
1 

 

INFLUENCE OF CONTINUITY ON PUNCHING RESISTANCE AT EDGE 

COLUMNS 

 

Soares LFSa and Vollum RLb  

Department of Civil and Environmental Engineering 

a) Imperial College London, London SW7 2AZ, United Kingdom / CNPq – Science 

Without Borders 

b) Imperial College London, London SW7 2AZ, United Kingdom 

 

Corresponding author: Dr Robert L Vollum 

Department of Civil and Environmental Engineering 

Imperial College London, London SW7 2AZ, United Kingdom 

Email: r.vollum@imperial.ac.uk 

Phone +44 (0)20 75945992 

Fax: +44(0)20 75945934 

  

mailto:r.vollum@imperial.ac.uk


2 

 

Abstract  

The paper considers punching failure at edge columns of reinforced concrete flat slabs 

without shear reinforcement and unbalanced moments about an axis parallel to the slab edge. 

Edge column punching shear tests have been carried out on a variety of isolated and 

continuous specimens. The influence of eccentricity and continuity on punching resistance is 

assessed using existing experimental data, nonlinear finite element analysis (NLFEA) and the 

Critical Shear Crack Theory (CSCT) as implemented in fib Model Code 2010 (MC2010). 

Relating punching resistance to the elastic unbalanced moment as done in MC2010 Levels I 

to III is shown to be overly conservative for continuous slabs. The ACI 318 and Eurocode 2   

(EC2) practice of making the design punching resistance independent of the unbalanced 

moment is reviewed and shown to be reasonable particularly for continuous slabs.  

NOTATION 

Asl  area of flexural reinforcement 

b0  ACI 318 critical punching perimeter  

be               effective width of  flexural reinforcement for normal moment at edge column 

b1, b2  dimensions of critical section b0 measured parallel and perpendicular to slab edge 

bsr             width of support strip 

bu         diameter of a circle with the same surface area as enclosed by the control perimeter 

β  enhancement factor for eccentric shear 

c1, c2  column dimensions perpendicular and parallel to the slab edge 

d  average slab effective depth  

dn              effective depth of top reinforcement normal to slab edge 

dg              maximum aggregate size 

e  support eccentricity with respect to column axis 
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𝑒′        eccentricity of V with respect to the centroid of control perimeter 

Ec  concrete modulus of elasticity 

Es  reinforcement modulus of elasticity 

fc  compressive strength of concrete 

fy  yield strength of reinforcement (subscript d for design) 

γc, γs  partial factors for concrete and steel 

γv    proportion of unbalanced moment transmitted by uneven shear  

γf    proportion of unbalanced moment transmitted by flexure 

h  slab thickness  

Jc  polar moment of inertia of critical section  

k  size effect factor 

kdg effectiveness coefficient dependent on maximum aggregate size 

ke effectiveness coefficient for eccentric shear  

k coefficient relating shear resistance to slab rotation 

L span between column centrelines 

mR nominal moment capacity per unit width 

ms  average bending moment per unit width in support strip 

Mcf  bending moment across panel width at inner column face 

Mflex  moment of resistance of slab column connection at column face 

Mtest  experimental ultimate bending moment about column centreline 

M  bending moment about column centreline 

Mcg  bending moment about centroid of critical section 

Mtmax   maximum unbalanced moment due to flexure    

ρ  flexural reinforcement ratio 𝜌 = √𝜌𝑥𝑙𝜌𝑦𝑙 

ρxl, ρyl  flexural reinforcement ratio in x, y direction  
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span          longitudinal flexural reinforcement ratio in span 

sup          flexural reinforcement ratio perpendicular to slab edge over width be = c2+2c1 centred 

on column 

rs position where radial bending moment is zero with respect to the column axis 

u1  length of EC2 control perimeter  

u1*  length of reduced EC2 control perimeter  

νc  punching shear resistance provided by concrete 

ν  shear stress 

V  shear force  

Vc  punching resistance provided by concrete 

Vshear  calculated punching resistance  

Vflex   column load corresponding to flexural failure at inner column face 

VRo  punching resistance in absence of unbalanced moment 

Vtest experimental column load at failure 

y perpendicular distance from slab edge to inner column face 

ψ slab rotation outside critical shear crack 

 

Introduction 

There is no generally accepted theoretical treatment of punching shear and design 

methods are calibrated largely with data from tests on isolated internal slab column 

specimens. Punching at edge columns is much less researched than at internal columns 

despite the fact that buildings typically have more edge than internal columns. Furthermore, 

practical experience shows that design for punching shear is frequently more critical at edge 

than internal columns. 
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Significant investigations into the strength of slab edge column connections without 

shear reinforcement have been carried out by amongst others Zaghlool (1971) (8 isolated 

1830×965×152 mm slabs with various column sizes), Stamenković & Chapman (1974) (6 

isolated 914.4×914.4×76.2 mm slabs with 127 mm square columns), Regan et al. (1979) (21 

tests on continuous slabs with thickness ranging between 80 mm and 125 mm), Regan (1993) 

(10 tests on 5 continuous 200 mm thick slabs), Rangan (1990) (4 continuous specimens with 

slab thickness of 80 mm and 100 mm), El-Salakawy et al. (1998) (2 isolated 1540×1020×120 

mm slabs with 250 mm square columns) and Sherif et al. (2005) (5 isolated 1000×1200×120 

mm slabs with various column sizes). As noted, these tests were carried out on a variety of 

isolated and continuous specimens of which the test arrangements of El-Salakawy et al. 

