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ABSTRACT

We review the origin of anomaly-induced dynamics in theories of d = 2
gravity from a BRST viewpoint and show how quantum canonical transfor-
mations may be used to solve the resulting Liouville or Toda models for the
anomalous modes.

Two-dimensional worldsheet gravity models coupled to non-critical matter systems pro-

vide a very useful workshop for investigating the way in which induced dynamics can arise

from anomalies. In this article, we shall first review the way in which such anomalous dynam-

ics can arise within the context of BRST quantization. Then we shall present a technique

for solving the resulting anomalous quantum system by canonical transformations, imple-

mented by intertwining operators. We shall use these techniques to find the wavefunctions

for the minisuperspace limits of Liouville and Toda d = 2 gravities. The integrable-model

developments discussed in this article are adapted from Ref. [1].

We start from the action for a set of d = 2 scalar fields xa, a = 1, . . . , D, coupled to

worldsheet gravity,

I = −1
2

∫

d2σ
√−γγij∂ix

a∂jx
bηab. (1)

We pick a worldsheet parametrization, using light-cone indices i, j = +,−,

γij = eω
(

h̃ 1
1 h

)

, (2)
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so that for the contravariant metric density one has

√
−γγij = (1 − hh̃)−

1
2

(

−h 1
1 −h̃

)

, (3)

and the Weyl invariance of classical two-dimensional gravity is expressed by the fact that

the conformal factor eω drops out in (3). This invariance is of course subject to anomalies,

which we next shall discuss using the BRST formalism.

Anomalous Dynamics

In discussing the anomalies, we shall treat σ− = σ − τ as the “evolution” coordinate

on the worldsheet. Admittedly, this overlooks the fact that the surfaces σ− = const. are

not actually proper Cauchy surfaces, because there exist some physical trajectories that do

not cross them, but we shall not be concerned with this subtlety here. We shall, on the

other hand, be more careful with the gauge fixing. Treating σ− as the evolution coordinate

and σ+ as a “spatial” coordinate means that the gauge symmetry for h, δh = ∂−k + . . .,

is similar to the transformation of the time component A0 of the Maxwell gauge field, and

requires a derivative gauge-fixing term [2], imposed by a Lagrange multiplier,
∫

π∂−h. On

the other hand, we shall treat the left-moving sector gauge field h̃ as analogous to A3 in

Maxwell theory, so we shall consider the gauge-fixing term π̃h̃ to be acceptable. Similarly,

we shall need to impose gauge-fixing for the Weyl symmetry, using the gauge-fixing term

πωω. When these gauge conditions are all satisfied, the world-sheet metric takes the “chiral

light-cone gauge” form

γij =

(

0 1
1 h

)

, (4)

giving the simple form −
∫

d2σ[(∂+x
a∂−x

b−h∂+x
a∂+x

b)ηab for the scalar-field action. Corre-

sponding to these gauge-fixing conditions, we shall need to introduce (antighost,ghost) pairs

(b, c), (b̃, c̃), (bω, cω). The corresponding gauge-fixed action taken together with the ghost

action, which we shall denote by S, then has a tree-level BRST residuum of the original

gauge symmetry,

δxa = c∂+x
a + c̃∂−x

a,

δc = c∂+c+c̃∂−c, δc̃ = c̃∂−c̃+ c∂+c̃,

δcω = c∂+cω + c̃∂−cω, (5)

etc. This tree-level BRST symmetry can be encoded in the standard way [3] by including

sources for the BRST variations of all fields,

Σ = S +

∫

KqAδqA

= S +

∫

Kxa(c∂+x
a + c̃∂−x

a) +KC(c∂+c+ c̃∂−c) + . . . , (6)
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where the generalized index A runs over all of the fields of the theory, including the ghosts and

antighosts. Including sources for the variations in this way allows us to write the tree-level

BRST invariance simply as

(Σ,Σ) = 0, (7)

where the Batalin-Vilkovisky antibracket [4] is defined by

(A,B) =

∫

δA

δqA

δB

δKqA

+
δA

δKqA

δB

δqA
. (8)

Note that the ghost number of the (A,B) antibracket is one more than the sum of the

ghost numbers of A and B, where ghost number is defined by G(c, c̃, cω) = 1, G(b, b̃, bω) =

−1. Upon quantization, the extended classical action Σ becomes the tree-level limit of the

quantum effective action Γ = h̄0Σ + h̄1Γ(1) + h̄2Γ(2) + . . .. If the BRST symmetry (5) were

unbroken at the full quantum level, one would expect to have the quantum Ward identity

(Γ,Γ) = 0. However, this identity is disturbed by the presence of anomalies, giving instead

the anomalous Ward identity

(Γ,Γ) = ∆. (9)

The anomaly ∆ on the right-hand side of Eq. (9) is a local expression at lowest order, and

at higher orders one encounters “dressings” of the anomalies that have already occurred at

lower orders, owing to their presence in subdiagrams. These dressings constitute the expected

quantum corrections to Green functions with an operator insertion. To express this more

precisely, one should really include a source K∆ for every local expression ∆ occurring in (9)

and write the right-hand side of (9) as δΓ/δK∆ ≡ ∆ · Γ. At order h̄n, if one subtracts out

the anticipated nonlocal dressings of lower-order anomalies, the residual anomalous terms of

order h̄n will be local. For our present purposes, it is sufficient to note that the structure of

Eq. (9), together with the locality condition, yields the Wess-Zumino consistency condition

on the anomalies. At the one-loop order, use of Eqs (7) and (8) together with the Jacobi

identity (A, (B,C)) + (B, (C,A)) + (C, (A,B)) ≡ 0 yields the consistency condition

(Σ,∆) = 0. (10)

Note that this condition is the same as that which governs the structure of renormaliza-

tion counterterms, but here it is considered at ghost number one instead of zero. In fact, for

the anomalies we are strictly interested in those solutions of (10) that cannot be removed by

renormalization; the true anomalies are solutions of (10) such that

∆ 6= (Σ, Y ) (11)

for any local functional Y of ghost number zero. Eqs (10) and (11) constitute the fa-

miliar cohomology problem of identifying the potential anomalies for a theory. Anomaly
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functionals are representatives of cohomology classes and may be changed in form by the

addition of counterterms to the action, but given (11) they cannot be completely removed.

