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Abstract

With the power system evolving from passive to a more active system there is

an incorporation of information and communication infrastructures in the system.

The measurement data are more prone to tampering from attackers for mala fide

intentions. Therefore, security and reliability of distribution have become major

concerns. State estimation (SE), being the core function of the energy/distribution

management system (EMS/DMS), has become necessary in order to operate the

system efficiently and in a controlled manner.

Although SE is a well-known task in transmission systems, it is usually not a

common task in unbalanced distribution systems due to the difference in design

and operation philosophy. This thesis addresses these issues and investigates the

distribution system state estimation with unbalanced full three-phase modelling.

The formulation, based on weighted least squares estimation, is extended to include

the open/closed switches as equality constraints.

This research then explores the vulnerabilities of the state estimation problem

against attacks associated with leverage measurements. Detecting gross error partic-

ularly for leverage measurements have been found to be difficult due to low residuals.

The thesis presents and discusses the suitability of externally studentized residuals

compared to traditional residual techniques.

Additionally, the masking/swamping phenomenon associated with multiple lever-

ages makes the identification of gross error even more difficult. This thesis proposes

a robust method of identifying the high leverages and then detecting gross error

when the leverage measurements are compromised. All algorithms are validated in

different IEEE test systems.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Power networks all over the world are undergoing a significant scale of devel-

opment. They are gradually changing from passive systems to smart and active

systems, where the performance and flexibility of operation are improved. The ma-

jor drivers are shift of technology of generation towards renewables (mainly solar

and wind) and new forms of demand such as electric transportation, district heat-

ing etc. Due to the change of operation philosophy, the loads have become smart

and the small industrial, commercial and domestic customers can feed in energy to

the system and thus can participate in demand response functions. Therefore, this

uncertain nature of generation and new type of demand need to be dealt with by

more active energy management strategy [1]. There is an increasing adoption of

smart instrumentation such as phasor measurement units (PMUs), intelligent me-

tering etc. in transmission networks and smart meters in distribution networks with

information and communication technology (ICT) infrastructure. As a result, the

integrity of data and information is exposed to risk and the power system is more

prone to malicious attacks from adversaries. Tampered data will obviously affect

the outcome of network control and computing functions such as state estimation,

security analysis, volt var control (VVC) etc.

To enable the effective control of the power network, the states of the system need

17



1.1. MOTIVATION AND OBJECTIVES Chapter 1

to be observed properly. The energy/distribution management systems (EMS/DMS)

will play a crucial role in the control and operation of smart power systems. Central

to every EMS/DMS are two functional blocks: the state estimator and the control

scheduling block. The state estimation provides a real-time estimate of system

states, based on the measurements obtained from meters and sensors in the remote

terminal units (RTUs).

State Estimator

and Bad Data

Detection

Distribution

Optimal Power

Flow

Transmission/

Distribution

Network Operator

Power Grid

Basic EMS/DMS functions

Notify TNO/DNO

Control

set-points

State

estimates

Measurements

vector

Real

Measurements

Pseudo

Measurements

Virtual

Measurements

+

Figure 1.1: A typical energy/distribution management system (EMS/DMS) archi-

tecture

A typical energy/distribution management system architecture is shown in Fig-

ure 1.1. It shows that the control set-points for the transmission/distribution net-

work operator are decided by the states estimated from the state estimation block.

It will help the EMS/DMS to take a host of operational decisions in case of contin-

gency and cascaded tripping etc. Thus the states of the system need to be monitored

and observed effectively. Hence, state estimation has become an important and nec-

essary function of modern network operation.

The research proposed in this thesis develops the distribution state estimation on

unbalanced systems, addresses the vulnerabilities of the state estimation problem

and explores and develops a new methodology for gross error detection against

attacks from adversaries.
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1.2. LITERATURE REVIEW Chapter 1

1.2 Literature review

With growing number of controllable devices distribution system state estima-

tion is becoming popular for distribution system operation. The solution method-

ology mainly focusses on weighted weast squares (WLS) estimation technique. But

the majority of distribution systems operate under varying degrees of unbalance.

Hence, this has paved the way for the need of unbalanced three-phase state estima-

tion rather than single-phase state estimation.

1.2.1 State estimation of distribution systems

There has been growing literature in distribution system state estimation.

Many authors [2–5] have proposed branch current based state estimators for

distribution system. They take branch currents as state variables. The method is

particularly useful for radial networks. The method of branch current decouples the

state estimation problem into three sub problems, one for each phase. This makes

it computationally efficient.

To obtain a unique estimate of system states and to take care of the measurement

errors it is required to have the number of measurements larger than the number of

states. This is called redundancy. Due to their large and radial nature distribution

systems are not metered properly. Due to the lack of this measurement redundancy

in the distribution network, the zero-injection nodes are considered as zero-injection

measurements. Lin and Teng [6] proposed the method of Lagrange multipliers to

incorporate the zero-injections and proposed a current-based decoupled SE based

on rectangular co-ordinates methodology to solve the problem.

Baran [7] mentioned that the SE results can improve the forecasted load data by

using real-time measurements. However, when there are limited real measurements

the accuracy of SE depends on the accuracy of the forecasted load data. It is

proposed that state estimation can be used to improve the data needed for real-time

monitoring of distribution systems.

Lin et al. [3] devised an efficient method for treating the current magnitude

19



1.2. LITERATURE REVIEW Chapter 1

measurements into equivalent current phasors. The constant gain matrix and a

decoupled form for current measurements developed here produced a robust and

efficient solution. It also needs minimal storage requirement due to the constant

gain matrix. Wang and Schulz [4] discussed the decoupling in case of branch current

state estimation and about the impact of branch power flow, current magnitude and

voltage measurements on the accuracy of SE results.

Li [8] has presented a distribution system state estimation based on the WLS

approach and three phase modelling techniques. Several factors such as load error

correlation, pseudo measurement errors, location of real-time meters, accurate load

measurements improve the state estimates.

Wang and others in [5] studied the state estimation based on branch currents

when the different types of DGs are added such as PQ-type, PV-type, PI-type and

PQV-type and discussed the impact on accuracy of SE on location and size of DGs.

The DGs were treated as real-time measurements and the state estimates were found

to be closer to the true value compared to the state estimates without DGs.

Lu and others [9] have proposed a three-phase current based estimator that

sought to minimise the WLS objective. The advantage of having a constant gain

matrix was achieved through minimal storage requirement and less computational

time. Here, power, current and voltage measurements are converted to their equiv-

alent currents, and as a result the Jacobian terms are constant and equal to the

admittance matrix elements.

Baran and Kelley [2] have introduced an algorithm that takes branch currents

as state variables. This method is very efficient and works well in radial distribu-

tion systems. A better computation speed and filtering properties without losing

accuracy were achieved through feeder reduction method.

Due to lack of measurements the load demands in the distribution system are

taken from historical load forecast data or load curves. This creates sufficient un-

certainty. A probabilistic approach to DSSE based on the probabilistic radial flow

algorithm is proposed in [10] by Ghosh and others. This algorithm also takes into

account the non-normality of states, radial nature of the system, low ratio of real-

time measurements to states and the load diversity. The effects of load correlation

20



1.2. LITERATURE REVIEW Chapter 1

and confidence interval were also discussed.

Lubkeman et al [11] presented the distribution system SE on a field circuit and

proved that the state estimation algorithm is viable on practical systems. The state

estimates were found to give improved solutions over load flows.

With gradual deployment of phasor measurement units (PMUs) in networks the

state estimation process is also changing. With this development the measurement

system is gradually changing to a phasor-only system. Jones [12] have mentioned

a three-phase linear state estimation with synchronised phasor measurements and

applied on a practical system.

The distribution system operates under various degrees of unbalance. This cou-

pled with topological uncertainties has an impact on the accuracy of state estimates.

References [13–16] have demonstrated this. The full system modelling allows the

detection of dangerous imbalances and better estimation of current operating point.

It can also have better bad data rejection capability. Zero injection is taken as

constraints in the nodes having no generation, load and measurement.

PMUs and smart meters are being incorporated into the modern distribution

network. A full three-phase linear estimator based on PMU and smart meter mea-

surements is proposed by Haughton and Heydt in [17]. The linear estimator produces

better estimates and thus would help in decision making of distribution systems.

Thukaram and others [18] at first ensured the observability of the network by

graph theory and then used a robust forward-backward propagation method based

on nodal current injections to obtain the state estimates.

1.2.2 Bad data detection methodology

However, with the advent of deregulation in the power network and the intro-

duction of distributed generations (DG) and smart meters [19,20], having an efficient

and accurate state estimate is becoming more and more necessary.

With such integration of distributed generations and ICT infrastructure, the

future smart power grid is no longer a physical system only but rather a cyber-

physical system [21–23]. It has been argued in [21] that an adversary can inject
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1.2. LITERATURE REVIEW Chapter 1

malicious data into the system without being detected by classical bad data detection

techniques. In the case that the adversary performs an unobservable attack, which

cannot be detected by classical bad data detection techniques, it is important to

know how vulnerable the power system operation is to these attacks. The sparse

attack vector can be designed by an adversary by controlling enough meters.

Smart meters with their two-way data and communication flow are easily prone

to attacks from adversaries [24, 25]. Reference [24] further explains different types

of attack that can be synthesized in relation to strong and weak attack regimes.

The unobservable attacks exist in case of strong attack regime while in case of weak

attack regime the gross errors can be detected by generalized likelihood ratio test

and minimum mean squares estimator.

Reference [25] illustrates the strategies for malicious attacks to be incorporated

such as unobservable attacks, minimum size unobservable attacks and minimum

residue energy attacks and henceforth, uses the concept of generalized likelihood

ratio test (GLRT) to detect the gross error with L1 norm regularization.

The issue of bad data detection has been addressed in the literature as in [26,27]

by the χ2 distribution and χ2-test. Many people [26, 27] have used the largest

normalized residuals (LNR) to detect bad data in single bad data environment or

in case of multiple non-interacting bad data.

The authors in [28] and [29] have demonstrated further the impact of inaccurate

parameters and untransposed lines not only on the accuracy of the estimated quan-

tities but on the bad data rejection capability as well. This led to the requirement

of synchronised phasor measurements at the distribution level.

Many authors [30] have presented the identification procedure of leverage mea-

surements by various distance measures like Mahalanabis distance and by Projection

Statistics [31]. [30] argues that with projection statistics the state estimation results

are much closer to load flow results than without projection statistics. Mili et al. [31]

used a Schweppe-Huber type generalized estimator based on projection statistics,

which is a simple modification of WLS estimator.

In recent years, there have been growing interests in the false data injection to

power system and dealing with those attacks and the vulnerabilities [24, 25, 32–34].
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The basic idea of false data injection attack is to add a non-zero attack vector into

the measurements [24]. It has been reported in the literature [24, 25, 32–34] how

an adversary can synthesize an attack vector just to bypass the normalized residual

test in the dc state estimator.

Chen and Abur [35] have proposed the placement of phasor measurement units

(PMUs) for the detection of bad data. It has been proposed that minimising the

number of strategically placed PMUs will improve system observability by eliminat-

ing criticality of measurements and thus improve bad data detection.

Narvaez and others [36] have presented the concept of robust distances to detect

the difference between good and bad leverage measurements. They argued that

a robust estimator has better performance than the WLS estimator even in the

presence of bad data and bad leverage points.

Khwanram and others [37] have used Particle Swarm Optimization (PSO) to

detect multiple bad data in state estimation. They used the PSO to minimize the

number of bad data while maintaining the measurement redundancy. They, however,

argued that the parameters of the technique need to be selected efficiently to reach

a global optimum solution.

Qingyu Yang and others [32] have considered the bad data in measurements as

injection of bad data and proposed the method of false data injection attacks on

state estimation. It reports how to optimize the number of measurements to be

tampered in order to compromise a given number of state variables.

Suzhi Bi and Yin Jun Zhang [33] have elucidated the defensive mechanism pro-

cedures against false data injection attacks in the state estimation. They have

proposed a greedy algorithm which produces optimal solution for the sequential

protection of state estimation against the malicious tampering. They also report

that the optimal algorithm has less computational complexity compared to the sub-

optimal algorithm.

Liu, Ning and Reiter [38] have summarised the concept of false data injection

attacks against state estimation in electric power grid. They have discussed the

different types of false data injection attacks in terms of two scenarios - access to

meters and access to resources. They have also reported the impacts of these two
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scenarios on state estimates when the meters or state variables are targeted.

Lin and Pan [39] have explained a static state estimation approach regarding bad

data detection and identification. They employ a modified covariance matrix and

reduce the effect of bad data on state estimates. In addition to that they proposed

a gap statistic method to identify bad measurements.

Tarali in [40] have presented a bad data detection technique in two-stage state

estimation using phasor measurements. The conventional state estimates from the

first stage are used with PMU measurements in the second stage to get the new

estimates. The PMU measurements will improve the system observability and thus

help in bad data detection.

Hug and Giampapa [34] show how a false data injection attack at the RTU level

can be hidden by tampering with a number of measurement data and they assess

the vulnerability associated with this threat in terms of number of measurements to

be attacked.

However, none of [24, 25, 32–34] have addressed the situation when a particular

influential or leverage measurement is compromised. Hence, this provides the basis

to have an identification procedure against such an unobservable attack.

1.3 Outline of the thesis

Following the introduction and literature review, the thesis is organised as fol-

lows:

Chapter 2 points out the difference between transmission systems and distribu-

tion systems. It provides a detailed modelling of various components of three-phase

systems such as lines, transformers, switches and loads. It further describes the

three-phase test systems used in this research.

Chapter 3 provides a generic formulation for three-phase state estimation. The

technique based on weighted least squares estimation has been discussed in detail.

The results and simulations on different test systems have been illustrated for various

switch configurations also. The results for a part of this chapter have been published
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in [41].

Chapter 4 discusses the different diagnostic techniques for the detection of gross

error. It also compares the different residual techniques and the robust estimation

techniques. It introduces the concepts of internally and externally studentized resid-

uals and discusses their effectiveness in detecting bad data.

Chapter 5 proposes a technique for bad data detection when the leverage mea-

surement points are attacked by an adversary. The mathematical formulation of the

technique has been discussed in detail. The proposed technique has also been com-

pared with the traditional detection techniques and the advantages of the method

have been justified. The results of this chapter have been submitted for publica-

tion [42] and is currently under review. This was first submitted on December 2014.

Chapter 6 recapitulates the contributions of this thesis and presents a brief

overview of future research directions.

1.4 Contributions of the thesis

The contributions of this research can be summarised as follows:

• The distribution system state estimation literature is mainly focused on bal-

anced system architecture. This thesis discusses the necessity of unbalanced

system component modelling, develops the detailed modelling of three-phase

unbalanced systems and discusses the advantages.

• A robust three-phase unbalanced state estimation model is presented. The

thesis investigates the suitability of three-phase SE on different load types,

transformer connections and switch configurations. It also investigates the

existing transmission system state estimation techniques and assesses their

suitability to unbalance distribution system. The extended modelling of 13-

bus and 123-bus has been carried out and the DSSE is implemented on these

standard distribution systems.

• The thesis studies the possible vulnerabilities of SE in detail. It also introduces

and discusses the suitability of externally studentized residuals, a technique
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used in statistics for outlier detection, in power system bad detection for the

first time.

• Due to the integration of intelligent and smart metering and communication

infrastructures, the modern power system is becoming more and more vul-

nerable. The vulnerabilities in regards to leverage measurements have not

been properly addressed before. This research proposes and develops a new

technique to identify the gross error in case of leverage measurements and

discusses the advantages of the technique. It has been tested on 14-bus and

123-bus systems.

1.4.1 Contributions to other thesis/research

This thesis’s extensive three-phase modelling framework has been used in other

PhD thesis/research as detailed below.

• The exhaustive three-phase modelling of distribution systems has led to par-

allel contributions in a thesis in the group which explores and investigates

the estimation of discrete transformer taps in distribution systems by hybrid

particle swarm optimization and then by ordinal optimization. The ordinal

optimization has the capability of providing the accurate tap estimation in

less computation time and at the same time has the ability of handling huge

computational complexity. This has led to publications [43,44] and one paper

submitted for publication [45]. The development of ordinal optimization for

three-phase state estimation has enabled us to form a strong background for

the detection of discrete transformer tap error which is under process.

• The three-phase modelling framework has also benefited a research on prob-

abilistic operation of three-phase distribution network in collaboration with a

lecturer at University of Bradford. It explores the uncertain operation of un-

balanced distribution systems with increased solar input under active network

management schemes of coordinated voltage control and power factor control.

This has led to one publication [46].
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Chapter 2

Modelling of Three Phase Unbal-

anced System

The electric power distribution system is the final stage of electric power system.

It is connected to the transmission system at the distribution substation. The

substation transformers lower the transmission voltage to medium or low voltage.

The distribution system carries the power to the distribution transformers. The

distribution transformers lower the voltage level further to carry the electric power

to customer premises. The distribution system consists of unsymmetrical network

components and unbalanced load. The distribution system can be unbalanced due to

many reasons: The loads connected may single phase loads such as the lighting loads

or single phase induction motors. Although the distribution systems are designed as

balanced statistically the distribution system may be unbalanced due to the presence

of different laterals drawing different currents. Hence, the single line representation

for an unbalanced distribution system is not appropriate. Therefore, the full three-

phase modelling of the network components is necessary.

Over the years, there has been significant research on three-phase load flow

in distribution systems [47]. However, most of the operational i.e., control and

contingency, decisions based on state estimation have been applied to distribution

systems assumed to be balanced [48]. Moreover, the loads considered are constant

power and Y-connected loads and the different status (closed/open) of the switches
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are not considered [9,18]. The following sections describe the three phase modelling

of various components of the network such as line, transformers, switches and loads.

