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Abstract

Steroid hormone receptor (SHR) expression and changes in SHR expression compared to basal levels, whether upregulated, down-

regulated, or mutated, form a distinguishing feature of some breast, ovarian, and prostate cancers. These receptors act to induce tumor

proliferation. In the imaging context, total expression together with modulation of expression can yield predictive and prognostic

information. Currently, biopsy for histologic assessment of SHR expression is routine for breast and prostate cancer; however, the

technique is not well suited to the heterogeneous tumor environment and can lead to incorrect receptor expression assignment, which

precludes effective treatment. The development of positron emission tomography (PET) radioligands to image receptor expressionmay

overcome the difficulties associated with tumor heterogeneity and facilitate the assessment of metastatic disease.

S TEROID HORMONE RECEPTORS (SHRs), which are
frequently overexpressed in tumors, are at the forefront

of targeted cancer therapy, with widespread targeting in
endocrine-related treatments. The upregulation of these
receptors in diseased tissue provides a distinguishing feature of
some breast, ovarian, and prostate cancers.1,2 SHRs can provide
important information on the prospect of response to endo-
crine therapy; therefore, assessment of expression provides
important clinical data for therapeutic management of patients.
Clinically relevant SHRs include estrogen receptor � (ER�)
and progesterone receptor (PR), which are often upregulated
in breast and ovarian cancers, together with the androgen
receptor (AR), an important target in prostate cancer.

Immunohistochemistry (IHC) is currently the gold
standard technique for evaluating SHR expression in oncol-
ogy; an invasive core needle biopsy of the lesion is obtained,
which is prepared so that positive cells can be visualized and
counted. The SHR status of the tumor is then determined
from a given threshold of positivity. Intratumor hetero-
geneity and the practical impossibility of assessing all meta-
static lesions can be a fundamental flaw of the results, leading
to inaccurate assignment of SHR status; IHC assay in breast
cancer only correctly predicts the response to endocrine

therapy in 50 to 60% of cases.3,4 A systematic review by the
American Society of Clinical Oncology (ASCO) showed that
20% of all SHR statuses determined by IHC may be inac-
curate.5 Serial biopsy of lesions has been introduced as a
means to overcome the problems associated with simple
biopsy assessment, particularly for monitoring treatment
response.6 However, serial biopsy sampling may still suffer
from the drawback that the results can be confounded by
tumor heterogeneity.

The use of positron emission tomography (PET), a sen-
sitive, minimally invasive imaging modality used routinely in
the clinic, may overcome the inaccuracies of IHC arising
from both intra- and intertumor heterogeneity; whole-body
scans can allow the entirety of metastatic and primary lesions
to be imaged and are therefore well suited to longitudinal
studies.7 PET has the potential to be used for functional
imaging where not only receptor expression but also receptor
function can be determined in heterogeneous tissue.8 This
review summarizes the current status and future directions of
SHR imaging using PET.

ER Radioligands

Upregulation of SHR can be of prognostic or predictive
relevance in selecting patients who may benefit from endo-
crine therapy; dichotomizing SHR+ and SHR� lesions allows
stratification of patients into potential responders and non-
responders of therapy. For example, tamoxifen is a leading
antiestrogen prescribed to women with ER+ tumors as a
neoadjuvant systemic treatment before surgery or as an
adjuvant treatment to reduce the probability of relapse;
patients with ER+ tumor status generally have a better
prognosis than those with ER� because the tumor growth is
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driven by ER� signaling, which can be inhibited by tamoxifen.9

Therefore, assessing ER� function in both primary and
metastatic lesions is critical in determining the suitability of
endocrine therapy for a given patient.

The ER� has long been of interest as a target for imaging
because of its involvement in the proliferation of some breast
and ovarian cancers. McElvany and colleagues were instru-
mental in the synthesis of ER-targeted radioligands, by syn-
thesizing gamma-emitting 16�[125I]iodoestradiol (I-E2) with
a specific activity of 33 to 55 GBq/mmol and characterizing
its binding and tissue uptake in vivo; the radioligand was found
to concentrate in the rat uterus specifically to ER with high
affinity.10 Amore detailed biodistribution study of [125I]I-E2 in
mammary adenocarcinoma tumor–bearing and normal rats
showed that although uterus/blood ratios were initially high,
[125I]I-E2 was quickly metabolized by the liver within 1 hour.11

Focus shifted toward the synthesis of moremetabolically stable
compounds, which allow sufficient time for equilibration and
imaging. Brominated estradiol, 16�[77Br]bromoestradiol-17�,
showed favorable target tissue uptake in immature and mature
female rats,12 with adequate uterus/blood uptake ratios and
limited nontarget tissue/blood ratios.12 McElvany and collea-
gues compared 16�[77Br]bromoestradiol-17� and [125I]I-E2
in vivo in immature female rats.10 Although [125I]I-E2 showed
slightly higher uptake in the uterus after 1 hour postinjection,
16�[77Br]bromoestradiol showed significantly greater target
uptake at later time points. Thyroid uptake was significantly
higher for I-E2 compared to 16�[77Br]bromoestradiol-17�.
These radioligands validated the concept that detecting ER�
expression was a feasible proposition for in vivo imaging, but
the poor resolution of the single-photon emission computed
tomography (SPECT) isotopes precluded the accurate quan-
tification necessary for human studies, and attention turned to
PET radioligands as potential alternatives.13

Synthesized by Kiesewetter and colleagues, 16�-
[18F]fluoro-17�-estradiol ([18F]FES), a fluorine-18 (18F) sub-
stituted analogue of estradiol (Figure 1), was radiolabeled via

nucleophilic displacement of a triflate precursor followed by
a hydrolysis and reduction step.13 [18F]FES was achieved in
a 30% radiochemical yield (RCY) with a specific activity of
around 7.4 GBq/mmol (Figure 2). Lim and colleagues synthe-
sized [18F]FES from a cyclic sulfone pre-cursor in 30 to 45%
RCY with a specific activity of 37 GBq/mmol (see Figure 2).14

