
ARTICLENO

ARC 2014: A Multi-Dimensional FPGA-Based Parallel DBSCAN
Architecture

NEIL SCICLUNA AND CHRISTOS-SAVVAS BOUGANIS, Imperial College London

Clustering large numbers of data points is a very computationally demanding task that often needs to be
accelerated in order to be useful in practical applications. This work focuses on the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm, which is one of the state-of-the-art clustering
algorithms, targeting its acceleration using an FPGA device. The paper presents an, optimised, scalable
and parameterisable architecture that takes advantage of the internal memory structure of modern FPGAs
in order to deliver a high performance clustering system. Post-synthesis simulation results show that the
developed system can obtain mean speed-ups of 31x in real-world tests and 202x in synthetic tests when
compared to state-of-the-art software counterparts running on a quad-core 3.4 GHz Intel i7-2600k. Addi-
tionally, this implementation is also capable of clustering data with any number of dimensions without
impacting the performance.

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design Styles—Algorithms
implemented in hardware; Gate arrays

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Clustering, DBSCAN, FPGA, Parallel Hardware Architectures

ACM Reference Format:

Neil Scicluna and Christos-Savvas Bouganis, 2014. ARC 2014: A Multi-Dimensional FPGA-Based Paral-
lel DBSCAN Architecture. ACM Trans. Reconfig. Technol. Syst. 1936, 7406, Article ARTICLENO (January
2015), 15 pages.
DOI:http://dx.doi.org/10.1145/2724722

1. INTRODUCTION
Clustering is the task of intelligently grouping data points into groups or clusters,
where the grouping of the points is based on a particular criterion, such as distance.
Clustering has many applications including data mining, statistical data analysis, pat-
tern recognition and image analysis [Martin Ester et al. 1996; Daszykowski et al. 2001;
Thapa et al. 2010]. Various clustering algorithms have been developed so far, usually
targeting a specific domain of applications by defining the notion of a cluster accord-
ingly. With high complexity and long computation times, sometimes even taking hours
for large datasets [He et al. 2011], the need to perform clustering as fast as possible is
becoming more and more prevalent.

The most widely used clustering algorithms are K-Means [Hartigan and Wong 1979],
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [Martin Es-
ter et al. 1996] and Ordering Points To Identify the Clustering Structure (OPTICS)
[Ankerst et al. 1999]. While K-Means provides a fast solution to the clustering prob-
lem, it has been shown to have certain limitations. These include its inability to iden-
tify and reject noise in the data, as well as its failure to take into account the spatial
density of the clustered data points [Martin Ester et al. 1996]. Additionally, the result

Author’s addresses: N. Scicluna and C.-S. Bouganis, Department of Electrical and Electronic Engineering,
Imperial College London, London SW7 2AZ, United Kingdom.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
2015 Copyright is held by the author/owner(s).
1936-7406/2015/MonthOfPublication-ARTICLENUMBER
DOI:http://dx.doi.org/10.1145/2724722

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARTICLENO:2 N. Scicluna and C.-S. Bouganis.

of K-Means is heavily dependent on its initialisation and on the number of clusters
provided by the user [Hartigan and Wong 1979]. The DBSCAN and OPTICS cluster-
ing algorithms address those limitations in exchange for higher complexity.

These algorithms perform clustering using the spatial density of the data. However,
OPTICS does not actually perform clustering, but instead provides insight on how to
do this, thus requiring additional processing for clustering to be achieved [Ankerst
et al. 1999]. This makes the whole process more computationally demanding. On the
other hand, DBSCAN is faster than OPTICS [Martin Ester et al. 1996; Ankerst et al.
1999] and serves as a good middle-ground, thereby making it one of the most popular
and heavily cited clustering algorithms [Microsoft 2014].

With increasing needs to perform clustering on large datasets as fast as possible,
running these on generic processors is proving to be inadequate and specialised hard-
ware is often utilised. FPGA-based implementations of clustering algorithms have
been developed to tackle these problems and show very promising results. Some ex-
amples of this are the real-time K-Means implementation proposed in [Maruyama
2006] and [Hussain et al. 2011], where these proved to be both faster and more power
efficient than GPU implementations. Similarly [Winterstein and Constantinides 2013]
and [Annovi and Beretta 2010] describe two approaches which involve using kd-trees
and a sliding window consecutively to exploit the parallelism available on FPGAs.

Very few hardware based implementations of the more complex and powerful,
density-based clustering methods have been developed thus far. This field therefore,
is not very mature and investigating and providing alternate ways to perform density-
based clustering in real-time could open a vast array of possibilities. The two algo-
rithms which satisfy this criterion are DBSCAN and OPTICS where as previously
mentioned, the latter has disadvantages which make it sub-optimal for real-time ap-
plications.

In this paper, an FPGA-based hardware implementation of the DBSCAN algorithm
is described. The proposed design takes advantage of the dynamic and massively par-
allel nature of an FPGA device by performing only certain stages of the algorithm in
parallel. This way, performance gains are still achieved, but the on-chip resources re-
quired are minimised. The proposed architecture is highly scalable to a degree that the
performance gains are not limited by dataset size, but only by the resources available
on the FPGA device utilised. Furthermore, the system is designed as a fully param-
eterisable IP core where aspects such as the size and dimensions of the input data,
internal precision, pipeline depths and the level of parallelism, can all be modified by
simply altering the parameters and re-synthesising. Finally, the system is also FPGA
target independent, with the only requirement being that the chip used has sufficient
amounts of Block Random Access Memory (BRAM). All these aspects make this the
most flexible hardware implementation of DBSCAN yet.

