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Abstract 

Background: Asymmetric dimethylarginine (ADMA) is an endogenous competitive inhibitor 

of nitric oxide synthase (NOS) and regulates the synthesis of nitric oxide (NO) in vivo.  

ADMA is metabolised by the enzymes dimethylarginine dimethylaminohydrolase 1 and 2 

(DDAH 1 and 2), which have differing tissue distributions, with DDAH2 the only isoform 

found in immune cells.  These studies tested the hypothesis that DDAH2 plays an important 

role in regulating the immune response to infection by modulating ADMA concentrations. 

Methods: In order to test this hypothesis, a series of experiments explored the regulation of 

murine and human monocyte DDAH2 in response to pathophysiological stressors.  The 

impact of global and macrophage-specific DDAH2 knockout on the haemodynamic and 

immune response to sepsis and the resulting association with mortality was determined using 

transgenic animal models.  Finally, the role of DDAH2 in human septic shock was 

determined by analysing plasma and DNA from patients enrolled in a randomised controlled 

trial of vasopressor therapy. 

Results: In isolated monocytes, DDAH2 was found to be regulated by both Interferon-γ and 

hypoxia, leading to reduced intracellular ADMA concentrations and exaggerated NO 

synthesis by immune cells.  Both global and macrophage-specific knockout of DDAH2 led to 

significant impairment of immune cell function and increased mortality following caecal 

ligation and puncture in animal models. Increased plasma ADMA and SDMA levels were 

shown to be associated with risk of death in 215 patients with septic shock.  However, when 

data were corrected for methylarginine clearance, ADMA was also found to play a protective 

role.  In this population, the DDAH2 single nucleotide polymorphism rs805305 was 

associated with improved survival and increased ADMA:SDMA ratio. 

Conclusions: Considered as a whole, these data demonstrate that DDAH2 plays an important 

role in regulating the immune response to sepsis and the risk of death in human septic shock.   
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1 Introduction 

This introductory chapter will describe the background surrounding this study and discuss the 

clinical context for which this work is relevant.  The synthesis and regulation of nitric oxide 

(NO) will first be described with particular emphasis on the role of endogenous inhibitors of 

NO synthesis in human health and disease.  This will be followed by a discussion on the 

clinical relevance of sepsis and on how key features of the innate immune response may 

contribute towards disease pathophysiology.  Finally, this chapter will describe the existing 

literature which suggests a relationship between endogenous inhibitors of NO synthesis and 

septic syndrome. 

1.1 Nitric Oxide Signalling, Synthesis and Regulation 

NO is a protean molecule with diverse physiological roles across numerous tissue types.  

Whilst only formally identified in 1987[1], its actions have been recognised and exploited 

therapeutically for over a century.  Following the identification of the canonical signalling 

pathway whereby NO activates soluble guanylate cyclase (sGC) to catalyse the conversion of 

guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP)[2, 3], the role of 

NO in both physiological and pathological conditions has been extensively studied. 

1.1.1 Nitric Oxide Signalling 

NO is a heteronuclear diatomic molecule that is a colourless gas in its natural form.  In 

humans, it has an extremely short half-life due to the presence of an unpaired electron[4], 

being rapidly metabolised in the body primarily to nitrate or nitrite, which are relatively 

stable and make up the majority of NO metabolites[5].  

1.1.2 Nitric Oxide Synthesis 

The Nitric Oxide Synthase (NOS) enzyme family catalyses the conversion of L-arginine to 

NO and L-citrulline in vivo.  There are three NOS isoforms, endothelial (eNOS, NOS-3), 

neuronal (nNOS, NOS-1) and inducible (iNOS, NOS-2) (Figure 1).  The synthesis of NO 

from any of the NOS isoforms is dependent on a number of co-factors, these include[6]: 

 Nicotinamide-adenine-dinucleotide phosphate (NADPH) 

 Flavin adenine dinucleotide (FAD) 

 Flavin mononucleotide (FMN) 

 Tetrahydrobiopterin (BH4)  

 Calmodulin 

 Oxygen 
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eNOS was first identified in the vascular endothelium, but its activity has subsequently been 

demonstrated in a variety of tissues.  It is a constitutive enzyme that produces NO in 

picomolar concentrations under normal conditions[5].  It is calcium-dependent and acts to 

stimulate the relaxation of vascular smooth muscle in addition to limiting platelet adhesion 

and leukocyte activation at the endothelium[5].  Regulation is through interaction with a wide 

range of stimuli including protein kinase A, 5' AMP-activated protein kinase (AMPK) and 

Heat Shock Proteins(HSP)[7]. 

nNOS, as the name suggests was first identified in brain tissue, but it is also found in the 

kidney[8].  Like eNOS it is a calcium-dependent constitutive enzyme producing low 

concentrations of NO in its regulatory role. 

iNOS was first identified in activated macrophages, however it has been subsequently shown 

to be present as a constitutive isoform in a number of tissues including renal epithelia, 

chondrocytes and hepatocytes[6]. By contrast to the other isoforms, iNOS is able to 

dramatically upregulate NO production and can synthesise NO at concentrations a thousand 

fold higher than either eNOS or iNOS[9].  A broad range of stimuli can provoke the 

transcription and activation of iNOS including the bacterial endotoxin lipopolysaccharide 

(LPS), inflammatory cytokines such as interleukin 1β (IL-1β), tumour necrosis factor α 

(TNF-α) and Interferon γ (IFN-γ) and other transcription factors such as hypoxia inducible 

factor 1 (HIF-1)[10] .   
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Figure 1: Nitric oxide synthesis.   

Nitric oxide synthase isoforms (n-, i-, e-NOS, neuronal-, inducible, endothelial-nitric oxide 

synthase) catalyse the synthesis of Nitric Oxide (NO) and L-citrulline from L-arginine.  The 

reaction requires the binding of calmodulin protein five co-factors: (NADPH), nicotinamide-

adenine-dinucleotide phosphate, oxygen (O2), flavin adenine dinucleotide (FAD), flavin 

mononucleotide (FMN) and tetrahydrobiopterin (BH4). 

1.1.3 Endogenous Regulation of Nitric Oxide Synthesis 

NO synthesis in vivo is a complex process which is tightly regulated at every stage from 

enzyme co-localisation to substrate and co-factor availability[11].  The discovery of a family 

of arginine derivatives, known as the methylarginines (MA), which act as competitive 

inhibitors and regulate the binding of L-arginine to the active site of the NOS enzyme is one 

of few examples where an enzyme system is regulated by endogenous competitive 

inhibition[12](Figure 2). 
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Figure 2:Endogenous regulation of nitric oxide synthesis.   

Protein arginine methyl-transferase enzymes (PRMTs) methylate arginine residues within 

proteins. Arginine and methylarginines are released during proteolysis and are transferred 

intracellularly by the y+ cationic amino acid transporter family (not shown) and act either as a 

substrate or inhibitor of nitric oxide synthase enzymes respectively (represented by NOS in the 

figure). 80% of synthesises asymmetric dimethylarginine (ADMA) and monomethyl arginine 

(L-NMMA) (not shown) are hydrolysed by dimethlyarginine dimethlyaminohydroxylases 1 and 

2 (represented by DDAH in the figure) to L-citrulline and dimethylamine (DMA), thus 

regulating NOS blockade. The remaining 20% is excreted unchanged in the urine. 

 

1.2 Methylarginines 

1.2.1.1 Methylarginine synthesis 

Methylarginines are synthesised by the methylation of residues of arginine that lie within 

certain consensus sites within some proteins a process that is regulated by a family of 

enzymes known as the protein arginine methyltransferases (PRMTs).  Three MA subtypes 

have been identified[13].   Free methylarginines are released upon proteolysis. (Figure 3): 

 NG, NG-dimethyl-L-arginine (asymmetric dimethylarginine; ADMA) 

 NG, NG’-dimethyl-L-arginine (symmetric dimethylarginine; SDMA) 

 NG-monomethyl-L-arginine (monomethylarginine; L-NMMA) 
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Figure 3: L-arginine and the methylarginines 

Representative image of the structure of L-arginine and the methylarginines, L-NMMA: NG-

monomethyl-L-arginine (monomethylarginine), SDMA: NG, NG’-dimethyl-L-arginine (symmetric 

dimethylarginine) and ADMA: NG, NG-dimethyl-L-arginine (asymmetric dimethylarginine). 

 

 

1.2.1.2 Methylarginine transport and action 

MAs are transported between the plasma and tissue compartments via the y+ cationic amino 

acid transporter (CAT) family which are also responsible for L-arginine transfer[14].  Since 

both substrate and endogenous inhibitor move into the cell via the same transporter, it has 

been postulated that this is a further indirect mechanism by which MAs can reduce NO 

synthesis[15].  The relationship between plasma and intracellular concentrations of MA is not 

directly proportional, therefore cellular and plasma MA levels may vary significantly[16, 17]. 

This in turn means that the correlation between intracellular L-arginine and MA levels, useful 

in determining NOS activity, may not be accurately depicted using plasma measurements.  

Caution must therefore be employed when interpreting the results of studies associating 

plasma MA concentrations with DDAH activity and/or NO regulation. 