Kil and colleagues developed a novel nosylate precursor
to access [18F]FES with a labeling and hydrolysis step in
40 minutes with purification15; [18F]FES was synthesized with
a specific activity of 84.2 GBq/mmol and an RCY (decay cor-
rected) of 19 to 24% (see Figure 2).15

[18F]FES exhibited a relative binding affinity (RBA) of
80% compared to estradiol and proved to be a successful
candidate in the development of positron-emitting estro-
gens.13 Biodistribution of [18F]FES in immature female rats
showed selective uptake in ER+ tissue, which prompted
further study into the suitability of PET imaging with this
ligand.13 Mintun and colleagues progressed [18F]FES to a
clinical trial to determine if specific uptake into ER+ lesions
could be imaged; excellent correlation between ER expres-
sion and radioligand uptake was demonstrated.16 The effec-
tiveness of [18F]FES had been demonstrated and provided a
foundation for more detailed clinical evaluation of the
radioligand. McGuire and colleagues used [18F]FES in a
clinical trial to assess uptake in metastatic breast carcinoma.17

Increased [18F]FES uptake was seen in 53 of 57 metastatic
lesions with only two false positives; this work highlighted
the advantage of assessing metastatic lesions by PET imaging
that otherwise would have been difficult to assess by other
techniques.

Linden and colleagues showed that [18F]FES uptake could
predict response to endocrine therapy in breast cancer.18 The
clinical study involved 47 patients with recurrent or metastatic
breast cancer; baseline [18F]FES and [18F]fluorodeoxyglucose
([18F]FDG) scans preceded endocrine therapy, and posttreat-
ment [18F]FES-PET followed after sufficient time for tamox-
ifen washout. Patients with [18F]FES uptake with an initial

standardized uptake value (SUV) less than 1.5 did
not respond to endocrine therapy; however, 34%
of patients with an SUV higher than 1.5 responded
to treatment. Patients who did not overexpress
HER2/neu (11 of 24) with an SUV higher than 1.5
responded to endocrine therapy. No patients with
absent [18F]FES uptake responded to treatment;
quantitative assessment of [18F]FES uptake signi-
ficantly correlated with response. A similar study
by Dehdashti and colleagues investigated whether
increased tumor uptake of [18F]FDG measured at
early time points after administering tamoxifen ther-
apy predicted hormone-responsive breast cancer.19

Figure 1. 16-�-[18F]Fluoro-17-�-fluoroestradiol ([18F]FES) and 16�-
[18F]fluoromoxestrol ([18F]FMOX).
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[18F]FDG and [18F]FES were used for imaging before and after
7 to 10 days of tamoxifen therapy; a clinical flare response was
demonstrated in all responders. In 2009, Dehdashti and collea-
gues demonstrated the use of [18F]FDG and [18F]FES to deter-
mineresponsetotreatmentafteradministeringendocrinetherapy
in 51 postmenopausal women with advanced ER�+ breast
cancer.20 Baseline scans of [18F]FES and [18F]FDGwere obtained
before administering estradiol (30 mg). Response to endocrine
therapy was seen in 17 patients, and 34 did not respond; all
responders to endocrine therapy displayed metabolic flare by
increased [18F]FDG uptake (> 12% increase in SUV). The
uptake of [18F]FESwas higher (SUV=3.5± 2.5) compared to
that in nonresponders (�4.3 ± 11.0, p < .0001). Ellis and
colleagues later showed that administering 6 mg of estradiol
was sufficient to provide clinical benefit and that [18F]FDG
uptake could be used as a predictive biomarker in patients.21

[18F]FES PET has also been successful in providing ER
status information of tumor lesions where a patient presents
a clinical dilemma; that is, patients who have inconclusive or
ambiguous pathologic assessment of the lesion or biopsies
are not feasible.22 A clinical trial involved [18F]FES PET
measurements of 33 patients; [18F]FES+ uptake was observed
in 22 patients.22 The assessment of metastatic lesions in the

bone by [18F]FES proved to be sensitive, identifying 341
lesions compared to 246 by conventional imaging; quantifi-
cation of liver metastases was poor due to the high physio-
logic background. This study showed that [18F]FES can help
solve a clinical dilemma and support therapy decisions where
the standard workup procedure is inconclusive. Although
[18F]FES has been proven successful in predicting response to
endocrine therapy, it is unable to provide prognostic insight
into the success of endocrine therapy during treatment as a
result of the drug molecule occupancy of the receptor.

The synthesis of estradiol derivatives with improved tar-
get affinity and low affinity for off-target sites such as sex
hormone–binding globulin (SHBG) ensued to improve on
[18F]FES, which exhibits a binding affinity that is only 80%
that of estradiol.23 A [18F]FES derivative, 16�-[18F]fluor-
omoxestrol ([18F]FMOX), was identified as a selective and
metabolically stable estrogen that may be suitable for trans-
lation into the clinic for imaging ER expression in breast
cancer (see Figure 1). [18F]FMOX appeared to exhibit a
decreased rate of metabolism compared to [18F]FES, with
nearly a fourfold increase in uterine uptake in an immature rat
model.23,24 Despite what appeared to be desirable ligand
characteristics, [18F]FMOXwas unable to identify ER+ tumors

Figure 2. 16-�-[18F]Fluoro-17-�-fluoroestradiol ([18F]FES) precursors synthesized by (A) Kiesewetter and colleagues13; (B) Lim and colleagues14;
and (C) Kil and colleagues.15 RCY = radiochemical yield; SA = specific activity.
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in a clinical study.25 Jonson and colleagues evaluated the
metabolism of [18F]FMOX in comparison with [18F]FES in
isolated hepatocytes from rat, baboon, and human species and
discovered that SHBG, absent in rat but present in baboon and
human, may be responsible.25 [18F]FMOX was designed to
have a low affinity to SHBG with a high affinity for ER� and
showed excellent metabolic stability in the rat; however, [18F]
FES was demonstrated to experience a protective effect from
metabolism as a result of SHBG and was metabolized to a
lower extent than [18F]FMOX in primates and humans.25 The
ability of SHBG to improve specific uptake by delivering bound
ligand into cells expressing membrane receptors for SHBG
may assist by facilitating [18F]FES uptake into target cells.25

Although 16�-[18F]FES has been the most studied and
most successful SHR radioligand, rapid metabolism hinders
optimal quantification of ER density.26 Estradiol derivatives
substituted at the C-7� position have been shown to be
tolerated by the ER and may provide a radioligand that
results in fewer circulating radiometabolites.

