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Model reduction of neutral linear and nonlinear
time-invariant time-delay systems with discrete and

distributed delays
Giordano Scarciotti and Alessandro Astolfi

Abstract—The problem of model reduction by moment match-
ing for linear and nonlinear differential time-delay systems is
studied. The class of models considered includes neutral differ-
ential time-delay systems with discrete-delays and distributed-
delays. The description of moment is revisited by means of
a Sylvester-like equation for linear time-delay systems and by
means of the center manifold theory for nonlinear time-delay
systems. In addition the moments at infinity are characterized
for both linear and nonlinear time-delay systems. Parameterized
families of models achieving moment matching are given. The
parameters can be exploited to derive delay-free reduced order
models or time-delay reduced order models with additional
properties, e.g. interpolation at an arbitrary large number of
points. Finally, the problem of obtaining a reduced order model
of an unstable system is discussed and solved.

I. INTRODUCTION

REDUCED order models are exploited in the prediction
and control of a wide class of physical behaviors. For

instance, reduced order models are used to simulate or design
weather forecast models, very large scale integrated circuits or
networked dynamical systems [1]. The model reduction prob-
lem consists in finding a simplified description of a dynamical
system maintaining at the same time specific properties. It
has been extensively studied exploiting the singular value
decomposition (SVD), e.g. [2], [3], [4], [5], [6], [7], [8],
and the Krylov projection method (also known as moment
matching), e.g. [9], [10], [11], [12], [13], [14] and [15].
The advantage of the moment matching over the SVD-based
methods is that the numerical implementation is much more
efficient [1, Section 14.1]. The major drawback, however, is
the difficulty in the moment matching methods to preserve
properties of the original systems. In [16] and [17] a new
interpretation of the moment matching problem has been given
exploiting the center manifold theory. The outcome of these
papers is the ability to maintain the properties of the original
system and the possibility of extending the moment matching
techniques to nonlinear systems. This has led to new results
in the area of model reduction, see e.g. [18], [19], [20] and
[21].
In this paper we extend the model reduction techniques based
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on moment matching to a general class of linear and nonlinear
differential time-delay systems. Time-delay systems are a class
of infinite dimensional systems extensively studied in the
literature, e.g. see the monographs [22], [23], [24], [25], [26],
[27], [28] and the survey papers [29], [30] and [31]. From
a practical point of view every dynamical system presents
delays of some extent, see for instance [32] and [26], in
which several examples from biology, chemistry, physics and
engineering are discussed. Delays in closed-loop systems can
generate unexpected behaviors (for example oscillations or
instability). For instance “small” delays may be destabilizing
[33], [34], [35], [30], [36] and [37], while “large” delays may
be stabilizing [38], [39], [40] and [41].
The problem of model reduction of time-delay system is a
classic topic in control theory. The optimal reduction (in the
sense of some norm) is listed as an unsolved problem in
systems theory in [42] and several results have been given
using rational interpolations, e.g. [43], [44] and [45], see
also [46], [47], [48], [49], [50], [51] and [52]. Recent results
include model order reduction techniques for linear time-delay
systems, see e.g. [53], [54], [55], and for infinite dimensional
systems, see e.g. [56] and [57] in which operators are used to
provide reduced order models for linear systems.
In this paper the model reduction method developed in [17]
is extended to linear and nonlinear time-delay systems. For
linear systems, it is shown that the moments of the system are
fully characterized by the solution of a Sylvester-like equation.
Although Sylvester equations have been widely studied (see
for instance [58], [59]), some care is needed to extend the
classical results to the particular Sylvester-like equation that
arises in the paper. The results are then generalized to the
class of linear neutral differential time-delay systems with
discrete and distributed delays. A family of systems that
achieve moment matching is characterized and connections
with the results in [17] are drawn. As noted in [60] a reduced
order model with time delays may lead to improvements in
the approximation. Accordingly, the possibility to maintain
the delay in the reduced order model is discussed and, in
addition, it is shown that the introduction of delays can be
used to improve the approximation, interpolating at a larger
number of points.
For nonlinear systems, the description of moment is based
on the center manifold theory for time-delay systems and is
derived using the steady-state response of the system. For
time-delay systems the conditions and properties of the center
manifold hold as for finite dimensional systems (see e.g. [22],
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[61]). Exploiting this interpretation, a parameterized family
of models described by differential time-delay equations is
characterized. In addition, the notion of moment at infinity for
linear and nonlinear time-delay systems is investigated and a
brief discussion for more general types of nonlinear time-delay
systems (i.e. neutral differential time-delay systems) is given.
Finally, the problem of obtaining a reduced order model of the
open-loop system given the closed-loop system is discussed
and solved.
The rest of the paper is organized as follows. In Section II
the notion of moment derived in [17] is extended to linear
time-delay systems (Section II-A), the solution of the result-
ing Sylvester-like equation is discussed (Section II-B) and
a revisitation of this description is given using the notion
of steady-state response (Section II-C). The results are then
extended to neutral systems and systems with distributed-
delays (Section II-D). A family of systems achieving moment
matching is presented (Sections II-E and II-F), the possibility
of interpolating a larger number of points maintaining the
same “number of equations” is investigated (Section II-G)
and an example to illustrate the results is given. In Sec-
tion III the center manifold theory for time-delay systems
is used to extend the definition of moment to nonlinear
time-delay systems (Section III-A) and a family of systems
achieving moment matching for nonlinear time-delay systems
is given (Sections III-B and III-C). The problem of “open-
loop” reduced order models is discussed (Section IV) and
the characterization of the moments at infinity for linear and
nonlinear time-delay systems is presented (Section V). Finally
Section VI contains some concluding remarks.
Preliminary versions of this paper have been published in [62]
and [63]. The original contribution of the present paper is that
the class of systems is generalized including delays in the input
and the output, the proofs of the theorems are given, the case
of distributed-delays and neutral equations is considered, the
possibility of exploiting the delays to interpolate at additional
points is further investigated and an example is presented.
Finally a class of “open-loop reduced order models” is given.

Notation. We use standard notation. R≥0 denotes the set of
non-negative real numbers, R>0 denotes R≥0 \ {0}, C<0

denotes the set of complex numbers with strictly negative
real part and D<1 the set of complex numbers with absolute
value less than one. Given a set of delays {τj}, the symbol
Rn
T = Rn

T ([−T, 0],Rn), with T = max
j
{τj}, indicates the

set of continuous functions mapping the interval [−T, 0] into
Rn with the topology of uniform convergence. The symbol
I denotes the identity matrix, the symbol ⊗ indicates the
Kronecker product and σ(A) denotes the spectrum of the
matrix A ∈ Rn×n. xτ denotes the translation operator that
is xτ (t) = x(t − τ). Let s̄ ∈ C and A(s) ∈ Cn×n. Then
s̄ /∈ σ(A(s)) means that det(s̄I−A(s̄)) 6= 0. σ(A(s)) ⊂ C<0

means that for all s such that det(sI − A(s)) = 0, s ∈ C<0.
L(f(t)) denotes the Laplace transform of the function f(t)
(provided that f(t) is Laplace transformable) and L−1{F (s)}
denotes the inverse Laplace transform of F (s) (provided it
exists).

II. MODEL REDUCTION FOR LINEAR TIME-DELAY
SYSTEMS

In this section we derive a model reduction theory for linear
differential time-delay systems. To keep the notation as simple
as possible we begin with the class of systems with discrete-
delays and we then discuss the extension of the results to more
general types of delays and representations in Section II-D.