(1998) and Regan (1993) shown in Figure 1 are representative. The loading eccentricity is 

typically fixed in tests on isolated specimens but varies with loading in continuous specimens 

which are most representative of flat slabs. It is notable that of the 56 tests listed above, 38 

were on slabs with thickness of 120 mm or less, 8 on 152 mm thick slabs and only 10 (Regan, 

1993) on 200 mm thick slabs. This is significant due to the “size” effect which causes the 

shear stress at failure of geometrically similar specimens to reduce with increasing slab depth. 

Only slabs with thickness of 120 mm or greater are considered in the strength assessments of 

this paper due to difficulties in assessing the contribution of the size effect to the strength of 

thinner slabs.  

Stamenković and Chapman (1974) were amongst the first to systematically examine 

the interaction of punching and flexure at internal, edge and corner connections. They found 

the interaction to be almost linear at internal connections and edge connections when the axis 

of the unbalanced moment is perpendicular to the slab edge. Significantly, they found the 

interaction to be almost square for “normal” moments where the axis of the unbalanced 

moment is parallel to the slab edge. Subsequently, Regan (1981, 1999) and Moehle (1988) 
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determined conditions under which the interaction between normal bending and punching can 

be neglected at edge columns. Their recommendations form the basis of the design provisions 

for punching at edge columns in EC2 (BSI, 2004) and ACI 318 (ACI, 2014) respectively. The 

most recent international design guidance on punching is found in MC2010 (fib, 2013) which 

is based on the Critical Shear Crack Theory (CSCT) (Muttoni, 2008). Unlike ACI 318 and 

EC2, MC2010 relates punching resistance at edge columns with normal moments to the 

eccentricity of the shear force. The paper examines the case for neglecting the interaction 

between punching resistance and unbalanced moments in design as well as the influence of 

flexural continuity on punching resistance. 

Design methods for punching at edge columns in EC2, ACI 318-14, and MC2010    

EC2 (BSI, 2004) 

The design philosophy of EC2 for punching at edge columns with normal moments is 

based on the work of Regan (1981, 1999) who proposed the idealised moment-shear (M-V) 

interaction diagram shown in Figure 2 for punching at edge columns subject to normal 

unbalanced moments. The unbalanced moments in Figure 2 are calculated relative to the 

column centreline. According to Regan (1981), the total moment at the inner column face Mcf 

is made up of a “component Mf  resisted by steel passing through the column face and two 

components each Mt resisted by steel distributed within a width r on either side of the column. 

The components Mt are eventually transmitted to the column through torsion on its side 

faces”. Regan (1981) showed that for practical purposes, the width r can be taken as the 

perpendicular distance y from the slab edge to the inner column face. The increment from 

points C to B in bending moment in Figure 2 is due to eccentric shear. The maximum shear 

resistance occurs at point A which corresponds to uniform shear at the column faces in 

contact with the slab (Regan, 1999). According to Regan (1999), design for punching in flat 
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slabs can normally be based on point B in Figure 2 since tests on statically indeterminate flat 

slabs specimens indicate complete or nearly complete development of flexural capacity at 

punching failure.  

 

 

In EC2, the design shear stress is given by: 

𝑣 = 𝛽
𝑉

𝑢1𝑑
                                              (1) 

where the multiple  accounts for the effects of uneven shear, d is the average effective depth 

of the tension reinforcement and u1 is the basic control perimeter which is located at 2d from 

the column face. Where the eccentricity perpendicular to the slab edge is toward the interior 

and there is no eccentricity parallel to the edge, EC2 considers shear stress to be uniformly 

distributed along the reduced control perimeter u1* depicted in Figure 3. This is equivalent to 

taking  as u1/u1* in equation (1) and is intended to limit the maximum design shear force to 

the resistance at point B in Figure 2 which eliminates the need to consider interaction 

between punching and unbalanced moment. EC2 calculates the concrete contribution to 

punching shear resistance as follows: 

𝑣𝑐  = 0.18(100𝜌𝑓𝑐)
1

3(1 + (200 𝑑⁄ )0.5)/𝛾𝑐                               (2)    

where  𝜌 = (𝜌𝑥𝑙𝜌𝑦𝑙)
0.5

≤ 0.02  in which 𝜌𝑥𝑙 and 𝜌𝑦𝑙  are the flexural tension reinforcement 

ratios 
𝐴𝑠𝑙

𝑏𝑑
 within a slab width equal to the column plus 3d to each side. 𝑓𝑐 is the characteristic 

concrete cylinder strength, 𝑑 is the average effective depth of the tension reinforcement and 

𝛾𝑐 is the partial factor for concrete which equals 1.5 for design. 

EC2 requires the bending moment at the column face Mcf to be resisted by 

reinforcement centred on the column within a width c2+y where y is the perpendicular 

distance from the inner column face to the slab edge. However, it is common UK practice 
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(The Concrete Society, 2007; IStructE, 2006) to provide flexural reinforcement within be = c2 

+ 2y and to limit M to 𝑀𝑡𝑚𝑎𝑥 = 0.255(𝑐2 + 𝑦)𝑓𝑐𝑑𝑛
2/𝛾𝑐 (where dn is the effective depth of top 

reinforcement normal to the slab edge and c = 1.5) as required by Annex I (informative) of 

EC2 to prevent reinforcement congestion.  