Within the cell, both ADMA and L-NMMA are able to act as competitive inhibitors of NO 

synthesis by regulating the binding of L-arginine to the active site of the NOS enzyme.  L-

NMMA is present at only around ten percent of the concentration of ADMA and so plays a 

lesser role in the regulation of NOS activity in spite of being equipotent[18].  By contrast, 

SDMA does not compete with L-arginine, has no apparent impact on NOS activity and has 

historically been considered inert.  However, there is emerging evidence to suggest that 

SDMA may have inflammatory regulatory activity outside of NOS regulation and NO 

synthesis[19]. 
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1.2.1.3 Methylarginine handling 

MAs are either enzymatically degraded or excreted from the body via the renal tract.  There 

are three enzymes that are able to metabolise MAs in vivo. They are the two 

dimethylarginine dimethylaminohydroxylases (DDAH1 and DDAH2), and alanine-

glycoxylate (AGXT2), which hydrolyse or deaminate their targets, respectively.  

Approximately 80% of ADMA and L-NMMA are metabolised to dimethylarginine (DMA) 

and L-citrulline, whilst the remaining 20% is excreted via the kidney[20]. SDMA is not 

metabolised by DDAH and until recently was presumed to be cleared entirely by the kidney.  

However, recent work has led to the discovery of AGXT2 which is able to metabolise all 

three MAs[21], although only a modest amount of ADMA and L-NMMA are metabolised in 

this way.  AGXT2 is found in both the liver and kidney[22].   

1.2.2 Dimethylarginine Dimethylaminohydroxylases 

Often found in close apposition to the NOS isoforms, DDAH1 and DDAH2 have differing 

tissue distributions that may reflect diverging functional roles.   

1.2.2.1 Dimethylarginine dimethylaminohydrolase 1 

Located on chromosome 1 at the p22 position, DDAH1 has a widespread tissue distribution.  

In addition to the vasculature[23], it is readily identified in tissue homogenates from the liver, 

kidney, brain, skeletal muscle and pancreas[24].  Small amounts of DDAH1 have also been 

found in the pulmonary vasculature[25] and in placental[26] tissues. 

Recombinant human DDAH1 has been shown to have high affinity for MAs with results 

showing Km values of 53.6 and 68.7 µM and Vmax values of 154 to 356 nmol/mg/min for 

ADMA and L-NMMA, respectively[27, 28].  Short interfering RNA (siRNA)-mediated 

knockdown and overexpression of DDAH1 in endothelial cells have also both been shown to 

directly affect MA turnover[29]. 

 

1.2.2.2 Dimethylarginine dimethylaminohydrolase 2 

The tissue distribution of DDAH2 differs markedly from that of DDAH1.  Whilst both 

isoforms are found in the vasculature, liver and kidney, DDAH2 predominates in the placenta 

and is not found in the central nervous system.  It is also the only isoform found in 

cardiomyocytes and in immune tissues[23, 24, 30].  The gene for DDAH2 is found at the 

p21.3 position of chromosome 6.  This position lies within the major histocompatibility 

complex (MHC) III region of the chromosome and is closely associated with a range of genes 

encoding for inflammatory mediators such as TNF-α and heat shock proteins (HSP)[23].  

This, coupled with the tissue distribution of DDAH2, has led to the suggestion that it may 

play an important role in the response to inflammatory or immune mediated conditions. 
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In contrast with DDAH1, the measurement of DDAH2 activity has proven to be challenging.  

This is in part due to difficulties in separating the actions of DDAH1 and DDAH2 when MA 

turnover is measured in tissues in which both isoforms are present. Purification of the 

functional DDAH2 protein has also proven difficult[31].  These issues currently render the 

direct comparison of the activities of the two DDAH enzymes impossible.  However, siRNA-

mediated knockout of DDAH2 in endothelial cells has been shown to have a similar impact 

on ADMA and NO synthesis as that observed in experiments on DDAH1[29].  Interestingly, 

when isolated aortic tissue from DDAH2 knockout animals was incubated overnight, the 

amount of ADMA that accumulated in the culture medium was significantly elevated 

compared to control tissues[30]. 

1.3 Methylarginine dysregulation and disease 

This section will consider the existing literature concerning MA dysregulation and its role in 

disease with a particular focus on animal models of DDAH and on human association and 

genetic studies.  Sepsis will be considered separately later in the chapter. 

1.3.1 Association Studies 

There are currently over one hundred publications that describe clinical studies on a variety 

of conditions where an association between plasma concentrations of MAs, particularly 

ADMA, and disease presence, progression or outcome has been observed.  Many of the 

aforementioned conditions have significant cardiovascular or inflammatory involvement and 

thus the identification of diseases in which ADMA plays a mechanistic role, instead of acting 

as a biomarker of inflammatory stress, has proven to be challenging. Some of the risk factors 

and disease associations are summarised below (Table 1). 
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Association with 

cardiovascular risk 

factors 

Disease Association with 

plasma concentrations 

Association with Cardiovascular or 

mortality outcome 

 Higher ADMA levels  

Age Renal failure Patients with coronary artery 

disease 

Sex Peripheral vascular disease Patients with diabetes mellitus 

Lipids Pulmonary hypertension Patients with diabetic nephropathy 

Tobacco Atherosclerotic coronary 

disease 

Patients with peripheral vascular 

disease 

Blood pressure Diabetes mellitus Patients with chronic kidney disease 

Inflammation Preeclampsia Patients with pulmonary 

hypertension 

Homocysteine Alzheimer's disease  

Obesity Connective tissue disease  

Diabetes mellitus Liver disease  

Kidney function Hyperthyroidism  

 Hypothyroidism  

 Stroke  

 Sickle cell disease  

 Alzheimer disease  

  Lower ADMA levels  

  Diabetes mellitus  

Table 1: Association studies of plasma ADMA with cardiovascular risk factors, disease 

progression and outcome.   

Summary table of associations studies of plasma methylarginines.  The first column represents 

studies associating plasma ADMA with specific risk factors for cardiovascular disease, the 

second, progression of specific diseases and the third, outcomes in cardiovascular disease. 
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1.3.2 Genetic Studies 

A number of clinical studies have looked for a relationship between single nucleotide 

polymorphisms (SNP) within the genes that encode for the regulatory enzymes DDAH1, 

DDAH2 and AGXT2, altered MA levels and/or disease.  There is some conflicting evidence 

in this area, with some authors observing no significant correlation between circulatory MA 

levels and previously published SNPs[32]. However, there are a number of published studies 

that have shown not only that SNPs of the DDAH or AGXT2 genes can be associated with 

altered plasma MA concentrations in a variety of disease states, but that they also 

independently correlate with outcome in a number of conditions (summarised below in Table 

2). 
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Gene Associations 

DDAH1 

rs1146381 Plasma ADMA level[33] 

rs233112 Plasma ADMA level[33] 

rs233128 Plasma ADMA level[33] 

rs11161614 Plasma ADMA level[33] 

rs997251 Plasma ADMA level 

rs1241321 Progression of Type 2 Diabetes and outcome[34] 

rs17384213 Decline in Glomerular filtration rate, ADMA level, DDAH1 mRNA[33] 

rs1554597 Independent determinant of ADMA in Diabetes Mellitus[35] 

DDAH2 

rs805304 

 

Associated with:  

renal function 

T2DM[36] 

Protective in MI[37] 

rs805305 Associated with: 

1. Intra-cerebral haemorrhage[38] 

2. Paediatric/Adult shock[39, 40] 

3.Vasopressor requirement following cardiac surgery[41] 

rs138134716 The first functional SNP demonstrated [42] 

rs9267551  

 

Associated with  

Insulin sensitivity[43] 

CKD[44] 

rs805923 Associated with circulating ADMA levels 

rs2272592  Associated with T2D 

rs3131383 -871 Polymorphism – functionally active.[42]  

AGXT2 

rs37369 Plasma SDMA level and Heart rate variability[45] 

rs16899974 Plasma SDMA level and Heart rate variability[45] 

rs37369 Functional variant Associated with elevation of blood pressure in genome wide 

association studies[21] 

rs28305 Independent determinant of SDMA in Diabetes Mellitus [35] 

Table 2: Summary of the existing literature which shows correlation between SNPs found in the 

genes that encode for methylarginine handling enzymes, and methylarginine MA concentrations 

and/or human disease. 
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1.3.3 Animal Models of DDAH in Health and Disease 

The development of transgenic animal models has enabled the effects of knockout or 

overexpression of the MA handling enzymes on basal function and disease response to be 

further explored.  In conjunction with transient short interfering RNA (siRNA) techniques, it 

has been possible to gain considerable mechanistic insight into the role of these enzymes in 

health and disease.  In addition, evidence has also begun to emerge suggesting potentially 

important actions for ADMA through mechanisms other than the regulation of NOS activity.  

However, it is important to exercise caution when analysing these data as assuming a direct 

association between murine outcome and human disease may be ill considered in light of 

recent work highlighting the differences between rodents and humans in response to similar 

pathological stimuli[46]. 