The research presented in this paper extends the previous work in [Scicluna and
Bouganis 2014]. We include more in depth coverage on the various research performed
in this field, a more detailed background of the DBSCAN algorithm itself and more
detailed explanations on the design choices made. Additionally, the challenges and
methodologies used to model, implement and simulate this design in VHDL are also
covered extensively. Furthermore, a thorough analysis of the performance of the sys-
tem when clustering datasets of more than two dimensions is performed. Finally, the
implementation of another FPGA-based DBSCAN algorithm [Shaobo Shi and Wang
2014] is investigated and some other performance and resources considerations are
discussed.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARC 2014: A Multi-Dimensional FPGA-Based Parallel DBSCAN Architecture ARTICLENO:3

�50 0 50

�50

0

50

K-Means Clustering (K = 2)

Cluster 1

Cluster 2

Centroids

�50 0 50

�50

0

50

DBSCAN Clustering (Eps = 5, MinPts = 8)

Noise

Cluster 1

Cluster 2

Fig. 1. Comparison between clustering results of K-Means and DBSCAN

2. BACKGROUND
2.1. DBSCAN Algorithm
The DBSCAN algorithm performs clustering based on the spatial density of the data
points. This approach to clustering is intuitive, as the definition of a cluster simply
refers to a region where there is a typical density of points which is considerably higher
than the outside region of the cluster. Additionally, the density in areas where points
can be considered as noise, is lower than those of clusters.

The key concept is that in order to form a cluster, there must exist at least MinPts
data points that are all within the Eps radius of each other. The MinPts and Eps are
user specified parameters. Data points which contain at least as many points in their
Eps neighbourhood as MinPts, are considered as core points. If a point contains fewer
points than MinPts in its neighbourhood, but contains at least one core point, it is con-
sidered as a border point. In [Martin Ester et al. 1996], this point is said to be directly
density-reachable from a core point, but not the other way around. The cluster is then
expanded by grouping all the directly density-reachable core points and the respective
border points. This is referred to as density reachability and essentially means that
there is a chain of directly density-reachable points connecting two particular points.
Finally, points which are neither directly density-reachable, nor contain at least as
many points as MinPts in their neighbourhood, are considered as noise.

Figure 1 highlights the advantages that DBSCAN has over standard K-Means al-
gorithm when attempting to find non-linearly separable clusters. Additionally, with
K-Means, the number of clusters is ideally known a-priori as the result might be other-
wise unsatisfactory. In order to circumvent this issue various techniques are adopted.
One could either determine the number of clusters using Silhouettes beforehand as
shown in [Llet et al. 2004], or alternatively, the algorithm can be run a number of
times to minimise a unit of error. This however, proves to be quite expensive in terms
of complexity and processing [Vattani 2011]. On the other hand, DBSCAN does not
require these extra steps, as the clusters are determined by density. In this particular
example, DBSCAN correctly identifies that the dataset has 2 clusters and that some
points can be treated as noise. The inherent noise rejection in DBSCAN is based on
the information provided by the parameters MinPts and Eps.

The algorithm itself works as follows. The first step, is to retrieve all the directly
density-reachable points with respect to Eps for each point. If there are less points than
MinPts, the algorithm moves to the next point, otherwise, the points are assigned
to the current cluster (as defined by the cluster identification number). The points
obtained in this initial step are referred to as the immediate neighbourhood points.
The next step is to expand the cluster by pushing all the points retrieved onto a queue.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARTICLENO:4 N. Scicluna and C.-S. Bouganis.

On each iteration, a point is dequeued and all the density-reachable points with respect
to Eps from that point are retrieved. If the number of points is larger than or equal to
MinPts, then these points are added to the cluster and pushed onto the queue. These
are referred to as the extended neighbourhood points. Subsequently, as more density-
reachable points are found, they are added to the queue to find other points which
form part of the cluster. This is repeated until the queue is empty, which signifies
that the cluster has been formed completely. The cluster identification number is then
incremented and a new point is loaded to start compiling a new cluster. This whole
process is repeated until all the points in the dataset have been checked.

It should also be noted that DBSCAN also works for multiple dimensions without
changes to the core algorithm. This is because the only operation performed on the data
is distance measurement, which can be adapted to multiple dimensions. Furthermore,
interchanging distance functions such as Euclidean distance and Manhattan distance
is also possible. Such changes impact the shape and radius of points considered in the
neighbourhood.

2.2. Related Work
The time complexity of the standard DBSCAN algorithm is O(n2) (where n is the
number of points in the dataset) since a range query, which is done by calculating
and checking the distance to all the other points, needs to be performed for each
point in the dataset. To improve this, tree data structures such as the R*-Tree [Beck-
mann et al. 1990] used in [Martin Ester et al. 1996], are adopted to accelerate re-
gion queries, thereby reducing the time complexity to O(n ⇤ log(n)). This however adds
the requirement of constructing the tree for the dataset, where the insertion strategy
is O(n ⇤ log(n)). Moreover, spatial accesses using an R*-Tree are not always efficient
[Chen et al. 2010].

The Parallel-DBSCAN (P-DBSCAN) algorithm described in [Chen et al. 2010],
adopts a different spatial index called the Priority R-Tree (PR-Tree). Here a form of
parallelism is introduced where the database is first separated into several parts and
then, the computational nodes build their own PR-Tree and carry out the clustering
independently. Each node in this system is a desktop PC. Finally, the results are ag-
gregated. An alternative approach to parallelism, but on the same platform, is taken
in MapReduce-DBSCAN (MR-DBSCAN) [He et al. 2011] and Hierarchical-Based DB-
SCAN (HDBSCAN) [Li and Xi 2011], where a map-reduce structure is implemented
to spread the computation across multiple nodes that can work in parallel using the
Hadoop platform [White 2009]. These implementations all aim to solve the problem
of very large and multi-dimensional data clustering. Even though significant perfor-
mance increases over standard implementations are achieved for datasets with hun-
dreds of thousands of points and more, this is not true for smaller datasets due to the
overhead introduced. As a result, these methods are suitable only for certain cases and
are still dependent on how fast each individual node can perform the clustering.