ACI 318-14  

ACI 318-14 (ACI, 2014) adopts a rectangular control perimeter of length b0 which is 

located at a distance 0.5d from the perimeter of the concentrated load. The maximum shear 

stress is calculated as the greatest of: 

𝑣(𝐴𝐵)  =
𝑉

𝑏0𝑑
+

𝛾𝑣𝑀𝑐𝑔𝑐𝐴𝐵

𝐽𝑐
  

                          𝑣(𝐶𝐷)  =
𝑉

𝑏0𝑑
−

𝛾𝑣𝑀𝑐𝑔𝑐𝐶𝐷

𝐽𝑐
                      (3) 

where Jc is a property of the critical section analogous to polar moment of inertia which is 

defined by MacGregor and Wight (2005) for edge column connections. The dimensions cAB 

and cCD are depicted in Figure 4 which also shows the stress distribution on the critical 

section. A proportion γfMcg of the unbalanced moment about the centroid of the critical 

perimeter is assumed to be resisted by flexure with the remainder γvMcg resisted by eccentric 

shear where γv = 1 − 𝛾𝑓 is given by: 

where b1 and b2 are the dimensions of the critical section b0 measured parallel and 

perpendicular to the slab edge 

On the basis of research by Moehle (1988), ACI 318-14 allows γv  to be taken as 0 for 

edge columns with unbalanced moments about an axis parallel to the slab edge provided V ≤ 

𝛾𝑣 = 1 −
1

1 + (
2
3) √𝑏1/𝑏2

 

 

(4) 
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0.75VR0 (where VR0 is the shear resistance in the absence of unbalanced moment) and 

sufficient flexural reinforcement is provided within a width of c2+3h, centred on the column 

to resist Mcg. Taking γv = 0 and limiting the design shear resistance to 0.75VR0 is equivalent to 

taking  = u1/ u1
* in EC2. The safety of this practice is questioned by Ghali et al. (2015).  

MC2010 

MC2010 (fib, 2013) relates punching resistance to the rotation in the so called critical 

shear crack. It locates the basic control perimeter u at a constant distance of 0.5d from the 

column face. MC2010 has four levels of approximation of which I to III are intended for 

design and IV for assessment. Level II is intended for standard design unless the geometry is 

irregular in which case Level III is required. The shear resistance is calculated in terms of the 

slab rotation relative to the column which is calculated in Levels II and III as follows:  

𝜓 = 𝛼
𝑟𝑠

𝑑

𝑓𝑦𝑑

𝐸𝑠
(

𝑚𝑠

𝑚𝑅
)1.5   (5)                            

where rs denotes the position where the radial bending moment is zero with respect to the 

column axis, ms is the average design moment for the reinforcement moment per unit width 

in the support strip, which is of width bsr = c1+2y  for normal moments at edge columns, and 

mR is the design average flexural strength per unit width of the support strip. The coefficient 

 in equation (5) is 1.5 for Level II and 1.2 for Level III. In Level II, rs is estimated as 0.22L 

where L is the slab span and the design moment for the reinforcement ms normal to the slab 

edge is estimated as: 

                                             𝑚𝑠 = 𝑉 (
1

8
+

𝑒′

𝑏𝑠𝑟
)                                                                      (6) 

where 𝑒′ is the eccentricity of V with respect to the centroid of the control perimeter.  

In Level III, both ms and rs are calculated with linear elastic finite element analysis 

(LFEA) but rs should not be taken as less than 0.67bsr at edge and corner columns. Although 
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not stated in MC2010, the reinforcement should be designed for the Wood moments (Wood, 

1968) or equivalent. MC2010 bases the shear resistance on the greater of the rotations about 

axes normal and parallel to the slab edge. The punching resistance provided by the concrete is 

calculated as: 

𝑉𝑐 = 𝑘𝜓𝑘𝑒

√𝑓𝑐

𝛾𝑐
𝑢𝑑   (7)                            

in which  fc is in MPa, 𝑑 is the average effective depth of the tension reinforcement which is 

assumed to equal the shear resisting effective depth in this paper and 𝑘𝑒 is a reduction factor 

for eccentric shear. MC2010 permits ke to be estimated as 0.7 for braced frames where the 

adjacent spans do not differ in length by more than 25%. MC2010 also calculates ke as 

follows: 

                                                      𝑘𝑒 = 1/(1 +
𝑒′

𝑏𝑢
)                                                            (8) 

where e’ is the eccentricity of V with respect to the centroid of the basic control perimeter u, 

and bu is the diameter of a circle with the same surface area as enclosed by u. 

Additionally, ke can be determined from LFEA as the ratio of the average to peak 

shear stress (vave/vmax) on the basic control perimeter. This is equivalent to assuming punching 

failure occurs when the peak stress on the control perimeter reaches the shear resistance. 

The parameter kdepends on the slab rotation and is calculated as: 

𝑘𝜓 =
1

1.5 + 0.9𝑘𝑑𝑔𝜓𝑑
≤ 0.6   (9)                            

𝑘𝑑𝑔 =
32

16 + 𝑑𝑔
≥ 0.75 

  

(10)                            

where dg is the maximum aggregate size. 