1.3.3.1 Dimethylarginine dimethylaminohydrolase 1 

The effects of the overexpression or knockdown of DDAH1 have been examined in a number 

of studies using heterozygote[47] or homozygote[48] murine models and siRNA-mediated 

techniques. In summary, global knockout of DDAH1 has been shown to produce a 

hypertensive phenotype in rodent models at baseline, with overexpression resulting in a 

reduction in blood pressure.  Table 3 below summarises these findings. 

Pharmacological inhibition and genetic knockout of DDAH1 has been shown to be protective 

in a bleomycin model of pulmonary fibrosis. The same study also found that overexpression 

of DDAH1 led to increased fibrotic change within the lung parenchyma of the animal 

model[49].   Proximal tubular knockout of DDAH1 has been shown to be protective against 

renal fibrosis in both unilateral ureteric obstruction and folate models of chronic kidney 

injury[8].  Endothelial specific knockout of DDAH1 had no impact on vascular function or 

systemic ADMA concentrations, but profoundly impaired angiogenesis[50] in another study 

which refuted earlier work suggesting endothelial knockout completely removed DDAH1 

from all tissues[51]. An adipocyte specific model of DDAH1 knockout revealed an increase 

in cellular ADMA levels which directly up-regulated the mammalian target of rapamycin 

(MTOR) and caused adipocyte hypertrophy independently of NO regulation[52]. 
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DDAH1 Reduction 

Approach Species Plasma ADMA 

action  

Effect 

Constitutive exon 1 

haploinsufficiency [47] 
Mouse  Increased 

Increased blood pressure and 

reduced end diastolic volume 

Cre/LoxP exon 4 null [53] Mouse  Increased Increased blood pressure 

Endothelium targeted exon 4 

null [51] 
Mouse  Increased 

Increased blood pressure and 

reduced end diastolic volume 

siRNA[54] Rat  Increased 
No change in blood pressure 

or end diastolic volume 

DDAH1 Overexpression 

Approach Species Plasma ADMA 

action 

Effect 

Transgenic overexpression [55] Mouse  Decreased Reduced blood pressure 

Adenoviral transfection [56] Rat  Decreased Reduced blood pressure 

Table 3: Summary of existing approaches to modulating DDAH1 protein expression and the 

observed impact on methylarginine levels and haemodynamics in the rodent resting state 

(Adapted from  [31, 32]). 

 

Mice exposed to hypoxia displayed significant downregulation of DDAH1 within their 

pulmonary vasculature. This was shown to be mediated by the micro-RNA mir-21 and 

provided a mechanism for hypoxia-induced pulmonary hypertension.[25] . 

Interestingly, the pharmacological inhibition of DDAH1 with the highly selective competitive 

antagonist L-291 resulted in significantly reduced evidence of pain in animals exposed to a 

chronic pain model[57]. 

1.3.3.2 Dimethylarginine dimethylaminohydrolase 2 

Global knockout of DDAH2 utilising a high throughput gene trapping strategy has been 

utilised to explore the impact of DDAH2 deletion in murine models.  Under basal conditions, 

mice deficient in DDAH2 are developmentally and phenotypically normal[58].  When 

considered over the course of a twenty four hour period under continuous telemetry, no 

significant differences in haemodynamic indices can be observed when compared to litter 

mate controls.  However, during periods of elevated activity, DDAH2 knockout mice display 

a modestly elevated blood pressure[30].  Overexpression of DDAH2 in a murine model led to 

a reduction in systemic ADMA concentrations, but no significant impact on phenotype or 

haemodynamics, although this study did not include continuous awake haemodynamic 

monitoring[59]. 
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Less work has been performed on the manipulation of DDAH2 in animal models of disease. 

However, when human DDAH2 is virally transfected into a rabbit model of atherosclerosis, 

animals display significantly reduced disease progression when compared to controls[60].  

This finding has been confirmed in a murine model of vascular injury using angiotensin II, 

where mice overexpressing DDAH2 displayed significantly less hypertension and 

progression of vascular injury[59]. 

1.4 Sepsis 

Sepsis arises when, in response to an infective stimulus, the immune response, designed to 

eradicate the pathogen becomes dysregulated.  This leads to systemic symptoms and organ 

dysfunction.  It is this process of overwhelming systemic compromise in response to 

infection that defines septic shock. 

1.4.1 Systemic Inflammatory Response Syndrome 

The systemic inflammatory response syndrome (SIRS) scale is comprised of four indices 

(three physiological and one haematological) that describe a patient’s physiological response 

to an undefined pathological insult.  Meeting any two or more of the criteria defines the 

patient as having SIRS[61].  The scale is neither highly sensitive nor specific for identifying 

patients with infection as SIRS may arise as a consequence of a range of disease states 

including one or more of the following: trauma, surgery, haemorrhage, infection, 

inflammation or ischaemia[62]. It was developed by the Society of Critical Care Medicine in 

the United States as a tool to aid the early identification of patients with life threatening 

infections[61]. 

The SIRS criteria are: 

 Pyrexia of more than 38°C or a core temperature of less than 36°C  

 Heart rate higher 90 beats per minute 

 Respiratory rate of more than 20 breaths per minute or arterial carbon dioxide tension 

of less than 4.2kPa 

 Deranged white blood cell count (>12,000/µL or < 4,000/µL or >10% immature 

forms) 

1.4.2 Sepsis 

Sepsis is the clinical syndrome that arises when the body mounts a systemic inflammatory 

response to the invasion of a pathogenic microbe.  This organism may be bacterial, viral or 

fungal, although the majority of cases of sepsis are bacterial in origin.  The term sepsis, 

enables the differentiation of inflammatory conditions caused by an infection from those 

which arise as a consequence of  non-infective disease states that provoke a significant 

inflammatory response[63].  As such, sepsis is defined as the presence of two or more of the 

SIRS criteria plus the presence of confirmed or suspected infection[61]. 
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1.4.3 Severe sepsis and septic shock 

Severe sepsis is defined as sepsis plus organ dysfunction.  The term, organ dysfunction, 

includes a wide range of clinical features and biochemical indices, each designed to 

demonstrate impaired function of one or more of the organ systems.  The following are 

recognised features of severe sepsis[64]: 

 Sepsis-induced hypotension  

 Lactate above upper limits of laboratory normal  

 Urine output < 0.5mL/kg/hr for more than 2 hrs despite adequate fluid resuscitation  

 Acute lung injury with PaO2/FiO2 < 250 in the absence of pneumonia as infection 

source  

 Acute lung injury with PaO2/FiO2 < 200 in the presence of pneumonia as infection 

source  

 Creatinine > 176.8 µmol/L 

 Bilirubin > 34.2 µmol/L 

 Platelet count < 100,000 µL  

 Coagulopathy (international normalized ratio (INR) > 1.5) 

Septic shock arises when organ dysfunction persists in spite of adequate intravenous fluid 

resuscitation and antimicrobial therapy[64]. 

1.4.4 The Management of Sepsis 

The management of sepsis has evolved considerably over the last 20 years with trends in 

supportive care changing significantly over this time.  Improvements in outcomes have been 

shown with changes in the delivery of supportive therapies but to date, only two agents have 

been licensed specifically for the treatment of sepsis and both of these have been withdrawn 

amid fears regarding their efficacy and potential for harm[65-67]. 

1.4.4.1 Existing therapies in sepsis 

Whilst antibiotic therapy is usually effective at eradicating bacteria, the host response to 

infection drives the process of organ dysfunction that ultimately leads to death. In particular, 

the profound dilation of blood vessels which leads to a failure of organ perfusion is a 

significant mechanism underlying mortality in septic patients.  The mainstays of supportive 

therapy in severe sepsis are oxygen, intravenous fluids and vasopressors.  The best available 

guidance for the management of patients with sepsis calls for the early administration of 

fluids and oxygen therapy, followed by the addition of vasoactive agents in those patients 

who do not respond[68]. However, there is considerable evidence that both of these 

therapeutic approaches confer their own morbidity.   

Excess fluid administration is strongly associated with harmful side effects including 

worsened lung function[69].   The nature of the intravenous fluids that are used has also been 

shown to have harmful impacts on renal function[70, 71] and may increase mortality[71, 72].   
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Hyperoxia as a consequence of traditional oxygen therapy in critical illness has been 

associated with harm in a range of disease states including cardiac arrest [73], and has been 

shown to worsen the degree of acute lung injury in ventilated patients[74].   

The administration of agents that restore blood pressure and organ perfusion in sepsis is 

essential to survival[75]. To date, the bulk of the therapies currently available rely on 

catecholamine based vasoactive agents[76, 77].  However, these agents confer their own 

morbidity and have been associated with increased mortality in sepsis[58, 77-79]. Indeed, a 

recent phase II study has suggested that a ‘decatecholaminisation’ technique using adrenergic 

antagonists acting in the opposite way to conventional treatment may offer a protective effect 

in sepsis[80].  Alternatives to these conventional therapies might offer a significant benefit to 

patients suffering from septic shock[77, 81].  

1.4.5 The Impact of Sepsis as a Disease 

Sepsis is a condition with profound implications for the individual, families and society as a 

whole.  The condition is associated with early mortality; however, there is an increasing body 

of evidence to demonstrate that the sequelae of a relatively short-lived disease may persist 

long after discharge from hospital. 

