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Graphical	
  abstract	
  
Image noise causes an over-estimation of mean diffusivity (MD) and fractional 

anisotropy (FA) and under-estimation of E2A (relating to sheetlet orientation) at low 

b-values and an under-estimation FA, MD and E2A at high b-values.  Simulations 

demonstrate that the noise effects at high b-values can be mitigated by averaging 

complex rather than magnitude data.  An algorithm for subtracting the motion 

induced image phase is implemented which allows complex averaging in vivo and 

compensation for the noise floor effects at high b-values. 
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Abstract Summary: 

There is growing interest in cardiac diffusion tensor imaging (cDTI), but unlike other 

diffusion MRI applications, there has been little investigation of the effects of noise on 

the parameters typically derived.  One method of mitigating noise floor effects when 

there are multiple image averages, as in cDTI, is to average the complex rather than 

the magnitude data, but the phase contains contributions from bulk motion, which 

must be removed first. 

 

The effects of noise on mean diffusivity (MD), fractional anisotropy (FA), helical angle 

(HA) and the absolute secondary eigenvector angle (E2A) were simulated with 

various diffusion weightings (b-values). The effect of averaging complex versus 

magnitude images was investigated.   

 

In-vivo cDTI was performed in 10 healthy subjects with b=500, 1000, 1500 and 

2000smm-2.  A technique for removing the motion-induced component of image 

phase present in-vivo was implemented by subtracting a low-resolution copy of the 

phase from the original images before averaging the complex images. MD, FA, E2A 

and the transmural gradient in HA were compared for un-averaged, magnitude and 

complex averaged reconstructions. 

 

Simulations demonstrated over-estimation of FA and MD at low b-values and under-

estimation at high b-values. The transition is relatively SNR independent and occurs 

at a higher b-value for FA (b=1000-1250smm-2) than MD (b≈250smm-2). E2A is 

under-estimated at low and high b-values with a transition at b≈1000smm-2, whereas 

the bias in HA is comparatively small. The under-estimation of FA and MD at high b-

values is caused by noise floor effects which can be mitigated by averaging the 

complex data.   

 

Understanding the parameters of interest and the effects of noise informs the 

selection of the optimal b-values. When complex data is available it should be used 

to maximise the benefit from acquiring multiple averages. Combining complex data is 

also a valuable step towards segmented acquisitions. 
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List	
  of	
  abbreviations	
  
DTI – diffusion tensor imaging 

cDTI – cardiac DTI 

SNR – signal to noise ratio 

HA – helical angle 

FA – fractional anisotropy 

MD – mean diffusivity 

EPI – echo planar imaging 

STEAM-EPI – stimulated echo acquisition mode – EPI 

E2A – absolute angle of the second eigenvector of the diffusion tensor 

S0 – signal intensity with diffusion encoding 

bmain – diffusion weighting of the images with the higher of the two diffusion 

weightings used to reconstruct the tensor 

bref – diffusion weighting of the reference images (often referred to as b0 images), i.e. 

the smaller of the two diffusion weightings 

G – diffusion gradient strength 

TSS – duration of the slice select and accompanying rephasing gradient  

TEPI – duration of the echo planar imaging echo train 

RR – RR interval (period) of the cardiac cycle 

NA – number of image averages 

TE – echo time 

TR – repetition time 

FOV – field of view 

HAg – transmural helical angle gradient 

HA-R2 – coefficient of determination (R2) of the linear regression of the HAg 

ANOVA – analysis of variation 

GRAPPA – generalised autocalibrating partially parallel acquisitions 

SENSE – sensitivity encoding 
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Introduction	
  
The unique ability of cardiac diffusion tensor imaging (cDTI) to provide non-invasive 

information on myocardial microstructure in vivo has led to a number of recent 

technical developments(1,2,3,4) and insights into normal and diseased structure and 

function(5,6). Yet a number of uncertainties and controversies remain, including the 

effects of mixing time(7), strain(8) and noise.  While the first two of these have partial 

solutions(7,8,9) and the effects of noise were described in general(10,11), there is 

uncertainty regarding the specific effects of noise on the parameters typically derived 

from cDTI at the signal to noise ratios (SNR) achieved.  Further insights may partially 

explain the differences between parameters reported in the literature(12). 

 

The structure of myocardial tissue is inherently very different from that of the central 

nervous system. While the neuronal bundles forming white matter have a cylindrical 

symmetry, myocardial tissue is fully orthotropic. As a result parameters such as 

radial diffusivity are less frequently quoted in the heart and the interpretation of 

tractography is less clear cut. However, the known progression from a left-handed 

helical arrangement of cardiomyocytes in the epicardium, through a circumferential 

orientation in the mesocardium to a right-handed helical arrangement in the 

endocardium(13) means that the helical angle (HA) is a widely quoted parameter. 

Diffusion of water molecules within the cleavage planes between functional units of 

cardiomyocytes known as sheetlets may be reflected in the secondary 

eigenvalue/vector of the diffusion tensor which rotates between systole and 

diastole(14,15). Recently we have shown that the mobility of the absolute value of 

the angle of the secondary eigenvector (E2A) between systole and diastole is 

substantially impaired in patients with hypertrophic cardiomyopathy(6).   

