lee et al [11] demonstrated, with the Kr atom as an example, that collective decay

is also a possible relaxation pathway for a final state of a spectator resonant Auger

(RAD) transition:

Kr∗(3d94s24p65p) −→ Kr+(3d104s04p65p)+e−A −→ Kr2+(3d104s24p4)+e−CAD.(10)

The identification of the observed lines in the measured electron spectra as CAD is

not unique and hinges on the correct assignment of the intermediate state of the decay

cascade. Other processes emitting electrons with similar energies cannot be completely

ruled out. The alternative pathways, however, require rather complicated intermediate

states to be formed and appear to be even less probable. According to the authors, the
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interpretation could ideally be corroborated by a coincidence measurement.

Such an experiment was carried out recently by Eland et al [85] and indeed

confirmed the three-electron character of the second step of the decay cascade initiated

by 3d → 5p excitation of Kr. The experiment combined energy-selected synchrotron

light with a magnetic bottle time-of-flight spectrometer, which enabled the detection of

the photoelectron, the resonant Auger electron and the CAD electron in coincidence.

The 29.3 eV resonant Auger electron unambiguously selects events in which the

intermediate Kr+(3d104s04p65p) double-vacancy state is populated. The resulting triple

ionization spectrum clearly contains a group of lines corresponding to formation of Kr2+

in its ground state configuration 3d104s24p4, see Fig. 5. At lower electron energies, the

more intense lines correspond to formation of excited Kr2+(3d104s14p5) ions that are

accessible by competing two-electron transitions. The uncommonly high R3 ratio of

about 2.5% is connected with the low energy of 20-25 eV of the outgoing CAD electron.

Information on the CAD rate can also be obtained from the study of trielectronic

recombination (TR). In this process, attachment of a single electron to an ion is

accompanied by simultaneous excitation of two core electrons. Therefore, TR can be

viewed as a time-reversal process to CAD. As such, the TR rate is connected to the CAD

rate through the principle of detailed balance. TR to He-like Kr34+ ions was studied by

Chevallier et al [15] by using the method of channeling the ions through a thin Si crystal.

Since the KK−LLL resonant trielectronic capture is followed by stabilization involving

the emission of two K photons, the TR signal can be unambiguously extracted from a

K x-ray – K x-ray – Kr33+ triple coincidence measurement. The upper limit for the TR

cross section was determined as 1.9× 10−27 cm2. This corresponds to the ratio of tri- to

dielectronic recombination cross sections of 5× 10−6, which is directly comparable with

the relative intensity of CAD from the double core hole state of the Li-like krypton. To

our knowledge, there is no direct observation of CAD in high-Z atoms, which could be

compared to this result. However, considering that the experimental value represents an

upper limit, it is in reasonable agreement with the R3 ratio of 2.8× 10−7, calculated by

Marques and coworkers [13]. These results indicate that in high-Z atoms the significance

of CAD drops significantly by about two orders of magnitude. The explanation given by

Vaeck and Hansen [14], which is based on the decrease of the efficiency of shake-down

mechanism, is discussed in the following subsection.

4.2. Theory of CAD

Two early theoretical studies of collective Auger decay rates were carried out by Ivanov

et al [86] and by Simons and Kelly [87]. Ivanov and coworkers calculated CAD rates

for Li-like ions with different atomic numbers Z in second order of MBPT, employing

Coulomb single-electron wave functions as basis. For the electronic configuration 2s22p,

a simple dependence of the CAD rate on the atomic number Z was derived, namely

ΓCAD = 0.126× 1013Z−2 s−1. (11)
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Specifically, for the Li atom Eq. (11) yields a rate of 1.4×1011 s−1. Using an approximate

dependence of the AD and CAD decay rates on the number of electrons available for

the decay transitions, the result can be extrapolated to atoms with more than three

electrons. For double K-vacancy states of C and N, Ivanov et al [86] estimated the

R3 ratios as 2.1 × 10−4 and 2.3 × 10−4, respectively. These values are in very good

agreement with the experimental results 2.2 × 10−4 for C and 3.1 × 10−4 for N [84].

From the decomposition of the transition amplitude it follows that the contributions to

the CAD process stemming from correlation in the initial and final states of the process

are equally important. This finding is interesting in comparison with two-electron–one-

photon transitions where the probability is almost completely determined by a first-order

correction to the final state wave function [86, 88].

