
Under consideration for publication in J. Fluid Mech. 1

Entrainment of short-wavelength free-stream
vortical disturbances in compressible and

incompressible boundary layers

XUESONG WU1,2† AND MING DONG1

1Department of Mechanics, Tianjin University, Tianjin 300072, P. R. China
2Department of Mathematics, Imperial College London

180 Queen’s Gate, London SW7 2AZ, UK

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

The fundamental difference between continuous modes of the Orr-Sommerfeld/Squire
equations and the entrainment of free-stream vortical disturbances (FSVD) into the
boundary layer has been investigated in a recent paper (Dong & Wu 2013, J. Fluid

Mech.). It was shown there that the non-parallel-flow effect plays a leading-order role in
the entrainment, and neglecting it at outset, as is done in the continuous-mode formula-
tion, leads to non-physical features of ‘Fourier entanglement’ and abnormal anisotropy.
The analysis, which was for incompressible boundary layers and for FSVD with a char-
acteristic wavelength of the order of the local boundary-layer thickness, is extended in
this paper to compressible boundary layers and FSVD with even shorter wavelengths,
which are comparable with the width of the so-called edge layer. Non-parallelism remains
a leading-order effect in the present scaling, which turns out to be more general in that
the equations and solutions in the previous paper are recovered in the appropriate limit.
Appropriate asymptotic solutions in the main and edge layers are obtained to charac-
terize the entrainment. It is found that when the Prandtl number Pr < 1, free-stream
vortical disturbances of relatively low frequency generate very strong temperature fluc-
tuations within the edge layer, leading to formation of thermal streaks. A composite
solution, uniformly valid across the entire boundary layer, is constructed, and it can be
used in receptivity studies and as inlet conditions for direct numerical simulations of by-
pass transition. For compressible boundary layers, continuous spectra of the disturbance
equations linearised about a parallel base flow exhibit entanglement between vortical and
entropy modes, namely, a vortical mode necessarily induces an entropy disturbance in
the free stream and vice versa, and this amounts to a further nonphysical behaviour.
High-Reynolds-number asymptotic analysis yields the relations between the amplitudes
of entangled modes.
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1. Introduction

Disturbances in the oncoming flow, loosely referred to as free-stream turbulence (FST),
plays a crucial role in laminar-turbulent transition in boundary layers. In the presence
of low-level FST, transition is caused by amplification of Tollmien-Schlichting waves
(Kachanov 1994), which correspond to discrete modes of the Orr-Sommerfeld (O-S)
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equation. FST influences what is referred to as natural transition through receptivity
(Saric et al. 2002; Duck et al. 1996; Wu 2001). If the FST level exceeds a critical value
about 1%, low-frequency streaks appear in the boundary layer (Klebanoff 1971; Kendall
1990; Westin et al. 1994), and they amplify and break down via a secondary instability
(Matsubara & Alfredsson 2001). This is the so-called bypass transition route (Morkovin
1984). In either of these two scenarios, the transition location depends on the intensity
(and possibly other characteristics) of FST, and predicting such dependence is the ulti-
mate goal of transition research. Clearly, characterizing how FST enters the boundary
layer, or how the boundary layer responds to FST, is a crucial first step.

Since the oncoming free stream is often uniform and the disturbances are usually of
small-amplitude, FST can be represented as a supposition of acoustic, vortical and en-
tropy modes (Kovasznay 1953). The way by which each of these modes impacts the
boundary layer is quite different. An acoustic mode represents a pressure fluctuation,
through which it drives velocity fluctuations in the boundary layer. In the generic case
where the wavelength and frequency are comparable with the boundary-layer thickness
δ∗ and U∞/δ∗ respectively (where U∞ is the free-stream velocity), the induced signature
is represented by the eigenfunction of the acoustic-mode branch of the continuous spec-
tra of the linearized disturbance equations. (In the long-wavelength limit, the velocity
fluctuation may concentrate in a thin viscous Stokes layer adjacent to the wall.)

Free-stream vortical disturbances (FSVD) represent weak vorticity being advected by
the uniform background flow so that their phase speeds are nearly equa the velocity of
the latter, and there is no pressure fluctuation at leading order. The process of FSVD
entering the boundary layer, which we shall refer to as entrainment, is rather subtle.
FSVD with the characteristic streamwise wavelength being comparable with the spanwise
wavelength, Λ say, was considered first by Gulyaev et al. (1989). They showed that in the
region at an O(Λ) distance to the leading edge, the induced perturbation is governed by
the linearized boundary-layer equations, and its streamwise velocity increases with the
streamwise distance. Leib et al. (1999) considered FSVD whose streamwise wavelength
is longer than the spanwise length scale Λ by a factor RΛ (the Reynolds number based
on Λ). In the region at an O(ΛRΛ) distance to the leading edge, the induced motion
is governed by the so-called linearized boundary-region equations (Kemp 1951), and
most significantly, its streamwise velocity acquires a magnitude of O(RΛε), much greater
than ε, the intensity of FSVD. The boundary-layer fluctuations therefore take on the
appearance of streaks. The linear theory of Leib et al. (1999) for incompressible flows
was extended by Ricco & Wu (2007) to compressible boundary layers, and by Ricco et al.

(2011) to the case where FSVD are of sufficient intensity (i.e. ε = O(R−1
Λ )) to generate

streaks with an O(1) streamwise velocity. The boundary-layer responses to steady free-
stream perturbations in the form of wall-normal and streamwise vorticity have also been
studied with a broadly similar mathematical framework by Crow (1966), Goldstein et al.

(1992), Goldstein & Leib (1993) and Wundrow & Goldstein (2001). See also the review by
Goldstein (2014). In all these analyses, non-parallelism plays a leading-order role, which
is expected since the streamwise wavelength of the perturbation is comparable with the
length scale of the underlying base flow.

Recently, Dong & Wu (2013) considered the boundary-layer response to FSVD with
wavelength comparable with the local boundary-layer thickness. Interestingly, despite
the relatively short wavelength non-parallelism appears at leading order in the edge
layer, which is located at the outer edge of the boundary layer, and controls the entrain-
ment process. When non-parallelism is neglected artificially, the disturbance equations
reduce to the O-S and Squire equations. Since continuous modes of these equations have
the same phase speeds as free-stream vortical disturbances, it has been suggested that
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each continuous mode represents a Fourier component in the vortical disturbance with
its eigenfunction characterizing the distribution of the perturbation entrained into the
boundary layer (Grosch & Salwen 1978). This interpretation was examined by Dong &
Wu (2013). They noted that continuous modes exhibit two peculiar features: ’entan-
glement of Fourier components’ and ‘abnormal anisotropy’. The first refers to the fact
that the eigenfunction of a continuous mode consists of two components with wall-normal
wavenumbers ±k2 with the ratio of their respective amplitudes being fixed by the bound-
ary layer, while the second refers to the consequence that for low-frequency modes, the
presence of the boundary layer forces the streamwise velocity in the free stream to be
much greater than the transverse velocities. Both features are non-physical because the
spectral composition of a free-stream disturbance should be determined by the conditions
upstream rather than by the boundary layer underneath, and both can be attributed
to neglecting non-parallelism, which affects entrainment at leading order as mentioned
above. Thus unlike discrete modes, continuous modes have no physical meaning, and de-
spite the fact that continuous modes and convected vortical disturbances have the same
phase speed, the eigenfunction of the former does not represent the distribution of the
boundary-layer fluctuation induced by the latter, contrary to the usual interpretation of
continuous modes (Grosch & Salwen 1978).

The findings of Dong & Wu (2013) have important implications for a crucial issue in
direct numerical simulations (DNS) of bypass transition, namely, the specification of an
appropriate inlet condition. Jacobs & Durbin (2001) suggested that the inlet condition
can be specified in terms of a superposition of continuous spectra. This practice has been
followed in subsequent studies of bypass transition (Brandt et al. 2004; Zaki & Durbin
2005; Liu et al. 2008). It has also been adopted to simulate receptivity and transition
in three-dimensional boundary layers as well as in boundary layers over a concave wall,
where transition is caused by cross-flow and Görtler instabilities respectively. However,
the results of Dong & Wu (2013) imply that an inlet condition constructed in this manner
does not provide a correct link between FST and the disturbance that it induces in the
boundary layer, and is therefore inappropriate.

In this paper, we extend the analysis of Dong & Wu (2013) to free-stream disturbances
which have a characteristic wavelength comparable with the width of the edge layer, much
shorter than the O(δ∗) wavelength considered in the earlier work. The analysis will be
performed for compressible boundary layers, and so a further extension consists of includ-
ing the effects of compressibility. Some preliminary results were published in Dong & Wu
(2015). The present study was prompted by two main motivations. Firstly, free-stream
disturbance usually consists of a broadband of components in spectral (wavenumber and
frequency) space. For the purpose of investigating bypass transition and receptivity, it is
important to calculate the boundary-layer signature induced by these components. The
short-wavelength scaling to be adopted is appropriate as it turns out to be more general
in that the results in the previous paper can be recovered in an appropriate limit, and the
solution for the boundary-layer signature remains valid for a broadband of frequencies
and wavenumbers. Secondly, in the case of compressible boundary layers some rather pe-
culiar behaviours of the continuous modes have been noted by Joo & Durbin (2010). The
present analysis intends to offer a proper explanation for those features, and to demon-
strate the differences between the continuous modes and the disturbance entrained into
the boundary layer.

The rest of the paper is planned as follows. In §2, we formulate the problem by writing
down the linearized compressible N-S equations, which govern small-amplitude distur-
bances superimposed on a general boundary-layer flow. In §3, the entrainment of FSVD
is analyzed in the appropriate mathematical setting, the linearized N-S equations, which
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include the non-parallelism associated with the gradual thickening of the boundary layer.
We show that the entrainment is influenced, to leading order, by the non-parallel-flow ef-
fect. Appropriate solutions are constructed, and their main characteristics are discussed.
In §4, we revisit the problem of continuous spectra for compressible boundary layers by
removing from the linearized N-S equations the terms representing non-parallelism (but
retaining the viscous terms). Numerical solutions to the resulting equations reveal, in
addition to the two nonphysical features present in the incompressible case, yet another
one, entanglement of vortical and entropy modes. The high-Reynolds-number asymptotic
analysis of continuous spectra is then presented for the present shorter-wavelength scal-
ing. The ‘entanglements’ mentioned above are shown to be a consequence of neglecting
the non-parallel-flow effect. With this effect being properly taken into account, none of
the nonphysical features arises. A summary of the main results and a discussion of their
implications are given in §5.

2. Small-amplitude disturbances in boundary-layer flows: linearized
compressible Navier-Stokes equations

We consider the compressible boundary layer that forms over a semi-infinite plate. The
flow will be described by the Cartesian coordinate system (x, y, z), where x, y and z de-
note the coordinates in the streamwise, wall-normal and spanwise directions respectively,
and they are normalized by a characteristic boundary-layer thickness δ∗. The free-stream
velocity U∞ and δ∗/U∞ will be taken as the reference speed and time respectively. The
Reynolds number R and Mach number M are defined as

R = U∞δ∗/ν∗
∞, M = U∞/a∞, (2.1)

with ν∗
∞ being the kinematic viscosity of the fluid and a∞ the speed of sound in the free

stream. The fluid is assumed to be a perfect gas with a ratio of specific heats γ.

2.1. The base flow

The non-dimensionalized velocity field UB , pressure PB , temperature TB and density
RB of the base flow may be written as

(UB , PB , TB , RB) =
(

U(x̄, y), R−1V (x̄, y), 0, 1/(γM2), T, 1/T
)

, (2.2)

where the base flow evolves on the slow streamwise variable

x̄ = x/R. (2.3)

The steady boundary-layer equations governing the base flow admit the similarity solu-
tion (Stewartson 1964)

U = F ′(η), V = (2x̄)−1/2T (ηcF
′ − F ), T = T (η),

where the prime denotes differentiation with respect to the argument,

η = (2x̄)−1/2

∫ y

0

dy

T
, ηc =

1

T

∫ η

0

T (η)dη. (2.4)

It follows that
∂η

∂x̄
= −ηc/(2x̄),

∂η

∂y
= 1/(T

√
2x̄).
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The functions, F and T , satisfy the equations

F ′′′ +
FF ′′

K
+

K ′T ′F ′′

K
= 0,

T ′′ +
PrFT ′

K
+

K ′T̄ ′2

K
+Pr(γ − 1)M2(F ′′)2 = 0,















(2.5)

where we have put K = µ(T )/T and Pr is the Prandtl number. The system of coupled
equations above is to be solved subject to the boundary conditions

F (0) = F ′(0) = 0, F ′ → 1 as η → ∞, (2.6)

and

T ′(0) = 0, T → 1 as η → ∞ (2.7)

if the wall the insulated, or

T ′(0) = Tw, T → 1 as η → ∞ (2.8)

if the wall is isothermal with a temperature Tw. The coupled system (2.5) has to be
solved, but for Pr = 1, the temperature profile is related to U via

T = 1 + 1
2 (γ − 1)M2(1 − U2), (2.9)

and hence the equations become decoupled.
As η → ∞, both U and T approach unity exponentially,

U ∼ 1 − â

η − β
e−

1

2
(η−β)2 , T ∼ 1 − b̂

η − β
e−

Pr
2

(η−β)2 ,

where â and b̂ are constants, and

β =

∫ ∞

0

(1 − U)dη.