 

Fractional anisotropy (FA) and mean diffusivity (MD) are well established descriptors 

of the diffusion tensor that are widely used in studies of both cardiac and neurological 

diffusion. Increasing noise is typically thought to result in an increasing under-

estimation of MD(11). Jones and Basser (11) described the transition from a low bmain 

(the higher of the two b-values used) regime, where the effect of noise was to 

increase FA via eigenvalue repulsion, to a high bmain regime, where the noise floor 

limits the value of the primary eigenvalue and, hence the FA (so-called squashing the 
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peanut). The majority of in-vivo cDTI studies have been performed at low bmain values 

when compared to those typically used in neurological studies. However, the location 

of the transition from low to high bmain regimes is uncertain in cDTI and the effects of 

noise on HA and the secondary eigenvector have not been described. 

 

cDTI techniques typically acquire several averages to reduce the effects of noise.  

However, any difference in tissue position between the diffusion gradients is encoded 

in the image phase. Differences in phase between averages result in signal 

cancellation when complex data is averaged and therefore, magnitude averaging is 

used. Magnitude averaging improves SNR in regions of high signal but does not 

reduce the background signal (the noise floor). Some brain DTI studies have 

estimated the motion-induced phase based on the assumption that the motion 

induced phase varies gradually across the image and subtracted it(16) before 

averaging the complex data. These methods have not been demonstrated in the 

heart until now and the reliance of cDTI on averaging suggests that it may be a 

suitable application. Correction of the motion-induced phase is also a vital step 

towards a segmented cDTI acquisition which would permit higher resolution studies.  

 

In this work we simulate the effects of noise on FA, MD, HA and the second 

eigenvector using a cDTI specific model.  We implement a complex averaging 

algorithm for cDTI data based on the slowly varying approximation of motion-induced 

phase and demonstrate the bmain regime in which it is beneficial using both 

simulations and in in-vivo imaging. 

Experimental	
  

Simulations	
  

Numerical simulations were performed in order to demonstrate the effects of noise on 

cDTI acquisitions and determine the b-value and SNR regime in which averaging 

complex data is worthwhile. A numerical phantom was created in Matlab (Mathworks, 

Natick, MA) based on systolic mid-ventricular short-axis cDTI data from a previous 

study(2). The data were acquired with a stimulated-echo – echo-planar imaging 

sequence (STEAM-EPI)(1,17), with bmain=750 smm-2 (8 averages) and the reference 

b-value, bref=150smm-2 (1 average). The simulated image contained a left ventricle 

defined by an annulus with a thickness of 10 reconstructed pixels. HA(17) varied 
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linearly from -60° to +60° epi- to endocardium, MD=0.9x10-3 mm2s-1, FA=0.42 and 

the tensor mode(18) was 0 (eigenvalues [1.3, 0.9, 0.5]x10-3mm2s-1) uniformly. As in 

(6), E2A was defined as the absolute value of the angle between the radial direction 

and second eigenvector of the diffusion tensor projected into the radial – cross-

myocyte plane.  The cross-myocyte direction is perpendicular to the radial direction 

and the projection of the primary eigenvector into the circumferential–longitudinal 

plane.  E2A is thought to represent the mean orientation of the sheetlet/shear layer 

planes (6) in the myocardium and 60° was used here globally.  These parameters 

were used to create a simulated diffusion tensor at every pixel.   

 

Simulated diffusion encoded images were created using 6 diffusion encoding 

directions (in (x,y,z) co-ordinates (1,0,1), (1,0,-1), (0,1,1), (0,1,-1), (1,1,0), (-1,1,0)) 

with an x-y imaging plane and a uniform signal intensity without diffusion encoding 

(S0). The diffusion weighting for each direction and average was scaled by a normally 

distributed random value to account for the beat-to-beat variations in RR interval that 

scale the b-value proportionately. The simulated images (6 directions + reference, 

bref=0) were scaled for T2 decay (assuming T2=50ms) according to the minimum TE 

required for the corresponding bmain. The TE for the STEAM sequence is the time 

between the first and second RF pulses plus that between the third RF pulse and the 

centre of k-space (these times must be equal). Assuming a linear phase encode 

scheme, the time between the third RF pulse and the echo determines TE, 

giving:  𝑇𝐸 = 𝑇!! + 𝑇!"# + 2
!
!"

∙ !!"#$
!!

, where TSS and TEPI are the durations of the 

slice select gradient and rephasing gradient for the third RF pulse (4ms) and EPI 

echo train (13ms) respectively, G is the diffusion gradient strength (0.04Tm-1) and RR 

is the RR interval (1000ms fixed). The third term in this equation is twice the diffusion 

gradient duration neglecting ramp times and assuming that RR was much greater 

than the diffusion gradient duration. T2* decay during the echo train was not included 

in the simulation. 

 

The images were Fourier transformed and noise was added to the complex k-space 

data by adding a random number with an overall Gaussian distribution to the 

magnitude and phase at each pixel. To simulate the effects of the zero-filling 

performed for in-vivo acquisitions, the data was masked to zero the outer regions of 

k-space, halving the spatial resolution. These steps were repeated NA times to 
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simulate the effects of collecting NA cDTI signal averages. In order to most closely 

match the in-vivo acquisitions, the SNR was varied between 5.9 and 21 (in the bref=0 

images before averaging at a TE sufficient to achieve b=750smm-2) by changing the 

standard deviation of the Gaussian noise.  

 

The simulated data was processed using modified versions of the tools developed for 

in-vivo cDTI data in previous studies(2,5,6). The tensor was calculated using a linear 

least squares inversion. Maps of HA, MD, FA and E2A were generated. The mean 

signed difference (bias, relating to accuracy) and the mean absolute difference 

(precision) was calculated between the results of each simulation and the ground 

truth.   

