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Abstract
Hepatocellular carcinoma (HCC) is a common mali
gnancy and now the second commonest global cause 
of cancer death. HCC tumorigenesis is relatively silent 
and patients experience late symptomatic presentation. 
As the option for curative treatments is limited to 
early stage cancers, diagnosis in non-symptomatic 
individuals is crucial. International guidelines advise 
regular surveillance of high-risk populations but the 
current tools lack sufficient sensitivity for early stage 
tumors on the background of a cirrhotic nodular liver. A 
number of novel biomarkers have now been suggested 
in the literature, which may reinforce the current 
surveillance methods. In addition, recent metabonomic 
and proteomic discoveries have established specific 
metabolite expressions in HCC, according to Warburg’s
phenomenon of altered energy metabolism. With clinical 
validation, a simple and non-invasive test from the 
serum or urine may be performed to diagnose HCC, 
particularly benefiting low resource regions where the 
burden of HCC is highest.
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quantitative techniques, such as 1H nuclear magnetic 
resonance and mass spectrometry to discover novel 
biomarkers to aid early diagnosis, following the removal 
of alpha fetoprotein from international surveillance 
guidelines. However, relatively little effort has been 
directed to translate these findings to the clinical 
setting. hepatocellular carcinoma (HCC) is a global issue 
and the vast majority of the burden is placed upon 
resource-limited regions, where presentations are late 
and management techniques for advanced tumors are 
unavailable. Early identification through a simple serum 
or urinary investigation, therefore, may be a pivotal step 
in addressing the global burden of HCC.  

Kim JU, Shariff MIF, Crossey MME, Gomez-Romero M, Holmes 
E, Cox IJ, Fye HKS, Njie R, Taylor-Robinson SD. Hepatocellular 
carcinoma: Review of disease and tumor biomarkers. World J 
Hepatol 2016; 8(10): 471-484  Available from: URL: http://www.
wjgnet.com/1948-5182/full/v8/i10/471.htm  DOI: http://dx.doi.
org/10.4254/wjh.v8.i10.471

INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth commonest 
malignancy and arises most frequently in patients 
with cirrhosis[1]. The global distribution of HCC is dis­
proportionate, being most common in areas where 
chronic hepatitis B virus (HBV) infection is highly 
prevalent (Figure 1). However, HCC is an increasing 
problem in the western world, due to migration from 
HBV-endemic regions, hepatitis C virus (HCV) infection, 
alcoholic cirrhosis and non-alcoholic steatohepatitis, 
related to the obesity epidemics[2,3] (Figure 2). 

Curative treatments, such as hepatic resection and 
orthotopic liver transplant, offer good prognosis, but 
are limited to early HCC[4]. In developing countries, 
medical advice is often sought late, resulting in delayed, 
end-stage presentation. More than two-thirds of HCC 
patients in the developed world are diagnosed at ad­
vanced stages[5]. The high global incidence and late 
presentation of HCC make it the second global cause of 
cancer-related mortality with 1.6 million global deaths, 
annually[6]. The key and as yet, unmet need is to 
identify small tumors, amenable to curable treatments, 
in an otherwise nodular cirrhotic liver parenchyma. 

Improved surveillance of populations at-risk by 
adding a sensitive biomarker investigation to com­
plement current imaging studies has the potential to 
detect tumors at an early stage, when curative inter­
ventions can be implemented. Furthermore, designing 
a simple and accessible investigative test for a set of 
HCC biomarkers may not only improve diagnosis and 
management of liver cancer, but pioneer proteomic or 
metabonomic diagnosis for other diseases in developing 
countries, where technical and human resources are 
limited.

PATHOGENIC MECHANISMS WITH 
METABOLIC IMPLICATIONS
Altered tumor metabolism
There is increasing evidence that altered metabolism in 
tumor cells is both a cause and effect of carcinogenesis. 
Tumor cells require increased amounts of energy and 
substrates for de novo synthesis of nucleotides, lipids, 
and proteins for rapid proliferation. Otto Warburg, in 
the 1920s, pioneered the theory of altered tumor meta­
bolism. Recent evidence both supports and disputes his 
original conclusions.

“Warburg effect” and glycolysis
In 1924, Warburg, through placing a section of rat 
carcinoma in nitrogen-saturated Ringer’s solution (to 
simulate anaerobic conditions), observed that the 
tumor could be transplanted to a live donor if sugar was 
included in the Ringer’s solution, but not if the solution 
was left plain[7]. Following this work, Warburg discovered 
that even in the presence of oxygen, cancer cells 
preferentially metabolize glucose by glycolysis as oppose 
to oxidative phosphorylation, a vastly more inefficient 
route for energy production. He hypothesized that the 
increase in glycolysis under normal oxygen conditions 
arose from a deficiency in the mitochondrial oxidative 
phosphorylation[8] (Figure 3). He thus established that 
tumor cells take up glucose at high rates to fuel hei­
ghtened glycolysis. Indeed, it is upon this basis that 
tumors can be identified with glucose-labeled positron 
emission tomography[9]. Glycolysis generates adenosine 
triphosphate (ATP) with lower efficiency, but at a faster 
rate than oxidative phosphorylation, which may be of 
benefit for rapidly dividing cells. The role of mitochondria 
in tumor cells is contentious. Primary defects in oxidative 
phosphorylation (which occurs within the mitochondrial 
membrane) have been invoked to explain the Warburg 
phenomenon because tumor mitochondria are often 
small, lack cristae and are deficient in the β-F1 subunit 
of the ATPase[10,11]. However, many groups have demon­
strated that tumor cell mitochondria are actually func­
tional and even Warburg admitted that despite their high 
glycolysis rate, oxygen consumption by cancer cells is 
not diminished[12]. Furthermore, HCC is a highly vascular 
tumor that, certainly in the early stages, is likely to be 
adequately supplied with oxygenated blood. Importantly, 
glycolysis also provides intermediates for the pentose 
phosphate pathway and subsequent biosynthesis of 
nucleic acids. Which of these functions heightened 
glycolysis serves is, as yet, unresolved. 