Once an anomaly has occurred in a theory, however, counterterms noninvariant under its

corresponding symmetry may then occur. Thus, anomalies and their associated induced

renormalizations need to be considered together.

In the present case, the solutions to the consistency condition may be written, after

setting the variation sources KqA to zero,

∆ = α

∫

d2σ∂2
+hcω + β

∫

d2σcω. (12)

Only the α coefficient is strictly an anomaly in the sense of Eq. (11), i.e., of not being re-

movable by renormalization. However, once the α coefficient is nonzero, the Weyl symmetry

preventing the occurrence of the β coefficient as a renormalization counterterm is absent.

The β coefficient then arises as a finite residuum after renormalization. The coefficients α

and β of the potential anomalies in (12) depend on the central charge of the scalar fields xa,

and take the values α = (c−26)/24, β = µ2
0(c−2)/24, where µ0 is an infrared regularization

mass [5]. Further finite counterterms could be added to shift the anomaly away from the

Weyl symmetry (with ghost cw) into the general coordinate symmetries (c, c̃), but we shall

find it more appropriate to leave them in the form (12).

Given the presence of BRST anomalies in a theory, one may adopt one of two approaches

to studying the resulting dynamics. One may proceed by a direct consideration of the corre-

lation functions implied by the anomalous Ward identity (9). Within the context of BRST

quantization, such a direct approach to the anomalies has not been widely adopted. However,

a related procedure of holding off from integrating over the gauge fields in the generating-

functional path integral until after the anomalies have appeared from the integrals over

scalar “matter” fields has been used to show the existence of a hidden SL(2, IR) symmetry

in the case of anomalous Liouville gravity [6]. A more frequently-adopted way to extract the

anomalous dynamics is to eliminate the anomalies by compensation. In this procedure, an

extra field is introduced into the theory, frequently in the context of a symmetry-preserving

regularization. Classically, this extra field drops out of the theory by virtue of the as yet

unbroken gauge symmetries, but in the regularized theory this field has non-trivial couplings

and this fact allows for the possibility of a residual non-trivial coupling for it in the renormal-

ized quantum theory. It should be emphasized that in such a compensation procedure, no

anomalies actually occur in the BRST symmetry because the extra field allows for a removal

of the potential anomalies by finite renormalizations. But the finite renormalizations have

the effect of stopping the compensator from decoupling as it did at the classical level. The

anomalous dynamics is then the dynamics of this extra field.

In the case of d = 2 gravity theories with the conformal anomalies (12), for a compen-

sation procedure one introduces a classically-decoupling scalar mode φ(σ+, σ−) as an extra
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“conformal” mode for the two-dimensional metric, writing

γ̂ij = e2φγij, (13)

and then rewriting the action with the replacement of γij by γ̂ij . Of course, the φ field

classically drops out owing to the original Weyl invariance of the action (1). Including φ into

the formalism produces the BRST transformations

δφ = δg.c.+δωφ;

δg.c.φ = c∂+φ+ c̃∂−φ δωφ = −1
2cω. (14)

Writing the anomaly (12) in a manifestly generally-covariant fashion, one has

∆ = 1
24

∫

d2σ
√

−γ̂[(c− 26)R(γ̂) + (c− 2)µ2
0]cω. (15)

One may verify that this manifestly-covariant form reduces to the form (12) upon use of the

gauge-fixed form of the metric (4). The presence of the extra field φ changes our earlier dis-

cussion, however, in that (15) is no longer cohomologically non-trivial and can be eliminated

by a finite counterterm in the action. To see this, we note a lemma that holds in d = 2,

√

−γ̂R(γ̂) =
√
−γR(γ) − 2

√
−γ∇2φ, (16)

so that

∆ = − 1
12

∫

d2σ[(c− 26)(R(γ) − 2∇2φ) + (c− 2)µ2
0e

2φ]δωφ. (17)

Thus, with φ included, ∆ is now cohomologically trivial because it may be eliminated by the

finite local counterterm

δΣ = 1
12

∫

d2σ
√
−γ[(c− 26)(γij∂iφ∂jφ+R(γ)φ) + 1

2(c− 2)µ2
0e

2φ]. (18)

Note that by a redefinition of the φ field, φ → φ + constant, one may alter the scale of the

coefficient µ0. As a result, the specific value of this coefficient is not of physical importance;

only the fact that its value is nonvanishing is important. Although the counterterm (18)

removes the anomaly from the BRST symmetry, it violates the classical decoupling of the

φ field, which is now the expression of the anomaly in the compensated formalism, and this

gives rise to new dynamics not apparent in the original classical theory. Note that for a

subcritical matter central charge, c < 26, the action (18) for the scalar field φ is that for a

positive-norm mode.

To continue further using the compensated-anomaly approach, one would like to treat

the anomaly-induced φ field from the start as an extra regular scalar field in the action. This

necessitates some changes to the above picture. For one thing, the kinetic term for φ in (18)
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does not have a standard normalization. More serious is the fact that the functional measure

for the φ mode (i.e. the measure for the quantum-mechanical inner product) is originally

that for the conformal part of a worldsheet metric (13), and is not the standard translation-

invariant measure for an ordinary scalar field. It is much more convenient for calculation to

treat this field as an ordinary scalar. Doing so causes it in turn to make a further contribution

of 1 to the total central charge, arising from anomalous diagrams in which φ occurs in loops.

