
2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2528292, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016 1

Fast and Adaptive Fractal Tree Based Path Planning
for Programmable Bevel Tip Steerable Needles

Fangde Liu, Arnau Garriga-Casanovas, Riccado Secoli and Ferdinando Rodriguez y Baena

Abstract—Steerable needles are a promising technology for
minimally invasive surgery, as they can provide access to difficult
to reach locations while avoiding delicate anatomical regions.
However, due to the unpredictable tissue deformation associated
with needle insertion and the complexity of many surgical
scenarios, a real-time path planning algorithm with high update
frequency would be advantageous. Real-time path planning for
nonholonomic systems is commonly used in a broad variety
of fields, ranging from aerospace to submarine navigation. In
this paper, we propose to take advantage of the architecture
of Graphics Processing Units (GPUs) to apply fractal theory
and thus parallelize real-time path planning computation. This
novel approach, termed Adaptive Fractal Trees (AFT), allows for
the creation of a database of paths covering the entire domain,
which are dense, invariant, procedurally produced, adaptable
in size, and present a recursive structure. The generated cache
of paths can in turn be analyzed in parallel to determine the
most suitable path in a fraction of a second. The ability to
cope with nonholonomic constraints, as well as constraints in the
space of states of any complexity or number, is intrinsic to the
AFT approach, rendering it highly versatile. Three-dimensional
simulations applied to needle steering in neurosurgery show
that our approach can successfully compute paths in real-time,
enabling complex brain navigation.

Index Terms—Reactive and Sensor-Based Planning, Surgical
Robotics: Steerable Catheters/Needles

I. INTRODUCTION

M INIMALLY invasive surgery (MIS) is becoming the
standard of care for a range of medical procedures,

including biopsies, targeted drug delivery, and brachytherapy
cancer treatment. The advantages of MIS include less trauma
for the patient, lower risk of complications, and a shorter full-
recovery time. Current standard medical practice uses rigid
tools, which enable good accuracy, but are not capable of
accessing locations behind delicate regions. Steerable needles
[1], [2] have the potential to overcome these limitations,
and to improve reliability through automation, resulting in a
significant advancement in keyhole surgery.

Existing steerable needle concepts can be classified in seven
different groups, as outlined in [3]: base manipulation [4],
bevel tip (with and without a ”kinked tip”) [5]–[7], pre-curved

Manuscript received: August, 31st, 2015; Revised December, 4th, 2015;
Accepted January, 18th, 2016.

This paper was recommended for publication by Editor Ken Masamune
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the European Research Council under the European Union
Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no
[258642-STING].

The authors are with the Mechatronics In Medicine Laboratory,
Mechanical Engineering Department, Imperial College London, UK.
fangde.liu@imperial.ac.uk

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Generic L-tree illustrating the Adaptive Fractal Trees concept. The
density of paths corresponds to the space coverage that can be achieved in
real-time with modern GPUs.

stylet [8], active cannula [9], [10], optically controlled needle
[11], tendon actuated tip [12] and programmable bevel tip
[13]–[15]. Our own design, code-named Soft Tissue Inter-
vention and Neurosurgical Guide (STING) [16]) has a bio-
inspired design that reproduces the multi-segment ovipositor
of certain parasitic wasps, is made of flexible plastic and is
fully Magnetic Resonance Imaging (MRI) compatible. It has
the ability to steer along three-dimensional paths without duty
cycle spinning along the insertion axis, as shown in Figure 2,
and thus offers an ideal target system for the path planning
technique described in this work.

In most of these applications, the uncertainties arising
from tissue deformation during insertion and consequent need
of frequent path replanning to track the motion of one or
several targets, warrants a real-time path planning algorithm,
with a high update frequency [17]. The design of real-time
path planning algorithms capable of online updates, however,
is challenging, especially when differential constraints are
present. The problem is NP-hard [18]. General methods from
variational optimization [19] [20], or approaches from optimal
control such as the Gauss pseudospectral method [21], are
capable of accurately finding the optimal solution; however,
they require significant computational time. Potential fields
based methods [22] and most other probabilistic methods
are unable to handle nonholonomic constraints. Linear path
planners for chained-form systems [23] have been applied
for some steerable needle designs, but cannot cope with
control saturation associated with large tissue deformation.
The limited robustness of probability maps [24] or inverse
kinematics based approaches [25] prevents their use in safety-



2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2528292, IEEE Robotics
and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

Fig. 2. a) Rendering of the STING distal end [28] b) STING cross-section
with interlocking mechanism.

critical applications, such as in surgery. Path planners based on
homotopy groups [26] or Lie groups [27] exploit symmetries
in the path to accelerate the processing speed. However, these
solutions must be computed iteratively due to their nonlinear
nature, leading to an unbounded computational time.