More precisely, the streamiwse velocity and the temperature for η � 1 can be approxi-
mated as

U → 1 − UD, T → 1 − TD , (2.10)

where

UD = â

∫ ∞

η

e−
1

2
(η−β)2 dη, TD = Prb̂

∫ ∞

η

e−
1

2
Pr(η−β)2 dη. (2.11)

2.2. Perturbations in the boundary layer

Suppose that the base flow (2.2) is perturbed by a small-amplitude disturbance of the
travelling-wave form,

(ũ, ṽ, w̃, p̃, θ̃, ρ̃) = ε
(

u(x̄, y), v(x̄, y), w(x̄, y), p(x̄, y), θ(x̄, y), ρ(x̄, y)
)

ei(k1x+k3z−ωt) +c.c.,

(2.12)
where ω, k1 and k3 denote the frequency, streamwise and spanwise wavenumbers respec-
tively, and the magnitude ε � 1. The disturbance may represent (discrete or continuous)
modal fluctuations or the response forced by external perturbations. Note that the normal
distribution (i.e. the shape) of the disturbance depends on the slow variable x̄. It follows
from substitution of (2.12) into the N-S equations and linearization that (u, v, w, p, θ, ρ)
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satisfy the linearized compressible N-S equations,

ik1u + vy + ik3w = −T
[

i(k1U − ω)ρ − (Ty/T 2)v
]

− ux̄/R

−T
[

L1ρ + (1/T )x̄u + (Ux̄ + Vy)ρ
]

/R, (2.13)

i(k1U − ω)u + Uyv = T
[

−ik1p + px̄/R + ∆u/R
]

− (L1u + Ux̄u)/R

+T
[

ik1(µS + µ′Tyv) + (Uyµ′θ)y − (UUx̄ + V Uy)ρ
]

/R, (2.14)

i(k1U − ω)v = T
[

−py + ∆v/R
]

− (L1v + Vyv)/R − Vx̄u/R2

+T
[

µSy/3 + µ′(Tyvy + ik1Uyθ) − 2µ′TyS
]

/R

+T
[

(Vyµ′θ)y − (UVx̄ + V Vy)ρ
]

/R2, (2.15)

i(k1U − ω)w = T
[

−ik3p + ∆w/R
]

−L1w/R + T (ik3S + µ′Tyik3v)/R, (2.16)

i(k1U − ω)θ + Tyv = T (γ − 1)M2[i(k1U − ω)p + L1p/R] − (L1θ + Tx̄u)/R

+T
[

∆θ + (T ′µ′θ)y

]

/(PrR) − T (UTx̄ + V T ′)ρ/R

+(γ − 1)M2T
[

2µUy(uy + ik1v) + µ′U2
y θ

]

/R, (2.17)

Tρ + θ/T = γM2p, (2.18)

where we have put S = ik1u + vy +ik3w, ∆ = ∂y(µ∂y)−µk2
1 −µk2

3 , and the operator L1

is defined by

L1 = U
∂

∂x̄

∣

∣

∣

y
+ V

∂

∂y

∣

∣

∣

x̄
. (2.19)

The terms involving L1 and other O(R−1) or smaller terms on the right-hand side of
(2.13)-(2.17) represent the non-parallel-flow effect, which may be attributed to a number
of factors: (a) the streamwise variation of the base flow (i.e. Ux̄, Vx̄ and Tx̄), (b) the
expanding boundary-layer thickness, which distorts the shape (i.e. the distribution in the
wall-normal direction) of the disturbance, and (c) the transverse velocity V . The first
and second terms in L1 represent (b) and (c) respectively. Non-parallelism is completely
ignored when continuous modes are considered, and is also known to have a relatively
moderate effect on discrete (instability) modes (Fasel & Konzelmann 1990; Bertolotti
et al. 1992). However, as will be shown later, the non-parallelism represented by the
operator L1 has a leading-order influence on the entrainment of vortical disturbances,
for which the linearized compressible N-S equations, (2.13)-(2.18), must be used.

3. Analysis of entrainment

In a uniform free stream, small-amplitude acoustic, entropy and vortical perturbations
are independent of each other, even though all three may be present simultaneously in
practical situations. In the present study, we assume that acoustic and entropy perturba-
tions are absent and focus on vortical disturbances. It is convenient to specify a vortical
disturbance in terms of its normal velocity v and wall-normal vorticity

Ω = ik3u − ik1w. (3.1)
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In the ‘free stream’ (1 � y � R), where the base flow is uniform to leading order, the
solution for v and Ω can be expressed as

v = e−ik2y + C(x̄) e−k̄y, Ω = E e−ik2y, (3.2)

where the wavenumbers k1, k2 and k3 are related to ω via the dispersion relation

ω = k1 − i(k2
1 + k2

2 + k2
3)/R (3.3)

for vortical disturbances. Each Fourier component (k1, k2, k3) is independent, and in
particular (k1, k2, k3) and (k1,−k2, k3) are not interrelated. The exponentially decaying
term in (3.2) accounts for the effect of the boundary layer with C being a function of x̄
due to the non-parallelism in the edge layer (see below), and

k̄ = (k2
1 + k2

3)
1/2. (3.4)

From the continuity equation (2.13) and (3.1), the solution for the streamwise and
spanwise velocities is found as

u = i(k1v
′ − k3Ω)/k̄2 = (k1k2 − ik3E)/k̄2 e−ik2y −(ik1/k̄)C e−k̄y,

w = i(k3v
′ + k1Ω)/k̄2 = (k2k3 + ik1E)/k̄2 e−ik2y −(ik3/k̄)C e−k̄y,

while from the momentum and energy equations, (2.14)-(2.16) and (2.17), we obtain the
pressure and temperature,

p = − 1

k̄R

[

(k2
1 + k2

2 + k2
3)C(x̄) − C′(x̄)

]

e−k̄y, (3.5)

θ = − (γ − 1)M2

k̄R

[

(k2
1 + k2

2 + k2
3)C(x̄) − C′(x̄)

]

e−k̄y . (3.6)

As in Dong & Wu (2013), the solution for the entrained disturbance cannot be expressed
in the form of a separation of variables in the entire boundary layer due to non-parallelism.
It is necessary to consider the edge layer and the main boundary layer separately, where
the solution takes different forms.

3.1. Analysis of the edge layer

As in the case considered in Dong & Wu (2013), the key region controlling the entrainment
is the edge layer, which is centred at ηd = η0 + β and its width δ = η−1

0 � 1, with η0

being determined by the equation (cf. Leib et al. 1999, Dong & Wu 2013)

η3
0 eη2

0
/2 = 2âx̄ωR. (3.7)

The local transverse variable η̂ is introduced via the relation

η = ηd + δη̂. (3.8)

As η → ηd � 1, the relation between y and η, (2.4), simplifies to

y →
√

2x̄
[

η −
∫ ∞

0

(1 − T )dη
]

≡
√

2x̄
[

η0 + β̂ + δη̂
]

, (3.9)

where we have put

β̂ =

∫ ∞

0

(T − U)dη.

We consider perturbations with wavelengths comparable with δ, i.e. kj = O(1/δ)
(j = 1, 2, 3). For such relatively short-wavelength disturbances, some new effects come
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into play. One of them is the diffusion in the transverse directions, which now appears
at leading order in the edge layer. In addition, the O(R−1) viscous modification in the
dispersion relation (3.3) also introduces an additional term to the edge-layer equations.
In order to account for these effects, let

(k̃1, k̃2, k̃3) = δ
√

2(k1, k2, k3), ω̃ = δω, ω1 = −i(k̃2
1 + k̃2

2 + k̃2
3). (3.10)

In terms of the edge-layer variable η̂, the solution for v, Ω and p in the free stream,
(3.2) and (3.5), can be rewritten as

v =
[

e−ik̃2

√
x̄η̂ +Ĉ(x̄) e−k̃

√
x̄η̂

]

e−ik̃2

√
x̄(1+δβ̂)/δ2

, (3.11)

Ω = E e−ik̃2

√
x̄η̂−ik̃2

√
x̄(1+δβ̂)/δ2

, (3.12)

p = −(
√

2k̃δR)−1
{[

iω1 + (ik̃2 − k̃)/
√

x̄
]}

Ĉ e−k̃
√

x̄η̂−ik̃2

√
x̄(1+δβ̂)/δ2

, (3.13)

where we have put

k̃ = (k̃2
1 + k̃2

3)
1/2, Ĉ = C e(ik̃2−k̃)

√
x̄(1+δβ̂)/δ2

.

The expression above suggests that in the edge layer the solution for the velocity and
pressure expands as

(u, v, w, p) =
(

û, v̂, ŵ, p̂/(δR)
)

e−ik̃2

√
x̄(1+δβ̂)/δ2

, (3.14)

as δ → 0, which is of the WKB form with respect to x̄ due to the short-wavelength nature
of the disturbance.

Even though entropy fluctuations are assumed to be absent in the free stream, the
vorticity fluctuation drives density and temperature fluctuations in the edge layer. By
using the energy equation (2.17), the order of magnitude of the latter is estimated as

θ ∼ e
1
2 (1−Pr)η2

0 .

The density is ρ = −θ, and so we write

−ρ = θ = e
1
2 (1−Pr)η2

0 θ̂ e−ik̃2

√
x̄(1+δβ̂)/δ2

. (3.15)

Clearly, since η0 � 1 vortical fluctuations may induce much stronger entropy fluctua-
tions if Pr < 1, which is the case for many gases including air, for which Pr ≈ 0.7. In
contrast, for fluids with Pr > 1 such as water, the induced entropy fluctuations would be
exponentially small.

Interestingly, the induced entropy fluctuation does not affect the vorticity or pressure
fluctuations, and the governing equations of the latter turn out to be the same as in the
incompressible limit, namely

ik̃1û + v̂′/
√

x̄ + ik̃3ŵ = 0,

(D̂2 − x̄k̃2
1 − x̄k̃2

3)û + û′ + i(e−η̂ +x̄ω1 +
√

x̄k̃2)û =
e−η̂ v̂

ω̃
√

2x̄
+ i

√
2x̄k̃1p̂,

(D̂2 − x̄k̃2
1 − x̄k̃2

3)ŵ + ŵ′ + i(e−η̂ +x̄ω1 +
√

x̄k̃2)ŵ = i
√

2x̄k̃3p̂,























(3.16)

(D̂2 − x̄k̃2
1 − x̄k̃2

3)v̂ + v̂′ + i(e−η̂ +x̄ω1 +
√

x̄k̃2)v̂ = (2x̄)1/2p̂η̂, (3.17)

where D̂ = ∂η̂. Note that in the limit k̃j → 0 (j = 1, 2, 3) the above equations reduce to
(4.27)-(4.28) in Dong & Wu (2013) after suitable re-normalization of v̂ and ω̃. Elimination



Entrainment of short-wavelength free-stream vortical disturbances 9

of û, ŵ and p̂ among (3.16) leads to the governing equations for the normal velocity v̂
and vorticity Ω̂,

{[

D̂2 + D̂ + (i e−η̂ +x̄k̃2
2 + i

√
x̄k̃2)

]

(D̂2 − x̄k̃2) − i e−η̂
}

v̂ = 0, (3.18)

[

D̂2 + D̂ + (i e−η̂ +x̄k̃2
2 + i

√
x̄k̃2)

]

Ω̂ = ik̃3/(ω̃
√

2x̄) e−η̂ v̂, (3.19)

where Ω̂ is defined as

Ω̂ = ik̃3û − ik̃1ŵ. (3.20)

The equation for v̂ is of fourth-order as opposed to third-order in Dong & Wu (2013)
because the pressure gradient now appears in the leading-order momentum equations.

The asymptotic behaviours of v̂ and Ω̂ for η̂ � 1 can be derived as

v̂ → e−ik̃2

√
x̄η̂ +B e(−1+ik̃2

√
x̄)η̂ +Ĉ(x̄) e−k̃

√
x̄η̂ , (3.21)

Ω̂ → E e−ik̃2

√
x̄η̂ +F(x̄) e(−1+ik̃2

√
x̄)η̂ +k̃3/(2

√
2x̄ω̃k̃2) e−(1+ik̃2

√
x̄)η̂, (3.22)

where the non-vanishing first terms match to the solutions (3.11)-(3.12) in the free stream
provided that E =

√
2δE.

It should be emphasised that it is important to account for the variation of η0 with
x̄ in (3.7) as well as the fast dependence on x̄ in the ansatz of the solution in each
layer (e.g. (3.14) and (3.15)) because this dependence contributes to additional leading-
order terms representing non-parallel-flow effects. However, the x̄ in the coefficients of the
resulting equations, (3.16)-(3.19), can be set to unity since the latter involve no derivative
with respect to x̄; this corresponds to setting δ∗ to the local boundary-layer thickness
after its streamwise variation is accounted for. This mathematical property implies ‘local
similarity’ of the solution, that is, the shape of the disturbance in each layer remains
self-similar at different streamwise locations, but the shape across the entire wall-normal
direction does not. It is also interesting to note that the governing equations for the
disturbance in the edge layer, (3.18)-(3.19), are identical to those for the asymptotic
suction boundary layer (cf. Dong & Wu 2013). This is because the non-parallel-flow
effect contributes to a D(D2 − k̃2) term, precisely the same as the mean vertical velocity
does in the latter flow.

In what follows, we shall set x̄ = 1 in (3.16)-(3.19) when seeking solutions to them. The
asymptotes of v̂ and Ω̂ for η̂ → −∞ can be derived by examining the dominant balances
in these equations. Consider first the equation for v̂, in which two different balances are
possible. The first is an inviscid Rayleigh balance, between e−η̂(D̂2 − k̃2)v̂ and e−η̂ v̂,
and the second is a viscous one, between D̂4v̂ and i e−η̂ D̂2v̂, leading to exponential and
double exponential decay respectively. Based on the above observation, it is deduced that

v̂ → b0 e(1+k̃2)1/2η̂(1 + qc eη̂) +
[

c0 e3η̂/4 +c1 e5η̂/4
]

exp{2i3/2 e−η̂/2} as η̂ → −∞, (3.23)

where b0 and c0 are constants, and

qc = 1
2 i

[ (k̃2 + 1
2 i)2

(1 + k̃2)1/2 + 1
2

+ (1 + k̃2)1/2 + 1
2

]

, c1 = −i1/2
(

k̃2
2 + ik̃2 + 29/4

)

c0.

As will be shown later, the same behaviour can be derived by considering the solution
in the bulk of the boundary layer.