 

The mean SNR in the left ventricle (before averaging) was measured in the bref=0 

images as the ratio between the mean signal and the standard deviation between 

signal averages for every pixel(1). Due to the scaling used to account for changes in 

TE at different bmain values, the SNR in the bref=0 images varies with different bmain 

values for a given level of added noise. The values quoted in this work are those for 

the bref=0 images for which the TE is the minimum required to achieve bmain=750smm-

2. 

 

Simulations were performed with the following parameters:  bmain=50, 100, 150, 250 – 

3000smm-2 in steps of 250 smm-2; 12 averages; bref=0 (6 averages); 9 added noise 

levels; a simulated standard deviation in the RR interval of 65ms (based on heart rate 

variations in previously acquired data (2)) and an average RR interval of 1s; and 

either magnitude averaging, beat-to-beat correction (including each average and 

direction in the matrix inversion with the corresponding simulated heart rate corrected 

b-value) or complex averaging. As there was no motion in the simulated data, phase 

correction was not performed for complex averaging and the mean of the complex 

data was taken before calculating the magnitude and processing as for magnitude 

averaged data. 

 

In order to demonstrate the performance of the 3 processing methods (magnitude 

averaging, beat-to-beat correction and complex averaging) in response to variations 

in other parameters the simulations were repeated with a fixed SNR=11 and other 

parameters as above. The effect of increasing the diffusion weighting of the 
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reference images, which may be used to reduce the contribution of microvascular 

perfusion (2,3) was investigated by increasing bref to 150smm-2. Heart rate variation 

was tested by using a simulated standard deviation in the RR-interval of 0, 35 and 

65ms. Signal averaging was investigated using 4, 8 and 12 averages. The influence 

of the MD on the results was simulated by scaling the input diffusion tensor to give 

MD values encompassing those reported in previous studies (19) 0.5, 0.9 (2) and 2.4 

x10-3smm-2 (20). Finally, changes in FA (covering values reported in the literature) 

were simulated with eigenvalues/FA of [1.1, 0.9, 0.7]/0.22 (21,22), [1.3, 0.9, 0.5]/0.42 

(2) and [1.7, 0.9, 0.1]/0.72 (19,23) whilst MD was maintained at 0.9x10-3smm-2. 

 

In-­‐vivo	
  imaging	
  

Ten healthy subjects (6 male, median age 33, range 22-59 years) were recruited in 

accordance with ethical approval. Imaging was performed on a Siemens Skyra 3T 

scanner (Siemens Healthcare, Erlangen Germany) with maximum gradients and slew 

rate of 0.045Tm-1 and 180Tm-1s-1 using an 18 element anterior coil and 8-12 

elements of a posterior spine coil. A single slice mid-ventricular short-axis systolic 

cDTI acquisition was planned as in previous work(2). Breath-hold cDTI was 

performed using STEAM-EPI with monopolar diffusion encoding(1,17). Spatial 

resolution was 2.8x2.8mm2 (1.4x1.4mm2 via zero-filling), 8mm slice thickness, 

reduced phase field of view (FOV) via zonal excitation, FOV 360 x 135mm2, echo 

train length 24, repetition time 2RR-intervals (1RR-interval of T1 recovery). Each 

breath hold was 18RR-intervals, consisting of 2RR-intervals for each of: EPI phase 

correction lines; parallel imaging reference data; a reference bref=34smm-2 image; 

and each of the 6 diffusion encoding directions. Factor 2 SENSE parallel imaging 

was used and both magnitude and phase images were reconstructed using the 

standard vendor supplied reconstruction. In each breath hold, diffusion encoding was 

performed in 6 directions (identical to those described in the simulation section, 

applied in the magnet frame of reference) and also with small spoiler gradients in 

place of the diffusion encoding gradients (effective bref=34smm-2 with a constant 

direction of (1,1,1) in the (read, phase, slice) patient co-ordinate system). Crusher 

gradients were not used (see Lundell et al. (24) figure 1). cDTI acquisitions were 

performed at bmain=500,1000,1500 and 2000 smm-2 (bmain values, as elsewhere are 

prescribed values assuming RR interval=1000ms). The magnitude of the diffusion 

weighting was confirmed by exporting the gradient waveforms from the MRI simulator 
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and calculating the double integral described by Stejskal and Tanner (25). Cross-

terms from the imaging gradients were found to contribute around 0.1% to the b-

values used and were therefore neglected when calculating the tensor. 12 averages 

were used at each bmain and direction. To test the performance of complex averaging 

with an increased bref, an additional 2 averages (2 breath holds) were acquired with 

b=150smm-2 and 6 directions. The minimum TE was used for each acquisition, 

except for the bref acquisitions (bref=34smm-2 and bref=150smm-2), which were 

acquired with the same TE as the corresponding bmain acquisition.  

 

The diffusion tensor and the parameter maps were calculated for each bmain using the 

bref=34smm-2 data and then the bref=150smm-2 data with matching TE. The orientation 

of the diffusion weighting in the reference images was accounted for in the tensor 

calculation. As TE was the same for bref and bmain no correction for T2 decay was 

required. Processing was performed using a modified version of the software 

described previously(2,5,6).  All images were visually assessed to exclude motion-

corrupted frames before rigid registration. The processing code produced three 

versions of the diffusion tensor and parameter maps using the same image data for 

each bmain-bref pair (figure 1): 

 

1. Magnitude processing – beat-to-beat heart rate correction.   

The processing was performed as in (2) taking the heart rate corrected b-

value into account for every acquired image and including all of the 

magnitude images in the matrix inversion used to calculate the diffusion 

tensor without averaging.  