Sampling-based methods are the dominant trend [29] in
problems with differential constraints. Standard approaches
such as the Dijkstra method, or the improved, heuristics
based version, A* [29], are able to effectively find paths
with obstacle avoidance, but the search is excessively time
consuming. Even algorithms that improve on A* by reusing
previous search information [30] require significant computa-
tional time, and can only be scaled to multiple CPUs. Rapidly-
Exploring Random Trees (RRTs) [31] [32], and specifically
Reachability-Guided RRTs (RG-RRTs) [33], are becoming
increasingly popular due to their ability to quickly explore
the entire domain and cope with curvature constraints for
needle steering. RRTs perform well in environments with
relatively simple obstacles, presenting short computational
times that allow online path replanning during insertion [34].
However, in congested environments, with complex obstacles,
even purpose-developed heuristically accelerated RRTs present
computation times that are relatively long and unbounded [35]
[36].

A common issue in the majority of existing approaches is
that they perform the search sequentially, relying on serial
CPU computing, the speedup potential of which is limited.
Instead, by exploiting the power of the Graphics Processing
Unit (GPU) for general purpose processing, the computation
time can be reduced by over one order of magnitude. Some
early approaches to path planning on the GPU are reported in
[37] [38], highlighting their potential advantages over CPU-
based algorithms. However, the performance improvement of
these algorithms is limited to ten times that of CPU based
implementations, a result which can be improved. Paralleliza-
tion of RRTs is also reported in the literature [39], although
the algorithm is only scalable to multiple CPUs, and presents
a limited speed improvement. This is a consequence of the
search procedure in RRTs, which leads to a variable compu-
tational load due to an iterative growth, potentially causing
the system to stall when multiple threads require the same
tree to update simultaneously, and may not meet the ”single

instruction multiple data operations” requirement, which the
GPU is designed for.

This paper proposes a novel approach to path planning,
which is tailored for a GPU-based implementation. The strat-
egy introduced in this work employs fractal theory to create
a data structure that enables efficient parallel path planning.
The resulting parallelized problem has a recursive structure,
is adaptable in size, is constructed procedurally, and allows a
dense coverage of the entire domain, as illustrated in Fig. 1.
For this, the method has been termed Adaptive Fractal Trees
(AFT). Our approach presents three main advantages with
respect to existing imaged-based algorithms. First, it works
directly with voxels, optimizing computational performance.
Second, it is capable of real-time replanning with a bounded
computational time. Third, it can be used regardless of the
number or complexity of the obstacles, rendering it robust
and versatile, with a high success rate compared to other path
planning algorithms.

The paper is structured as follows. The path planning prob-
lem for a steerable needle is formally stated in Section II. Sec-
tion III provides a description of the AFT approach, together
with an analysis of its specific properties for parallelization.
Simulated results, together with the corresponding discussion,
are presented in Section IV, leading to the conclusion of this
paper in Section V.

II. PROBLEM FORMULATION

A. Path Planning for Programmable Bevel Tip Needles

For the purpose of path planning, only a description of the
STING’s distal end is necessary, since it can be assumed that
the body will follow the path dictated by the tip [14]. The
robot configurations form a subspace of the special Euclidian
group, with q(t) ∈ SE(2) for 2D [15] and q(t) ∈ SE(3) for
3D [28]. The initial and target configurations are indicated by
qi and qf , respectively. The interaction between needle and
tissue, together with the robot design, lead to a set of non-
holonomic constraints, valid at least locally in an infinitesimal
neighborhood of time and space. Defining a direction x tangent
to the insertion path, two first constraints arise from a no-slip
condition, Vy = Vz = 0, which are the linear velocities along
the y and the z axes respectively. The STING is designed
to steer in 3D without duty-cycling along the insertion axis,
x, hence a kinematic constraint on the rotational velocity
along the insertion axis arises, wx = 0. The curvatures of
the resulting path along the y and z directions, defined as
ky,z =

wy,z

Vx
, are determined by the bevel tip geometry. This

is specifically calculated to prevent excessive stress on the
needle, leading to a bounded curvature between a minimum
Ly,z and a maximum Uy,z: Ly,z ≤ wy,z

Vx
≤ Uy,z . Considering

these premises, along with a needle design that suffers from
negligible torsional effects, we employed the Bishop frame
[40] as the most suitable frame to describe the needle motion.

The obstacles in the configuration space correspond to
either physical obstacles or virtual constraints. Due to tissue
deformation, the spatial position of the obstacles may vary
[41]. It is assumed that feedback from their position, as well
as from the current and target configurations of the needle tip,



2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2528292, IEEE Robotics
and Automation Letters

LIU et al.: ADAPTIVE FRACTAL TREE 3

is available from an appropriate source (e.g. an intraoperative
imaging or tracking system).

The aim of a path planner is to find a feasible path from qi
to qf that respects all of the constraints, and optimizes a cost
function. In general, the cost function to minimize is defined
as a risk-based function, possibly with additional components,
such as the minimization of the insertion length, as to reduce
tissue damage.