Single and collective Auger decay rates of the 2s22p excited state of lithium were

also calculated by Simons and Kelly [87] at the same order of MBPT but with LS-

coupled intermediate states and a HF single-electron basis. The calculated CAD rate

is 1.57 × 1011 s−1. The 10% disagreement with the calculation of Ivanov et al [86] is

explained by inclusion of 2p3 mixing in the initial state. For the R3 ratio this gives

8 × 10−4, in accordance with the available experimental results for low-Z atoms. For

direct comparison, Simons and Kelly evaluated also the radiative decay rate for the

excited state of interest, obtaining a value 6.44 times smaller than the CAD rate.

It shows that even higher-order multi-electron processes are still more efficient than

interaction with the electromagnetic field.

A comprehensive MBPT study of correlated decay of two vacancies in Ne, Ar and

Kr atoms was performed by Amusia and Lee [9]. Contrary to previous studies, which

considered only transitions where the initial holes belong to the inner shells and final

vacancies to outer shells (transition of type I in Fig. 4), Amusia and Lee considered also

transitions of types II and III with one final vacancy belonging to a deeper shell (with

respect to the initial hole). The energy gained from the recombination of one of the

initial vacancies is, therefore, distributed among two electrons to excite one and ionize

another. Such transitions lead to the emission of slower electrons compared to the decay

of type I.

For CAD of type I in Ne2+(1s−2) and Ar2+(2s−2), Amusia and Lee obtained total

decay rates of 2.57 × 1011 s−1 and 8.34 × 1011 s−1, respectively. In Ne, the analysis of

the MBPT contributions to the total transition amplitude shows that it is dominated

by the imaginary part, which is proportional to the products of the Coulomb matrix

elements

ImA ∼ 〈i1k0|V |f1f2〉〈i2q|V |k0f3〉. (12)

where the spin orbitals iα and fβ correspond to the initial and final vacancies,

respectively, q to the emitted CAD electron and k0 to a virtual electron with an energy

equivalent to that of an ordinary i1 → f2f3 Auger transition. We have employed the

notation for Coulomb integrals over spin orbitals

〈ik|V |jl〉 =

∫
ψ∗i (r1)ψ∗k(r2)

1

|r1 − r2|
ψj(r1)ψl(r2)dr1dr2. (13)
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The CAD transition amplitude (12) leads to a two-step interpretation of the process.

First, ordinary Auger decay of one 1s hole takes place emitting an electron k0. This

electron then recombines with the second 1s vacancy, leading to emission of the CAD

electron q. In the heavier Ar atom, such a dominance of the imaginary parts of

the MBPT transition amplitudes is found only for one particular transition, namely

2s−2 → 3s−23p−1 +q, but the corresponding partial decay rate is one order of magnitude

larger than for other channels and this pathway again dominates the collective decay.

Transitions of type II and III were studied in suitable metastable states of doubly-

ionized Ar and Kr. The measurement of CAD after resonant Auger decay in Kr [85]

discussed in a previous section indicates that a lower energy of the emitted electron can

lead to a significant increase in the efficiency of the collective decay. This result is in full

accordance with the calculations. For instance, the 3s−14p−1 → 3d−14s−2 transitions

of type III in Kr have decay rates around 1013 s−1, i.e., two orders of magnitude larger

than the typical values obtained for type I decay pathways [9]. The CAD electron is

in this case emitted with an energy of about 105 eV, compared to about 582 eV for the

dominant CAD transition of type I in Ar2+(2s−2).

Valuable insight into the mechanism of CAD is provided by the theoretical papers

of Vaeck and Hansen [14] and of Marques et al [13] who studied CAD in low-Z and high-

Z atoms respectively. In double K-hole states of low-Z atoms, the main contribution to

the CAD process stems from the 2s → 1s shake-down (SD) mechanism accompanying

normal K − LL Auger transition. If SD dominates, the ratio between the particular

CAD transition probability and the probability of the corresponding normal Auger decay

channel can be estimated solely from the overlap integral between the initial state 2s

and final state 1s orbitals as [14]

ΓCAD
p /ΓAD

p ≈ q|〈1sf |2si〉|2. (14)

The factor q equals two if there is one 2s electron in the final state of the normal

Auger decay and q = 1 otherwise. An example of the former case is the CAD transition

2s2pN → 1s22pN−2, which corresponds to 2s2pN → 1s2s2pN−2 AD channel with SD of

the 2s electron. For the 2s22p6 → 1s22p5 + e−CAD transition in Ne2+(1s−2), the shake-

down approximation (14) gives a partial rate 1.5× 1011 s−1, in excellent agreement with

the full calculation by Amusia and Lee [9], who obtained 1.6 × 1011 s−1 for this partial

rate.