Okamato and colleagues synthesized 7�-(3-[18F]fluor-
opropyl) estradiol (C3-7�-[18F]FES) and evaluated its potential
for detecting ER expression in vitro and in vivo (Figure 3).27

The radiosynthesis of C3-7�-[18F]FES was achieved from a
tosylated precursor using [18F]KF/Kryptofix 222 with an RCY
of 30.7% ± 15.1% (decay corrected), and a specific activity of
32.0 ± 18.1 GBq/mmol was achieved.27 The binding affinity of
C3-7�-[18F]FES was determined in vitro and was comparable
to that of 16�-[18F]FES. The in vivo biodistribution study
showed that C3-7�-[18F]FES was selectively taken into the
uterus with reversible kinetics.27 The level of C3-7�-[18F]FES
uptake was significantly lower than that of 16�-[18F]FES, but
receptor specificity was determined by dose-dependent inhi-
bition of C3-7�-[18F]FES uptake with estradiol coinjections.
Defluorination of C3-7�-[18F]FES was speculated by gradual
increase in bone radioactivity.27 Although C3-7�-[18F]FES
exhibited favorable receptor specificity, in vivo defluorination
of this radioligand led to increased uptake of radioisotope in
bone, which is likely to have confounding effects on receptor
quantification. Further optimization of this radioligand is
required so that receptor specificity is maintained and in vivo
defluorination is reduced.

PR Radioligands

The PR is a ligand-dependent transcription factor controlled by
progesterone binding.28 In healthy tissue, PR is involved in
differentiation of the endometrium, pregnancy, and mammary
development28; in breast cancer, PR expression can be used to
predict response to endocrine therapy. Functioning ER can
upregulate PR; therefore, PR can be used as a surrogate bio-
marker to indicate the presence of a functioning estrogen
response pathway. Around 50% of patients with ER+ status fail
to respond to tamoxifen as a result of intrinsic or acquired
resistance.29 Mechanisms of resistance could be attributed to
alterations in ER function, drug pharmacology, or genetic/
environmental alterations in tumor cells.29 Patients with ER+/
PR+ lesions are likely to respond to endocrine therapy as PR
positivity indicates a functioning estrogen response pathway; by
contrast, patients with ER�/PR� lesions are unlikely to
respond. Patients who respond to endocrine therapy ultimately
develop a resistant phenotype.29 Determining PR expression as
well as ER expression allows patients with ER+/PR� and ER�/
PR+ lesions to be differentiated; using the PR as a surrogate
biomarker for ER expression and function may allow acqui-
red resistance to be monitored, which could aid treatment
planning.

The development of PET radioligands to image PR as a
surrogate biomarker of ER expression is an attempt to over-
come the confounding effects on imaging associated with drug
saturation of ER as a result of endocrine therapy. The synthesis
of radiolabeled progestins for use in PET imaging of breast
cancer has slowly developed in the background of ER� imaging
efforts. The first PR PET ligand was 21-fluoroprogesterone;
however, it was unable to image PR.30 Many early attempts at
synthesizing PR targeted ligands were unsuccessful due to low
affinity and low specific activity of radiolabeled compounds,
giving rise to poor tissue selectivity.30–32

A fluoroethyl analogue of ORG2058, 21-fluoro-16�-
ethyl-19-norprogeserone (FENP), demonstrated high affinity
for PR (RBA of 6,000% relative to progesterone).33 Pomper
and colleagues described the radiosynthesis to obtain [18F]
FENP (Figure 4) and showed the ligand to be a suitable

Figure 3. 7�-(3-[18F]Fluoropropyl) estradiol (C3-7�-[18F]FES). Figure 4. 21-[18F]Fluoro-16�-ethyl-19-norprogesterone ([18F]FENP).
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candidate for imaging PR+ breast carcinoma by evaluating
uterine uptake in estrogen-primed immature rats.33 [18F]FENP
was prepared from a triflate precursor with [18F]tetra-
butylammonium fluoride in a 30% RCY (decay corrected)
with a specific activity of 25 to 50 GBq/mmol.33 The promising
in vivo results of [18F]FENP resulted in a clinical trial for PET
imaging of PR in patients with primary breast carcinoma.
However, the ligand was unsuccessful in identifying PR posi-
tivity in humans, with only 50% of PR+ tumors identified by
PET, from which the investigators concluded that radioligand
uptake did not correlate with tumor PR expression.17 A
later study revealed that 20-hydroxysteroid dehydrogenase
(20-HSD), present in human blood but absent from rodent
blood, was responsible for converting [18F]FFNP into an
inactive analogue, which had confounding consequences on
imaging PR expression in humans.34 To overcome the problem
of metabolic stability but retain high PR affinity, the 16�, 17�-
dioxolane system was identified as a suitable candidate for
reducing the sensitivity of metabolism by 20-HSD. The diox-
olane system could bear an [18F]fluorophenyl substituent as
a convenient location for radiolabeling. Although the ligand
was metabolically stable and selective for target tissue, the
increased lipophilicity led to nontarget uptake in the fat.35

Further development of the 16�,17�-dioxolane system was
necessary to maintain the high affinity and metabolic stability
but reduce the lipophilicity to attenuate uptake in nonspecific
tissues.