2.1 Difference between transmission system and

distribution system state estimation

The design and topology of distribution systems are quite different from trans-

mission systems. The distribution system is typically characterised by unbalanced

systems, shorter lines with high R/X ratios and hence suffers more losses compared

to a transmission network. The distribution system is usually spread over a large

geographical area and is radial in nature. As a result, many consumer or domestic

loads remain unmeasured and a large portion of the network remains unmonitored.

This poses a serious challenge to the observability of the network and the state

estimator module to provide reasonable estimates. Therefore, the planning and

operation of distribution system(s) is different from transmission systems.

The methodologies adopted in the transmission systems cannot be duplicated

in the distribution system. Since a large portion of the distribution system is un-

measured the system is underdetermined. To overcome this difficulty the unmea-

sured/unmetered loads are treated as pseudo measurements and their measurements

are derived from typical load curves, historical data of the feeders and transformer

loadings. These pseudo measurements will have more uncertainties associated with

them compared to that of real measured data. Although recently automated me-

tering infrastructure (AMI) have come into the picture it is still not practical to

install AMRs in every location. There are actually more pseudo measurements than

real measurements in the distribution system state estimation (DSSE). Since the

R/X ratio is high the decoupling of state estimation problem into P − δ and Q−V

equations is not possible. The distribution system is more prone to unbalances due

to 1-ph and 3-ph loads and due to the presence of 1-ph, 2-ph and 3-ph laterals.

Moreover,being large,the distribution system is prone to unbalance faults and these

can also create unbalance in the system.
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2.2. THREE-PHASE LINE MODELLING Chapter 2

This sets up the motivation to explore and develop the robust three phase state

estimation on unbalanced systems.

2.2 Three-phase line modelling

The distribution system consists of untransposed overhead lines and under-

ground cables which can be three-phase or single and/or two-phase laterals. Figure

2.2 shows a three-phase distribution system with single and two phase laterals. This

combined with the unbalanced loads (single, two or three-phase loads) contribute to

the unbalanced nature of the system. Due to the untransposed nature of the lines,

the single phase/line representation of lines does not work. Thus, it is essential to

compute the impedance of the lines accurately. A modified Carson’s equation is

applied to compute the self and mutual impedance of the lines [49].

Zii = ri + 0.095 + j0.121×
(

ln
1

GMRi

+ 7.934

)

Ω/mile (2.1)

Zij = 0.095 + j0.121×
(

ln
1

Dij

+ 7.934

)

Ω/mile (2.2)

Where,

Zii Self-impedance of conductor i in Ω/mile.

Zij Mutual impedance between conductors i and j in Ω/mile.

ri Resistance of conductor i in Ω/mile.

GMRi Geometric mean radius of conductor i in feet.

Dij Distance between conductors i and j in feet.

The modified Carson’s equation also takes into account the ground return path

(neutral conductor) for the unbalanced currents.

The modified Carson’s equations (2.1) and (2.2) for a three phase overhead or

underground circuit which consists of neut neutral conductors forces the resulting

impedance matrix (3 + neut) × (3 + neut). However, for most applications, it is

necessary to have the 3×3 phase impedance matrix. Therefore, (3+neut)×(3+neut)

impedance matrix is broken down to 3 × 3 matrices by Kron’s reduction as given
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in (2.3). In this approach, all the lines will be modelled by 3 × 3 phase impedance

matrices and for two phase and single phase lines the missing phases are modelled

by setting the impedance element to zero.

Zij,abc = [Zij]− Zineut[Zneutneut]
−1Zneutj (2.3)

Where,

Zij,abc Phase-impedance matrix.

Zineut Mutual impedance matrix between conductor i and neut neutral conduc-

tors in Ω/mile.

Zneutneut Self-impedance matrix of neut neutral conductors in Ω/mile.

Zneutj Mutual impedance matrix between neut neutral conductors and conductor

j in Ω/mile.

Therefore, for each line between two nodes, there will be a 3 × 3 matrix instead

of a single element for a single phase balanced system. Hence, the resultant Y -bus

matrix of the system will be of (n× 3)× (n× 3). The structure of the Y -bus matrix

is shown in (2.4).

Y =



































Y aa
11 Y ab

11 Y ac
11 · · · Y aa

1n Y ab
1n Y ac

1n

Y ba
11 Y bb

11 Y bc
11 · · · Y ba

1n Y bb
1n Y bc

1n

Y ca
11 Y cb

11 Y cc
11 · · · Y ca

1n Y cb
1n Y cc

1n

...
...

...
. . .

...
...

...

Y aa
n1 Y ab

n1 Y ac
n1 · · · Y aa

nn Y ab
nn Y ac

nn

Y ba
n1 Y bb

n1 Y bc
n1 · · · Y ba

nn Y bb
nn Y bc

nn

Y ca
n1 Y cb

n1 Y cc
n1 · · · Y ca

nn Y cb
nn Y cc

nn



































(2.4)

2.3 Transformer modelling

The distribution system generally consists of feeder and distribution transform-

ers which provide the final voltage transformation to the loads. The three phase

transformers are modeled by an admittance matrix which depends on the connection
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type. A transformer can be Y-Y, Y-∆, ∆-∆. In balanced systems, the transform-

ers are modelled as single phase leakage impedances. Thus the single phase/line

representation will work perfectly fine. However, in the analysis of the distribution

feeder for three phase, it is required to model the various three phase transformer

connections correctly. The comprehensive calculations of three phase transformers

and their various connections can be found in references [49,50]. While forming the

Y -bus, a transformer can be considered as one element between two nodes of the

system. Therefore, the transformer contributes to a 6 × 6 block in the Y -matrix.

The transformer nodal admittance matrix can be calculated from the current-voltage

relationship of transformer, which is given by





Iabcp

Iabcs



 =





Y abc
pp Y abc

ps

Y abc
sp Y abc

ss









V abc
p

V abc
s



 (2.5)

where,

Iabcp , V abc
p are the primary side current and line-to-neutral voltage vectors for the

three phases.

Iabcs , V abc
s are the secondary side current and line-to-neutral voltage vectors for the

three phases.

The nodal admittance matrix is formed of the sub-matrices Y abc
pp , Y abc

ps , Y abc
sp and

Y abc
ss . Depending on the connection of three phase transformers on the primary and

secondary sides the sub-matrices Y abc
pp , Y abc

ps , Y abc
sp and Y abc

ss will vary. Thus the nodal

admittance matrix for the transformers will change as explained in [50]. The nodal

admittance matrix also depends on whether the transformer connection is step-up

or step-down. The nodal admittance matrix components for some of the connections
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Table 2.1: Nodal admittance matrix for step-down transformers

Primary Secondary Yabc
pp Yabc

ss Yabc
ps Yabc

sp

Yg Yg YI YI -YI -YI

Yg ∆ YI YII YIII Y T
III

Y ∆ YII YII YIII Y T
III

∆ ∆ YII YII -YII -YII

Yg Y YII YII -YII -YII

Y Yg YII YII -YII -YII

Y Y YII YII -YII -YII

∆ Yg YII YI YIII Y T
III

∆ Y YII YII YIII Y T
III

of step-down transformer are shown in Table 2.1. where,

YI =











1 0 0

0 1 0

0 0 1











yt (2.6)

YII =
1

3











2 −1 −1

−1 2 −1

−1 −1 2











yt (2.7)

YIII =
1√
3











−1 1 0

0 −1 1

1 0 −1











yt (2.8)

where yt is the transformer leakage impedance in per unit.

2.4 Switch modelling

Switches are considered as branches with zero impedance. It is assumed that the

status of the switches, i.e. closed or open, are known beforehand. The operational

constraints for the switches are considered as equality constraints as given by ceq = 0

in equation (3.18) of the original problem formulation. This is described in detail in

Section 3.3.
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• When the switch between bus i and bus j is assumed closed for branch i-j, the

voltages and angles for bus i and bus j and phase ph for all the three phases

are equal.

V ph
i − V ph

j = 0

δphi − δphj = 0
(2.9)

• When the switch is assumed open between bus i and bus j, the active and

reactive power flow to the switch will be zero.

P ph
ij = 0

Qph
ij = 0

(2.10)

2.5 Load modelling

The loads in distribution systems are generally unbalanced. The loads are three-

phase, two-phase or single-phase. They can be connected in grounded Y or un-

grounded ∆ configuration. From the point of view of electricity usage, loads can be

broadly classified as constant power, constant impedance or constant current loads.

They are commonly represented as power consumed per phase and considered to be

line-to-neutral for Y-loads and line-to-line for ∆-loads. The typical ZIP models for

Y and ∆ loads are shown in (2.11) and (2.13).

P ph
L = P ph

n

[

cP1 + cP2

(

V ph

Vn

)

+ cP3

(

V ph

Vn

)2
]

(2.11)

Qph
L = Qph

n

[

cQ1 + cQ2

(

V ph

Vn

)

+ cQ3

(

V ph

Vn

)2
]

(2.12)

P ph12
L = P ph12

n

[

cP1 + cP2

(

V ph12

√
3Vn

)

+ cP3

(

V ph12

√
3Vn

)2
]

(2.13)

Qph12
L = Qph12

n

[

cQ1 + cQ2

(

V ph12

√
3Vn

)

+ cQ3

(

V ph12

√
3Vn

)2
]

(2.14)

Where, ph12 = ab, bc, ca.
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aI

cI

bI

abI

bcI
caI

abV caV

bcV

Figure 2.1: Delta-connected three-phase load

Figure 2.1 shows a typical ∆-connected three phase load. The voltage magni-

tudes are line-to-neutral for the state estimation formulation, which is discussed in

the next chapter. Therefore, in case of delta loads, the equivalent wye powers are

calculated at each iteration in order to calculate the active and reactive power at

each node. This is illustrated in the following steps.

• Calculate line-to-neutral voltage for ∆ loads











V ab
i

V bc
i

V ca
i











=











V a
i ∠δ

a
i − V b

i ∠δ
b
i

V b
i ∠δ

b
i − V c

i ∠δ
c
i

V c
i ∠δ

c
i − V a

i ∠δ
a
i











(2.15)

• Read the active and reactive power of ∆ loads

• Calculate the line currents of ∆ loads

Iab =

(

Pab + jQab

Vab∠δab

)∗

(2.16)
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• Calculate the current at each phase











Ia

Ib

Ic











=











1 0 −1

−1 1 0

0 −1 1





















Iab

Ibc

Ica











(2.17)

• Calculate the equivalent line-to-neutral active and reactive powers

VaI
∗
a = Pa + jQa

VbI
∗
b = Pb + jQb

VcI
∗
c = Pc + jQc

(2.18)

For the phases where the loads are non-existent, the active and reactive power

values are set to zero for those particular phases.

2.6 Measurements

The distribution system normally covers a large geographical area. Hence, it

is not possible to place meters at all nodes and lines. Hence, the redundancy of

distribution systems is usually far less than that of transmission systems. However,

it is required to make the system observable in order to solve the state estimation.

With a given set of measurements the system is said to be observable if a unique

estimate of the states can be found. For the system to be observable the number

of measurements should be more than the number of state variables. The graph

theory method has been carried out to ensure the observability of the network.

Therefore, the load data taken from historical load data profiles are taken as pseudo

measurements and zero-injection buses are considered as virtual measurements.

2.6.1 Load flow calculation

In general, current-injection or interior point based three-phase load flow is

performed to generate the input to state estimation. These are taken as true values

for measurements. Gaussian distributed random noise components are added to

these true values to generate the measurements. The real measurements are assumed
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to have 1%-3% error while the pseudo measurements are assumed to be of 20%-50%

error. The variances of the measurement error are then calculated based on equation

(3.12) as explained in the next chapter. However, the zero-injections or the virtual

measurements and the switches are taken as equality constraints. This calculation

is described in detail in the next chapter.

2.7 Test systems

The standard IEEE test systems of 13-bus and 123-bus have been studied. The

SE algorithms in this thesis have been tested on these systems. The system data

are taken from [51] and [52]. The characteristics of the systems are detailed below.

2.7.1 IEEE 13-bus system

2

3

4

1

6

5

10

117

8

9

13

12

Figure 2.2: IEEE-13 bus unbalanced distribution system

The feeders are small yet they show some interesting characteristics. Figure 2.2

shows the system.

• Short and relatively high loaded for a 4.16 kV feeder.
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• One substation voltage regulator consisting of three single phase units connected

in Y.

• Both overhead and underground lines are present with a variety of phasing.

• It has shunt capacitors.

• It has one transformer: grounded Y-grounded Y

• Unbalanced spot and distributed loads are present.

• The loads are of constant power, constant current and constant impedance type

and are Y and/or ∆ connected.

The complete system data is given in Appendix A.

2.7.2 IEEE 123-bus system
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Figure 2.3: IEEE 123 bus system

The system test feeder has a nominal voltage of 4.16 kV and the system has

some remarkable features. The system is shown in Figure 2.3.
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• The system consists of overhead and underground lines.

• The system is unbalanced due to the presence of single, double or three phas-

ing and unbalanced loads with constant power, constant current and current

impedance types.

• There are spot loads only.

• Switching options to allow alternate ways of power flow.

• There are four tap tranformers present.

The complete system data has been provided in Appendix B.

2.8 Conclusion

This chapter presents in detail the three-phase modelling of various components

such as distribution lines, transformers, switches and three-phase loads. The stan-

dard IEEE distribution systems like IEEE-13 bus and IEEE-123 systems have been

discussed in detail. The systems contain all types of ZIP loads. The capacitors

are considered as constant impedance loads, which are voltage dependent. The

next chapter describes the state estimation formulation based on this unbalanced

three-phase modelling.
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Chapter 3

State Estimation of Unbalanced Dis-

tribution Systems

With the influx of phasor measurement units (PMUs), intelligent metering etc.

in transmission systems and smart meters with information and communication

technology (ICT) infrastructure in distribution systems, power systems now-a-days

need to be monitored and controlled efficiently. To enable this, the states of the

system need to be observed properly. This would help to influence the operational

decisions and thus, to avoid contingency and cascaded tripping. It is done through

an energy/ distribution management system (EMS/DMS) function- the state esti-

mation (SE) [20, 53]. Figure 1.1 in Chapter 1 elucidates the importance of state

estimation function in the transmission or distribution network operation. This

function estimates the bus voltages and angles based on the available measurements,

network data and topology information obtained from the supervisory control and

data acquisition (SCADA) system.

In transmission systems, the state estimation concept is well established but in

distribution systems due to the absence of sufficient measurements and unbalanced

and asymmetric nature of the system, it was not mandatory to have a state estima-

tion function as it involves significant complexity and computational time. But with

growing number of controllable devices and the incorporation of smart meters in the

system, state estimation is becoming important in distribution network operation.
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3.1. OVERVIEW OF STATE ESTIMATION Chapter 3

Unlike the transmission system, the majority of distribution systems operate

under varying degrees of unbalance. Moreover, the distribution system is radial in

nature and has a higher R/X ratio. Therefore, the fast decoupled method causes

numerical instability when applied to distribution systems [26]. Hence, this has

paved the way for the need of unbalanced three-phase state estimation rather than

single-phase state estimation.

To achieve accurate estimates of the state variables, this chapter presents a

weighted least squares based estimator with the detailed modelling of the system

components and different types of loads and also considering the different operational

status of the switches in Section 3.3.

3.1 Overview of State Estimation

State estimation (SE) is a process of determining the states (voltage magnitudes

and angles) of the network based on the available measurements and network topol-

ogy information and parameter data. The measurements are prone to errors. The

SE processes a set of redundant measurements and finds out the most optimal state

of the system and thus takes care of the errors.

3.2 Maximum Likelihood Estimation

The state estimation methodology determines the most likely states of the sys-

tem based on the measurements available in the system. In statistics, maximum

likelihood estimation (MLE) is a method of estimating the parameters (or states) of

a statistical model. For example, for a normal distribution, the parameters (mean

and variance) are estimated with MLE from the knowledge of some sample data.

The MLE selects the values of the parameters by maximising the given likelihood

function. Here, in state estimation context, the measurement errors are generally as-

sumed to follow a normal distribution. The joint probability density function (pdf)

of all the measurements are formed and hence, an optimisation problem is solved to

maximise the likelihood function.
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Let x denote the state vector, comprising voltage magnitudes and angles. The

non-linear measurement model relating the state vector and measurement vector

zmeas = [z1 z2 ... zm]
T can be written as

zmeas = hfunc(x) + e (3.1)

where e ∽ N(0, R) is a zero mean Gaussian noise with measurement error covariance

matrix R. hfunc(x) is a vector of measurement functions. Equation (3.1) relates the

state variables x to the measurement vector zmeas. Considering all the measurements

to be independently and identically distributed, the joint pdf is a product of the

individual pdfs of all the measurements.

f (zmeas|x) = f (z1)f (z2) . . . f (zm) (3.2)

The function given in equation (3.2) is the maximum likelihood function. The MLE

maximises this likelihood function to get the maximum-likelihood estimate x̂.

To simplify the optimization process the logarithm of the likelihood function is

taken rather than only the likelihood function. Since log is a monotonically increas-

ing function, maximizing the log-likelihood function is equivalent to maximizing the

likelihood function. Therefore, from a power system perspective, the MLE can be

defined as minimizing the negative of log-likelihood function

minimize : −log(f (zmeas|x)) (3.3)

3.2.1 Generic Weighted Least Squares (WLS) Estimation

If we consider zmeas to be normally distributed,

f (zmeas|x) = 1√
(2π)mdetR

e−
1
2
(zmeas−hfunc(x))

TR−1(zmeas−hfunc(x)) (3.4)

The equation ((3.3)) can be written as

minimize : −
m
∑

i=1

log(f (zi)) (3.5)

minimize :
1

2

m
∑

i=1

(
zi − µi

σi

)2 +
m

2
ln(2π) +

m
∑

i=1

ln σi (3.6)
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which is equivalent to minimizing the first term of equation (3.6), where µi is the

expected value E(zi) and σ2
i is the variance of measurement error in zi. The first

term in equation 3.6 can be interpreted as squares of measurement errors (zi − µi)

weighted by σ−2
i . Hence, this state estimation is also called as Weighted Least

Square (WLS) state estimation. The minimization problem can be rewritten as:

minimize
x

: J = (zmeas − hfunc(x))
TR−1(zmeas − hfunc(x)) (3.7)

The solution to this above problem can be solved by Newton’s method. The details of

the solution is discussed below. Here, R = Cov(e) = E(eeT) = diag(σ2
1, σ

2
2, . . . , σ

2
m)

is defined as the error covariance matrix, where ei = zi − hi(x) is the error in the

measurement and σ2
i is the variance of the ith measurement.