For our present purposes, we shall simply follow the argument of Ref. [7] and shall posit that

the action for the φ mode is of the form (18), but with renormalized coefficients. Going over

to a Euclidean signature for the worldsheet now, we thus shall work with

Iφ =

∫

d2z
√
γ(1

2γ
ij∂iφ∂jφ+QR(γ)φ+ 1

2µ
2eλφ), (19)

where z = eτ+iσ.

The coefficients Q and λ need to be fixed by the requirement of anomaly cancellation,

for we shall still require the φ mode to eliminate the anomalies by compensation. When

it is treated as an ordinary field with a translation-invariant functional metric, the φ field

contributes an amount cφ = 1 + 12Q2 to the central charge. Thus, the central charge

condition for anomaly cancellation after the change in the functional metric is [8]

cx + cφ = cx + 1 + 12Q2 = 26, (20)

fixing the value of the “background charge” coefficient Q for a given set of “matter” scalar

fields xa. Similarly, requiring the cancellation of anomalies arising from the presence of the

potential term eλφ, which threatens to produce additional φ-dependent anomalies beyond

those controlled by the central charge, one derives [9] that λ take the value

λ = Q−
√

Q2 − 2 = 1
12(

√
25 − c−

√
1 − cx). (21)

This expression shows that imaginary values for the Liouville potential coefficient occur for

cx > 1, revealing one well-known aspect of the “c = 1 barrier,” that is also clearly seen in

the matrix model-treatment of non-critical string theories. The proper handling of cases for

cx > 1 remains an important open problem.

From the standpoint of conformal field theory, the anomaly cancellation condition (21)

may be understood as the requirement that the Liouville potential be an operator with

(left,right) chiral weights equal to (1,1). The weight of an operator eαφ is obtained by taking

an operator product of this together with the holomorphic stress tensor

T = Tzz = −1
2(∂φ)2 −Q∂2φ, (22)

where the Q term comes from the background charge term in the action (19). The resulting

operator-product expansion contains the singular terms

T (z)eαφ(w,w̄) ∼ ∆αe
αφ(w,w̄)

(z − w)2
+
∂(eαφ(w,w̄))

(z − w)
, (23)
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where ∆α = −1
2α(α+ 2Q), so that the value for λ selected in (21) gives ∆α = 1 as required.

Higher-spin Worldsheet Symmetries

Two-dimensional theories admit a much greater variety of consistent gauge symmetries

than is possible in higher dimensions. The gauge fields in two-dimensional “gravity” theories

all have enough local symmetries so that a näıve count of their continuous degrees of freedom

gives the result zero. Correspondingly, there is no natural local candidate for a kinetic action

for the spin-two gauge field, because the natural Einstein-Hilbert Lagrangian in d = 2 be-

comes just the Euler-number density. However, there is a natural anomaly-induced dynamics

for the d = 2 metric, as we have seen. There is nothing in the derivation of this anomalous

dynamics that restricts one to consideration of the spin-two metric, however. Indeed, it is

now well-known that there exist consistent closed quantum algebras with infinitely many

different combinations of spin-two and higher-spin generators. When one works in the chiral

light-cone gauge (4) for the worldsheet metric, the residual chiral symmetry for the spin-

two gauge field h is the Virasoro algebra. Extensions of the Virasoro algebra that include

higher-spin generators are known generically as W algebras. Here, we shall be concerned

principally with the most basic such extension, the W3 algebra [10],

T (z)T (w) ∼ ∂T

(z − w)
+

2T

(z − w)2
+

1
2c

(z − w)4
(24a)

T (z)W (w) ∼ ∂W

z − w
+

3W

(z − w)2
(24b)

W (z)W (w) ∼ 1

(z − w)

( 1

15
∂3T +

16

22 + 5c
∂Λ

)

+
1

(z − w)2

( 3

10
∂2T + 2

16

22 + 5c
Λ

)

+
∂T

(z − w)3
+

2T

(z − w)4
+

1
3c

(z − w)6
, (24c)

where Λ is a composite operator,

Λ(z) =: TT : (z) − 3

10
∂2T (z), (25)

in which the colons denote normal ordering.

The W3 algebra has a central-charge structure that is determined by the central charge

in its Virasoro subalgebra. In order to realize local W3 symmetry, gauge fields of spin two

(the h component of the usual metric in the gauge (4)) and spin three (generally denoted

B) are needed. Upon gauge fixing, both of these symmetries require ghosts and both the

spin-two and spin-three ghosts contribute to the central charge that must be canceled by the

compensating scalars φ1,2 and the “matter” scalar fields xa. In theW3 case, the central charge

7



that needs to be canceled is [11] cgh = −26− 74 = −100, where the −74 contribution comes

from the spin-three ghosts. It turns out that, given the requirement to cancel independent

anomalies in both the spin-two and spin-three currents, there is no “critical” set of free

fields xa for which all the anomalies cancel, not even for 100 scalars. Thus, a compensating-

field mechanism similar to that discussed above in the Liouville gravity case is essential.

Realizations with arbitrary numbers of xa fields exist [12]; the simplest realization is the

original one [13], with no xa fields, but with two compensating fields φ1 and φ2. An anomaly-

free realization requires both of these fields to have background charges; their chiral stress-

tensor is just the sum

T = T1 + T2 = [−1
2(∂φ1)

2 −Q1∂
2φ1] + [−1

2(∂φ2)
2 −Q2∂

2φ2]. (26)

For this stress tensor, one has a central-charge contribution c = c1 + c2 = 100 for the values

Q1 =

√

49

8
Q2 =

√

49

24
; (27)

this set leads to a cancellation of anomalies both in the spin-two stress-tensor algebra and

also in the algebra of the spin-three generator, whose tree-level limit is given by

W = 1
3(∂φ1)

3 +Q1∂φ1∂
2φ1 + 1

3∂
3φ1 + 2∂φ1T2 +Q1∂T2. (28)

Note that the second compensating field φ2 occurs in the spin-three current only through its

stress-tensor T2. This feature persists when quantum corrections to the realization (26) are

taken into account, so that one may identify φ2 as the compensating field for the Virasoro

subalgebra, while φ1 is the compensator for the spin-three sector.