1.4.5.1 Sepsis mortality 

In all countries where data on hospitalisations for sepsis are available, the number of cases 

has increased steadily[82] and constitutes one of the top ten causes of death worldwide[83].  

The United States Centre for Disease Control reports that the number of admissions to 

hospital due to sepsis increased from 621,000 in the year 2000 to 1,141,000 in 2008[84].  In 

the USA, up to 750,000 people are admitted to intensive care units with severe sepsis each 

year.  Of these patients, 20 to 45% will not survive their admission to hospital.  This equates 

to up to 330,000 deaths per year in the United States[85] and up to 40,000 people in the 

UK[86].  The number of hospital admissions with sepsis has tripled over the last 10 years.  In 

comparison, hospital admissions for stroke and myocardial infarction has remained stable 

over the same period[85].  In fact, the number of hospitalisations with sepsis now exceeds the 

number of admissions for myocardial infarction in the USA[87].  Even these numbers may 

underestimate the true scale of the burden based on how the data is collected[88-90]. 

1.4.5.2 The early economic burden  

Treatment for sepsis often involves a prolonged stay in the intensive care unit.  The Agency 

for Healthcare Research and Quality considers sepsis to be the most expensive condition 

treated in the USA, which, at a cost of $20 billion in 2011, is increasing annually by an 

average of 11.9%[91].    
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1.4.5.3 Impact of the sepsis syndrome on long-term survivors  

In addition to acute mortality, sepsis also has a major impact on quality of life after discharge 

from hospital[92].  Patients who survive to hospital discharge after sepsis remain at increased 

risk of death in the following years[90].  Also, the quality of life of survivors may be severely 

impaired by psychological and physical effects[93].  

Acute kidney injury (AKI) is a common complication arising in up to 35% of patients with 

sepsis[94].  AKI is not only strongly associated with early mortality[95], but also has a 

significant impact on long-term outcome in the surviving population where the incidence of 

severe chronic renal failure is increased by up to 28 fold[96].  It has also been shown that in 

patients with mild chronic renal impairment, an episode of acute kidney injury leads to a 

significant increase in the number of patients that are dependent on dialysis[97].  Of patients 

admitted to intensive care who survive to hospital discharge, one in three patients who were 

employed prior to admission has not returned to work two years later.  This has been 

associated with reduced quality of life and greater long-term dependency[98].  Severe sepsis 

is associated with persistent cognitive impairment and functional disability compared to other 

causes of hospital admission[93].  Other studies have shown that one year after surviving 

critical illness, cognitive impairment consistent with moderate traumatic brain injury and 

mild Alzheimer’s disease is seen in 34% and 24% of patients, respectively [99]. 

The long-term impact of sepsis syndrome therefore confers a significant medical, social and 

health economic burden on survivors and their families.  

1.5 The Immune System 

The collective systems of the body that mount a defence to an invading pathogen are known 

as the immune system.  The immune system is conventionally divided into the innate immune 

system, which is the constitutive component, and the acquired or adaptive system, which 

depends upon stimulus for its activation.  The section focuses on the innate immune response 

to infection. 

1.5.1 The Innate Immune System 

The innate immune system is comprised of a number of components that constitute the first 

line of defence against pathogens.  These include the skin and mucous membranes as well as 

a range of immune cells including granulocytes, macrophages, neutrophils, dendritic and 

mast cells[100].  The innate immune system is activated in response to a broad and non-

specific range of stimuli including exogenous and endogenously generated antigens[101].  It 

provides a rapid pathogen response system, both eradicating the invading organism and 

facilitating the upregulation of the acquired immune response. The activation of the innate 

immune response is summarised in Figure 4. 
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Figure 4: Summary of the activation of innate immune response.   

Pathogen associated molecular pattern(PAMP) and danger associated molecular pattern 

(DAMP) molecules stimulate pattern recognition receptors such as Toll like receptors (TLR) on 

the cell surface or Nod like receptors (NLR) intracellularly.  Myeloid differentiation primary-

response protein 88 (MyD88) and the TIR domain-containing adaptor protein-inducing IFN-β 

(TRIF)-dependent pathways are activated by stimulus of these receptors.  This results in the 

expression of one of three activators (NF-κB, IRF-3 and IRF-7).  These in turn stimulate a range 

of innate responses including cytokine synthesis, complement, coagulation and anti-

inflammatory pathways.  In addition, Reactive oxygen species and nitric oxide (NO) are 

synthesised to stimulate local microbiocidal activity and act as signalling molecules. 

 

1.5.1.1 The regulation of the innate immune response 

The innate immune response is induced by two main groups of antigens with similar 

functions, but derived from different sources.  The first of these are the pathogen associated 

molecular patterns (PAMP) which are located on the surface of common pathogens and are 

conserved across different organisms[102].  They include lipopolysaccharide (LPS), 

peptidoglycan and bacterial DNA released during cell death[103].  The second category of 

stimuli is the danger associated molecular patterns (DAMPs).  DAMPS are released 

following cell injury of any kind, such as burns, trauma or necrosis, and include HSPs, S100 

proteins, hyaluronic acid and high-mobility group box-1 protein (HMGB-1)[104].  Both 

DAMPs and PAMPs are recognised by pattern recognition receptors (PRR), which are found 

both on the surface and within the cytosol of innate immune cells.   
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PRRs can be divided into several groups.  The first of these, the toll like receptors (TLRs), 

was discovered in the 1990s[105] and is comprised of a group of largely cell surface 

receptors of which there are ten in humans.  In addition to the TLRs, other groups include the 

Nod-like receptors (NLRs), C-type lectins (CLRs) and RIG-I-Like receptors (RLRs).  The 

bulk of work in the area of infection has been targeted towards the TLRs and NLRs.   

TLRs are well conserved across mammalian species with nine of the ten human receptors 

also found in mice.  Mostly responsive to lipoproteins, lipids and nucleic acids, stimulation of 

a TLR results in the activation of one of two main categories of signalling pathway. These are 

the myeloid differentiation primary-response protein 88 (MyD88) and the TIR domain-

containing adaptor protein-inducing IFN-β (TRIF)-dependent pathways[103].  Initiation of 

these pathways leads to the activation of one or more of the three effectors NF-κB, IRF-3 and 

IRF-7.  These in turn lead to the induction of many downstream aspects of the immune 

response including cytokine synthesis and release.  TLRs play an important role in the 

response to infection due to the ligands with which they bind.  The Table 4 below 

summarises some of the key TLRs and their interactions.   

 

Toll Like Receptor Ligands 

TLR2 Lipoproteins 

Peptidoglycan (Bacterial Cell wall) 

Lipoteichoic acid (Gram positive bacteria) 

Zymosan (Fungal wall product) 

TLR3 Viral double stranded RNA (dsRNA) 

TLR4 Lipopolysaccharide (Gram negative bacterial 

wall) 

TLR 5 Flagellin (bacterial flagella) 

TLR 7 and TLR8 Viral single stranded RNA 

TLR9 Microbial DNA (bacteria, viruses, parasites) 

Table 4: Summary of the key Toll like receptors (TLR) involved in the response to infection and 

their ligands.  

(adapted from [113] 

If an organism invades the cytosol, it is recognised by intracellular PRRs located within the 

cell and the signalling cascade is initiated.  The best understood group of intracellular PRRs 

are the NLRs which, in addition to being able to recognise specific fragments of bacteria, are 

also able to form complex structures called inflammasomes which respond to a diverse range 

of DAMPs and PAMPs[102].   
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1.5.2 Downstream Activation of the Innate Immune Response  

Activation of the innate immune response leads to the downstream induction of a diverse 

range of both pro- and anti-inflammatory pathways.  These processes regulate both the innate 

response and facilitate the initiation of the acquired immune system.  Imbalance of these 

pathways has been associated with both the exaggerated immune response of septic 

shock[106] and also the impaired ability to mount a response to secondary infection in 

critically ill patients[107]. 

Key pathways induced by PRR-mediated signalling include pro- and anti-inflammatory 

cytokine synthesis, complement and coagulation cascade activation and, in parallel, a series 

of immunosuppressive pathways. 

Cytokines are soluble proteins that have a broad range of roles in regulating both 

physiological and pathological responses.  Their actions are widespread and depend both on 

the cell type with which they interact and the timing of their release[108].  The term cytokine 

covers more than one hundred different substances including chemokines, interferons, 

interleukins and tumour necrosis factors[109]. 

Traditionally divided into pro and anti-inflammatory groups based upon their apparent 

function, there is burgeoning evidence to suggest that some cytokines are also able to perform 

mixed actions[110].  Examples of pro-inflammatory cytokines include IL-1, IL-6, IL-12, IL-

18, tumour necrosis factor-α (TNF-α) and Interferon-γ (IFN-γ).  Cytokines that have been 

shown to have anti-inflammatory properties include IL-1, IL-6, IL-10 and transforming growth 

factor-β (TGF-β)[111-113] . 

The downstream immune functions of cytokines are varied, but include macrophage 

activation (via IFN-γ), migration, proliferation, synthesis of NO and reactive oxygen species 

(ROS) (IFN-γ, TNF-α) and activation of B and T cells (IL4, IL5, IL6). Other roles include the 

stimulation of haematopoiesis[114], angiogenesis[115] and the induction of apoptosis[116]. 