There is now some consensus that the major role 
of heightened glycolysis in tumor cells is to provide 
substrates to the pentose phosphate pathway for 
nucleotide synthesis, rather than energy provision in the 
form of ATP[12,13]. In essence, the tumor is maximizing 
production of cellular constituents for proliferation at the 
expense of energy production. 
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MOLECULAR EFFECTORS AND TUMOUR 
METABOLISM
Several oncogenes and tumor suppressor genes have 
been implicated in altered tumor metabolism. Sequential 
mutations are common in HCC and two effectors in 
particular, hypoxia inducible factor 1 (HIF 1) and p53, 
may be responsible for some of the metabolic changes 
arising in HCC.

HIF
HIF 1 is a heterodimeric protein complex transcription 
factor that is activated by hypoxic, inflammatory, meta­
bolic and oxidative stress[10,12,14]. The HIF 1 heterodi­
meric complex (HIF 1α + HIF 1β) is stabilized at low 
oxygen levels, but degraded by the proteasome in 
normoxic conditions. The HIF 1 heterodimer stimulates 
glycolysis by increasing the expression of pro-glycolytic 
uptake enzymes and transport molecules, such as 
glucose transporter 1 (GLUT 1) and hexokinase[12]. HIF 
1β deficient hepatoma cells grown as solid tumors in 
mice were found to have reduced rates of growth and 
glycolytic intermediates compared to wild type hepatoma 
cells[15]. It would therefore appear that HIF 1 may play 
a central role in the Warburg model. However, HIF 1 is 
only stable in hypoxic conditions and Warburg’s model 
describes heightened glycolysis in normoxic conditions. 

Only a minority of cancers display aberrant HIF 1 function 
in normoxia, such as renal cell carcinoma[16]. The role of 
HIF 1 in HCC is still under investigation but a number of 
recent studies, mostly in animal models, have observed 
high HIF 1 activity and its downstream counterparts, 
such as GLUT1, in hepatoma cells[17-19]. Recent studies 
have also identified association between HIF 1 and the 
prognosis of HCC, where HIF 1α levels have been found 
to be significantly raised in HCC, compared to benign 
liver disease[19]. Furthermore, it appears that HIF 1 
inhibition may be a potential target of therapeutic benefit 
in HCC by down-regulating its role in tumorigenesis. 
There have been several proposals to incorporate HIF 1 
inhibition as adjunct to the current treatment pathways, 
but further investigations are required before its clinical 
application[20]. 

p53
Tumor suppressor genes, such as p53, have also been 
implicated in alterations in metabolism. Inactivation 
of p53 can cause the Warburg phenomenon. p53 posi­
tively regulates the expression of the protein synthesis 
of cytochrome C oxidase 2, which is required for the 
assembly of the oxidative phosphorylation enzyme, 
cytochrome C oxidase[21] and also negatively regulates 
phosphoglycerate mutase, a key glycolytic enzyme[22]. 
In addition, p53 transcriptionally activates TP53-induced 
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Figure 1  Global incidence of hepatocellular carcinoma. Sourced from 
GLOBOCAN 2012.
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cinoma. HIV: Human immunodeficiency virus; HCC: Hepatocellular carcinoma.
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usually as a result of mutations in CTNNB1, AXIN1 genes, 
CDH1 epigenetic silencing and changes in expression 
of Wnt receptors from the Frizzle family[29]. Activation 
of the pathway induces translocation of β-catenin into 
the nucleus where it regulates specific oncogenes such 
as CMYC and CCND1. An initial somatic mutation in 
an oncogene or tumor suppressor gene is likely to 
generate a clonal expansion of cells which then have the 
potential, through further “proliferation advantageous” 
mutations and chromosomal disruptions, to develop 
into pre-neoplastic lesions. These lesions, often < 1 cm, 
have been identified in patients with cirrhosis and have 
been sub-classified into low or high grade dysplastic 
nodules[30]. The former carry a low risk and the latter a 
very high risk, of malignant transformation. 

“Angiogenic switch”
Dysplastic nodules are often hypoechoic on ultrasound 
imaging and derive their blood supply from the portal 
vein. These nodules may, less frequently, appear as 
either hyperechoic or isoechoic. Established HCC displays 
typical arterial phase uptake on contrast imaging. At 
a critical point, an “angiogenic switch” is activated 
which stimulates arterial neo-vascularization of the 
nodule and development of an established HCC (Figure 
4). Japanese groups have identified this as a critical 
moment before which total cure with resection is likely 
and after which prognosis deteriorates rapidly[31]. Certain 
factors may contribute to “neo-angiogenesis” of HCCs. 
Vascular endothelial growth factor (VEGF) and platelet-
derived growth factor (PDGF) have been implicated as 
angiogenesis modulators. HCC cell lines may produce 
VEGF by themselves and increased concentration of 
VEGF in the serum of patients with HCC has been 
correlated with outcome after surgical resection[32,33]. 
HIF 1, a factor commonly expressed in HCC and heavily 
influential upon cellular metabolism, has been shown to 
induce expression of VEGF. A number of oncogenes have 
also been implicated in angiogenesis such as ras and 
myc[34].