A. Definition of Π: linear time-delay systems

Consider a linear, single-input, single-output, continuous-
time, time-delay system with constant discrete-delays de-
scribed by the equations1

ẋ =

ς∑
j=0

Ajxτj +

µ∑
j=ς+1

Bjuτj , y =

ς∑
j=0

Cjxτj ,

x(θ) = φ(θ), −T ≤ θ ≤ 0,

(1)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, φ ∈ Rn
T , Aj ∈ Rn×n

and Cj ∈ R1×n with2 j = 0, . . . , ς , Bj ∈ Rn×1 with j =
ς + 1, . . . , µ, τ0 = 0 and τj ∈ R>0 with j = 1, . . . , µ. Let

W (s) = C̄(s)(sI − Ā(s))−1B̄(s), (2)

with

Ā(s) =

ς∑
j=0

Aje
−sτj , B̄(s) =

µ∑
j=ς+1

Bje
−sτj ,

C̄(s) =

ς∑
j=0

Cje
−sτj ,

(3)

be the associated transfer function and assume (1) is mini-
mal, i.e., controllable and observable. We begin defining the
moments of system (1) at some si ∈ C and showing that
there exists a one-to-one relation between the moments and the
(unique) solution of a Sylvester-like equation. We introduce
the following assumptions frequently referred to in the paper.

Definition 1. Let si ∈ C \ σ(Ā(s)). The 0-moment of
system (1) at si is the complex number

η0(si) = C̄(si)(siI − Ā(si))
−1B̄(si).

The k-moment of system (1) at si is the complex number

ηk(si) =
(−1)k

k!

[
dk

dsk
W (s)

]
s=si

,

with k ≥ 1 integer.

This definition of moment is justified by the fact that the
k-moment of a linear system at si is defined as the k-th
coefficient of the Laurent series expansion of the transfer
function W (s) at si ∈ C (see [1, Chapter 11]), provided it
exists.

1The results can be extended to multi-input, multi-output (MIMO) systems
straightforwardly. The problem in the MIMO case is called tangential inter-
polation and is discussed, in the present context, in [20], see also [64].

2The delays of Aj and Cj are taken, without loss of generality, equal to
ease the notation.
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Lemma 1. Consider system (1) and let si ∈ C \ σ(Ā(s)).
Assume that Π̃ is the unique solution of the Sylvester-like
equation

ς∑
j=0

AjΠ̃e
−Σkτj +

µ∑
j=ς+1

BjLke
−Σkτj = Π̃Σk, (4)

with Lk = [1 0 . . . 0] ∈ R(k+1) and

Σk =


si 1 0 . . . 0
0 si 1 . . . 0
...

...
. . . . . .

...
0 . . . 0 si 1
0 . . . . . . 0 si

 ∈ R(k+1)×(k+1).

Then [
η0(si) . . . ηk(si)

]
=

ς∑
j=0

CjΠ̃e
−ΣkτjΨk,

where Ψk = diag(1,−1, 1, . . . , (−1)k) ∈ R(k+1)×(k+1).

Proof. Let Π̃ = [Π̃0 Π̃1 . . . Π̃k]. Since Σk is in Jordan form
then

e−Σkτj = e−siτj



1 τj
τ2
j

2
. . .

τk−1
j

(k − 1)!

0 1 τj . . .
τk−2
j

(k − 2)!
...

...
. . . . . .

...
0 . . . 0 1 τj
0 . . . . . . 0 1


.

Thus, the first column of equation (4) can be rewritten as
ς∑
j=0

AjΠ̃0e
−siτj +

µ∑
j=ς+1

Bje
−siτj = Π̃0si, (5)

the second column can be rewritten as
ς∑
j=0

Aje
−siτj Π̃1 +

ς∑
j=0

−τjAje−siτj Π̃0−

−
µ∑

j=ς+1

τjBje
−siτj = Π̃1si + Π̃0,

(6)

and so on until the last column
0∑
l=k

ς∑
j=0

AjΠ̃k−l
(−τj)l

l!
e−siτj +

µ∑
j=ς+1

Bj
(−τj)k

k!
e−siτj =

= Π̃ksi + Π̃k−1.
(7)

As a result, Π̃0 can be determined from equation (5) as

Π̃0 =

siI − ς∑
j=0

Aje
−siτj

−1
µ∑

j=ς+1

Bje
−siτj =

=
(
siI − Ā(si)

)−1
B̄(si),

Π̃1 from equation (6) and Π̃0 as

Π̃1 = −

siI − ς∑
j=0

Aje
−siτj

−1I +

ς∑
j=1

τjAje
−siτj

×

×

siI − ς∑
j=0

Aje
−siτj

−1
µ∑

j=ς+1

Bje
−siτj+

−

siI − ς∑
j=0

Aje
−siτj

−1
µ∑

j=ς+1

τjBje
−siτj =

=

[
d

ds

(
(sI − Ā(s))−1B̄(si)

)]
s=si

.

Iterating for all k, yields

Π̃k =
1

k!

[
dk

dsk
(
(sI − Ā(s))−1B̄(si)

)]
s=si

.

Finally, exploiting the columns of Π̃, the moments can be
written as
ς∑
j=0

CjΠ̃e
−Σkτj =

=

[
ς∑
j=0

CjΠ̃0e
−siτj . . .

0∑
l=k

ς∑
j=0

CjΠ̃k−l
(−τj)l

l!
e−siτj

]

=

[
C̄(si)Π̃0 . . .

0∑
l=k

1

l!

dl

dsl
[
C̄(s)

]
s=si

Π̃k−l

]
=
[
η0(si) . . . (−1)kηk(si)

]
,

which proves the claim.

Equation (4) can be written eliminating the fact that Σk and
Lk have a special structure. As a result the following holds.

Theorem 1. Consider system (1) and let si, with i = 1, . . . , η,
be a set of numbers such that si ∈ C \ σ(Ā(s)). Let S ∈ Rν×ν
be any non-derogatory matrix with characteristic polynomial

p(s) =

η∏
i=1

(s− si)ki , (8)

where ν =

η∑
i=1

ki, and L be such that the pair (L, S) is

observable. Assume that Π is the unique solution of the
Sylvester-like equation

ς∑
j=0

AjΠe
−Sτj −ΠS = −

µ∑
j=ς+1

BjLe
−Sτj . (9)

Then there exists a one-to-one relation between the moments
η0(s1), . . . , ηk1−1(s1), . . . , η0(sη), . . . , ηkη−1(sη) and the

matrix
ς∑
j=0

CjΠe
−Sτj .

Proof. Note that it is sufficient to prove the claim for η = 1.
By observability of the pair (L, S) there is a unique invertible
matrix T such that S = T−1ΣkT and L = LkT . Then
equation (9) becomes

µ∑
j=0

AjΠe
−(T−1ΣkT )τj −ΠT−1ΣkT =

−
µ∑

j=ς+1

BjLe
−(T−1ΣkT )τj .
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The claim follows defining Π̃ = ΠT−1, recalling that
eT
−1XT = T−1eXT and that the moments are coordinates

invariant.