To minimize the cost function in equation (3.7), the first-order derivatives should

equate to zero. Hence, the first-order optimality condition can be written as

gderv(x) =
∂J

∂x
= −HT (x)R−1(zmeas − hfunc(x)) = 0 (3.8)

Since, gderv(x) is a non-linear function, equation (3.8) can be solved by numerical

methods only. Thus, the Taylor’s series expansion of gderv around the state variable

vector xk gives

gderv(x) = gderv(x
k)+

∂gderv(x
k)

∂x
(x−xk)T+

1

2!

∂2gderv(x
k)

∂x2
((x−xk)2)T+. . . = 0 (3.9)

Neglecting the terms for 2nd and higher order derivatives, the above equation (an

over-determined system) is solved by Gauss-Newton’s method.

xk+1 = xk − [G(xk)]−1gderv(x
k) (3.10)

So at each iteration, this results in solving the following equation

[G(xk)]∆xk+1 = HT (xk)R−1[zmeas − hfunc(x
k)] (3.11)

where, in the kth iteration,

∆xk+1 = xk+1 − xk

H(xk) = [
∂hfunc

∂x
]xk is the Jacobian matrix
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G(xk) =∂gderv(x
k)

∂x
= HT (xk)R−1H(xk) is the Gain matrix.

The measurement function can be created by having the network data and the

telemetered measurements. The network data includes the information about the

network topology, network parameters, transformer parameters and the loads. The

required measurements for the state estimation can be classified under three broad

categories:

• Actual Measurements: These are telemetered measurements which include volt-

age magnitudes, power injections, line currents and real and reactive power flows.

The accuracy of these measurements depend on the accuracy of their meters.

• Pseudo Measurements: In the distribution system due to the large size of the

system, it is very difficult to have load measurements at each and every bus.

Hence, the loads are estimated based on previous load profile data with high

variance of error.

• Virtual Measurements: Zero injections are considered as measurements with zero

power injections. The zero injections are included in the measurement vector to

improve the measurement redundancy and thus the observability of the network.

One knows with more certainty the measurement values for the zero injection

measurements. Hence, these measurements will have higher weights or very low

variance.

The weights associated with real measurements, pseudo measurements and virtual

measurements are different. In fact, the weight associated with each measurement is

different. As the errors have been assumed to obey normal probability distribution

the standard deviation of the errors can be computed as

σi =
µi ×%error

3× 100
(3.12)

where, µi is taken as the true value and it is assumed that a ±3σ deviation around

the mean according to the property of normal distribution as shown in Figure 3.1.
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µ µ+σ µ+2σ µ+3σµ−σµ−2σµ−3σ

Figure3.1:ANormalDistributionCurve

EqualityConstrainedAugmented MatrixApproach

Thevarianceassociatedwithvirtualmeasurementssuchaszeroinjectionsare

verylow,whereasvarianceassociatedwithpseudomeasurementsareveryhigh.

Thismayleadtoill-conditioningoftheGainmatrix.So,toavoidthis,thestate

estimationproblemcanbeformulatedasaconstrainedoptimizationproblem.

minimize
x

:J=
1

2
rTR−1r (3.13)

subjectto:

ceq(x)=0

r−zmeas+hfunc(x)=0

risthevectorofresidualstakenasexplicitvariables.Thevirtualmeasurementsand

theopen/closedoperationalconstraintsoftheswitchesareconsideredasequality

constraints. Thesehavebeenexplainedinthenextsection. TheresultingLa-

grangianwillhavetwosetsofLagrangemultipliers:

L=J−λTceq(x)−µ
T(r−zmeas+hfunc(x)) (3.14)
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Linearising the normal equations, the following system of equations are obtained:










R H 0

HT 0 CT

0 C 0





















µ

∆x

λ











=











∆zkmeas

0

−ceq(x
k)











(3.15)

The coefficient matrix in equation (3.15) is called the Hachtel’s matrix. Since the

Hachtel’s matrix is very sparse, solving the above enlarged system is not particularly

expensive. However, the condition number of the Hachtel’s matrix can be improved

by scaling the residual matrix or in other words, by multiplying α−1, where α is a

scalar, to the co-variance matrix R in the Hachtel’s matrix [27]. This results in the

new Hachtel’s matrix, which is given by










α−1R H 0

HT 0 CT

0 C 0





















µ

∆x

λ











=











∆zkmeas

0

−ceq(x
k)











(3.16)

3.3 Mathematical modelling of unbalanced distri-

bution system state estimation

3.3.1 Problem Formulation for distribution systems

The state estimation is a process which estimates real-time states of the system

(voltage magnitudes and angles). The transmission system is, however, a special

case of unbalanced system where, the system is balanced and hence, the number of

state variables and equations are reduced. The problem for three phase unbalanced

system can be looked at as a constrained non-linear optimization problem with the

following objective function

J = [zmeas − hfunc(x)]
TR−1[zmeas − hfunc(x)] (3.17)

Subject to:

ceq (x) = 0 (3.18)

cineq (x) ≤ 0 (3.19)
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Where,

x State variables such as voltage magnitudes and angles.

m Number of measurements per phase.

R Measurement error covariance matrix,

zmeas =
[

za1 zb1 zc1 . . . zai zbi zci . . . zam zbm zcm
]T
.

za,b,ci Measured value of ith measurement.

hfunc(x) vector of measurement as a function of state x

ceq(x) vector of zero injection measurements and switch operational constraints.

cineq(x) vector of inequality constraints.

In three phase system

x =
[

δph1 · · · δphi · · · δphn V ph
1 · · · V ph

i · · ·V ph
n

]⊤

,

where,

V ph
i =











V a
i

V b
i

V c
i











, δphi =











δai

δbi

δci











are the three-phase voltage magnitude and voltage angle at bus i respectively.

The measurements are usually considered subject to random errors due to biases,

drifts or wrong connections of the measurement devices, i.e. meters. It is assumed

that the measurement errors are identically and independently distributed. Hence,

the covariance matrix of the errors is given by

R=Cov(e)=E(eeT)=diag(σ2
1, . . . σ

2
i , . . . , σ

2
m), where σ2

i =
[

(σa
i )

2 (σb
i )

2 (σc
i )

2
]⊤

and σ2
i is the variance of the ith measurement error.

In three-phase system, the real power injection P ph
i and reactive power injection

Qph
i equations at bus i for phase ph can be written as:

P ph
i = V ph

i

3
∑

l=1

n
∑

j=1

V l
j

[

Gph,l
ij cos

(

δphi − δlj

)

+Bph,l
ij sin

(

δphi − δlj

)]

(3.20)

Qph
i = V ph

i

3
∑

l=1

n
∑

j=1

V l
j

[

Gph,l
ij sin

(

δphi − δlj

)

−Bph,l
ij cos

(

δphi − δlj

)]

(3.21)
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Where G + jB is the system admittance matrix, n is number of buses and l is the

number of phases that can be 1, 2 or 3 phase. The branch real power flow P ph
ij and

reactive power flow Qph
ij equations from bus i to bus j for phase ph can be written

as follows:

P ph
ij = V ph

i

3
∑

l=1

V l
i

[

Gph,l
ij cos

(

δphi − δli

)

+ Bph,l
ij sin

(

δphi − δli

)]

− V ph
i

3
∑

l=1

V l
j

[

Gph,l
ij cos

(

δphi − δlj

)

+ Bph,l
ij sin

(

δphi − δlj

)]

(3.22)

Qph
ij = −V ph

i

3
∑

l=1

V l
i

[

Gph,l
ij sin

(

δphi − δli

)

−Bph,l
ij cos

(

δphi − δli

)]

− V ph
i

3
∑

l=1

V l
j

[

Gph,l
ij sin

(

δphi − δlj

)

−Bph,l
ij cos

(

δphi − δlj

)]

(3.23)

Where,

V l
i Voltage magnitude of phase l at bus i.

δli Angle of phase l in bus i.

3.3.2 Equality constraints ceq (x)

The equality constraints are the set of equations corresponding to virtual mea-

surements.

0 = P ph
Gi − P ph

Di = P ph
i (3.24)

0 = Qph
Gi −Qph

Di = Qph
i (3.25)

Where P ph
Gi and Qph

Gi are the real and reactive power injected at bus i respectively,

the load demand at the same bus is represented by P ph
Di and Qph

Di.

The operational constraints for open/closed switches are considered to equality

constraints. These are a set of equations given as

• Closed switch

V ph
i − V ph

j = 0

δphi − δphj = 0
(3.26)
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• Open switch

P ph
ij = 0

Qph
ij = 0

(3.27)

3.3.3 Inequality constraints cineq (x)

These are the set of constraints on state variables that represent the system

operational and security limits, such as setting upper and lower limits for control

variables. The constraints are as follows:

• Bus voltage - Voltage magnitudes at each bus in the network:

V ph
min,i ≤ V ph

i ≤ V ph
max,i (3.28)

• Bus angle - The bus angle at each bus in the network:

−δphmin,i ≤ δphi ≤ δphmax,i (3.29)

The above equations are solved by the primal-dual interior point method. The

optimization problem has both equality and inequality constraints. Hence, the

method of primal-dual interior point with slack variables for the inequality con-

straints is used.

∆xk+1 = xk+1 − xk and H(xk) = [
∂hfunc

∂x
]xk is the Jacobian matrix of dimension

3m × (n − 3). Where, n is the total number of buses in the system. The angles of

a particular bus (bus #1) are taken as references, such as 0◦ for phase a, −120◦ for

phase b and 120◦ for phase c. hfunc(x) is the measurement function of measurements

as a function of state variables. A measurement can be voltage magnitude, real and

reactive power flows, branch currents, real and reactive power injection. A typical

distribution system does not have many measurements. Most of the measurements

are branch current measurements. There are very few branch power measurements

, a very few injection measurements and voltage magnitude is only measured in the

substation bus. So most of the measurements are loads or pseudo measurements

and some are virtual or zero-injection measurements. The solution methodology as
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discussed in Section 3.2 requires the calculation of the Jacobian matrix H at each

iteration. The Jacobian matrix is the matrix of partial derivatives of measurement

functions with respect to the state variables of the system. The Jacobian matrix

can be expressed as:

H =























∂h1(x)
∂δ2

. . . ∂h1(x)
∂δn

∂h1(x)
∂V1

. . . ∂h1(x)
∂Vn

∂h2(x)
∂δ2

. . . ∂h2(x)
∂δn

∂h2(x)
∂V1

. . . ∂h2(x)
∂Vn

...
...

...
...

...
...

...
...

∂hm(x)
∂δ2

. . . ∂hm(x)
∂δn

∂hm(x)
∂V1

. . . ∂hm(x)
∂Vn























(3.30)

The measurement functions and the derivation of Jacobian elements related to New-

ton’s method are described in details in Section 3.4.

3.4 Measurement model

Considering the vector zmeas as a set of measurements and vector x as the state

vector, the non-linear measurement functions hfunc(x) are given below.

Measurement Function
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Figure 3.2: Two-port pi-model of a network
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The general two-port π-model for the network branches for a transmission sys-

tem is shown in Figure 3.2. The same model can be expanded to the three-phase

distribution system such that each element of the π-model for network branches is

a 3x3 matrix rather than a single element. This model has been used to relate the

state vector to each type of measurements [49].

Bus Power Injection

The real and reactive power injections at the ith bus for phase ph are given by:

P ph
i =

3
∑

l=1

n
∑

j=1

V ph
i V l

j [G
ph,l
ij cos(δphi − δlj) + Bph,l

ij sin(δphi − δlj)] (3.31)

Qph
i = −

3
∑

l=1

n
∑

j=1

V ph
i V l

j [B
ph,l
ij cos(δphi − δlj)−Gph,l

ij sin(δphi − δlj)] (3.32)

Considering the two-port π-model of the network branches, the line power flows

between bus i and bus j for a phase ph are given by:

P ph
ij =

3
∑

l=1

[V ph
i V l

i (g
ph,l
ij +gph,lsi )−V ph

i V l
j (g

ph,l
ij cos(δphi −δlj))+bph,lij sin(δphi −δlj)] (3.33)

Qph
ij = −

3
∑

l=1

[V ph
i V l

i (b
ph,l
ij +bph,lsi )+V ph

i V l
j (g

ph,l
ij sin(δphi −δlj)+bph,lij cos(δphi −δlj))] (3.34)

The line current between bus i and bus j for a phase ph is given by:

Iphij =

√

(P ph
ij )

2 + (Qph
ij )

2

V ph
i

(3.35)

As the above equations are non-linear, so the vector measurement functions are

linearised around an operating point. Hence, it is required to compute the Jacobian

matrix whose elements are the first order derivatives of the measurement functions

with respect to the state variables. The Jacobian elements corresponding to the real
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and reactive power injections are:

∂P ph
i

∂δli
l=ph

=
n

∑

j=1

j 6=i

V ph
i V ph

j [−Gph,ph
ij sin(δphi − δphj ) + Bph,ph

ij cos(δphi − δphj )]

+
3

∑

l=1
l 6=ph

n
∑

j=1

V ph
i V l

j [−Gph,l
ij sin(δphi − δli) +Bph,l

ij cos(δphi − δlj)]

= −Qph
i − (V ph

i )2Bph,ph
ii

(3.36)

∂P ph
i

∂δli
l 6=ph

= V ph
i V l

i [G
ph,l
ii sin(δphi − δli)−Bph,l

ii cos(δphi )] (3.37)

∂P ph
i

∂δlj
= V ph

i V l
j [G

ph,l
ij sin(δphi − δphj )−Bph,l

ij cos(δphi − δlj)] (3.38)

∂P ph
i

∂V l
i

l=ph

= 2V ph
i Gph,ph

ii +
n

∑

j=1

j 6=i

V ph
j [Gph,ph

ij cos(δphi − δphj ) + Bph,ph
ij sin(δphi − δphj )]

+
3

∑

l=1
l 6=ph

n
∑

j=1

V l
j [G

ph,l
ij cos(δphi − δlj) + Bph,l

ij sin(δphi − δlj)] + Pn(c
p
2(

1

Vn

) + cp3(
V

V 2
n

))

=
P ph
i

V ph
i

+ V ph
i Gph,l

ii + Pn(c
p
2(

1

Vn

) + cp3(
V

V 2
n

))

(3.39)

∂P ph
i

∂V l
j

= V ph
i [Gph,l

ij cos(δphi − δlj) + Bph,l
ij sin(δphi − δlj)] (3.40)

∂Qph
i

∂δli
l=ph

= −
n

∑

j=1

j 6=i

V ph
i V ph

j [−Bph,l
ij sin(δphi − δphj )−Gph,l

ij cos(δphi − δphj )]

−
3

∑

l=1
l 6=ph

n
∑

j=1

V ph
i V l

j [−Bph,l
ij sin(δphi − δli)−Gph,l

ij cos(δphi − δlj)]

= P ph
i − (V ph

i )2Gph,ph
ii

(3.41)

∂Qph
i

∂δli
l=ph

= −V ph
i V l

i [B
ph,l
ii sin(δphi − δli) +Gph,l

ii cos(δphi − δli)] (3.42)

∂Qph
i

∂δlj
= −V ph

i V l
j [B

ph,l
ij sin(δphi − δlj) +Gph,l

ij cos(δphi − δlj)] (3.43)
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∂Qph
i

∂V l
i

l=ph

= −2V ph
i Bph,ph

ii −
n

∑

j=1

j 6=i

V ph
j [Bph,ph

ij cos(δphi − δphj )−Gph,ph
ij sin(δphi − δphj )]

−
3

∑

l=1
l 6=ph

n
∑

j=1

V l
j [B

ph,l
ij cos(δphi − δphj )−Gph,l

ij sin(δphi − δphj )] +Qn(c
Q
2 (

1

Vn

) + cQ3 (
V

V 2
n

))

= −Qph
i

V ph
i

− V ph
i Bph,l

ii +Qn(c
Q
2 (

1

Vn

) + cQ3 (
V

V 2
n

))

(3.44)

∂Qph
i

∂V l
j

= −V ph
i [Bph,l

ij cos(δphi − δlj)−Gph,l
ij sin(δphi − δlj)] (3.45)

The Jacobian elements corresponding to the real and reactive power flows between

bus i and bus j are:

∂P ph
ij

∂δli
l=ph

= −
3

∑

l=1

V k
i V

l
j [−gph,lij sin(δphi − δlj) + bph,lij cos(δphi − δlj)]

= −Qph
ij − (V ph

i )2[bph,lij + bph,lsi ]

(3.46)

∂P ph
ij

∂δli
l 6=ph

= V ph
i V l

i [g
ph,l
ij sin(δphi − δli)− bph,lij cos(δphi − δli)] (3.47)

∂P ph
ij

∂δlj
= −V ph

i V l
j [g

ph,l
ij sin(δphi − δlj)− bph,lij cos(δphi − δlj)] (3.48)

∂P ph
ij

∂V l
i

l=ph

= V ph
i [gph,phij + gph,lsi ]

+
3

∑

l=1

[V l
i g

ph,ph
ij + gph,lsi − V l

j [g
ph,l
ij cos(δphi − δlj) + bph,lij sin(δphi − δlj)]]