After solving (3.18) subject to (3.21)-(3.23) numerically, the constants b0, c0 and Ĉ can
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be found along with v̂. Integrating (3.17), one obtains the pressure

p̂ =
1√
2

{

v̂′ + v̂ + (ik̃2 − 1) e−ik̃2η̂ +

∫ η̂

∞

[

i e−η̂ v̂ + (k̃2
2 + ik̃2)(v̂ − e−ik̃2η̂)

]

dη̂

}

, (3.24)

where the large-η̂ asymptote of the integrand is subtracted out in order to render the
integral convergent. As η̂ → −∞,

p̂ → 1√
2

{

p̂0 +
ib0 e[(1+k̃2)1/2−1]η̂

(1+k̃2)1/2−1
+ 2c0 e3η̂/4 exp{−2 e−iπ/4 e−η̂/2}

}

, (3.25)

where the constant

p̂0 = −i

∫ ∞

−∞
e−η̂ v̂dη − (k̃2

2 + ik̃2)
{

∫ 0

−∞
v̂dη̂ +

∫ ∞

0

(v̂ − e−ik̃2η̂)dη̂
}

− (1 − ik̃2).

It turns out that p̂0 = 0 as can be shown by integrating (3.18) with respect to η̂ from
−∞ and taking the limit η̂ → ∞.

Consider now the equation (3.19) for Ω̂. The complementary solution Ω̂c that is
bounded as η̂ → −∞ can be written as

Ω̂c = d0 e−η̂/2 H(1)
ν (ζ), (3.26)

where H
(1)
ν is the ν-th order Hankel function of the first kind with

ν = 2( 1
4 − k̃2

2 − ik̃2)
1/2 = 1 − 2ik̃2, (3.27)

ζ = 2i1/2 e−η̂/2 . (3.28)

As η̂ → ∞,

Ω̂c = −d0 e−η̂/2 i

π
Γ(ν)(ζ/2)−ν = −d0

i

π
Γ(ν)i−ν/2 exp{ 1

2 (ν − 1)η̂}, (3.29)

where Γ(·) denotes the Gamma function. Matching with the far-field condition (3.22)
determines the constant

d0 =
πi

Γ(ν)
eνπi/4 E , (3.30)

implying that Ω̂c is the response to the normal vorticity perturbation in the free stream.
On inserting (3.23) into (3.19), it may be inferred that the particular solution Ω̂p

behaves as Ω̂p ∼ bp e(1+k̃2)1/2η̂ +cp esη̂ exp{−2 e−iπ/4 e−η̂/2} when η̂ → −∞. The dom-

inant balance in (3.19) indicates that bp = k̃3/(
√

2ω̃)b0, and that s − 1
2 = −1/4 and

(2s + 1
2 )cp = − e−πi/4

(

k̃3/(
√

2ω̃)
)

c0, which determines the constants s and cp. It follows

that η̂ → −∞,

Ω̂p ∼
(

k̃3/(
√

2ω̃)
) {

b0 e(1+k̃2)1/2η̂ − e−πi/4 c0 eη̂/4 exp{−2 e−iπ/4 e−η̂/2}
}

. (3.31)

As η → −∞, the vorticity Ω̂ = Ω̂c + Ω̂p behaves as

Ω̂ →
(

k̃3/(
√

2ω̃)
)

b0 e(1+k̃2)1/2η̂ −
{

i√
π

e−νπi/2+πi/8 d0

[

e−η̂/4+
i1/2(ν2−1/4)

4
eη̂/4

]

+k̃3/(
√

2ω̃) e−πi/4 c0 eη̂/4

}

exp{−2 e−πi/4 e−η̂/2} ≡ Ωc, (3.32)

where the second-order asymptote of H
(1)
ν (ζ) for ζ � 1 is used.
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From the continuity equation in (3.16) and the definition of Ω̂, (3.20), the streamwise
and spanwise velocities are found as

û = i(k̃1v̂
′ − k̃3Ω̂)/k̃2, ŵ = i(k̃3v̂

′ + k̃1Ω̂)/k̃2. (3.33)

In the edge layer, the energy equation (2.17) reduces to

Pr−1(D̂2 − k̃2
1 − k̃2

3)θ̂ + θ̂′ + i(e−η̂ +ω1 + k̃2)θ̂ = (b̂/â)Pr(ω̃
√

2)−1 e−Prη̂ v̂, (3.34)

where â and b̂ are constants appearing in (2.10). In the absence of any entropy disturbance

in the free stream, the boundary condition for θ̂ is

θ̂ → Pr2(b̂/â)(ω̃
√

2)−1
[

(Pr − 1)(k̃2
1 + k̃2

2 + k̃2
3) + 2ik̃2Pr

]−1
e−(Pr+ik̃2)η̂

+R1 eλ̂1η̂ +R2 eλ̂2η̂ as η̂ → ∞, (3.35)

where λ̂1 and λ̂2 denote the two roots of

λ̂2 + Prλ̂ + (Pr − 1)(k̃2
1 + k̃2

3) + Pr(k̃2
2 + ik̃2) = 0. (3.36)

When Pr = 1, λ̂1 = −1 + ik2 and λ̂2 = −ik2. In general since λ̂1 + λ̂2 = −Pr < 0, one
of the roots, λ̂1 say, must have a negative real part while the real part of λ̂2 is negative
if Pr > 1 and positive if Pr < 1. In the latter case, it is necessary to set the constant
R2 = 0 in order to keep the solution bounded. The equation for θ̂ is similar to that for
Ω̂. The difference is that the solution for Ω̂ is driven by v̂ and by the normal vorticity in
the free stream, whereas the solution for θ̂ is solely generated by v̂. If Pr 6= 1,

θ̂ ∼ ib̂/(
√

2ω̃â)Pr
{

−b0 e−(Pr−1)η̂+(1+k̃2)1/2η̂

+(1/Pr − 1)−1c0 e(7/4−Pr)η̂ exp{−2 e−iπ/4 e−η̂/2}
}

as η̂ → −∞. (3.37)

If Pr = 1,

θ̂ ∼ b̂/(
√

2ω̃â)
{

−ib0 e(1+k̃2)1/2η̂ + eπi/4 c0 eη̂/4 exp{−2 e−iπ/4 e−η̂/2}
}

as η̂ → −∞.

(3.38)

3.2. WKB solution in the main deck

The base-flow profiles are functions of the similarity variable η, in terms of which the
operator L1 can be written as

L1 = (− F

2x̄
)D + F ′ ∂

∂x̄

∣

∣

∣

η
.

The solution can be expressed as a sum of two parts, namely,

(u, v, w, p, θ, ρ) = (u†, v†, w†, p†, θ†, ρ†) exp
{

−ik̃2

√
x̄(1 + δβ̂)/δ2

}

+
(

(ωR)1/4ū, (ωR)−1/4v̄, (ωR)1/4w̄, (ωR)−1/4R−1p̄, θ̄, ρ̄
)

Ẽ, (3.39)

where

Ẽ = exp
{

−ik̃2x̄
1/2(1 + δβ̂)/δ2 + (2x̄ωR)1/2Θ0

}

,

Θ0 = −(−i)1/2

∫ ∞

η

[

T (1 − U)/µ
]1/2

dη. (3.40)

The solution procedure is similar to that in Leib et al. (1999).
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Consider the first part, which is essentially inviscid. In the main part of the boundary
layer, the temperature and density fluctuations, driven passively by velocity fluctuations
through the energy equation, are coupled with the latter via the continuity equation.
Substitution of (3.39) into the linearized N-S equations (2.13)-(2.18) yields

ik†
1(U − c†)ρ† − T ′

(2x̄)1/2T 3
v† +

1

T

[

ik†
1u

† +
1

(2x̄)1/2T

∂v†

∂η
+ ik3w

†
]

= 0,

ik†
1(U − c†)u† +

U ′(η)

(2x̄)1/2T
v† = −ik†

1Tp†,

ik†
1(U − c†)v† = −(2x̄)−1/2 ∂p†

∂η
, ik†

1(U − c†)w† = −ik3Tp†,

ik†
1(U − c†)θ† +

T ′

(2x̄)1/2T
v† = ik†

1(γ − 1)M2(U − c†)Tp†,

γM2p† = Tρ† + θ†/T,































































(3.41)

where we have put

k†
1 ≡ k1 − k̃2(1 + δβ̂)/(2Rδ2), c† ≡ ω/k†

1 ≈ 1 + (2ωRδ2)−1(ω1 + k̃2). (3.42)

Again we may put x̄ = 1.
Eliminating the velocities, temperature and density among the equations in (3.41), we

obtain the compressible Rayleigh equation for the pressure

∂2p†

∂η2
− 2U ′

U − c†
∂p†

∂η
− 2T 2

[

(k†2
1 + k2

3) −
k†2
1 M2(U − c)2

T

]

p† = 0. (3.43)

The equation can, by substitution p† = (U − c†)q†, be reduced to a simpler form,

δ2 ∂2q†

∂η2
−Q(η)q† = 0, (3.44)

where we have put

Q(η) =
[

k̃2T 2 − k̃2
1M

2(U − c†)2T
]

+ δ2
[ 2U ′2

(U − c†)2
− U ′′

U − c†

]

≡ Q0 + δ2Q1. (3.45)

Equation (3.44) is in the standard form amenable to the WKB analysis.
For η = O(1), U ′/(U − c†) = O(1), U ′′/(U − c†) = O(1) and hence Q1 = O(1). The

solution of the WKB form can be found as

p† = b†(U − c†)Q−1/4
0 exp

{1

δ

∫ η

0

√

Q0(η)dη
}

, (3.46)

where b† is a constant, and Q0 is defined in (3.45). This solution becomes invalid however
when η = O(δ−1), where U ′′/(U − c†) = O(δ−1), U ′/(U − c†) = O(δ−1) and thus
Q1 = O(δ−2). By introducing η = ηd + η̄ with η̄ = O(1), equation (3.44) simplifies to

δ2 ∂2q†

∂η̄2
− (k̃2 + 1)q† = 0,

which has the solution q† = b̄ e(k̃2+1)1/2η̄/δ . It follows that

p† = b̄ e−η2

0
/2 e−

1
2 η̄2

e[(1+k̃2)1/2−1]η̄/δ . (3.47)

The solutions (3.46) and (3.47) pertain to η = O(1) and η = O(δ−1) respectively. A
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single uniformly valid solution can be constructed by retaining δ2Q1 in (3.45) for all η,
and we find

p† = b†(U − c†)Q−1/4 eΘ†
0
/δ , (3.48)

where

Θ†
0(η) =

∫ η

0

√

Q(η) dη. (3.49)

Obviously, the solution (3.48) reduces to (3.46) when η = O(1). On the other hand, once
written in terms of η̄, the solution (3.48) is the same as (3.47) provided that the constants
b† and b̄ are related via

b† = (1 + k̃2)1/4 exp
{

−Θ†
0(ηd)/δ

}

b̄.

Substituting (3.48) into (3.41), we find that

w† = −(k̃3/k̃†
1)b

†TQ−1/4 eΘ†
0
/δ, (3.50)

u† = −b†T

{

1 +
δk̃†−2

1 U ′

T 2(U − c†)

[

Q1/2 +
δU ′

U − c†
− δQ′

4Q
]

}

Q−1/4 eΘ†
0
/δ , (3.51)

θ† = b†

{

(γ−1)M2T (U − c†) − δk̃†−2
1 T ′

T (U − c†)

[

Q1/2 +
δU ′

U − c†
− δQ′

4Q
]

}

Q−1/4 eΘ†
0
/δ,

(3.52)

ρ† = b†

{

M2

T
(U − c†) +

δk̃†−2
1 T ′

T 3(U − c†)

[

Q1/2 +
δU ′

U − c†
− δQ′

4Q
]

}

Q−1/4 eΘ†
0
/δ, (3.53)

v† = ik̃†−1
1 b†

[

Q1/2 +
δU ′

U − c†
− δQ′

4Q
]

Q−1/4 eΘ†
0
/δ . (3.54)

It is worth noting that δQ′/(4Q) remains uniformly smaller than the other two terms
and hence may be neglected. As η → ηd,

v† → ik̃†−1
1 b†(1 + k̃2)−1/4

[

(1 + k̃2)1/2 − 1
]

exp
{

Q(ηd)/δ + (1 + k̃2)1/2η̂
}

. (3.55)

Matching with the first term in (3.23) yields

b† = −i(k̃†
1/k̃2)(1 + k̃2)1/4

[

(1 + k̃2)1/2 + 1
]

exp
{

−Θ†
0(ηd)/δ

}

b0. (3.56)

It can easily be verified that u† and w† match to the edge-layer solution (3.33).
Consider the viscous part of the solution, represented by the second term in (3.39).

For the assumed WKB form, the differential operators obey the transformations,

∂

∂y

∣

∣

∣

x̄
→ 1

T
√

2x̄

[

(2x̄ωR)1/2Θ′
0 +

∂

∂η

∣

∣

∣

x̄

]

,

∂

∂x̄

∣

∣

∣

y
→ 1

2x̄

[

(2x̄ωR)1/2(Θ′
0 − ηcΘ0) − ik̃2

√
x̄/δ2 − ηc

∂

∂η

∣

∣

∣

x̄

]

,

when they act upon any of (ū, v̄, w̄, p̄, θ̄, ρ̄). The velocity and pressure, (ū, v̄, w̄, p̄), may
be expanded as

(ū, v̄, w̄, p̄) = (ū0, 0, w̄0, 0) + δ−2(ωR)−1/2(ū1, v̄1, w̄1, p̄1) + . . . . (3.57)

Strictly speaking, (ū1, v̄1, w̄1, p̄1) can be expanded further as an asymptotic series with
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respect to δ � 1. Such a formal but lengthy step can be avoided by including terms up
to and including O(δ2) in the equations. These terms, though negligible for η = O(1),
become important when η = O(ηd), and their contributions must, as will be shown below,
be accounted for in order to match with the edge-layer solution. The order of magnitude
of the temperature θ̄ and density ρ̄ depends on whether Pr = 1 or not, and they are in
any case too weak to affect the velocity and pressure fields to the order of approximation.

Substituting (3.39) along with (3.57) into (2.13)-(2.17) and making use of the trans-
formations above, we found that the leading-order terms in (3.57) satisfy

ik̃1ū0 + ik̃3w̄0 = 0, LMū0 = 0, LMw̄0 = 0, (3.58)

where we have put

LM = K
(

2∂η + (Θ′′
0/Θ′

0)
)

+ Φ, K = µ/T,

Φ(η) = F − Θ0F
′/Θ′

0 + (µ/T )η.