The activation of the complement system offers an additional mechanism of response to 

infection.  Mediated by innate immune signalling, infection results in increased synthesis of 

complement factors C3a and C5a[117, 118].  This activation has been associated with the 

biphasic activity of the neutrophil immune response and synthesis of pro-inflammatory 

mediators by macrophages[119].   

Clotting factors and cells that take part in coagulation act via a number of routes to contribute 

towards the early immune response[120].   

Tissue factor (TF), Thrombin, Factor Xa and activated protein C (APC) either directly or 

indirectly stimulate immune cell protease activated receptors (PARs) which initiate the 

release of a range of cytokines [121]. TF is also able to directly activate the membrane 

associated protein kinase (MAPK) enzymes to stimulate cytokine synthesis[122]. 
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The coagulation factor fibrinogen generates a physical barrier within a clot to trap invading 

microbes as well as stimulating the release of a number of chemotactic stimuli to promote 

neutrophil recruitment and adhesion[123].  Platelets are able to generate antimicrobial 

peptides (AMPs) which are part of a group of micro particles synthesised in response to 

disruption of the vascular endothelial barrier[124].  In addition to stimulating the early phase 

of platelet aggregation, AMPs have anti-microbial and immune-modulatory properties with 

some evidence suggesting that they can reduce systemic inflammation in animal models of 

infection[125].  

Immunosuppression has been a recognised feature of the innate response to infection for 

some time.  Originally considered a component of the late compensatory anti-inflammatory 

response syndrome (CARS)[126], it is now recognised that the induction of both pro- and 

anti- inflammatory cascades is near simultaneous. During the course of the normal response, 

anti-inflammatory signalling limits the systemic impact of local infection[127].  In addition to 

the synthesis of anti-inflammatory cytokines, the immune response is also controlled by the 

downregulation of TLRs[128], complement mediated apoptosis[129] and the modulation of  

immune cell function which is induced by other cell types[130].   

1.5.3 The Role of the Macrophage in the Innate Immune Response 

Found in many tissue types and also in circulation, macrophages are responsible for the 

removal of cellular debris under normal conditions. During infection, they remove invading 

pathogens, stimulate the innate and acquired responses and also promote the resolution of 

inflammation. 

1.5.3.1 Macrophage cell types 

Macrophages have been classically divided into two groups, M1 and M2.  M1 macrophages 

were the first to be characterised and are the early responder group that mount the immediate 

defence against an invading pathogen[131].  Originally identified as being stimulated by IFN-

γ[132], subsequent work has shown that M1 cells are activated via a variety of TLRs[133].  

In response to stimulus, these cells upregulate a range of genes in the three MHC regions and 

significantly induce NO synthesis by increasing iNOS activity.  In addition, a number of 

cytokines are synthesised including IL-1 and IL-6 which facilitate phagocytosis and 

bactericidal activity[134]. 

Like M1 macrophages, M2 cells also upregulate genes in the MHC II region.  However, 

arginine regulation is achieved by Arginase-mediated turnover rather than via iNOS [135].  

This IL-4-mediated process appears to promote fibrosis rather than produce a bactericidal 

phenotype in these cells. It appears that the M2 subdivision is not entirely consistent and that 

this subtype is in fact able to perform a spectrum of pro and anti-inflammatory roles.  As a 

consequence, three subtypes of M2 cells have now been described with differing 

actions[136]. 
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1.5.3.2 Phagocytosis 

Phagocytosis is one of the key functions of the macrophage given its large surface area that 

facilitates the formation of vacuoles that can be readily internalised. Phagocytosis typically 

requires the binding of ligands to a number of cell surface receptors[137], particularly the 

fragment crystallisable receptors (FcR) and scavenger receptor (SR) families, which stimulate 

internalisation. 

1.5.3.3 Bactericidal activity 

Microbial killing by macrophages is undertaken through the generation of two potent groups 

of toxins, reactive oxygen species (ROS) and nitric oxide (NO).  ROS are generated by the 

action of NADPH oxidase (NOX) enzymes and include superoxide (O2
-
), hydrogen peroxide 

(H2O2) and oxygen free radicals (O2
.
)[138] .  The mechanisms of ROS microbiocidal activity 

are varied and include the disruption of microbial cysteine residues and damage to the DNA 

both within the phagosome[139] and external to the cell. 

The role of NO in the eradication of pathogens by macrophages is also critical.  Mediated by 

iNOS and the complex regulatory processes described above, NO reacts with ROS to form 

the reactive nitrogen species (RNS), peroxynitrite and the nitrosothiols that have a number of 

actions including protein inactivation and damage to bacterial DNA[131].   

Macrophages are also able to undertake, within the phagosome, a number of additional 

processes that contribute towards the eradication of pathogens.  These include the removal of 

essential cations from the phagosome such as magnesium and zinc, the generation of β-

defensins that can permeabilise bacterial cell walls[140], the synthesis of proteases which 

break down carbohydrates[141] and the modification of phagosome pH[142]. 

1.5.4 Nitric Oxide and the Immune Response 

Until relatively recently, there was some contention regarding the role of NO in the human 

immune response.  Whilst murine macrophages are potent producers of NO, it appeared that 

human cells produce considerably less thus calling into question the importance of iNOS in 

this system[143, 144].  However, over recent years, it has been clearly demonstrated that NO 

is an important and tightly regulated mediator of the human innate immune response[145, 

146].  Here the role of NO in the response to infection is reviewed. 

1.5.4.1 Nitric oxide and redox chemistry 

The role of NO in the immune response is intimately related to the other key mediator of 

oxidative stress, ROS.  NO in itself is relatively non-toxic and is dependent upon the presence 

of ROS to synthesise RNS.  The resulting function of the RNS is dependent upon a number 

of factors that determine the relative bioavailability of ROS and NO. These include the site of 

the interaction, the redox state of the cell and the proximity of the superoxide source[147, 

148].  As a consequence, the close proximity and high concentrations of ROS facilitate the 

production of bactericidal RNS within the phagosome. In the cytoplasm, NO acts as an 

antioxidant by binding to ROS and reducing damage to the cell[149]. 
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1.5.4.2 Pathogen-specific actions of nitric oxide 

In contrast to ROS, which are largely synthesised within the phagosome, NO and RNS are 

lipid soluble and readily transition in to and out of the phagosome from their site of synthesis.  

Conditions inside the phagosome determine which reaction takes place and there is also an 

organism-specific component. 

In the case of bacteria, neither NO nor ROS alone are always potent bactericidal agents.  

However, when combined in the phagosome, a thousand-fold increase in their ability to 

eradicate E-Coli is observed[150].  In some cases, NO and ROS are unable to eradicate a 

certain type of bacteria e.g. Listeria monocytogenes.  In this instance, they combine to limit 

activity of the organism within the infected cell and reduce its infectivity thus allowing time 

for alternative pathways to be activated[151]. 

The protective role of NO signalling in the immune reaction to parasites is apparent when 

observing the response to Plasmodium falciparum infection.  Exposure leads to an increase in 

iNOS activity and thus NO production which is directly toxic to the parasite[152].  NO has 

also been shown to preserve microvascular flow and reduce parasite adhesion to the vascular 

endothelium[153]. 

In the context of viruses, immune cell NO directly interferes with the formation of proteins 

critical to viral infection, movement and maturation.  This is achieved through the nitrosation 

of cysteine residues on key viral proteins[154].  Within immune cells, NO synthesis in 

response to viral infection is a protective process. However, excessive NO production has 

been implicated in the development of haemorrhagic fever[155]. 

1.5.4.3 The role of nitric oxide signalling in innate immunity 

As described above, the induction of iNOS within M1 macrophages is a critical feature of the 

innate immune response.  In addition, NOS also plays an important role in the inflammatory 

cascade, regulating both pro-inflammatory and immunosuppressive components of the innate 

immune response. 

NO and RNS are both responsible for the upregulation of inflammatory genes including those 

for the cytokines TNF-α, IL-8 and IL-6[156, 157], particularly during the early phase of 

inflammation when NO production is at its highest.  NF-κB signalling displays a biphasic 

pattern when exposed to ROS and RNS with low levels augmenting and high levels 

inhibiting activation[158]. 

The anti-inflammatory role of NO is also important as it offers an indirect negative feedback 

process that regulates the response to infection and promotes tissue repair.  This process is 

particularly important when iNOS activity and NO concentrations start to fall after the initial 

phase of the innate response.  During this latter phase, NO promotes increased cAMP and 

cGMP concentrations via its actions on cyclooxygenase and sGC, respectively.  This in turn 

inhibits further synthesis of TNF-α and IL-1β[159].  Another consequence of the NO-

mediated increase in cAMP is that it directly induces the expression of anti-inflammatory 

cytokines including IL-10. This demonstrates another mechanism by which NO may enable 

the biphasic regulation of the immune response. 
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1.5.5 The Pathophysiology of Sepsis 

Sepsis is a complex immune-mediated multisystem disorder which arises following pathogen 

entry into the body.  The course and outcome of sepsis is widely variable with type and site 

of infection, genetic and acquired factors all playing a role in the response to the infective 

organism. 