Thapa et al. [Thapa et al. 2010] propose a Graphics Processing Unit (GPU) imple-
mentation of the DBSCAN algorithm that takes advantage of the large amounts of
memory and processor cores available on modern GPUs. Two different approaches are
explored in attempt to accelerate this algorithm through parallelism. The first involves
computing the region query for each point by comparing it to all the other points in the
database in parallel and subsequently, storing all the results in memory. The second
approach involves computing the range queries of all the points in parallel and once
again storing the results in memory. A different approach is proposed in [Andrade et al.
2013] called G-DBSCAN. This system manages to extract a very significant amount of
parallelism by indexing the data using graphs. These are constructed in parallel and
subsequently, a breadth-first search is performed to identify the clusters in parallel

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARC 2014: A Multi-Dimensional FPGA-Based Parallel DBSCAN Architecture ARTICLENO:5

as well. The fastest known implementation thus far, is the dedicated hardware Very-
Large-Scale Integration (VLSI) architecture proposed in [Shimada et al. 2013]. This
design however can only perform 2D clustering and is therefore very application spe-
cific. The hardware architecture is designed in such a way that there is a processing
element for each pixel and thus full pixel-parallel processing is achieved. This results
in fast clustering speeds, but requires a significant amount of area per pixel and is
therefore infeasible, even for moderately large datasets, particularly when intercon-
nect requirements are considered.

To the best of the authors’ knowledge, there has been only one other FPGA im-
plementation of DBSCAN developed since [Scicluna and Bouganis 2014]. This is the
work proposed in [Shaobo Shi and Wang 2014], which also proposes an FPGA-based
parallel architecture, but using a notably different parallelisation strategy. Shi et al.
divide the dataset into smaller datasets depending on the number of available paral-
lel elements (PEs) synthesised. Their architecture then performs clustering on these
individual chunks and checks in real-time for any collisions. A collision would mean
that points being clustered by two separate PEs actually form part of the same cluster.
Both the input data and results are stored in SDRAM, whilst internal first in, first
out (FIFO) memory blocks are used for interfacing with the external memory and for
storing the immediate and extended neighbourhood points. The FIFOs used for clus-
tering therefore exist within the PEs and are replicated accordingly for parallelism. In
this architecture, Euclidean distance is used for determining the size of the clusters
and therefore, this requires the use of both multipliers and adders in each PE. Since
each PE needs to not only calculate the distance and temporarily store the points, but
also check the collision table, merge if necessary and control this whole process, a sig-
nificant amount of complexity per PE is introduced, particularly in terms of resources
used. The implementation was then compared to a Core i7 920 CPU and an Nvidia
GTX280 GPU where speed-ups of up to 86x and 2.9x respectively, were measured when
clustering synthetic datasets.

In this work, we aim to achieve the performance benefits available through paral-
lelism and hardware implementation, while also maintaining a great level of flexibil-
ity. The key contributions are, the analysis and development of a novel parallelisation
strategy for the DBSCAN algorithm and the design of a high performance, parameter-
isable and multi-dimensional, FPGA-based implementation of said algorithm.

3. CONCEPT AND ARCHITECTURE
The major contributor to the time complexity of the algorithm is the range query pro-
cess that needs to be performed for every point in the dataset. This was also confirmed
experimentally through extensive profiling of a custom DBSCAN MATLAB implemen-
tation based on [Daszykowski et al. 2001]. While using R*-Trees does indeed improve
the time complexity of the algorithm, simulations performed using Elki [Achtert et al.
2013] show that having to reconstruct the tree for each new dataset poses significant
performance impact for real-time applications. Furthermore, due to their complexity
and highly dynamic nature, R-Trees (which are very similar to R*-Trees), are shown to
be costly in terms of resources to implement efficiently in hardware [Xiao et al. 2008].
Thus the proposed architecture utilises standard indexing instead of a tree based data
structure.

For DBSCAN to perform the clustering, two sets of range queries are performed, the
first obtains the immediate neighbourhood of the particular point where the second set
performs the range queries in order to obtain the extended neighbourhood of points for
that cluster. In most cases, this second batch of range queries takes the longest por-
tion of execution time. This was corroborated by performing profiling tests in MATLAB
with multiple datasets and also varying parameters. The datasets used are data points

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARTICLENO:6 N. Scicluna and C.-S. Bouganis.

Table I. DBSCAN Range query bias analysis

Dataset
No. Size Eps MinPts Imm. Neighb.

Range Queries
Ext. Neighb.

Range Queries
1 19504 25 10 238 19342
1 19504 25 80 2657 16995
1 19504 55 220 1903 17731
2 2015 25 8 346 1710
3 6472 70 100 193 6310
4 2237 100 90 176 2094
5 2927 80 100 96 2832
6 2003 100 60 2 2003

obtained from corner detection in an image using a Harris Corner Detector [Harris and
Stephens 1988] and were originally used in a Foveated Vision Processing application.
These datasets are of varying spatial densities and consist of coordinates of local fea-
tures detected in a variety of images. These results are shown in Table I.

These extended neighbourhood range queries have no data dependencies and thus
can be performed in parallel. Furthermore, the algorithm performs these queries by es-
sentially having a queue of points on which these range queries need to be performed.
Throughout runtime, this is constantly appended with new points and thus, further
parallelisation can be extracted. This is achieved by loading all the points in the queue
at each iteration and subsequently, performing all the range queries for these points
concurrently. This reduces the computation time significantly.

Figure 2 shows a hardware architecture diagram for the design outlining all the key
modules. The input data is assumed to be stored in the Input Memory element which is
not internal to the DBSCAN IP Core. Having the input data stored externally allows
for maximum flexibility, but in turn, some specifications are enforced with regards
to how the input data is supplied to the DBSCAN IP Core. It is assumed that all
the dimensions of the currently addressed data point are available simultaneously.
Using an FPGA device, this can be achieved by appropriately configuring the BRAM
to certain widths or by using multiple BRAM blocks and spreading the data across
these blocks. If external SDRAM is used for the input memory, care has to be taken
that the available bandwidth satisfies this criterion. Furthermore, it is assumed that
the memory subsystem can provide a data point every clock cycle, which is possible
through pipelining or using SRAMs. In the case that SDRAM is used for the input
memory, pipelining will most probably be required in order to maintain high clock
speeds. In the diagram, a multiplexer which is external to the DBSCAN IP Core, is
also shown. This makes it possible to shift the control of the Input Memory address
from the DBSCAN block to the external system in order to output the results. This
would only be required if the Input Memory block is single-port as if this were dual-
port, this could be done directly. The architecture is designed to accommodate both
cases.