=
P ph
ij

V ph
i

+ V ph
i [gph,phij + gph,lsi ]

(3.49)

∂P ph
ij

∂V l
i

l 6=ph

= V ph
i [gph,lij cos(δphi − δli) + bph,lij sin(δphi − δli) + gph,lsi ] (3.50)

∂P ph
ij

∂V l
j

= −V ph
i [gph,lij cos(δphi − δlj) + bph,lij sin(δphi − δlj)] (3.51)
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∂Qph
ij

∂δli
l=ph

= −
3

∑

l=1

V ph
i V l

j [g
ph,l
ij cos(δphi − δlj) + bph,lij sin(δphi − δlj)]

= P ph
ij − (V ph

i )2[gph,phij + gph,lsi ]

(3.52)

∂Qph
ij

∂δli
l 6=ph

= V ph
i V l

i [−gph,lij cos(δphi − δli)− bphij sin(δphi − δli)] (3.53)

∂Qph
ij

∂δlj
= −V ph

i V l
j [−gph,lij cos(δphi − δlj)− bph,lij sin(δphi − δlj)] (3.54)

∂Qph
ij

∂V l
i

l=ph

= −V ph
i [bph,lij + bph,lsi ]

+
3

∑

l=1

[−V l
i (b

ph,l
ij + bph,lsi )− V l

j [g
ph,l
ij sin(δphi − δlj)− bph,lij cos(δphi − δlj)]]

=
Qph

ij

V ph
i

− V ph
i [bph,lij + bph,lsi ]

(3.55)

∂Qph
ij

∂V l
i

l 6=ph

= V ph
i [gph,lij sin(δphi − δli)− bph,lij cos(δphi − δli) + bph,lsi ] (3.56)

∂Qph
ij

∂V l
j

= −V ph
i [gph,lij sin(δphi − δlj)− bph,lij cos(δphi − δlj)] (3.57)

The Jacobian elements corresponding to the branch current flows between bus i and

bus j are:

∂Iphij
∂δli

=
real(Iphij )

|Iphij |
[V l

i g
ph,l
ij sin δli + bph,lij cos δli]

+
imag(Iphij )

|Iphij |
[V l

i −gph,lij cos δli + bph,lij sin δli] (3.58)

∂Iphij
∂δlj

=
real(Iphij )

|Iphij |
[V l

j−gph,lij sin δlj − bph,lij cos δlj]

+
imag(Iphij )

|Iphij |
[−V l

j−gph,lij cos δlj + bph,lij sin δlj] (3.59)

∂Iphij
∂V l

i

=
real(Iphij )

|Iphij |
[−gph,lij cos δli + bph,lij sin δli]

+
imag(Iphij )

|Iphij |
[−gph,lij sin δli − bph,lij cos δli] (3.60)
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∂Iphij
∂V l

j

=
real(Iphij )

|Iphij |
[gph,lij cos δlj − bph,lij sin δlj]

+
imag(Iphij )

|Iphij |
[gph,lij sin δlj + bph,lij cos δlj] (3.61)

The Jacobian elements corresponding to the voltage magnitude measurements at

bus i are:
∂V ph

i

∂δli
= 0 (3.62)

∂V ph
i

∂δlj
= 0 (3.63)

∂V ph
i

∂V l
i

l=ph

= 1 (3.64)

∂V ph
i

∂V l
i

l 6=ph

= 0 (3.65)

∂V ph
i

∂V l
j

i6=j

= 0 (3.66)

where, n is the number of buses and l is the phase index Gph,l
ij + Bph,l

ij is the ijth

element of the bus admittance matrix between phase ph and phase l and gph,lij + bph,lij

is the admittance of the series branch connecting bus i and bus j between phase ph

and phase l.

The Jacobian H is used in every iteration to find the Gain matrix and calculate

the correction vector.

3.5 Case studies and discussions

3.5.1 Simulation results

IEEE 13-bus system

A standard IEEE-13 bus distribution system has been used here. The feeders

are small yet they show some interesting characteristics as discussed in Section 2.7

of Chapter 2. The system represents a typical distribution system with voltage
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magnitude measurements only at the substation, with more branch current mea-

surements than power flow measurements, and all loads are considered as pseudo

measurements. Phase c for bus 3 and phase a and c for bus 10 are zero injection or

virtual measurements.

Figure 2.2 of Chapter 2 shows the typical IEEE 13-bus system. A WLS state

estimator is coded in Matlab and tested on the standard IEEE-13 bus system and

run on a system with Intel Xeon processor @3.33GHz and 12 GB RAM. No Matlab

toolbox was used. The complete system data are given in [51], [52] and Appendix

A.

The overhead lines and underground cables are modelled by modified Carson’s

equations. The loads are modelled in ZIP model and the three-phase transformer is

configured as a grounded Y-Y connection. Measurements have been generated using

normal distribution curve with load flow values as true or mean values and stan-

dard deviation. Each measurement is taken from the distribution curve randomly

and this experiment is performed a number of times in a Monte Carlo approach.

One such case has been shown here, in the results. It is assumed that the mea-

surements are taken from independent meters placed at different locations (nodes

and branches). Hence, the measurement errors are assumed to be independent and

identically distributed. The zero injections are considered as equality constraints.

The voltage magnitudes are set to operate within 5% of the nominal values and the

voltage angles within −30◦ to +30◦. The switch between buses 9 and 10 is assumed

to be closed. Therefore, equality constraints in the state estimation formulation are

used as shown in equation (2.9). The loads on nodes 2, 9 and 10 are delta-configured

loads. The constant impedance loads are on nodes 2 and 10, while nodes 10 and 7

have constant current loads.

Table 3.1 present the load flow values of the state variables and Table 3.2 shows

their estimates. The error in real measurement is assumed to be 3% and the error

in pseudo measurement is assumed to be 20%. The load flow values are considered

to be the true values. Figure 3.3 show the true and estimated voltage magnitudes

of the three phases for the IEEE-13 bus model. For the ease of Matlab coding it is

assumed that at each iteration the missing phases are of voltage magnitude value
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Table3.1:LoadFlowResults

Angle(indegrees) Voltagemagnitude(inpu)

BusNo. pha phb phc pha phb phc

1 0 -120 120 1 1 1

2 - -119.565 119.357 - 0.9888 1.0063

3 - -119.6173 119.4225 - 0.9893 1.0062

4 -0.2412 -119.6838 119.5482 0.9943 0.9923 1.0054

5 -0.264 -119.7004 119.5467 0.9940 0.9916 1.0045

6 -0.4976 -119.8652 119.3859 0.9960 0.9930 1.0082

7 - - 119.3912 - - 1.0069

8 -0.6488 - 119.414 0.9886 - 1.008

9 -0.631 -119.2481 119.4222 0.9893 0.9936 1.0092

10 -0.631 -119.2481 119.4222 0.9893 0.9936 1.0092

11 -0.6725 -119.258 119.4517 0.9881 0.9939 1.0083

12 -0.6242 - - 0.9868 - -

13 -0.6317 -119.2475 119.4221 0.9890 0.9936 1.0091
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Figure3.3:TrueandestimatedvoltagesforIEEE13bussystem
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Table 3.2: State Estimates

Angle estimates(in degrees) Voltage estimates(in pu)

Bus No. ph a ph b ph c ph a ph b ph c

1 0 -120 120 1.0006 0.9980 1.0030

2 - -119.566 119.5905 - 0.9897 1.0068

3 - -119.6192 119.6037 - 0.9899 1.0070

4 -0.2794 -119.6875 119.6423 0.9944 0.9925 1.0076

5 -0.3005 -119.7033 119.6340 0.9920 0.9919 1.0057

6 -0.5364 -119.8673 119.4340 0.9940 0.9923 1.0064

7 - - 119.4432 - - 1.0053

8 -0.6496 - 119.4655 0.9867 - 1.0065

9 -0.6319 -119.2681 119.4736 0.9893 0.9930 1.0076

10 -0.6319 -119.2681 119.4736 0.9892 0.9930 1.0076

11 -0.6519 -119.2604 119.4922 0.9891 0.9936 1.0095

12 -0.6253 - - 0.9875 - -

13 -0.6323 -119.2676 119.4736 0.9900 0.9950 1.0116
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Figure 3.4: True and estimated voltages for phase a with 20% 40% and 50% error
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equal to 1. However, the state estimation process is performed with 40% and 50%

error in pseudo measurements as well. Figure 3.4 shows that for cases when the

error in pseudo measurement is large the state estimates are less accurate. The

figure shows that when the error is 20% the estimates for phase a are closest to the

true value compared to other cases. In Tables 3.1 and 3.2, the missing phases have

been represented by dashes. There is a closed switch between bus 9 and 10. Figure

3.3 and Tables 3.1 and 3.2 show that the voltage magnitude values and voltage

angles remain the same across the closed switch. The obtained results have been

found to be satisfactory within the allowable tolerance (±3σ) from equation (3.12).

IEEE 123-bus system

The IEEE 123-bus system has also been considered as a case study. The system

test feeder has a nominal voltage of 4.16 kV and the system has some remarkable

features as mentioned in Section 2.7 of Chapter 2.

The lines are modelled according to Carson’s equations as in [49] and the loads

are modelled in ZIP-model. There is one on-load tap changer (OLTC) (the sec-

ondary of OLTC is on node 1), three step voltage regulators (between nodes 10 and

15, 118 and 68, 26 and 27) and shunt capacitor banks (on nodes 84, 89, 91 and

93). The switches in the system provide optimal configuration options. A three-

phase transformer is modelled as three individual single-phase transformers. The

tap changers are considered to have fixed taps. The details of the system are given

in [51, 54]. The topology of the system is shown in Figure 2.3 of the last chapter.

The cases for two cases have been shown here. The one with switch between 19-116

closed and between 52-121 open. In the second case, the switch between 52-121

closed and between 19-116 open. The switches between buses 14 and 117, 61 and

118, 98 and 119 are considered closed in both the cases.

As for the previous case study, measurements have been generated using nor-

mal distribution curve with load flow values as true or mean values and standard

deviation. Each measurement is taken from the distribution curve randomly and

this experiment is performed a number of times in a Monte Carlo approach. One

such case has been shown here, in the results. It is assumed that the measurement
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Figure 3.5: True and estimated voltages for IEEE 123 bus system
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Figure 3.6: True and estimated voltages for IEEE 123 bus system
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Figure 3.7: True and estimated voltages for IEEE 123 bus system
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Figure 3.8: True and estimated voltage angles for IEEE 123 bus system
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Figure 3.9: True and estimated voltage angles for IEEE 123 bus system
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Figure 3.10: True and estimated voltage angles for IEEE 123 bus system
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Figure 3.11: True and estimated voltages for IEEE 123 bus system with changed
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Figure 3.13: True and estimated voltages for IEEE 123 bus system with changed

switch status
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Figure 3.14: True and estimated voltage angles for IEEE 123 bus system with

changed switch status
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Figure 3.15: True and estimated voltage angles for IEEE 123 bus system with

changed switch status
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errors are independent and identically distributed. The zero injections are consid-

ered as equality constraints. The voltage magnitudes are set to operate within 5%

of the nominal values and the voltage angles within −30◦ to +30◦. The error in real

measurement is assumed to be 3% and the error in pseudo measurement is assumed

to be 40%. Figure 3.5, 3.6, 3.7 show the true and estimated voltage magnitudes of

the three phases for the IEEE-123 bus model for case I. Whereas, Figure 3.11, 3.12,

3.13 show the true and estimated voltage magnitudes of the three phases when the

switch status are changed. Figure 3.8, 3.9, 3.10 and Figure 3.14, 3.15, 3.16 further

show the true and estimated voltage angles of the three phases for case I and the

case when the switch status is changed respectively. The obtained results have been

found to be satisfactory within the allowable tolerance (±3σ) from equation (3.12).

3.6 Conclusions

This chapter presents a WLS three-phase state estimation based on detailed

modelling of the different components of three phase system considering both the

star and delta-configured loads. The method achieved a reliable solution to the

state estimation problem. Simulation results on IEEE 13-bus and IEEE 123-bus

distribution system showed the effectiveness of the approach and the SE results have

been compared with the load flow results. The cases with different switch status

have also been implemented on the 123-bus system. The reliable state estimation

results provides the basis for control and monitoring of modern distribution systems.

However, the state estimates are affected by the accuracy of the measurements-

real and pseudo. Thus, a large measurement error can result in wrong distribu-

tion operation and control decisions. The accuracy of the measurement meters are

compromised due to various reasons. This is discussed in the next chapter. The

measurements can also be compromised by an attacker for his own benefits. The

attacker disguises the attack in such a way that the traditional bad data detec-

tion techniques are unable to identify them. This poses a serious challenge to the

EMS/DMS. The next chapters discuss the vulnerabilities and a detection technique

based on diagnostic robust generalized potential and studentized residuals.
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Vulnerabilities associated with State

Estimation

One of the essential benefits of using a state estimator is to detect, identify

and correct measurement errors. This is known as bad data detection. Depending

on the state estimation procedure, bad data processing can be carried out as part

of the estimation process or as a post-estimation process. However, irrespective of

the process, detection of bad data can only be done if there are enough redundant

measurements in the system. Redundant measurements can be removed from the

measurement matrix without making the system unobservable. With a given set of

measurements the system is said to be observable if a unique estimate of the states

can be found. The network observability is ensured by graph theory method prior to

the estimation process. So, when there is an error in a redundant measurement, this

can be detected by statistical tests based on measurement residuals [55]. However,

removal of a critical measurement will lead the system to an unobservable system.

Measurements may contain errors due to various reasons. Random errors usually

exist in measurements due to the finite accuracy of the meters and the telecommuni-

cation medium. Large measurement errors can also occur when the meters have bi-

ases, drifts or wrong connections. Telecommunication system failures or noise caused

by unexpected interference also lead to large deviations in recorded measurements.

Apart from these the state estimator may be affected by incorrect topology infor-
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mation which can be subsequently interpreted as bad data. With the integration

of PMUs, smart metering and communication infrastructure into the system, the

modern power system is gradually becoming more and more cyber-physical rather

than only physical system. As more and more advanced communication and cy-

ber technologies are getting incorporated, the possibility of an adversary to tamper

with the meter data to cause the state estimator to produce wrong estimates is also

increasing [24,25].

Over the years, state estimation has been developed to deal with gross error in

data because of inaccuracy of the measurements. Any tampering with data and/or

maliciously operating switch will also result in gross errors in data. If an adversary

gains control of the switches/circuit breakers he/she can change the topology of the

system completely. This would result in faulty measurement data. So in principle,

the effect of malicious attack can be detected through bad data detection. Depend-

ing on the state estimation methodology bad data detection can be part of state

estimation process or a post estimation computation as shown in Figure 4.1. As

long as these errors are part of over measured systems (more measurements than

the number of states to be estimated) and do not belong to the critical measurement

and leverage points (measurements that significantly influence the state estimation

solution), eliminating them to get a clear and accurate estimate is not difficult.

However, if these bad data belong to the meters in the leverage set they need to be

handled carefully. The leverage measurements help in improving the state variable

estimates of the system by providing sufficient redundancy. The critical measure-

ments are those whose removal affects the system observability. References [56]

and [57] have discussed about protection of some or all of basic measurements or

critical k-tuples in the system. A critical k-tuple is a set of measurements for which,

if all the measurements of the set are lost, then the network becomes unobservable.

However, the leverage measurements are not protected. The leverages can occur

both in transmission and distribution networks [58]. The leverage measurements

are explained in Section 4.1. This requires to develop a methodology to deal with

the situation.

A schematic similar to Figure 1.1 in Chapter 1 of a typical energy/distribution
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Figure 4.1: A typical energy/distribution management system architecture

management system with ICT infrastructure is shown in Figure 4.1.

Traditionally, the detection of bad data has been carried out by largest normal-

ized residuals (LNR), which performs pretty well when there is a single bad measure-

ment or multiple non-interacting bad measurements in the system [59]. However, it

fails in case of influential or leverage measurements [20].

References [26] and [27] have proposed a χ2 test for the identification of bad

measurements. In the χ2 test if the WLS state estimation objective function value

is more than a predefined threshold then the presence of bad data is suspected.

Otherwise, there is no bad data in the measurement set.

Chen and Abur have proposed the method of placement of PMUs to enable

bad data detection in state estimation [35]. The placement of PMUs at strategic

locations will eliminate measurement criticality and thus help in bad data detection.

References [36] and [60] have devised the concepts of robust distances and influ-

ence functions in regression analysis of measurement equations to identify leverage

points in a system.

But none of these references discussed the issue of detecting bad data in leverage

data points. Therefore, security associated with the state estimator has become a
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matter of particular concern and hence, robust methods have to be resorted to in

detection, identification and elimination of bad data from state estimation.

4.1 Leverage Points and Bad Data

Leverage points

The state estimation problem as discussed in Chapter 3 is linearized around an

operating point and is expressed as the following regression model.

∆z = H∆x+ e (4.1)

where z is considered the output of the regression model and x is the regressor vector,

predictor or the factor in the regression model and e is the random error vector,

which are random and assumed to be independently and identically distributed

(i.i.d.), in the regression model. The matrixH is known as the coefficient or regressor

matrix. The detection, assessment and understanding of influential points are the

main areas of study in the regression model building. The factor variables or the

explanatory variables in the regression model are solved by least squares estimation

as in equations (3.17) and (3.18). From equation (3.11), the estimated measurement

vector is derived as

∆ẑ = H(HTR−1H)−1HTR−1∆z (4.2)

Or,

R−1/2∆ẑ = R−1/2H((R−1/2H)TR−1/2H)−1(R−1/2H)TR−1/2∆z (4.3)

∆ˆ̃z = H̃(H̃T H̃)−1H̃T∆z̃ (4.4)

Where,

∆ˆ̃z = R−1/2∆ẑ, H̃ = R−1/2H, ∆z̃ = R−1/2∆z

Therefore,

K = H̃(H̃T H̃)−1H̃T (4.5)
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where, K is called the hat or high-leverage matrix.