Let the leading-order vorticity Ω̄0 ≡ ik̃3ū0 − ik̃1w̄0. The equation LMΩ̄0 = 0 then follows
from (3.58), which amounts to an over specified but consistent system. The solution for
Ω̄ is found to be

Ω̄0 = d(µ/T )1/4(1 − U)−1/4(U ′)1/2 eH(η), (3.59)

where use has been made of the Blasius equation (2.5), d is a constant, and

H(η) = 1
2

∫ η

0

F ′Θ0

KΘ′
0

dη. (3.60)

As η → ∞,

Ω̄0 e(2x̄ωR)1/2Θ0 → dâ1/4(η − β)−3/4 e−(η−β)2/8+H∞ exp{−(2ωx̄R)1/2ΘL}, (3.61)

where

H∞ = lim
η→∞

[

H + ln(η − β)
]

, ΘL = 2(−i)1/2
[

â e−(η−β)2/2 /(η − β)3
]1/2

. (3.62)

Rewriting (3.61) in terms of η̂ and matching (ωR)1/4Ω̄0 e(2x̄ωR)1/2Θ0 with the edge-layer
solution (3.32), we find that

d = − i√
π

21/4 e−νπi/2+πi/8−H∞ d0. (3.63)

The leading-order solution for ū0 and w̄0 is expressed in terms of Ω̄0 as

ū0 = −ik̃3Ω̄0/k̃2, w̄0 = ik̃1Ω̄0/k̃2, (3.64)

which matches with (3.33) as η → ηd.
The solution for the second terms in (3.57), (ū1, v̄1, w̄1, p̄1), can be obtained. The

details are relegated to Appendix A, where matching with the edge-layer solution is
demonstrated. The solution for v̄1 and p̄1 is given by (A 5) and (A 11) respectively, while
that for ū1 and w̄1 is given by (A 10) with (A 10).

As was remarked earlier, the temperature fluctuation θ in the main layer has different
order of magnitude depending on the Prandtl number Pr. If Pr 6= 1, the energy and
momentum equations allow for different WKB fast exponents. Since θ is forced by v, its
solution is proportional to eΘ0/δ . The dominant balance in the energy equation (2.17)
indicates that the θ̄ factor in the solution (3.39) for θ takes the form

θ̄ = (ωR)−3/4δ−1θ̄1. (3.65)
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The energy equation (2.17) then simplifies to the algebraic equation,

(iω̃)[1 − Pr−1](1 − U)θ̄1 = (2x̄)−1/2(T ′/T )v̄1,

from which and (A 5) it follows

θ̄1 = (i
√

2ω̃)−1[1 − Pr−1]−1c−(µ/T )3/4T ′(1 − U)−9/4(U ′)1/2 eH(η) . (3.66)

As η → ∞,

θ̄1 → (i
√

2ω̃)−1Pr[1 − Pr−1]−1b̂ â−7/4c−(η − β)5/4 e(7/4−Pr)(η−β)2/2+H∞ ,

implying that (ωR)−3/4δ−1θ̄1 matches with the second term in the edge-layer solution
(3.37) as expected.

The solution (3.66) clearly ceases to be valid for Pr = 1, in which case the temperature
θ̄ has a much larger magnitude and its solution may be written as

θ̄ = (ωR)−1/4δ−1θ̄1. (3.67)

Substitution into (2.17) the expansion for θ in (3.39) along with (3.67) shows that θ̄1

now satisfies the differential equation

Θ′
0

[

K
(

2θ̄′1 + (Θ′′
0/Θ′

0)θ̄1

)

+ Φ(η)θ̄1

]

= T ′/(ω̃T )v̄1.

The above equation is easily solved to give

θ̄1 = (−i)−1/2ω̃−1(b̂/â)c−(µ/T )1/4(1 − U)−3/4(2 − U)(U ′)1/2 eH(η), (3.68)

where use has been made of the relation (2.9) and b̂ = −(γ − 1)M2â, which holds for
Pr = 1. As η → ∞,

θ̄1 → eπi/4 ω̃−1â−3/4b̂ c−(η − β)−1/4 e(η−β)2/8+H∞ ,

matching the second term in the edge-layer solution (3.38).
Note that underneath the edge layer, the perturbation becomes exponentially small,

indicating that the outer edge of the boundary layer acts as a barrier to the disturbance.
This phenomenon will be referred to as ‘shear sheltering’. The same term was used
previously by Jacobs & Durbin (1998) and Zaki & Saha (2009) to characterize a similar
behaviour of the continuous modes. It should be pointed out that only the present solution
describes properly ‘shear sheltering’ of free-stream vortical disturbances, whereas the
continuous-mode solution does not. This is because the latter neglects non-parallelism,
which actually plays a leading-order role in this process. It is also worth pointing out
that the entrainment and ‘shear sheltering’ are controlled crucially by the behaviour of
the boundary-layer flow at its outer edge. Use of artificial piecewise linear profiles is
inappropriate. It is also unnecessary since the analytical behaviours of ‘shear sheltering’
can be obtained for the true profiles.

3.3. Composite solution

The above asymptotic analysis of the edge and main layers provides key insights into the
entrainment process of free-stream vortical disturbances. However, from the computa-
tional standpoint, it would be convenient to have a single approximation which accounts
for all leading-order physics and is uniformly valid across the entire boundary layer. One
might prefer to seek a finite-Reynolds-number construction of such an approximation.
Unfortunately, that does not seem to be possible. We therefore use the additive rule to
construct a composite solution from the edge-layer and main-layer asymptotic solutions,
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Figure 1. The profile of the wall-normal velocity v for M=0, R = 400 and k1 = k2 = k3 = 5.
The second plot zooms into the range 2 < η < 4. Solid lines: the composite solution Vc; symbols:
the edge-layer solution v̂; dash-dotted lines: the WKB solution in the main deck v†.

(3.14) and (3.39). The composite solutions for the streamwise and spanwise velocities
can be constructed as

Uc = û + (ωR)1/4ū0 + (ωR)−1/4δ−2ū1 + u† − uc

= −(ik̃3/k̃2)
{

Ω̂ + (ωR)1/4
[

Ω̄0 + (ωR)−1/2δ−2Ω̄1

]

exp{(2x̄ωR)1/2Θ0} − Ωc

}

+(ik̃1/k̃2)
[

v̂′ +
√

2(ωR)−1/4δ−1(Θ′
0/T )v̄1 exp{(2x̄ωR)1/2Θ0}

]

+ u†

−(ik̃1/k̃2)
[

b0(1 + k̃2)1/2 e(1+k̃2)1/2η̂ +c0 e−πi/4 eη̂/4 exp{−2 e−iπ/4 e−η̂/2}
]

, (3.69)

Wc = ŵ + (ωR)1/4w̄0 + (ωR)−1/4δ−2w̄1 + w† − wc

= (ik̃1/k̃2)
{

Ω̂ + (ωR)1/4
[

Ω̄0 + (ωR)−1/2δ−2Ω̄1

]

exp{(2x̄ωR)1/2Θ0} − Ωc

}

+(ik̃3/k̃2)
[

v̂′ +
√

2(ωR)−1/4δ−1(Θ′
0/T )v̄1 exp{(2x̄ωR)1/2Θ0}

]

−(ik̃3/k̃2)
[

b0(1 + k̃2)1/2 e(1+k̃2)1/2η̂ +c0 e−πi/4 eη̂/4 exp{−2 e−iπ/4 e−η̂/2}
]

, (3.70)
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Figure 2. The composite solution Uc,Vc,Wc and Pc of an entrained disturbance with a short
wavelength (k1 = k2 = k3 = 5) and E = 1 at M = 0 and R = 400. Solid lines: real parts; dashed
lines: imaginary parts.

where v̂ and c0 are found by solving (3.18) subject to (3.21) and (3.23), whereas Ω̂ is
obtained by solving (3.19) subject to the boundary conditions (3.22) and (3.32) with d0

being given by (3.30). The function Ωc denotes the right-hand side of (3.32). Similarly,
the composite solutions for the normal velocity and the re-normalized pressure (Rδ)p are
found as

Vc = v̂ + (ωR)−3/4δ−2v̄1 exp{(2x̄ωR)1/2Θ0} + v†

−
[

b0 e(1+k̃2)1/2η̂ +c0 e3η̂/4 exp{−2 e−iπ/4 e−η̂/2}
]

, (3.71)

Pc = p̂ + (ωR)−3/4δ−1p̄1 exp{(2x̄ωR)1/2Θ0} + (Rδ)p†

− 1√
2

[ ib0

k̃2
[(1+ k̃2)1/2+1] e[(1+k̃2)1/2−1]η̂ +2c0 e3η̂/4 exp{−2 e−iπ/4 e−η̂/2}

]

. (3.72)
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Figure 3. The composite solution for Uc and Wc of an entrained disturbance with a long
streamwise wavelength (k1 = 0.02, k2 = k3 = 1) for E = 1, M = 0 and R = 2000, and
comparison with the asymptotic solution in terms of the Hankel function (Dong & Wu 2013).
Solid lines: the composite solutions; dashed lines: the Hankel-function solution.

When Pr 6= 1, the solution for the temperature

Θc = e
1
2 (1−Pr)η2

0 θ̂ + (ωR)−3/4δ−1θ̄1 exp{(2x̄ωR)1/2Θ0} + θ†

−i(
√

2ω̃)−1(b̂/â)Pr
[

−b0 e−(Pr−1)η̂+(1+k̃2)1/2η̂

+(1/Pr − 1)−1c0 e(7/4−Pr)η̂ exp{−2 e−iπ/4 e−η̂/2}
]

, (3.73)

where θ̂ is obtained by solving (3.34) subject to (3.35) and (3.37), and θ̄1 is given by
(3.66). When Pr = 1,

Θc = θ̂ + (ωR)−1/4δ−1θ̄1 exp{(2x̄ωR)1/2Θ0} + θ†

−(
√

2ω̃)−1(b̂/â)
[

−ib0 e(1+k̃2)1/2η̂ + eπi/4 c0 eη̂/4 exp{−2 e−iπ/4 e−η̂/2}
]

, (3.74)

where θ̄1 is given by (3.68).
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Figure 4. The profile of the wall-normal velocity v for k1 = k2 = k3 = 5 and E = 1 at M = 4.5
and R = 4000. The second plot zooms into the range 3 < η < 5. Solid lines: the composite
solution Vc; symbols: the edge-layer solution v̂; dash-dotted lines: the WKB solution in the
main deck v†.

3.4. Numerical results

Composite solutions are computed for four different cases, including both incompressible
and compressible (supersonic) boundary layers, with large and small values of k1.

3.4.1. Case 1: incompressible boundary layer with large k1

Fig.1 shows the profile of the wall-normal velocity for k1 = k2 = k3 = 5 and E = 1 at
M = 0 and R = 400. The edge-layer solution matches smoothly with the imposed free-
stream disturbance on one hand, and with the main-deck WKB solution on the other,
reaffirming the basis on which the composite solution is constructed. The composite
solution holds in the entire boundary layer. It turns out that the edge-layer solution and
the composite solution are almost the same. The disturbance in the main boundary layer
is very small, indicating that free-stream vortical disturbances are almost completely
trapped in, or absorbed by, the edge layer. This is the phenomenon of ‘shear sheltering’.

The composite solutions for the velocities (u, v, w) and the pressure p are displayed
in Fig.2. All three velocity components have comparable magnitudes in the edge layer.
In the free stream, only a vortical disturbance is present, but within the edge layer a
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Figure 5. The composite solutions Uc, Vc, Pc and Θc of an entrained disturbance with a short
wavelength (k1 = k2 = k3 = 5) and E = 1 at M = 4.5 and R = 4000. Solid lines: real parts,
dashed lines: imaginary parts.

pressure fluctuation is generated, which decays exponentially in the free stream. These
behaviours are consistent with the physical nature of the disturbance.

3.4.2. Case 2: incompressible boundary layer with small k1

Although the asymptotic solution in this paper is obtained for k1 � 1, it is actually
applicable as well to fairly small k1 provided that k1 � R−1. The composition solution
for k1 = 0.02, k2 = k3 = 1 and E = 1 is shown in Fig.3. Note that while the transverse
velocities remain comparable with the disturbance level in the free stream, the streamwise
velocity in the edge layer acquires an amplitude about 10 times as large. The amplified
streamwise velocity leads to formation of streaks in the edge layer.

For the low-frequency case, i.e. R−1 << ω ≈ k1 << 1, the solution can be expressed in
terms of the Hankel function (Leib et al. 1999, Dong & Wu 2013). A comparison with this
asymptotic solution is displayed in Fig.3. The composite solution and the Hankel-function
approximation agree reasonably well for η̂ = O(1), i.e. in the edge layer. The agreement
deteriorates however as η̂ → ∞, which is expected since the solution in terms of the
Hankel function is no longer valid in the free stream. The present composite solution
therefore provides a better characterization of the vortical disturbance.
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Figure 6. The composite solution for Uc, Vc, Pc and Θc of an entrained disturbance with a
long streamwise wavelength (k1 = 0.02), k2 = k3 = 3.14 and E = 1 at M = 4.5 and R = 4000.
Solid lines: real parts, dashed lines: imaginary parts.

3.4.3. Case 3: compressible boundary layer with large k1

Fig.4 shows the profile of the wall-normal velocity v for a disturbance with k1 = k2 =
k3 = 5 and E = 1 at M = 4.5 and R = 4000. Again, there is a smooth matching between
the edge-layer and main-deck solutions at the outer reaches of the boundary layer. There
is an appreciable difference between the two, but they both merge with the composite
solution as expected. The composite solutions Uc,Vc,Pc and Θc are displayed in Fig.5;
the spanwise velocity Wc is not shown as it is similar to Vc. Only a vortical disturbance is
present in the free stream, but it generates both pressure and temperature perturbations
in the edge layer. The induced pressure fluctuation is fairly small, whereas the induced
entropy disturbance is comparable with the vortical disturbance.