An adaptation of the 16�,17�-dioxolane progestins syn-
thesized by Kochanny and colleagues and Kym and colleagues
led to the synthesis of [18F]FFNP (Figure 5).35,36 Buckman
and colleagues synthesized 16�,17�-furfural acetal and
acetylfuran ketal progestins, which exhibited high affinity and
selectivity for PR in target tissue.37 [18F]FFNP maintained the
16�,17�-dioxolane moiety as reported by Kochanny and
colleagues35 to protect the 20-keto structure against meta-
bolism by 20-HSD; furthermore, the introduction of a less
lipophilic moiety (16�,17�-furfural acetal and acetylfuran
ketal) reduced nonspecific binding. Radiolabeled compounds

were prepared from triflate precursors using [18F]tetra-
butylammonium fluoride in 2 to 13% RCY (decay corrected)
with specific activities greater than 44 GBq/mmol; favorable
biodistribution and selectivity were attained for in vivo target
tissue in rats. A clinical trial of [18F]FFNP in women with
newly diagnosed breast cancer was designed to evaluate the
effectiveness of using [18F]FFNP for PET imaging of PR
expression in breast cancer as well as establishing the safety and
dosimetry of the compound. Although qualitative assessment
of [18F]FFNP uptake showed significant differences in PR+
and PR� patients, the experiment revealed that there was no
significant difference between SUVmax (tumor maximum
standardized uptake value) in PR+ and PR� tumors.38 The
tumor/normal tissue ratio (T/N) showed significant differ-
ences between PR+ and PR� patients with correlation between
semiqualitative Allred scoring and T/N ratio.38 The dosimetry
of [18F]FFNP showed the gallbladder as the dose-limiting
organ receiving an average radiation dose of 0.113 mGy/MBq;
the whole-body dose was 0.015 mGy/MBq, with an effective
dose of 0.020 mSv/MBq.38

Examining the changes in concentration of PR on
hormone challenge was initially examined by Howell and
colleagues using patient biopsy.39 A similar experiment using
[18F]FFNP to predict response to endocrine therapy was
examined by Fowler and colleagues in a preclinical model of
breast cancer.40 Mice were implanted with mammary cell
lines (SSM1, SSM2, and SSM3) into the right thoracic
mammary fat pad, and an imaging study was devised to
determine if changes in ER�/PR expression were of pre-
dictive value to tumor response after endocrine therapy. The
implanted cell lines had basal SHR levels evaluated using
PET; the SSM3 tumor was selected for subsequent evaluation
as it showed high [18F]FES, [18F]FFNP, and [18F]FDG
uptake. The study showed that response to treatment could
be significantly correlated to [18F]FFNP uptake and could be
used to determine early effects of treatment even before
measurable changes in anatomic tumor growth.40 Imaging
with [18F]FES showed a decrease in uptake after treatment
as a result of receptor occupancy with drug molecules. The
study also highlighted that a single assessment of PR
expression by [18F]FFNP PET had no predictive value in
determining responders/nonresponders; however, pretreat-
ment and early posttreatment assessment provided the best
predictive value.40 Using the same animal model, Chan
and colleagues evaluated the potential of serial [18F]FFNP
imaging to monitor acute functional changes of ER� sig-
naling during estrogen deprivation treatment41; [18F]FES and
[18F]FDG were used to monitor tumor glucose metabolism
and ER� expression. Mice with estrogen-sensitive tumors
showed the same level of [18F]FES and [18F]FDG uptake

Figure 5. 21-[18F]Fluoro-16�,17�-[(R)-(10-a-furylmethylidene)dioxy]-
19-norpregn-4-ene-3,20-dione ([18F]FFNP).
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pre- and post-treatment; however, [18F]FFNP uptake was
reduced at an early 3-day posttreatment time point as a
result of a reduction in PR expression confirmed by IHC
assay.41 [18F]FFNP uptake remained unchanged in endo-
crine-resistant tumors. This study proved that acute changes
in ER� function can be measured by [18F]FFNP, offering
potential as a robust and effective approach to predicting
tumor response to endocrine therapy.41

The range of PR imaging agents was extended by deri-
vatizing Tanaproget, a high-affinity nonsteroidal ligand
developed by Wyeth Pharmaceuticals (Collegeville, PA), the
potency of which is equivalent to that of steroidal progestins
(EC50 = 0.15 nM).42 Nonsteroidal ligands are more selective
than steroidal ligands, limiting cross-reactivity to other
SHRs, which may be advantageous in accurately quantifying
tracer uptake. Zhou and colleagues synthesized a focused
library of Tanaproget derivatives containing fluorine to locate
suitable positions for substitution that would not inhibit
ligand binding.43 Substitution was evaluated for both the
C4-position (R1) and the N-pyrrole position (R2), with
varying length of the fluoroalkyl substituent (Figure 6);
affinity was determined by radiometric binding assay using

[3H]R5020. Substitution of any moiety larger than a methyl
group at the R2 position resulted in a rapid reduction in
binding affinity; however, substitutions were well tolerated in
the R2 position.

43 Substitution of the R1 position introduced
chirality into the molecule, of which the effects were examined
computationally. The R-enantiomer and S-enantiomer resul-
ted in changes in dihedral angle between the 5-cyanopyrrole
and benzoxazinthione moiety, changing the orientation of
the molecule in the binding pocket; it was concluded that
the S-enantiomer allowed themolecule to adopt a lower energy
dihedral angle and therefore may have a higher affinity.43

Guided by Structure Activity Relationship (SAR) data, the
synthesis of [18F]fluoropropyl-Tanaproget ([18F]FPTP) was
described and tissue biodistribution was evaluated in estrogen-
primed immature female rats.44 Radiosynthesis of [18F]FPTP
was achieved in three steps, 140 minutes from the end of
bombardment from a mesylate precursor with an RCY
of 5% (decay corrected); specific activity was reported as
> 20 GBq/mmol. The tissue distribution was determined at
1 and 3 hours postinjection in immature female rats that had
PR levels induced in the uterus by pretreatment with estrogen;
uptake was confirmed at each time point by coinjection with