2. Magnitude averaging – average heart rate correction.   

Magnitude data acquired with the same b-value and diffusion encoding 

direction was averaged and the b-value was corrected based on the 

average heart rate during acquisition of the data used. 

3. Complex averaging – phase correction and average heart rate correction. 

The phase induced by residual bulk displacements between the diffusion 

encoding gradients causes signal cancellation after averaging. Therefore, 

the motion-induced phase of each image was approximated by the phase 

of a copy of the data multiplied in k-space with a pyramid shaped kernel of 

width ¼ of the FOV(16). This low-resolution phase was subtracted from 

the original images. All images with the same encoding direction and b-
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value were averaged in the complex domain before calculating the 

magnitude. The b-value was corrected based on the average heart rate 

during acquisition of the data used. 

 

In pixels where one or more eigenvalues were found to be negative (typically <0.5% 

of pixels in the left ventricle), the negative values were replaced with an average 

value from the surrounding pixels. SNR in the bref=34 smm-2 images was measured 

as in the simulations. The mean transmural helical angle gradient (HAg) was used to 

facilitate comparisons of HA. HAg was calculated from radial profiles using a linear 

regression of helical angle with transmural depth(2,12,26). The mean coefficient of 

determination (R2) of this linear regression (HA-R2) was used as a measure of the 

linearity of the transmural HA change. Mean left ventricular MD, FA, E2A, HAg, HA-

R2 and the eigenvalues were averaged over the left-ventricle, after excluding 

papillary muscle and the part of the septal wall considered right ventricular. Values 

were compared between the 4 bmain values and between the three methods. Where a 

histogram suggested normality, a repeated-measures ANOVA was used otherwise a 

Friedman test was used. Paired comparisons were performed using a t-test or a 

Wilcoxon test. In order to reduce the probability of type-I statistical errors, as many 

statistical comparisons were performed, a P-value threshold of 0.01 was used in all 

cases. 

Results	
  

Simulations	
  

There was good agreement between the appearance of the parameters maps 

originating from both the noisy simulated data and in-vivo data from a normal subject 

acquired in a previous study (2) (figure 2).  

 

The bias (simulated - input parameter) and absolute error (mean of the absolute 

simulated – input parameter) of the MD, FA, HA and E2A parameters is plotted 

against bmain for 3 simulated SNR values and each of the three reconstruction 

methods in figure 3 (bref=0, 12 averages). The corresponding plots for the three 

eigenvalues are shown in supplementary figure S1 and plots similar to figure 3 for all 

9 SNR values are shown in supplementary figures S2, S3 and S4, for magnitude 

averaging, beat-to-beat correction and complex averaging respectively. At low bmain 
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MD and FA are over-estimated and E2A is under estimated using all 3 reconstruction 

methods. At high bmain using magnitude averaging and beat-to-beat correction MD, 

FA and E2A are under-estimated. There is a slight (<10°) over-estimation of HA at 

high and low bmain
 using all methods, but the primary effect of noise is to reduce the 

precision, as indicated by the increase in the absolute HA error.  

 

Using magnitude averaging the value at which the effect of noise transitions from 

over- to under-estimation of FA is similar for all SNR values (bmain=1000 – 1250smm-2 

for SNR<21 and bmain=750-1000smm-2 for SNR=21).  The transition for MD generally 

occurs at a lower bmain; by bmain=250 smm-2 MD is under-estimated for all SNR<16 

(SNR=21 transitions by bmain=1000smm-2). The bias in E2A and the absolute error in 

all parameters shown in figure 3, is a minimum or very close to a minimum at 

bmain=1000smm-2. 

 

Using beat-to-beat correction reduces the magnitude of the bias in all parameters 

and reduces the absolute error in MD and FA when compared to magnitude 

averaging. This has the result of shifting the b-value corresponding to the minimum 

absolute error or bias to a higher bmain. By bmain=500smm-2 MD is under-estimated for 

the majority of SNR values studied and the transition from over to under-estimation of 

FA happens at 1250<bmain<1500smm-2. 

 

Using complex averaging, the under-estimation of FA at high bmain is eliminated at all 

SNR values studied and the under-estimation of MD is eliminated for all but the very 

highest (>2000smm-2) bmain values. 

 

The effect of increasing bref from 0 to 150smm-2 is shown in supplementary material 

figure S5. Increasing the reference b-value increases the magnitude of the bias in 

MD and E2A and increases the absolute error in all parameters at low bmain for all 

methods. A comparison of the number of averages used is provided in 

supplementary material figure S6. These results demonstrate a substantial reduction 

in errors when increasing from 4 to 8 averages, but minimal improvements when 

increasing the averages further to 12. The effects of the variation in RR-interval on 

the performance of each of the processing methods is shown in supplementary 

material figure S7. The performance of both complex and magnitude averaging 

shows little dependence on the variation in RR-interval. In contrast, when using beat-
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to-beat correction the variation in RR-interval results in an increased error in MD. 

Supplementary material figures S8 and S9 show the effects of varying FA and MD, 

respectively.  In general, a higher FA or MD value results in a lower optimal bmain 

value. There is an under-estimation of FA at low b-values when the ground truth FA 

is high (0.72). At all ground-truth FA values there is a small positive minimum FA bias 

for complex averaging that increases for decreasing ground-truth FA and at the 

lowest FA value (0.22) the bias for the complex averaged data increases with bmain at 

high bmain.  