3.4.4. Case 4: compressible boundary layer with small k1

Fig.6 shows the composite solutions Uc, Vc, Pc and Θc for a disturbance with a rela-
tively long stramwise wavelength (k1 = 0.02, k2 = k3 = 3.14) at M = 4.5 and R = 4000.
Similar to the incompressible case, the streamwise velocity is much amplified in the edge
layer, attaining a maximum amplitude about 20 times that of the free-stream disturbance.
This implies formation of strong velocity streaks in the edge layer. Interestingly, for com-
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Figure 7. Contours of the spanwise vorticity Ωz (plots (a-1) and (a-2)) and the total stream-
wise velocity uT (plots (b-1) and (b-2)). Plots (a-1) and (b-1) are for M = 0, R = 2000,
k1 = 0.02, k2 = k3 = 1 and E = 1.0 with ε = 0.05. Plots (a-2) and (b-2) are for
M = 4.5, R = 4000, k1 = 0.02, k2 = k3 = 3.14 and E = 1.0. The solid, dashed and thin
lines in (a-1) and (a-2) represent the positive, negative and zero levels, respectively; and those
in (b-1) and (b-2) represent the levels above, below and equal to 1, respectively.

pressible boundary layers a free-stream vortical disturbance drives also an extremely
strong temperature fluctuation in the edge layer with its amplitude being about 70 times
that of the FSVD. Thermal streaks are therefore expected to form. As the streamwise
velocity and the temperature fluctuations acquire larger magnitudes only within the edge
layer, this phenomenon is entirely physically acceptable. It should not be confused with
the non-physical features of ‘vortical-entropy entanglement’ and ‘abnormal anisotropy’
that continuous spectra exhibit; see §4 below.

Quantities of interest are the total spanwise vorticity Ωz and streamwise velocity uT

in the edge layer, which are given by

Ωz = εi/(
√

2k̃2)
[

k̃1(v̂
′′ − k̃2v̂) + k̃3Ω̂

′
]

eiξ +c.c. − â e−η2

0
/2 e−η̂, (3.75)

uT = εi/k̃2
[

k̃1v̂
′ − k̃3Ω̂

]

eiξ +c.c. + 1 − â

η̂ − β
e−η2

0
/2 e−η̂, (3.76)

where ε is the magnitude of the disturbance and ξ = k1x + k3z − ωt + k̃2(1 + δβ̂)/δ2.
Fig.7 displays contours of Ωz and uT in (ξ, η) and (z, η) planes, respectively, for two cases
of small k1, which are chosen because the spanwise vorticity and streamwise velocity of
the perturbation acquire large amplitudes. Contours of Ωz and uT illustrate the spatial
structure of vortices and streaks.
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4. Continuous spectra

4.1. Finite-Reynolds-number formulation

When the terms representing the nonparallel-flow effects are ignored at outset, the lin-
earized N-S equations (2.13)-(2.18) reduce to (Balakumar & Malik 1992)

ik1u + v′ + ik3w = −T [i(k1U − ω)ρ − (T ′/T 2)v],

i(k1U − ω)u + U ′v = −ik1Tp +
T

R

[

∆u +
1

3
µ ik1S + (U ′µ′T ′)′ + µ′T ′ik1v

]

i(k1U − ω)v = −Tp′ +
T

R

[

∆v +
1

3
µS′ + µ′(T ′v′ + ik1U

′θ) − 2

3
µ′T ′S

]

,

i(k1U − ω)w = −ik3Tp +
T

R

[

∆w +
1

3
µ ik3S + µ′T ′ik3v

]

,

i(k1U − ω)θ + T ′v = (γ − 1)TM2i(k1U − ω)p +
T

PrR

[

∆θ + (µ′T ′θ)′
]

+
(γ − 1)TM2

R

[

2µU ′(u′ + ik1v) + µ′U ′2θ
]

,

T ρ + θ/T = γM2p,























































































(4.1)

where a prime denotes the derivative with respect to y, except µ′, which is with respect
to T . The above equations can be recast into a system of first-order equations (Joo &
Durbin 2010, 2012)

dΦ

dy
+ D(y)Φ = 0, (4.2)

where Φ is a vector of dimension eight,

Φ(y) = (u, u′, v, p, θ, θ′, w, w′)T, (4.3)

and D is an 8 × 8 matrix, whose expression is given in Appendix B.
The system (4.2) is subject to four boundary conditions at the wall,

u(0) = v(0) = w(0) = θ(0) = 0, (4.4)

and four upper boundary conditions, which represent vortical, acoustic and entropy
modes, as will be shown below. The resulting boundary-layer problem is to be solved
by the finite-difference scheme of Malik (1990).

The upper boundary conditions are derived as follows. In the free stream, the gradient
of the base flow vanishes so that the system(4.2) has constant coefficients, and the general
solution is of the form

Φ =
8

∑

j=1

Ajb
(j) eλjy, (4.5)

where λj and b(j) denote the eigenvalue and eigenfunction of D∞ ≡ lim
y→∞

D, respectively,

and the constant Aj represents the amplitude of the component with eigenvalue λj . The
eigenvalues are found to be (Balakumar & Malik 1992)

λ1 = λ3 = −λ2 = −λ4 = [i(k1 − ω)R + k2
1 + k2

3 ]
1

2 ,

λ5 = −λ6 =
1

2

[

(b22 + b33) −
√

(b22 + b33)2 + 4(b23b32 − b22b33)
]

1

2

,

λ7 = −λ8 =
1

2

[

(b22 + b33) +
√

(b22 + b33)2 + 4(b23b32 − b22b33)
]

1

2

,



























(4.6)
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where

b22 = k2
1 + k2

3 − R(k1 − ω)2
3
4γM2 − (γ − 1)PrM2

3
4R + i(k1 − ω)γM2

, b23 =
R(k1 − ω)2( 3

4 − Pr)
3
4R + i(k1 − ω)γM2

,

b32 = −i(k1 − ω)(γ − 1)PrM2R, b33 = i(k1 − ω)PrR + k2
1 + k2

3 .

It should be mentioned that although λ1 = λ3 and λ2 = λ4, the corresponding eigenvec-
tors are all different.

The nature of the eigenvalues transpires when their large-Reynolds-number approxima-
tion is examined. There exist three branches of continuous spectra: acoustic, entropy and
vortical. The acoustic-mode branch is not the focus of the present study. As a contrast
with the latter two branches, it suffices to note that an acoustic mode has the property
that k1 −ω = O(1) for R � 1, and represents a clear physical entity, an acoustic distur-
bance in the free stream. The fluctuation in the free stream consists simultaneously of the
Fourier components with vertical wavenumbers ±k2, which are coupled. Such a coupling
is entirely physical with the two components representing the incident and reflected sound
waves. In contrast, vortical and entropy modes do not represent any physical entity, and
the coupling between ±k2 components in them is non-physical as we will show.

4.1.1. Vortical-mode branch

If k1 − ω = O(R−1), which is the case for vortical and entropy disturbances, the
eigenvalues simplify to:

λ5,6 = ±[k2
1 + k2

3 ]1/2, λ7,8 = ±[i(k1 − ω)PrR + k2
1 + k2

3 ]
1/2, (4.7)

in the limit R → ∞ (and M = O(1)), while λ1,2,3,4 remain as given in (4.6). Setting either
λ1 = λ3 = ik2 or λ2 = λ4 = −ik2, where k2 represents the wall-normal wavenumber,
then we obtain

k2
1 + k2

2 + k2
3 + i(k1 − ω)R = 0, (4.8)

which is the dispersion relation for vortical modes. Their phase speeds are

c =
ω

k1
= 1 +

i(k2
1 + k2

2 + k2
3)

ωR
→ 1 as R → ∞.

For spatial vortical modes, only k1 is complex with a positive imaginary part of O(R−1).
It follows from (4.7) that for R � 1,

λ5 = −λ6 ≈ [k2
1 + k2

3 ]
1/2 = (a + bi),

where a and b are real with a > 0, and

λ7 = −λ8 ≈ [−Prk2
2 + (1 − Pr)(k2

1 + k2
3)]

1/2.

Note that if Pr = 1, then λ7 = −λ8 = ik2, that is, they represent entropy modes. More
generally for Pr 6= 1, λ7 and λ8 are both nearly pure imaginary with real parts of O(R−1)
provided that

Prk2
2 + (Pr − 1)(ω2 + k2

3) > 0; (4.9)

the corresponding eigenvectors, b(7) and b(8), represent temperature/density fluctuations
persistent in the free stream (0 � y � R), and hence will be referred to as ‘quasi entropy
modes’ since one of them (λ8 say) eventually decays, while the other (λ7 say) becomes
unbounded when y � R. These modes have vertical wavenumbers ±σ, with

σ ≈
[

Prk2
2 + (Pr − 1)(ω2 + k2

3)
]1/2

. (4.10)
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Figure 8. The profiles of continuous modes with A3 = A5 = A7 = 0 and A2 = 1 in the upper
boundary condition, where the eigenfunctions are normalized by max(|v̂∞|). The thick line marks
the location of δ99. Solid lines: real parts; dashed lines: imaginary parts. The parameters are
M = 4.5, R = 4000, k1 = 0.01 and k2 = k3 = 1.0.

When (4.9) is violated, λ7 and λ8 are complex with O(1) positive and negative real
parts, respectively. Thus regardless whether Pr = 1 or not, we may designate λ7 and λ8

as having positive and negative real parts, respectively.

In the present paper, we consider the case of Pr = 0.72 and k1 6 O(k2) = O(k3), with
ω, k2 and k3 being chosen such that (4.9) is always satisfied. As a result, λ1 = λ3 = ik2

and λ2 = λ3 = −ik2 are all purely imaginary, and λ7,8 are nearly purely imaginary,
whereas λ5,6 are almost real with positive and negative real parts, respectively.

In order to keep the perturbation bounded at infinity, it is necessary to set A5 = 0 and
we also set A7 = 0 to exclude the unbounded ‘quasi entropy mode‘. There are several op-
tions for specifying the remaining parameters, one of which may be taken to be unity as a
normalization condition. The solution in the free stream is in general a supposition of four
branches of vortical modes and a ‘quasi entropy mode’, which can be designated accord-
ing to (wall-normal wavenumber, amplitude) as (k2, A1), (−k2, A2), (k2, A3), (−k2, A4)
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Figure 9. The profiles of continuous modes with A1 = A5 = A7 = 0 and A2 = 1 in the upper
boundary condition. Solid lines: real parts; dashed lines: imaginary parts. The parameters are
M = 4.5, R = 4000, k1 = 0.01 and k2 = k3 = 1.0.

and (−σ, A8). The wall-normal velocity and vorticity fluctuations, v and Ω, are given by

v =

4
∑

j=1

Ajb
(j)
3 eλjy, Ω =

4
∑

j=1

Aj(ik3b
(j)
1 − ik1b

(j)
7 ) eλjy,

respectively. Numerical calculations and the asymptotic analysis will show that these
modes, including those with wavenumbers ±k2, are ‘entangled’ in the sense that the
ratios of their amplitudes are fixed by the presence of the boundary layer. Similar to
incompressible boundary layers considered in Dong & Wu (2013), this feature of the
continuous spectra, referred to as ‘Fourier-component entanglement’, is non-physical since
the spectral composition (i.e. the amplitude ratios) should be determined by how the
perturbations are generated upstream rather than by the boundary layer underneath.

For the purpose of illustration, we set A2 = 1, and perform calculations and present
the results for three cases, all with M = 4.5 and R = 4000.

(a) We set A3 = 0. The values of A1,4,8 are determined by solving the boundary-value
problem. For the given set of parameters, the amplitudes of the two other vortical modes
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and the induced ‘quasi entropy mode’ are found to be

A1 = −0.0826 + 0.105i, A4 = −0.00791 + 0.0125i, A8 = 0.847− 4.627i.

That A1 must take a specific value signifies the entanglement of Fourier components
±k2 of the vortical disturbance. Moreover, the fact that A8 6= 0 means that an entropy
perturbation must also be present, whose amplitude is dictated by the vortical mode
(−k2, A2) in the free stream. This will be referred to as ‘vortical-entropy entanglement’,
which occurs in compressible boundary layers. Fig. 8 shows the profiles of û, v̂, p̂ and
θ̂. The streamwise velocity in the free stream has a much larger amplitude than that
of the transverse velocities v̂ and ŵ (not shown). This ‘abnormal anisotropy’ arises not
because of conditions upstream but is due to the presence of the boundary layer. The
temperature fluctuation, associated with the entangled ‘quasi entropy mode’, acquires
an extraordinarily large amplitude as well in the free stream, a mathematical reason for
which will be offered later. This feature, which was observed previously by Joo & Durbin
(2010) in their calculations, is not physically acceptable even though the ‘quasi entropy
mode’ would eventually attenuate when y is very large (y � R); see later. A pressure
fluctuation is induced by the vortical disturbance but is confined within the edge layer,
i.e. there is no vorticity-acoustic entanglement.

(b) We set A1 = 0. Then it is found that

A3 = −0.00200− 0.00151i, A4 = −0.0118 + 0.0134i, A8 = 0.696− 7.29i.

Once again, Fourier components ±k2 of the vortical disturbance are entangled, and a
‘quasi entropy mode’ (−σ, A8) is entangled with the vortical disturbance due to the pres-
ence of the boundary layer. The profiles displayed in Fig. 9 indicate that the streamwise
velocity and the temperature in the free stream exhibit ‘abnormal anisotropy’.

(c) We set A8 = 0. This is an extreme case in that any entropy disturbance is com-
pletely excluded with only velocity perturbations being present in the free stream. The
vortical-entropy entanglement is thus avoided at outset. All four vortical modes, which
appear in pairs with ±k2 vertical wavenumbers, must be present simultaneously. With
A2 = 1, the amplitudes of the other three modes are calculated, and it is found that the
vortical disturbance must have the composition

(A1, A2, A3, A4) = (−0.268+0.249i, 1, 0.00281+0.00341i, −0.000766+0.0126i). (4.11)

The result indicates a full entanglement of Fourier components. Note that the composi-
tion (4.11) of the vortical-mode amplitudes is dictated completely by the boundary layer,
and only with this specific composition does the entropy disturbance vanish in the free
stream (i.e. A7 = A8 = 0). Physical vortical disturbances of course do not have such a

composition in general. The profiles of û, v̂, p̂ and θ̂ are displayed in Fig.10. The stream-
wise velocity has a much larger amplitude than that of the normal velocity. Although not
shown, the spanwise velocity has a very large amplitude in this case. Both the pressure
and temperature perturbations are generated and remain trapped in the edge layer.