B. General Path Planning Problem
More generally, we are considering a system described in

implicit form by q ∈ Rn, with a set of k ≤ n smooth linearly
independent1 nonholonomic Pfaffian constraints

wi(q)q̇ = 0 i = 1, ..., k (1)

which may also include any number of obstacles of any
complexity, denoted in the configuration space by Qobs. The
path planning problem for this system can be equivalently
formulated as a steering control problem [42].

The corresponding system can be expressed as

q̇ =

m∑
i=1

gi(q)ui (2)

where m = n− k and u ∈ U ⊂ Rm are the control inputs,
with

span{g1, ..., gm} = span{w1, ..., wk}⊥ (3)

Considering the obstacles Qobs to be static, the path plan-
ning problem is then to find the input functions u1,...,k that
steer the system from an initial qi to a target configuration qf ,
while optimizing a cost function and avoiding Qobs.

III. ADAPTIVE FRACTAL TREES ALGORITHM

The recursive nature of motion in nonholonomic systems
closely resembles the topological structure of a tree. The
possible motion at each step depends on the previous one,
a process that reverses recursively to the initial point, or the
tree origin. Despite the advantages of the parametric form (2),
path planning for systems with differential constraints remains
challenging; the majority of existing numerical solutions are
sampling-based and rely on serial iterative computing pro-
cesses, requiring often excessive, and unbounded computa-
tional time. Their parallelization to suit GPU specifications
is either difficult or impossible.

By uniformly discretizing the control space, the path adopts
a fractal structure. Such fractal space can be divided into sub-
spaces, in a coarse to fine manner, as

Ts = Ts1 + Ts12 + Ts13 + ...+ Tsi (4)

Each subspace Tsi can be parallel processed by the GPU. This
results in a novel method for massively parallel path planning,
with an efficient search. The resolution increases exponentially
with each subspace, leading to fast convergence.

1A subset of the constraints may be locally linearly dependent. In such
case, the rank of the distribution associated to the action vectors gi increases
locally, without further consequences on the path planning presented in this
paper.

Fig. 3. Illustration of the adaptive search concept in a two-stage approach.
The coarse tree (green) first explores the entire domain. The fine tree (red) is
concentrated around the most promising region, providing higher resolution.
The blue line highlights the most suitable path.

A. Motion Fractal Tree

Relying on the parametric form of a nonholonomic system
(2), all possible paths can be mapped to an L-tree, as shown
in Fig. 1. Beginning at qi, the first set of tree ramifications
corresponds to the action vectors gi of the system, advancing
by an increment that can be symbolized by δu in each of the
s directions. Then, each branch is divided and subsequently
given the motion action inputs, generating a fractal structure.

The number of required increments is determined by the
needle insertion distance, and the computational time is
bounded by the limited needle length. A path is then de-
termined by a string of configurations qT = [i1, i2, ..., iN ],
where N is the total number of increments required. The entire
domain of possible motions is discretized exhaustively using
a fractal tree, as illustrated in Fig. 1. A differential increment
between ramifications would lead to an exact approximation
of all possible paths. However, the number of paths increases
exponentially with the number of ramifications and, as the
discretization step decreases, the size of the path space grows,
becoming infinite for a differential increment. Hence, for any
given application, a specific incremental step must be selected.

This structured construction of the tree is implemented effi-
ciently by the GPU, as explained in the following subsections.
This property is in contrast with the random construction of
RRTs, and it represents one of the distinctive advantages of
AFT for fast computation.

B. Adaptive Discretization

By exploiting the tree property, as in (4), it is possible to
break down the search into subspaces. This division has the
particular property that all subspaces share the same number
of motion segments and topology.

Each tree can be parametrized by three elements: l, which
corresponds to the segment’s length, δk, which describes the
branch’s aperture, and C, the tree’s central path. The latter
is either provided by a previous coarse search, or taken as a



2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2528292, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

straight line for the first generated tree. The size of a tree is
therefore adaptable, depending on the construction parameters.

In this way, the path search can be executed in a coarse to
fine manner, reducing the problem’s complexity exponentially,
and achieving high accuracy in the fine search. First, the path
planner creates and searches a coarse tree Ts1. Then, the path
that minimizes a cost function within Ts1 is used to build a
second, finer tree around it, the density of which is increased
exponentially with respect to the previous one.

The adaptable search concept is illustrated in Fig. 3, where
a two-stage approach is depicted. First, a coarse tree is
generated covering the entire domain, in order to determine the
most promising region. Then, a second tree is constructed to
perform the fine search, focusing the computational resources
around the region identified by the coarse tree, with a higher
density of paths that minimizes the error. In general, after two
or three stages, the desired resolution is reached.

C. Parallel Path Planning Algorithm

The AFT path planning algorithm is composed of three
parts: (1) motion segment reconstruction, (2) collision detec-
tion and distance to target calculation, and (3) back-tracking
and pooling.

A cost function is defined in order to evaluate the paths and
determine the most suitable one. In this case, the cost function
is composed of three parts, as

C(qT ) = w1R(qT ) + w2T (qT ) + w3D(qT ) (5)

where wi represents a weighting parameter, R is a risk-
based function, T is a function associated to trauma, and D
represents the distance between the needle tip and the target
configuration. The distance to target is defined here as the
Euclidean distance.