If the shake-down mechanism is operative, typical values for the R3 ratio are of

the order of 10−4. Purely correlation-driven transitions (i.e., those involving only 2p

electrons) lead to relative CAD probabilities which are about two orders of magnitude

smaller. For example, for the N(2−M)+(2sM2p5) double core hole state of the nitrogen

atom, the R3 ratio was calculated as 4.4× 10−4 and 1.7× 10−4 for initial configurations

with two and one 2s electrons, respectively. For the initially empty 2s orbital (M = 0)

the R3 ratio drops down to 3.0 × 10−6 [14]. Comparison with the R3 ratio of

(3.1± 0.4)× 10−4 measured in bare ion-surface collisions by Folkerts et al [2] indicates

that at least one 2s electron is captured prior to the decay event.
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Marques et al [13] focused on high-Z atoms and calculated the AD and CAD rates

for lithium-like Kr, Nb and Gd ions with all three electrons in the L-shell. The rates were

computed using multiconfigurational Dirac-Fock (MCDF) bound-state wave functions.

The shake-off mechanism was not included, but since with increasing atomic number

the 〈1sf |2si〉 overlap decreases the approach is justified. Indeed, for the two-electron–

one-photon radiative transition, the effects of relaxation were estimated to account for

about 20% and only 8% of the total intensity for Z = 36 and Z = 54, respectively

[13]. Similar trends can be expected also in radiationless transitions. Therefore, in

higher-Z atoms the collective decay is indeed a purely correlation-driven process with

characteristic decay rates of order 108 s−1 and relative intensities R3 ≈ 10−7.

From the above results it follows that for atomic ions the measured and calculated

CAD rates agree at least semiquantitatively in all studied cases. If the CAD is purely

correlation-driven, it proceeds on a nanosecond time scale and its relative probability

with respect to competing two-electron transitions is extremely low. This makes a direct

observation of the process immensely difficult. In lighter atoms, however, the efficiency

of the CAD of double core hole states can be significantly enhanced by the shake-down

mechanism. Resulting CAD probabilities are close to 0.1% and the process becomes

accessible to experiment. The CAD rate increases also if the energy of the emitted

electron is low. This is exemplified by the decay cascade from resonantly excited Kr

[11, 85], in which the CAD electron emitted in the second step carries energy only about

20-25 eV.

5. Collective decay in molecules

In previous subsections we have seen that in the case of atomic double core holes the

rates of collective decay processes relative to ordinary Auger decay are of the order of

10−4 − 10−7. Therefore, CAD does not play a significant role in the relaxation of such

highly excited states. It has been shown recently [17] that the situation can be radically

different for doubly inner-valence ionized states of a variety of molecular species. Not

only is CAD often the single possible radiationless decay channel for this class of

metastable states, but it can proceed on the few-femtosecond time scale reminiscent

of normal Auger transitions.

Doubly inner-valence ionized molecular states, however, often present an assignment

problem due to the so-called molecular orbital (MO) picture breakdown [89]. Because of

the very efficient configuration mixing in the valence shell, doubly inner-valence ionized

states often cannot be assigned to any single two-hole (2h) configuration corresponding

to the removal of electrons from two specific molecular spin-orbitals. This situation

is typical for states related to ionization from shallow inner-valence orbitals, such as

carbon or nitrogen 2s orbitals. Consequently, relaxation of such states cannot be reliably

interpreted as collective decay.

To avoid these problems, Feifel et al [17] focused in their joint experimental and

theoretical study of CAD on small molecules bearing relatively deep (e.g., F 2s−2) double
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inner-valence holes. Using the ab initio Fano-ADC method [90] they calculated CAD

lifetimes for a few such double vacancy states in small molecular species. The results

range from 13 fs for the F2 molecule down to 1.1 fs for the double O 2s hole in the OH−

molecular anion. One reason for these extraordinary short lifetimes is the low energy (0

to 20 eV) of the secondary electrons emitted in the CAD process. This, however, cannot

fully account for the ultrafast character of the three-electron transitions.