 

 



11 

 

Interaction between punching resistance and unbalanced moment 

The interaction between punching resistance and unbalanced moment is assessed in 

Figure 5 using the data in Table 1 which includes all the slabs considered by Moehle (1988) 

with depths of at least 120 mm not subject to inelastic load reversals. Figure 5 shows the 

interaction between Mcf/Mflex and Vtest/Vshear where Mcf is the ultimate bending moment across 

the panel width at the inner column face, Mflex is the moment of resistance of the slab column 

connection at the column face, Vtest is the measured punching strength and Vshear is the 

punching resistance calculated with EC2 using its reduced perimeter u1*. Mflex is calculated 

assuming reinforcement to be effective if placed within an effective width of be = c2+2y as 

commonly adopted in UK practice (IStructE, 2006) and is limited to a maximum of 𝑀𝑡𝑚𝑎𝑥 =

0.255(𝑐2 + 𝑦)𝑓𝑐𝑑𝑛
2/𝛾𝑐 in accordance with Annex I of EC2. Mcf was calculated from statics 

assuming the support reaction to be linearly distributed around the simply supported edges of 

the isolated test specimens. Although approximate, FEA shows this procedure to be 

reasonable. The development of Mflex at the column face does not lead to flexural collapse of 

continuous slabs if the span reinforcement is still elastic. However, all the slabs in Table 1 are 

reported as failing in punching, typically subsequent to yielding of flexural reinforcement at 

the column face. Consequently, all the points in Figure 5 correspond to punching failure. 

Figure 5 shows that although punching resistance reduces with eccentricity, the design 

punching resistance can be safely assumed to be independent of eccentricity if limited by 

Mflex. Table 1 shows Mcf/Mflex and M/Mflex for Mflex calculated with be = c2+2y omitting the 

EC2 Annex I limit on Mtmax without which EC2 overestimates the strength of Hawkins and 

Corley’s (1974) specimen CN1. Cases where the punching resistance is calculated to have 

been limited by flexure at the column face are highlighted in bold. There are no significant 

differences between the punching resistances of isolated and continuous specimens evident in 
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Figure 5 which suggests that it is unnecessary to differentiate between the two types of 

specimen when evaluating test data.  

Numerical investigation 

Nonlinear finite element models were developed of two isolated slabs tested by El-

Salakawy et al. (1998) and five continuous slab tests of Regan (1993). These tests were 

chosen because they were highly instrumented with reinforcement strains and rotations being 

measured. Details of the specimens are given in Figure 1 and Table 1.  

The objective of the NLFEA was to gain insight into i) the shear stress distribution in 

the slab around the ACI 318 critical section, ii) the proportion of unbalanced moment resisted 

by eccentric shear and iii) the influence of flexural continuity on punching resistance. The 

main difference between isolated and continuous edge column punching tests is that the 

eccentricity M/V is typically constant in tests on isolated specimens but varies with load in 

continuous specimens due to redistribution of bending moment between the span and support. 

The influence of flexural continuity on punching resistance is investigated in a parametric 

study of specimens geometrically similar to those tested by Regan (1993). The studies 

investigate the influences of i) redistributing reinforcement between the span and support and 

ii) providing surplus flexural reinforcement. Comparisons are made between the punching 

resistances given by NLFEA, EC2, and MC2010.  

 

Material modelling 

The NLFEA was carried out with Diana 9.6 (TN0, 2014). Concrete was modelled 

with the ‘total strain fixed crack model’ in Diana which evaluates the stress-strain 

relationship in the directions of the principal axes at first cracking which is governed by a 

tension cut-off criterion. The fracture energy based Hordijk (1991) model was used to 
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simulate concrete tensile behaviour after cracking. The Thorenfeldt model (Thorenfeldt et al., 

1987) was used for concrete in compression in conjunction with the four-parameter Hsieh-

Ting-Chen (Chen, 1982) failure surface which models the increase in concrete compressive 

strength with increasing isotropic stress. The reduction in concrete compressive strength due 

to lateral cracking was modelled following Vecchio and Collins (1993). After cracking, the 

shear stiffness was reduced by a constant shear retention factor of 0.1 on the basis of a 

sensitivity study. The concrete elastic modulus Ec and tensile fracture energy Gf were 

calculated in accordance with fib Model Code 1990 (CEB-FIP, 1993) as 𝐸𝑐 = 10𝑓𝑐
1/3

 

kN/mm2 and 𝐺𝑓 = 0.025(𝑓𝑐/10)0.7 Nmm/mm2. Measured concrete tensile strengths were 

used. The reinforcement was modelled with fully bonded embedded reinforcement bars 

which do not have degrees of freedom of their own. 

 

Isolated slabs of El-Salakawy et al. 

El-Salakawy et al. (1998) tested two isolated punching specimens, without shear 

reinforcement, depicted XXX and HXXX with geometry and loading arrangement as shown 

in Figure 1. The concrete cylinder strengths of XXX and HXXX were similar at 33 MPa and 

36.5 MPa respectively. The tensile strengths were 3.38 and 3.36 MPa respectively. The 

height of the column above and below the slab was 700 mm. The average tension 

reinforcement ratio was 0.0075 parallel and perpendicular to the long edge using 11.3 mm 

diameter bars. The average compression reinforcement ratio equalled 0.0045 in both 

directions using 7 mm diameter bars. The M/V ratio about the column centreline was 0.3 m 

for XXX and 0.66 m for HXXX.  

The slab, column and steel plates were modelled with twenty-node isoparametric solid 

elements as shown in Figure 6. The mesh size was chosen on the basis of a sensitivity study. 