The other two RAM elements in the architecture are the Cluster ID Memory and
the Visited Flag Memory, which are internal to the IP Core and are implemented in
BRAM. The former stores the cluster identification number for each data point, while
the latter marks whether a point has been visited.

The immediate neighbourhood range query results are stored in a FIFO memory el-
ement which is implemented using the available BRAM/FIFO resources on the FPGA.
This serves as the point queue on which the extended neighbourhood range queries are
performed. However, this does not store the actual data points, but just their addresses
in main memory.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARC 2014: A Multi-Dimensional FPGA-Based Parallel DBSCAN Architecture ARTICLENO:7

CID

Cluster ID
Memory

Input Memory Address

Result Output Enable

Current Point

Manhattan
Distance

Calculation

D1 Dn

Data ID

Visited Flag

Cluster ID
Assignment

Data ID

Immediate 
Neighbourhood Data IDs

FIFO

Result Memory Address

Start

Data from Input Memory
Imm. Neighb. Data Point

Extended Neighbourhood Data ID

DBSCAN
FSM

S1

Input 
Memory 
Address

Multiplexer

S2
C

D

S1 S2
C

D

S3 Sn...

FIFO Read Enable

Number of Elements

Number of Elements

Parallel Element Bank

...

0 1 2 n
Read Enable Decoder

Man.
Dist.
Calc.

Man.
Dist.
Calc.

Man.
Dist.
Calc.

Man.
Dist.
Calc.

DataCluster ID

MinPtsEps

V

Visited
Flag

Ext. Neighb. FIFO Select

...

D1 Dn

Input 
Memory

MinPtsEps DBSCAN IP Core
Block

Extended
Neighbourhood
Data IDs FIFOs

Fig. 2. FPGA DBSCAN Hardware architecture

The main parallelised aspect of the design is the computation of the extended neigh-
bourhood range queries. This is done by performing multiple distance measurements
simultaneously by using multiple blocks of the Manhattan Distance Calculation Data-
path. This element is automatically generated based on the number of dimensions set
and is also pipelined for high clock frequency. It should be noted as well that increas-
ing the data precision and the number of dimensions, does not have any impact on the
latency of the design, as the hardware is reconfigured to perform the calculations in
parallel. This component is designed to work as a black box, in the sense that, given
two data points and the Eps parameter value, it provides an output signal signifying
whether or not the distance between the two points is smaller than or equal to Eps.
Since the data point should only be stored into the queue if that condition is satisfied,
this output signal is then used as a write enable for the FIFO that stores the result
of the extended neighbourhood range query. The combination of a distance calculation
block and a FIFO is referred to as a PE. As shown in the diagram, multiple PEs can be
instantiated depending on the available resources and the target performance. Once
again, each parallel element FIFO stores only the addresses of the coordinates and not
the actual data point itself. This is key as it makes the system very scalable, since the
amount of BRAM resources required, does not change with the number of dimensions
or bit precision. The elements that need to be regenerated when the number of di-
mensions is increased are; the Input Memory pipeline FIFO, the Manhattan Distance
Calculation Datapath and the registers that store the current points that are currently
being checked.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARTICLENO:8 N. Scicluna and C.-S. Bouganis.

While the results of multiple range queries are obtained simultaneously with these
PEs, the cluster identification number and visited flag must be updated serially and
therefore, there needs to be a way of selecting between the separate parallel elements.
This selection is controlled by the Finite State Machine (FSM) and it is crucial that the
read enable signal is high for only one FIFO at a time. Correspondingly, the outputs
of the FIFOs also need to be considered individually. This is achieved through the use
of a decoder and a multiplexer. If the number of parallel elements is fairly large, the
multiplexer would have a very long critical path, resulting in lower clock speeds. To
remedy this, the multiplexer is pipelined.

To perform the clustering, the DBSCAN FSM iterates through the points in the data
memory and if the data point is not marked as visited in the visited flag memory, a
range query is performed by checking the distance of that point to all the other points
in the dataset. All the points that are within the Eps neighbourhood are then stored
in the immediate neighbourhood data ID FIFO. If the number of elements is greater
than or equal to MinPts, these points are assigned to the current cluster and the FSM
then loads into the register bank all available points in the immediate neighbourhood
FIFO, or as limited by the number of available PEs. Subsequently this batch of range
queries is performed concurrently by loading a new value from the input coordinate
memory on each clock cycle and measuring the distance between this point and all the
points associated with each PE. In the case that the points satisfy the range query
criteria, they are then stored in the respective FIFO. The element count for each FIFO
is then checked against MinPts and if the condition is satisfied, these points are added
to the immediate neighbourhood queue to continue expanding the cluster. This whole
process is repeated until there are no points left in the queue, at which point the next
memory element is checked to start forming a new cluster.

With regards to number representation, it was determined that using fixed-point
representation was the most appropriate for this implementation. This is due to the
massively parallel nature of the architecture, particularly when it comes to the Man-
hattan Distance Calculation units. Using fixed-point instead of floating-point repre-
sentation allows these units to be as small and as fast as possible.

4. EXPERIMENTAL RESULTS
A fully parameterisable IP core was developed using VHSIC Hardware Description
Language (VHDL) and was designed and synthesised using the Xilinx ISE 14.1 Suite.
Designing the system to be fully parameterisable proved challenging. Great care was
taken to provide a means to control almost all aspects of the hardware architecture
which on synthesis, generates automatically with minimal user intervention. The pro-
posed architecture was synthesised for the Xilinx Virtex 7 XC7VX690T-3 FPGA and
subsequently, its performance was evaluated through post-synthesis simulation using
the variety of datasets described in Section 3.