4.1.2. Entropy-mode branch

As was already alluded to above, ω − k1 = O(R−1) for the entropy modes, and so the
large-R asymptotes of the eigenvalues are the same as given in (4.7). Setting λ7 = −λ8 =
ik2 gives the following dispersion relation for entropy modes,

k2
1 + k2

2 + k2
3 + i(k1 − ω)PrR = 0, (4.12)
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Figure 10. The profiles of continuous modes for the case where entropy components are absent
(i.e. A7 = A8 = 0). Solid lines: real parts; dashed lines: imaginary parts. The parameters are
M = 4.5, R = 4000, k1 = 0.01 and k2 = k3 = 1.

which implies that their phase speeds are given by

c =
ω

k1
= 1 +

i(k2
1 + k2

2 + k2
3)

ωPrR
→ 1 as R → ∞.

The eigenvalues λ1,2,3,4 as given in (4.6) now simplify to

λ1 = λ3 = −λ2 = −λ4 ≈ ∓i
[

k2
2 + (1 − Pr)(k2

1 + k2
3)

]1/2

/
√

Pr.

For spatial entropy modes, k1 is complex with an O(R−1) positive imaginary part. It
follows that λ1,2,3,4 are nearly purely imaginary with real parts being of O(R−1) when
Pr < 1 (e.g. Pr = 0.72). The disturbances corresponding to λ1,2,3,4 are oscillatory, and
of vortical nature, in the free stream, and will be referred to as induced vortical modes.
The branches are chosen such that <(λ1) = <(λ3) > 0 while <(λ2) = <(λ4) < 0. On the
other hand,

λ5 = −λ6 ≈ ±[k2
1 + k2

3 ]
1/2 = ±(a + bi),

where a and b are real with a > 0.
The boundary-value problem for continuous entropy modes is similar to that for con-
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Figure 11. The profiles of continuous modes with A8 = 1 and A1 = A3 = A5 = 0 in the upper

boundary conditions, where the eigenfunctions are normalized by max(|θ̂∞|). Solid lines: real
parts; dashed lines: imaginary parts. The parameters are M = 4.5, R = 4000, k1 = 0.01 and
k2 = k3 = 1.0.

tinuous vortical modes. It remains necessary to set A5 = 0. Assuming that the temper-
ature fluctuation is specified in terms of entropy modes, we set A8 = 1. We now take
A1 = A3 = 0 in order to exclude the slowly attenuating induced vortical modes. A2, A4

and A7 are to be found, and the calculations give their values as

A2 = −0.000896− 0.00164i, A4 = 0.0878 + 0.0225i, A7 = −0.136 + 0.166i.

The profiles of the velocity, pressure and temperature are displayed Fig.11. For the choice
of A1 = A3 = 0, the Fourier entanglement between ±k2 vorticity modes is avoided, but
the two Fourier components in the entropy modes are now entangled since A7 is fixed by
the boundary-value problem. Furthermore, there is an entropy-vorticity entanglement,
that is, entropy fluctuations force the presence of vortical disturbances in the free stream
as Fig.11 indicates. This is not physically acceptable even though the induced vortical
disturbance is rather small. The induced pressure fluctuation is confined in the edge layer,
i.e. entropy-acoustic entanglement does not occur.

In summary, vortical and entropy branches of the continuous spectra exhibit sev-
eral non-physical features including Fourier-component entanglement, vortical-entropy
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and entropy-vortical entanglements as well as abnormal anisotropy. Among these, the
vortical-entropy entanglement (coupling) and abnormally large size of the induced en-
tropy disturbance were noted by Joo & Durbin (2010). They also pointed out that these
cause a problem when continuous modes are used to represent free-stream disturbances.
Without recognizing the cause of these features, Joo & Durbin (2010) sought to avoid
them by removing certain coupling terms in the disturbance equations. However, there is
no justification for this step, and the meaning of the resulting solution to the reduced sys-
tem remains unclear. Furthermore, the removal of those coupling terms does not prevent
the entanglement of Fourier components in the velocity and temperature perturbations.
The present work indicates that all of these non-physical features are due to neglecting
non-parallelism since our analysis in §3 shows that the true entrained disturbance does
not exhibit any of these features when non-parallelism is included.

4.2. The large-Reynolds-number asymptotic description of continuous spectra

In order to provide a contrast with the physical process of entrainment and to explain
some of the numerical findings concerning the continuous spectra, the asymptotic descrip-
tion of continuous modes given by Dong & Wu (2013) for disturbances in incompressible
boundary layers and with O(δ∗) wavelength, is now generalised to compressible boundary
layers for the case where wavelengths are comparable with the width of the edge layer.
This shorter wavelength scaling regime turns out to be more general than that for O(δ∗)
wavelengthes. Analytical progress can be made for genuine boundary-layer profiles, and
there is no need to use an artificial piecewise linear profile (cf. Jacobs & Durbin (1998),
Zaki& Durbin (2005), Zaki & Saha (2009)).

With acoustic modes being excluded from consideration, the far-field asymptotes con-
sist of vortical or entropy modes, leading to two branches of continuous spectra.

4.2.1. Vortical-mode branch

In this case, the wall-normal velocity v and vorticity Ω are specified as

v = A e−ik2y +B eik2y +C e−k̄y, Ω = E e−ik2y +F eik2y, (4.13)

where k̄ is given by (3.4), A, B, C, E and F are all constants, among which we can set
A = 1, while B, C and one of E and F are to be determined. It is worth noting that
they are related to the eigenvectors in (4.5) via the relations,

C = A6b
(6)
3 , (B, F )T = M1(A1, A3)

T, (A, E)T = M2(A2, A4)
T, (4.14)

where the transfer matrices are

M1 =

[

b
(1)
3 b

(3)
3

i(k3b
(1)
1 −k1b

(1)
7 ) i(k3b

(3)
1 −k1b

(3)
7 )

]

,

M2 =

[

b
(2)
3 b

(4)
3

i(k3b
(2)
1 −k1b

(2)
7 ) i(k3b

(4)
1 − k1b

(4)
7 )

]

.

Thus if we specify A and E, or B and F , we can obtain A1 and A3, or A2 and A4, and
vice versa.

From the momentum and energy equations, we obtain the solution for the induced
pressure and temperature

p = − 1

k̄R
(k2

1 + k2
2 + k2

3)C e−k̄y, (4.15)
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θ = R1 e−iσy +R2 eiσy − (γ − 1)M2

k̄R
(k2

1 + k2
2 + k2

3)C e−k̄y, (4.16)

where k1 is related to ω via (4.8), and σ is given by (4.10). Note that the temperature
fluctuation consists of terms e±iσy, which are oscillatory when the condition (4.9) holds.
As will be shown below, at leat one of these two terms must be present, and they rep-
resent the ‘quasi entropy modes’ forced by the vortical disturbance, indicating that the
entropy modes are dependent of the vortical modes. This is in contrast to the entrainment
problem, where such terms are absent (see (3.6)) since entropy and vortical disturbances
in the free stream can be independent.

In the limit R → ∞, eigenfunctions of the continuous modes acquire an asymptotic
structure consisting of the main part of the boundary layer and a relatively thin edge
layer located at the outer reach of the boundary layer. The width of the edge layer is
δ ≡ η−1

0 � 1 with η0 � 1 is specified by the the equation

η3
0 eη2

0
/2 = 2âωR. (4.17)

The analysis presented in the earlier work by Dong & Wu (2013) pertains to the scaling
k2 = O(1) and k3 = O(1). The present work is concerned with disturbances of shorter
wavelength k2 = O(δ−1) and k3 = O(δ−1), for which the analysis must be modified.

The solution in the edge layer expands as

(u, v, w, p, Ω) =
(

û, v̂, ŵ, p̂/(δR), Ω̂/(
√

2δ)
)

. (4.18)

Note that (4.17) and the form of the solution (4.18) differ from (3.7) and (3.14) respec-
tively in that the dependence on x̄ is absent. The normal velocity of a continuous mode
generates a temperature/density fluctuation, and the dominant balance in the energy
equation suggests that the solution for the latter can be written as

θ = − ρ = e
1
2 (1−Pr)η2

0 θ̂. (4.19)

Substitution of (4.18)–(4.19) into the continuity and momentum equations (2.13)-(2.16)
but with non-parallelism being artificially suppressed leads to the edge-layer equations,

ik̃1û + v̂′ + ik̃3ŵ = 0, (4.20)

(D̂2 − k̃2
1 − k̃2

3)û + i(e−η̂ +ω1)û − e−η̂ v̂/(ω̃
√

2) = i
√

2k̃1p̂,

(D̂2 − k̃2
1 − k̃2

3)ŵ + i(e−η̂ +ω1)ŵ = i
√

2k̃3p̂,

}

(4.21)

[

(D̂2 − k̃2
1 − k̃2

3)v̂ + i(e−η̂ +ω1)v̂
]

=
√

2p̂η̂. (4.22)

They are pretty similar to (3.16) and (3.17), but the crucial difference is that the first-
order derivatives, û′, ŵ′ and v̂′, as well as terms with coefficient ik2, in the three momen-
tum equations are now absent. Eliminating û and ŵ among (4.20)-(4.22), we obtain

[

(D2 + k̃2
2 + i e−η̂)(D2 − k̃2

1 − k̃2
3) − i e−η̂

]

v̂ = 0, (4.23)

(D2 + k̃2
2 + i e−η̂)Ω̂ = ik̃3/(

√
2ω̃) e−η̂ v̂. (4.24)

The boundary conditions for (4.23) and (4.24) are

v̂ → Â e−ik̃2η̂ +B̂ eik̃2η̂ +Ĉ e−k̃η̂ as η̂ → ∞,

v̂ → 0, v̂′ → 0 as η̂ → −∞;

}

(4.25)
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Ω̂ → Ê e−ik̃2η̂ +F̂ eik̃2η̂ as η̂ → ∞, Ω̂ → 0 as η̂ → −∞, (4.26)

where

(Â, B̂, Ĉ) =
(

A e−ik̃2(1+δβ̂)/δ2

, B eik̃2(1+δβ̂)/δ2

, C e−k̃2(1+δβ̂)/δ2
)

,

(Ê, F̂ ) =
(√

2δE e−ik̃2(1+δβ̂)/δ2

,
√

2δF eik̃2(1+δβ̂)/δ2
)

.

The WKB solution in the main layer consists of the inviscid and viscous parts. The
former turns out to be essentially the same as that for entrained disturbances, while the
latter remains the same as for k2 = O(1) and k3 = O(1) considered in Wu & Dong
(2013). Omitting the details, we find that matching with the edge-layer solution requires
that as η̂ → −∞,

v̂ → b0 e(1+k̃2)1/2η̂ +c0 e5η̂/4 exp{−2 e−πi/4 e−η̂/2}, (4.27)

Ω̂ →
(

k̃3/(
√

2ω̃)
)

b0 e[(1+k̃2)1/2−1]η̂ +

{

d0

[

1 + ( 3
16 − k̃2

2) eπi/4 eη̂/2
]

− k̃3c0√
2ω̃

e−iπ/4 eη̂/2

}

eη̂/4 exp(−2 e−iπ/4 e−η̂/2). (4.28)

The above asymptotic behaviours provide more precise boundary conditions than (4.25)
and (4.26) for v̂ and Ω̂ respectively, and they can alternatively be derived by considering
the balances in equations (4.23) and (4.24) in the limit η̂ → −∞.

Substitution of (4.18) and (4.19) into the energy equation in (4.1) shows that θ̂ satisfies
the equation

Pr−1(D̂2 − k̃2
1 − k̃2

3)θ̂ + i(e−η̂ +ω1)θ̂ = Pr b̂/(âω̃
√

2) e−Prη̂ v̂. (4.29)

The boundary condition consistent with the equation is

θ̂ → R̂1 e−iσ̃η̂ +R̂2 eiσ̃η̂ as η̂ → ∞; θ̂ → 0 as η̂ → −∞, (4.30)

where (R̂1, R̂2) = e−
1
2 (1−Pr)η2

0 (R1 e−ik̃2(1+δβ̂)/δ2

, R2 eik̃2(1+δβ̂)/δ2

), and

σ̃ =
[

Prk̃2
2 + (Pr − 1)(ω̃2 + k̃2

3)
]1/2

. (4.31)

When [(Pr − 1)(ω̃2 + k̃2
3) + Prk̃2

2 ] > 0, which is always the case for Pr > 1, σ̃ is purely
imaginary, but (R̂1, R̂2) 6= (0, 0) in general as we will show.

In the limit R → ∞, the system governing the continuous spectra becomes only par-
tially coupled: the equations for the normal vorticity Ω̂ and the temperature θ̂ are coupled
only to that for the normal velocity v̂, whilst the latter is independent. The solutions for
v̂, Ω̂ and θ̂ can be obtained in sequence.

The boundary-value problem (4.24) with (4.26) corresponds to (C 1) of Appendix C
with σ = k̃2, κ = 1 and f = ik̃3/(

√
2ω̃)v̂. Inserting these into the general results (C 6)

and (C 3) with (C 4), we obtain the relation between Ê and F̂ ,

Ê − |Γ(2ik̃2)|2
Γ2(2ik̃2)

ek̃2πF̂ = −πik̃3/(
√

2ω̃) e−k̃2π/2

2k̃2Γ(2ik̃2)

∫ ∞

−∞
e−η̂ H(1)

ν (ζ)v̂ dη̂, (4.32)

and the solution for Ω̂,

Ω̂ =
πik̃3/(

√
2ω̃)

2 sinh(2k̃2π)

∫ ζ

0

ζ̃
[

J−ν(ζ)Jν (ζ̃) − Jν(ζ)J−ν (ζ̃)
]

v̂ dζ̃ + d+
0 Jν(ζ) + d−0 J−ν(ζ),
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Figure 12. Comparison of the coefficients B and C for M = 0, R=580, ω=0.179 and k3=0.
Dashed lines: asymptotic prediction by Dong & Wu (2013); dash-dotted lines: asymptotic pre-
diction in the present paper; solid lines: numerical solution of the O-S equation.

where ν = 2ik̃2, and

d+
0 = Γ(1 + 2ik̃2) ek̃2π/2 Ê, d−0 = Γ(1 − 2ik̃2) e−k̃2π/2 F̂ .