The matrixK shows some remarkable properties. It is symmetric (K = KT ) and

idempotent (K.K. . . . .K = K). Hence, the diagonal element Kii can be expressed

as

Kii = K2
ii +

∑

i6=j

K2
ij (4.6)

where, Kij is the non-diagonal element. Therefore, the value of the diagonal element

lies between 0 and 1.

A large diagonal entry of the hat matrix implies that the particular measurement

has more leverage or influence on the estimated states than others and they are

referred to as leverage points. If the influence is high enough the corresponding

diagonal entry may be close to 1. In other words, according to equation (4.1), each

observation (∆zi,Hi) is a point in the factor space of regression, where Hi is a row of

the H matrix. When there is an outlier in the X-space or Hi-space or the regressor

variable space, it is said to have an undue influence on the state estimates and is

called a leverage measurement.

Bad data

The concept of bad data and outliers go hand in hand in the context of regres-

sion jargon. Bad data usually refers to an erroneous measurement due to various

reasons. Due to the integration of PMUs, intelligent and smart metering with ICT

infrastructure, the modern power network is a cyber-physical system rather than a

physical system. It uses the telecommunication medium for data transfer. Bad data

or gross errors can occur during the data transfer over the SCADA telemetry sys-

tem. Telecommunication system failures or noise caused by unexpected interference

also lead to large deviations in recorded measurements. So, these bad data or gross

errors can be looked as outliers in the measurement space. However, a measurement,

which may or may not contain errors, such as leverage points, may also appear as

outliers due to the structure of the corresponding regression equation. As a result, it

is essential to differentiate the leverage points from bad data and identify the error,

if any, in leverage points. In the modern power system, more and more advanced
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communication and cyber technologies are getting incorporated [20]. Therefore, the

possibility of an adversary to tamper with the measurements to drive the state esti-

mator to wrong estimates is also high. Theoretically, the bad data detection (BDD)

technique using normalized residual is a post-estimation process. Essentially, the

largest normalized residual (LNR) method is used to detect, identify and eliminate

bad measurement data. The largest normalized residual refers to the test where the

largest normalized residual corresponds to the bad measurement data. Normalized

residual based approaches for identification of bad data have been reported in [27]

and [26]. In the case of one erroneous measurement data, the largest normalized

residual works perfectly fine. It has been reported in the literature [26, 27] that

LNR also works on both non-interacting and interacting non-conforming multiple

bad measurement data. However, it fails to detect the bad data if there are multiple

interacting and conforming bad data [59],where the errors are in agreement, and if

they are part of the leverage set. Moreover, the residuals are given as

r = ∆z −∆ẑ (4.7)

Eq.(4.7) can be rewritten as

r = (I−K)∆z (4.8)

Therefore, the measurement residuals with large diagonal entries of the hat matrix

are small even if it is contaminated with gross error.

4.2 Attack Strategies

In power systems, the state estimator as mentioned in Figure 4.1 takes three

kinds of inputs-the meter measurement data (power injection and power flow), the

network topology information data (on/off status of switches) and the parameter

data (branch impedance and variances of measurement errors). Typically, these

inputs are either sent from meters to control center or stored in the databases. It is

assumed that the adversary can access and manipulate all the three kinds of inputs.

The leverage measurements occur when there are injection measurements on

a bus, which has a larger number of branches connected to it compared to others,
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injection measurements on a bus incident to branches with very different impedances,

and the line power flow measurements on relatively short lines. In large meshed

distribution systems these leverages can occur due to the presence of line power

flow measurements on short lines [58] and also due to the lower redundancy of

measurements. An adversary can take advantage of this situation and attack the

high leverage points to influence the estimates of the state variables of the system

and hence, can hide the attack from being detected. The leverage points affected by

gross errors are called bad leverage points. Though bad leverage points are harmful

to many estimators, good leverage points are particularly useful in improving the

variance of the estimates.

4.2.1 Attacking power flow measurements

Power flow measurements are normally placed between buses to monitor the

flow of the branches. Leverage power flow measurements are formed when the

measurements are placed on relatively short or long lines. An attacker, if he/she

intends to make the attack invisible, makes changes to the value of impedance of

the branch by applying Theorem 2 and rule 1 and rule 2 as given in [61].

4.2.2 Attacking power injection measurements

Power injection measurements are placed at a bus to monitor the active and

reactive power injections from a load or generations at a particular bus. A node/bus

is particularly vulnerable to leverage attack if that has more connecting branches

connected to it or in other words there are more non-zero elements in that row of

the H as in (3.30) matrix compared to other rows. If an adversary wishes to attack

an injection leverage measurements he/she should increase the particular diagonal

element of the hat matrix to make the attack undetectable by applying Theorem 2

and rule 1 and rule 2 as given in [61].

To make a successful attack, the attacker makes changes to the impedance of

a branch by applying Theorem 2 and rule 1 and rule 2. The theorems 1,2 and 3

are stated in Appendix D. Theorem 1 states how a successful attack can be made
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on a measurement by changing Kii. While Theorem 2 shows how much Kii has to

be increased to make an attack on a single measurement zi. To make an attack on

multiple measurements, the attacker will perturb the measurements one at a time

and apply Theorem 2 repeatedly. Finally, Theorem 3 suggests how to increase the

value of Kii.

4.3 Masking and Swamping

The leverage points in regression studies carry with them an inherent difficulty.

When there are more than one influential point, some of them may remain unde-

tected. This phenomenon is known as masking. On the other hand, some of the

non-influential points may be wrongly detected as influential points, which is known

as swamping. The masking/swamping can be explained by the following equation.

The residual for the ith measurement with two high leverages at zi and zk is

expressed as

ri = (1−Kii)∆zi −Kik∆zk −
m
∑

j=1
j 6=i,j 6=k

Kij∆zj (4.9)

So, if the first two terms in equation (4.9) are opposite in sign a bad leverage may

appear like a good leverage. This is known as masking. On the other hand, if the

second and the third terms in the same equation add up to a large value the good

leverage may become a bad leverage. This is known as swamping.

The masking and swamping phenomena have been reported in the literature as

in Hawkins, Bradu and Kass (HBK) data, Brownlee’s stack loss data [62, 63], Hadi

and Simonoff (HS) data, Belgian Telephone data etc. In the HBK data there are 75

observations, 14 high leverage points and 10 outliers with points 11-14 are swamped

cases. The Brownlee’s data shows, however, that there are 21 observations with 4

outliers (cases 1,3,4,21) and 4 high leverage points (cases 1,2,3,21). There are two

points which are masked and on the other hand point 17 is swamped. The mask-

ing/swamping phenomenon can influence the final outcome of the detection proce-

dure and result in faulty detection of bad data or leverage point. This swamping

or masking phenomenon is, however, not present when there is only one influential

74



4.4. DIAGNOSTICS BASED ON RESIDUAL ANALYSIS Chapter 4

measurement. This case is similar to the largest normalized residual (LNR) test to

identify outliers. Hence, when there are multiple outliers or bad data or influential

points the largest normalized residual test is deemed unsuitable. To the best of my

knowledge, the masking/swamping phenomenon has not been investigated in the

context of power system state estimation. This sets up the motivation to devise a

method by which the high leverage points, low leverage points and outliers or bad

data are completely separated and identified.

The next sections provide a review of the different diagnostic techniques related

to identification of gross error and discusses the suitability of externally studentized

residuals for this purpose.

4.4 Diagnostics based on Residual Analysis

Multiple linear regression model building is one of the standard problems in

chemometrics [64]. The linearised measurement equations for state estimation can

be interpreted as regression modelling. Each measurement can be considered as a

point in the (n + 1)-dimensional regression plane. The term regression diagnostics

has been used for a collection of methods for the identification of influential points,

and for the identification of violations of the assumptions of least-squares. The

residuals are defined as

r = ∆z −∆ẑ (4.10)

The residuals give a measure of the presence of bad data in the system. Thus,

analysis of residuals provide a diagnostic for bad data detection. There are different

kinds of residuals based on mathematical definition. These are highlighted in the

following subsections.

4.4.1 Normalized residuals

Researchers have also addressed the issue by χ2-test as in [27], by Hypothesis

Testing Identification (HTI) as mentioned in [27] and some researchers have also

used normalized residual for the detection of bad data [27].
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In lines with the WLS state estimation, the errors are assumed to be normally

distributed as ei ∽ N(0, Rii) and hence, the residuals are also normally distributed

as r ∽ N(0,Ω) where, Ω = SR, where S = I − K. Therefore, the normalized

residuals of the measurements can be determined as

rNi =
|ri|√
Ωii

=
|ri|√
RiiSii

(4.11)

The normalized residuals will then have Standard Normal Distribution rNi ∽ N(0, 1).

4.4.2 χ2-test for bad data detection

The measurement residual is a normally distributed variable and the residuals

are independent. Therefore

J =
3m
∑

i=1

R−1
ii (zi − hi(x))

2 (4.12)

=
3m
∑

i=1

R−1
ii r2i (4.13)

According to statistical properties, the objective function, being the weighted sum

of the residuals will follow a χ2 distribution with (3m − n) degrees of freedom. If

the estimated value of this objective function J(x̂) is more than a threshold for a

certain detection confidence probability of 97.5% then the measurements are said to

have bad data. Otherwise, the measurements are error free. This is known as the

χ2-test for identification of bad data.

4.4.3 Largest Normalized Residual

The largest normalized residual (LNR) will correspond to the erroneous data

if there is only one bad data in the measurement system. Hence, if the largest

normalized residual is more than a threshold (say 3) then the system is said to have

erroneous measurement. Otherwise the measurements are considered to be free from

error.

The LNR test is able to detect the bad data if there is only one bad data in

the system [26, 27]. It even works on both non-interacting and interacting non-
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conforming multiple bad measurement data. However, it fails when there are mul-

tiple interacting conforming bad data, where the errors are in agreement [59].

4.4.4 DFFITS

In statistical regression, some of the data points exert more influence on the

regression characteristics than the other points. Data point with large residuals and

high leverages can distort the accuracy and shape of the regression. Researchers

have addressed this problem by applying many diagnostic measures. DFFITS is a

diagnostic measure to identify influential points. It is defined as the change in the

estimated value of the measurement obtained when the influential data point is left

out. It is further standardized by dividing by the estimated standard deviation of

the fit at that point. It is defined by

DFFITSi =
ẑi − ẑ−i

i

σ̂−i

√
Kii

(4.14)

DFFITSi =
hT
i (x̂− x̂−i)

σ̂−i

√
Kii

(4.15)

where,

Kii is the leverage value of the point

σ̂−i is the estimated standard deviation without the influential point

x̂−i are the fitted state variables without the point in question

ẑ−i are the estimated measurement values without the point in question

By definition, DFFITS is the influence of an observation on its own fitted value. It

has also been referred to as Welsch and Kuh’s distance in some literatures [65, 66].

4.4.5 DFBETA

DFBETA is the diagnostic measure which is defined by the change in the esti-

mated value of the state variable or regression coefficient obtained when the influ-

ential data point in question is left out.
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The mathematical expression for DFBETA has the general form

DFBETAi = x̂i − x̂−i
i =

(HTH)−1hT
i êi

1−Kii

(4.16)

It is measure of the influence of an observation on a particular regression coefficient.

4.4.6 Cook’s distance

Cook’s distance is a commonly used measure for the influence of a data point

named after the American statistician R. Dennis Cook [67]. Cook’s distance is

defined as the influence of an observation on all fitted values. It can be expressed as

CDi =
(x̂−i − x̂)T (HTH)(x̂−i − x̂)

pσ̂2
(4.17)

CDi =
σ̂−i

pσ̂2
DFFITSi (4.18)

where,

p is the number of fitted parameters.

x̂ are the fitted state variables.

x̂−i are the fitted state variables without the point in question.

H is the Jacobian matrix as mentioned in the last chapter.

4.4.7 Studentized residuals

The diagnostics for single case influential observations are ineffective in case of

multiple influential observations due to masking/swamping effects. Masking is said

to occur if a bad data point, in the presence of other bad data points, appears as a

good data point. Similarly swamping is said to occur if a good data point, in the

presence of other bad data points, behaves as a bad data point. The phenomenon of

masking and/or swamping has been explained in Section 4.3. Let the set of deleted

cases be D and the set of remaining cases be R. When a group of observations is

deleted

K
−(D)
ii = hT

i (H
T
RHR)

−1hi
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K
−(D)
ii is the ith diagonal element of the H(HT

RHR)
−1HT matrix. Most of the outlier

detection methods separate the clean observations from the potential outliers.

When an additional point i is added to the set R, according to [66,68]

K
−(D)+i
ii = hT

i (H
T
RHR + hih

T
i )

−1hi =
K

−(D)
ii

1 +K
−(D)
ii

The new state variables with the additional point i in the set R is given by

∆x̂R+i = (HT
RHR + hih

T
i )

−1(HT
R∆zR + hi∆zi)

= ∆x̂R +
(HT

RHR)
−1hi

1 +K
−(D)
ii

r∗st,i

Let r
−(D)
i be the ith deletion residual.

r∗,R+i
st,i =

r
−(D)
i

σ̂R

√

1 +K
−(D)
ii

The variances of the observations in the basic subset and outside the basic subset

are given [69] as:

1− hT
i (H

T
RHR)

−1hi, i ∈ R

1 + hT
i (H

T
RHR)

−1hi, i /∈ R

The studentized residuals for the two subsets are given as

r
−(D)
i

σ̂R

√

1− hT
i (H

T
RHR)−1hi

, i ∈ R

r
−(D)
i

σ̂R

√

1 + hT
i (H

T
RHR)−1hi

, i /∈ R

Internally and externally studentized residuals

The externally studentized residual has a clear advantage over standardized

residuals. The standardized residual includes the ith observation, which could be

an outlier, which influences the least square function. But an externally studen-

tized residual removes the ith observation while calculating the variance estimate.

Mathematically the internally studentized residual is given as

rst,i =
ri

σ̂
√
1−Kii

(4.19)
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For a standardized residual, it is standardized by dividing by σ̂, the ordinary stan-

dard deviation estimate. But in case of externally studentized residual, it is divided

by a factor σ̂(i), which is the standard deviation estimate in an estimation model

with the ith data deleted. In other words, while the numerator and denominator

are not independent in case of standardized residuals, they are independent in case

of externally studentized residuals in the expression for residuals. Thus, in general,

externally studentized residuals will be more effective in detecting outliers.

4.5 Robust estimators

The WLS state estimator assumes that the measurement errors are independent

and identically normally distributed. However, due to the presence of bad data

the performance of WLS estimator reduces considerably. The robust estimation

techniques are used to address these issues. The concept of robust estimation was

first introduced by Huber [70]. Mili et al. [71] were the first to apply in power

system. The class of robust estimators for power system are called M-estimators.

The objective for a generalised M-estimator is given by

min J =
m
∑

i=1

φ(ri) (4.20)

where, m is the number of measurements. Depending on the function φ, different

types of estimators have been explored.

4.5.1 Quadratic Constant estimator

The quadratic constant (QC) estimator behaves like WLS inside the threshold

and takes a constant value outside the threshold.

φ(ri) =







r2i if |ri| ≤ ctune

c2tune otherwise
(4.21)

Although the QC estimator has better bad data rejection properties, the objective

function is non-convex, which gives rise to convergence and computational difficul-

ties.
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4.5.2 Square Root estimator

The objective function of a square root (SR) estimator is given by

φ(ri) =







r2i if |ri| ≤ ctune

4c
3/2
tune

√
ri − 3c2tune otherwise

(4.22)

The SR estimator with no bad data reduces to WLS. But, the φ function is propor-

tional to the square root of the residual if there is a bad data. Its bad data rejection

property is between SHGM and QC estimators. Therefore, it is computationally

similar to WLS technique.

4.5.3 Schweppe-Huber Generalized M-estimator

The Schweppe-Huber Generalized M (SHGM) estimator combines both WLAV

and WLS estimators. The φ function is given by

φ(ri) =







1
2
r2i if |ri| ≤ ctunewfactor,i

ctunewfactor,i |ri| − 1
2
c2tunew

2
factor,i otherwise

(4.23)

It behaves like the WLS estimator for small values of residuals. However, it behaves

like the WLAV estimator outside the threshold. The performance of this estimator

depends on the tuning parameter ctune and weighting factor wfactor,i. The value of

the tuning factor ctune usually is between 1 and 4.

4.5.4 Least Absolute Value estimator

The weighted least absolute value (WLAV) estimator is based on minimizing

the sum of the absolute values of the weighted residuals. It is less sensitive to the

presence of bad data. The WLAV estimator can simultaneously detect and reject

bad data. It is expressed as

φ(ri) = |ri| (4.24)

However, the complexity and computational time makes it impractical to use for

real time state estimation applications [72].

81



4.6. CONCLUSIONS Chapter 4

Robust estimators are extremely handy in terms of bad data rejection. However,

it carries with it some inherent downsides. These robust estimators may sometimes

get stuck in the local minima. Over and above that, these estimators may suffer

from slow convergence or sometimes divergence. In case of poor redundancy, which

is quite possible in distribution systems, there is a possibility of numerically unob-

servable solution. As a result, there is a high risk of wrong identification of bad

data.

This gives a motivation to apply WLS estimator in this research. WLS works

well on the assumption that the errors are normally distributed. Moreover, the WLS

is computationally fast and results in the global minimum solution.