Under normal circumstances, infection provokes innate and acquired immune activation.  A 

balance of pro- and anti-inflammatory signalling networks regulate a reaction that facilitates 

eradication of the pathogen and limits the extent of the response.  When this process is 

dysregulated, the local response becomes systemic and sometimes leads to organ dysfunction 

and death.  The exact mechanisms of this process have not yet been fully elucidated. 

However, a number of pathways have so far been implicated in the pathophysiology of sepsis 

are discussed below. 

 

1.5.5.1 The infective source 

The common feature of all cases of sepsis is by definition confirmed or suspected infection.  

The source of infection may be acquired from the community or from healthcare 

environments (e.g. respiratory tract, renal or central nervous system)[160] . It may be 

iatrogenic following surgery or arise as a consequence of disruption of normal physiological 

barriers by indwelling lines, tubes and catheters[161]. In addition, typically non-pathogenic 

organisms can also become infective sources in immunosuppressed individuals[162].  

Following pathogen invasion, PRRs are activated by components of the infective microbe 

(PAMPs) and by endogenous stimuli released in response to infection (DAMPs) as 

previously discussed. 

1.5.5.2 Cytokine production 

Historically, it was believed that excessive inflammation mediated by the overproduction of 

cytokines was responsible for the negative outcomes associated with severe sepsis and septic 

shock.  This belief was derived from the observation that in patients with sepsis, cytokines 

such as IL-1 and TNF-α were profoundly upregulated with the magnitude of this increase 

being associated with outcome[163].  Other cytokines that have been implicated include IFN-

γ, GM-CSF, IL-8 and IL12 which are all broadly categorised as pro-inflammatory, IL-10 

which is considered to be anti-inflammatory and IL-6 which can fulfil both roles[163].  A 

series of drugs designed to inhibit the activation of pro-inflammatory cytokines in sepsis were 

therefore developed and over the course of the last decade, numerous phase II and III studies 

have been undertaken.  To date, no agent in this class has been shown to offer a mortality 

benefit in patients despite promising pre-clinical results.  Table 5 below highlights a selection 

of anti-cytokine treatments that have been unsuccessfully trialled in human sepsis.  This 

suggests that whilst excessive inflammation is an important part of the sepsis syndrome, it is 

not the only critical pathway involved. 
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Study Year Phase Intervention Outcome 

Rice et al[164] 2010 III TLR 4 signalling 

inhibition 

Stopped early - No benefit 

Dellinger 

[165] 

2009 III Endotoxin binding  

emulsion 

Stopped early - excess 

adverse events 

Tidswell[166] 2010 II 

(III) 

Eritoran - TLR blocking 

agent 

Stopped early - No  benefit 

Albertson[167] 2003 III MAB - Enterobacterial 

Ag blocker 

Stopped early - No benefit 

Abraham[168] 2001 III TNF-R Fusion protein No Benefit 

RAMSES[169] 2001 III TNF Monoclonal Ab Stopped Early - No Benefit 

Table 5: Summary of the major clinical studies investigating the impact of cytokine signalling 

pathway blockade on outcome in patients with severe sepsis and septic shock. 

More recently, HMGB-1[170] and macrophage migration inhibitory factor (MIF)[171]  have 

both been shown to be elevated in patients with sepsis.  Interest in HMGB-1 is considerable 

as it appears to be a late mediator of sepsis and thus potentially a more amenable therapeutic 

target.   

In parallel to an exaggerated inflammatory state, anti-inflammatory cytokines are also 

upregulated during sepsis. It has been shown in some patients, that the synthesis of IL-10 

may be preserved whilst the ability to mount a secondary pro-inflammatory response 

involving TNF-α and IFN-γ may be impaired[172].  This may predispose patients to an 

increased risk of secondary infection such as ventilator-associated pneumonia which has been 

shown to independently impact on mortality in patients with sepsis. 

1.5.5.3 Complement  

Excessive complement activity has been identified as a potential cause of immune 

dysfunction in sepsis.  Increased levels of C5a have been associated with outcome in 

critically ill patients[173] and are also known to impair phagocytosis and bactericidal 

activity[174].  As such, C5a has been considered as a potential therapeutic target [175, 176].  

Anti-C5a therapy has been shown to reverse the cellular effects of C5a in isolated human 

monocytes[174] and improve survival in animal models of sepsis[177].  The regulation of 

C5a is therefore a further therapeutic area currently being explored in sepsis. 

1.5.5.4 Coagulopathy 

Sepsis results in a pro-coagulant state which is coupled with impaired anti-coagulant 

pathways and fibrinolysis.  Disseminated intravascular coagulopathy (DIC) arises as a 

consequence and is a common feature of septic shock[103]. 
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The activation of immune cells in sepsis leads to the cell surface expression of TF[178] .  TF 

binds to factor VIIa which results in the activation of factor Xa to promote thrombin 

formation.  In septic shock, this process appears to occur excessively thus leading to the 

consumption of clotting factors and coagulopathy. 

The failure of anti-coagulant processes to balance the pro-coagulant state is another important 

feature of sepsis-induced DIC. In sepsis, there are three pathways that are particularly 

important in this process.  The first two pathways that are compromised in DIC are anti-

thrombin and TPI-mediated anticoagulation which are reduced following a cytokine-induced 

decrease in endothelial glycosaminoglycans[179].  Protein C synthesis and activation is also 

deregulated.  Protein C is typically activated to form APC following the binding of thrombin 

to thrombomodulin. APC possess both anti-coagulant and also anti-inflammatory actions. 

The deregulation of the clotting pathway as seen in DIC has also been studied as a potential 

therapeutic target in sepsis. This has led to a number of phase II and III studies which are 

summarised in the table below (Table 6). Most notably, drugs targeting APC were licensed 

and were in clinical use for several years before safety concerns prompted further phase III 

studies and their subsequent withdrawal. 

Paper Year Phase Intervention Outcome 

Warren[180] 2001 III Anti-thrombin III  No Benefit  

HERTRASE[181] 2009 II Un-fractionated Heparin No Benefit  

PROWESS[182] 2001 III Activated Protein C 

Survival Benefit at 28 

days 

ADDRESS[183] 2005 III Activated Protein C 

No benefit patients with 

low risk of death 

PROWESS 

SHOCK[66] 2012 III Activated Protein C No Benefit 

Table 6: Summary of the major clinical studies investigating the impact of modulators of the 

coagulation cascade on outcome in patients with severe sepsis and septic shock. 

1.5.5.5 Cellular dysfunction 

Cellular dysfunction is a common feature of sepsis, with a diffuse range of cell types 

suffering from impaired responsiveness to their stimuli.  The causes of this are diverse, but 

include mitochondrial dysfunction[184, 185], increased expression of inhibitory programmed 

cell death protein 1 (PD-1) receptors [186] and Tregulatory (Treg) cells and the 

downregulation of CD88 and HLA-DR mediated pathways[187].   

In addition, lymphocyte apoptosis may also be induced, leading to a reduced ability to 

synthesise cytokines.  This finding has been observed in both animal models[188] and also in 

septic patients where samples were taken immediately post mortem[189]. 



  

52 

 

  

Previous work has also demonstrated that immune cells are unable to mount an appropriate 

response due to cellular dysfunction.  Clinical trials are therefore underway to explore the 

potential of immune augmentation in the treatment of sepsis using exogenous agents such as 

IFN-γ and GM-CSF[190].   

1.5.5.6 Nitric oxide and cardiovascular compromise in septic shock 

The increase in vascular NO production in response to infection is mediated by iNOS which 

is upregulated in vascular smooth muscle and endothelial cells[191].  Mediators of the 

induction of vascular iNOS include IL-1β, IL-6, TNF-α, IFN-γ[192, 193] and 

adenosine[194]. Under normal conditions, local NO-induced vasodilatation and vascular 

permeability confer an advantage as they facilitate the delivery of immune cells and oxygen 

to the site of infection.  However, dysregulation of this process plays an important role in 

sepsis-induced hypotension and hyporeactivity to catecholamine-based vasopressors[195, 

196].  Inhibitors of NOS have been shown to increase both arterial pressure and vascular 

resistance in septic and late-phase haemorrhagic shock[197-199] and to reverse shock in 

human studies[200].   

Mechanisms by which elevated NO levels lead to vasodilatory shock include:  

 Activation of myosin light-chain phosphatase.  

 Activation of potassium channels in vascular smooth-muscle cells[201-204].  These 

channels include the cytosolic calcium sensitive (KCa) channels, which blunt the effect 

of vasoconstrictors[205].  NO activates KCa channels via the direct nitrosylation of the 

channel[201] and activation of cGMP-dependent protein kinases[202].  

 Hyperpolarisation of the plasma membrane of vascular smooth-muscle cells in 

addition to impaired mitochondrial function by cytopathic dysoxia[184, 206].   

1.6 Endogenous Regulators of Nitric Oxide Synthesis and Sepsis 

This section considers the existing literature regarding the role of MAs and their regulators in 

sepsis and discusses the available evidence that suggests the involvement of the endogenous 

NO regulatory pathway in determining disease outcome. 