Figure 6. Tanaproget derivatives including [18F]fluoropropyl-Tanaproget ([18F]FPTP) with steroidal progestins 21-[18F]Fluoro-16�-ethyl-19-norproges-
terone ([18F]FENP) and 21-[18F]Fluoro-16�,17�-[(R)-(10-a-furylmethylidene)dioxy]-19-norpregn-4-ene-3,20-dione ([18F]FFNP) R1 = C4 position;
R2 = N-pyrrole position.
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cold compound to saturate the PR and show that uptake was
mediated by the PR.44 The uterus/blood and uterus/muscle
biodistribution showed increased uptake of tracer, which could
be efficiently reduced by coinjection of cold compound; uptake
of radiotracer in the bone remained low, suggesting that
defluorination was not occurring. Reduction of tracer uptake
in nontarget tissues (kidneys and liver) was not observed on
coinjection with cold compound.44

Lee and colleagues compared the binding affinities, biophy-
sical properties, and tissue biodistribution of [18F]FENP, [18F]
FFNP,and[18F]FPTP(Table1).44Thehighest affinitycompound
for the PRwas [18F]FENP, exhibiting over three times theRBAof
FFNP and FPTP. Cross-reactivity of progestins to the gluco-
corticoid receptor (GR), relative to dexamethasone, and AR,
relativetoR1881,showedthatFPTPhadthe lowestaffinitytoboth
receptors; similar results were obtained for FENP. FFNP was a
potent ligandfortheGRwithanRBAof365; theAR-RBAofFFNP
was 0.53, the highest in the group. The highest uptake of radio-
tracer in the uterus of immature estrogen-primed female rats was
seen for [18F]FENP; however, metabolic instability in human
blood prevented further evaluation of this ligand. [18F]FFNP and
[18F]FPTP showed comparable tissue distribution in the uterus
after 3 hours; however, [18F]FFNP exhibited considerable uptake
in the bone at both the 1- and 3-hour time points, suggesting in
vivo defluorination.44

AR Radioligands

The AR is a ligand-activated transcription factor that mediates
normal prostate function; the AR is also implicated in the
development and proliferation of prostate cancer. The natural
ligands for the AR are testosterone and 5�-dihydrotestosterone
(5�-DHT), which bind to receptor and induce transcription;
however, this can lead to uncontrolled growth of prostate cells,
resulting in a malignant phenotype.45 The proliferation of

some prostate cancers is androgen dependent and will respond
to endocrine therapy, which blocks the AR to prevent tran-
scription. Resistance to treatment is ultimately acquired, and
endocrine therapy fails.46 Structural mutation of the AR is one
mechanism for ligand-independent activation by reducing the
affinity of the ligand for the receptor.45,47

At the initial diagnosis, 80 to 90% of prostate cancers are
androgen dependent; treatment with endocrine therapy by
blocking AR and reducing androgen concentration is effec-
tive for management of prostate cancer.45 Unlike ER and PR,
AR expression does not indicate any predictive or prognostic
value in determining the response to endocrine therapy.
Ligand-independent activation of AR is known as anti-
androgen withdrawal syndrome and affects between 30 and
50% of patients.48 AR silencing allows ligand-independent
activation and reduces the specificity of ligand binding; the
receptor is able to bind other members of the SHR family, for
example, progestin, estrogen, and antiandrogens, which
could result in confounding effects for treatment and ima-
ging as receptor specificity is reduced.49 There are many
mechanisms behind AR silencing; mutations in the ligand-
binding domain are most common; however, there are more
than 30 substitutions in other parts of the receptor.50Mutations
are disruptive in the context of therapeutic efficacy because they
allow the AR to become promiscuous and bind other circulating
steroids. Determining when the AR becomes mutated could
provide potential for identifying patients who are developing
resistance to treatment; AR mutations are absent from the
healthy prostate, but the presence in prostate cancer could give
rise to the potential for molecular imaging to identify when
patients acquire resistance to treatment and stop responding to
treatment so that alternative regimens can be implemented.47

Identifying a radioligand that will bind tomutated AR selectively
may be a challenging feat and has not yet been implemented.

Gamma-emitting radionuclides (77Br, 82Br, 125I, 175Se)
have been used to radiolabel androgen derivatives for
potential application as AR imaging agents; however, these
ligands were problematic, with metabolic elimination of the
radionuclide, low affinity, and poor specific activity.51–55 In
keeping with previous observations from the development of
ER imaging agents, PET isotopes provided the scope for
superior quantification compared to SPECT isotopes. Liu
and colleagues synthesized six 18F-radiolabeled androgens
as potential ligands for imaging prostate cancer and
determined their tissue distribution in diethylstilbestrol-
treated male rats.56 These ligands included 16�-fluorine
substituted androgens (Table 2), testosterone (16�-FT),
DHT (16�-[18F]FDHT), mibolerone (16�-[18F]FMib), and
7�-methyl-19-nortestosterone (16�-FMNT); also, the synth-
esis of 16�-fluoro substituted 7�-methyl-19-nortestosterone

Table 1. Comparison of Binding Affinities for Three 18F-Labeled

Progestins: [18F]FENP, [18F]FFNP, and [18F]FPTP using [3H]R5020

as a reference standard.

Compound PR-RBA* GR-RBA* AR-RBA*

[18F]FENP 700 1.3 0.11

[18F]FFNP 190 365 0.53

[18F]FPTP 189 0.9 0.04

[3H]R5020 100 2.6 0.26

AR = androgen receptor; [18F]FENP = 21-[18F]Fluoro-16�-ethyl-19-norpro-
gesterone; [18F]FFNP = 21-[18F]Fluoro-16�,17�-[(R)-(10-a-urylmethylidene)
dioxy]-19-norpregn-4-ene-3,20-dione; [18F]FPTP = [18F]fluoropropyl-
Tanaproget; GR = glucocorticoid receptor; PR = progesterone receptor.
*RBA is relative binding affinity value relative to R5020 as a standard
(KD 0.4 nM).
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(16�-FMNT) and 20-fluoro substituted metribolone (16�-
FR1881). Specific binding to the AR was determined by
administering a saturating dose of testosterone. The six com-
pounds exhibited relatively high affinity for the AR and
selective in vivo uptake in target tissue.56 This research repre-
sents the first time that relatively high affinity and selective
18F-radiolabeled androgens had been synthesized and pre-
sented many promising candidates for further development
and validation. The six compounds were synthesized by SN2
displacement using triflate precursors or cyclic sulfate deriva-
tive with [18F]tetrabutylammonium fluoride; specific activity

of these compounds ranged from 11 to 63GBq/mmol apart
from the synthesis of 16�-FMNT, which had low specific
activity of 0.57 GBq/mmol as a result of an unknown coeluting
contamination.56