The second and more important reason can be traced to the aforementioned efficient

configuration interaction both in the initial doubly-ionized and final triply outer-valence

ionized states of the decay. In the frozen-orbital single-configuration picture the CAD

process is forbidden, i.e. the main 2h configuration representing the initial state is

not coupled directly to the final states characterized by three holes and an electron in

the continuum. However, even a modest configuration mixing can change the situation

dramatically and make the transition partially allowed. The numerical calculations

show (see Tab. I in Ref. [17]) that for the studied doubly inner-valence ionized states,

shake-up type configurations constitute up to 30-40% of the associated wavefunctions.

Some of those configurations are coupled directly to the main configurations of the CAD

final states. At the other extreme, in the expansion of the final states the dominant

configurations with three outer-valence holes are mixed with configurations possessing

one inner-valence hole, again contributing to direct coupling of the correlated initial and

final states.

To confirm the theoretical results, coincidence experiments were carried out on the

CH3F molecule [17]. The experimental setup was similar to that used to study CAD

in Kr atom [85], i.e. energy-selected synchrotron light from the storage ring BESSY II

was combined with a magnetic bottle time-of-flight electron spectrometer. Collective

decay was observed in Auger-CAD cascades initiated by C or F core ionization. The

double F 2s inner-valence vacancy state of CH3F2+ was located in both the carbon and

fluorine Auger spectra around 98 eV ionization energy. The experimental setup made

it possible to detect in coincidence all three electrons produced in the photoionization-

induced cascade, i.e. the core photoelectron and two secondary electrons. By choosing

triple coincidence events where one electron signals the initial 1s hole formation, a

second electron shows population of the 98 eV CH3F(2s−2) state and a third electron

confirms its subsequent electronic decay, triple-ionization spectra produced through the

intermediate formation of the desired double inner-valence hole state were extracted.

The spectra are shown as error bars in Fig. 6 together with theoretical simulations.

The fact that they do not extend to ionization energies below 70 eV and have a peak

near 90 eV suggests that the CAD process populating the triply ionized states from the

intermediate F 2s double hole state is very rapid. If it did not occur on a roughly

femtosecond time scale, Coulomb explosion of the molecular ion would precede it and

the separated fragments would show as intensity in the spectra at lower energy.

This conclusion is supported by the theoretical simulations shown in Fig. 6 as

solid curves. In the calculations, nuclear dynamics along the essential C–F bond in

the intermediate CH3F2+(2s−2) state were taken into account, assuming this state is
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populated instantaneously by normal Auger decay at R(C−F) = 1.315 Å for the C(1s)

cascade and at R(C−F) = 1.4 Å for the F(1s) cascade. For more details, see Ref. [17].

Since only three-electron relaxation transitions were considered in the evaluation of the

decay width of the CH3F2+(2s−2) intermediate state, the excellent agreement between

the simulations (blue curves in Fig. 6) and experiment confirms that the decay of the

double F 2s hole state is dominated by ultrafast CAD. To further verify the sensitivity of

the spectra to the decay rates, simulations were also performed with the ab initio decay

widths scaled down by a factor of 5 (magenta lines in Fig. 6). Slower decay obviously

leads to notably poorer agreement with the experimental spectra, particularly in the

case of the C 1s Auger route.

6. Collective interatomic Coulombic decay in clusters

Over the last two decades, considerable attention has been paid to different interatomic

decay processes in van der Waals or hydrogen-bonded clusters. A model example is the

interatomic Coulombic decay (ICD) predicted theoretically by Cederbaum et al [4]. In

ICD an inner-shell vacancy on one cluster subunit (atom or molecule) recombines with

an outer-shell electron and the excess energy is utilized to ionize neighboring species.

This process is characteristic of inner-valence vacancies such as Ne(2s−1), which are not

energetic enough to undergo Auger decay in an isolated atom. The ICD process in a

cluster is still energetically allowed due to the existence of final doubly ionized states

with positive charges residing on different and separated cluster subunits, reducing the

Coulomb repulsion. Depending on the size and composition of the cluster, ICD occurs

on time scales from hundreds of femtoseconds [91, 92] down to several femtoseconds

[93, 94, 95]. For recent reviews on ICD and related processes see Refs. [96, 97].