Since most of the current works have focused on 2D point clustering, the same ap-
proach is followed in this performance evaluation. Figure 3 shows a visualisation of
this dataset, with the points to be clustered marked in red. Being pixel coordinates,
these datasets are therefore two dimensional and each dimension is stored with 16 bit
precision. Maximum clock speeds reported by the synthesis tool for this design with
2D input data and 1–710 PEs, range from 350–410 MHz. The post-synthesis simu-
lation results are then compared to a range of software methods run on a desktop
computer with an Intel Core i7 2600K 3.4 GHz Sandy Bridge processor and 16 GB
of DDR3-1066 MHz memory. The evaluated design instance targets an image pro-
cessing application, however, the proposed architecture can be configured to handle
multi-dimensional data of any word length without any impact on the latency of the
system, provided the target FPGA is large enough. In the current implementation, it

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARC 2014: A Multi-Dimensional FPGA-Based Parallel DBSCAN Architecture ARTICLENO:9

Fig. 3. Dataset 1 points visualised in red.

Table II. Effects of varying number of PEs (Synthesis Results)

No. of PEs Max Clock
Speed (MHz)

LUT Utilisation
(%)

BRAM/FIFO
Utilisation (%)

Total Power
(W)

1 409 0.1 1 0.57
25 413 1 5 0.84
50 393 2 8 1.03
100 395 4 15 1.75
150 391 6 22 2.28
300 378 12 42 3.90
500 372 20 69 6.92
710 353 34 98 8.97

was assumed that the data points exist already in the FPGA. The proposed system
instantiated in the target FPGA can accommodate a number of points which is more
than that required by most applications.

Table II shows the resource utilisation along with the maximum clock speed and
respective power consumption for varying numbers of PEs. The power consumption is
estimated using the Xilinx XPower Analyzer tool and includes both the dynamic and
static power. From this table we can determine that with 16 bit precision and 2D data,
the design occupies a minimum of approximately 0.1%, with each PE taking up 0.042%
of slice and Look-Up Table (LUT) area. BRAM utilisation is solely dependent on the
configuration for that particular application and whether or not the input memory is
stored in BRAM. The array of parameters available provide full control over the sizes
of each element and therefore the amount of BRAM resources used can be calculated.

The proposed system was compared against three software implementations. The
first of these is the MATLAB implementation, while the second and third were mea-
sured by ELKI [Achtert et al. 2013], which is a software clustering algorithm perfor-
mance analysis tool written by the developers of DBSCAN. One of these measurements
is with standard indexing, whereas the other was done using R*-Tree indexing. To
provide a fair comparison, the R*-Tree timing includes both the time taken for the
generation of the tree data structure and the execution of the DBSCAN algorithm
accelerated by that data structure. To provide a worst-case comparison, the software
execution time shown for each case is the shortest one between three software im-
plementations. The results for the tests performed, along with the respective chosen
parameters are shown in Table III. The Eps and MinPts parameters in these tests
were primarily chosen to provide meaningful results for the targeted image processing

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARTICLENO:10 N. Scicluna and C.-S. Bouganis.

Table III. FPGA DBSCAN Implementation performance analysis results

Dataset
No.

No. of
Points Eps MinPts

Parallel
Elements

(PEs)

Clock
Speed
(MHz)

Software
Time (s)

FPGA
Time
(ms)

Speed-Up

1 19504 25 80 300 377.98 7.16 211.88 33.77
1 19504 55 220 710 353.15 11.4 371.51 30.68
2 2015 25 8 85 405.48 0.13 2.77 46.21
3 6472 70 100 150 391.11 1.74 49.56 35.11
4 2237 100 90 150 391.11 0.28 9.76 28.69
5 2927 80 100 150 391.11 0.58 22.34 26.14
6 2003 100 60 150 391.11 0.19 8.64 22.45

2000 6000 10000 14000 18000
0

2

4

6

Number of Points

E
xe

cu
ti

on
Ti

m
e

(s
) Software

FPGA

Fig. 4. Graph showing performance scalability with increasing numbers of points

application. The geometric mean of the speed-ups achieved is 31x. Similarly, Figure 4
shows how the performance of the fastest software version and the proposed FPGA
design scale with increasing dataset sizes.

It should be noted that the results achieved with the proposed FPGA implementa-
tion for the datasets tested, were identical in terms of quality when compared to the
software counterparts. The two main reasons for this are that, no changes were made
to how the algorithm processes the data and that the bit precision used for the data
and internal core components was sufficient to have no deviations in the final result.

The conducted experiments show that there is an upper limit as to how much par-
allelism can be extracted from a dataset and this is dependent on the combination of
the spatial density of the data and the parameters used. This is due to the fact that for
each point checked, there is only a limited number of points returned with the imme-
diate neighbourhood range query. Increasing the number of PEs beyond this number
would not provide additional performance benefits. In spite of this, the results show
that the proposed parallelisation strategy proves significantly beneficial. The amount
of parallelism available also increases with dataset size. The choices of the numbers
of PEs used in the tests shown in Table III were made to ensure that the number of
range queries performed in parallel are maximised for each dataset. This is based on
a MATLAB model developed to analyse the performance effects of varying numbers
of PEs on the system. This MATLAB model essentially runs the algorithm and keeps
track of the number of equivalent cycles that the proposed design would require to
perform the same task. The number of PEs is a parameter which can be specified such
that the neighbourhood range queries performed in parallel are not counted. Addition-
ally, the model also calculates the number of PEs required to take full advantage of
the parallelism available in a particular dataset.