4.6 Conclusions

This chapter presents the vulnerabilities of the modern power system. It empha-

sises particularly on the specific vulnerability in relation to the leverage measurement

data points. The attack strategies associated with power injection and power flow

measurements and the masking/swamping phenomenon have been investigated. The

different types of residual diagnostic techniques and robust estimation methods have

been explored. The externally studentized residuals have been found particularly

useful for multiple influential points from the discussions. They are more effective

in detecting the outliers. If the measurement errors are normally distributed the

weighted least squares estimation works well due to its fast computational capabil-

ity and ability to reach global solution. On the lines of vulnerabilities discussed in

this chapter, the next chapter proposes a detection technique for identification of

gross error.
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Bad Data Identification against Lever-

age Point Attacks

This chapter presents the concept of robust generalized potentials and proposes

a technique to diagnose bad data and leverage measurements simultaneously from

the rest of the regression data. The power system state estimation measurement

equations in this context are regarded as linearized regression equations of state

variables at each operating point.

In other technology areas, the gross measurement errors have been treated as

outliers in factor space of linear regression analysis [64, 73].

However, sometimes some influential measurements called leverage points may

resemble outliers in factor space as they lie outside the regression line [27,74]. There-

fore, it is hard to identify errors in leverage points. As a result, it is necessary to

distinguish the leverage points from the outliers.

It has been reported that there are a number of ways one can identify the leverage

points from the diagonal elements of the hat matrix: Mahalanobis distance (MD)

of measurements, projection statistics (PS) [26, 27] etc.

Reference [60] has devised the concept of influence function as a combination of

influence of residuals and influence of position in factor space. Thus, looking at the

influence function one can identify bad data even for influential measurements.

The concept of finding outliers in multivariate data has been suggested in [73]
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and the concept of identifying outliers based on different residual diagnostics in linear

regression models of a system has been reported in other applications [64]. However,

they have not addressed the masking and swamping effect of leverage points when

there are multiple leverage points.

In the field of applied statistics, there has been research on identifying the mul-

tiple high leverage points in multivariate analysis. It has been pointed out that

due to the presence of more than one high leverage point, the leverage structure

may change in such a way that the leverage diagnostics for single leverage point

like twice-the-mean rule, thrice-the-mean rule, Cook’s distance, Welsch and Kuh’s

distance etc. will not be able to identify the real high leverage points.

Nurunnabi, Hadi and Imon in [63] have used a modified Cook’s distance and

Habshah, Norazan and Imon [62] have proposed a robust diagnostic potential to

address this issue. Reference [62] have applied the technique on Hawkins, Bradu and

Kass data and Brownlee’s stack loss data to illustrate the simultaneous identification

of outliers or erroneous data and high leverage points.

To the best of my knowledge, this methodology has never been applied in power

system bad data detection context. This chapter presents a robust bad data detec-

tion technique when the leverage measurements are compromised and shows that

it can take care of masking/swamping phenomenon in sparse systems like power

systems that existing methods cannot. This methodology is applied, for the first

time, to robustly detect bad data in regards to state estimation of power system.

The primary motivation of this chapter is driven by such possible scenarios when

the hacking of the data in meters is related to the measurements of the leverage

points. The next sections of this chapter propose the novel technique of identifying

gross error in those cases and has been tested on standard IEEE test networks.

5.1 Detection of Leverage and Bad data points

Leverage values are normally denoted as measures of influential observations in

the X-space. The X-space is the space of regressor variables. The hat matrix in

(4.2) gives a measure of the influence of a particular measurement. The ones which
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have higher influence are called high leverages and ones which have lower influence

are called low leverages. The twice-the-mean rule and thrice-the-mean rule on the

diagonal elements of the hat matrix have been reported in the literature to identify

the leverage points. Reference [63] has mentioned the Cook’s distance and Welsch

and Kuh’s distance to detect and identify the single leverage point. The Mahalanobis

distance based on the projection pursuit algorithm for minimum volume ellipsoid

cannot be applied to sparse systems. Since the electric power system is a sparse

system, the projection pursuit algorithm has to be modified in order to be applied

to the sparse power system. However, due to masking or swamping effect it becomes

difficult to identify the group of high leverage points.

5.2 Diagnostic robust generalized potentials

This technique, an adaptive approach to identify the group of leverage points,

is a unified approach of diagnostic and robust approaches. The robust approach

identifies the suspected high leverage points and the diagnostic approach confirms

the above suspicion. The robust approach identifies the leverage points by the

corresponding potentials of the data. The potential of a data is defined by Hadi [75]

as the diagonal element of the hat matrix with the ith data deleted. It is denoted by

potii = hT
i (H

T
(i)H(i))

−1hi (5.1)

The points having a potential value more than the robust cut-off Median(potii) +

c.MAD(potii) is said to be a high leverage point, where,MAD is the median absolute

deviation from the median and c is a constant equal to 2 or 3. However, this method

is not robust against swamping. Habshah et al [62] have proposed a robust method to

identify high leverage points. The robust Mahalanobis distance (RMDi) is defined

as

RMDi =
√

[hi −Hc]T [C(H)]−1[hi −Hc] (5.2)

where, Hc is the mean of the l points for which determinant of the covariance

matrix (MCD) is minimum or Hc is the centre of the minimum volume ellipsoid

(MVE) covering these points, and C(H) is the corresponding covariance matrix.

85



5.2. DRGP Chapter 5

The cut-off value for a normal distributed multivariate data is
√

χ2
n,α, but, for

general non-normal data the cut-off value as suggested in [62,66] is given by

Median(RMDi) + 3MAD(RMDi) (5.3)

The observations are grouped in two sets. Those which have robust Mahalanobis

distance greater than the cut-off as in Eq.(5.3) are considered to be in set D and

the rest in set R. The robust potentials for the observations in two sets are given as

pot∗ii =







K
−(D)
ii

1−K
−(D)
ii

∀ i ∈ R

K
−(D)
ii ∀ i ∈ D

(5.4)

K
−(D)
ii denotes the ith diagonal element of the hat matrix with data as in set D

deleted. There exists no theoretical distribution for pot∗ii and hence, there is no

finite upper bound. However, [62, 66] suggested a suitable confidence bound type

cut-off like

Median(pot∗ii) + c.MAD(pot∗ii) (5.5)

The Mahalanobis distances of the multivariate data are first calculated. The Ma-

halanobis distance, however, is prone to the masking effect of multiple leverage

data points [31]. Fig. 5.1 shows the step-by-step procedure for the identification of

leverage points.

1. The robust Mahalanobis distances of the observations of the multi-variate data

are carried out based on minimum volume ellipsoid (MVE) or minimum covari-

ance determinant (MCD). Conceptually, MVE is the ellipsoid with minimum

volume that contains l data points. MCD is, however, the minimum of the

determinant of the covariance matrix which contains l points. l is typically

equal to [3m/2] + 1 (where 3m is the number of data points). MVE has been

considered here.

2. The multi-variate data are grouped into two separate subsets R and D. The

observations which have a distance higher than the cut-off as in (5.3) are

deleted from the main set and kept in a separate set called the deleted set D.

The rest of the data are kept as it is in a set called R.
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Figure 5.1: A flowchart showing the identification of leverage points

3. The generalized robust potentials for both the sets are computed.

4. If all the observations in the deleted set D have their generalized potentials

higher than the cut-off, then the leverage points are identified. If not, data

are put back to set R sequentially starting with the one which has the least
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generalized robust potential value.

5. The generalized potential values are recalculated with the new subsets.

6. This process continues till all the data in the set D have generalized potential

values more than the cut-off.

By this process, the masking and swamping effects, if present, are completely taken

care of and the high leverage and non-leverages are separated from each other.

5.3 Identification of gross error and high leverage

points

The measurements in a generic power system can be easily tampered with for

nefarious purposes. The physical meters in the system can be compromised by

introducing a large error by intelligent hackers. As discussed in Section 4.1, the

residuals as in (4.8) for leverage measurements are close to zero. The important

class of M-estimators, including the LAV estimator, cannot handle bad leverage

data points. Hence, it is very difficult to identify the gross error in case of leverage

measurements. Other estimators like LMS, LTS, RLS, Iterative RLS, BOFOLS etc.

are computationally intensive.

The residuals in the measurement data are functionally related to the leverage

values of the data. This method is a combination of direct and indirect approach

of multiple outlier detection. The low leverages and high leverages are separated

first based on DRGP and then generalized studentized residuals (GSR) is calculated

for the entire data set to identify the outliers. So, an outlier in set R will not be

confused with an outlier in set D. They are defined as

r∗st,i =















r
−(D)
i

σ̂R−i

√

1−K
−(D)
ii

∀ i ∈ R

r
−(D)
i

σ̂R

√

1+K
−(D)
ii

∀ i ∈ D
(5.6)
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where, σ̂2 is the least squares estimate of variance. r
−(D)
i represents the residual

of ith measurement with D data set deleted. R is the data set without the high

leverages.

The GSR is a form of a Student’s t-statistic with (3m − n − 3 − 1) degrees of

freedom and 97.5% detection confidence probability. One could, therefore, use a

t-table to get the exact cut-off values. But since the degrees of freedom are usually

quite large, the rule of thumb that absolute value of externally stuentized residuals is

greater than 3 is used [76]. The GSR is a type of an externally studentized residual.

This is a way of determining the ith residual except the ith observation. If the ith

observation is a serious outlier it may influence the least square function and may

influence to move it close to the ith observation. So, if it is removed, the ith residual

on the new model will indicate that this observation is an extreme value. The

mathematical background for the studentized residuals are given in Section 4.4.7 in

the previous chapter. All the observations for both the data sets are then plotted in

a DRGP-GSR plot. High leverage points are the points which have higher DRGP

values and bad data are those data which have higher GSR values. This leverage-

residual plot shows that most of the data will be clustered around the origin and the

masking/swamping effects do not come into picture. The DRGP-GSR plot clearly

separates and identifies the bad measurement data and high leverages. Even if high

leverage measurements are adulterated with gross errors the graphical plot clearly

identifies the measurement errors. Based on this concept, the next section shows

some case studies both for power transmission system and power distribution system

and thus justifies the effectiveness of the procedure.

5.4 Case Studies

The problem formulation shown in Section 2 is a three-phase formulation suitable

for generic distribution systems. However, the formulation for balanced transmission

systems can be taken as a special case of the above formulation, where, the number

of state variables and the number of equations as given in Chapter 3 are reduced

due to the balanced nature of the system. The voltage magnitudes and angles for a
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Figure 5.2: A schematic diagram of the DRGP-GSR plot
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particular bus will be the same for the three different phases. The proposed approach

has been performed on test systems: a small illustrative example, the IEEE 14-bus

system and the IEEE 123-bus distribution system. The algorithm was implemented

in MATLAB and run on a system with Intel Xeon processor @3.33 GHz and 12 GB

RAM.

5.4.1 Illustrative example

Figure 5.3 shows a basic four bus system with possible power injection and

branch power flow measurements. All branches are assumed to have a reactance of

j0.1 pu. The state variables of the system are considered as voltage magnitude and

voltage angles of buses. Since, there are four buses in the system altogether there are

eight state variables. However, the voltage angle for bus #1 is taken as the reference.

Table 5.1 presents the measurements for the given system. The system, currently,

has no leverage points. However, if the line between 1-2 is shortened by decreasing

the reactance to j0.01 pu, the measurements flow 1-2 and inj 1 become isolated

leverage points. An attacker can introduce a leverage point attack on the system

by tampering with the reactance of the line 1-2, should he/she wishes to attack inj

1 and/or flow 1-2. If the line 2-3 is shortened and the injection measurement is on

bus 1 instead of 3, the measurements flow 3-2 and inj 3 will become leverage points.

These two measurements become bad leverage points in the factor space. The

largest normalized residuals (LNR) method fails to identify these two bad leverage

points. It turns out from Table 5.1 that the generalized studentized residuals clearly

detects and identifies the bad measurements in case of leverage points. The value

of the studentized residual corresponding to the bad measurements with respect

to other measurements is much higher compared to that of the normalized residual

with respect to other measurements. Table 5.2 further shows the masking/swamping

effect of leverage points, if any. It also compares the leverage diagnostics of diagonal

elements of the hat matrix with the DRGP technique proposed in Section 5.2. It

depicts that while the leverage measure (diagonal element of the hat matrix) fails to

identify the leverage points due to masking/swamping effect the DRGP technique

can easily identify them. Table 5.3 and Table 5.4 present the results for the active
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1
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4

3

Figure 5.3: A 4-bus system for illustrative example

power injection and reactive power flow measurements when the line 2-3 is shortened.

Table 5.1: Real power measurements and residuals for the 4-bus system when line

1-2 is shortened

Measurement

type

Measurement

with no bad

data

Measurement

with bad

data

Normalized/

Internally

studentized

residuals

|GSR|
(2.228)

flow 1-2 1.50882 1.00892 0.550 2.578

flow 1-4 0.49119 0.49119 0.4793 0.4328

flow 2-4 0.33966 0.33966 0.2987 0.578

flow 3-2 -0.56915 -0.56915 1.2921 1.374

flow 3-4 -0.23084 -0.23084 0.2373 0.4328

flow 4-1 -0.49119 -0.49119 0.7821 0.8921

inj 1 2.00011 1.50011 0.3034 2.781

inj 3 -0.800 -0.800 0.5082 0.7811

inj 4 -0.600 -0.600 0.6821 0.852

5.4.2 IEEE 14-bus system

Figure 5.5 shows a typical IEEE 14-bus system. It is a typical meshed transmis-

sion network. The network parameters and load data are given in [77] and Appendix

C. There are five generation buses in the system. The loads are modelled as a com-
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Table 5.2: Leverage points and masking/swamping effect for real power measure-

ments when line 1-2 is shortened

Measurement

type

Masking or

Swamping

effect

Leverage

(0.726)

DRGP

(0.823)
Bad Data

flow 1-2 No 0.3172 0.8763 Yes

flow 1-4 No 0.2988 0.3126 No

flow 2-4 Yes 0.6309 0.4312 No

flow 3-2 No 0.3180 0.2182 No

flow 3-4 No 0.3257 0.5278 No

flow 4-1 No 0.5587 0.6721 No

inj 1 No 0.3272 0.8450 Yes

inj 3 No 0.2238 0.2994 No

inj 4 Yes 0.4592 0.2994 No

Table 5.3: Real power measurements and residuals for the 4-bus system when line

2-3 is shortened

Measurement

type

Measurement

with no bad

data

Measurement

with bad

data

Normalized/

Internally

studentized

residuals

|GSR|
(2.228)

flow 1-2 1.50882 1.50882 0.5813 0.1243

flow 1-4 0.49119 0.49119 0.5343 0.7923

flow 2-4 0.33966 0.33966 0.2453 1.265

flow 3-2 -0.56915 -0.17119 0.497 2.567

flow 3-4 -0.23084 -0.23084 1.2643 1.8809

flow 4-1 -0.49119 -0.49119 0.8702 0.811

inj 1 2.00011 2.00011 0.7982 0.1284

inj 3 -0.800 -0.400 0.530 2.879

inj 4 -0.600 -0.600 0.7033 0.4252
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Table 5.4: Leverage points and masking/swamping effect for real power measure-

ments when line 2-3 is shortened

Measurement

type

Masking or

Swamping

effect

Leverage

(0.726)

DRGP

(0.823)
Bad Data

flow 1-2 No 0.3810 0.4491 No

flow 1-4 No 0.3279 0.4318 No

flow 2-4 No 0.3692 0.3268 No

flow 3-2 Yes 0.6523 0.856 Yes

flow 3-4 No 0.5781 0.7284 No

flow 4-1 No 0.5432 0.3067 No

inj 1 Yes 0.4789 0.3104 No

inj 3 No 0.4872 0.894 Yes

inj 4 No 0.5890 0.4321 No

bination of constant impedance (Z), constant current (I) and constant power (P)

loads, which is known as the ZIP model. The measured variables are power injection

and branch power flows. The measurements are shown in Table 5.7. The measure-

ments are generated by adding random Gaussian noise to the single-phase load flow

results. he gross errors are generated by changing the value of the corresponding

diagonal element of the hat matrix Kii. The change in the Kii value reflects a change

in the corresponding measurement zi. The details are given in Appendix D.

The sample high and low leverage points are shown by arrow marks in Figure

5.4. In the figure, the line flow measurement flow 5-4 is a high leverage measurement.

To make a successful attack, the attacker makes changes to the impedance of the

branch 5-4 by applying Theorem 2 and rule 1 and rule 2.

The cut-off values for all the potential values and the studentized residuals are

shown in Table 5.7. It shows that DRGP correctly identifies the leverage data points

while the potential and the leverage values (i.e. diagonal entries of the hat matrix)

fails to identify the leverage measurements correctly and instead swamps some non-

leverage measurements as leverage and masks some leverage measurements as non-

leverage for 14-bus system. Table 5.6 justifies the fact, with some key measurements

94



5.4. CASE STUDIES Chapter 5

45

Bad,High

leverage

Bad

1

2

High

Leverage

Low

Leverage

Figure 5.4: The sample high and low leverage points in IEEE-14 bus system
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shown with text arrows in Figure 5.7, 5.8, that DRGP technique with GSR properly

identifies the bad data for leverage measurements, however, the normalized residuals

fail to do so. Table 5.7 further shows the GSR of the measurements and thus,

validates the effectiveness of the strategy. Table 5.8 justifies the fact that DRGP is

robust against swamping or masking effect. While the robust Mahalanobis distance

masks some high leverage points as low leverages, the DRGP identifies all the high

leverages correctly. The above strategy is robust against the size of the system

and can be applied to larger standard systems such as IEEE-30 and IEEE-118 bus

system. The next subsection provides the results for a standard large but meshed

distribution 123-bus system.