B. Solution of the Sylvester-like equation

Equation (9) is a Sylvester equation only if ς = 0. Nev-
ertheless, it is a linear equation in Π and it can be solved
with the use of the vectorization operator and the Kronecker
product. To this end, it is necessary to determine when the
equation admits a unique solution. In this section we solve
this problem in the general case and for two special cases.

Lemma 2. Equation (9) has a unique solution if and only if
si ∈ C \ σ(Ā(s)) for all i = 1, . . . , η.

Proof. Suppose, without loss of generality, that the matrix S
is in complex Jordan form. Then the matrices S> and e−S

>τj

are lower triangular and their i-th eigenvalue is si and e−siτj ,
respectively. We recall that the eigenvalues of the sum of lower
triangular matrices is the sum of the eigenvalues. The claim
follows since equation (9) has a unique solution (see [58],
[59]) if and only if

det

 ς∑
j=0

(
e−S

>τj ⊗Aj
)
− S> ⊗ I

 6= 0,

which holds if and only if

η∏
i=1

det

 ς∑
j=0

Aje
−siτ − siI

 6= 0,

hence the claim.

Corollary 1. Equation (9) has a unique solution if the follow-
ing holds.
• A0 = 0, A1 6= 0, µ = ς = 1, and σ(A1) ∩ σ(SeSτ ) = ∅.
• The matrices Aj for j = 0, 1, . . . , ς commute and

µ∑
j=0

e−slτjλji 6= sl for i = 1, ..., n and l = 1, ..., η, with

λji and sl eigenvalues of Aj and S, respectively.

Proof: The claim is a direct consequence of the use of the
vectorization operator (see [58], [59]). �

C. Definition of Π: linear time-delay systems - Revisited

To prepare the ground for the study of nonlinear time-
delay systems, in this section we revisit the “interpolation-
based” description of moment developed just now and give the
equivalent “steady-state-based” description using the center
manifold theory. For an extensive analysis of the relation
between the two descriptions see [21] and also [17]. The
center manifold theory for time-delay systems has been widely
studied. The results in [61] establish that the theory for finite
dimensional systems can be extended to infinite dimensional
systems (and then to time-delay systems). In particular, as
for finite dimensional systems, if the linearized system has
q eigenvalues on the imaginary axis then there exists a q-
dimensional local integral manifold (referred to as center

manifold) for the original system. In addition, the well-defined
restriction of the dynamics of the system to the manifold is
finite dimensional. An overview on the center manifold theory
for time-delay systems has been given in [22] and references
therein.

Theorem 2. Let S ∈ Rν×ν be any non-derogatory matrix with
characteristic polynomial (8). Consider system (1) and assume
si ∈ C \ σ(Ā(s)), with i = 1, . . . , η, and σ(Ā(s)) ⊂ C<0.
Consider the interconnection of system (1) with the system

ω̇ = Sω, u = Lω, (10)

with L and ω(0) such that the triple (L, S, ω(0)) is minimal.
Then there exists a one-to-one3 relation between the moments
η0(s1), . . . , ηk1−1(s1), . . . , η0(sη), . . . , ηkη−1(sη) and the
steady-state response of the output of such interconnected
system.

Proof. Consider the interconnection of system (1) with sys-
tem (10). By the assumptions on σ(Ā(s)) and σ(S), the
interconnected system has a globally well-defined invariant
manifold given by M = {(x, ω) ∈ Rn+ν : x = Πω}, with
Π the unique solution of the Sylvester-like equation (9). We
prove now that M is attractive. Consider the equation

˙︷ ︸︸ ︷
x−Πω =

=

ς∑
j=0

Ajxτj +

µ∑
j=ς+1

BjLωτj −ΠSω =

=

ς∑
j=0

Ajxτj +

 µ∑
j=ς+1

BjLe
−Sτj −ΠS

ω =

in which we used the fact that ω(t − τj) = e−Sτjω(t),
substituting (9) in the last line, yields

˙︷ ︸︸ ︷
x−Πω =

ς∑
j=0

Aj(xτj −Πωτj ).

Computing the Laplace transform on both sides yields

s(X(s)−ΠΩ(s))− (x(0)−Πω(0)) =

=

 ς∑
j=0

Aje
−sτj

 (X(s)−ΠΩ(s)),

and, by the assumptions on σ(Ā(s)), we have

X(s)−ΠΩ(s) = (sI − Ā(s))−1(x(0)−Πω(0)).

Finally, computing the inverse Laplace transform, yields

x(t)−Πω(t) = L−1{(sI − Ā(s))−1(x(0)−Πω(0))}.

3By one-to-one relation we mean that the moments are uniquely determined
by the steady-state response of y(t) and vice versa.
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Since σ(Ā(s)) ⊂ C<0, by [22, Chapter 1, Theorem 6.2], M
is attractive. As a result

y(t) =

ς∑
j=0

Cj(xτj −Πωτj ) +

ς∑
j=0

CjΠωτj

=

ς∑
j=0

CjΠωτj+

ς∑
j=0

CjL−1{(sI − Ā(s))−1(x(0)−Πω(0))}

=

ς∑
j=0

CjΠe
−Sτjω + ε(t),

where
ς∑
j=0

CjΠe
−Sτjω(t) describes the steady-state response,

whereas

ε(t) =

ς∑
j=0

CjL−1{(sI − Ā(s))−1(x(0)−Πω(0))},

describes the transient response which vanishes exponentially.
This proves the claim.

Exploiting Theorem 2, in [65] the problem of model re-
duction for linear delay-free and linear time-delay systems
from input/output data is addressed. Therein, an algorithm that,
given the signal ω and the output y, retrieves the moments of a
system for which the matrices A, B, C and D are not known
is devised. However, note that the importance of Theorem 2
goes beyond the simple computation of the moments because
it highlights the relation between the steady-state response and
the moments.

D. A general class of linear time-delay systems

All the results presented for discrete-delays can be general-
ized to linear differential time-delay systems with distributed-
delays and linear neutral differential time-delay systems. The
moments of any type of linear differential time-invariant
time-delay system can be characterized with a Sylvester-like
equation given an assumption similar to si ∈ C \ σ(Ā(s)).
Consider a linear, single-input, single-output, continuous-time,
neutral time-delay system with discrete-delays and distributed-
delays described by the equations

ẋ =

q∑
j=1

Dj ẋcj +

ς∑
j=0

Ajxτj +

µ∑
j=ς+1

Bjuτj+

+

r∑
j=1

∫ t

t−hj
(Gjx(θ) +Hju(θ))dθ,

y =

ς∑
j=0

Cjxτj ,

x(θ) = φ(θ), −T ≤ θ ≤ 0,

(11)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, φ ∈ Rn
T , Aj ∈ Rn×n

and Cj ∈ R1×n with j = 0, . . . , ς , Bj ∈ Rn×1 with j =
ς + 1, . . . , µ, Dj ∈ Rn×n with j = 1, . . . , q, Gj ∈ Rn×n
and Hj ∈ Rn×1 with j = 1, . . . , r, τ0 = 0, τj ∈ R>0 with
j = 1, . . . , µ, cj ∈ R>0 with j = 1, . . . , q and hj ∈ R>0 with

j = 1, . . . , r. The transfer function W (s) is defined by (2)
with

Ā(s) =

q∑
j=1

Djse
−scj +

ς∑
j=0

Aje
−sτj +

r∑
j=1

Gj
1− e−shj

s
,

B̄(s) =

µ∑
j=ς+1

Bje
−sτj +

r∑
j=1

Hj
1− e−shj

s
,

C̄(s) =

ς∑
j=0

Cje
−sτj .