The highest affinity 16�-fluoro substituted androgen was
16�-[18F]FDHT, with an RBA of 42.7 for the AR (Figure 7);
this ligand also exhibited the lowest cross-reactivity for the
PR with an RBA of 0.12 with a strong affinity for SHBG.
Evaluation in vivo with a baboon animal model expressing
SHBG showed that 16�-[18F]FDHT remained unmetabolized
and at a concentration sixfold higher than 16�-[18F]FMib
and 20-[18F]FMib; it was speculated that stability provided
by SHBG may increase uptake of the radioligand.57 The
lowest affinity 16�-fluoro substituted androgen was 16�-FT,
which only exhibited an RBA of 2.1 for AR. The prostate/
background ratio of 16�-fluorine androgens was relatively
high; however, rapid in vivo defluorination of 16�-FMNT,
16�-[18F]FDHT, and 16�-FT resulted in poor prostate
uptake (%ID/g) despite 16�-FMNT and 16�-[18F]FDHT
having relatively high binding affinities; it was assumed
that 16�-FT may be converted to 16�-[18F]FDHT in vivo.
It was speculated that the phenomenon of poor prostate uptake
(%ID/g) but a high prostate/background ratio may be
accounted for by the defluorination process, leading to rapid
clearance of radioactivity from the blood and nontarget tissues.

Compound 16�-FMNT exhibited an RBA of 21.9 for the
ARwith low RBA for PR (5.7) and SHBG (4.0). Defluorination
in vivo remained very low, and the radioligand showed a
very high prostate/muscle ratio after 4 hours. Interestingly,
20-FR1881, which exhibits an RBA for the AR similar to that

A B C

D E

Figure 7. (A) 16�-[18F]FDHT, (B) 16�-[18F]FMib, (C) 20-[18F]FMib, (D) 16�-FMNT, (E) 16�-F. 16�-[18F]FDHT = 16�-fluorine substituted
[18F]-fluoro-5� dihydrotestosterone; 16�-[18F]FMib = 16�-fluorine substituted [18F]-fluoro-5�mibolerone; 20-[18F]FMib = 20-fluorine substituted
[18F]-fluoro-5� mibolerone; 16�-[18F]FMNT = 16�-fluorine substituted [18F]-fluoro-5� 7-methyl-19-nortestosterone.

Table 2. Comparison of Binding Affinities of 18F-Substituted

Androgens for AR, PR, and SHBG

Compound AR-RBA* PR-RBAy SHBG-RBA‡

16�-FT 2.1 d d

16�-FDHT 42.7 0.12 385

16�-FMib 30.8 3.0 1.3

16�-FMNT 36.5 1.6 3.8

16�-FMNT 21.9 5.7 4.0

R1881 100 43.7 4.0

AR=androgenreceptor;16�-[18F]FDHT=16�-fluorinesubstituted[18F]-fluoro-
5� dihydrotestosterone; 16�-[18F]FMib = 16�-fluorine substituted [18F]-fluoro-
5� mibolerone; 16�-[18F]FMNT = 16�-fluorine substituted [18F]-fluoro-5�
7-methyl-19-nortestosterone; 16�-[18F]FMNT = 16�-fluorine substituted
[18F]-fluoro-5� 7-methyl-19-nortestosterone; 16�-FT = 16�-fluorine substitu-
ted [18F]-fluoro-5� testosterone; PR = progesterone receptor; SHBR = sex
hormone–binding globulin.
*RBA is relative binding affinity value relative to R1881 as a standard
(KD 0.6 nM).
yRelative to R5020 (KD 0.4 nM).
zRelative to estradiol (KD 1.6 nM).
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for 16�-F-MNT and low defluorination, showed the lowest
target tissue uptake of all six ligands, suggesting that the rela-
tionship between RBA and tissue uptake is tenuous.

A clinical trial was established to evaluate the viability of in
vivo targeting of AR using 16�-[18F]FDHT in patients with
metastatic prostate cancer. The clinical trial was composed of
seven patients with 57 lesions in bone and soft tissue identi-
fied by [18F]FDG and correlated with bone scintigraphy,
computed tomography (CT), or magnetic resonance imaging
(MRI).58 Of these 57 lesions, 79% took up 16�-[18F]FDHT;
importantly, 16�-[18F]FDHT taken up into the tumor bound
with greater affinity than normal AR-expressing tissue,
allowing the identification of active disease. Pharmacokinetic
assessment of 16�-[18F]FDHT in tumors was studied to
develop a clinically applicable method for assessing changes
in AR levels by PET in patients undergoing therapy.59 The
study concluded that 16�-[18F]FDHT had a blood half-life
between 6 and 7 minutes, resulting in prostate cancer lesions
reaching a plateau in uptake within 20 minutes; a simple body-
mass normalized SUV was deemed reasonable as a measure of
AR expression. The success of 16�-[18F]FDHT in identifying
AR-expressing lesions in metastatic prostate cancer led to the
evaluation of radiation dosimetry in humans in anticipation of
clinical use; organ exposure was estimated conservatively, and
a recommended 331 MBq of activity was elucidated for diag-
nostic studies.60 The administered dose of [18F]FDHT is
comparable to routinely used [18F]FDG and therefore could be
suitable for routine use in the clinic.