The results show that for the range of datasets and parameters tested, which provide
a wide range of test cases with varying spatial density, significant performance can be

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARC 2014: A Multi-Dimensional FPGA-Based Parallel DBSCAN Architecture ARTICLENO:11

0 20 40 60 80
2

4

6

8

10

12

Number of Parallel Elements

E
xe

cu
ti

on
Ti

m
e

(m
s)

Dataset 2, Eps = 25, MinPts = 8

10

18

26

34

42

50

Sp
ee

d-
U

p

0 100 200 300
8

13

18

23

28

Number of Parallel Elements

E
xe

cu
ti

on
Ti

m
e

(m
s)

Dataset 4, Eps = 90, MinPts = 100

10

15

20

25

30

Sp
ee

d-
U

p

Fig. 5. Execution time (marked by ⇤) with varying number of parallel elements and respective speed-up
(marked by o)

0 20 40 60
0

2

4

6
·106

MinPts Parameter

N
um

be
r

of
C

lo
ck

C
yc

le
s

Dataset 2, Eps = 25,
Number of PEs = 50

0

20

40

60

Sp
ee

d-
U

p

0 50 100 150
0

2

4

6
·106

Eps Parameter

N
um

be
r

of
C

lo
ck

C
yc

le
s

Dataset 2, MinPts = 8,
Number of PEs = 200

0

20

40

60

Sp
ee

d-
U

p

Fig. 6. Number of clock cycles taken (marked by ⇤) to compute clustering with varying MinPts (a) and Eps
(b) and respective speed-up (marked by o) over software implementation

exploited even with a small number of PEs. Figure 5 shows how this applies to two
particular test cases. As shown in Table III, the maximum clock speed that the design
can be run at, varies with the number of PEs. This is mainly due to the longer critical
paths introduced and partly also due to the fact that the synthesis tool cannot optimise
as effectively when more resources are used. The FPGA times reported in the results
were measured with the design running at the maximum clock speed attainable with
the respective number of PEs.

Figure 6(a) shows that the time taken to cluster the dataset increases approxi-
mately linearly with the MinPts parameter. This is due to more parallelism poten-
tially becoming available in the data as this parameter gets smaller. In this case, when
MinPts = 0 maximum parallelism is achieved, with the result being a single large
cluster. On the other hand, when MinPts = 60, no clusters are formed and therefore,
no parallelism can be extracted. Figure 6(b) shows that the relationship is not linear
for the Eps parameter. When the Eps parameter is small we encounter the same is-
sue where only a few small clusters are formed and therefore little performance gain
can be obtained through parallelism. As Eps becomes larger, the number of PEs be-
comes the limiting factor and therefore, more are required to take advantage of the
parallelism available in the data. Additionally, as occurs with the standard DBSCAN
implementations, with larger Eps the algorithm takes longer to compute.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARTICLENO:12 N. Scicluna and C.-S. Bouganis.

Table IV. DBSCAN FPGA and GPU performance comparison

No. of
Points

Software
Time (s)

Sequential
Time (s)
[Thapa

et al. 2010]

GPU Time
(ms)

[Thapa
et al. 2010]

FPGA
Time (ms)

Speed-Up
over Software

Speed-Up
over GPU

5000 0.56 1.33 340 2.6 215.55 130.87
10000 1.69 4.5 1120 8.4 201.14 133.30
15000 3.53 6.82 2490 17.41 202.76 143.02
20000 5.64 9.09 4910 29.62 190.42 165.78

Table V. FPGA DBSCAN multi-dimensional performance with variable size
datasets analysis

No. of
Dimensions

No. of
Points

Software
Time (s)

FPGA
Time (ms) Speed-Up

2 200 0.002 0.08 25.14
3 1000 0.067 1.15 58.36
4 5000 1.184 16.19 73.15
5 25000 17.657 204.78 86.22

Furthermore, the proposed system was tested using the datasets that were used in
[Thapa et al. 2010], which the authors have kindly provided. It should be noted that
unlike the datasets tested previously, these are synthetic datasets and have constant
spatial density throughout, with the points ordered by cluster. Table IV shows the
execution times of the various implementations with the parameters set to Eps = 1.5
and MinPts = 4 as used in [Thapa et al. 2010]. The number of PEs was set to 50 as
this extracts the maximum amount of parallelism available in the data and allows for
a clock speed of 393 MHz. The geometric mean of the speed-ups achieved in synthetic
dataset tests is 202x when compared to the software implementations and 143x when
compared to the GPU implementation.

To analyse the performance of the design when clustering datasets with an increas-
ing number of dimensions, synthetic datasets similar to the ones used in [Thapa et al.
2010] were generated. These were generated such that they have constant spatial den-
sity throughout and organised to form eight clusters with the same Eps and MinPts
parameters. Each cluster is made up of five points in every dimension. Consequently,
all other effects on performance, except for the number of points, are minimised. Ta-
ble V shows the simulation results when clustering data in a range from two to five
dimensions. The Eps and MinPts parameters were both set to 5 and the number of
PEs was set to 50. This results in an estimated maximum clock speed of 395 MHz.

As can be seen from Table V, the execution time of the proposed FPGA implemen-
tation is significantly less when compared to the software counterpart. To provide an-
other perspective an experiment was performed to see how the performance changes
when the number of points is kept constant and the number of dimensions increase.
Table VI shows the results of these simulations. The slight differences in the FPGA
times are due to the fact that the cluster sizes differ from one dataset to another and
therefore, more parallelism can be extracted in some cases. These results also show
that while the number of dimensions does not affect the execution time of FPGA imple-
mentation, the execution time of the software implementation increases significantly.
Figure 7 show the execution times and speed-ups of both dataset groups. The reason
why significant performance benefits are seen with increasing number of dimensions,
is all due to the distance calculations being performed in parallel and therefore, not
impacting the performance of the algorithm.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARC 2014: A Multi-Dimensional FPGA-Based Parallel DBSCAN Architecture ARTICLENO:13

Table VI. FPGA DBSCAN multi-dimensional performance with same size
datasets analysis