(12)
We introduce the following stability condition (i.e. a “formal
stability” condition, see [66], [31]).

Assumption 1. Assume the difference equation

x(t) +

q∑
j=1

Djx(t− ωj) = 0

is asymptotically stable.

Theorem 3. Assume 0 6∈ σ(S). Theorem 1 holds, with the
same assumptions, for system (11) replacing equation (9) with
ς∑
j=0

AjΠe
−Sτj +

r∑
j=1

GjΠS
−1(I − e−Shj )+

+

q∑
j=1

DjΠSe
−Scj −ΠS =

= −
µ∑

j=ς+1

BjLe
−Sτj −

r∑
j=1

HjLS
−1(I − e−Shj ).

(13)

Proof. The proof is similar to that of Theorem 1, hence it is
omitted.

Theorem 4. Assume 0 6∈ σ(S) and Assumption 1 holds.
Theorem 2 holds, with the same assumptions, for system (11).

Proof. The claim can be proved noting that σ(Ā(s)) ⊂ C<0,
with the definitions in (12), and Assumption 1 guarantee
asymptotic stability of system (11) [67], [31]. The additional
assumption that S is invertible is necessary because in equa-
tion (13) the distributed-delays generate terms in S−1.

Remark 1. As noted in [68], many systems can be described
by the equations (11) with, in most cases, a single neutral
delay, i.e. q = 1. In this case Assumption 1 holds if σ(D1) ⊂
D<1, see [22] and [69]. �

Remark 2. Since hyperbolic partial differential equations
can be locally expressed as neutral time-delay systems and,
conversely, any time-delay y(t) = u(t−τ) can be represented
by a classical transport equation (see [70], [24], [31]), the
techniques presented in the paper can be used to establish
a model reduction theory for some classes of partial differ-
ential equations: the example studied in [63] is, in fact, a
neutral system originated from a partial differential equation.
A similar remark applies for other relations, such as the
ones established between time-delay systems and fractional
derivation equations [71]. �
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To keep the notation light only the discrete-delay case is
considered in the remaining of the paper. However, the exten-
sion of the following results to system (11) is straightforward.

E. Reduced order model for linear time-delay systems

In this and the following sections a family of systems
achieving moment matching is presented and the possibility of
interpolating a larger number of points maintaining the same
“number of equations” is investigated.

Definition 2. Consider system (1) and let S ∈ Rν×ν be any
non-derogatory matrix with characteristic polynomial (8). Let
si ∈ C \ σ(Ā(s)) for all i = 1, . . . , η, and let L be such that
the pair (L, S) is observable. Then the system

ξ̇ =

%∑
j=0

Fjξχj +

ρ∑
j=%+1

Gjuχj , ψ =

d∑
j=0

Hjξχj , (14)

with ξ(t) ∈ Rν , ψ(t) ∈ R, Fj ∈ Rν×ν for j = 0, . . . , %,
Gj ∈ Rν×1 for j = %+1, . . . , ρ, Hj ∈ R1×ν for j = 0, . . . , k,
χ0 = 0 and χj ∈ R>0 for j = 1, . . . ,max{ρ, d}, is a model
of system (1) at S, if there exists a unique solution P of the
equation

%∑
j=0

FjPe
−Sχj − PS = −

ρ∑
j=%+1

GjLe
−Sχj , (15)

such that
ς∑
j=0

CjΠe
−Sτj =

d∑
j=0

HjPe
−Sχj , (16)

where Π is the unique solution of (9). System (14) is a reduced
order model of system (1) at S if ν < n, or if % < ς , or if
ρ < µ, or if d < ς .

Note that equation (15) defines the moments of the re-
duced order model, whereas equation (16) gives the matching
condition between the moments of the system to be reduced
and the moments of the reduced order model. To assure that
the solution P of equation (15) exists and is unique and
that equation (16) have a solution, we need an additional
assumption on the reduced order model.

Lemma 3. Let F̄ (s) =

%∑
j=0

Fje
−sχj . Equation (15) has a

unique solution P and equation (16) has a solution uniquely
determined by the matrices Hj if and only if si /∈ σ(F̄ (s))
for all i = 1, . . . , η and the pair (L, S) is observable.

Proof. The uniqueness of the solution P of equation (15)
follows from the arguments given in Section II-B. The ob-
servability of the pair (L, S) guarantees that P is full rank
and, as a consequence, (16) can always be solved.

F. Reduced order model with free Fj

To construct a family of models that achieves moment
matching at ν points one could select

F0 = S −
ρ∑

j=%+1

GjLe
−Sχj −

%∑
j=1

Fje
−Sχj

H0 =

ς∑
j=0

CjΠe
−Sτj −

d∑
j=1

Hje
−Sχj ,

(17)

and note that this selection solves equations (15), (16) for P =
I . This yields the family of reduced order models described
by the equations

ξ̇ =

S − ρ∑
j=%+1

GjLe
−Sχj −

%∑
j=1

Fje
−Sχj

 ξ+

+

%∑
j=1

Fjξχj +

ρ∑
j=%+1

Gjuχj ,

ψ =

 ς∑
j=0

CjΠe
−Sτj −

d∑
j=1

Hje
−Sχj

 ξ +

d∑
j=1

Hjξχj ,

(18)
with Gj and Fj any matrices such that si /∈ σ(F̄ (s)), for all
i = 1, . . . , η.

The proposed model has several free design parameters,
namely Gj , Fj , Hj , χj , %, ρ and d. We note that selecting
% = 0, ρ = 1, d = 0 and χ1 = 0 (in this case we define
G = G1), yields a reduced order model with no delays. In
other words, we reduce an infinite dimensional system to a
finite dimensional one, of dimension ν. This reduced order
model coincides with the one in [17] and all results therein
are directly applicable: the parameter G can be selected to
achieve matching with prescribed eigenvalues, matching with
prescribed relative degree, etc.

Remark 3. The problem of reducing an infinite dimensional
system to a finite dimensional one is not new in literature,
see e.g. [72], [56] and [57], and is how the model reduction
has been traditionally intended for time-delay systems, see e.g.
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52] and
[73], in which the problem of reducing the transfer function of
a linear time-delay system to a rational function is studied. A
variety of methods are used, e.g. Padé approximation, Taylor
expansions, spline approximations and Hankel operator.
On the other hand, the choice of eliminating the delays is likely
to destroy some underlying dynamics of the model and, as
shown in [38], [39], [40], [41] and [60], delays are not always
detrimental (for example to stability). With this in mind, a
possible choice is to keep Fj , Gj and Hj free with % = d = ς
and ρ = µ. In this case we can use the matrices Fj , Gj and Hj ,
with τj = χj , to maintain some important physical properties
of the delay structure of the system. �

Example 1. To illustrate the above idea consider the example
in Section 2.5 of [26] in which a model of a LC transmission
line in considered. The linear neutral differential time-delay
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system is described by the equations

ẋ = Ax+Dẋτ +Bu,

y = Cx,
(19)

with

A = − 1

C1

 1

R1
+

√
C0

L
0

−C1 0

, D =

 0 − 2

C1

√
C0

L
α

0 α

,
B =

[
b1 b2

]>
, C =

[
c1 c2

]
,

α =
1−R0

√
C0

L

1 +R0

√
C0

L

, τ = 2
√
LC0,

in which C1 ∈ R>0, R1 ∈ R>0, C0 ∈ R>0, L ∈ R>0,
R0 ∈ R>0, b1 ∈ R, b2 ∈ R, c1 ∈ R and c2 ∈ R. The
system is such that if R0

√
C0/L = 1 the delay part of the

system disappears (a phenomenon called line-matching) and
the model can be described by a system of ordinary differential
equations. In the reduced model it is desirable to maintain this
property to preserve the physical structure of the system. To
simplify the example, suppose S = 1 and L = 1. Then the
vector Π can be computed from equation (13), that in this case
is

AΠ +DΠe−τ −Π = −B,

which has a unique solution if

− 1

C1

(
1

R1
+

√
C0

L

)
6= 1, e−τ

1−R0

√
C0

L

1 +R0

√
C0

L

6= 1.