 

In-­‐vivo	
  imaging	
  

cDTI parameter maps were calculated from data acquired in all subjects with all bmain 

values using all methods.  The median of the mean RR-interval was 1.015s (range 

0.798-1.27s) and histograms of the RR-intervals during the studies are shown in 

supplementary figure S10. At prescribed bmain=2000smm-2, these RR intervals result 

in a median actual bmain=2029smm-2 (range 1596-2540smm-2). Further statistical 

analysis (one-way repeated measures ANOVA with Greenhouse-Geisser correction 

for non-sphericity) was used to compare the RR-interval between diffusion encoding 

directions. This test found statistical differences between diffusion encoding 

directions in two subjects (both P<10-3) and the subsequent paired testing 

demonstrated that this was a result of a difference in RR-interval between the 

bref=34smm-2 and the bmain images (RR increase of 4% for the bref images in one 

subject and a decrease of 4% in the other). The mean (±standard deviation) SNR in 

the unaveraged bref=34smm-2 images was 12.0±1.9. The median rate of rejection of 

acquired frames was 6% (range 0 – 35%) and there was no significant correlation 

with b-value (Pearson R=0.15, P=0.36). Background noise was visibly reduced in the 

complex averaged images when compared to the magnitude averaged images 

(figure 4).   

 

Example parameter maps (MD, FA, HA and E2A) from one typical subject using 

bmain=2000smm-2 and bref=34smm-2 and all three methods are provided in figure 5.  

Additional parameters maps for all bmain and processing methods are provided in 

supplementary material figures S11-S14. As predicted by the simulations, figure 5 

shows a visibly reduced MD when magnitude averaging is used. This MD reduction 

is partially compensated for by using complex averaging and, to a lesser by using 
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beat-to-beat correction. FA is increased in the mesocardial layer (see McGill et al. 

(27) for a discussion of this) and this effect is less evident in the magnitude-averaged 

images due to attenuation of the primary eigenvalue. There are several isolated 

pixels of high MD and FA (arrow heads) when using the beat-to-beat correction, 

which are absent using both of the averaging techniques. There are few visible 

changes in helical angle and E2A between the three methods.   

 

Figure 6 compares the full tensor and the eigenvectors produced using all methods 

at bmain=2000smm-2 with bref=34smm-2 in one example.  While the tensors are a 

similar shape and the eigenvectors are mostly similarly orientated, there are 

differences between the three methods, most clearly in the second eigenvector. 

 

The MD, FA, E2A, HAg, HA-R2 and each of the three eigenvalues are plotted as the 

mean ± standard deviation across the 10 subjects with bmain in figure 7 (also see 

figure S15, bref=150smm-2). All parameters except HA-R2 were deemed to be 

normally distributed. There is a significant reduction in MD with bmain (using all 

methods) which is partly compensated when using complex averaging or beat-to-

beat correction. FA also reduces with bmain using magnitude averaging, but not using 

complex averaging. At bmain=2000smm-2 there is a significant difference when 

comparing magnitude vs. complex and magnitude vs. beat-to-beat corrected data for 

both MD and FA. By this maximum bmain value, there is a 13% difference in FA and a 

7% difference in MD between the complex and magnitude averaged data.  

 

There were no significant differences in E2A values between bmain values or 

averaging methods.  

 

Each of the eigenvalues reduces with increasing bmain independent of the averaging 

method used.  The reduction in the 1st eigenvalue is partially compensated when 

using complex averaging and, to a lesser extent using beat-to-beat correction. At 

bmain=2000smm-2 this results in a significantly higher 1st eigenvalue using complex 

averaging than using magnitude averaging or beat-to-beat correction.  At bmain=500 

smm-2, significant differences in MD and the 1st eigenvalue are present between 

complex and magnitude averaged data and in the second eigenvalue between the 

magnitude averaged and both the complex averaged and the beat-to-beat corrected 

data. The magnitude of these differences, is however, small.  There were no 
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significant differences in HAg between bmain values or methods, except at 

bmain=1500smm-2, where HAg using magnitude averaging is larger than when using 

beat-to-beat correction.  The median value of HA-R2 was greatest at bmain=1500smm-

2, but there were no significant differences between bmain values or methods.   

 

There are similar trends when bref=150 smm-2 is used (figure S15). In this case there 

were significant differences at bmain=2000smm-2 between FA values calculated using 

magnitude and complex averaging.  Also at bmain=2000smm-2 there were significant 

differences in the 1st eigenvalues calculated using magnitude averaging and either of 

the complex averaging or beat-to-beat correction. There were significant differences 

in HAg between methods at bmain=1500smm-2, and HA-R2 at bmain=2000smm-2, but 

post-hoc tests found no significant results. There was also a significant difference in 

HA-R2 between bmain values using beat-to-beat correction. 

Discussion	
  
Using simulations we have shown the effects of noise on the parameters typically 

derived from the diffusion tensor in cDTI. At low bmain, the eigenvalue repulsion 

described in early DTI studies(10) results in over-estimation of FA. In this regime, 

eigenvalue repulsion can cause the 3rd eigenvalue to be negative, which is 

unphysical so our processing algorithm replaces these values with the average from 

neighbouring pixels. This causes an over-estimation of MD at low bmain. At high bmain, 

the noise floor results in a reduced MD and FA, described by Jones and Basser (11) 

as “squashing the peanut”. The main effect of noise on the HA was a loss of 

precision which is reflected in the increase in standard deviation and absolute error. 