Contrary to the Auger process, which is mediated by electronic correlation within

an atom or molecule, ICD and related interatomic phenomena are driven by electronic

correlation between two or even more atoms. In the context of the present review it is

natural to ask whether there exist also multi-electron processes similar to double or

collective Auger transitions, mediated by such nonlocal correlation. Averbukh and

Kolorenč [19] proposed collective ICD of multiple vacancies in clusters, analogous

to CAD, in which two inner-valence vacancies in a multiply ionized cluster decay

simultaneously, emitting a single electron from a neighboring atom. For example, in

mixed Kr-Ar clusters the process can occur following 4s ionization of two neighboring

Kr atoms as shown in Fig. 7. In analogy to the established physical picture of ICD as a

virtual photon transition [94, 98], this process can be interpreted using a multi-virtual

photon mechanism.

Due to the very low Kr 4p → 4s relaxation energy, a single Kr 4s vacancy cannot

decay by an Auger or ICD process and collective ICD represents the only radiationless

decay channel. Similar conditions in which collective ICD occurs without competition of

two-electron relaxation transitions can arise in a wide variety of multiply inner-valence

ionized clusters. Examples can be found among clusters of nonmetal hydrides (HCl, HBr,



21

H2S, PH3,. . . ) or small hydrocarbon molecules. Despite being the only radiationless

decay mode, however, collective ICD can be quenched by dissociative nuclear dynamics

of the multiply ionized cluster. In order to assess the feasibility of this higher-order

process, Averbukh and Kolorenč [19] studied the competition between electronic decay

and cluster disintegration in the specific example of a Kr2Ar trimer using the Fano-

ADC method [90] for the decay widths and simulation of the wave packet evolution

on complex potentials. At the equilibrium geometry, the calculated collective decay

width is 2 meV. The corresponding lifetime of about 300 fs is five orders of magnitude

shorter than that of the radiative decay [99] but is comparable to the characteristic times

associated with nuclear dynamics. Therefore, the latter has to be taken into account for

proper evaluation of the importance of the electronic transition being considered. The

calculated collective ICD yields range from 30% to 65%, depending on the mechanism

of the initial double ionization. Hence, collective decay can contribute substantially to

the accumulation and redistribution of positive charges in a cluster exposed to ionizing

radiation. Furthermore, collective ICD is expected to be even more significant if the

cluster is initially multiply excited rather than ionized since under such conditions the

multi-electronic process proceeds without the competition from cluster disintegration

[20].

A similar collective ICD transition of two inner-valence vacancies localized on a

single atom is possible in Ne2 following single-site double Ne 2s ionization [100] and in

NeAr dimers after double Ar 3s ionization [101]. The three-electron decay

NeAr2+(3s−2 1S) −→ Ne+(2p−1 2P ) + Ar+(3p−2 3P ) + e−ICD (15)

was indeed observed by Ouchi et al [21] by means of momentum-resolved electron-

ion multi-coincidence spectroscopy. The results suggest that the collective ICD is

significantly faster than other available relaxation processes like radiative decay or charge

transfer. It is interesting to note that for the particular transition represented in Eq.

(15), the usually dominant energy transfer mechanism is effectively forbidden due to the

different spin multiplicity of the initial and final two-vacancy states of Ar. Therefore,

electron exchange is required between the Ne and Ar atoms. Such transitions are

governed by the overlap between the participating orbitals residing on the neighboring

atoms and the associated decay rates decrease exponentially with increasing interatomic

distance. Consequently the decay takes place dominantly at the smallest possible bond

length.

Despite the scarcity of work on multi-electron interatomic decay processes available,

the results presented hitherto suggest that under certain conditions such processes can

become significant or even dominant relaxation channels. This observation highlights

the importance of multi-particle correlation between electrons localized on different

constituents even in weakly bound aggregates. Furthermore, since the collective ICD

discussed in Ref. [19] is expected to occur unhindered by other electronic processes in

clusters of small hydrocarbons, it can be relevant for the mechanism of radiation damage

in organic compounds. Therefore, collective processes have to be taken into account in
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future studies on interatomic energy and charge transfer processes.