The database of paths is generated at any time using the
aforementioned tree parameters. The cache does not need to be
stored in memory, which suits the GPU architecture. The initial
and target configurations, as well as the obstacles, are assumed
to be available from an appropriate feedback source. The tree
is constructed starting from the initial point. The limited path
length of steerable needles allows a fast computation of the
action list.

Collision detection is then applied to the cache of paths.
Medical applications require high accuracy, and the anatomical
obstacles tend to present complex/irregular boundaries. Here, it
is assumed that some image processing has been applied on the
raw feedback data, and the voxels representing the obstacles
have been identified. Our path planner then checks each voxel
on the tree for possible collision, marking the path segments
where this occurs. The distance to target is also computed and
stored for each segment.

Back-tracing is then performed. It begins with checking
whether the segments are collision-free. Then it proceeds
towards the tree root, assessing possible collisions within the
paths. If all segments of a path are collision-free, then it is
marked as viable.

Finally, a parallel maximum pooling is executed, selecting,
among the collision-free paths, the one that minimizes the cost

Fig. 4. Diagram of the enumeration and allocation of tree segments to the
GPU threads. Each tree segment is assigned to one GPU thread. The most
suitable path and corresponding threads are highlighted in cyan.

function. This path then becomes the central line for the next
stage, around which the path planner then refines the search.

Algorithm 1 AFT Basic Algorithm
Input: qi, qf , Qobs

Output: qcmin

Initialization
1: N,B, J
2: qT = ∅

Recursion Loop
3: for j = 1 to J do
4: RefineTreeAround(qT )
5: for all ID: i ≤ N do
6: qi ←MotionPlan(i)
7: ci ← Cost(qi)
8: end for
9: T ← IndexOfMin(c1, c2, . . . , cN )

10: end for
11: return qT

As a result, the method described here combines the ro-
bustness of RRTs with the parallelization possibilities of path
caches, leading to an algorithm that is advantageous with
respect to both. This algorithm is reported as Algorithm 1.
The initial and target configurations, as well as the obstacles,
are first inputted. The parameters for the tree construction,
l, δk and C, are then determined according to the number of
segments, N , and branches, B. The recursion depth, J , is also
introduced, which represents the number of tree refinements
(typically two). A recursion loop is then executed to generate
and evaluate a tree at each step. The tree is adapted in the
function RefineTreeAround(qT ) around path qT , which is
taken to be straight for the first iteration. All processes are
executed in parallel to construct the tree and compute the
cost of each path, as defined in equ.(5), which represents the
function Cost(qT ). Subsequently, the minimum cost path is
identified in the function IndexOfMin, which is executed



2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2528292, IEEE Robotics
and Automation Letters

LIU et al.: ADAPTIVE FRACTAL TREE 5

by parallel reduction. This minimum cost path is used in the
next iteration of the ”for loop”. When iteration J is reached,
the path that minimizes the cost function, qT , is determined,
which is the output of the algorithm.

Fractal trees can be easily parallelized. Each tree segment
can be allocated to a GPU thread, as shown in Figure 4,
optimizing the use of computational resources. The cost evalu-
ation and motion plan reconstruction are the kernel for parallel
computing, which consumes the majority of computational
time and space. Due to the GPU architecture, the kernel (line
5-8 of Algorithm 1) is optimized, as described in Algorithm
2.

Algorithm 2 AFT Optimized Kernel
Input: ID, qi, qf
Output: cID

Initialization
q ← qi

2: i← 0
parentID is rootID

4: childID is rootID
Cost(qparentID )← 0

6: while childID 6= ID do
childID, parentID ← Child(parentID, ID)

8: if childID 6= ∅ then
parentIDcur ← parentID

10: q ← q + Action(childID)
continue

12: end if{Calculating the last segment cost}
Slast ← BuildSegment(parentIDcur, parentID)

14: p1, p2, p3, . . . , pw ← Dice(Slast).
cID =

∑N
i=1 Cost(pi)

16: end while
SYNCHRONIZE GPU THREADS

18: while parentID is not rootID do
parentID ← Parent(parentID)

20: cID ← cID + Cost(qparentID )
end while

The inputs of Algorithm 2 are the ID of each segment, and
the initial and target configurations. The algorithm initializes
by establishing the maximum path length L and variable i, as
well as as creating an array of costs Cost(qID). To maximize
efficiency, the cost for each segment is only computed once.
As the ID of each segment is allocated, the cost is then
calculated and stored into an array for all segments. The
BuildSegment function builds the segment Slast between
the parentIDcur and parentID. Slast is then sampled into
p1, p2, ..., pw sub-segments, using the Dice function. The
corresponding cost of each sample is calculated and accu-
mulated to define the total cost cID of the whole segment
Slast. After synchronizing the parallel threads, back tracking
is then applied to calculate the cost of each path. This is
executed using the function Parent, which determines the
parent segment corresponding to each segment. In this manner,
the system tracks back each node to its parent, summing the
contribution of each segment to the aggregate cost, and thus

obtaining the total cost associated with each path. The array
of costs for each path is the output of the algorithm.