Although 16�-[18F]FDHT appeared to be a promising
candidate for assessing AR expression in prostate cancer, it is
primarily used to report receptor occupancy.61 In a phase I to
II clinical study to determine the dosing and efficacy of the
AR antagonist MDV3100, 16�-[18F]FDHT and [18F]FDG
were used in addition to conventional clinical end points.61

MDV3100 displaced 16�-[18F]FDHT (where uptake occur-
red in all patients) from the AR at all dose levels; in the same
patients, 45% showed a decrease in [18F]FDG SUV greater
than 25%, suggesting that 16�-[18F]FDHT uptake does not
correlate with [18F]FDG measurement of response. Although
16�-[18F]FDHT is unable to provide a readout of treatment
response, it has been valuable in highlighting the discordance
of tumor biology between lesions in metastatic bone cancer;
[18F]FDG and 16�-[18F]FDHT uptake is concordant in some
sites and discordant in others, emphasizing the need for
techniques that characterize tumors that accounts for intra-
and intertumoral heterogeneity.62 The AR does not have an
associated SHR cognate biomarker as seen with ER and PR;
however, prostate-specific membrane antigen (PSMA) can be
used to report on treatment response. Evans and colleagues
evaluated the use of [64Cu]J591 antibody to image PSMA;

expression in the presence of AR blockade would identify
patients who retained AR activity and therefore may benefit
from full inhibition of AR signaling.63

Labaree and colleagues synthesized 7�-fluoro and 7�-iodo
analogues of 5�-DHT and 19-nor-5�-dihydrotestosterone
(5�-NDHT) (Figure 8); binding affinities were evaluated using
in vitro cell assays.64 Compound 17�-methyl fluoro analogue
[18F]FMDHT (see Figure 8) exhibited an RBA of 123 when
compared against [3H]R1881 in a radiometric binding assay,
standing out as the highest affinity compound in the series;
the 17�-methyl group protects the 17�-hydroxyl against
metabolism. All fluorine-containing ligands exhibited higher
binding affinities than the iodo-containing counterparts.
Tissue biodistribution of the 17�-methyl iodo [125I] analogue
in castratedmale rats showed low uptake in the prostate, which
was confirmed to be specific by administering a blocking dose
of 5�-DHT. The low uptake was speculated to be a result of
rapid catabolism of the steroid. An in vitro study into the
metabolism of the 17�-methyl iodo analogue revealed that
elimination of [125I] under physiologic conditions resulted in
poor target tissue uptake; this result would seemingly account
for large uptake of radioactivity in the thyroid at the 4-hour
time point. The fluoro-substituted analogues were resistant to
elimination in chemical and biological studies due to the
increased stability of the C-F bond compared to C-I; this study
showed that 18F-labeled ligands exhibited the potential to be
investigated further as AR imaging agents as a result of high in
vivo affinity and stability.

Garg and colleagues further evaluated the 17�-methyl
fluoro analogue for potential application in imaging AR in
prostate cancer.65 [18F]FMDHT exhibited highly specific
ligand binding for the AR with negligible binding to other
SHRs, such as ER, PR and GR (RBA < 0.1). The radiosynthesis
of [18F]FMDHT was achieved from a tosylate precursor using
[18F]tetrabutylammonium fluoride in 5 to 9% RCY with a
mean specific activity of 11.6 GBq/mmol End of Synthesis
(EOS). The biodistribution of [18F]FMDHTwas determined in
the prostate of intact male rats with supressed testosterone
secretion; uptake was high in the prostate (prostate/blood
9.06 ± 3.55 at 1 hour), which could be effectively blocked by

Figure 8. 7�-Fluoro-17�-hydroxy-17�-methyl-5�-estran-3-one ([18F]
FMDHT).
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administering a saturating dose of 5�-DHT. The ligand
was both chemically and metabolically stable, reflected by
the high target tissue uptake and low activity in the bone.
The radiosynthesis of [18F]FMDHT has been translated onto a
remote-controlled automatic system to improve RCY (20–
30%), purity (> 99%), and synthesis time (60–70 minutes).66

Further investigation into the specificity of [18F]FMDHT to
AR-rich tissues in chemically castrated rats showed favourable
biodistribution that can be blocked with 5�-DHT.67 The
authors’ final statement suggests that the full potential of [18F]
FMDHT as a radioligand should be sought by evaluating
uptake in mice bearing tumor xenografts and imaging char-
acteristics in higher species.67

There have been attempts to synthesize nonsteroidal AR
ligands for imaging applications; however, these have been
largely unsuccessful due to rapid in vivo metabolism.

Parent and colleagues described the synthesis of the non-
steroidal AR ligand 3[76Br]-bromohydroxyflutamide, radi-
olabeled with bromine-76; the nonsteroidal compound was
a derivative of flutamide, an antiandrogen drug.68 Radio-
chemical synthesis resulted in a high RCY of 50 ± 8% (decay
corrected) with specific activity > 6 GBq/mmol (Figure 9).68

Tissue distribution studies appeared to indicate that there was
no uptake by the prostate, which could be accounted for either
by low binding affinity or the metabolic instability of the
bromine radiolabel.

Parent and colleagues also examined another non-
steroidal AR agonist, N-(3-[18F]fluoro-4-nitronapthyl-cis-5-
norbornene-endo-2,3-dicarboxylic imide (3-F-NNDI), which
exhibited a relatively low RBA of 0.2 compared to R1881;
however, it appeared to be stable in vitro.69 Radiolabeled 3-
[18F]F-NNDI was synthesized from an ammonium precursor
in an RCY of 81%. Biodistribution studies showed limited
uptake of activity in the prostate; rapid in vivo metabolism
resulted in increased fluoride uptake by the bones before
significant levels of tracer could accumulate in target tissue69;
the rapid in vivo metabolism in the absence of in vitro meta-
bolism was speculated to be enzymatic in nature.

Discussion

Medical imaging modalities are improving by advances in
physics, electronics, and material sciences; advances in PET
imaging have further dependence on the development of
suitable radiotracers, which interact with the pathologic fea-
tures of the disease. The unparalleled sensitivity of PET has
influenced the development of radiotracers for imaging low–
receptor density sites, which have a great clinical impact.70

SHR expression is an attractive target for imaging because of
the association with cancer prognosis together with

the caveats of pathologic assessment by IHC.5 The suitability
of an SHR imaging agent to provide quantitative information
on receptor expression is very dependent on the specific
activity of the radioligand, circulating protein binding, and
metabolism; therefore, there is little wonder that the devel-
opment of SHR imaging agents for ER, PR, and AR has
resulted in four decades of work to progress the field.