7. Collective autoionization of nanoscale systems

When multiple photons are absorbed in a complex system upon irradiation by a powerful

free electron laser, a plasma-like state can be formed where many atoms are ionized

on a femtosecond time scale. With sufficiently intense fields, the formation of the

so-called nanoplasma is found to be nearly independent of the type of the radiation.

It can be produced by infrared radiation due to a strong resonant coupling of the

cluster to the light’s electric field or by ultraviolet radiation via single and multi-photon

ionization. Nanoplasma can be formed also by X-ray radiation since a highly charged

cluster can trap even fast photoelectrons in the keV range [102, 103]. Subsequent quick

thermalization is accompanied by evaporation of slow electrons [104].

For radiation at energies below the ionization threshold photon absorption can

be resonantly enhanced. The system then becomes electronically excited prior to

plasma formation, which is followed by a variety of relaxation processes in which

multiple electrons can participate. Recently, such decay processes named collective

autoionization (CAI) were studied in He nanodroplets [22, 23]. For photon energies

below the ionization threshold, multiple photons are required to ionize the system.

The ionization can proceed either via multiphoton absorption of a single atom or via

absorption of single photons by multiple atoms followed by CAI. The basic mechanism

underlying CAI is equivalent to two-electron ICD between two excited atoms as proposed

by Kuleff et al [20], however, a number of alternative pathways involving three or

more electrons may be operative [23]. Experimentally, CAI can be distinguished from

multiphoton ionization by utilizing the first-order perturbation theory formula for the

ionization rate

Γ = σIn, (16)

where σ is the ionization cross section, I is the radiation intensity and n the number

of absorbed photons [22]. Therefore, while two-photon ionization of a single atom

is characterized by quadratic power dependence, in the case of CAI linear intensity

dependence of the ionization rate can be expected.

LaForge et al [22] studied photoionization of helium nanodroplets at the FERMI

FEL at three different photon energies. The measured FEL intensity dependence of

the ion yield is shown in Fig. 8. The red circles correspond to a photon energy of

42.8 eV, well above the ionization threshold. The fitted slope of 1.07±0.01 clearly shows

that one-photon ionization dominates. At the nonresonant below-threshold energy of

20.0 eV (blue circles), the slope of 2.06± 0.09 confirms the direct two-photon ionization

mechanism. The photon energy of 21.4 eV (black circles) corresponds to the 1s2 → 1s2p

resonant transition in the helium cluster. At this energy the slope of the ion yield

dependence on the radiation intensity is found to be 0.63± 0.01, which suggest that the

system is indeed ionized via a CAI process. The value smaller than one is attributed to
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partial saturation of the 1s2 → 1s2p transition. It is a rather remarkable observation

that the resonant ion yield is almost an order of magnitude larger than that from the

direct one-photon ionization process. Note that the energy deposited into the system by

two 21.4 eV photons is the same as by one 42.8 eV photon. The enhanced CAI efficiency

can be explained by the large cross section of 25 Mbarn [105] of the resonant transition.

For comparison, the cross section for direct ionization at 42.8 eV is 2.9 Mbarn [106].

More detailed analysis of the recorded electron spectra shows that two-electron ICD

between two excited atoms is in fact suppressed in the nanoplasma state of the helium

droplet and the CAI is driven by mechanisms involving three or more atoms [23]. The

dominant pathways can be depicted as direct two-electron emission mediated by energy

exchange between three atoms,

He∗(1s2p)He∗(1s2p)He∗(1s2p)→ He(1s2)He+(1s)He+(1s) + 2e−, (17)

or as a two-step process in which ICD is followed by inelastic scattering of the emitted

electron on another atom, leading to its excitation or ionization,

He∗(1s2p)He∗(1s2p)He∗(1s2p)→ He(1s2)He+(1s)He∗(1s2p) + e−CAI →
He(1s2)He+(1s)He∗(1s nl) + e−SCAT

or He(1s2)He+(1s)He+(1s) + e−SCAT + e−. (18)

Both these processes are expected to give rise to broad continuous electron spectra,

which are indeed observed. In contrast, the photoline due to the two-electron ICD

process disappears in the spectrum recorded at the resonant energy of 21.4 eV. The

suppression of the two-electron ICD provides evidence for the high efficiency of

multielectron relaxation processes in a multiply excited system. Under the given

experimental conditions, 50% of the atoms are expected to be excited within 20 fs,

therefore, isolated doubly excited dimers are present only in the first few femtoseconds

of the laser pulse. Since the estimated ICD lifetime of a doubly excited helium dimer is

in the ps range, the process is quenched before it has time to take place. CAI becomes

the dominant relaxation mechanism and may lead to an ion production rate much

larger than that of direct ionization. CAI is expected to be of quite general character,

important for many systems other than the helium clusters.