Hence, a family of reduced order models, parameterized in G,
is described by the equations

ξ̇ = (1− e−τα−G)ξ + αξ̇τ +Gu,

ψ = CΠξ.
(20)

Both equations (19) and (20) describe linear neutral differential
time-delay systems when R0

√
C0/L 6= 1 and linear delay-free

systems otherwise.

G. Reduced order model interpolating at (%+ 1)ν points

The matrices Fj and Hj in (18) are design parameters.
In this subsection we show how to exploit them to achieve
moment matching at more than ν points, still maintaining the
same dimension ν of the matrix F0. We analyze the case in
which % = 1, ρ = 3 and d = 1 (F1, G2, G3 and H1 are the free
parameters), for ease of notation. We further assume without
loss of generality that there are no delays in the equation of
the output y of system (1). The general case can be analyzed
in a similar way.

Proposition 1. Let Sa ∈ Rν×ν and Sb ∈ Rν×ν be two non-
derogatory matrices such that σ(Sa) ∩ σ(Sb) = ∅ and let
La and Lb be such that the pairs (La, Sa) and (Lb, Sb) are
observable. Let Πa = Π be the unique solution of (9), with
L = La and S = Sa, and let Πb = Π be the unique solution

of (9), with L = Lb and S = Sb. Consider F0 and H0 as in
(17) with χ2 = 0, S = Sa and L = La.
• If d = 1 and L = La = Lb, system (14) with the selection

F1 =(Sb − Sa −G3(e−Sbχ3 − e−Saχ3))(e−Sbχ1 − e−Saχ1)−1,

F0 =Sa −G2L−G3Le
−Saχ3 − F1e

−Saχ1 ,

H1 =(CΠb − CΠa)(e−Sbχ1 − e−Saχ1)−1,

H0 =CΠa −H1e
−Saχ1 ,

(21)
belongs to the family (18) and is a reduced order model
of system (1) achieving moment matching at Sa and Sb,
for any G2 and G3 such that si /∈ σ(F̄ (s)), for all i =
1, . . . , η.

• If d = 0, the family (18) with

F1 = (PbSb − SaPb +G2LaPb +G3Lae
−Sbχ3Pb

−G2Lb −G3Lbe
−Sbχ3)(Pbe

−Sbχ1 − e−Saχ1Pb)
−1,

(22)
is, for some Pb such that CΠaPb = CΠb, a reduced order
model of system (1) achieving moment matching at Sa
and Sb, for any G2 and G3 such that si /∈ σ(F̄ (s)), for
all i = 1, . . . , η.

Proof. We begin with the case d = 1. Easy computations show
that

F0 = Sa −G2La −G3Lae
−Saχ3 − F1e

−Saχ1 ,

H0 = CΠa −H1e
−Saχ1 ,

(23)

defined in (17), solve

F0Pa + F1Pae
−Saχ1 − PaSa = −G2La −G3Lae

−Saχ3 ,

CΠa = H0Pa +H1Pae
−Saχ1 ,

(24)
with Pa = I . F1 given in (22) solves the equation

F0Pb + F1Pbe
−Sbχ1 − PbSb = −G2Lb −G3Lbe

−Sbχ3 ,

for any invertible Pb. Substituting H0 in

CΠb = H0Pb +H1Pbe
−Sbχ1 , (25)

yields

H1 = (CΠb − CΠaPb)(Pbe
−Sbχ1 − e−Saχ1Pb)

−1.

The matrices F0, F1, H0, H1 are such that the resulting
reduced order model achieves moment matching at Sa and
Sb and selecting L = La = Lb and Pb = I they yield (21).
If d = 0, equation (25) reduces to

CΠb = H0Pb

for some Pb. We then have to prove that there always exists
a Pb such that CΠaPb = CΠb and F1 is well-defined. To
prove the first claim note that the condition consists in finding
ν2 parameters to solve ν equations. If CΠa 6= 0 there exist
always a Pb, full rank and upper triangular (possibly after a
change of coordinates). Finally note that by the hypotheses
on the system and the signal generator there exists at least a
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Fig. 1. Bode plot of the system (solid line), of the delay-free reduced order model (dash-dotted line) and of the time-delay reduced order model (dotted line).
The squares indicate the first set of interpolation points, whereas the circles indicate the second set.

component of CΠa which is not zero. To prove the second
claim we have to show that

rank
{
Pbe
−Sbχ1 − e−Saχ1Pb

}
= ν. (26)

Note now that selecting Sa and Sb in complex Jordan form
implies that the matrices in equation (26) are all upper
triangular. Condition (26) can be rewritten as

πbi
(
e−sbiχ1 − e−saiχ1

)
6= 0, ∀ i = 1, . . . , ν,

with πbi, sai and sbi the eigenvalues of Pb, Sa and Sb,
respectively. Since σ(Sa) ∩ σ(Sb) = ∅ then σ(e−Saχ1) ∩
σ(e−Sbχ1) = ∅, hence the claim follows.

The family of systems characterized in Proposition 1
achieves moment matching at 2ν interpolation points. Note
that the matrices G2 and G3 remain free parameters and they
can be used to achieve the properties discussed in [17]. For
instance G2 and G3 can be used to set both the eigenvalues
of F0 and F1. In addition, note that Gj has exactly ν free
parameters. Hence, for instance, to assign the eigenvalues of
j Fj matrices, j Gj matrices are needed. In [19], as already
hinted in [17], it has been shown how to select G (our G2)
to achieve the two-sided interpolation, i.e. how to exploit the
free parameter G to achieve interpolation at 2ν points. The two
techniques may be combined and, in the case of Proposition 1,
G2 and G3 may be selected to achieve interpolation at 4ν
points.

Remark 4. The result can be generalized to % > 1 delays,
obtaining a reduced order model that interpolates at (%+ 1)ν
points. This result can be used also when the system to be
reduced is not a time-delay system. In other words, a system

described by ordinary differential equations or time-delay
differential equations can be reduced to a system described by
time-delay differential equations with an arbitrary number of
delays % achieving moment matching at (%+ 1)ν points. This
property of interpolating an arbitrary large number of points
comes to the cost that the reduced order model becomes an
infinite dimensional system. However, as noted in [38], [39],
[40], [41] and [60], a reduced model with time delays may
have better properties than one without delays. �

Example 2. To illustrate the idea of approximating delay-
free systems with time-delay systems exploiting the additional
degrees of freedom to increase the number of interpolation
points, we consider an example inspired by [74] (see also [1]).
The example is a single-input, single-output system of order
n = 1006, which has a Bode plot with three peaks, described
by the equations

ẋ = Ax+Bu, y = Cx,

where A = diag(A1, A2, A3, A4), with

A1 =

[
−1 10
−10 −1

]
, A2 =

[
−1 20
−20 −1

]
,

A3 =

[
−1 40
−40 −1

]
, A4 = diag(−1,−2, . . . ,−1000),

and
B> = C = [ 10 . . . 10︸ ︷︷ ︸

6 times

1 . . . 1︸ ︷︷ ︸
1000 times

].