Eight rows of solid elements were provided through the slab thickness with plan dimensions 
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of 50×50 mm. A 3 × 3 × 3 integration scheme was adopted for solid elements. The mid-

surface of the slab was meshed with non-structural composed elements in order to obtain the 

generalised moment and force distribution within the slab. The reinforcement was modelled 

with embedded bars assuming perfect bond.  

 

Influence of eccentricity 

The NLFEA gave very good estimates of the measured deflections as shown in Figure 

7 for XXX. Once the NLFEA was validated a parametric study was carried out to determine 

the effect of loading eccentricity on the punching resistance of XXX. Eccentricities M/V of 

0.2 m, 0.3 m (XXX), 0.4 m, 0.5 m, 0.6 m and 0.66 m (HXXX) were modelled. The concrete 

properties of XXX were used except for M/V = 0.66m where the properties of HXXX were 

adopted. The results of the analyses were used to evaluate the MC2010 punching shear 

provisions at edge columns. According to MC2010, punching resistance is governed by the 

maximum rotation ψ of the slab relative to the column about the two principal axes of the 

slab. The critical axis is parallel to the slab edge for the analysed specimens. Figures 8a to d 

compare the following rotations for representative eccentricities: 

1. Test data for XXX and HXXX; 

2. NLFEA used for MC2010 Level IV (LIV); 

3. MC2010 Level II (LII) with ms from equation (6);  

4. MC2010 Level III (LIII) with ms and rs from LFEA with shell elements;  

Figure 8 also shows shear resistances calculated in accordance with MC2010 with the 

reduction factor for eccentric shear ke given by: 

5. 𝑘𝑒 = 0.7; 

6. Equation (8);  

7. 𝑘𝑒 = 𝑣𝑎𝑣𝑒/𝑣𝑚𝑎𝑥  with 𝑣𝑎𝑣𝑒 and 𝑣𝑚𝑎𝑥 from LFEA. 
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Figures 8b and d show reasonable agreement between the measured and NLFEA 

rotations and failure loads particularly for XXX. The MC2010 failure load is given by the 

intersection of the resistance and rotation curves. Figure 8 shows that the resistances 

calculated with ke from LFEA above are similar but slightly less than those with ke from 

equation (8). Equation (5) gives reasonable estimates of rotation up to near failure if ms is 

calculated with LFEA (LIII) but rotations are significantly overestimated if ms is calculated 

with equation (6) (LII). 

Figure 9 shows the influence of eccentricity on failure loads calculated with NLFEA, 

EC2 and MC2010 Levels II to IV. The Level IV resistances were calculated with NLFEA 

rotations and ke from 5) to 7) above. The Level IV resistances are closest to the test and 

NLFEA results when calculated with ke = 0.7. The Level III and IV predictions with ke from 

equation (8) are similar and reasonable but Level II is overly conservative. Consideration of 

Figure 8 shows that Level III is less conservative than Level IV if ke = 0.7. According to EC2, 

the failure load is the least of Vshear calculated using 𝑢1
∗ and Vflex which is calculated in Figure 

9 assuming that Mcf equals Mflex calculated with be = c2+2y. EC2 is seen to give conservative 

estimates of the strengths of XXX and HXXX, when limited by Mflex at the column face, and 

is considerably simpler to implement than MC2010. 

 

Investigation of shear forces on ACI 318 critical section  

Both MC2010 and ACI 318 allow punching resistance to be calculated on the basis 

that failure occurs when the peak shear stress reaches the available shear resistance. MC2010 

allows the peak shear stress to be determined with linear FEA whereas ACI 318 calculates 

the peak shear stress using equation (3). This section compares the shear stresses given on the 

ACI 318 critical perimeter by NLFEA and ACI 318. For each analysis, shear forces per unit 

length and the proportion of unbalanced moment resisted by eccentric shear v were 
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calculated on the ACI 318 critical section, at the NLFEA failure loads,  with i) NLFEA, ii) 

LFEA with solid elements and iii) LFEA with shell elements. Figure 10a shows the variation 

in v with eccentricity given by i) to iii) above and v from equation (4). Significantly, 

equation (4) underestimates the proportion of unbalanced moment resisted by eccentric shear 

which is greatest for the NLFEA as found by Gayed and Ghali (2008) who concluded that 

ACI 318 is incorrect to allow v = 0. Conversely, the authors consider taking v = 0 when V ≤ 

0.75VR0 to be a computational device equivalent to the EC2 practice of taking  as u1/u1* in 

equation (1) which is supported by Figure 5 providing sufficient flexural reinforcement is 

placed within be = c2+2y to resist the unbalanced moment at the column face and 𝑀𝑐𝑓 ≤

0.255(𝑐2 + 𝑦)𝑓𝑐𝑑𝑛
2/𝛾𝑐.  