It has been shown that chemotherapeutics active 
against HCC such as the multikinase inhibitor, sorafenib, 
exert their effects through inhibition of pro-angiogenic 
factors such as VEGF and PDGF, establishing neo-

glycolysis and apoptosis regulator an inhibitor of phos­
phofructokinase activity which in turn lowers the level 
of fructose 1,6-biphosphate which acts as an allosteric 
activator of glycolytic enzymes[23]. 

These examples illustrate the evidence that genetic 
alteration through tumor-driven mutation can affect 
metabolism. It is likely that many genes and proteins 
are involved in altered tumor metabolism, with a few 
taking a lead role. 

METABOLITE EFFECTS ON 
CARCINOGENESIS 
Metabolites can affect carcinogenesis and may not be 
mere by-products of cellular reactions. Lactate, thought 
to be a “waste” product of glycolysis, may be such a 
signal. Lactate may stimulate HIF 1 independently of 
hypoxia[24] and may condition the tumor environment 
and suppress anticancer immune effectors[10,25,26]. HIF 
1 can also be stimulated by the buildup of tricarboxylic 
acid (TCA) cycle intermediates, fumarate and succinate. 
This is evidenced through tumorogenic germline muta­
tions of TCA cycle enzymes fumarate hydratase and 
succinate dehydrogenase, resulting in an accumulation 
of fumarate and succinate which competitively inhibit the 
α-ketoglutarate-dependent HIF 1α prolyl hydroxylase, 
the enzyme that targets HIF 1 for destruction[27]. Through 
high-throughput liquid-and-gas-chromatography-based 
mass spectrometry of urine and plasma from patients 
with prostate carcinoma, Sreekumar et al[28] identified 
sarcosine, a metabolite derivative of glycine, as a 
marker of the cancer. Furthermore, exogenous addition 
of sarcosine to tumor cells, or knockdown of sarcosine 
degrading enzymes, caused a shift of benign prostatic 
cells into a malignant phenotype. 

OTHER PATHOGENIC MECHANISMS
Genetic profiling studies of HCC tissue have shown 
several genes to be disrupted through somatic mutations, 
chromosomal disruption and epigenetic aberration 
through methylation abnormalities including p53, 
Rb1, β-catenin, CMYC and survivin. The Wnt-β catenin 
pathway is the most commonly disrupted pathway, 
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Figure 4  “Angiogenic switch” in hepatocellular carcinoma. VEGF: Vascular endothelial growth factor; HCC: Hepatocellular carcinoma; HIF 1: Hypoxia inducible 
factor 1.
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angiogenesis as a major therapeutic target in HCC[30]. 
With the onset of neo-angiogenesis, there is likely to 
be a rapid change in the metabolism of tumor cells and 
also the surrounding stroma[35]. The importance of the 
interaction between tumor and stromal cells is becoming 
increasingly recognized. Vizan et al[36], studied the 
metabolic adaption of endothelial cells, to stimulation by 
VEGF and fibroblast growth factor. Glycogen synthesis, 
the pentose cycle and glycolytic pathways were shown 
to be essential for endothelial cell proliferation and 
inhibition of these pathways decreased endothelial cell 
viability and migration[36]. The interaction of cellular 
metabolism and neo-angiogenesis is therefore crucial to 
tumor development.

CURRENT SURVEILLANCE AND 
DIAGNOSIS
HCC is likely to originate from hepatic stem cells[37], 
with internal and external stimuli, such as viral DNA 
integration, inflammation and fibrosis, likely inducing 
alterations in tumor originator cells leading to apoptosis, 
cell proliferation, dysplasia and eventually, neoplasia[34]. 
The global alteration of metabolites that arise during, or 
as a consequence of tumorigenesis, then, may measure 
both the presence and the severity of disease. 

Unfortunately, HCC surveillance lacks reliable bio­
markers. Serum alpha fetoprotein (AFP) historically has 
been the most used biomarker. However, not all HCCs 
secrete AFP. Furthermore, it may be elevated in chronic 
liver disease in the absence of HCC[38], and its use is 
no longer recommended by international authorities. 
Ultrasonography (US) at 6 monthly intervals is the 
currently recommended screening and surveillance 
modality for patients with established liver cirrhosis[39]. 
Diagnosis is based on the fact that HCCs are highly 
arterialized, in contrast to the remainder of the liver. 
The most recent American Association for the Study of 
Liver Disease guidelines require the presence of features 
typical of HCC (arterial hypervascularity and venous 
phase washout) in just one imaging modality for lesions 
> 1 cm[39]. Previous guidelines suggested that diagnosis 
was made by the confirmation of two contrast-enhanced 
imaging modalities (contrast-enhanced ultrasound, 
computed tomography or magnetic resonance imaging) 
with characteristic features or one imaging modality 
suggestive of HCC with an AFP level of > 400 ng/mL[40]. 