We start with obtaining a linear delay-free reduced order
model of order ν = 8. The matrices of the signal genera-
tor (10) have been selected as S = Sa = diag(S2, S3, S4, S5),
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with S2 = 1.57S1, S3 = 2S1, S4 = 3.4S1, S5 = 4.5S1,
where S1 = A1 + I , and L randomly generated, to in-
terpolate the moments close to the three peaks. The delay-
free model (18) has been constructed with the technique
presented in [17] assigning the eigenvalues of F0 such that
σ(F0) ⊂ σ(A). Fig. 1 shows the Bode plot of the system
to be reduced (solid line) and of this reduced order model
(dash-dotted line). The interpolation points are indicated by
four squares. Note that the reduced order model approximates
poorly the system because few interpolation points have been
used (for comparison in [1] the order of the reduced order
model is ν = 11, while in [65] ν = 13). We apply the
technique presented in Proposition 1. The matrix Sb has been
selected as Sb = diag(S6, S7, S8, S1), with S7 = 7S1,
S8 = 10S1 and

S6 =

[
0 1
0 0

]
.

Selecting χ = χ1 = χ3 = 0.05, yields

F0 = Sa − (Sb − Sa)(e−Sbχ − e−Saχ)−1e−Saχ −G2L,

and
F1 = (Sb − Sa)(e−Sbχ − e−Saχ)−1 −G3L.

Note that, because of the selection χ1 = χ3, F0 does not
depend upon G3. Thus, the eigenvalues of both F0 and F1

have been assigned such that σ(F0) = σ(F1) ⊂ σ(A).
In Fig. 1, the Bode plot of this reduced order model is
represented by the dotted line. Three additional interpolation
points are indicated with the circles. In addition the plot shows
clearly that the model interpolates the point at zero, which
is confirmed by a direct computation. Thus, the addition of
one delay improved the quality of the approximation of the
system without increasing the size of the matrices. However,
note that a delay-free model with ν = 16 would be a better
approximation because the introduction of the delay is, at the
same time, detrimental (in particular at high frequencies).

Remark 5. Although it is possible to interpolate at several
different points si maintaining the same dimension ν, the order
of interpolation at si cannot exceed ν because it is limited, by
definition, by the dimension of the matrix Sj . �

III. MODEL REDUCTION FOR NONLINEAR TIME-DELAY
SYSTEMS

In this section we derive an extension of the model reduction
method for nonlinear differential time-delay systems. To keep
the notation simple we consider, without loss of generality,
only delays (discrete or distributed) in the state and in the
input, i.e. the output is delay-free. The neutral case is briefly
discussed at the end of the section.

A. Definition of Π: nonlinear time-delay systems

Consider a nonlinear, single-input, single-output,
continuous-time, time-delay system described by the
equations

ẋ = f(xτ0 , . . . , xτς , uτς+1 , . . . , uτµ), y = h(x),

x(θ) = φ(θ), −T ≤ θ ≤ 0,
(27)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, φ ∈ Rn
T , τ0 = 0,

τj ∈ R>0 with j = 1, . . . , µ and f and h smooth mappings.
Consider a signal generator described by the equations

ω̇ = s(ω), θ = l(ω), (28)

with ω(t) ∈ Rν , θ(t) ∈ R, s and l smooth mappings, and the
interconnected system

ω̇ = s(ω),

ẋ = f(xτ0 , . . . , xτς , l(ωτς+1
), . . . , l(ωτµ)),

y = h(x).

(29)

Suppose that f(0, . . . , 0, 0, . . . , 0) = 0, s(0) = 0, l(0) = 0
and h(0) = 0.

Assumption 2. There exists a unique mapping π(ω), locally
defined in a neighborhood of ω = 0, which solves the partial
differential equation

∂π

∂ω
s(ω) = f(π(ω̄τ0), . . . , π(ω̄τς ), l(ω̄τς+1

), . . . , l(ω̄τµ)),

(30)
where ω̄τi = Φsτi(ω), with i = 0, . . . , µ, is the flow of the
vector field s at τi, see [75].

Assumption 2 implies that the interconnected system (29)
possesses an invariant manifold, described by the equation
x = π(ω). Note that the partial differential equation (30) is
independent of time (as (9) and the correspondent equations
given in [17]), e.g. if s(ω) = Sω then ω̄τi = eSτiω.

Assumption 3. The signal generator (28) is observable, i.e.
for any pair of initial conditions ωa(0) and ωb(0), such that
ωa(0) 6= ωb(0), the corresponding output trajectories l(ωa(t))
and l(ωb(t)) are such that l(ωa(t))− l(ωb(t)) 6≡ 0.

Definition 3. Consider system (27) and the signal genera-
tor (28). Suppose Assumption 2 and 3 hold. The function
h(π(ω)), with π solution of equation (30), is the moment of
system (27) at (s(ω), l(ω)).

Theorem 5. Consider system (27) and the signal gener-
ator (28). Suppose Assumption 3 holds. Assume the zero
equilibrium of the system ẋ = f(xτ0 , . . . , xτς , 0, . . . , 0) is
locally exponentially stable and system (28) is Poisson stable4.
Assume ω(0) 6= 0. Then Assumption 2 holds and the moment
of system (27) at (s(ω), l(ω)) coincides with the steady-state
response of the output of the interconnected system (29).

Proof. Under the stated assumptions there exist a well-defined
center manifold described by x = π(ω). In addition, the
assumptions on the signal generator guarantee that the steady-
state response of the output is locally well-defined and it is
described by h(π(ω)) (see [76]).

B. Reduced order model for nonlinear time-delay systems

In this section a family of systems achieving moment
matching is given.

4See [75, Chapter 8, page 388] for the definition of Poisson stability.
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Definition 4. Consider system (27) and the signal genera-
tor (28). Suppose Assumption 2 and 3 hold. Then the system

ξ̇ = φ(ξχ0 , . . . , ξχ% , uχ%+1 , . . . , uχρ), ψ = κ(ξ), (31)

with ξ(t) ∈ Rν , u(t) ∈ R, ψ(t) ∈ R, χ0 = 0, χj ∈ R>0

with j = 1, . . . , ρ, and φ and κ smooth mappings, is a model
of system (27) at (s(ω), l(ω)), i.e. system (31) has the same
moment of system (27) at (s(ω), l(ω)), if the equation

∂p

∂ω
s(ω) = φ(p(ω̄χ0

), . . . , p(ω̄χ%), l(ω̄χ%+1
), . . . , l(ω̄χρ)),

(32)
where ω̄χi = Φsχi(ω), with i = 0, . . . , ρ, has a unique solution
p such that

h(π(ω)) = κ(p(ω)), (33)

where π is the unique solution of (30). System (31) is a
reduced order model of system (27) at (s(ω), l(ω)) if ν < n,
or if % < ς , or if ρ < µ.