E2A is under-estimated at high and low bmain. In general an increase in image noise 

leads to a loss of both precision and accuracy. This is reflected in a noisier parameter 

map and a larger magnitude in the bias. The optimum bmain depends on the expected 

MD and FA of the tissue and to some extent SNR. The bmain corresponding to zero 

bias appears to be relatively independent of the noise, at bmain=1000-1250smm-2 

(although it may be higher when FA is low). The bias in MD crosses or approaches 

zero by bmain=250smm-2 (assuming the typical diffusion parameters measured in 

previous studies using similar techniques). As previous in-vivo cDTI studies (1,3,17) 

have typically used bmain=200-600smm-2, our results suggest that FA was probably 

over-estimated, while MD and E2A were likely under-estimated. 
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Using cDTI specific simulations we demonstrated that in the high bmain regime the 

under-estimation of MD (bmain>250smm-2 – 1000smm-2 depending on SNR) and FA 

(bmain≥1250smm-2) observed with magnitude averaging can be compensated for by 

averaging the complex data. This is a consequence of reducing the noise floor, which 

avoids the attenuation of the 1st and, at very high bmain, the 2nd eigenvalue.  At low 

and intermediate FA values (0.22 and 0.42), eigenvalue repulsion causes an over-

estimation of FA at low bmain. Whereas at low bmain and high FA values, where the 3rd 

eigenvalue is very small, the replacement of eigenvalues which have been driven 

negative by eigenvalue repulsion with neighbouring positive values results in an 

under-estimation of FA. These effects cannot be compensated for by using complex 

averaging.  

 

The absolute error in all parameters is a lowest for almost all simulations when using 

complex averaging except when there is a low ground-truth FA (0.22) and high bmain 

(>1250smm-2). In this regime eigenvalue repulsion causes an increase in the FA 

bias, before the noise floor effects cause a reduction in FA (also shown in Jones and 

Basser (11)).  

 

In vivo we observed the reduction of MD and FA with increasing bmain predicted by 

the simulations when using magnitude averaging.  By approximating the motion-

induced phase in the diffusion-weighted images by a low-resolution copy of the 

image phase, we were able to demonstrate reduced background signal intensity.  

Averaging the complex data resulted in a smaller reduction in MD with increasing 

bmain than when averaging the magnitude data. Complex averaging also eliminated 

the reduction in FA associated with increasing bmain. Analysis of the eigenvalues 

demonstrated that the recovery of the lost MD and FA at high bmain by complex 

averaging is primarily achieved by recovering losses in the first eigenvalue. In 

agreement with the simulations, there were no differences in E2A between any of the 

methods in vivo and the E2A plotted with bmain is concave for both in-vivo and 

simulation data. The linear variation of HA with transmural depth makes it difficult to 

directly compare helical angles, but there were few differences in HAg between 

methods and none between bmain values. Although the peak in HA-R2 (P=non-

significant) suggests that HA might be most linear around bmain=1500smm-2. When 
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we compared tensors produced by the three methods (figure 6) there were visual 

differences. 

 

One potential limitation of complex averaging is that beat-to-beat correction of the b-

value for heart rate cannot be performed. However, our simulations suggest that as 

long as the mean RR-interval is used with complex or magnitude averaging, typical 

variations in heart rate do not result in an increase in error. We did not include 

variations in RR-interval between diffusion encoding directions in our simulations and 

analysis of our in-vivo data suggests that in a minority of subjects (2/10) there is a 

significant change in heart rate during the breath hold. As these changes were only 

found between the bref=34smm-2 images (acquired before the bmain images in each 

breath hold) and the bmain images and not between the bmain images, the effect on the 

derived parameters is mainly restricted to a small change in MD for the complex and 

magnitude averaged data (+0.6% in one subject and -2% in the other). Future studies 

should avoid these effects by, for example: varying the order in which data is 

acquired between breath holds (including reference data); using the RR-interval 

calculated by diffusion direction; or acquiring data for a single diffusion encoding 

direction in each breath hold. 

 

In agreement with the simulations, beat-to-beat correction generally performs better 

than magnitude averaging, but not due to the obvious ability to correct for beat-to-

beat variations in the RR-interval. The inclusion of the unaveraged images in the 

matrix inversion used to calculate the diffusion tensor avoids the magnitude 

averaging step and therefore, reduces the noise floor effects. As bmain increases the 

MD, FA and 1st eigenvalue are less severely attenuated when using beat-to-beat 

correction than when using magnitude averaged data, but complex averaging 

performs better still. At the highest bmain values, the FA and MD reconstructed with 

beat-to-beat correction contained several pixels which appeared to be spurious and 

not consistent with the surrounding pixels or with the other methods (figure 5). These 

pixels corresponded to pixels where one average had a very low signal intensity. This 

has minimal effect when the data is averaged before calculating the natural logarithm 

required before the matrix inversion, but skews the calculated diffusion when the 

logarithm of each of the signal intensities is calculated and included in the linear least 

squares inversion. In future studies, this effect could be avoided using a pre-

processing step. The simulations also show that when using complex averaging 
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there is an increase in the minimum FA bias with decreasing ground-truth FA, 

although this effect is also present with magnitude averaging and beat-to-beat 

correction. A further limitation is that complex averaging was unable to fully 

compensate for reductions in MD with increasing bmain. There is a significant 

reduction in all eigenvalues with increasing bmain. While the simulations suggest that 

this might be the result of noise, it may also represent non-Gaussian diffusion at high 

b-values(28).  