Diagnostic imaging techniques for HCC require a 
combination of equipment availability, infrastructural 
support and technicians to perform and interpret 
the results, which unsurprisingly, are limited in the 
majority of developing regions with high HCC burden. 
Alternative solutions to HCC diagnosis, therefore, are 
urgently required, as AFP measurement lacks sensitivity 
and specificity. An acceptable alternative requires 
the diagnostics to be quick, inexpensive, accessible 
and adequately sensitive and specific to the disease. 
Blood and urine tests are extremely simple methods 
of investigation, which are widely utilized in developing 
regions. For example, designing a urine dipstick test that 
can quantify and score the severity of HCC from a set of 
candidate biomarkers may significantly reduce cancer-
related morbidity and mortality, and revolutionize the 
surveillance process in developing regions. 

METABOLIC PROFILING TO FIND 
BIOMARKERS
Metabolic profiling is a general term encompassing 
“metabonomics”, which is the study of global metabolic 
responses to physiological, drug and disease stimuli[41] 
and “metabolomics”, which aims to characterize and 
quantify all the small molecules in biofluid samples[42]. 
The most commonly used methods of metabolite cha­
racterization are proton nuclear magnetic resonance 
(1H NMR) spectroscopy and mass spectrometry (MS). 
These techniques are complimentary and each has 
advantages and disadvantages (Table 1). Sensitivity of 
MS is high, with some forms of gas chromatography 
(GC)-MS reaching femtomolar levels, but samples are 
degraded during the run and metabolite identification 
can be challenging[43,44]. Nuclear magnetic resonance 
spectroscopy displays lower sensitivity (nano to milli-
molar), but samples remain intact and NMR spectral 
profiles have been extensively categorized making meta­
bolite identification more straightforward[37-39]. 

PROTON NUCLEAR MAGNETIC 
RESONANCE SPECTROSCOPY 
Nuclear magnetic resonance is based on the behavior 
of nuclei subjected to a magnetic field. Hydrogen is 
the most abundant element in living organisms and 
using high power magnetic fields of in vitro samples, 
high-resolution metabolic NMR spectra can be obtained 
with clearly defined metabolite peaks of small mobile 
molecules (< 2 kDa). Comprehensive metabolic profiles
have been generated from biofluids, including urine[45,46], 
serum[47-50], bile[51] and intact tissue[52].

MASS SPECTROMETRY
Mass spectrometry has been utilized for metabolic 
profiling since the 1970s[53]. Metabolites, or their 
constituent fragments, are detected and distinguished 

Table 1  Comparison of nuclear magnetic resonance and mass 
spectrometry

Variable NMR MS

Sensitivity Lower than MS 
(nanomolar)

Higher than NMR 
(picomolar)

Sample degradation No Yes
Reproducibility High Moderate
Metabolite identification Well categorized Labor intensive

NMR: Nuclear magnetic resonance; MS: Mass spectrometry.
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by their molecular weight and ionic charge. Owing to 
their complex nature, biological fluids require separation 
prior to mass spectrometric analysis to achieve detection 
of as many metabolites as possible. The most common 
separation methods are GC or liquid chromatography 
(LC). Gas chromatography requires extensive sample 
pre-treatment and derivatization steps. In contrast, LC 
requires minimal sample preparation and is immediately 
amenable to biofluid analysis. Ultra performance LC 
utilizes separation columns with much smaller particle 
size packing material (1.4-1.7 μm) than traditional 
columns, permitting the injection of liquids at pressures 
exceeding 10000 psi, thus allowing for improved meta­
bolite resolution. Once ionized, the particles are detected 
usually by a time-of-flight analyzer, which allows the 
detection of analytes over the range of m/z 50-1000 Da.

CLINICAL APPLICATION OF 
BIOMARKERS
The development and progression of HCC underscores 
complex molecular and metabolic interactions, involving 
several stages of disease over a prolonged period of 
time. A single reliable biomarker to assess both presence 
and severity of disease, such as it was for AFP, is likely 
to be unfeasible in this setting. Therefore, a panel that 
reliably assesses HCC tumorigenesis from a selection 
of candidate biomarkers may be better suited to tackle 
the situation. The candidate biomarkers must show 
adequate sensitivity and specificity by validation-based 
experiments, and demonstrate diagnostic synergism 
when individual biomarker results are combined. Such 
a new biomarker panel must then be assessed in com­
parison studies for the current diagnostic methods, such 
as US and biopsy, for different disease states of HCC, 
and its utility in surveillance protocols must then be 
considered, particularly in the developing world context. 
Biomarkers are also heterogeneous in their quantification 
and analysis, as different equipment and techniques 
are utilized. This practical issue must be addressed with 
thorough cost-benefit analyses that compare biomarker 
analysis to the local investigative methods. 

SERUM MARKERS OF HCC
Serum AFP
Serum AFP is the most widely used marker of HCC. It 
is a fetal glycoprotein, which is synthesized in utero by 
the embryonic liver, cells of the vitelline sac and the fetal 
intestinal tract. Serum AFP is usually undetectable in 
healthy adults[54]. The production of AFP by HCC cells 
has been seen as confirmation that the tumor arises 
from hepatic stem cells as a form of maturation arrest, 
akin to an embryonic state[55]. Not all HCCs secrete AFP 
and its diagnostic accuracy is variable. A meta-analysis 
of AFP for HCC surveillance found that it displayed a 
sensitivity of 39% to 65% and a specificity of 76% to 
94% for tumor diagnosis[56]. The cut-off level of AFP 
was important in determining the diagnostic power. 