C. A first family of models

We now identify a first family of models.

Assumption 4. There exist mappings κ and p such that κ(0) =
0, p(0) = 0, p is locally C1, equation (33) holds and p has a
local inverse p−1.

Consistently with Definition 4, a family of models that
achieves moment matching at (s(ω), l(ω)) is described by

ξ̇ = Φ(ξ, ξ̄χ1
, . . . , ξ̄χ%) +

∂p(ω)

∂ω
γ(ξχ1

, . . . , ξχ%)+

+
∂p(ω)

∂ω

 ρ∑
j=%+1

δj(ξ)uχj

 ,
ψ = κ(ξ),

(34)

with

Φ(ξ, ξ̄χ1 , . . . , ξ̄χ%) =

[
∂p(ω)

∂ω
(s(ω)− γ(p(ω̄χ1), . . . , p(ω̄χ%))

−
ρ∑

j=%+1

δj(p(ω))l(ω̄χj ))


ω=p−1(ξ)

,

where ξ̄χj =
[
ω̄χj
]
ω=p−1(ξ)

, k and p are such that Assump-
tion 4 holds, p is the unique solution of (32) and δ and γ are
free mappings.

Assumption 4 holds with the selection p(ω) = ω and κ(ω) =
h(π(ω)). This yields a family of models described by the
equations

ξ̇ = s(ξ)−
ρ∑

j=%+1

δj(ξ)l(ξ̄χj )− γ(ξ̄χ1
, . . . , ξ̄χ%)+

+ γ(ξχ1 , . . . , ξχ%) +

ρ∑
j=%+1

δj(ξ)uχj ,

ψ = h(π(ξ)),

(35)

where δ and γ are arbitrary mappings such that equation (32),
namely

∂p

∂ω
s(ω) = s(p(ω))−

ρ∑
j=%+1

δj(p(ω))l(p(ω̄χl))−

− γ(p(ω̄χ1
), . . . , p(ω̄χ%)) + γ(p(ωχ1

), . . . , p(ωχ%))+

+

ρ∑
j=%+1

δj(p(ω))l(ωχj ),

has the unique solution p(ω) = ω.

The nonlinear model (35) is the direct counterpart of the linear
model (18). The model has several free design parameters,
namely δj , γ, χj , % and ρ. We note that selecting γ ≡ 0,
% = 0, ρ = 1 and χ1 = 0 (in this case we define δ = δ1),
yields a reduced order model with no delays. This reduced
order model coincides with the one in [17] and all results
therein are directly applicable: the mapping δ can be selected
to achieve matching with asymptotic stability, matching with
prescribed relative degree, etc. However, as stressed previously
in the paper, the choice of eliminating the delays is likely to
destroy some important dynamics of the model.

Remark 6. As in the case of linear time-delay systems the
results of this section can be extended to more general classes
of time-delay systems provided that, for such systems, the
center manifold theory applies. In particular, one can consider
the class of neutral differential time-delay systems described
by equations of the form

d(ẋτ0 , . . . , ẋτς1 ) = f(xτς1+1
, . . . , xτς2 , uτς2+1

, . . . , uτµ),

y = h(x),
(36)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, τ0 = 0, τj ∈ R>0 with
j = 1, . . . , µ and d, f and h smooth mappings. The center
manifold theory does not hold for this class of systems for a
general mapping d. Specific cases have to be considered and
we refer the reader to [22], [69], [66] and references therein.
Note, however, that for the simple case

ẋ+Dẋτ1 = f(xτ2 , . . . , xτς1 , uτς1+1
, . . . , uτµ),

y = h(x),
(37)

with D ∈ Rn×n, the center manifold theory holds as for
standard time-delay systems if the matrix D is such that
σ(D) ∈ D<1. �

IV. OPEN-LOOP REDUCED ORDER MODEL

We consider now the problem of obtaining a reduced order
model of an open-loop system from the closed-loop system.
This problem may arise when the system to be reduced is not
stable and we have to apply a feedback to use the reduction
techniques proposed, yet we are interested in the reduced order
model of the uncontrolled system. For ease of notation we
assume that there are no delays on the input u.
Consider a closed-loop, nonlinear, single-input, single-output,
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continuous-time, time-delay system described by the equations

ẋ = f(xτ0 , . . . , xτµ1 , u),

u = g(xε0 , . . . , xεµ2−1
) + vτµ2 ,

y = h(x),

(38)

with x(t) ∈ Rn, u(t) ∈ R, v(t) ∈ R, y(t) ∈ R, τ0 = 0, τj ∈
R>0 with j = 1, . . . , µ1, ε0 = 0, εj ∈ R>0 with j = 1, . . . , µ2

and f , g and h smooth mappings. Consider a signal generator
described by the equations

ω̇ = s(ω), θ = l(ω), (39)

with ω(t) ∈ Rν , θ(t) ∈ R, s and l smooth mappings, and the
interconnected system

ω̇ = s(ω),

ẋ = f(xτ0 , . . . , xτµ1 , g(xε0 , . . . , xεµ2−1
) + l(ωτµ2 )),

y = h(x).

(40)

Suppose that f(0, . . . , 0, 0) = 0, g(0, . . . , 0, 0) = 0, s(0) = 0,
l(0) = 0 and h(0) = 0.

Assumption 5. There exists a unique mapping π(ω), locally
defined in a neighborhood of ω = 0, which solves the partial
differential equation

∂π

∂ω
s(ω) = f(π(ω̄τ0), . . . , π(ω̄τµ),

g(π(ω̄ε0), . . . , π(ω̄εµ2−1
)) + l(ω̄τµ2 )),

(41)

where ω̄τi = Φsτi(ω), with i = 0, . . . , µ1, and ω̄εi = Φsεi(ω),
with i = 0, . . . , µ2.

Definition 5. Consider system (38) and the signal genera-
tor (39). Suppose Assumption 3 and 5 hold. Then the system

ξ̇ = φ(ξχ0
, . . . , ξχρ , u),

ψ = κ(ξ),
(42)

with ξ(t) ∈ Rν , u(t) ∈ R, χ0 = 0, χj ∈ R>0, with j =
1, . . . , ρ, and φ and κ smooth mappings, is an open-loop model
of system (38) at (s(ω), l(ω)) if the system

ξ̇ = φ(ξχ0
, . . . , ξχρ , u),

u = g(π(p−1(ξε0)), . . . , π(p−1(ξεµ2−1))) + vχµ2 ,

ψ = κ(ξ),

(43)

with v(t) ∈ R, π the unique solution of (41) and p invertible
and the unique solution of the equation

∂p

∂ω
s(ω) = φ(p(ω̄χ0

), . . . , p(ω̄χρ), l(ω̄χµ2 )), (44)

where ω̄χi = Φsχi(ω), with i = 0, . . . , ρ, such that

h(π(ω)) = κ(p(ω)), (45)

is a model of the (closed-loop) system (40) at (s(ω), l(ω)).

Obtaining a reduced order model of an open-loop system
given the closed-loop system solves the problem of the re-
duction of nonlinear systems when their zero equilibrium is
not locally exponentially stable, extending the model reduction

technique by moment matching to a larger class of systems.
To illustrate how to obtain an open-loop reduced order model
we briefly report part of an example published in [63] without
the supporting theory of this section.