An important factor for efficient parallelization is the enu-
meration of each segment with an ID. Exploiting the fractal
structure of the tree, parent and child IDs have a regular
pattern. By travelling up and down the tree, an enumeration
maps each path ID to a series of control actions.

IV. SIMULATION SETUP

An application of AFT to minimally invasive surgery is
presented in this section, in order to validate the algorithm
in a statistically significant manner. In particular, simulations
corresponding to 3D liver navigation are reported, as they
showcase the capability of AFT to plan a path in real-time
in a highly congested and complex environment.

Tissue deformation during needle insertion can lead to
displacements of a few centimeters. As a consequence, target
migration and variations in the spatial position of the obstacles
can be significant, requiring path replanning with a high update
frequency, as the needle is being inserted. In this work, it
is assumed that the initial and target configurations of the
steerable needle, as well as the obstacles, are available from
a suitable intra-operative imaging modality, e.g. Interventional
Magnetic Resonance Imaging or Ultrasound.

AFT is specifically designed to recalculate a path as the
environment varies during needle insertion. The short and fixed
computational time associated with AFTs allows replanning
with an update frequency that can match the feedback imaging
system, eliminating the need for complex low level control.

Fig. 5. Simulation of a coarse 3D search through the segmented vasculature
of liver. The full tree of paths is colored red. The best path is shown in green.

The simulations reported here include a representative set of
100 different 3D path planning problems encountered during
needle insertion into liver, and simulated online replanning
during needle insertion, with target motion. The 100 problems
correspond to different initial configurations randomly gen-
erated within a bounded domain, and three fixed targets, as
shown in Figures 6,7. The online replanning is simulated in a
particularly complicated needle insertion, with a target moving
continuously during the insertion, with a total displacement



2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2528292, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

Fig. 6. Simulation results of liver path planning with the AFT algorithm,
showing all of the best paths which intersect three random targets (blue, green
and magenta), varying the entry position (black dots) and insertion direction.

of 2 cm. The simulations are in a common 3D environment,
which represents a segmented CT scan of a liver (Liver Dataset
[43]) in voxel format, with a resolution of 256x256x256. This
CT scan image volume was selected as it includes a high
number of vessels that define a challenging obstacle map,
where existing algorithms such as RRTs experience difficulties
in finding a solution. It is assumed that an image processing
algorithm is available to label the obstacles in the intra-
operative images [44]. Similarly, it is assumed that the needle
configuration can be estimated from the images [45].

In the simulations, the Cost function is defined
to favor the shortest path that arrives closest to the
target, without intersecting any obstacle. The Euclidean
distance was used to measure the proximity to the target.
The parameters for the simulations were as follows:
maximum needle curvature = 0.014mm−1; search space =
100 × 100 × 200mm3; discretization AFT step = 2mm;
maximum insertion length = 160mm; entry points randomly
generated in a bounding box of −30 ≤ x ≤ 0mm,
−5 ≤ y ≤ 5 [mm] and −83 ≤ z ≤ 100 [mm] in
position, and a variation of 10 degrees with respect to
vector [0, 1, 0] in orientation; target positions [x, y, z] =
[57, 157, 58] , [−57, 157, 58] , [57, −157, −5]mm; cost
function parameters: w1 = w2 = w3 = 1; number of search
paths N = 1024 ∗ 1024 ∗ 17, B = 17 and δk = 1/280.

In our setup, the code is implemented in Matlab 2014b c©

(Mathworks Inc.), Linux Ubuntu 64bit, and executed on an
Intel CORE i7 CPU @ 3.2Ghz with a GTX TITANX from
NVIDIA corp., with 3072 threads, a 1GHz base-clock and
12GB of memory. This GPU has an approximate computing
power of 7 TFLOP and supports CUDA 7.5 API [46].

The simulation of RRTs in the same path planning problems
is also reported in order to compare the performance of AFT
with one of the most widely used algorithms in MIS. RRTs are

Fig. 7. Simulation results of liver path planning with the RG-RRT algorithm,
showing all of the best paths that intersect three random targets (blue, green
and magenta), varying the entry position (black dots) and insertion direction.
For some entry points, the algorithm fails to provide suitable paths to reach
the targets.

implemented in the same setup, with a maximum number of
iterations of 16,000. An RG-RRT implementation is adopted,
as it provided faster convergence in our tests. A goal bias
sampling strategy was used, with 50% of the samples on the
target and the remaining 50% randomly distributed.

The performance tests conducted indicate that, with our
setup, 300 million paths per second can be evaluated. Con-
sequently, considering a typical surgical application, where a
20Hz update frequency is required, the algorithm would be
capable of assessing 15 million paths per second. This com-
putational power translates into a resolution that approaches
the limits of the imaging device.