As in the Liouville case, once the local W3 symmetry has been broken by anomalies, new

counterterms become possible in the theory and after the corresponding renormalizations,

one should have finite residual interaction terms generalizing the Liouville potential eλφ.

Following the same logic of demanding the cancellation of potential compensating-field-

dependent anomalies [9], or by demanding that the the corresponding operators be of weight

(1,1) with respect to the full W3 algebra [14], one obtains the allowed generalizations of the

Liouville potential,

V1 = e−
3
7Q1φ1+

3
7Q2φ2 (29a)

V2 = e−
6
7Q2φ2. (29b)

As in the Liouville case, the magnitudes of the coefficients of these potentials may be altered

by constant shifts of φ1,2, so the only physically-meaningful aspect of the coefficients of these

potentials is their non-vanishing. The potentials (29) taken together with the kinetic terms

for φ1,2 describe an A2 Toda field theory.

8



Minisuperspace Approximation

In the presence of interaction potentials such as the Liouville potential eλφ or the Toda

potentials (29), the dynamics of the compensating modes is discretely changed with respect

to the dynamics of free fields, even thought the Liouville and Toda theories are integrable

field theories. We shall review how some of these differences come about, concentrating on

the center-of-mass modes of the compensating fields, which are the ones most affected by

the potentials. Inclusion of the oscillating-string modes may then be carried out consis-

tently within the context of perturbation theory, after the non-perturbative dynamics of the

center-of-mass modes has been understood. The separation of the center-of-mass modes is

known as the “minisuperspace approximation,” where reference is made to a subspace of

the “superspace” configuration space of metric states, and not to supersymmetry. In the

Liouville case, one splits up the field φ as follows:

φ(τ, σ) =
2

λ
q(τ) + φosc(τ, σ), (30)

where φosc(τ, σ) is defined to satisfy
∮

dσφosc(τ, σ) = 0, and the coefficient in front of q(τ)

is for convenience of normalization in the minisuperspace action. Recall that λ is given in

terms of Q by (21). (In most of the following, we shall concentrate on the case of “pure”

Liouville gravity, for which 2
λ = −6Q

5 ). In the Toda case, the splitup is (specializing to the

two-field pure Toda gravity case, for which the background charges are as given in (27))

φ1(τ, σ) = −4Q1

7
q1(τ) + φosc

1 (τ, σ) (31a)

φ2(τ, σ) = −4Q2

7
(2q2(τ) − q1(τ)) + φosc

2 (τ, σ), (31b)

where again
∮

dσφosc
1,2(τ, σ) = 0. In extracting the σ-independent modes in (30,31), we

are using the original (τ, σ) coordinates of a cylindrical string worldsheet instead of the

complex z = eτ+iσ coordinates generally used in conformal field theory. The change from

the coordinate z to the coordinate w = ln z is effected by a conformal transformation on

the worldsheet, generated by the stress tensor T (z). Owing to the background-charge terms

Q in (22,24), the transformations of the compensating fields are not quite those of ordinary

scalars, but instead give, in the Liouville case,

∂zφ→ (∂wφ−Q)z−1, (32)

so that in the transition from z to w the momentum carried by a φ state is modified according

to pφ → pφ(w) = pφ(z) − iQ. This shift must be taken into account in comparing free-

field states constructed using conformal-field theory with the minisuperspace wavefunctions

that we shall discuss. Of course, the overall wavefunction in a string theory including the

compensating modes φ or φ1,2 will be subject to the constraints following from varying h and
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B in the action. These constraints impose “mass-shell” conditions that include contributions

from the background charges. For our present purposes, however, we shall be content to treat

such questions at the string-theory level in a perturbative fashion once we have understood

the dynamics of the interacting compensating-field sectors in isolation. In particular, we

shall be interested in finding the wavefunctions for the minisuperspace modes q and q1,2.

Canonical Transformations for Integrable Models

The Liouville and Toda systems that emerge as the Lagrangians of the anomalous modes

in ordinary and W -string theories are famous examples of integrable systems. They are inte-

grable at the classical level because they possess sufficiently large symmetry algebras to give

conserved quantities corresponding to all the degrees of freedom. This does not guarantee

that these systems remain integrable at the quantum level, although this does in fact prove

to be the case. Many different approaches have been followed in studying these problems.

Owing to the importance of vertex operators in string theory, much effort has been expended

on the promotion of exponentials of field operators to their analogues at the quantum level,

taking into account the requirements of locality and covariance. One should mention along

these lines especially the work of Gervais, Neveu and collaborators [15], together with the

recent work of [16]. Here, we shall follow a different line of attack in concentrating on the

actual wavefunctions of the Liouville and Toda theories. At the present stage of development

of this approach, we shall confine our attention to the minisuperspace level discussed above.

We shall aim to derive the wavefunctions of these theories by applying canonical transforma-

tions to map these interacting models onto corresponding free-field theories. In the process,

a characteristic feature shall emerge: these canonical transformations are multi-valued (a

feature also important in the approaches of [15,16]), so the relation to free-field theories is

modified by the need to take a quotient of these free theories by the Weyl groups of the

corresponding interacting Toda systems. The Weyl group symmetry plays a crucial rôle in

the structure of the resulting integral representations for the wavefunctions.