The constraint (4.32) implies that the amplitudes of the Fourier components e±ik2y in
the normal vorticity are interrelated rather than being independent.

The boundary-value problem (4.29)-(4.30) corresponds to (C 1) with κ = Pr, σ = σ̃

and f = b̂/(âω̃
√

2) e−(Pr−1)η̂ v̂. The general result (C 3) with (C 4) is specialized to this

case to give the solution for θ̂,

θ̂ = − πb̂/(âω̃
√

2)

2 sinh(2σπ)

∫ ζ

0

ζ̃
[

J−ν̃(ζ)Jν̃(ζ̃)−Jν̃(ζ)J−ν̃(ζ̃)
]

e−(Pr−1)η̂ v̂ dζ̃+s+
0 Jν̃(ζ)+s−0 J−ν̃(ζ),

where ν̃ = 2iσ̃, ζ = 2(iPr)1/2 e−η̂/2 and

s+
0 = Γ(1 + 2iσ̃) eσ̃π/2 Pr−iσ̃R̂1, s−0 = Γ(1 − 2iσ̃) e−σ̃π/2 Priσ̃R̂2.

The relation,

R̂1 −
|Γ(2iσ̃)|2
Γ2(2iσ̃)

Pr2iσ̃ eσ̃πR̂2 = −πPriσ̃+1 e−σ̃π/2

2σ̃Γ(2iσ̃)
b̂/(âω̃

√
2)

∫ ∞

−∞
e−Prη̂ H

(1)
ν̃ (ζ) v̂ dη̂, (4.33)

between R̂1 and R̂2 follows from (C 6). Provided that the right-hand side does not vanish,
at least one of R̂1 and R̂2 must be nonzero, indicating that in the free stream entropy
fluctuations of large amplitude must simultaneously be present along with vortical fluc-
tuations when (4.9) holds. The asymptotic analysis confirms the entanglement of entropy
and vortical modes found earlier by finite-Reynolds-number calculations. Note that the
entanglements are caused by neglecting the non-parallel-flow effect; when the latter is
included in the analysis of the entrainment, there is no such an entanglement (cf. §3). If
it is insisted that R̂1 = R̂2 = 0 (as was the case in the calculation displayed in Fig.10),
then it is required that

∫ ∞

−∞
e−Prη̂ H

(1)
ν̃ (ζ) v̂ dη̂ = 0,

which can be satisfied only if the amplitudes of the four vortical modes obey a specific
composition such as (4.11).

By solving (4.23) subject to the boundary conditions (4.25) and (4.27), we can deter-
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Figure 13. Comparison of the asymptotic and finite-Reynolds-number predictions for B̂, F̂
and R̂1, where R = 4000, M = 4.5 and k1 = k3 = 3.14. Left column: real parts; right column:
imaginary part. Solid lines: finite-R solution; dashed lines (with or without symbols): asymptotic
prediction.

mine B̂ and Ĉ. The result for two-dimensional disturbances in the incompressible limit is
shown in Fig.12, and a comparison is made with the prediction by solving the O-S equa-
tion as well as with the analytical approximation of Dong & Wu (2013), which holds only
when k2 = O(1). Despite a moderate value of R, the two asymptotic theories both give
reasonably accurate predictions for k2 = O(1). For large k2, only the present asymptotic
approach based on the short-wavelength scaling is able to give the result in agreement
with the O-S solution.

We solved also the boundary-value problem (4.23) with (4.25) and (4.27) for three-
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dimensional disturbances in a supersonic boundary layer at Mach number M = 4.5. The
resulting B̂ is shown in Fig.13 and compared with that obtained by the finite-Reynolds-
number calculation. Subsequently, the boundary-value problems, (4.24) with (4.26) for
the vorticity and (4.29)-(4.30) for the temperature, are solved for E = 0 and R2 = 0
respectively, to obtain F̂ and R̂1. Their values are found to be the same as those given
by formulae (4.32) and (4.33) as expected, confirming that the latter are correct. As
Fig.13 indicates, there is a fair agreement between the asymptotic and finite-Reynolds-
number predictions.

4.2.2. Entropy-mode branch

We analyse briefly the entropy-mode branch, for which the temperature fluctuation
has the far-field asymptote,

θ = r1 e−ik2y +r2 eik2y, (4.34)

where kj (j = 1, 2, 3) and ω satisfy the dispersion relation (4.12).
The temperature fluctuation drives velocity fluctuations through the continuity equa-

tion. The dominant balance shows that the solution in the edge layer takes the form

(u, v, w, p, Ω) = δ e−η2

0
/2

(

û, v̂, ŵ, p̂/(δR), Ω̂/(
√

2δ)
)

. (4.35)

Since the velocity is very small, the energy equation is decoupled from it and reduces to

Pr−1(D2 + k̃2
2)θ + i e−η̂ θ = 0, (4.36)

and the boundary conditions are found to be

θ → r̂1 e−ik̃2η̂ +r̂2 eik̃2η̂ as η̂ → ∞, θ → 0 as η̂ → −∞, (4.37)

where (r̂1, r̂2) = (r1 e−ik̃2(1+δβ̂)/δ2

, r2 eik̃2(1+δβ̂)/δ2

), obtained by rewriting (4.34) in terms
of the edge-layer variable η̂ and matching with (4.37). The boundary-value problem
(4.36) with (4.37) is a homogeneous version (f ≡ 0) of (C 1) with σ = k̃2 and κ = Pr.
Specializing the general results (C 7) and (C 8) to the present situation yields

r̂1/r̂2 =
|Γ(2ik̃2)|2
Γ2(2ik̃2)

Pr2ik̃2 ek̃2π, (4.38)

θ =
iπ

Γ(2ik̃2)
e−k̃2π/2 Prik̃2 r̂2H

(1)
ν (ζ), (4.39)

where ν = 2ik̃2 and ζ = 2(iPr)1/2 e−η̂/2. The relation (4.38) implies that the Fourier
components e±ik2y of the entropy mode are entangled. As η̂ → −∞,

θ →
√

π

Γ(2ik̃2)
ek̃2π/2+πi/8 Prik̃2−1/4r̂2 eη̂/4 exp{−2

√
Pr e−πi/4 e−η/2}.

The continuity equation becomes

ik̃1û + v̂′ + ik̃3ŵ = −ik̃1 e−η̂ θ̂, (4.40)

while the momentum equations remain the same as in (4.21). From (4.21) and (4.40) it
follows that v̂ satisfies the inhomogeneous equation

[

(D2 + σ̂2 + i e−η̂)(D2 − k̃2
1 − k̃2

3) − i e−η̂
]

v̂ = −ik̃1 e−η̂ Fθ, (4.41)

with σ̂ and the forcing term Fθ given by

σ̂ =
[

k̃2
2 + (1 − Pr)(ω̃2 + k̃2

3)
]1/2

/
√

Pr. (4.42)
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Figure 14. Comparison of r̂2 as obtained by finite-R calculation (solid lines), large-R asymptotic
calculation (dashed lines) and (4.38) (symbols), where R = 4000, M = 4.5 and k1 = k3 = 3.14.
(a) real part; (b) imaginary part.

Fθ =
{

3 + (1 − Pr)
[

(k̃2
1 + k̃2

2 + k̃2
3)/Pr + i e−η̂

]}

θ′

+
{

−1 + 2k̃2
2 − (1 − Pr)(k̃2

1 + k̃2
2 + k̃2

3)/Pr + 2(2Pr − 1)i e−η̂
}

θ, (4.43)

while the equation for Ω̂ reads

(D2 + σ̂2 + i e−η̂)Ω̂ = ik̃3/(
√

2ω̃) e−η̂ v̂. (4.44)

At the outer reach of the edge layer, the induced vortical disturbance behaves as

v̂ → Â e−iσ̂η̂ +B̂ eiσ̂η̂ + . . . , Ω̂ → Ê e−iσ̂η̂ +F̂ eiσ̂η̂ as η̂ → ∞. (4.45)

In general, Â, B̂, Ê and F̂ are nonzero indicating that an entropy mode induces vortical
disturbances in the free stream, just like a vortical mode generates entropy disturbances.
This may be referred to as entropy-vorticity entanglement. Again Â and B̂, and therefore
Ê and F̂ , are related, with the latter satisfying the constraint

Ê − |Γ(2iσ̂)|2
Γ2(2iσ̂)

eσ̂πF̂ = −πik̃3/(
√

2ω̃) e−σ̃π/2

2σ̃Γ(2iσ̃)

∫ ∞

−∞
e−η̂ H

(1)
2iσ̂(ζ) v̂ dη̂. (4.46)

The asymptotic boundary-value problem (4.36) with (4.37) is solved numerically for
r1 = 1 to obtain r̂2, which should be the same as the result given by the analytical
expression (4.38). On the other hand, the finite-Reynolds-number system is solved for
A8 = 1 (equivalent to r1 = 1) and A1 = A3 = 0. The results are compared in Fig. 14.
A fairly good agreement is observed, confirming the Fourier entanglement of the entropy
mode. We also performed the calculation for A2 = A4 = 0, and found practically the
same r̂2 as we did for the case of A1 = A3 = 0, consistent with the asymptotic result
(4.38), which implies that r̂2 is independent of the choice of A1,2,3,4 provided their values
are sufficiently small (see (4.35)). Velocity fluctuations are induced in the free stream,
indicating that the entropy-vortical entanglement occurs as is implied by the relation
(4.46).

The analysis in this section shows that in the high-Reynolds-number limit (R � 1)
the system governing the continuous spectra simplifies and becomes partially coupled.
Barring the parallel-flow approximation already inherent in the continuous spectrum for-
mulation, the present analysis is self-consistent. This asymptotically reduced system is
quite different from those obtained by Joo & Durbin (2010) through ad-hoc approxi-
mations. All of the non-physical features of the continuous vortical and entropy modes



Entrainment of short-wavelength free-stream vortical disturbances 37

persist in the limit R � 1. The striking difference between the solutions in §3 and §4.2
indicates that the continuous modes and the entrainment of vortical disturbances are
fundamentally different, and associating the former with latter is incorrect.

Although the edge layers in the entrainment problem and in the continuous-mode
analysis both prevent the disturbance from entering the boundary layer, there is a crucial
difference: the former acts as a ‘wave absorber’, whereas the latter acts as a (spurious)
‘wave reflector’ to produce one of the entangled Fourier components in the free stream.

5. Summary and conclusions

In this paper, we have investigated the entrainment process of free-stream vortical
disturbances into incompressible and compressible boundary layers. Starting from the
linearized N-S equations and adopting a large-Reynolds-number asymptotic approach, a
systematic analysis was performed for disturbances with short wavelengths on the scale
of the edge-layer width, which is smaller than the local boundary-layer thickness. Non-
parallelism is found to play a leading-order role in this short-wavelength regime. The
resulting equations turns out to be more general than those for the case where the wave-
lengths comparable with the boundary-layer thickness. Appropriate asymptotic solutions
in the main and edge layers are obtained, from which a composite solution is constructed.
Interestingly, the solutions remain valid for long wavelengths provided that the latter are
smaller than the distance to the leading edge. For relatively low-frequency disturbances,
the streamwise velocity acquires a very large amplitude in the edge layer suggesting that
low- and high-speed streaks would appear. In compressible boundary layers, strong tem-
perature fluctuations are also induced in the edge layer when the Prandtl number Pr < 1,
leading to the formation of thermal streaks, but the temperature disturbances are rather
small when Pr > 1.

As a contrast with the entrainment process, we have also studied continuous modes of
the N-S equations linearized about a parallel mean flow, which reduce to the O-S/Squire
equations in the incompressible case. Finite-Reynolds-number calculations indicate that
vortical and entropy branches of continuous spectra exhibit several non-physical fea-
tures. In addition to the known abnormal anisotropy and entanglement between Fourier
components, entanglement of vortical and entropy modes occurs for compressible bound-
ary layers, that is, a vortical mode necessarily generates an entropy disturbance in the
free stream, and vice versa. The induced entropy disturbance may have a much larger
amplitude than that of the driving vortical mode. A high-Reynolds-number analysis of
continuous spectra was carried out to give explicit relations between the amplitudes of
the entangled components. All these non-physical features are found to result from the
neglect of non-parallelism, and none of them arises in the physical process of entrainment.

The following conclusions can be drawn from the present study and that of Dong & Wu
(2013). Viewed individually, a continuous mode with a single frequency does not represent
a true physical vortical or entropy disturbance with the same frequency despite the fact
that the former satisfies the dispersion relation of the latter. The eigenfunction of a con-
tinuous vortical or entropy mode does not represent the distribution of the disturbance
entrained into the boundary layer, or ‘shear sheltering’ of a free-stream disturbance. Vor-
tical and entropy modes are therefore purely mathematical objects without any physical
meaning. Owing to the constraints imposed by the entanglements, general free-stream
turbulence cannot possibly be represented by a superposition of such continuous modes.

Continuous modes or their supposition have been used to specify the disturbance at
the inlet of computational domain for DNS of bypass transition and receptivity processes.
This popular approach was based upon the premise that the inlet disturbance introduced
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in this way represents the perturbation that has entered the boundary layer upstream
of, or at, the computational inlet. The results of the present paper and of Dong & Wu
(2013) prove that premise false, and the use of continuous vortical and entropy modes
to specify inlet conditions is therefore inappropriate. An adequate but computationally
costly approach is to extend the computational domain such that its inlet is located
sufficiently far upstream of the leading edge. Appropriate vortical disturbances can then
be specified at the inlet since the background flow there is almost uniform. This approach
has been taken by Ovchinnikov et al. (2006); Nagarajan et al. (2007) for simulations of
bypass transition, and by Schrader et al. (2010) for simulation of receptivity to vortical
disturbances.