Exemplary clinical investigation into the utility of
[18F]FES PET for imaging ER expression in both primary and
metastatic disease as well as identifying response to treatment
has demonstrated not only the rigor by which new radio-
tracers should be evaluated but also the advantage of using
PET in a standard clinical workup in patients presenting a
clinical dilemma. The use of SHR imaging agents has also
played a crucial role in the clinical development of novel
endocrine therapies; [18F]FES PET has been used to show
differences in the pharmacodynamics of the aromatase
inhibitors tamoxifen and fulvestrant in metastatic breast
cancer.71 Investigation into PR radioligands such as

[18F]FFNP is in its infancy; however, clinical evaluation has
proven the concept.38 The use of PR expression as a surrogate
biomarker for treatment response in breast cancer animal
models will no doubt drive the progression of [18F]FFNP into
the clinic for imaging estrogen challenge or treatment
response.40,41 Although [18F]FFNP has the potential to be a
promising radioligand in the clinic, there may be further
need for structural refinement or a shift to nonsteroidal PR
radioligands to overcome nonspecific interactions by redu-
cing ligand lipophilicity; some work toward nonsteroidal
PR ligands appears in the literature; however, it has not been
taken any further.43,44

The development of AR PET ligands has been extensive,
with [18F]FDHT being evaluated in the clinic. Unlike ER and
PR, the expression of the AR remains unchanged from
normal to diseased target tissue, which hinders the use of
[18F]FDHT to evaluate treatment response in prostate can-
cer; however, one study highlights the potential use of
[18F]FDHT for quantifying changes in AR expression in
patients undergoing therapy. [18F]FDHT has still proven to

A B

Figure 9. 3[76Br]Bromohydroxyflutamide (A) and N-(3-[18F]fluoro-
4-nitronapthyl-cis-5-norbornene-endo-2,3-dicarboxylicimide (3-F-
NNDI) (B).
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be useful in the clinic for imaging receptor occupancy by
testosterone and novel antiandrogens (MDV3100 and ARN-
509).61,72 It appears that AR PET may benefit from a new
selection of radioligands that can inform when resistance to
treatment ensues rather than AR expression alone; acquired
resistance is an inevitable characteristic of endocrine therapy
in prostate cancer, and PET could be used to inform clinical
decision making when resistance is acquired. Abiraterone is a
treatment for castration-resistant prostate cancer, which
works by irreversibly inhibiting the production of andro-
gens.73 Assessing AR occupancy with a suitable radioligand
could result in the status of AR occupancy to be used as a
pharmacodynamic biomarker; pretreatment PET scans to
assess basal AR occupancy with follow-up scans after treat-
ment could provide information on treatment efficacy. It
would be expected that an increase in radioligand uptake in
the tumor compared to basal AR occupancy could correlate
with response to treatment.

A lesson learned from the development of SHR imaging
agents is that validation is key for successful translation of a
radiotracer into the clinic. Careful evaluation of radioligand
cross-reactivity and metabolism should always be at the
forefront of radiotracer development, particularly with ster-
oidal radioligands that may be protected against metabolism
by circulating proteins such as SHBG. PET is a sensitive and
versatile technique that can be used far beyond receptor
occupancy studies; future development of novel radioligands
that report on mutant receptors should be pursued despite
the synthetic challenges posed, to meet the challenge of early
detection of acquired resistance to treatment.

Table 3 summarizes reported clinical trials to date for
SHR imaging agents, chiefly involving imaging of ER status
using [18F]FES. Clinical investigation into the efficacy of
[18F]FES in primary and metastatic breast cancer for
determining treatment response, aggressiveness of disease, and
pathologic features and providing insight into appropriate
treatment regimens when presented with a clinical dilemma
are just some of the studies that have included [18F]FES
PET.20,22,74,75 A much smaller number of PR imaging trials are
reported, reflecting the more recent interest in imaging of this
receptor. As this interest grows, more sophisticated clinical
trials involving assessment of treatment response by mea-
surement of PR expression are anticipated.17,38 The growing
interest in AR imaging using [18F]FDHT is presumably a result
of the new prostate cancer treatments, such as MV3100
(enzalutamide) and abiraterone, that are becoming widely
available. These agents require companion diagnostics to assess
drug pharmacokinetics (AR occupancy) and treatment
response/resistance, which can be achieved through imaging
cognate biochemical affected by AR modulation.58,61,72,76

Conclusion

The drive toward so-called personalized medicine has pro-
moted imaging techniques such as PET to the forefront of
clinical practice; the ability to assess the heterogeneous tumor
environment with a simple, minimally invasive process
encouraged the development of SHR imaging agents. This
development has progressed further for imaging ER� and PR
compared to the AR, which may be the result of more
detailed characterization and validation of these targets in the
pathologic state. [18F]FES for imaging ER� has been vali-
dated and proved to be successful in identifying ER+ lesions.
Although successful [18F]FES is not infallible, it is encoura-
ging to see continued optimization of estradiol derivatives to
address the formation of radiometabolites and to overcome
localization in liverda commonmetastatic site. The future of
SHR imaging is likely to continue in the direction of receptor
function, as seen in the case of PR imaging with [18F]FFNP.
The strong correlation between [18F]FFNP uptake and
response to endocrine therapy has confirmed that the PR is a
promising biological target to monitor treatment efficacy.
Taking [18F]FFNP into the clinic to determine if the response
to treatment after dosing in humans correlates with results
from animal models is likely to be the next logical step in the
transition from bench to bedside. There appears to be space
for further development of high-affinity, nonsteroidal PR
imaging agents that exhibit less cross-reactivity to other
members of the SHR family. Greater specificity may increase
the sensitivity of receptor quantification and provide
improved stratification of patients.
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