We begin with the Liouville case. The classical Liouville Hamiltonian is

HL = 1
2(p2 + e2q), (33)

and in the following we shall let the evolution parameter be denoted by by τ = t. The

equations of motion following from (33) are integrable, since for the one variable q, we

have a corresponding conserved quantity, namely HL itself. This equality of the numbers

of conserved quantities and independent variables persists also at the full field-theory level,

owing to the infinite-dimensional Virasoro symmetry of the model. The general solution to

the classical equations of motion following from (33) may be written

q = − ln

(

1

p̃
cosh(q̃(t)

)

, (34)

10



where q̃ = p̃(t− t0), and p̃ and t0 are the two expected integration constants of the motion.

Writing the general classical solution in this way suggests the following canonical transfor-

mation, in which (q̃, p̃) are now interpreted as a new pair of phase-space variables:

e−q =
1

p̃
cosh q̃ (35a)

p = −p̃ tanh q̃. (35b)

The usefulness of this canonical transformation is that in the new (q̃, p̃) variables, the Hamil-

tonian becomes

H̃L = 1
2 p̃

2, (36)

which makes it plain that in the (q̃, p̃) variables we have a free system.

An important feature of the transformation from (33) to (36) is that the canonical trans-

formation between them has a branch structure. The free Hamiltonian (36) has reflection

symmetry in momentum space, p̃→ −p̃; this has the consequence that the inverse map from

(q̃, p̃) to (q, p) is two-to-one. Both free-variable motions (q̃, p̃) and (−q̃,−p̃) correspond to

the same solution of the interacting system (q, p). Clearly, for real p, Eq. (35a) cannot be

solved for real p̃ < 0, but for that case there is another canonical transformation that maps

to a free system, obtained by flipping the signs of q̃ and p̃ in (35). Consequently, the general

transformation to the free system can be written e−q = 1
|p̃| cosh q̃; p = −p̃ tanh q̃, which

makes the branch structure transparent. The Z2 transformation on the free variables can

be identified with the Weyl group of the underlying A1 = SL(2, IR) group of the Liouville

theory.

At the quantum level, one has to contend with the non-commuting nature of field op-

erators. Nonetheless, one can still find a canonical transformation at the quantum level for

the Liouville case if one first takes care to split up the overall transformation between the

interacting and the free theories into small substeps, each of which remains canonical even

when taking account of operator ordering and also which has a clear effect on quantum wave-

functions. Letting the overall generator of the transformation be denoted C, the canonical

transformation may be written

CHLC
−1 = H̃L, (37)

from which it is clear that what we are looking for is an operator that intertwines between the

free and interacting Hamiltonians. The technique of constructing canonical transformations

as intertwining operators has been developed by Anderson in Refs [17].

In the Liouville case, one decomposes the transformation into the following sequence of

subtransformations [1]:

[L1] Pln q : q 7→ ln q p 7→ qp
[L2] I : q 7→ p p 7→ −q
[L3] p−1 : q 7→ p−1qp = q + ip−1 p 7→ p
[L4] Psinh q : q 7→ sinh q p 7→ 1

cosh qp.

(38)

11



It may be verified that each of the subtransformations in (38) is canonical in the quan-

tum sense of preserving the canonical commutation relation [p, q] = −i. Transformations

[L1] and [L4] are point transformations, and have a straightforward action on Schrödinger

representation wavefunctions, for q 7→ q′, ψ(q) 7→ ψ(q′). Transformation [L2] is imple-

mented on wavefunctions by a Fourier transformation. Transformation [L3] is implemented

on Schrödinger representation wavefunctions by indefinite integration in the argument q and

multiplication by −i. The overall transformation after combining [L1–L4] may be written

e−q =
1

p̃
cosh q̃ (39a)

p = − tanh(q̃)p̃, (39b)

showing that, remarkably, the quantum canonical transformation is actually one of the simple

ordering choices for the operators in (35). Corresponding to [L1–L4], we have the sequence

of transformed Hamiltonians:

2HL = p2 + e2q

[L1] 7→ (qp)2 + q2 = q2p2 − iqp+ q2

[L2] 7→ p2q2 + ipq + p2

[L3] 7→ pq2p+ iqp+ p2 = (1 + q2)p2 − iqp =
[

(1 + q2)
1
2p

]2

[L4] = p̃2 = 2H̃L.

(40)

The generator C of the overall transformation (39) intertwines between HL and H̃L, as

we have seen. Using C−1, we may obtain an eigenfunction of the interacting Hamiltonian

by operating on a free-Hamiltonian eigenfunction ψ̃k(q̃) = exp(ikq̃). Since C intertwines

between HL and H̃L, the resulting interacting-theory wavefunction must have the same

eigenvalue, 1
2k

2, as for the free wavefunction. The inverse intertwining operator is, from

(38),

C−1 = Peq I−1 pParcsinh q. (41)

In this way, one obtains

ψk(q) ∼ k√
2π

∫ ∞

0
dy e−

i
2eq(y−y−1)yik−1

=
2k√
2π
e

πk
2 Kik(eq), (42)

where Kik is a modified Bessel function. Now we have to face the issue of normalization. The

transformation (37) is canonical but is not unitary. As a consequence, normalization is not

preserved; another way of expressing this is that the transformation has a non-trivial action

also on the quantum-mechanical inner product. In order to have a properly-normalized

12



Liouville wavefunction with respect to the standard quantum-mechanical inner product, a

normalization factor must be supplied. The final result, normalized to a delta function

δ(k − k′), is

ψk(q) =
1

π

√

2k sinh(πk)Kik(e
q). (43)

In this result, this we note two related features. First, as a result of the symmetry of the

modified Bessel function in its ik index, the Z2 Weyl-group symmetry is now manifest in

the interacting Liouville wavefunction, i.e. ψk(q) = ψ−k(q). Second, the zero-eigenvalue

wavefunction for k = 0, which was an acceptable delta-function normalizable wavefunction

for the free Hamiltonian H̃L, drops out of the normalizable spectrum for the interacting

Hamiltonian HL.