8. Summary

We have presented a detailed overview of experimental and theoretical work on selected

multi-electron relaxation processes in systems of diverse complexity, going from light

atoms through molecules to nanoscale clusters. These rare processes are of fundamental

interest for the study of correlation in bound systems. Indeed, throughout this review

we have demonstrated that simple approximations such as the different shake-off models

typically fail to describe the decay transitions adequately, which demonstrates the

essential role of electronic correlation as a driving force of these phenomena.

The basic measure that makes it possible to assess the level of correlation in a

system quantitatively is the relative probability of multi-electron processes as compared
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to their ordinary two-electron variants. For the double Auger process, the characteristic

probability lies in the range of a few percent in all types of environments if we restrict

ourselves to the simultaneous two-electron emission. Sequential decay often leads to

branching ratios over 30% but individual transitions of the cascade are driven by

correlation between two electrons only.

The probabilities of collective Auger decay of multiple vacancies cover a much wider

range. In the case of atomic double core hole states the three-electron transitions take

place on a nanosecond time scale with relative probabilities as low as 10−7, which made

them for a long time somewhat elusive phenomena. Recently, focused searches and

modern experimental techniques have led to unambiguous identification of collective

decay in several systems where it either represents the only available nonradiative

relaxation process or its rate is greatly enhanced. The most remarkable example is

the collective decay of double inner-valence vacancy states in small molecules that can

proceed on a femtosecond time scale, comparable to the ordinary Auger decay. Besides

efficient correlation in the molecular valence shells, another factor contributing to the

high efficiency is the low energy of the emitted electron. This is demonstrated also in

the collective decay of doubly 4s ionized krypton with a probability close to 3%.

In multiply excited or ionized clusters, too, interatomic multi-electron decay

phenomena have been shown to play a significant role. If the level of excitation is

sufficiently high, collective autoionization processes can even quench the ordinary two-

electron decay modes. Despite the fact that the investigation of interatomic multi-

electron processes is still in its early days, it is apparent that they should be taken

into account in future studies of the interaction of ionizing radiation with atomic or

molecular clusters.
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P and Averbukh V Submitted to Phys. Rev. Lett.

[18] Hergenhahn U 2011 J. El. Spect. Rel. Phenom. 184 78–90
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[38] Åberg T 1975 Two-photon emission, the radiative auger effect, and the double auger process

Atomic Inner-Shell Processes, Vol. I ed Crasemann B (Academic Press, New York) p 353

[39] Carlson T A and Krause M O 1966 Phys. Rev. Lett. 17(21) 1079–1083

[40] Krause M O and Carlson T A 1966 Phys. Rev. 149(1) 52–58

[41] Cairns R B, Harrison H and Schoen R I 1969 Phys. Rev. 183(1) 52–56

[42] Wiel M V D and Wiebes G 1971 Physica 53 225 – 255

[43] Saito N and Suzuki I H 1994 Physical Scripta 49 80

[44] Kammerling B, Krassig B and Schmidt V 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3621

[45] Saito N and Suzuki I H 1997 J. Phys. Soc. Jap. 66 1979

[46] Kanngießer B, Jainz M, Brünken S, Benten W, Gerth C, Godehusen K, Tiedtke K, van Kampen

P, Tutay A, Zimmermann P, Demekhin V F and Kochur A G 2000 Phys. Rev. A 62(1) 014702

[47] Brünken S, Gerth C, Kanngießer B, Luhmann T, Richter M and Zimmermann P 2002 Phys. Rev.

A 65(4) 042708

[48] Tamenori Y, Okada K, Tanimoto S, Ibuki T, Nagaoka S, Fujii A, Haga Y and Suzuki I H 2004

J. Phys. B: At. Mol. Opt. Phys. 37 117

[49] Lablanquie P, Sheinerman S, Penent F, Hall R I, Ahmad M, Hikosaka Y and Ito K 2001 Phys.