No. of
Dimensions

No. of
Points

Software
Time (s)

FPGA
Time (ms) Speed-Up

2 5000 0.665 3.55 187.08
3 5000 0.826 3.18 260.11
4 5000 1.117 3.00 372.0
5 5000 1.323 3.31 399.65

2 3 4 5
10�5

10�2

101

Number of Dimensions

E
xe

cu
ti

on
Ti

m
e

(s
)

Variable size datasets

Software
FPGA

2 3 4 5

10�2

100

Number of Dimensions
E

xe
cu

ti
on

Ti
m

e
(s

)

Same size datasets

Software
FPGA

Fig. 7. Performance scalability with number of dimensions

5. PERFORMANCE AND RESOURCE CONSIDERATIONS
As discussed, all experimental results shown are based on post-synthesis simulations
of the design. Furthermore, the results were obtained with the assumption that the
input data is already in the FPGA itself. Consequently, the execution times shown do
not include the time required to transfer the data from a host to the FPGA device as
might be required in a real application. This assumption is valid for datasets which
fit in the target FPGA BRAM, because as discussed in [Shaobo Shi and Wang 2014],
the time taken to cluster the data with DBSCAN is much more time consuming than
transferring the data.

On the other hand, when the dataset is significantly larger, transferring all the infor-
mation to BRAM would not be the best approach. As shown in [Shaobo Shi and Wang
2014] even with a small Xilinx ML605 board, which has 512MB of DDR3 SDRAM,
a data transfer rate of 256 bits per cycle can be achieved from external memory. In
these cases, keeping the input memory external to the FPGA and transferring one
data point with N dimensions per clock cycle as the design expects, would be feasible
for most standard applications. For example, this would provide the ability to clus-
ter datasets with 8 dimensions, each of 32-bit precision. Furthermore, with the ability
to configure the memory read pipeline depth as a synthesis parameter, this is even
less of a problem. Since the input memory is always read sequentially for each range
query performed, the latency penalty introduced is very small. Therefore, the perfor-
mance impact is negligible, especially when considering that the design can be run at
a higher frequency once the input memory is pipelined. Simulations of the proposed
design show that increasing the pipeline depth from 1 to 2 only increases the computa-
tion time by 0.26 ms as operating frequency can be also be increased from 353.47 MHz
to 383.09 MHz. This only accounts for a 9.03% increase in computation time when
clustering Dataset 1 which has 19504 points.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARTICLENO:14 N. Scicluna and C.-S. Bouganis.

Other BRAM based blocks in the design are not affected by the data precision or
dimensionality of the input data and since they are accessed in a non-sequential man-
ner, it is important that these are internal to the FPGA chip. These elements however
are relatively small, as they either store the cluster IDs, a single bit to mark the data
point as visited, or store memory addresses. The parameters affecting how many re-
sources these elements consume are the number of data points being clustered and the
number of PEs synthesised.

6. FUTURE WORK AND CONCLUSIONS
This paper presents a novel parallelisation strategy for the DBSCAN algorithm and a
hardware architecture suitable for FPGAs which based on that strategy. The proposed
design utilises key aspects of the FPGA fabric, such as the parallelism and reconfig-
urability, in order to accelerate the targeted algorithm. Additionally all aspects of the
design are highly parameterisable, including the data precision and dimensionality.

Currently the limiting factor of the design is the size of the dataset that can be
clustered, as this is directly limited by the resources, particularly the amount of
BRAM/FIFOs available on the particular FPGA device used. However, adapting a sim-
ilar map-reduce structure to the one proposed in [He et al. 2011], where very large
datasets are clustered by spreading the computation across multiple computer nodes,
could theoretically be adapted for this design. Using this scheme, multiple intercon-
nected FPGAs, each with an adapted version of this proposed implementation, can be
used as a single node in a cluster. This would in turn allow for even more parallelism,
along with the ability to cluster very large databases. This approach however should
be investigated thoroughly as great care needs to be taken to minimise communication
overheads as much as possible, which could lead to severe performance degradation.

In conclusion, when compared to established software methods, simulations show
that the proposed design achieves considerable performance benefits, which are higher
than those obtained using the GPU implementations in [Thapa et al. 2010] and [An-
drade et al. 2013]. Additionally, performance gains are achieved even with small
datasets, as there is very little overhead with the proposed parallelisation strategy.
With regards to the VLSI implementation, while the proposed system cannot match its
performance, it is significantly more flexible and allows for clustering of larger datasets
with more dimensions, while still providing substantially high performance.

REFERENCES
Elke Achtert, Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. 2013. Interactive Data Min-

ing with 3D-parallel-coordinate-trees. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’13). ACM, New York, NY, USA, 1009–1012.
DOI:http://dx.doi.org/10.1145/2463676.2463696

Guilherme Andrade, Gabriel Ramos, Daniel Madeira, Rafael Sachetto, Renato Ferreira, and Leonardo
Rocha. 2013. G-DBSCAN: A {GPU} Accelerated Algorithm for Density-based Clustering. Procedia
Computer Science 18, 0 (2013), 369–378. DOI:http://dx.doi.org/10.1016/j.procs.2013.05.200 2013 Inter-
national Conference on Computational Science.

Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jrg Sander. 1999. OPTICS: Ordering Points
To Identify the Clustering Structure. ACM Press, 49–60.

A. Annovi and M. Beretta. 2010. A fast general-purpose clustering algorithm based on FPGAs for
high-throughput data processing. Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment 617, 13 (2010), 254–257.
DOI:http://dx.doi.org/10.1016/j.nima.2009.10.046 11th Pisa Meeting on Advanced Detectors Proceedings
of the 11th Pisa Meeting on Advanced Detectors.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. 1990. The R*-tree: an effi-
cient and robust access method for points and rectangles. In INTERNATIONAL CONFERENCE ON
MANAGEMENT OF DATA. ACM, 322–331.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.