Now consider the case of W3 gravity. In the minisuperspace approximation, with the

parametrization (31) for the center-of-mass modes, the Hamiltonian becomes

HT = 1
3(p2

1 + p2
2 + p1p2) + e2q1−q2 + e2q2−q1. (44)

In addition to the Hamiltonian, we have also the spin-three generator (28), whose minisu-

perspace limit is

WT = 1
18(2p1 + p2)(2p2 + p1)(p1 − p2) + 1

2(2p2 + p1)e
2q1−q2 − 1

2(2p1 + p2)e
2q2−q1. (45)

The existence of these two first integrals and the consequent equality of the numbers of

conservation laws and degrees of freedom makes Toda mechanics classically integrable. Fol-

lowing the pattern of the Liouville discussion, the classical solution leads to a canonical

transformation over to free-field phase-space variables (q̃i, p̃i), i = 1, 2:

e−q1 =
1

p̃1(p̃1 − p̃2)
eq̃1 +

1

p̃2(p̃1 − p̃2)
eq̃2 +

1

p̃1p̃2
e−q̃1−q̃2 (46a)

e−q2 =
1

p̃1(p̃1 − p̃2)
e−q̃1 +

1

p̃2(p̃1 − p̃2)
e−q̃2 +

1

p̃1p̃2
eq̃1+q̃2 (46b)

(2p1 + p2)e
−q1 = − (2p̃1 − p̃2)

p̃1(p̃1 − p̃2)
eq̃1 − (2p̃2 − p̃1)

p̃2(p̃1 − p̃2)
eq̃2 +

(p̃1 + p̃2)

p̃1p̃2
e−q̃1−q̃2 (46c)

(2p2 + p1)e
−q2 =

(2p̃1 − p̃2)

p̃1(p̃1 − p̃2)
e−q̃1 +

(2p̃2 − p̃1)

p̃2(p̃1 − p̃2)
e−q̃2 − (p̃1 + p̃2)

p̃1p̃2
eq̃1+q̃2 . (46d)

The transformations (46) yield a free Hamiltonian and also a purely cubic version of the

spin-three conserved quantity (45):

H̃T = 1
3(p̃2

1 + p̃2
2 − p̃1p̃2) (47)

W̃T = 1
18(2p̃1 − p̃2)(2p̃2 − p̃1)(p̃1 + p̃2). (48)
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As in the Liouville case, the map between the interacting and free theories has a branch

structure, now described by the Weyl group for the A2 Toda theory, which is a symmetry

of the free-theory invariants (47,48). In this case, the Weyl group is the discrete group S3,

whose six elements are generated by a threefold rotation

M : (q̃1, q̃2; p̃1, p̃2) → (−q̃1 − q̃2, q̃1;−p̃2, p̃1 − p̃2), (49)

and a twofold reflection

R : (q̃1, q̃2; p̃1, p̃2) → (q̃2, q̃1; p̃2, p̃1). (50)

As a result, the map from the free variables (q̃i, p̃i) to the interacting variables (qi, pi) is

six-to-one. Just as in the Liouville case, where all the distinct motions in the interacting

theory are obtained from momenta p̃ > 0, so in the Toda case all the distinct motions of

the interacting theory are obtained by mapping from free-theory momenta that lie in the

principle Weyl chamber: p̃1 > p̃2 > 0.

Once again, it turns out to be possible to promote classical integrability into quantum

integrability by factorizing the canonical transformation (46) into a sequence of subtransfor-

mations, each of which has a clear effect on wavefunctions [1]:

[T1] e
π
2 (p1+p2)

Γ(1−i(p1+p2))
:

{

eq1 7→ −eq1(p1+p2),
eq2 7→ −eq2(p1+p2),

p1 7→ p1

p2 7→ p2

[T2] P(ln q1,ln q2) :

{

q1 7→ ln q1,
q2 7→ ln q2,

p1 7→ q1p1

p2 7→ q2p2

[T3] q−1
1 q−2

2 :

{

q1 7→ q1,
q2 7→ q2,

p1 7→ p1− i
q1

p2 7→ p2− i
q2

[T4] exp
(

−i(
q2
1

q2
+

q2
2

q1
)
)

:

{

q1 7→ q1,
q2 7→ q2,

p1 7→ p1− q2
2

q2
1
+ 2q1

q2

p2 7→ p2− q2
1

q2
2
+ 2q2

q1

[T5] I1I2 :

{

q1 7→ p1,
q2 7→ p2,

p1 7→ −q1
p2 7→ −q2

[T6] P(q1−q2+
1

q1q2
, 1
q1

− 1
q2

+q1q2) :















q1 7→ q′1 = q1−q2+ 1
q1q2

,

q2 7→ q′2 = 1
q1
− 1

q2
+q1q2,

p1 7→ p′1 = 1

det
∂q′

i
∂qj

(

∂q′2
∂q2

p1− ∂q′2
∂q1
p2

)

p2 7→ p′2 = 1

det
∂q′

i
∂qj

(

∂q′1
∂q1

p2− ∂q′1
∂q2
p1

)

[T7] P(eq1 ,eq2) :