V. RESULTS AND DISCUSSION

The results of an illustrative AFT path planning problem are
shown in Fig. 5. As can be seen, a high density of paths (red)
are surveyed, and the path that minimizes the cost function is
selected (green), with a total computation time of just 5.2 ms.

The results of the simulation of 100 different AFT path
planning problems in a prototypical scenario are shown in
Figure 6. In this case, only the selected paths are displayed for
clarity, showing the ability of the AFT algorithm to negotiate
complex obstacles. The average final error in the feasible paths
identified is 1.45 mm, with a standard deviation of 1.19 mm.
The average computation time is 5.15 ms, with a correspond-
ing standard deviation of 0.048 ms. The small variation in
computation time between the different simulations is a result
of the automatic speed adjustment of the GPU. However, the
computation time is fixed and independent of the complexity
of the obstacles. This represents a significant advantage of
AFT in surgical applications.

In comparison, a standard RRTs implementation, which is
taken here to be one of the best competing algorithms in the



2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2528292, IEEE Robotics
and Automation Letters

LIU et al.: ADAPTIVE FRACTAL TREE 7

Fig. 8. Simulation results of online path replanning during needle insertion
into liver, with target motion along the red arrow direction. In green the best
initial path and subsequent best paths (red, blue, cyan, magenta).

literature, performs considerably worse than our proposed al-
gorithm. The RRTs simulation performed on the same data set
and with the same setup indicates that, after 16000 iterations
(corresponding to an approximate computation time of 30s in
our, non-optimized implementation), a path is found in 42%
less cases than in AFT. The preliminary paths found using
RRTs after 16,000 iterations are shown in Figure 7. As can be
seen, only the simpler cases are solved, whereas the remaining
cases would require a significantly higher number of iterations
to reach a solution.

The relatively low success rate of RRTs in an environment
with complex obstacles is a consequence of the search strategy
employed by the algorithm. In RRTs, the space is sampled, and
then paths linking to the tree are searched. While this strategy
is successful in many environments, links to the tree can be
difficult to find in the presence of complex obstacles, requiring
high sampling resolution. The computational cost increases
exponentially with the number of samples, hindering the use
of RRTs in highly congested environments.

AFTs, on the other hand, provide a higher success rate
in real-time, regardless of the number and complexity of
the obstacles. Such robustness is a result of the algorithm
construction and implementation, which exploits the GPU
architecture to survey a high number of paths in parallel. In
this regard, the AFT algorithm is particularly suited to surgical
applications, where the ability to update a plan in real-time in
the presence of any number of complex obstacles, would be
advantageous.

The result of a simulated online replanning using AFT
during needle insertion is shown in Fig. 8. As can be seen, the
algorithm initially calculates a path (green). However, as the
target moves during insertion, the online replanning finds a
more suitable path (red), which is re-calculated and improved
to account for target motion.

VI. CONCLUSION

Efficient three-dimensional path planning in complex envi-
ronments remains challenging, especially in scenarios requir-
ing a real-time implementation. In this work, the path planning
problem can be solved in real-time, even for systems with
nonholonomic constraints and complex environments, with
a novel algorithm which we named Adaptive Fractal Trees
(AFT). The application of AFT enables the parallelization of
the path planning problem, which in turn unlocks the massive
computational speedup potential of the GPU, leading to ms
long path searches, regardless of the complexity of the surgical
scenario. The use of AFT enables the search to be conducted
in a coarse to fine manner, with a database of paths that can be
procedurally produced. In this way, a perfect match between
the algorithm and the hardware capabilities is achieved. In ad-
dition, the fractal tree that is generated translates into a dense,
invariant and organized exploration of the entire domain. This
represents an advancement with respect to existing algorithms
in terms of robustness and success rate of path planning in
highly constrained and complex environments. As a result,
the approach described in this paper allows the path planning
problem to be computed in real-time, with the resolution and
update frequency necessary for many surgical applications.

VII. ACKNOWLEDGMENTS

The authors would like to thank NVIDIA Corp. for kindly
donating the GPU employed in these simulations.

Arnau Garriga Casanovas is a research engineer of the Cen-
tre for Doctoral Training (CDT) in Non Destructive Evaluation
(NDE), based at Imperial College London, working in collab-
oration with Rolls-Royce plc, under an Engineering Doctorate
scheme. The support from both the CDT in NDE, funded
through EPSRC, and Rolls-Royce is gratefully acknowledged.

REFERENCES

[1] D. Glozman and M. Shoham, “Image-guided robotic flexible needle
steering,” Robotics, IEEE Transactions on, vol. 23, no. 3, pp. 459–467,
2007.

[2] R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Oka-
mura, “Nonholonomic modeling of needle steering,” The International
Journal of Robotics Research, vol. 25, no. 5-6, pp. 509–525, 2006.