A cut-off of 20 ng/mL resulted in a sensitivity of 64% 
and specificity of 91%[57], while a cut-off of 400 ng/mL 
resulted in a sensitivity of 17% and specificity of 99%[58]. 
Values of over 400 ng/mL are generally considered 
diagnostic of HCC, although only about 20% of patients 
with HCC display values this high. Furthermore, patients 
with chronic viral hepatitis may display a raised AFP 
during viral flares without the presence of HCC. In a 
study of 290 Chinese patients with chronic HBV, 44 were 
found to have elevated serum AFP levels (> 20 ng/mL) 
and only six (13%) had HCC. The remaining 38 had 
elevated serum AFP, either due to viral flares or due to 
unknown causes[59]. Trevisani et al[58] also observed that 
an AFP elevation in non-infected patients could be more 
indicative of HCC when compared to infected patients.  

Lens culinaris agglutinin-reactive AFP
Lens culinaris agglutinin-reactive AFP (AFP-L3) is a 
glycoform variant of AFP and is expressed as a per­
centage of the total AFP level. It can be detected in the 
serum of approximately one third of patients with small 
HCCs (< 3 cm) where cut-off levels of 10% to 15% are 
used. At higher cut-off levels of > 15%, AFP-L3 displays 
a sensitivity of 75% to 96.9% and specificity of 90% 
to 92%[60,61]. The usefulness of this marker is limited 
as studies have only been conducted in East Asian 
populations in whom AFP levels are already raised. 

Des gamma carboxyprothrombin
Des gamma carboxyprothrombin (DCP) is an abnormal 
prothrombin protein and is also known as prothrombin 
induced by vitamin K absence Ⅱ. It is produced as a 
result of an acquired defect in the post-translational 
carboxylation of the prothrombin precursor in malig­
nant cells, the gene responsible being gamma-carbo­
xylase[62]. In several large studies, serum DCP was 
found to display poor diagnostic sensitivity (48% to 
62%), but good specificity (81% to 98%) for HCC[62,63]. 
A study comparing the performance characteristics 
of AFP, DCP and lens culinaris agglutinin-reactive AFP 
in the diagnosis of HCC observed that DCP was signi­
ficantly better than the other markers in differentiating 
HCC from cirrhosis, with a sensitivity of 86% and a 
specificity of 93%[64]. There are conflicting reports, 
however, with a study by Nakamura et al[65] reporting 
that the efficacy of DCP was lower than that of AFP in 
the diagnosis of small tumors, although higher than AFP 
for large tumors. 

Alpha-l-fucosidase
Alpha-l-fucosidase (AFU) is a glycosidase found in 
cellular lysozomes and increased activity is found in the 
serum of patients with HCC. Studies of its diagnostic 
accuracy have displayed high sensitivity (82%) and 
specificity (70.7%-85.4%)[66-68]. A comparative study 
of AFP and AFU in an Egyptian cohort found AFU to 
have a higher sensitivity (81.8% vs 68.2%) but lower 
specificity (55% vs 75%) with a combined AFP + AFU 
sensitivity of 88.6%[69]. Unfortunately, AFU has been 
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found to be elevated in other tumors and is therefore 
not specific to HCC. The diagnostic performance of 
these serum markers is outlined in Table 2. 

Glypican-3
Glypican-3 (GPC3) is a heparin sulfate proteoglycan 
and has been shown to be capable of promoting the 
proliferation of tumor cells by modulating Wnt pathways 
and affecting cellular adhesion. As a tumor marker, 
GPC3 expression has been shown to be elevated in HCC 
tissue and in serum of 40% to 53% of patients with 
HCC[69]. 

Vascular endothelial growth factor
VEGF is a homodimeric cytokine associated with tumor 
neovascularization. HCC is often diagnosed by imaging 
evidence of a highly vascularized mass in the liver, 
and HCC patients have been shown to have increased 
expressions of VEGF compared to those with normal 
liver tissues[70]. Furthermore, two previous studies have 
shown mortality in HCC increases with over-expression 
of VEGF[71,72].

Interleukin-8
Interleukin-8 (IL-8) is a multifunctional CXC chemokine, 
which may exert numerous effects on tumor prolife­
ration, angiogenesis and migration. High serum IL-8 
has been indicated in HCC patients compared to 
healthy controls, and its levels correlate to tumor size, 
absence of tumor capsule, presence of venous invasion, 
advanced pathological tumor-node-metastasis staging, 
and poorer disease-free survival[73,74]. 

Transforming growth factor-beta 1
Transforming growth factor-beta 1 (TGF-b1) is a 
negative autocrine growth factor that regulates cell 
proliferation and differentiation. Comparison studies 
against AFP (200 ng/mL) have shown TGF-b1 to have 
higher sensitivity at 68% (800 pg/mL cut-off), and a 
specificity of 95%[75]. Raised TGF-b1 also detected 23% 
of HCC patients with normal serum AFP[76]. 

Tumor-specific growth factor
Tumor-specific growth factor (TSGF) is released by 
malignant tumors, and has been shown to correlate 
with tumor growth and surrounding vascularization. 

Therefore, it is reasonable to suggest that TSGF could 
be a potential biomarker that may be used for HCC 
grading in populations around the world. TSGF has been 
approved for use by the Chinese government following 
study results that showed a sensitivity of 82% in HCC 
diagnosis at the cut-off of 62 U/mL[77]. 