 

A further issue in cDTI is the effect of motion, which we have not directly addressed 

in this work. The amount of motion-induced phase in the DTI data will increase with 

b-value. Eventually this will lead to signal loss, due to a sufficient range of phases 

present within each voxel. This effect would be independent of the averaging 

technique used. In this work we assumed that the motion induced phase varied 

gradually across the image, but this assumption could be violated at sufficiently high 

b-values or with sufficient motion. While this would affect the performance of complex 

averaging, in this work we were able to perform complex averaging with data 

acquired using b≤2000smm-2 and did not observe artefacts consistent with violation 

of this assumption. Previous work (29,30) has simulated the effects of motion in spin-

echo based cDTI techniques, but there is a need to extend this work to STEAM 

which we hope to address in future.  

 

In order to most realistically compare sequence parameters as they would be used in 

future studies, we used the minimum TE for each bmain. This means that the effect of 

changing bmain is intertwined with that of changing TE. In contrast, if TE was 

maintained, the bmain corresponding to the minimum parameter error is artificially 

inflated. This also means that our results are specific to STEAM cDTI sequences. For 

spin-echo based sequences we may expect a higher SNR despite the much longer 

TE required, but we would expect the curves to have a similar shape to those shown 

here. 

 

We did not account for variations in SNR with heart rate in our simulations. While 

there is a loss of SNR with decreasing heart rate due to T1 recovery during the 

longer mixing time in the STEAM sequence, there is also an increase in SNR due to 

the increased T1 recovery time between stimulated echoes. As a result, the SNR 

dependence on heart rate is relatively small for this sequence. 
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In previous work(2) we found a combination of bmain=750smm-2 and bref=150smm-2 to 

be optimal from a range tested, but we did not have a reference value for FA. The 

simulations performed here suggest that for minimum error in FA, bmain=1000-

1250smm-2 is preferable. While there is some dependence on the SNR, the minimum 

absolute error in MD, HA and E2A also lies close to bmain=1000smm-2 and this would, 

therefore seem like a good choice in future studies. If complex averaging can be 

performed then a higher bmain can be used. With prescribed bmain=1250smm-2 any 

under-estimation of MD and FA can be compensated for with complex averaging. 

The use of a sufficiently high bmain avoids the uncorrectable over-estimation of FA at 

low bmain values, even in the presence of a raised heart rate of 75 beats per minute, 

where a prescribed bmain=1250smm-2 gives an actual value of 1000smm-2. Several 

previous studies have investigated the optimal b-values with regards to brain DTI 

studies (31,32,33). Despite the different sequences and T2 values studies were 

based on, the optimal bmain of 900smm-2 typically suggested for brain DTI is relatively 

similar to the optimal values found here. Jones and Basser (11) provided an order of 

magnitude estimate for the maximum bmain that could be used without sampling the 

noise floor. For FA=0.42, MD=0.9x10-3mm2s-1 and SNR=11 the maximum bmain is 

predicted as 1600smm-2. While this is higher than our optimal bmain, at this value our 

simulations predict an under-estimation in FA of only 0.03. 

 

The MD values measured here are larger than those we found in previous work using 

a similar sequence and beat-to-beat correction(2). Using bref=34smm-2 and 

bmain=500smm-2 in this work we found MD=1.071±0.062mm2s-1 compared to 

MD=0.983±0.041mm2s-1 using bref=15smm-2 and bmain=550smm-2. These changes are 

likely the result of using 12 averages in this work and a SENSE rather than GRAPPA 

reconstruction. The SNR is similar between the two reconstructions (12.0±1.9 

SENSE, vs. 12.1±1.55 GRAPPA, P=0.9), but the noise floor was higher in the 

GRAPPA images. The standard manufacturer provided reconstructions were used in 

this work without optimisation.  However, there are known differences in the noise 

floor distribution between the sum of squares reconstruction used with GRAPPA and 

the coil sensitivity weighted combination used with SENSE(34,35).  

 

FA was similar when using bmain=500/550smm-2, bref=34/15smm-2 at 0.409±0.027 

compared with 0.411±0.026 in previous work, but higher in this study using 
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bmain=1000/950smm-2 at 0.410±0.042 compared with 0.372±0.029 in the previous 

work.  This loss of FA and MD at bmain=950smm-2 in the previous work is consistent 

with noise floor effects which are shifted to higher bmain in this work by using the 

SENSE reconstruction.  The healthy systolic E2A in previous work (6) had a median 

of 56.4° (bmain=350, bref=135smm-2, similar sequence) which is similar to our value of 

55±10° (median ± interquartile range).   

 

Previous simulations have been created to study the effects of cardiac motion on 

diffusion-weighted imaging(29,36) and the effects of resolution and SNR on the 

measured cardiomyocyte orientation(37). This is the first cDTI specific simulation to 

consider the effects of noise on the DTI parameters of interest in the heart using 

realistic parameters. In this work we did not consider the effects of the number of 

diffusion encoding directions, which may affect the behaviour of cDTI parameters in 

the presence of noise. However, in future, these simulations could be adapted to 

study these effects and other acquisition or reconstruction parameters including 

alternative noise reduction algorithms and non-Gaussian models of diffusion.   