1

2 3

4
5

6

8

7

9
1011

12

13

14

Figure 5.5: IEEE-14 bus system
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Table 5.5: Comparison of studentized residuals with other residuals for 14-bus sys-

tem

Measurement

Semi-

studentized

residuals

(2.3)

Internally

studentized

residuals

(3.0)

Externally

studentized

residuals

(3.0)

DFFITS

(1.782)

Cook’s

distance

(1.00)

flow 2-1 0.8864 0.8208 0.9445 0.4176 0.4279

flow 3-2 2.2952 1.4276 2.1169 0.6811 0.7892

flow 2-4 0.8099 0.9821 0.349 0.9031 0.1404

flow 1-5 0.4656 0.5793 1.5759 1.2042 0.4107

flow 5-2 2.9818 3.7311 2.0244 1.4321 0.1201

flow 5-4 2.7264 3.1437 5.4399 0.6478 0.4197

flow 5-6 1.7476 1.3681 0.3057 1.1573 0.1691

flow 4-7 0.8080 0.6435 1.9444 0.7921 0.3198

flow 8-7 0.6419 0.8092 1.2097 0.7695 0.4180

flow 9-7 1.0385 1.4952 0.4564 1.4502 0.3179

flow 9-10 0.1676 0.1280 0.4745 1.2998 0.0981

flow 6-11 0.7222 0.8211 1.1889 0.8931 .4193

flow 13-6 0.4754 0.1704 0.5142 1.672 0.1801

flow 10-11 0.7417 0.7411 1.0561 0.8701 0.3153

flow 13-14 1.5130 1.3711 1.3913 0.7982 0.3172

inj 1 1.6799 3.4143 6.0186 0.7921 0.8793

inj 4 0.3914 0.3719 4.3473 1.2983 0.9168

inj 8 0.6934 0.5489 0.9061 1.4042 0.9082

inj 10 0.5051 0.4301 0.3792 1.2763 0.4193

inj 12 0.0713 0.1032 0.0393 0.6822 .3812

inj 14 1.8547 1.432 2.0724 1.4731 0.8932

flow 1-2 2.0240 2.4191 2.0664 0.7291 0.8911

flow 5-1 1.6224 1.4522 1.5051 0.4321 0.7821

flow 4-3 1.8094 1.2480 2.3539 0.4126 0.1794

flow 7-8 1.6933 1.3421 2.1443 1.3279 0.7891

flow 9-4 0.3187 0.2819 1.1517 1.2792 0.6871

flow 10-9 0.1167 0.3179 0.057 0.9110 0.7981

flow 14-9 0.9419 0.3183 0.3926 0.2479 0.4729

Continued on next page
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Table 5.5: Continued from previous page...

Measurement

Semi-

studentized

residuals

(2.3)

Internally

studentized

residuals

(3.0)

Externally

studentized

residuals

(3.0)

DFFITS

(1.782)

Cook’s

distance

(1.00)

flow 13-12 0.2060 0.1261 1.3136 1.593 0.7911

inj 2 2.6871 0.4271 1.9129 0.495 0.4792

inj 6 0.2100 0.2721 2.3154 1.110 0.6871

inj 7 1.4043 1.3211 0.234 0.4729 0.8862

inj 11 0.4903 0.4302 0.1057 0.4380 0.6621

inj 13 0.7720 0.8711 1.342 0.1793 0.6911

Table 5.6: The GSR-DRGP approach and LNR approach

Measurement
Normalized

Residuals

Leverages

identified by

DRGP

GSR-DRGP Bad Data

flow 5-4 2.7264 Yes 5.4399 Yes

inj 4 0.3914 Yes 4.3473 Yes

flow 1-2 2.0240 Yes 2.0664 No

inj 2 2.6871 No 1.9129 No

inj 1 1.6799 No 6.0186 Yes

5.4.3 Distribution system

The IEEE 123-bus test distribution system has also been considered for this

study. The network parameters and load data are obtained from [51, 54]. The

topologies of the test systems are shown in Figure 5.6. The voltage level of the

system is 4.16 kV. There are both three-phase and single-phase loads. Thus, the

system is inherently unbalanced. The three-phase loads are either star or delta

connected. The loads are either constant current or constant impedance or constant

power. The loads in the system have been modelled as ZIP-model. The test system

consists of both overhead lines and underground cables. The overhead lines and

98



5.4. CASE STUDIES Chapter 5

underground cables have been modelled with modified Carson’s equations [49]. The

distribution feeder is either three-phase or three-phase with a grounded neutral

or single or two-phase laterals. Therefore, the impedance of each overhead line or

underground cable is represented as either a 3x3 or a 4x4 matrix compared to a single

element in single phase representation. However, the 4x4 matrix for three-phase lines

with grounded neutral is converted to 3x3 matrix by Kron’s reduction [49]. A three-

phase transformer is modelled as three individual single-phase transformers. The

tap changers are considered to have fixed taps. The switches between buses 14 and

117, 61 and 118, 19 and 116, 98 and 119 are considered closed.

The IEEE-123 test system has been modified to incorporate some leverage data

points in the measurement data set. Injection measurements are added on buses 14,

19 and 55 and the lines 9-14 and 19-22 are made short. The switches between buses

55 and 95 and 123 and 121 are closed. This makes the network meshed in nature.

The measurements are generated by adding random Gaussian noise to the three-

phase load flow results. The percentage error in real measurements is 3-5% and that

in pseudo measurements is 20%. The gross errors are generated by changing the

value of Kii as explained in Section 4.2. Appendix D states the details.

The main advantage of this method is that it can separate and simultaneously

identify the bad data points (outliers) and the leverages and, therefore, can be easily

applied to the measurement set even if the high leverages are affected by gross error.

These are reported here.

Table 5.7: Generalized potentials and studentized residuals for 14 bus system

Measurement

No.
Measurement

Leverage

(0.758)

DRGP

(0.927)
GSR(3.0)

1 flow 2-1 0.5907 0.0297 -0.9445

2 flow 3-2 0.1943 0.05 2.1169

3 flow 2-4 0.6339 0.3652 -0.349

4 flow 1-5 0.8152 0.0677 -1.5759

5 flow 5-2 0.6124 0.5727 2.0244

6 flow 5-4 (bad, high leverage) 0.2519 1.6442 5.4399

7 flow 5-6 0.23 0.5057 -0.3057

Continued on next page

99



5.4. CASE STUDIES Chapter 5

Table 5.7: Continued from previous page...

Measurement

No.
Measurement

Leverage

(0.758)

DRGP

(0.927)
GSR(3.0)

8 flow 4-7 0.0729 0.1049 -1.9444

9 flow 8-7 0.461 0.4617 -1.2097

10 flow 9-7 0.5467 0.363 -0.4564

11 flow 9-10 0.4373 0.6811 -0.4745

12 flow 6-11 0.3406 0.4543 -1.1889

13 flow 13-6 0.5156 0.5602 0.5142

14 flow 10-11 0.5181 0.3177 1.0561

15 flow 13-14 0.5432 0.3027 -1.3913

16 inj 1 (bad, low leverage) 0.7782 0.0777 6.0186

17 inj 4 (bad) 0.9065 0.9884 -4.3473

18 inj 8 0.1671 0.0932 -0.9061

19 inj 10 0.5674 0.1214 -0.3792

20 inj 12 0.189 0.2737 0.0393

21 inj 14 0.0955 0.582 -2.0724

22 flow 1-2 (good, high leverage) 0.8927 2.5896 2.0664

23 flow 5-1 0.3601 0.0423 1.5051

24 flow 4-3 0.367 0.2795 -2.3539

25 flow 7-8 0.5296 0.3688 2.1443

26 flow 9-4 0.6162 0.2918 1.1517

27 flow 10-9 0.2802 0.4598 -0.057

28 flow 14-9 0.5296 0.4396 0.3926

29 flow 13-12 0.3329 0.2044 -1.3136

30 inj 2 0.9115 0.9173 -1.9129

31 inj 6 0.6663 0.0108 2.3154

32 inj 7 0.2052 0.6888 0.234

33 inj 11 0.4908 0.117 0.1057

34 inj 13 0.4658 0.0744 -1.342
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Table 5.8: Masking or Swamping Effect for 14-bus system

Measurement
Identified by

RMD

Identified by

DRGP

Actual

leverages
Bad Data

flow 5-4 No Yes Yes Yes

inj 4 Yes Yes Yes Yes

flow 1-2 Yes Yes Yes No

inj 2 No No No No

inj 1 Yes No No Yes

Table 5.9: DRGP and GSR for 123 bus system

Measurement
Leverage

(0.736)

DRGP

(0.853)
GSR(3.0) Bad Data

inj 55 0.854 1.7924 4.586 Yes

flow 54-55 0.756 1.8595 3.673 Yes

inj 14 0.675 0.9595 -4.457 Yes

flow 9-14 0.812 1.2595 2.0670 No

inj 67 0.478 0.5595 5.5465 Yes

inj 36 0.798 0.657 1.967 No
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Figure 5.6: IEEE 123-bus distribution system

5.5 Discussions

The DRGP vs GSR graphs for the 14 bus and 123 bus systems are shown in

Figure 5.8 and Figure 5.10 respectively. The positions of high leverage points, low

leverage points, outliers on high leverage points and outliers on low leverage points

are shown clearly. The high leverages and the bad data points are shown in red in

the figures. As the bulk of the data are low leverages with low residuals, most of the

data points lie around the origin. The points with high leverages are located in the

upper area of the plot and the data points with large residuals lie either in the left or

right of the plot. This is explained in the schematic in Figure 5.2. The measurements

marked in red are highlighted in bold in Table 5.7. Table 5.9 shows the measurements

marked in red for 123-bus system. The high leverage measurement (flow 5-4 in 14-

bus system and inj 55 and flow 54-55 in 123-bus system) which contains gross error

are located at the top right corner of the graph. The low leverage (inj 1 in 14-bus

system and inj 67 in 123-bus system) with gross error is located at the extreme right
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Figure 5.7: Leverage vs Residual plot for 14 bus system
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end of the x − axis of the graph. The high leverages (flow 1-2 in 14-bus system

and flow 9-14 in 123-bus system) which are not contaminated with gross errors are

located at the top of the graph. Figure 5.7 and Figure 5.9 show the plot of the

leverage values (i.e. diagonal entries of the hat matrix) against the square of the

normalized residuals. The same cases shown in red in Figure 5.8 and Figure 5.10

are shown in red here. However, here, the cases (inj 1, inj 2 and flow 1-5 in 14-bus

system and inj 14 in 123-bus system) are swamped and the case (flow 4-3 in 14-bus

system and inj 67 in 123-bus system) shows a large normalized residual. It is evident

from the figure that it is difficult to differentiate the outliers from the high leverage

points. Due to masking/swamping effect some measurements are misrepresented as

high leverages and vice versa. The key measurement points are shown with red data

points and text arrows in the Figures 5.7- 5.10.
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Figure 5.11: Comparison of GSR and normalized residuals of key measurements for

123-bus system

The above method has been applied to a small 4-bus example, balanced 14-bus

system and unbalanced IEEE 123-bus systems. The generalized studentized residual

has been used instead of the normalized residuals to identify the bad data. Even if

the normalized/internally studentized residuals are low the GSR for the false data

is significant. However, the above method has been compared with the normalized

residual test to identify bad data. Figure 5.8, 5.10 and Figure 5.7, 5.9 justify the
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effectiveness of the above algorithm. Table 5.5 compares the normalized/internally

studentized residuals and other measures with externally studentized residuals for

the 14-bus case, while Figure 5.11 shows the comparison of normalized residuals and

GSR for key measurements in case of 123-bus distribution system. From both cases

it can be inferred that while the largest normalized residual test fails to separate

the outliers from the high leverages and thus fails to identify the bad data when

there are multiple influential data points, the simultaneous technique of DRGP and

GSR clearly separates the high leverages, low leverages and measurement outliers

from one other and also prevents the masking or swamping effect in the presence of

multiple influential data points. Thus the method has the capability to deal with

deliberate man-made attack.

5.6 Conclusions

It is always necessary to detect erroneous measurements in active power net-

works. Due to growing deployment of ICT and automation technologies to operate

modern power systems the measurements can be tampered for mala fide intentions.

The attacker will always try to influence the states of the system by hiding the

attack from the detection algorithm, which is possible if the high leverage measure-

ments are especially targeted. The high leverages can occur in both transmission

and distribution networks.

The research reported here has used the concept of regression analysis to identify

the outliers and influential measurements in the system. It has been found that iden-

tifying the bad data for leverage measurements is particularly difficult due to the low

value of residuals even if they are infected with gross errors. In addition, if there are

multiple leverage measurements some of the high leverage measurement points may

be masked or swamped. Hence, in order to take care of this masking and swamping

effect, the concept of diagnostic-robust generalized potential has been proposed to

separate the leverage measurements from rest of the measurements and then the

studentized residuals are applied on the measurements to identify the bad data for

multiple high leverage measurements. Moreover, even if there are large errors in high
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leverage measurements it will be possible to identify them. Comprehensive results

and comparative studies on both transmission and distribution systems/balanced

and unbalanced systems further show the advantages of this methodology against

other existing residual techniques to identify bad data against leverage attack. The

proposed method can assist the EMS/DMS in taking control and operation decisions

in these scenarios.
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Chapter 6

Conclusion and Future Work

6.1 Summary of thesis contributions

This chapter summarises the research contributions of this thesis and discusses

the insights gained from this research. The issues and challenges associated with

DSSE have been identified and addressed in detail. The vulnerabilities in regards

to state estimation and bad data detection in relation to leverage or influential

measurements have been explored and algorithms have been developed to address

these issues.

Due to the increasing automation and integration of ICT infrastructure in the

modern power system, there is an increasing need for visibility of system states.

Thus, state estimation has become an important function not only in transmission

level but also in distribution level. Due to the topological and structural character-

istics of the distribution system, it is inherently unbalanced. Over and above that,

a large portion of distribution system is unmetered/unmeasured. The observabil-

ity of the network is achieved by including pseudo measurements or loads in the

measurement set.

First of all, the different components of a three-phase unbalanced system such as

lines, transformers, loads and switches are modelled in detail. The difference between

distribution systems and transmission systems and the challenges related to unbal-

anced distribution system modelling are addressed. Due to their non-transposed
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nature distribution lines are modelled by Carson’s equation. Three-phase trans-

formers with different configurations will have different nodal admittance matrices.

The different types of loads with star and delta configurations are modelled by ZIP

models. Chapter 3 develops the WLS based state estimation algorithm for the full

three-phase network. The zero injection measurements and switches are considered

as equality constraints. The efficacy of the approach has been demonstrated by

applying on IEEE 13 bus and IEEE 123 bus systems. The state estimates are found

to vary with the percentage error in pseudo measurements. It has been shown that

the estimates are less accurate when the percentage errors are high. The chapter

further explores the suitability of the approach by changing the switch statuses of

the IEEE 123 bus system.

The exhaustive modelling of three-phase distribution systems can be applied in a

variety of power system applications and decision-making framework. It can be very

useful for not only state estimation but also in other applications such as transformer

tap estimation [43,45,78], bad data detection, security analysis [79], volt var control

[80] and active network management schemes in distribution systems [46,81].

The modern power network is undergoing a significant change. The smart in-

strumentation like phasor measurement units, intelligent metering, smart metering

etc. are making the network active and smart. The information and communication

infrastructure has become an integral part of the network. As a result, the security

and integrity of data is at stake. An attacker, who has knowledge of the network,

can exploit the vulnerabilities of the system by compromising the measurement me-

ters. In particular, the attacker can take advantage of the low residuals of leverage

measurement points to make the attack successful. The possible attack strategies

for this attack have been explored. Chapter 4 studies the vulnerabilities of the

network, both transmission and distribution, and further explains the suitability of

studentized residuals against the different residual and robust estimation techniques

for identification of bad data in relation to the leverage points.

The multiple leverages with inherently low residuals may also suffer from swamp-

ing or masking - a phenomenon where the low leverage point may appear to be high

and the high to be low. This makes the identification of gross errors even more
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difficult. Chapter 5 uses the concept of regression analysis to identify outliers and

influential points. It proposes a robust method of diagnostic robust generalized

potentials to identify the leverages. The methodology separates the high leverages

from non-leverages and then applies the generalized studentized residuals. This

completely nullifies the masking/swamping effects. The proposed method has been

applied on a small 4-bus example, the IEEE 14 bus system and IEEE 123 bus system

and the results justify the effectiveness of the approach. The above method can,

therefore, help the EMS/DMS to make control and operation decisions.

6.2 Future Work

Although the main issues associated with state estimation and bad data detec-

tion have been addressed in the thesis, future research directions will focus on the

following aspects of the problem:

• Tap positions play an important role in distribution system operation. An at-

tacker can inject gross error into the tap position measurements. The reactive

power flow through transformer will vary significantly when a tap measurement

is in error. The reactive power flow being on a short line has the possibility to be

a leverage measurement. Therefore, an extension of this work is to have a robust

detection technique for bad tap measurements which is under process.

• Another aspect of future research is to incorporate the correlations among loads

and correlation between loads and the real measurements, where the co-variance

matrix R will be non-diagonal.