Rev. Lett. 87(5) 053001

[50] Viefhaus J, Braune M, Korica S, Reinkster A, Rolles D and Becker U 2005 J. Phys. B: At. Mol.

Opt. Phys. 38 3885

[51] Penent F, Palaudoux J, Lablanquie P, Andric L, Feifel R and Eland J H D 2005 Phys. Rev. Lett.

95(8) 083002

[52] Lablanquie P, Andric L, Palaudoux J, Becker U, Braune M, Viefhaus J, Eland J and Penent F

2007 J. El. Spect. Rel. Phenom. 156158 51 – 57

[53] Eland J H D, Linusson P, Hedin L, Andersson E, Rubensson J E and Feifel R 2008 Phys. Rev. A

78(6) 063423

[54] Palaudoux J, Lablanquie P, Andric L, Ito K, Shigemasa E, Eland J H D, Jonauskas V, Kučas S,
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Figure 1. Two-dimensional electron-electron coincidence spectrum of Ne taken at

the photon energy hν = 889 eV along with two corresponding non-coincidence spectra.

Structures due to normal Auger decay are marked by Ne2+. Diagonal stripes in which

the sum of the kinetic energies is constant are caused by the double Auger electrons.

Reproduced with permission from Ref. [37]. c© 2004 Elsevier B.V.
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Figure 2. Low energy region of the coincidence map after photoionization of the Kr

3d shell (photon energy hν = 114.56 eV) together with two non-coincident spectra.

Reproduced with permission from Ref. [50]. c© 2004 IOP Publishing Ltd.
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Figure 3. Energy correlations between two Auger electrons after photoionization

of the Kr atom detected in coincidence with a 3d3/2 photoelectron (a) or a 3d5/2
photoelectron (b). Counts (represented by colors) are given on a linear scale. The

capital letters indicate the contribution of different intermediate Kr2+ states, involved

in cascade Auger decay. The states are labeled according to their intensity (i.e., A is

the most intense; F is the weakest). Reproduced with permission from Ref. [54]. c©
2010 American Physical Society.
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e-CAD(I) e-CAD(II) e-CAD(III)

Figure 4. Schematic diagram of different collective Auger decay transitions. In

transitions of type II and III, the energy gained from the recombination of a single

vacancy is distributed between two electrons, leading to the emission of a less energetic

electron.

Figure 5. Spectra of the second Auger electron in Kr resonant Auger decay: (a)

at 91.2 eV photon energy, after detection of a first Auger electron within the 29.1 eV

line corresponding to the population of the Kr+(3d104s04p65p) resonance, and (b) at

92.4 eV photon energy after detection of a first electron in the similar line at 30.8 eV.

Reproduced with permission from Ref. [85]. c© 2015 IOP Publishing.
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Figure 6. Experimental triple ionization spectra acquired from the carbon core (left

panel, green error bars) and from the fluorine core ionization initiated cascade (right

panel, red error bars). The black curves show the theoretical spectra calculated at fixed

equilibrium geometry of the molecule. The blue curves reflect spectra obtained with

the inclusion of nuclear motion along the C–F bond in the intermediate CH3F2+(2s−2)

state, assuming this state is populated by the Auger decay at R(C−F) = 1.315 Å for

the C(1s) cascade and at R(C−F) = 1.4 Å for the F(1s) cascade. The magenta spectra

are calculated in the same way but with the ab initio CAD width scaled down by a

factor of 5. In all theoretical spectra, only the decay channels accessible exclusively by

the three-electron transitions were taken into account. Reproduced from Ref. [17]. c©
2016 American Physical Society.
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Figure 7. Collective interatomic decay of two inner-shell vacancies in a mixed Kr-Ar

cluster.
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Figure 8. Doubly-logarithmic plot of the power dependence and relative ion

abundances from helium nanodroplets at the photon energies of 21.4 eV (black circles),

42.8 eV (red circles) and 20.0 eV (blue circles) along with power dependence fits (lines

of corresponding color). Reproduced with permission from Ref. [22]. Licensed under

a Creative Commons Attribution 3.0 Unported license.