Squamous cell carcinoma antigen
Squamous cell carcinoma antigen is part of a family 
of serine protease inhibitors, or serpins, and has been 
utilized to diagnose a variety of squamous cell carcino­
mas[78]. It has also been found to have a diagnostic role 
in HCC, where the sensitivity and specificity were 77.6% 
and 84%, respectively[79]. 

Heat shock proteins   
Another potential biomarker for HCC are heat shock 
proteins (HSP), which are cellular molecules that are 
expressed under non-specific stress stimuli, including 
carcinogenesis[80]. In particular, HSP70 has been iden­
tified as a potentially sensitive marker to differentiate 
early HCC from precancerous lesions[81]. 

Serum metabolites
Metabolic profiling using proteomic techniques men­
tioned above, such as in vitro proton 1H NMR spectro­
scopy[49,82-85] and MS[85-99] have been incorporated 
to identify a specific metabolic pattern that may be 
utilized for identifying HCC. Lysophosphatidylcholines 
(LPC) have been reported in several studies to be 
significantly decreased in HCC sera compared to healthy 
controls[88,89,91-93,96-98]. LPCs have been described in 
endothelial cell migration[100], which may contribute 
to the hypervascularized state in HCC. Two LPCs in 
particular, LPC 16:0 and LPC 18:0, were significantly 
altered in HCC compared to cirrhotic patients[91-93,97]. 
Morita et al[101] confirmed the overexpression of LPC 
acyltransferase 1 (LPCAT1) which converts LPC C16:0 to 
phosphatidylcholine 18:1. The up-regulation of LPCAT1 
could be the reason for the reduction in LPC C16:0. A 
careful interpretation is required, as expression of LPC 
species has been found to be significantly different 
between hepatic compensation and decompensation. 
Free fatty acid (FFA) species have been markedly 
different in HCC groups compared with control groups, 
but study results have been conflicting, perhaps due to 
patient heterogeneity regarding age, gender, ethnicity, 
diets and existing comorbidities[91,93-95,97,98,102]. The Euro­
pean Prospective Investigation into Cancer and Nutrition 
study additionally described an extensive interaction 
between HCC and modifiable lifestyle factors in a large 
European cohort[85], and FFA levels have been linked to 
the severity of liver disease and disease etiology[103]. FFA 
species that have been identified include FFA C16:0, 
C18:0, C20:4 and C24:1. 

Metabolites of energy production were broadly altered 
in HCC, particularly concerning products of beta-oxidation 
and other alternative metabolic pathways[49,82-84]. This 
may point to Warburg’s phenomenon in HCC tumo­

Table 2  Diagnostic performance of serum markers of 
hepatocellular carcinoma

Serum marker Sensitivity Specificity

AFP 39%-65% 79%-94%
AFP-L3 75%-97% 90%-92%
DCP 48%-62% 81%-98%
AFU 82% 71%-85%
AFP-L3 + DCP 85% 98%

AFP: Alpha fetoprotein; AFP-L3: Lens culinaris agglutinin-reactive AFP; 
DCP: Des-gamma-carboxy prothrombin; AFU: Alpha-l-fucosidase.
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rigenesis, where a shift of oxidative glucose metabolism 
to anaerobic glycolysis takes place to contribute a 
higher rate of energy production in tumor cells[8]. The 
increase in very low density lipoprotein, as seen in Gao 
et al[49] study, may explain the global lipid mobilization 
for the lipolytic pathway. Studies have also identified 
a rise in ketone bodies, such as acetone and beta-
hydroxybutyrate, which are formed as by-products of 
beta-oxidation[84]. Furthermore, components of the 
normal TCA cycle such as 2-oxoglutarate, succinate and 
glycerol also were significantly altered in HCC groups 
against controls[49,102,103]. The elevation of 2-oxoglutarate 
may be a consequence from a decreased mitochondrial 
respiration. Overall, the observed effect of reduced TCA, 
increased beta-oxidation and increased ketone bodies 
suggest a heightened alternative metabolic response in 
tumorigenesis.

Elevated levels of serum bile acids, such as glyco­
chenodeoxycholic acid, glycocholic acid, deoxycholic 
acid and cholic acid, have long been recognized in many 
hepatobiliary diseases[104]. A study by Chen et al[105] 
identified cirrhotic patients have significantly higher 
levels of bile acids than those without. Interestingly, 
levels are significantly different even when comparing 
compensated against decompensated cirrhosis. It is no 
surprise that HCC metabonomic studies have identified 
elevated bile acids in HCC patients when compared 
to the healthy population[91-94,96-98,102]. Bile acids may 
have a role in tumorigenesis, as reports have described 
their involvement in glucidic metabolism and acting as 
signaling molecules[106,107]. However, the studies have not 
controlled for possible confounding factors such as the 
compensation/decompensation profile, or the prandial 
state of patients, where certain bile acids are elevated 
after food intake[108], and therefore, bile acids would not 
be suitable HCC biomarkers until specific studies are 
performed to address this issue. 

URINARY MARKERS OF HCC
For a urinary biomarker to be widely applicable three 
central attributes are necessary. First, the biomarker, 
if produced pre-renally, needs to be small enough 
and of the correct ionic charge to be filtered by the 
renal glomerulus and not re-absorbed by the tubules. 
Therefore, it has to be roughly less than 20 kDa in 
atomic weight. Second, the marker should be specific to 
the cancer in question and not secondary to the effects 
of cancer on general physiology. Finally, the marker 
should be secreted in adequate amounts for accurate, 
repeatable detection in early disease. Large, complex 
proteins are unlikely to enter the urinary stream, so are 
not candidates for urinary biomarkers. 