• The future extension of this work will be developing a decentralised state es-

timation in micro-grid scenario. The topology of the distribution changes due

to interruptions, feeder maintenance etc. Most of the micro-grids have stand

alone generators to support the demand in them. The idea is to develop the

decentralised framework when those micro-grids are connected to the grid.
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Appendix A

IEEE 13-bus system data

Table A.1: Line configuration data

Configuration Type Phasing Phase Neutral Spacing

ACSR ACSR ID

601 overhead BACN 556,500 26/7 4/0 6/1 500

602 overhead CABN 4/0 6/1 4/0 6/1 500

603 overhead CBN 1/0 1/0 505

604 overhead ACN 1/0 1/0 505

605 overhead CN 1/0 1/0 510

606 underground ABCN
250,000 AA,

CN
None 515

607 underground AN 1/0 AA, TS 1/0 Cu 520
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Table A.2: Line segment data

Bus A Bus B Length(ft.) Configuration

4 3 500 603

4 5 500 602

5 6 0 XFM-1

3 2 300 603

1 4 2000 601

8 12 800 607

4 9 2000 601

9 8 300 604

9 13 1000 601

9 10 0 Switch

8 7 300 605

10 11 500 606

Table A.3: Transformer data

kVA kV (high) kV (low) R(%) X(%)

Substation 5000 115-∆ 4.16-Gr. Y 1 8

XFM-1 500 4.16-Gr. Y 0.48-Gr. Y 1.1 2

Table A.4: Capacitor data

Bus ph a ph b ph c

kVAr kVAr kVAr

11 200 200 200

7 - - 100

Total 200 200 300
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Table A.5: Regulator data

Regulator ID 1

Line segment 1-4

Location 50

Phases A-B-C

Connection 3-ph,LG

Monitoring phase A-B-C

Bandwidth 2 volts

PT ratio 20

Primary CT rating 700

Compensator settings ph a ph b ph c

R-setting 3 3 3

X-setting 9 9 9

Voltage level 122 122 122

Table A.6: Load data

Bus Load ph a ph a ph b ph b ph c ph c

Model kW kVAr kW kVAr kW kVAr

6 Y-PQ 160 110 120 90 120 90

3 Y-PQ 0 0 170 125 0 0

2 ∆-Z 0 0 230 132 0 0

12 Y-Z 128 86 0 0 0 0

9 ∆-PQ 385 220 385 220 385 220

11 Y-PQ 485 190 68 60 290 212

10 ∆-I 0 0 0 0 170 151

7 Y-I 0 0 0 0 170 80
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IEEE 123-bus system data

Table B.1: Line configuration data

Configuration Type Phasing Phase Neutral Spacing

ACSR ACSR ID

1 overhead ABCN 336,400 26/7 4/0 6/1 500

2 overhead CABN 336,400 26/7 4/0 6/1 500

3 overhead BCAN 336,400 26/7 4/0 6/1 500

4 overhead CBAN 336,400 26/7 4/0 6/1 500

5 overhead BACN 336,400 26/7 4/0 6/1 500

6 overhead ACBN 336,400 26/7 4/0 6/1 500

7 overhead ACN 336,400 26/7 4/0 6/1 505

8 overhead ABN 336,400 26/7 4/0 6/1 505

9 overhead AN 1/0 1/0 510

10 overhead BN 1/0 1/0 510

11 overhead CN 1/0 1/0 510

12 underground ABC 1/0 AA, CN 1/0 515

Table B.2: Line segment data

Bus A Bus B Length(ft.) Configuration

2 3 175 10

2 4 250 11

2 8 300 1

Continued on next page
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Table B.2: Line segment data

Bus A Bus B Length(ft.) Configuration

4 5 200 11

4 6 325 11

6 7 250 11

8 9 200 1

9 13 225 10

9 10 225 9

9 14 300 1

10 15 425 9

14 35 150 11

14 19 825 2

15 12 250 9

15 11 250 9

16 17 375 11

16 18 350 11

19 20 250 9

19 22 300 2

20 21 325 9

22 23 525 10

22 24 250 2

24 25 550 11

24 26 275 2

26 27 350 7

26 29 200 2

27 28 275 7

27 32 225 11

28 34 500 9

29 30 300 2

30 31 350 2

31 120 200 2

32 33 300 11

35 16 100 11

36 37 650 8

Continued on next page
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Table B.2: Line segment data

Bus A Bus B Length(ft.) Configuration

36 41 250 1

37 38 300 9

37 39 250 10

39 40 325 10

41 42 325 11

41 43 250 1

43 44 500 10

43 45 200 1

45 46 200 9

45 48 250 1

46 47 300 9

48 49 150 4

48 50 250 4

50 51 250 4

51 52 250 4

53 54 200 1

54 55 125 1

55 56 275 1

55 58 350 3

56 57 275 1

58 59 250 10

58 61 750 3

59 60 250 10

61 62 550 5

61 63 250 12

63 64 175 12

64 65 350 12

65 66 425 12

66 67 325 12

68 69 200 9

68 73 275 3

68 98 250 3

Continued on next page
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Table B.2: Line segment data

Bus A Bus B Length(ft.) Configuration

69 70 275 9

70 71 325 9

71 72 275 9

73 74 275 11

73 77 200 3

74 75 350 11

75 76 400 11

77 78 400 6

77 87 700 3

78 79 100 6

79 80 225 6

79 81 475 6

81 82 475 6

82 83 250 6

82 85 675 11

83 84 250 6

85 86 475 11

87 88 450 6

88 89 175 9

88 90 275 6

90 91 225 10

90 92 225 6

92 93 300 11

92 94 225 6

94 95 275 9

94 96 300 6

96 97 200 10

98 99 275 3

99 100 550 3

100 101 300 3

101 122 800 3

102 103 225 11

Continued on next page
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Table B.2: Line segment data

Bus A Bus B Length(ft.) Configuration

102 106 275 3

103 104 325 11

104 105 700 11

106 107 225 10

106 109 325 3

107 108 575 10

109 110 450 9

109 121 1000 3

110 111 300 9

111 112 575 9

111 113 125 9

113 114 525 9

114 115 325 9

116 36 375 4

1 2 400 1

117 53 400 1

118 68 350 6

119 102 250 3

14 117 0 Switch

19 116 0 Switch

61 118 0 Switch

98 119 0 Switch

Table B.3: Transformer data

kVA kV (high) kV (low) R(%) X(%)

Substation 5000 115-∆ 4.16-Gr. Y 1 8

XFM-1 150 4.16-Gr. Y 0.48-Gr. Y 1.27 2.72
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Table B.4: Three phase switches

Bus A Bus B Normal

14 117 closed

19 116 closed

61 118 closed

98 119 closed

55 95 open

123 121 open

Table B.5: Capacitor data

Bus ph a ph b ph c

kVAr kVAr kVAr

84 200 200 200

89 50 - -

91 - 50 -

93 - - 50

Total 250 250 250
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Table B.6: Regulator data

Regulator ID 1 Regulator ID 3

Line segment 1-2 Line segment 26-27

Location 1 Location 27

Phases A-B-C Phases A-C

Connection 3-ph,Y Connection
2-

ph,LG

Monitoring

phase
A

Monitoring

phase
A,C

Bandwidth 2 volts Bandwidth 1 volts

PT ratio 20 PT ratio 20

Primary CT rat-

ing
700

Primary CT rat-

ing
50

Compensator

settings
ph a

Compensator

settings
ph a ph c

R-setting 3 R-setting 0.4 0.4

X-setting 7.5 X-setting 0.4 0.4

Voltage level 120 Voltage level 120 120

Regulator ID 2 Regulator ID 4

Line segment 10-15 Line segment 118-68

Location 10 Location 68

Phases A Phases A-B-C

Connection
1-

ph,LG
Connection

3-

ph,LG

Monitoring

phase
A

Monitoring

phase
A,B,C

Bandwidth 2 volts Bandwidth 2 volts

PT ratio 20 PT ratio 20

Primary CT rat-

ing
50

Primary CT rat-

ing
300

Compensator

settings
ph a

Compensator

settings
ph a ph b ph c

R-setting 0.4 R-setting 0.6 1.4 0.2

X-setting 0.4 X-setting 1.3 2.6 1.4

Voltage level 120 Voltage level 124 124 124
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Table B.7: Load data

Bus Load ph a ph a ph b ph b ph c ph c

Model kW kVAr kW kVAr kW kVAr

1 Y-PQ 0 0 0 0 0 0

2 Y-PQ 40 20 0 0 0 0

3 Y-PQ 0 0 20 10 0 0

4 Y-PQ 0 0 0 0 0 0

5 Y-PQ 0 0 0 0 40 20

6 Y-I 0 0 0 0 20 10

7 Y-Z 0 0 0 0 40 20

8 Y-PQ 20 10 0 0 0 0

9 Y-PQ 0 0 0 0 0 0

10 Y-PQ 40 20 0 0 0 0

11 Y-I 20 10 0 0 0 0

12 Y-Z 40 20 0 0 0 0

13 Y-PQ 0 0 20 10 0 0

14 Y-PQ 0 0 0 0 0 0

15 Y-PQ 0 0 0 0 0 0

16 Y-PQ 0 0 0 0 0 0

17 Y-PQ 0 0 0 0 40 20

18 Y-PQ 0 0 0 0 20 10

19 Y-PQ 0 0 0 0 0 0

20 Y-PQ 40 20 0 0 0 0

21 Y-I 40 20 0 0 0 0

22 Y-PQ 0 0 0 0 0 0

23 Y-Z 0 0 40 20 0 0

24 Y-PQ 0 0 0 0 0 0

25 Y-PQ 0 0 0 0 40 20

26 Y-PQ 0 0 0 0 0 0

27 Y-PQ 0 0 0 0 0 0

28 Y-PQ 0 0 0 0 0 0

29 Y-I 40 20 0 0 0 0

30 Y-Z 40 20 0 0 0 0

31 Y-PQ 0 0 0 0 40 20

Continued on next page
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Table B.7: Load data

Bus Load ph a ph a ph b ph b ph c ph c

Model kW kVAr kW kVAr kW kVAr

32 Y-PQ 0 0 0 0 20 10

33 Y-PQ 0 0 0 0 20 10

34 Y-I 40 20 0 0 0 0

35 Y-Z 0 0 0 0 40 20

36 D-PQ 40 20 0 0 0 0

37 Y-PQ 0 0 0 0 0 0

38 Y-Z 40 20 0 0 0 0

39 Y-I 0 0 20 10 0 0

40 Y-PQ 0 0 20 10 0 0

41 Y-PQ 0 0 0 0 0 0

42 Y-PQ 0 0 0 0 20 10

43 Y-PQ 20 10 0 0 0 0

44 Y-Z 0 0 40 20 0 0

45 Y-PQ 0 0 0 0 0 0

46 Y-I 20 10 0 0 0 0

47 Y-PQ 20 10 0 0 0 0

48 Y-I 35 25 35 25 35 25

49 Y-Z 70 50 70 50 70 50

50 Y-PQ 35 25 70 50 35 25

51 Y-PQ 0 0 0 0 40 20

52 Y-PQ 20 10 0 0 0 0

53 Y-PQ 40 20 0 0 0 0

54 Y-PQ 40 20 0 0 0 0

55 Y-PQ 0 0 0 0 0 0

56 Y-Z 20 10 0 0 0 0

57 Y-PQ 0 0 20 10 0 0

58 Y-PQ 0 0 0 0 0 0

59 Y-I 0 0 20 10 0 0

60 Y-PQ 0 0 20 10 0 0

61 Y-PQ 20 10 0 0 0 0

62 Y-PQ 0 0 0 0 0 0

Continued on next page

131



Appendix B

Table B.7: Load data

Bus Load ph a ph a ph b ph b ph c ph c

Model kW kVAr kW kVAr kW kVAr

63 Y-Z 0 0 0 0 40 20

64 Y-PQ 40 20 0 0 0 0

65 Y-I 0 0 75 35 0 0

66 D-Z 35 25 35 25 70 50

67 Y-PQ 0 0 0 0 75 35

68 Y-PQ 0 0 0 0 0 0

69 Y-PQ 20 10 0 0 0 0

70 Y-PQ 40 20 0 0 0 0

71 Y-PQ 20 10 0 0 0 0

72 Y-PQ 40 20 0 0 0 0

73 Y-PQ 0 0 0 0 0 0

74 Y-PQ 0 0 0 0 40 20

75 Y-Z 0 0 0 0 40 20

76 Y-PQ 0 0 0 0 40 20

77 D-I 105 80 70 50 70 50

78 Y-PQ 0 0 40 20 0 0

79 Y-PQ 0 0 0 0 0 0

80 Y-Z 40 20 0 0 0 0

81 Y-PQ 0 0 40 20 0 0

82 Y-PQ 0 0 0 0 0 0

83 Y-PQ 40 20 0 0 0 0

84 Y-PQ 0 0 0 0 20 10

85 Y-PQ 0 0 0 0 20 10

86 Y-PQ 0 0 0 0 40 20

87 Y-PQ 0 0 20 10 0 0

88 Y-PQ 0 0 40 20 0 0

89 Y-PQ 40 20 0 0 0 0

90 Y-PQ 0 0 0 0 0 0

91 Y-I 0 0 40 20 0 0

92 Y-PQ 0 0 0 0 0 0

93 Y-PQ 0 0 0 0 40 20

Continued on next page
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Table B.7: Load data

Bus Load ph a ph a ph b ph b ph c ph c

Model kW kVAr kW kVAr kW kVAr

94 Y-PQ 0 0 0 0 0 0

95 Y-PQ 40 20 0 0 0 0

96 Y-PQ 0 0 20 10 0 0

97 Y-PQ 0 0 20 10 0 0

98 Y-PQ 0 0 0 0 0 0

99 Y-PQ 40 20 0 0 0 0

100 Y-PQ 0 0 40 20 0 0

101 Y-Z 0 0 0 0 40 20

102 Y-PQ 0 0 0 0 0 0

103 Y-PQ 0 0 0 0 20 10

104 Y-PQ 0 0 0 0 40 20

105 Y-PQ 0 0 0 0 40 20

106 Y-PQ 0 0 0 0 0 0

107 Y-PQ 0 0 40 20 0 0

108 Y-PQ 0 0 40 20 0 0

109 Y-PQ 0 0 0 0 0 0

110 Y-PQ 40 20 0 0 0 0

111 Y-PQ 0 0 0 0 0 0

112 Y-PQ 20 10 0 0 0 0

113 Y-I 20 10 0 0 0 0

114 Y-Z 40 20 0 0 0 0

115 Y-PQ 20 10 0 0 0 0

116 Y-PQ 0 0 0 0 0 0

117 Y-PQ 0 0 0 0 0 0

118 Y-PQ 0 0 0 0 0 0

119 Y-PQ 0 0 0 0 0 0

120 Y-PQ 0 0 0 0 0 0

121 Y-PQ 0 0 0 0 0 0

122 Y-PQ 0 0 0 0 0 0

123 Y-PQ 0 0 0 0 0 0
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IEEE 14-bus system data

Table C.1: Bus data

Active

load

Reactive

load

Active

generation

Reactive

generation

Bus kW kVAR kW kVAR

1 0 0 232.4 -16.9

2 21.7 12.7 40 42.4

3 94.2 19 0 23.4

4 47.8 -3.9 0 0

5 7.6 1.6 0 0

6 11.2 7.5 0 12.2

7 0 0 0 0

8 0 0 0 17.4

9 29.5 16.6 0 0

10 9 5.8 0 0

11 3.5 1.8 0 0

12 6.1 1.6 0 0

13 13.5 5.8 0 0

14 14.9 5 0 0
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Table C.2: Line data

From To R(pu) X(pu) B/2 Tap

1 2 0.01938 0.05917 0.0264 1

1 5 0.05403 0.22304 0.0246 1

2 3 0.04699 0.19797 0.0219 1

2 4 0.05811 0.17632 0.017 1

2 5 0.05695 0.17388 0.0173 1

3 4 0.06701 0.17103 0.0064 1

4 5 0.01335 0.04211 0 1

4 7 0 0.20912 0 0.978

4 9 0 0.55618 0 0.969

5 6 0 0.25202 0 0.932

6 11 0.09498 0.1989 0 1

6 12 0.12291 0.25581 0 1

6 13 0.06615 0.13027 0 1

7 8 0 0.17615 0 1

7 9 0 0.11001 0 1

9 10 0.03181 0.0845 0 1

9 14 0.12711 0.27038 0 1

10 11 0.08205 0.19207 0 1

12 13 0.22092 0.19988 0 1

13 14 0.17093 0.34802 0 1
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Theorems on Attack Strategy

Let, H̄ is defined as H̄ = R−1/2H, and H̄i is the ith row of H̄

Theorem 1 : Let ǫ be the threshold and σ2
i=1,...,3m be the variance of errors in the

J(x̂) test. Given any set of measurements z, it is guaranteed to pass the J(x̂) test

when
∑3m

i=1(1−Kii)
∑3m

j=1(z
2
j /σ

2
j ) ≤ ǫ.

Theorem 2 : Suppose the original set of measurements z can bypass the J(x̂)

test. When the measurement zi in z is perturbed into zattackedi by the attacker, there

always exists a new value Kattacked
ii ∈ (Kii, 1], such that the new measurement set

zattacked is guaranteed to bypass the J(x̂) test.

Theorem 3 : Let Kii be the ith diagonal element of hat matrix K, then,

(1−Kii)
2 ≤

∥

∥

∥

∥

∥

∥





H̄p

H̄f





∥

∥

∥

∥

∥

∥

2

2
∥

∥

∥
H̄T

i

∥

∥

∥

2

2

where H̄ is partitioned as: H̄ =
[

H̄p
T
H̄i

T
H̄f

T
]T

.

An attacker can increase the value of Kii by just increasing the l2-norm of H̄T
i .

Since, H̄i = 1/σi.Hi, it gives rise to three rules

Rule 1: Increase the absolute values of elements in Hi.

Rule 2: Decrease the value of σi.

Rule 3: Increase the number of non-zero elements in Hi.
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The proofs of the theorems are given in [61].

Therefore, there is a relationship between the measurement zi and the correspond-

ing Kii. Let the attacked measurement be denoted by zattackedi and the attacked

corresponding diagonal element of the hat matrix be Kattacked
ii . Then, ∆Kii =

Kattacked
ii − Kii. Hence, the change in the value of Kii reflects a change in the

value of the corresponding zi.

A smaller σi indicates a higher accuracy measurement. A higher accuracy mea-

surement is more likely to become a leverage measurement and thus has a higher

chance of getting attacked. From Theorem 2, it is clear that a small change in

the value of Kii can make the attack successful against measurements with larger

value of Kii. Hence, the leverage measurements are more susceptible to successful

attacks.
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