[3] N. van de Berg, D. van Gerwen, J. Dankelman, and J. van den Dobbel-
steen, “Design choices in needle steering 2014;a review,” Mechatronics,
IEEE/ASME Transactions on, vol. PP, no. 99, pp. 1–12, 2014.

[4] K. Reed, A. Majewicz, V. Kallem, R. Alterovitz, K. Goldberg, N. Cowan,
and A. Okamura, “Robot-assisted needle steering,” Robotics Automation
Magazine, IEEE, vol. 18, no. 4, pp. 35–46, Dec 2011.

[5] K. Reed, V. Kallem, R. Alterovitz, K. Goldberg, A. Okamura, and
N. Cowan, “Integrated planning and image-guided control for planar
needle steering,” in Biomedical Robotics and Biomechatronics, 2008.
BioRob 2008. 2nd IEEE RAS EMBS Int. Conf. on, oct. 2008, pp. 819
–824.

[6] V. Kallem and N. Cowan, “Image guidance of flexible tip-steerable
needles,” Robotics, IEEE Trans. on, vol. 25, no. 1, pp. 191 –196, feb.
2009.

[7] J. A. Engh, D. S. Minhas, D. Kondziolka, and C. N. Riviere, “Per-
cutaneous intracerebral navigation by duty-cycled spinning of flexible
bevel-tipped needles,” Neurosurgery, vol. 67, no. 4, pp. 1117–1122, Oct
2010.

[8] P. Swaney, J. Burgner, H. Gilbert, and R. Webster, “A flexure-based
steerable needle: High curvature with reduced tissue damage,” Biomed-
ical Engineering, IEEE Transactions on, vol. 60, no. 4, pp. 906–909,
April 2013.



2377-3766 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2016.2528292, IEEE Robotics
and Automation Letters

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2016

[9] P. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and control of
concentric-tube robots,” Robotics, IEEE Transactions on, vol. 26, no. 2,
pp. 209–225, April 2010.

[10] D. Rucker, B. Jones, and R. Webster, “A model for concentric tube
continuum robots under applied wrenches,” in Robotics and Automation
(ICRA), 2010 IEEE Int. Conference on, may 2010, pp. 1047 –1052.

[11] S. C. Ryu, Z. F. Quek, J.-S. Koh, P. Renaud, R. Black, B. Moslehi,
B. Daniel, K.-J. Cho, and M. Cutkosky, “Design of an optically
controlled MR-Compatible active needle,” Robotics, IEEE Transactions
on, vol. 31, no. 1, pp. 1–11, Feb 2015.

[12] P. Qi, H. Liu, L. Seneviratne, and K. Althoefer, “Towards kinematic
modeling of a multi-DOF tendon driven robotic catheter,” in Engineering
in Medicine and Biology Society (EMBC), 2014 36th Annual Interna-
tional Conference of the IEEE, Aug 2014, pp. 3009–3012.

[13] L. Frasson, T. Parittotokkaporn, B. Davies, and F. Rodriguez y Baena,
“Early developments of a novel smart actuator inspired by nature,” in
Mechatronics and Machine Vision in Practice, 2008. M2VIP 2008. 15th
Int. Conference on, dec. 2008, pp. 163 –168.

[14] L. Frasson, S. Ko, A. Turner, T. Parittotokkaporn, J. F. Vincent, and
F. Rodriguez y Baena, “Sting: a soft-tissue intervention and neurosur-
gical guide to access deep brain lesions through curved trajectories,”
Proceedings of the Institution of Mechanical Engineers, Part H: Journal
of Engineering in Medicine, vol. 224, no. 6, pp. 775–788, 2010.

[15] S. Y. Ko, L. Frasson, and F. Rodriguez y Baena, “Closed-loop planar
motion control of a steerable probe with a ”‘programmable bevel”’
inspired by nature,” Robotics, IEEE Trans. on, vol. 27, no. 5, pp. 970
–983, oct 2011.

[16] S. Y. Ko and F. Rodriguez y Baena, “Trajectory following for a
flexible probe with state/input constraints: An approach based on model
predictive control,” Robotics and autonomous systems, pp. 509 – 521,
2012.

[17] S. Patil, J. Burgner, R. J. Webster, and R. Alterovitz, “Needle steering
in 3-d via rapid replanning,” Robotics, IEEE Transactions on, vol. 30,
no. 4, pp. 853–864, 2014.

[18] S. Lazard, J. Reif, and H. Wang, “The complexity of the two dimen-
sional curvatureconstrained shortest-path problem,” in Proceedings of
the Third International Workshop on the Algorithmic Foundations of
Robotics,(Houston, Texas, USA), 1998, pp. 49–57.

[19] D. R. Smith, “Variational methods in optimization,” Mineola, N.Y.:
Dover Publications, Inc., 1998.

[20] O. Junge, J. E. Marsden, and S. Ober-Blöbaum, “Discrete mechanics
and optimal control,” in Proceedings of the 16th IFAC World Congress,
vol. 16, no. 1, 2005, pp. 00 310–1.