Example 3. Consider the neutral model (37) of the torsional
dynamics of an oilwell drillstring affected by the stick-slip
phenomenon as presented in [77], [78] and [79]. The stick-slip
phenomenon consists in the undesired event that a constant
rotational velocity applied on the top of the string does not
translate to a steady speed at the bottom of the hole. In
particular the bit undergoes intervals in which it is completely
blocked and intervals in which the accumulated energy is
released and the rotational speed becomes larger than the
prescribed value. Consider the neutral differential time-delay
system described by the equations

ẋ = Υẋτ1 −Ψx−ΨΥxτ1−

− 1

IB
T (x) +

1

IB
ΥT (xτ1) + 2

Ψca
Λ

Ωτ2 ,

y = x,

(46)

with

Υ =
ca −

√
IGJ

ca +
√
IGJ

, Ψ =

√
IGJ

IB
, Λ = ca −

√
IGJ,

where x(t) is the angular velocity at the bottom of the string,
y(t) is the output of the system, Ω(t) is the input variable, I
is the inertia, J is the geometrical moment of inertia, G is the
shear modulus, IB is the lumped inertia representing the block
at the bottom, ca is a constant related to the local torsion of

the drillstring, τ2 = Γ, τ1 = 2Γ, Γ = L

√
I

GJ
and L is the

length of the string. The nonlinear function T (·) describes the
bit-rock interaction and is given by the function

T (x)=cbx+WobRb

[
µcb + (µsb − µcb)e

− γb
vf
|x|
]
tanh(tgx),

(47)
where tg is the gain of the hyperbolic tangent. The parameters
for the simulations have been selected as in [78] and are
listed in [63]. System (46), with (47), is a nonlinear neutral
differential time-delay system for which the origin is not
exponentially asymptotically stable and Definition 4 cannot
be directly used. However, several closed-loop feedbacks have
been proposed to asymptotically stabilize the origin of the
system. We apply the feedback control law proposed in [78],
namely

Ω(t) = k1ẋ(t− τ2) + k2x(t− τ2) + r(t). (48)

For the closed-loop system (46), with (47) and (48), we
compute numerically the solution of equation (30). A simple
reduced order model achieving moment matching at ω̇ =
s(ω) = 0 and belonging to the family of models (35) is
described by the equations

ξ̇ = −δ(ξ) [ξ − rτ2 ] , ψ = π(ξ). (49)

We are now interested, using system (49), in obtaining a model
of the open-loop system (46). By Definition 5, an open-loop
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Fig. 2. Time histories of the output of system (46) (solid line) and of
system (50) (dashed line) with δ(z) = qz2 + ε for r = 25 (top) and r = 15
(bottom).

model of system (46) achieving moment matching at ω̇ = 0
is given by

ξ̇ = −δ(ξ) [ξ − µτ2 ] , ψ = π(ξ), (50)

with µ = −k1π(ξ̇τ2)− k2π(ξτ2) + r.
Fig. 2 shows the time histories of the output of the open-
loop system (46) and of the model (50), with δ(z) = qz2 +
ε, for r = 25 (top) and r = 15 (bottom). We can see that
the model (50) and the open-loop system (46) have the same
steady-state value and that, using the free mapping δ(·), the
transient behavior can be partially recovered.

V. MOMENT AT INFINITY

We conclude the paper with the characterization of the
moments at infinity for linear and nonlinear time-delay sys-
tems. The description of moment given in Definitions 1 and
3 does not characterize the moments at si = +∞. Since
the k moments of linear delay-free systems at si are defined
as the first k coefficients of the Laurent series expansion of
the transfer function W (s) at si ∈ C, in a similar way the
k moments at infinity can be computed by evaluating the
expansion at infinity of the transfer function. In addition, by
using the final value theorem (see e.g. [1] and [80]), the first
k moments correspond to the j = 1, . . . , k+ 1 coefficients of
the expansion at t = 0+ of the impulse response.
Note that for differential time-delay systems, the transfer func-
tion W (s) is transcendental. This implies that the computation
of the limit at s = +∞ has to be done with care. As noted
in [80] there is widespread carelessness in the definition of
the Laplace transform and its properties. In our case, it is
fundamental to determine what is the meaning of the limit at
infinity because the result (if well-defined) would depend upon
which direction at infinity is considered. As explained in [80],
in this context the limit has to be taken along the positive real
axis. Then we have the following results5.

5To be coherent with equation (27) we ignore the delays in the equation
of the output y of the linear system (1).

Theorem 6. Let Υ be the set of values of j = ς + 1, . . . , µ
such that τj = 0.
Consider system (1).

- If Υ 6= ∅ then the k moments at infinity are ηk(∞) =∑
j∈Υ

CAk0Bj .

- If Υ = ∅ then all the moments at infinity are identically
zero.

Consider system (27).
- If Υ 6= ∅ then the k moments at infinity are ηk(∞) =

y
(k)
I (0+), where y(k)

I (·) denotes the k-th derivative of the
impulse response of the system.

- If Υ = ∅ then all the moments at infinity are identically
zero.

Proof. By the equivalence between the moments at infinity
and the impulse response at t = 0+, it follows that if τj = 0
for some j = ς + 1, . . . , µ the behavior of the systems at 0+

is the same as the corresponding delay-free system (because
no delay on the state has “kicked in” at t = 0+). If τj 6= 0
for all j = ς + 1, . . . , µ then the impulse response is delayed
and it follows that the response at 0+ is identically zero. Once
established that the behavior is as for delay-free systems, the
proof is as in [17].

Remark 7. From Theorem 6 it appears that a finite dimen-
sional system is sufficient to characterize the moments at
infinity and we can use it to match the moments at infinity
as described in [17]. However, note that some properties of
the transfer function are lost with a finite dimensional system.
In fact if, for instance, τj 6= 0 for some j = 1, . . . , ς and
τj = 0 for some j = ς + 1, . . . , µ the expansion at infinity
along the negative real axis is identically zero, while for finite
dimensional systems the expansion is the same as along the
positive real axis. Or, if τ1 = τς+1 > 0 and τj = 0 for
i = 2, . . . , ς, ς + 2, . . . , µ, then the first coefficient of the
expansion at infinity along the negative real axis is −CB1

for time-delay systems, while zero (i.e. the same as along the
positive axis) for finite dimensional systems. This suggests
that a finite dimensional model that matches the moments of
the system at infinity may not be a good approximation of the
dynamics of the system far from t = 0 and that to preserve the
properties of the transcendental transfer function it is necessary
to choose a model with the same delay structure as the original
system. �

VI. CONCLUSIONS

The model reduction theory based on moment matching has
been derived for linear and nonlinear differential time-delay
systems. The model reduction problem has been solved first
for linear time-delay systems. The description of moment has
been given in terms of the unique solution of a Sylvester-
like equation. This has been subsequently extended to neutral
differential time-delay systems with distributed and discrete
delays. A family of systems achieving moment matching
has been proposed and the problem of interpolating a larger
number of points maintaining the same number of equations
has been studied and solved. Then the definition of moment
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developed for linear time-delay systems has been extended to
nonlinear systems by means of the center manifold theory. The
moments at infinity have been characterized for both linear and
nonlinear time-delay systems and a parameterized family of
models achieving moment matching has been given. Finally,
the solution to the problem of obtaining a reduced order
model of an unstable system has been given and connections
with the delay-free framework, classical results and further
developments have been drawn throughout the paper.
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