ARC 2014: A Multi-Dimensional FPGA-Based Parallel DBSCAN Architecture ARTICLENO:15

Min Chen, Xuedong Gao, and HuiFei Li. 2010. Parallel DBSCAN with Priority R-tree. In Information
Management and Engineering (ICIME), 2010 The 2nd IEEE International Conference on. 508–511.
DOI:http://dx.doi.org/10.1109/ICIME.2010.5477926

M Daszykowski, B Walczak, and D.L Massart. 2001. Looking for natural patterns in data: Part 1.
Density-based approach. Chemometrics and Intelligent Laboratory Systems 56, 2 (2001), 83–92.
DOI:http://dx.doi.org/10.1016/S0169-7439(01)00111-3

Chris Harris and Mike Stephens. 1988. A combined corner and edge detector. In In Proc. of Fourth Alvey
Vision Conference. 147–151.

J. A. Hartigan and M. A. Wong. 1979. A K-Means Clustering Algorithm. Applied Statistics 28 (1979), 100–
108.

Yaobin He, Haoyu Tan, Wuman Luo, Huajian Mao, Di Ma, Shengzhong Feng, and Jianping Fan. 2011.
MR-DBSCAN: An Efficient Parallel Density-Based Clustering Algorithm Using MapReduce. In Par-
allel and Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on. 473–480.
DOI:http://dx.doi.org/10.1109/ICPADS.2011.83

Hanaa M. Hussain, Khaled Benkrid, Ahmet T. Erdogan, and Huseyin Seker. 2011. Highly Parameter-
ized K-means Clustering on FPGAs: Comparative Results with GPPs and GPUs.. In ReConFig, Pe-
ter M. Athanas, Jrgen Becker, and Ren Cumplido (Eds.). IEEE Computer Society, 475–480. http:
//dblp.uni-trier.de/db/conf/reconfig/reconfig2011.html#HussainBES11

Lingjuan Li and Yang Xi. 2011. Research on Clustering Algorithm and Its Parallelization Strategy.
2012 Fourth International Conference on Computational and Information Sciences 0 (2011), 325–328.
DOI:http://dx.doi.org/10.1109/ICCIS.2011.223

R. Llet, M.C. Ortiz, L.A. Sarabia, and M.S. Snchez. 2004. Selecting variables for k-means cluster analy-
sis by using a genetic algorithm that optimises the silhouettes. Analytica Chimica Acta 515, 1 (2004),
87–100. DOI:http://dx.doi.org/10.1016/j.aca.2003.12.020 Papers presented at the 5th {COLLOQUIUM}
{CHEMIOMETRICUM} {MEDITERRANEUM}.

Hans-peter Kriegel Martin Ester, Jrg S, and Xiaowei Xu. 1996. A density-based algorithm for discovering
clusters in large spatial databases with noise. AAAI Press, 226–231.

Tsutomu Maruyama. 2006. Real-time K-Means Clustering for Color Images on Reconfigurable Hard-
ware.. In ICPR (2) (2006-09-25). IEEE Computer Society, 816–819. http://dblp.uni-trier.de/db/conf/icpr/
icpr2006-2.html#Maruyama06

Microsoft. 2014. Most Cited Data Mining Articles on Microsoft Academic Search. (June 2014).
http://academic.research.microsoft.com/RankList?entitytype=1&topDomainID=2&subDomainID=
7&last=0&start=1&end=100

Neil Scicluna and Christos-Savvas Bouganis. 2014. FPGA-Based Parallel DBSCAN Architecture. In Recon-
figurable Computing: Architectures, Tools, and Applications, Diana Goehringer, MarcoDomenico San-
tambrogio, JooM.P. Cardoso, and Koen Bertels (Eds.). Lecture Notes in Computer Science, Vol. 8405.
Springer International Publishing, 1–12. DOI:http://dx.doi.org/10.1007/978-3-319-05960-0 1

Qi Yue Shaobo Shi and Qin Wang. 2014. FPGA based accelerator for parallel DBSCAN algorithm. COM-
PUTER MODELLING & NEW TECHNOLOGIES 18, 2 (2014), 135–142. http://www.tsi.lv/sites/default/
files/editor/science/Research journals/Computer/2014/V2/art20 cmnt1802-45.pdf

A. Shimada, Hongbo Zhu, and T. Shibata. 2013. A VLSI DBSCAN processor composed as an array of micro
agents having self-growing interconnects. In Circuits and Systems (ISCAS), 2013 IEEE International
Symposium on. 2062–2065. DOI:http://dx.doi.org/10.1109/ISCAS.2013.6572278

R.J. Thapa, C. Trefftz, and G. Wolffe. 2010. Memory-efficient implementation of a graphics processor-based
cluster detection algorithm for large spatial databases. In Electro/Information Technology (EIT), 2010
IEEE International Conference on. 1–5. DOI:http://dx.doi.org/10.1109/EIT.2010.5612134

Andrea Vattani. 2011. k-means Requires Exponentially Many Iterations Even in the Plane. Discrete & Com-
putational Geometry 45, 4 (2011), 596–616. DOI:http://dx.doi.org/10.1007/s00454-011-9340-1

Tom White. 2009. Hadoop: The Definitive Guide (1st ed.). O’Reilly Media, Inc.
Bayliss S. Winterstein, F. and G.A. Constantinides. 2013. FPGA-based K-means clustering using tree-based

data structures. In Field Programmable Logic and Applications (FPL), 2013 23rd International Confer-
ence on. 1–6. DOI:http://dx.doi.org/10.1109/FPL.2013.6645501

Xiang Xiao, Tuo Shi, Pranav Vaidya, and Jaehwan John Lee. 2008. R-tree: A Hardware Implementation.. In
CDES (2009-12-05), Hamid R. Arabnia (Ed.). CSREA Press, 3–9. http://dblp.uni-trier.de/db/conf/cdes/
cdes2008.html#XiaoSVL08

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1936, No. 7406, Article ARTICLENO, Publication date: January 2015.