Figures 10b and 10c show shear force distributions along the ACI 318 critical section 

in N/mm for XXX and HXXX respectively. The shear forces were derived using linear 

elastic FEA with both shell elements and brick elements as well as NLFEA with brick 

elements. The FEA shear forces in Figure 10 are averages between adjacent nodes on plan 

which are at 25 mm centres. Averaging was carried out to smooth the shear force distribution 

and reduce the calculated shear force at the slab edge which is mesh sensitive and 

overestimated by FEA. Physically, the averaging width of 25 mm is approximately ¼ of the 

average effective depth d. The peak shear forces per unit length given by FEA are seen to be 

model dependent suggesting that peak shear stress is not a good failure criterion. Figures 10b 

and 10c also show shear forces per unit length calculated using equation (3) with v from i) 

equation (4) and ii) NLFEA.  Both give peak shear forces less than given by FEA but greater 

than the resistance calculated in accordance with ACI 318. These observations are consistent 

with the conclusions of Moehle (1988) who suggested that the peak shear stress, which 

depends significantly on the method of calculation, is not a good measure of punching failure 

at edge columns. 
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Continuous specimens of Regan 

Regan (1993) tested five full-scale continuous edge column punching shear 

specimens. The slabs were 200 mm thick, 3000 mm wide and 5784 mm long with 300 mm 

square columns at the centre of the short edges at each end as shown in Figure 1. The 

longitudinal flexural tension reinforcement ratio in the span was 0.5%. The flexural tension 

reinforcement ratio normal to the slab edge, within a width be = 2c1 + c2 centred on the 

column, sup was 0.8% in slabs S1 to S3, 1.0% in S4 end 1 and 0.5% in S4 end 2. The 

reinforcement sup was provided in the form of U bars and distributed over a width of 500 

mm in slabs S1 to S3 and S4 end 2. In S4 end 1, sup was distributed over a width of 600 mm. 

No other longitudinal hogging reinforcement was provided within 500 mm of the column 

centreline. Further details of the slabs are summarised in Table 1 including the punching 

resistances Vshear calculated according to EC2. The two ends of each slab were tested 

separately, with the column providing the support at one end and the other end simply 

supported along a line just inside from the column face. The vertical loading arrangement 

was shown as in Figure 1b except the final loading stage of slab 3 end 1 where four equal 

loads were applied at the loading points closest to the supported column. At each loading 

stage equal and opposite horizontal forces were applied to the column at the end under test 

“so as to keep the column free of rotation” (Regan, 1993). In slabs S1 and S2, the transfer 

moments had become constant before punching occurred and the bottom steel yielded in the 

span. In slab S4 end 1 with increased sup, the span steel had not visibly yielded when 

punching occurred. Mid-span yield was well developed in slab S4 end 2 at punching failure.  

Symmetry and a gradated mesh were used to reduce the number of elements, with the 

region around the connection being most refined as shown in Figure 11. Figure 12 compares 

the measured and predicted slab rotations relative to the column for slab 1 (fct = 3.36 MPa) 

end 1, slab 2 (fct = 3.14 MPa) ends 1 and 2 and slab 4 (fct = 3.5 MPa) ends 1 and 2. Rotations 
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are shown about an axis parallel to the 3000 mm slab edge as these were greatest and hence 

govern punching resistance according to MC2010. The NLFEA gives good predictions of the 

measured rotations and failure loads of the slabs. Figure 12 also shows rotations calculated 

for each test with MC2010 Levels II and III. The Level II rotations were calculated with the 

measured ultimate eccentricity M/V which is less than the elastic eccentricity which would be 

used in design. The MC2010 resistances with ke from equation (8) are evaluated with both the 

measured ultimate eccentricity and the elastic eccentricity. The latter are almost identical to 

resistances calculated with ke derived from LFEA with shell elements. The MC2010 failure 

loads are given by the intersection of the rotation and resistance curves in Figure 12. MC2010 

Level IV, with rotations from the NLFEA, gives reasonable estimates of the measured 

punching resistances, but no better than EC2, if ke = 0.7. However, resistances are 

underestimated if ke is calculated with equation (8) even if the measured ultimate eccentricity 

is used. MC2010 Levels II and III significantly underestimate punching resistance 

particularly if ke is calculated using the elastic eccentricity. The flexural failure loads in 

Figure 12 were calculated neglecting strain hardening and the width of loading plates 

assuming yielding in the span and an ultimate moment at the column face of Mflex calculated 

with be = c2+2y.     

 

Influence of reinforcement arrangement 

A series of parametric studies were carried out to investigate the influence of varying 

the longitudinal flexural reinforcement in slabs with the same geometry as tested by Regan 

(1993). Analyses were carried out with longitudinal hogging reinforcement ratios sup within 

be = 2c1 + c2 at the column support equal to 0.43%, 0.8%, 1.0%, 1.2% and 1.6%. For each of 

these ratios, the longitudinal reinforcement ratio in the span span was taken as 0.25%, 0.5%, 

which corresponds to Regan’s slabs, and 1.0%. The resulting load rotation diagrams are 
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shown in Figure 13a which also shows the punching resistance according to MC2010 with ke 

= 0.7. Despite giving good strength predictions for the El-Salakawy et al. (1998) and Regan 

(1993) slabs, the NLFEA appears to overestimate the punching resistance of the slabs with 

1.0% flexural reinforcement. However, the NLFEA rotations are considered reasonable prior 

to failure on the basis of good comparison with test results in Figures 8 and 12. These and 

other NLFEA validation studies (Soares and Vollum, 2015) indicate that rotations can be 

predicted more reliably than punching resistances highlighting the benefit of the rotation 

based failure criteria of MC2010. Figure 13a shows that the slab rotation relative to the 

column is largely governed by span and is almost independent of sup. This is significant 

because EC2 and MC2010 Levels I to III relate punching resistance to supand notspan. 