Nucleosides
Studies in the 1970s observed elevated levels of the 
methylated purines 7-methylguanine, 1-methylguanine, 
N-dimethylguanine, 1-methylhypoxanthine and adenine 
in the urine of patients with HCC. In 1976, it was found 

that urine levels of cyclic guanosine 3’:5’ monophosphate 
(cGMP) were elevated in rats with transplanted liver 
and renal tumors[109]. In 1982, Dusheiko et al[110], found 
parallels in human studies, observing elevated urinary 
cGMP levels in patients with HCC. In the same study, 
cGMP was also elevated in the urine of patients with 
liver disease and other non-HCC tumors, reducing the 
specificity of the marker considerably. 

In 1986, Tamura et al[111] observed that urinary levels 
of pseudouridine, a C-glycoside isomer of the nucleoside 
uridine, to be elevated in patients with HCC. When 
combined with serum AFP, sensitivity for HCC detection 
was 83%. Disappointingly, this marker was also non-
specific and found to be similarly elevated in patients with 
other malignancies such as non-Hodgkin’s lymphoma. 
In a Taiwanese patient study, it was observed that the 
urinary nucleosides adenosine, cytidine and inosine were 
elevated in patients with HCC[112]. When combined with 
serum AFP, sensitivity for tumor diagnosis was 80%. The 
study was flawed in that controls consisted of healthy 
patients with no liver disease and ideally the finding 
should have been confirmed in comparison to a group of 
patients with cirrhosis.  

TGFα and β
TGFα and β have both been detected in the urine of 
patients with HCC. The first report was from 1990, 
observing elevated TGFα levels in urine[113]. In 1991, 
a TGF-related protein was found in HCC patient urine 
and this was confirmed as TGFβ1 in 1997 by the same 
group[114,115]. In these studies, TGFβ1 correlated with 
prognosis and survival. A functional link was attractive 
as TGFs are known to stimulate non-transformed cells 
reversibly to grow as colonies in vitro. 

Neopterin
In 1998, a study performed in Japan found neopterin, 
a protein now known to be released from macrophages 
following inflammatory stimulation, to be elevated in 
the urine of patients with advanced HCC[116,117]. Similar 
to other potential markers, neopterin has since been 
shown to be elevated in a number of malignancies and 
pro-inflammatory conditions such as human immuno­
deficiency virus related disease, reducing its validity as a 
specific marker for HCC[118]. 

Polyamines
The polyamines, organic compounds containing two or 
more amine groups, include putrescine, spermine, and 
spermidine. Their exact cellular role is unclear but they 
are required for cellular proliferation. Putrescine acts on 
S-adenosylmethionine (SAMe), a methylating molecule, 
to produce spermine which in turn acts on further SAMe 
molecules to produce spermidine[119]. Antoniello et al[120] 
reported increased urinary levels of free and acetylated 
polyamines using HCC patients compared to healthy 
controls and patients with cirrhosis, although the sensi­
tivity of these markers was found not to be high enough 
for early tumor detection.  
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Urinary trypsin inhibitor
Urinary trypsin inhibitor (UTI) is a 25 kDa protein 
thought to be produced by hepatocytes. In 2004, an 
enzyme-linked immunosorbent assay-based study 
observed that urinary UTI was elevated in patients 
with HCC, albeit not significantly when compared to 
patients with cirrhosis[121]. Follow-up studies have found 
correlations with severity of liver disease and patient 
prognosis in general, but not specifically with HCC[122]. 

Soluble urinary metabolites
Recently, Chen et al[102] analyzed the serum and urine 
from 82 patients with HCC and compared these profiles 
to patients with benign liver tumors and healthy volun­
teers. Forty three serum and 31 urine metabolites were 
differentially present in samples of patients with HCC. 
These included bile acids, free fatty acids, inosine and 
histidine.  

Wu et al[103] reported a urinary GC-MS study of 20 
HCC patients which identified a marker panel of 18 
metabolites discriminating HCC and healthy Chinese 
controls. This panel included octanedioic acid, glycine 
and hypoxanthine. In the same year, Chen et al[123] 
utilized mass spectroscopy techniques with hydrophilic 
interaction chromatography and reverse phase liquid 
chromatography in a comparison of 21 urine samples 
of patients with HCC to 24 healthy volunteer samples. 
In this set, hypoxanthine, creatinine, betaine, carnitine, 
acetylcarnitine, leucylproline and phenylacetylglutamine 

were altered between groups. 
The most recent studies of urinary HCC metabolites 

to date have been performed within the African popu­
lations in Nigeria, Egypt and Gambia[124-126]. These 
studies compared the profiles of HCC with cohorts with 
cirrhosis without HCC, and healthy control, allowing 
further differentiation and insight into the metabolic 
difference in HCC tumorigenesis (Figure 5). Urinary 
creatinine was lowered in all three African cohorts. 
Urinary creatinine excretion is has been associated with 
muscle mass[127], and the results seen in the studies may 
reflect cancer cachexia rather than a specific marker for 
HCC. 