[21] B. Fornberg, “A practical guide to pseudospectral methods,” Cambridge
University Press, 1998.

[22] C. I. Connolly, J. Burns, and R. Weiss, “Path planning using laplace’s
equation,” in Robotics and Automation, 1990. Proceedings., 1990 IEEE
International Conference on. IEEE, 1990, pp. 2102–2106.

[23] R. M. Murray and S. S. Sastry, “Steering nonholonomic systems in
chained form,” in Decision and Control, Proceedings of the 30th IEEE
Conference on. IEEE, pp. 1121–1126, 1991.

[24] W. Park, J. S. Kim, Y. Zhou, N. J. Cowan, A. M. Okamura, and
G. S. Chirikjian, “Diffusion-based motion planning for a nonholonomic
flexible needle model,” in Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on. IEEE,
2005, pp. 4600–4605.

[25] V. Duindam, J. Xu, R. Alterovitz, S. Sastry, and K. Goldberg, “Three-
dimensional motion planning algorithms for steerable needles using
inverse kinematics,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 789–800, 2010.

[26] R. A. Knepper, S. Srinivasa, and M. T. Mason , “Toward a deeper
understanding of motion alternatives via an equivalence relation on local
paths,” International Journal of Robotics Research, vol. 31, no. 2, pp.
168–187, February 2012.

[27] K. M. Seiler, S. P. Singh, S. Sukkarieh, and H. Durrant-Whyte, “Using
lie group symmetries for fast corrective motion planning,” The Interna-
tional Journal of Robotics Research, vol. 31, no. 2, pp. 151–166, 2012.

[28] R. Secoli and F. Rodriguez y Baena, “Closed-loop 3d motion modeling
and control of a steerable needle for soft tissue surgery,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on, May
2013, pp. 5831–5836.

[29] S. M. LaValle, “Planning algorithms,” Cambridge University Press,
2006.

[30] M. Likhachev, D. Ferguson, G. Gordon, A. T. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm,” in Pro-
ceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), June 2005.

[31] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[32] J. Xu, V. Duindam, R. Alterovitz, and K. Goldberg, “Motion planning
for steerable needles in 3d environments with obstacles using rapidly-
exploring random trees and backchaining,” in Automation Science and
Engineering, 2008. CASE 2008. IEEE International Conference on.
IEEE, 2008, pp. 41–46.

[33] S. Patil and R. Alterovitz, “Interactive motion planning for steerable
needles in 3d environments with obstacles,” Proceedings of the 2010 3rd
IEEE RAS & EMBS International Conference on Biomedical Robotics
and Biomechatronics, 2010.

[34] S. Patil, J. Burgner, R. Webster, and R. Alterovitz, “Needle steering
in 3-d via rapid replanning,” Robotics, IEEE Transactions on, vol. 30,
no. 4, pp. 853–864, Aug 2014.

[35] S. Patil et al., “Motion planning under uncertainty in highly deformable
environments,” Robotics science and systems: online proceedings, 2011.

[36] C. Caborni, S. Y. Ko, E. De Momi, and G. Ferrigno, “Risk-based path
planning for a steerable flexible probe for neurosurgical intervention,”
in Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE
RAS & EMBS International Conference on. IEEE, 2012, pp. 866–871.

[37] J. Kider, M. Henderson, M. Likhachev, and A. Safonova, “High-
dimensional planning on the gpu,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on, May 2010, pp. 2515–2522.

[38] C. Park, J. Pan, and D. Manocha, “Real-time optimization-based plan-
ning in dynamic environments using gpus,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on, May 2013, pp. 4090–
4097.

[39] J. Ichnowski and R. Alterovitz, “Parallel sampling-based motion plan-
ning with superlinear speedup,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, Oct 2012, pp.
1206–1212.

[40] R. L. Bishop, “There is more than one way to frame a curve,” The
American Mathematical Monthly, vol. 82, no. 3, pp. 246–251, 1975.

[41] H. Rivaz, S. J.-S. Chen, and D. L. Collins, “Automatic deformable mr-
ultrasound registration for image-guided neurosurgery,” Medical Imag-
ing, IEEE Transactions on, vol. 34, no. 2, pp. 366–380, 2015.

[42] R. M. Murray, Z. Li, and S. S. Sastry, “A mathematical introduction to
robotic manipulation,” CRC Press, 1994.

[43] 3D-Slicer. (2009) Liver segmentation tutorial. [Online]. Available:
http://www.slicer.org

[44] A. de Brebisson and G. Montana, “Deep neural networks for anatomical
brain segmentation,” arXiv preprint arXiv:1502.02445, 2015.

[45] P. Chatelain, A. Krupa, and N. Navab, “3d ultrasound-guided robotic
steering of a flexible needle via visual servoing,” in Robotics and
Automation (ICRA), 2015 IEEE International Conference on, May 2015,
pp. 2250–2255.

[46] J. Nickolls and W. J. Dally, “The gpu computing era,” IEEE Micro,
vol. 30, pp. 56–69, 2010.