Figure 13b illustrates the influence of sup on punching resistance according to MC2010 

Levels III and IV. Test results, normalised by (35.4/fc)
1/3 in accordance with equation (2), are 

also shown for the Regan slabs considered in Figure 11 for which span = 0.5%. MC2010 

Level IV compares favourably with the test results but Level III greatly overestimates the 

influence of sup on punching resistance. This is largely explained by Figure 13c which shows 

the variation in eccentricity M/V with V for selected analyses. Significantly, M/V is not 

constant as assumed in MC2010 Level III but reduces with increasing V due to moment being 

redistributed into the span once torsional cracking and yielding of flexural reinforcement 

occurs at the support. Furthermore, M/V is almost independent of sup for given span. The 

underestimate of resistance is compounded if ke is calculated with equation (8) using the 

elastic eccentricity.  

 

Conclusions   

The paper investigates the influence of unbalanced moment and flexural continuity on 

punching resistance at edge columns. It is shown that the current ACI 318 and EC2 practice 
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of neglecting the interaction between unbalanced moment and punching resistance is 

reasonable if the unbalanced moment is limited to 𝑀𝑡𝑚𝑎𝑥 = 0.255(𝑐2 + 𝑦)𝑓𝑐𝑑𝑛
2/𝛾𝑐 (where c 

= 1.5) as required by Annex I (informative) of EC2. MC2010 gives reasonable estimates of 

punching resistance if rotations are calculated with NLFEA and ke = 0.7 but significantly 

underestimates punching resistance at edge columns of continuous slabs if rotations are 

calculated using Levels II or III, which are intended for design, with the underestimate 

greatest when ke is calculated with equation (8) or LFEA. The conservatism of MC2010 

Levels II and III for continuous slabs largely arises because M/V reduces below its elastic 

value as the loading is increased to failure due to support moments being redistributed into 

the span. Significantly, MC2010 Level IV and NLFEA predict longitudinal span 

reinforcement to have a much greater influence on punching resistance at edge columns of 

flat slabs than hogging reinforcement normal to the slab edge at the column. This has 

important design implications because it calls into question the common practice of 

increasing the area of hogging reinforcement at slab edges to increase punching resistance. 

The peak shear stress on the control perimeter is shown to depend on the method of 

calculation and not to be a reliable indicator of punching failure. For practical purposes, the 

current EC2 design rules appear satisfactory and superior to MC2010 Level III for continuous 

slabs. However, MC2010 provides useful insights into the parameters influencing punching 

resistance.    
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Table 1 – Database of Tests 

Note: a) (1) denotes end 1 and (2) end 2 of continuous slab, b) y = 150 mm, c) y = 0 mm and 

d) 𝜌 = √𝜌𝑙𝜌𝑡   

Table 1: Edge column tests without shear reinforcement 

Author Slabs 

Experimental EC2 

c1 c h d fc fy d Vtest Mtest Mcftest/ 

Mflex 
Mtest/ 

Mflex 

Vtest/ 

mm mm mm mm MPa MPa % kN kNm 
Mflex 𝑽𝒔𝒉𝒆𝒂𝒓 

c2+2y c2+2y  

El-Salakawy et al. 

(1998) Isolated 

XXX 250 250 120 89 33.0 545 0.79 125 38 1.01 1.35 1.25 

HXXX 250 250 120 89 36.5 545 0.79 69 46 1.35 1.63 0.67 

Hawkins and Corley 

(1974) Isolated 

CN1 305 305 152 121 22.7 459 1.29 111 61 0.81 0.97 0.61 

DN1 305 203 152 121 22.6 425 1.38 101 55 1.01 1.21 0.58 

Mortin & Ghali 

(1991) Isolated 

JS1 254 254 152 122 43.2 421 0.75 141 60 1.67 2.10 0.79 

JS4 254 254 152 122 32.2 421 1.01 141 60 1.29 1.63 0.79 

Sherif et al. 

 

(2005) Isolated 

EX-S1 300 300 120 99 35.6 394 1.07 167 50 0.98 1.38 1.14 

EX-S2 225 225 120 99 31.7 394 1.07 155 47 1.23 1.72 1.25 

EX-S3 150 150 120 99 31.0 394 1.07 95 29 1.13 1.59 0.90 

EX-S4 265 150 120 99 31.0 394 1.07 150 45 1.19 1.68 1.26 

EX-S5 150 375 120 99 31.0 394 1.07 172 52 1.34 1.89 1.31 

Zaghlool 

 

(1971) Isolated 

Z-IV(1) 178 178 152 121 27.3 476 1.30 122 45 0.94 1.15 0.77 

Z-V(1) 267 267 152 121 34.3 474 1.30 215 85 0.98 1.27 1.08 

Z-V(2) 267 267 152 121 40.5 474 1.70 247 94 0.90 1.18 1.07 

Z-V(3) 267 267 152 117 38.7 475 2.08 268 104 0.82 1.07 1.15 

Z-V(4) 267 267 152 121 35.0 437 1.30 0 81 1.31 1.31 0 

Z-V(5) 267 267 152 121 35.2 476 1.30 279 0 0.19 0.00 1.39 

Z-V(6) 267 267 152 121 31.3 476 1.30 117 88 1.10 1.34 0.61 

Z-VI(1) 356 356 152 121 26.0 476 1.30 265 107 0.98 1.38 1.29 

Regan et al. 