{

q1 7→ eq1 ,
q2 7→ eq2 ,

p1 7→ e−q1p1

p2 7→ e−q2p2.
(51)
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Among the transformations composing this free-field map, we have a type not yet encoun-

tered, the “similarity” transformations embodied in [T1,T3,T4] (although, strictly speaking,

the inverse-momentum transformations [L3] are also of this type). The coordinate similarity

transformations [T3,T4], of the form (pi 7→ pi − f,i (qj), qi 7→ qi) are generated by eif(qj),

transforming wavefunctions Ψ(qj) into eif(qj )Ψ(qj) [17]. Momentum versions such as [T1], of

the form (qi 7→ qi + f,i (pj), pi 7→ pi), are generated by eif(pj) = Ieif(qj )I−1. The sequence

of steps evolving the interacting into the free Hamiltonian is

3HT = p2
1 + p2

2 + p1p2 + 3e2q1−q2 + 3e2q2−q1

[T1] 7→ p2
1 + p2

2 + p1p2 − 3(e2q1−q2 + e2q2−q1)(p1 + p2)

[T2] 7→ (q1p1)
2 + (q2p2)

2 + q1p1q2p2 − 3

(

q21
q2

+
q22
q1

)

(q1p1 + q2p2)

[T3] 7→ (p1q1)
2 + (p2q2)

2 + p1q1p2q2 − 3

(

q21
q2

+
q22
q1

)

(p1q1 + p2q2)

[T4] 7→ (p1q1)
2 + (p2q2)

2 + p1q1p2q2 − 9q1q2 − 3p2q
2
1 − 3p1q

2
2

[T5] 7→ (q1p1)
2 + (q2p2)

2 + q1p1q2p2 − 9p1p2 + 3q2p
2
1 + 3q1p

2
2

[T6] 7→ (q1p1)
2 + (q2p2)

2 − q1p1q2p2

[T7] 7→ p2
1 + p2

2 − p1p2 = 3H̃T.

(52)

The generator C of the transformation (51), which intertwines between the interact-

ing and free theories to yield CHTC
−1 = H̃T and CWTC

−1 = W̃T, also gives the Toda

wavefunction by acting on a free wavefunction, Ψk1,k2(q1, q2) ∼ C−1ei(k1q1+k2q2), with the

result

Ψk1,k2(q1, q2) =
Nk1k2

2π
eπk1

∫ ∞

0
du eq1+q2u−2e−u−(e2q1−q2+e2q2−q1)u−1×

∫ ∞

0
dy1

∫ ∞

0
dy2 [jac] yik1

1 yik2
2 e

−eq1(y1+y2+
1

y1y2
)u−1

e
−eq2( 1

y1
+ 1

y2
+y1y2)u

−1

,

(53)

where

[jac] =
1

y1y2
(y1 − y2)(y2 −

1

y2
1

)(y1 −
1

y2
2

) (54)

and Nk1k2
is a normalization factor. This result is manifestly convergent and falls away

quickly under the Toda potential, so that the normalization factor Nk1k2
is calculable as a

convergent integral obtained using (53). As in the Liouville case, the result after normaliza-

tion should be fully Weyl-group symmetric, but the zero momentum state (0, 0) is again not

normalizable and so drops out of the spectrum. Thus Toda theory is also a theory without a

vacuum state. The result (53) for the Toda wavefunction is of a different form from previous

results obtained principally by reduction of wavefunctions on group manifolds [18], but these
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earlier forms may also be obtained by modifications of the intertwining-operator procedure

[1].

Vertex Operators versus States

Now let us return to one of the underlying issues of conformal field theory and of string

theory, namely the relation between vertex operators and states, using the insights gained

from the above canonical transformations. This relation is clear enough in the case of

free-field theory, but it is worth re-examining carefully in the more complicated cases with

interacting Liouville or Toda modes. The link between an operator O and its associated

state ψO

(

φ(σ)
)

at some time τ is frequently written in string theory as a path integral,

ψO

(

φ(σ)
)

=

∫

[dξ(σi)]

D; ξ|
∂D

=φ(σ)

e−iIL O(ξ), (55)

where the point on the worldsheet at which O acts locally is taken to correspond to negative

temporal infinity τ → −∞, and the domain of integration D for the [dξ] integral is over all

worldsheets bounded by an end loop ∂D corresponding to the evaluation time τ , on which

Dirichlet boundary conditions ξ|∂D = φ(σ) are imposed. In free-field theory, which has a

Fock-space interpretation and a normalizable vacuum state |0〉, this reproduces the usual

conformal-field-theory expression |O〉 = limz→0 O(φ(z))|0〉 for the state associated to O.

In our interacting theories, we may use our canonical transformations to evaluate path

integrals such as (55). We shall consider the Liouville state associated to a vertex operator

O = eαφ(z), but shall restrict our discussion to the minisuperspace limit φ(z) → q(t) and to

the tree level. The expression for ψO(q) becomes just the path-integral form of the evolution

operator from t0 to t applied to an initial wavefunction O(q(t0)) where t0 → −∞,

ψO

(

φ(t)
)

= lim
t0→−∞

e−iHL(t−t0)O
(

φ(t0)
)

. (56)

Letting α = ip, so Op = eipq, means starting off at t0 → −∞ with a simple plane wave even

though this is definitely not an eigenstate (43) of the Liouville theory. Most non-stationary

state wavefunctions dissipate in quantum mechanics, so it requires special circumstances for

such a construction to give any final standing wave. The evaluation of ψO may be done [1]

by using the intertwining operator (41) to calculate the Liouville Green function,

G(z, w; ∆t) = [C−1e−
i
2 p̃2∆tCδ(q − w)](z), (57)

where ∆t = t− t0. In this way, one obtains the time-evolved wavefunction

ψ|Op
(q, t) = 2ip

∫ ∞

−∞

dk

(2π)2
keπkKik(eq)Γ

(

i(p+ k)

2

)

Γ

(

i(p− k)

2

)

e−
i
2k2∆t. (58)
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The behavior of ψ|Op
(q, t) as ∆t → ∞ may be evaluated by contour-integral methods [1].