DNS of bypass transition and receptivity in a computational domain starting from a
position downstream of the leading edge can be performed with the aid of the theoretical
results of Leib et al. (1999) and the present work. The former pertain to disturbances
with frequencies ω = O(R−1), while the latter to ω � 1, but both are valid for distur-
bances with ω = O(1). In view of this overlapping validity, appropriate inlet conditions,
representing perturbations induced by a broadband of free-stream disturbance or tur-
bulence, can be specified as follows. For components with frequencies ω below a certain
value ωc = O(1) including ω = O(R−1), the boundary-region-equation approach can
be used, namely the initial-boundary-value problem, as described in Leib et al. (1999),
is solved by marching to the inlet position. For components with frequencies ω > ωc,
the composite solution constructed in this paper can be used. The inlet disturbances
specified in this manner are suited for numerical simulations of bypass transition and
boundary-layer receptivity to free-stream vortical disturbances in plate configurations in
a computational domain excluding the leading edge. It would be interesting to simulate
bypass transition using the inlet disturbances as described above, and compare the re-
sulting transition scenarios with the previous simulations where continuous modes were
used as the inlet condition.

The velocity and thermal streaks appearing in the edge layer are of interest. Their sig-
nificance depends on the spectral composition of the free-stream disturbance. If the latter
consists of significant portion of components with very low frequencies of O(R−1), then
the resulting dominant streaks reside in the main bulk of the boundary layer. However,
if significant energy is distributed in the frequency band R−1 � ω � 1, then streaks
may dominate the edge layer, and once acquiring a certain threshold they may induce
secondary instability in that region. Edge-layer streaks have not received much atten-
tion. The present theoretical work may stimulate further investigations. Finally, we note
that Deguchi & Hall (2015) have recently shown that the edge layer can support self-
sustained nonlinear free-stream coherent structures, which have the same length/time
scales as those of the disturbances considered in the present work. These structures ap-
pear in the form of nonlinear eigen solutions to the N-S equations, and thus represent the
intrinsic dynamics of the flow. An interesting question is how these structures are affected
by, or interact with, the external (i.e. free-stream) disturbances of the same length/time
scales. The analysis in the present paper may be extended to address this issue.

The authors would like to thank Professors A. I. Ruban and P. Hall (Imperial College
London) for helpful discussions, and the referees for their valuable suggestions. This work
was supported by the NSFC (grants 11172204, 11332007 and 11472189).
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Appendix A. The solution for the second terms in (3.57)

Substituting (3.39) into (2.13)-(2.17), we find, at higher orders, that the second terms
in the expansion (3.57) are governed by equations

ik̃1ū1/
√

2 + δ(Θ′
0/T )v̄1 + ik̃3w̄1/

√
2 = 0,

Θ′
0LMū1 =

{[

µT (k̃2
1 + k̃2

3) − i(ω1 + k̃2)U
]

ū0 − δ2(Kū′′
0 + F ū′

0)
}

/
√

2

+δU ′/(ω̃T )v̄1,

Θ′
0LMw̄1 =

{[

µT (k̃2
1 + k̃2

3) − i(ω1 + k̃2)U
]

w̄0 − δ2(Kw̄′′
0 + Fw̄′

0)
}

/
√

2,



































(A 1)

Θ′
0LMv̄1 =

√
2Θ′

0p̄1. (A 2)

Eliminating ū1 and w̄1 in (A 1), we obtain the equations for v̄1 and Ω̄1,

(Θ′2
0 /T )

[

K
(

2v̄′1 + (3Θ′′
0/Θ′

0 − 2T ′/T )v̄1

)

+ Φ v̄1

]

+i(U ′/T )v̄1 = 0, (A 3)

Θ′
0LMΩ̄1 =

{[

µT (k̃2
1 + k̃2

3) − i(ω1 + k̃2)U
]

Ω̄0 − δ2(KΩ̄′′
0 + F Ω̄′

0))
}

/
√

2

+δ(ik̃3/ω̃)(U ′/T )v̄1, (A 4)

where the O(δ) and O(δ2) terms are retained in order to avoid further expansion.

Solving equation (A 3), we find that

v̄1 = c−(µ/T )3/4T (1 − U)−5/4(U ′)1/2 eH(η), (A 5)

where c− is a constant to be determined. As η → ∞,

v̄1 → c−â−3/4(η − β)1/4 e3(η−β)2/8+H∞ ,

and so matching δ−2(ωR)−3/4v̄1 with the edge-layer solution (3.23) determines

c− = 2−3/4 e−H∞ c0. (A 6)

Inserting (3.59) and (A 5) into (A 4), and solving the resulting equation, we obtain

Ω̄1 = (µ/T )1/4(1 − U)−1/4(U ′)1/2 eH(η)

{

d1 − δc−(−i)1/2(k̃3/ω̃)(1 − U)−1/2

+
eπi/4 d

2
√

2

{

(k̃2
1 + k̃2

3)

∫ η

0

T 2(µ/T )1/2(1 − U)−1/2dη

−i(ω1 + k̃2)

∫ η

0

(µ/T )−1/2U(1 − U)−1/2dη

− δ2

∫ η

0

(µ/T )1/2(1−U)−1/2
[

5
16

U ′2

(1−U)2
+ 1

2

U ′′

1−U
− 1

4 (
U ′′

U ′ )2 + 1
2

U ′′′

U ′

]

dη

− δ2

∫ η

0

(µ/T )−1/2(1−U)−1/2F
[

1
4

U ′

1−U
+ 1

2

U ′′

U ′

]

dη

}

}

, (A 7)

where d1 is a constant. The reader is reminded that we have ignored those O(δ2) terms
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which do not affect the matching. As η → ∞,

Ω̄1 → â−1/4(η − β)−3/4 e(η−β)2/8+H∞

{

−δ c−(−i)1/2(k̃3/ω̃)(η − β)1/2

+
eπi/4 d√

2

[

k̃2
1+k̃2

3 − i(ω1+k̃2) + 3
16δ2(η−β)2

]

(η−β)−1/2

}

; (A 8)

here we have, as is required by matching with the edge-layer solution (3.32), taken

d1 = −eπi/4 d

2
√

2
δ−1

{

(k̃2
1 + k̃2

3)

∫ ∞

0

[

T 2(µ/T )1/2(1−U)−1/2 − U−1/2
D

]

dη

−i(ω1 + k̃2)

∫ ∞

0

[

(µ/T )−1/2U(1 − U)−1/2 − U−1/2
D

]

dη

−(k̃2
2 + ik̃2)

[

∫ η∞

0

U−1/2
D dη − 2â−1/2(η∞−β)−1/2 e(η∞−β)2/2

]

}

, (A 9)

where UD is given by (2.11) and η∞ > β is an arbitrary constant. Note that although
the O(δ2) terms in (A 7) are smaller than other terms for η = O(1), it contributes
the δ2(η − β)2 term in (A 8), which becomes of O(1) when η = O(ηd), affecting the
matching with the edge-layer solution (3.32). Specifically, with c− and d given by (A 6)
and (3.63) respectively, the first term in (A 8) matches, on accounting for the pre-factor
(ωR)−1/4δ−2, the term with coefficient c0 in (3.32), whereas the second term in (A 8)
matches with the second of the terms with coefficient d0 in (3.32) in view of (3.27).

The streamwise and spanwise velocities can be expressed in terms of v̄1 and Ω̄1 as

ū1 = i
[√

2k̃1δ(Θ
′
0/T )v̄1 − k̃3Ω̄1

]

/k̃2, w̄1 = i
[√

2k̃3δ(Θ
′
0/T )v̄1 + k̃1Ω̄1

]

/k̃2. (A 10)

From (A 2), the pressure is found as

p̄1 =
√

2c−K(µ/T )3/4(1 − U)−5/4(U ′)1/2 eH
[ U ′

1 − U
+

T ′

T
+

K ′T ′

2K

]

. (A 11)

As η → ∞,

p̄1 →
√

2c−â−3/4(η − β)5/4 e3(η−β)2/8+H∞ . (A 12)

In view of (A 6), p̄1 matches to the term with coefficient c0 in the edge-layer solution
(3.25) as expected.

Appendix B. The matrix in the first-order system (4.2)

The non-zero elements of coefficient matrix D(y) in equation (4.2) are (Malik 1990)

d12 = 1;

d21 = iξR/(µT ) + k2
1 + k2

3 , d22 = −µ′T ′/µ,

d23 = U ′R/(µT )− ik1(l1T
′/T + µ′T ′/µ), d24 = ik1R/µ − k1l1γM2ξ,

d25 = −T ′U ′′/µ − µ′′T ′U ′/µ + k1l1ξ/T, d26 = −µ′U ′/µ;

d31 = −ik1, d33 = T ′/T, d34 = −iγM2ξ, d35 = iξ/T, d37 = −ik3;

d41 = −iχl2k1T
′/T − 2iχk1µ

′T ′/µ, d42 = −iχk1,

d43 = −χ
[

iξR/(µT ) + k2
1 + k2

3

]

+ l2χ
[

µ′T ′2/(µT ) + T ′′/T
]

,
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d44 = −iχγM2l2

[

ξ(µ′T ′/µ + T ′/T ) + k1U
′
]

,

d45 = iχ
[

k1U
′(l2/T + µ′/µ) + ξl2µ

′T ′/(µT )
]

,

d46 = il2χξ/T, d47 = −ik3χ(2µ′T ′/µ + l2T
′/T ), d48 = −ik3χ;

d56 = 1;

d62 = −2(γ − 1)M2PrU ′, d63 = −2i(γ − 1)M2Prk1U
′ + PrRT ′/(µT ),

d64 = −iξ(γ − 1)M2PrR/µ,

d65 = iξRPr/(µT ) + k2
1 + k2

3 − (γ − 1)M2Prµ′U ′2/µ − (µ′T ′)′/µ, d66 = −2µ′T ′/µ;

d78 = 1;

d83 = −ik3µ
′T ′/µ − ik3l1T

′/T, d84 = ik3R/µ− k3l1γM2ξ,

d85 = k3l1ξ/T, d87 = iξR/(µT ) + k2
1 + k2

3 , d88 = −µ′T ′/µ.

where we have put ξ = k1U − ω, χ = 1/(R/µ + iγM2ξl2) and lj = j − 2/3 (j = 1, 2).

Appendix C. The boundary-value problem arising in the analysis of
continuous spectra

In the high-Reynolds-number analysis of continuous modes, we encounter boundary-
value problems of the form,

κ−1(D̂2 + σ2)φ + i e−η̂ φ = e−η̂ f,

φ → r− e−iση̂ +r+ eiση̂ as η̂ → ∞;

φ → 0 as η̂ → −∞,















(C 1)

for the dependent variable φ, which may stand for the normal vorticity Ω̂ or the temper-
ature θ̂ in the main text. The parameters κ and σ take different values depending on the
problems considered, and f is a function of η̂ representing the forcing and is allowed to be
arbitrary in this appendix provided that f and e−η̂/2 f decay sufficiently fast respectively
in the limits of η̂ → −∞ and η̂ → ∞.

The differential equation in (C 1) can be written as a Bessel equation of order-ν in
terms of the new independent variable ζ, where

ν = 2iσ, ζ = 2(i κ)1/2 e−η̂/2 . (C 2)

The general solution for φ can therefore be expressed in terms of the first-kind Bessel
functions J±ν(ζ), that is,

φ = − (−i)π

2 sin(νπ)

∫ ζ

0

ζ̃
[

J−ν(ζ)Jν (ζ̃)− Jν(ζ)J−ν (ζ̃)
]

f(ζ̃) dζ̃ + s+
0 Jν(ζ) + s−0 J−ν(ζ), (C 3)

where s±0 are arbitrary constants, and use has been made of identities (9.1.15) and (9.1.27)
on pages 360 and 361 of Abramowitz & Stegun (1964) (which will hereafter be referred
to as AS). The reader is reminded that the notations used in this appendix are, unless
stated otherwise, independent of those appearing in the main text.

By using the small-ζ asymptotes of J±ν(ζ) ((9.1.7) on page 360 of AS), it is found that

φ → s+
0

Γ(1 + 2iσ)
e−σπ/2 κiσ e−iση̂ +

s−0
Γ(1 − 2iσ)

eσπ/2 κ−iσ eiση̂ as η̂ → ∞,
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where Γ(·) denotes the Gamma function. Matching requires that

s+
0 = Γ(1 + 2iσ) eσπ/2 κ−iσr−, s−0 = Γ(1 − 2iσ) e−σπ/2 κiσr+. (C 4)

On the other hand, using the large-ζ asymptotes of J±ν , (9.2.1) on page 364 of AS, we
find that as η̂ → −∞,

θ → e−πi/8

√
πκ1/4

eη̂/4

{

[

s+
0 eσπ +s−0 e−σπ − 1

2
eσπ

∫ ∞

0

ζH(2)
ν (ζ)f(ζ)dζ

]

ei(ζ−π/4)

+
[

(s+
0 e−σπ +s−0 eσπ) + 1

2
e−σπ

∫ ∞

0

ζH(1)
ν (ζ)f(ζ)dζ

]

e−i(ζ−π/4)

}

, (C 5)

where use has been made of (9.1.3) and (9.1.4) of AS, and H
(1)
ν and H

(2)
ν denote Hankel

functions. For the solution to remain bounded in the limit of η̂ → −∞ as required in
(C 1), it is necessary to set the coefficient of e−i(ζ−π/4) to zero, from which and (C 4) it
follows that

r− +
Γ(1 − 2iσ)

Γ(1 + 2iσ)
κ2iσ eσπ r+ = −πiκiσ+1 e−σπ/2

Γ(1 + 2iσ)

∫ ∞

−∞
e−η̂ H(1)

ν (ζ)f dη̂.

After making use of (6.1.29) on page 256 of AS, the above relation simplifies to

r− − |Γ(2iσ)|2
Γ2(2iσ)

κ2iσ eσπ r+ = −πκiσ+1 e−σπ/2

2σΓ(2iσ)

∫ ∞

−∞
e−η̂ H(1)

ν (ζ)f dη̂. (C 6)

For an homogeneous problem, f = 0, then

χ ≡ r−/r+ =
|Γ(2iσ)|2
Γ2(2iσ)

κ2iσ eσπ, (C 7)

and with r+ being set to unity the complementary solution is obtained as

φc =
iπ

Γ(2iσ)
e−σπ/2 κiσH(1)

ν (ζ). (C 8)

Equations (C 3) with (C 4) and (C 6)–(C8) are the main results of this appendix, and
they are used repeatedly in the main text.
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