 

(1979) Continuous 

SE1 300 200 125 98 35.7 480 1.03 198 40 0.60 0.99 1.52 

SE2 300 200 125 101 43.7 480 0.47 192 34 1.53 2.76 1.70 

SE4 200 300 125 98 27.4 480 1.03 152 31 0.49 0.80 1.27 

SE5 200 300 125 98 44.2 500 0.78 164 39 0.94 1.40 1.28 

SE6 200 300 125 99 32.0 500 0.57 149 28 1.03 1.77 1.42 

SE7 200 300 125 99 39.6 500 0.81 129 32 0.94 1.37 1.02 

SE8 300 100 125 98 41.6 480 0.88 136 34 0.88 1.30 1.15 

SE9 250 250 125 98 41.4 480 0.73 123 36 1.59 2.19 1.00 

SE10 250 250 125 98 40.7 480 0.73 114 36 1.65 2.21 0.93 

SE11 250 250 125 98 50.0 480 0.73 138 40 1.74 2.41 1.06 

Regana 

 

(1993) Continuous 

1(1) 300 300 200 168 35.4 507 0.56 282 118 0.81 1.18 1.04 

1(2) 300 300 200 168 35.4 507 0.56 264 138 1.03 1.37 0.97 

2(1) 300 300 200 168 35.4 507 0.56 256 124 0.91 1.24 0.94 

2(2) 300 300 200 168 35.4 507 0.56 285 129 0.92 1.29 1.05 

3(1) 300 300 200 168 41.0 507 0.56 416 73 0.40 0.72 1.46 

3(2) 300 300 200 168 41.0 507 0.56 233 148 1.16 1.46 0.82 

4(1) 300 300 200 165 42.7 507 0.66 289 149 0.88 1.17 0.98 

4(2) 300 300 200 168 42.7 507 0.45 281 111 1.12 1.66 1.05 

5(1)b 300 300 200 168 38.4 507 0.61 327 84 0.36 0.86 1.25 

5(2)c 300 300 200 168 38.4 507 0.60 234 86 1.10 1.86 1.00 

Sherif & Dilger S1-2 250 250 150 114 28.0 444 1.34 185 44 0.38 0.80 1.11 

(2000a,b) Continuous 

 
EC1(T2) 250 250 150 114 84.1 532 1.61 245 103 0.76 1.08 0.96 
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Figure 1: Geometry and loading arrangement of a) isolated slabs of El-Salakawy et al (1998) 

and b) continuous slabs of Regan (1993).  

 

 

Figure 2: Interaction between punching resistance and unbalanced moment. 
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Figure 3: Reduced control perimeter of EC2  

 

Figure 4: Critical perimeter of ACI 318 and corresponding shear stress distribution.  
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Figure 5: Interaction between punching resistance and unbalanced moment at column face for 

specimens in Table 1 with Mflex calculated using effective width of c2+2y with Mflex ≤ Mtmax. 

 

Figure 6: Finite element mesh used for analysis of slabs of El-Salakawy et al (1998) 
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Figure 7: Comparison of measured and predicted deflections for slab XXX (El-Salakawy et 

al, 1998) 

 

a) 

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

C
o

lu
m

n
 R

ea
ct

io
n

 (
kN

)

Deflection (mm)

Failure Load (Experimental)

Experimental

NLFEA

0

20

40

60

80

100

120

140

160

180

200

0 0.01 0.02 0.03 0.04

C
o

lu
m

n
 R

ea
ct

io
n

 (
kN

)

Rotation (radians)

XXX
e=0.20m

Resistance (ke = 0.7)

Resistance (ke Eq 8)

Resistance (ke = Shell LFEA)

Rotation - MC2010 LII

Rotation - MC2010 LIII

NLFEA

EC2



30 

 

 

b) 

 

c) 

Vtest

0

20

40

60

80

100

120

140

160

180

200

0 0.01 0.02 0.03 0.04 0.05 0.06

C
o

lu
m

n
 R

ea
ct

io
n

 (
kN

)

Rotation (radians)

XXX
e=0.30m

Rotation - Test

0

20

40

60

80

100

120

140

160

180

200

0 0.02 0.04 0.06 0.08

C
o

lu
m

n
 R

ea
ct

io
n

 (
kN

)

Rotation (radians)

XXX
e=0.50m



31 

 

 

d) 

Figure 8: Assessment of slabs of El-Salakawy et al (1998) with MC2010 for eccentricities of 

a) 0.2 m, b) 0.3 m (XXX), c) 0.5 m and d) 0.66 m (HXXX) 

 

Figure 9: Influence of eccentricity on calculated punching resistance of slabs of El-Salakawy 

et al. (1998). 
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c) 

Figure 10: Analysis of shear force distribution on ACI 318 critical perimeter for slabs of El-

Salakawy et al. (1998) a) influence of eccentricity on v for XXX, b) shear force distribution 

for XXX and c) shear force distribution for HXXX. 

 

 

Figure 11: Finite element mesh used for slabs of Regan (1993). 
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e) 

Figure 12: Assessment of slabs of Regan (1993) with MC2010 for a) Slab 1 end 1, b) Slab 2 

end 1, c) Slab 2 end 2, d) Slab 4 end 1 and e) Slab 4 end 2. 
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c) 

 

Figure 13: Influence of varying reinforcement arrangement in Regan Slab 1 on a) rotation, b) 

punching resistance, c) M/V 
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