Here, we shall just summarize the results. The situation depends importantly on whether p

is real or imaginary. The occurrence of imaginary momenta in noncritical string theory is

occasioned by the presence of background charges Q as in (19). In subcritical cases (d < 26

for the ordinary string), the background charges need to push the central charge of the

compensating Liouville mode up above its canonical value of 1, and in consequence, as one

can see from (20), the background charge is then real. In integrations in correlation functions

over the constant mode φ0 of the Liouville field, one then has at the tree level (where the Euler

number of the worldsheet is 2) an extra factor e2Qφ0, as one can see from (19). This produces

an extra “background” term of −2iQ in momentum-conservation delta functions, and makes

the consideration of imaginary momenta unavoidable. The normalizability implications of

such imaginary momenta in the “gravitational dressing” of string states are not in our view

yet fully established.

For real p, there are different cases depending on whether p >
< 0:

Real p < 0: ψ|Op
−→

∆t→∞
0 like (∆t)−3/2;

Real p > 0: ψ|Op
−→

∆t→∞
Kip(e

q).

Thus, for real p < 0, the initial plane-wave wavefunction just dissipates in expected for

the generic case. For real p > 0, however, the path-integral implementation of the operator-

state map (55) does work as desired and one is left with an (improperly-normalized) standing

wave proportional to a single Liouville eigenstate (43). The difference between the p >
< 0

cases may be understood heuristically in terms of the need to set up a superposition of

incoming and outgoing plane waves in order to create a Liouville eigenstate. For p > 0, this

is possible owing to the entirely reflective nature of the potential e2φ. In this case, one has

at t0 → −∞ an incoming wave that subsequently reflects and produces an outgoing wave,

with the superposition eventually settling down as ∆t → ∞ to a Liouville eigenstate of the

form (43). For p < 0, on the other hand, the initial wave is purely outgoing and so there is

no way to generate the incoming wave that would be needed to create a stationary state, so

the wavefunction just dissipates as generically expected, like (∆t)−3/2.

For imaginary values p = iβ, there are again two cases depending on whether β >
< 0:

Imaginary p = iβ, β < 0: ψ|Op
−→

∆t→∞
0 like (∆t)−3/2;

Imaginary p = iβ, β > 0: ψ|Op
−→

∆t→∞

∑[β/2]
n=0 cnKβ−2n(eq),

where [β/2] is the integer part of β/2.

Thus, for β < 0 one finds again the generic case of a dissipating wavefunction. For

β > 0, however, one is left in general with not one but a whole superposition of imaginary-

momentum Liouville eigenfunctions. The implications of this have not been fully worked

out, but the issue is important for the proper interpretation of Liouville correlation func-

tions, which have generally been considered using the vertex-operator construction. The
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phenomenon of having only one sign of momentum give rise to a Liouville eigenstate is

known as the Seiberg bound [19].

Conclusions and Open Problems

The technique of solving Toda theory models via canonical transformations implemented

by intertwining operators highlights the similarities and differences between these integrable

models and the free-field theories that are the basis for conformal field theory. Although

the intertwining-operator technique still remains to be applied at the full field-theory level,

indications on how that may be done can be obtained by comparison to Bäcklund trans-

formation methods [20] that have been successfully applied to Liouville field theory. The

method of Refs [20] relies on an ansätz based upon the classical generating functional F (q, q̃)

for the canonical transformation. In essence, that approach expresses the interacting-theory

wavefunction as an integral transform involving this generating functional,

ψ(q) =

∫

dq̃ eiF (q,q̃)ψ̃(q̃), (59)

In promoting this transformation to the quantum case, one has to require that eiF (q,q̃) satisfy

an analogue of our intertwining condition (37),

HL(q, p) eiF (q,q̃) = H̃L(q̃, p̃) eiF (q,q̃), (60)

where the momenta are realized as derivatives in the Schrödinger representation. In the case

of Liouville theory, the classical generator actually satisfies the condition (60) without further

quantum corrections. This could be related to the fact that our quantum transformation (39)

turns out to be one of the simple operator-ordering versions of the classical transformation

(35). Whether this luck will persist in the more general Toda cases remains to be determined.

From the BRST point of view, an open problem remains the role of the ghost fields in the

field-theoretic extension of the canonical transformations and in the Weyl-group structure of

these transformations. In the cases of free-field Virasoro or W3 gravities with minimal field

content (i.e. just the fields φ or φ1,2), it is remarkable that when one includes the oscillator

states a Weyl-multiplet structures persists in the spectra, corresponding to Z2 or S3 trans-

formations of the center-of-mass mode momenta [21, 1]. But these Weyl-group multiplets

involve states of non-trivial ghost structure, unlike the situation at the minisuperspace level

that we have considered here. This suggests that in worldsheet gravity theories the Liouville-

or Toda-theory aspects cannot be completely disentangled from the gauge-theory aspects of

the problem. Another puzzle in the BRST context is the origin of hidden symmetries such as

the SL(2, IR) Kač-Moody symmetry of the correlation functions [6], and how such symmetries

might be related to the Weyl-group symmetries in the canonical-transformation approach.

Overall, it seems that unraveling the mysteries of non-critical worldsheet gravity theories

will require a more profound synthesis of these different approaches.
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[20] T. Curtright, “Quantum Bäcklund transformations and conformal algebras,” in Differ-

ential Geometric Methods in Theoretical Physics, eds L.L. Chau and W. Nahm (Plenum

Press, NY, 1990);

T. Curtright and G.I. Ghandour, “Using Functional Methods to Compute Quantum

Effects in the Liouville Model,” in Quantum Field Theory, Statistical Mechanics, Quan-

tum Groups and Topology, eds T. Curtright, L. Mezincescu and R. Nepomechie (World

Scientific, Singapore, 1992).

[21] H. Lu, C.N. Pope, X.J. Wang and K.W. Xu, Class. Quantum Grav. 11 (1994) 967.

20