1.6.1 Asymmetric Dimethylarginine 

Plasma methylarginines have been examined in a series of small studies. This has led to 

challenges in interpreting the data as in most cases it has not been possible to correct for 

potential confounding variables.  Nevertheless, studies in this area have generated interesting 

preliminary data that demand validation in a larger data set.  



  

53 

 

  

In 2006, O’Dwyer et al. measured the plasma ADMA levels of 47 patients with severe sepsis 

following hospital admission and on day one and seven of their critical care stay[40].  They 

found that when compared to a group of 10 healthy volunteers, ADMA concentrations in 

septic patients were significantly elevated on admission, and were still raised and somewhat 

increased by day seven of their intensive care unit (ICU) stay.  Increased ADMA was 

positively correlated with the severity of metabolic acidosis and with levels of blood lactate 

on both days. In addition, there was an association with the severity of organ failure 

assessment (SOFA) score.   

A further study assessed the changes in ADMA concentration in 30 patients following 

elective surgery and in a group of 60 patients who were admitted to hospital with a primary 

diagnosis of sepsis[207].  In this study, ADMA was consistently elevated over the course of 

the septic insult when compared to healthy volunteers, an effect which persisted to day 28 in 

survivors.  ADMA levels were also found to be consistently higher in patients with acute 

sepsis-induced liver dysfunction (n=15 on admission) compared to patients with similar 

disease severity, but normal hepatic function. 

In their 2011 study, Davis et al. studied 67 patients with sepsis (20 with septic shock) and 

explored the potential relationship between plasma ADMA concentrations, shock severity 

and outcome[208]. Samples were taken on admission and on day two of the patient’s ICU 

stay.  The study suggested that patients with ADMA concentrations that fell within the top 

quartile had a 20-fold increased risk of death by 28 days. However, due to the size of the 

group in which only 6 patients in total and 5 with septic shock died, the effect is difficult to 

interpret.  ADMA levels also correlated with shock severity, as measured by SOFA score, 

and the degree of microvascular dysfunction.  Of note, univariate analysis indicated that 

SDMA concentration was also associated with increased mortality. However, this 

relationship did not persist following correction for the degree of renal failure. 

By contrast, the opposite effect is observed in paediatric patients. One particular study 

compared three groups of participants aged under eighteen with healthy volunteers, non-

septic pyrexial patients and children with severe sepsis and septic shock [209].  Each group 

contained thirty patients with septic participants giving blood samples on each of the first 

seven days following hospital admission.  In this study, sepsis was associated with 

significantly lower plasma ADMA concentrations in both the febrile and septic groups when 

compared to controls. However, plasma ADMA concentrations did rise over the course of the 

study in the septic group.  In addition, indices of organ dysfunction and inflammatory state 

were inversely correlated with ADMA concentration at hospital admission. This is also in 

contrast to the effects observed in adults.  These findings were confirmed by a separate study 

in Gambian children with severe malaria where both mild and severe disease was associated 

with a sustained reduction in plasma ADMA concentration[210]. 
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1.6.2 Symmetric Dimethylarginine 

Koch et al. examined the plasma SDMA levels of 247 patients that were admitted to intensive 

care (of whom 160 had sepsis), with samples taken upon admission and on day seven of their 

hospital stay[211].  They found that SDMA concentrations were higher in critically ill 

patients when compared to controls and that the highest levels were observed in patients 

where sepsis was the primary diagnosis.  As had previously been shown, SDMA levels 

correlated with the degree of renal failure and also with the severity of hepatic dysfunction. 

Interestingly, this study also showed that plasma SDMA concentration at admission was 

independently associated with mortality at three years.   

1.6.3 Dimethylarginine Dimethylaminohydrolase 1 

To date, no human studies have as yet been undertaken to explore the association between 

DDAH1 polymorphisms and outcome in sepsis.  However, the availability of a highly 

selective DDAH1 inhibitor and global knockout mouse model has enabled the phenotypic 

effects of both transient and lifelong DDAH1 deficiency and its role in sepsis to be further 

investigated.  

Aortic rings taken from heterozygote DDAH1-deficient mice demonstrated preserved 

vascular responsiveness following stimulation with LPS.  DDAH1
+/- 

mice also displayed 

significantly less reduction in their systemic blood pressure following LPS injection[47, 212].   

In both LPS and polymicrobial models of sepsis, the selective DDAH1 inhibitor L-257 has 

been shown to offer improved survival in rats[213].  In addition, L-257 alone was found to 

reduce the severity of hypotension and the requirement for noradrenaline therapy in order to 

maintain blood pressure. These effects were observed even when treatment was delayed until 

after the onset of shock symptoms.  L-257 therapy was shown to improve indices of renal and 

hepatic function and preserve microvascular flow, but had no effect on immune cell 

function[213]. 

1.6.4 Dimethylarginine Dimethylaminohydrolase 2 

The question of whether DDAH2 SNPs might be associated with outcome in human sepsis 

has been raised given its association with disease and position of the gene within the MHC III 

region of chromosome six.  To date, two studies have explored this association, but not on a 

scale large enough to ensure that observed differences did not occur by chance.   

One group conducted a study to determine whether two previously published SNPs located 

within the promoter region of DDAH2 were associated with plasma ADMA concentration 

and/or disease outcome in children with sepsis[39] (Figure 5).  They found that in 27 patients 

with septic shock, rs805305, which represents a substitution at the -449 position of the 

DDAH2 promoter sequence, was associated with lower levels of plasma ADMA.  

Furthermore, they found that this SNP was associated with a greater incidence of ‘cold 

shock’. This is thought to arise when the systemic response to infection manifests as a low 

cardiac output state. However, studies by O’Dwyer et al. in adults showed no association 

with illness severity, but a positive correlation with plasma ADMA concentration[40]. 
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Figure 5: Representative image of the DDAH2 gene 

(adapted from www.ncbi.nlm.nih.gov/gene/23564).  Exon 1 is considered to be non-coding.  

However, both exon and intron 1 appear to contain promoter regions. a: represents the site of the 

rs805305 SNP and b: the proposed translation start sites.  

 

Animal studies have thus far focussed on determining the functional effects of DDAH2 

deletion from immune cells.  Knockout of DDAH2 using two different transgenic animal 

models led to a significant reduction in NO synthesis by isolated primary resident 

macrophages, a phenomenon mediated by increased cellular ADMA concentrations.  This 

apparent impairment of NO synthesis also led to compromise of the normal functions of the 

animal’s macrophages in response to stimulus.  This included significantly reduced motility, 

chemotaxis and bactericidal ability compared to appropriate litter mate controls[30]. 

1.7 Summary 

NO plays a critical role in the immune system and dysregulation of the innate response is an 

important factor in the development of severe sepsis and septic shock, a condition that has 

high associated morbidity and mortality.  The influence of DDAH on the regulation of NO 

signalling is well elucidated, however the impact of this process and its role in modulating 

the immune response is currently not well established.  This work will determine the role of 

monocyte DDAH2 in regulating the immune response to sepsis using cellular, animal and 

human studies. 
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2 Hypothesis 

2.1 Hypothesis 

Immune cell DDAH2 plays a role in the regulation of the systemic immune response and 

determines outcome in sepsis. 

2.2 Objectives 

2.2.1 Inflammatory cytokines and the regulation of DDAH2  

Using an immortalised cell line and primary murine macrophages, this study aims to 

determine the role of different pro-inflammatory regulators in DDAH2 expression and 

evaluate the impact of this on the regulation of NO synthesis. 

2.2.2 The role of hypoxia in the DDAH2-mediated immune response 

Using primary murine macrophages from wild type and DDAH2 knockout models and 

human peripheral blood mononuclear cells from healthy volunteers following exposure to 

normobaric hypoxia, this study will explore NO regulation in response to acute hypoxia and 

evaluate the role of DDAH2 in this process. 

2.2.3 The impact of polymicrobial sepsis in global and macrophage-specific 

DDAH2 knockout mice 

Using in vivo radiotelemetry monitoring in a polymicrobial sepsis murine model, this study 

aims to determine the systemic impact of global and macrophage-specific knockout of 

DDAH2 in response to life threatening infection. 

2.2.4 ADMA, NO and DDAH polymorphisms and outcome in human sepsis 

Using a hypothesis based interrogation of a genome wide association study in patients with 

sepsis, coupled with a prospective analysis of plasma and buffy coat samples from a 

randomised controlled trial of vasopressor therapy in septic shock, this study will also aim to 

determine how NO, its endogenous regulators and polymorphisms of DDAH genes relate to a 

series of outcomes in a robust human population.  
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3 Methods and materials 

3.1 In vitro methods 

3.1.1 Isolation and culture of RAW 264.7 murine macrophage cell line 

RAW 264.7 are a macrophage cell line that was developed from a murine model of Abelson 

murine leukaemia virus induced tumour.  RAW 264.7 was developed in 1975 and has been 

well validated[214].  Its ease of use and manipulation have resulted in it becoming one of the 

most widespread murine macrophage cell lines employed in studies with over 1500 articles 

relating to its function[215]. The cell line has been used to examine monocyte function and 

activity, including the regulation of iNOS signalling in response to stimulation[216],receptor 

signalling and response to Lipopolysaccharide(LPS)[217, 218].  The RAW 264.7 cells were 

obtained from an existing cell line and incubated in a humidified atmosphere containing 5% 

carbon dioxide using Dulbecco’s Modified Eagle Medium (DMEM) and 10% foetal bovine 

serum (FBS), 2mM Glutamine and 2mM penicillin/Streptomycin. 