 

A wealth of techniques have been employed for noise reduction in MRI(38) and many 

of them are applicable to diffusion tensor imaging(11,39). However, most require 

SNR estimates or noise distributions, involve complex reconstructions, add 

smoothing or remove small/low contrast objects.  While complex averaging has found 

limited applicability in neurological DTI(40), the averaging used in cDTI makes it a 

more suitable target. Complex averaging does not affect spatial resolution and, as 

long as the motion induced phase can be identified, it will not introduce artefacts. 

Complex averaging is not limited to STEAM-EPI data and could be applied to 

diffusion weighted imaging and spin-echo cDTI. While we did not investigate more 

advanced methods of calculating the diffusion tensor, including weighted least-

squares and non-linear methods, which may reduce the effects of noise, complex 

averaging should be able to be readily combined with such techniques in future. 

Estimating the image phase is also an important step towards a segmented 

acquisition for improved spatial resolution(41). 

 

In conclusion, the effect of noise on parameters derived from cDTI depends on the 

parameters themselves, the SNR, the averaging method used in calculating the 

diffusion tensor and the magnitude of the diffusion weighting. The optimal bmain 
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depends on the SNR to a small extent and the actual FA and MD of the tissue being 

studied. For the most accurate measurements, a bmain of 1000 - 1250 smm-2 should 

be used. The high bmain regime is preferable over the low, as the under-estimation of 

FA and MD can be compensated for by using complex averaging with a relatively 

straightforward correction for motion induced image phase.  The ability to perform 

cDTI at high bmain may also enable new insights into myocardial microstructure. 
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  Figures	
  

 
 

Figure 1:  A comparison of the magnitude and complex averaging algorithms used 

for in vivo data.  This example uses bmain=2000smm-2 and bref=34smm-2. 

1.  For each bmain 12 averages of each encoding direction, 12 averages of 

bref=34smm-2 (with a constant direction) and 2 averages of each 6 directions for 
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bref=150smm-2 are acquired (bref=150smm-2 not shown). 

2.  Real and imaginary data for each direction and average. 

3.  For magnitude averaging, the magnitude image is calculated and the 12 images 

are averaged. 

4.  For complex averaging the real and imaginary images are multiplied by a pyramid 

shaped window (width ¼ FOV) in k-space to provide low-resolution copies(16).  

5.  The phase of the low-resolution images (filtered phase) contains the phase 

induced by differences in the heart’s position between encoding and unencoding 

gradients.  This is subtracted from the original phase which is combined with the 

original magnitude data. 

6.  Repeat steps 4 and 5 for every image. Real and imaginary images are averaged 

before calculating the magnitude.  There is now one magnitude averaged and one 

complex averaged image for each encoding direction and b-value.  The complex 

averaged data show reduced background noise levels (magenta arrow heads). 

7.  Parameter maps are calculated from the magnitude and complex averaged data.  

There are areas of higher FA (arrow heads) in the complex averaged data. 
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Figure 2:  Simulated cDTI parameter maps without noise (top row), with added noise 

(bmain=800 smm-2, 7 averages, middle row) and in vivo data with a similar SNR 

(bmain=750 smm-2, 8 averages, bottom row).  
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Figure 3:  The mean bias (output parameter – ground truth) and absolute error in 

MD, FA, HA and E2A plotted with the bmain for the simulations using magnitude 

averaging, beat-to-beat correction and complex averaging.  Simulations used 12 

averages and SNR=11 in the bref=0 images with sufficient TE to achieve 

bmain=750smm-2. 
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Figure 4:  Example in-vivo images with diffusion encoding in one direction for all b-

values (in smm-2).  The magnitude images are shown in grayscale with a constant 

window and level (first column).  The magnitude and complex averaged images are 

shown using a colour map to highlight differences in the relative noise levels.  
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Figure 5:  Example maps of mean diffusivity (MD), fractional anisotropy (FA), helical 

angle and E2A calculated using all three methods from data acquired at 

bmain=2000smm-2. MD is visibly increased and the band of elevated FA is more 

prominent when using complex rather than magnitude averaging (see McGill et al. 

(27) for a discussion of this band). Several pixels in the MD and FA map have values 

inconsistent with the surroundings when the beat-to-beat method is used (arrow head 

indicates one). The shaded area in each image indicates the region of the image 

removed for quantitative comparison of the parameters. 
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Figure 6:  A comparison of the diffusion tensors calculated by the three methods in 

an example subject at bmain=2000smm-2. Superquadric glyphs representing the full 

diffusion tensor are shown in a and b (zoomed).  Each method is shown by a semi-

transparent glyph at each pixel (3 overlaid gyphs per pixel). The orientation of the 

primary and secondary eigenvectors are shown in b and c respectively.  The 

orientation and size of the zoomed region is shown on a by the eye symbol and the 

arrows in all parts. 
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Figure 7:  In-vivo results from all subjects using bref=34smm-2.  Data are plotted as 

mean ± standard deviation, except for the HA-R2 which shows median ± interquartile 
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range.  Results of one-way repeated-measures ANOVA tests (Friedman test for HA-

R2) between averaging methods at bmain are shown above each point. From the 

pairwise comparisons * indicates P≤0.01between complex and magnitude averaging, 

** additionally indicates P≤0.01 between beat-to-beat corrected and magnitude 

averaged data.  + indicates P≤0.01 between magnitude averaged and beat-to-beat 

corrected data. Results of one-way repeated measures ANOVA between bmain values 

for each method are shown at the end of each line.  

 