Urinary carnitine levels were also elevated in HCC 
compared to cirrhosis in all three African groups. Carni­
tine is a hydrophilic compound, mainly absorbed from the 
diet and in part synthesized by the body. It is an essential 
compound for mitochondrial transport of long-chain fatty 
acids from the cytosol for beta-oxidation. Well-functioning 
kidneys efficiently reabsorb carnitine, a high urinary 
level inferring excess carnitine ingestion, biosynthesis 
or poor reabsorption. Increased urinary acylcarnitines 
have previously been reported in specific FFA oxidation 
disturbances and after intense exercise[128]. In the context 
of HCC, Shariff et al[125] hypothesized its elevation may be 
explained by increased metabolic activity and high cell-
turnover, causing carnitine overproduction to fuel beta-
oxidation and rapid energy production[127].  

Urinary creatine levels were significantly elevated in 
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Figure 5  Univariate analysis of discriminatory urinary variables from an Egyptian cohort, comparing values from healthy controls, cirrhosis group and 
hepatocellular carcinoma group. Discriminatory variable A: Creatine; B: Trimethylamine N-oxide (TMAO); C: Glycine; D: Carnitine. Adapted from Shariff et al[125]. 
HCC: Hepatocellular carcinoma.
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the Egyptian cohort with HCC, but were non-significantly 
elevated in the Nigerian compared to the respective 
cirrhosis groups[124,125]. Creatine is a nitrogenous organic 
acid, synthesized mainly in the liver by its constituent 
parts arginine, glycine and methionine. It has a direct 
function in cellular energy transport, interacting directly 
with ATP to produce phosphocreatine and adenosine 
diphosphate. It is likely that the heightened cell turnover 
increases cellular energy transport demand, and sub­
sequently raises creatine levels. 

Dimethylglycine (DMG), choline, and trimethylamine-
N-oxide (TMAO) are metabolites involved in choline 
intermediary metabolism. Urinary DMG and choline were 
elevated but a lower concentration of TMAO was noted 
in the Gambian population. Overexpression of choline 
has been well established in a series of different tumors. 
TMAO is typically formed by bacterial degradation of 
choline, it is likely that this alteration reflects dysregu­
lation of intestinal microbiota, as suggested by Ladep et 
al[126]. The metabolic alterations that have been observed 
may be explained by the Warburg phenomenon and its 
preferential glucose metabolism via anaerobic glycolysis. 

Urinary glycine levels were reduced in the Egyptian 
population, but have been unreported in the other 
studies[125]. Glycine’s normal cell function involves 
the methylation of DNA. Its reduction in HCC may be 
explained by the widely noted phenomenon of hypo­
methylation within the tumorigenic process. In addition, 
the Nigerian and Egyptian studies have seen an increase 
in creatine, as mentioned above. Glycine is a molecular 
constituent of creatine, which is upregulated in the 
high cell turnover environment of HCC, which may also 
explain the decline in glycine observed from the Egyptian 
study[124,125]. 

CONCLUSION
This review provides an overview of HCC pathogenesis 
and from it, a large selection of potential biomarkers 
that correlate to the complex molecular and metabolic 
interaction in its tumorigenesis. HCC is a significant 
global health issue, which primarily affects countries 
where there is an infrastructural limitation on community-
based surveillance for early disease, and therapeutic 
options in later stages of tumor presentation. Various 
diagnostic techniques that have been successfully utilized 
in developed countries, such as US surveillance, cannot 
be introduced in resource-limited regions where their 
application is fundamentally unsuitable. In the current 
absence of a simple and effective diagnostic investigation 
in those regions, we highlight the need for research 
progression in designing clinical diagnostic techniques 
that may be cheaply and effectively administered. In 
particular, we emphasize the potential of metabolomics 
identification of candidate metabolites through the 
development of a simple urine dipstick, which may be 
easily performed even in the lowest-income settings.  

In considering biomarker application, there must be 
a careful and a realistic consideration as to the hetero­

geneous metabolic profiles of varying ethnic groups. It 
is unlikely that a single panel of metabolites that have 
adequate sensitivity and specificity in the developed 
population would be appropriate for the developing 
world population. Previous research has shown that 
there are clear racial differences in the diagnostic 
value of AFP, where a minority of Asian, Eurapoid, and 
Hispanic patients with HCV-related HCC had a normal 
AFP (18%), close to half the African American patients 
had a normal AFP level (43%), and furthermore, there 
was an observed difference between underlying etiology 
of liver disease, where HCV-related HCC had a stronger 
association with raised AFP, compared to HBV-related 
HCC[129]. The clear etiological, dietary, genetic and 
environmental factors that differ between populations 
suggest the need for specific metabolomic studies, or at 
least validation studies, in the very regions of the world 
where better diagnostics or screening tools are required. 

To address the pressing issue of identifying novel 
biomarkers that are sensitive, practically applied, and 
ethnically specific, the most recent African urinary studies 
may present the most relevant biomarkers, which can 
be translated to a simple urine dipstick test[124-126]. The 
significant metabolites include urinary creatine, carnitine 
and creatinine, among others. Again, these metabolites 
reflect the molecular changes that happen as part of 
Warburg’s hypothesis of altered energy metabolism. The 
close fit of the results to the hypothesis should encourage 
researchers to study the molecular pathway closer in 
relation to HCC. 

In conclusion, success in the field of proteomics 
and metabonomics will ultimately depend on its clinical 
application, and this requires a greater emphasis on 
validation-based experiments of early HCC identification. 
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