3.1.2 Hypoxic Chamber incubation 

In order to determine the impact of subacute hypoxia on isolated primary macrophages and 

RAW 264.7 cells.  Cultured cells were incubated for varied amounts of time in a sealed 

hypoxic incubator at 92% Nitrogen, 3% Oxygen and 5% CO2.  Culture medium was placed 

in the chamber at least 12hours prior to experiment in order to equilibrate medium partial 

pressure of oxygen with that of the hypoxic atmosphere. Table 7 below describes the changes 

observed in the medium after 12 hours in the hypoxic chamber. 

Measurement Normal tissue culture 

incubator 

Hypoxic incubator 

pH 7.492 7.651 

PCO2 (kPa) 6.55 4.87 

PO2 (kPa) 19.6 7.7 

HCO3
-
 (mmol/L) 39 40 

Table 7: Medium conditions before and after a 12 hour period of equilibration in the a hypoxic 

chamber with an environment of 3% O2 and 5% CO2 

 

3.2 Molecular Biology Methods  

3.2.1 Tissue homogenate preparation 

Immediately following sacrifice, tissues were frozen in liquid nitrogen and stored at -80C.  

Frozen tissue was pulverized using a mortar and pestle and re-suspended in phosphate-

buffered saline (PBS) (Invitrogen, UK) supplemented with Complete EDTA-free, Protease 

Inhibitor Cocktail (Roche, UK).  Tissue homogenates were homogenised 3mins at 25Hz then 

spun at 14,000rpm for 15 minutes, at 4°C.  The supernatant was retained for further analysis.   
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3.2.2 Cell culture protein extraction 

Following incubation, culture medium was removed, the cells washed briefly in PBS and 

replaced with a solution of PBS and protease inhibitor before mechanical clearance from the 

plate surface.   

Following collection, the cells underwent mechanical lysis in an automated homogeniser for 

3mins at 25Hz (TissueLyser II, Qiagen, UK).  The lysed cells were then centrifuged at 

14000rpm for 10mins at 4 degrees Celsius, after this, the supernatant was aspirated and the 

protein level measured using the Bradford assay in order to standardise the results against 

protein concentration.  Storage was at -80°C prior to use. 

3.2.3 Preparation of cell culture samples for mRNA analysis 

Cells were scraped from the surface of the culture plate and suspended in 500µL of RLT 

buffer with 10µL/ml of β-mercaptoethanol before mechanical lysis using a 1ml syringe and 

23gauge needle.  RNA extraction was performed using column purification as per 

manufacturer’s instructions (Qiagen Ltd, UK) 

3.2.4 Protein and RNA quantification 

Protein was quantified using either a Bradford assay or the NanoDrop™ device.   

3.2.4.1 Bradford Assay 

The Bradford assay utilises a calorimetric technique to facilitate measurement of protein 

concentrations.  It utilises a property of Coomassie blue dye which displays a colour change 

in response to change in pH.  The change in pH is mediated by amino acid binding and 

correlates with protein concentration.  This shift in colour may be measured using 

spectrophotometry[219] and compared to a standard curve of known protein concentrations. 

3.2.4.2 NanoDrop™ Device 

The NanoDrop device (Thermo Scientific) utilises spectrometry at specific wavelengths to 

quantify protein, DNA or RNA.  3µL of test solution are loaded, samples analysed in 

triplicate and an average result obtained. 

3.2.5 Polymerase chain reaction 

The Polymerase chain reaction (PCR) is a well established method used for a number of 

applications.  In brief, a sample of nucleic acid is added to a solution containing a heat stable 

DNA polymerase, deoxynucleoside triphosphates (dNTPs) and either complementary DNA 

fragments or primers.  Incremental temperature change results in DNA denaturing, the 

annealing of complimentary sequences and the binding of dNTPs to form new double 

stranded DNA, a process which is catalysed by the DNA polymerase.  Over multiple repeat 

cycles, the new DNA acts as a template leading to logarithmic amplification.  This process 

allows specific and quantifiable analysis of DNA. 
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3.2.5.1 Reverse transcription quantitative polymerase chain reaction 

Tissue and cell mRNA turnover was measured using a two stage process.  Initially, RNA was 

purified using RNEasy (Qiagen, UK) as recommended by the manufacturer’s protocol.  

Spectrophotometric quantification of RNA was undertaken by measuring absorbance at 260 

and 280nm.   

Complementary DNA (cDNA) production by Reverse Transcriptase PCR (RT-PCR) was 

undertaken from 1000ng of extracted RNA using the iScript cDNA synthesis kit (BioRad, 

USA) as recommended by the manufacturer.   

 

Component Volume 

iScript reaction mixture 4µL 

iScript reverse transcriptase 1 µL 

RNA 1000ng + water Total 15 µL 

PCR Protocol (1 cycle only) Duration 

Reverse transcription @ 42°C 30mins 

RTase inactivation@ 85°C 5mins 

Table 8: cDNA synthesis was undertaken with iScript (BioRad, USA) technology.  Materials 

and protocol are described for the synthesis of 1000ng of cDNA 

A commercial Sybr Green-based PCR mix (iTaq Fast SYBR Green Supermix with ROX, 

BioRad) was added to 100ng of cDNA and using the 7900HT Fast System (Applied 

Biosystems), fluorescence threshold (CT) was assessed using the established method. Sybr 

green emits light in the green spectrum once incorporated into a nucleic acid.  Samples were 

analysed in duplicate and the fluorescence threshold (CT) was set at the base of each 

exponential curve.  The resulting quantitative measure of the mRNA of interest was corrected 

for housekeeper cDNA.   

Several housekeeper genes were considered including β-actin and α-tubulin, however 

ultimately 18s ribosomal RNA was chosen which is ubiquitous and unaffected by the 

reactions undertaken.  Quantification was based on standard curve plotted on a logarithmic 

axis and the slope of linear regression used to quantify relative sequence expression. 
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RT-qPCR protocol step Duration 

Initial step @ 95°C  2min 

Thermal cycling x 40 

Denaturation @ 95°C 3 secs 

Annealing @ 60°C  30secs 

Disassociation step 

Table 9:Protocol for the conduct of RT-qPCR quantitative phase 

3.2.5.2 RT-qPCR primer sequences 

Primer sequences for qPCR analysis were derived from existing publications or designed 

using the NCBI Primer blast facility (http://www.ncbi.nlm.nih.gov/tools/primer-

blast/index.cgi?LINK_LOC=BlastHome).  All sequences were confirmed using blast analysis 

to confirm 100% concordance with the appropriate sequence. 

Primer forward reverse 

Murine sequences 

DDAH1 

 

TCTCATAGACCTTTGCGCTTTC CACAGAAGGCCCTCAAGATCA 

DDAH2 CCTGGTGCCACACCTTTCCC AGGGTGACATCAGAGAGCTTCTG 

Inducible Nitric 

Oxide Synthase  

CAGCTGGGCTGTACAAACCTT ATGTGATGTTTGCTTCGGACA 

endothelial Nitric 

Oxide Synthase 

AAGACAAGGCAGCGGTGG GCAGGGGACAGGAAATAGTT 

Tubulin GCCTTCTAACCCGTTGCTATCA CGGTGCGAACTTCATCGAT 

Human Sequences 

DDAH2 CCCTTCTCCACCAACTCTGT TTGTTTCTTCACCTGTCTCCA 

Inducible Nitric 

Oxide Synthase 

[220] 

TGGCCAGATGTTCCTCTATT CCAAAGGGATTTTAACTTG 

Endothelial Nitric 

Oxide 

Synthase[221] 

GGGCAGCCTCACTCCTGTT ACGGCGTTGGCCACTT 

Tubulin GCCTTCTAACCCGTTGCTATCA CGGTGCGAACTTCATCGAT 

Table 10:Summary table of PCR primer sequences used in the conduct of mouse and human 

studies. 
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3.2.6 Western blotting 

Following preparation of the samples as described above, a known concentration of protein 

was diluted with a 4x Laemlli buffer solution  (see Table 11 below) and heated at 95°C for 

four minutes.  Each sample was then added to a lane of sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) gel.  The recipes utilised in DDAH2 

western blotting can be seen in Table 12 below.  2µL of a protein ladder was added to one 

lane of each gel.  Following electrophoresis, gel was transferred onto PVDF membrane (GE 

Healthcare, UK) and then blocked in PBS with 0.1% tween-20 (Sigma-Aldrich, USA) and 

5% non-fat milk (Sigma-Aldrich, USA).  

Substance 

277.8mM Tris-HCl, pH 6.8 

4.4% LDS (lithium dodecyl sulfate) 

44.4% (w/v) glycerol 

0.02% bromophenol blue 

10% v/v β-mercaptoethanol 

Table 11:Contents of Laemlli buffer solution 

Primary antibodies for DDAH1 and DDAH2 were raised in goats against peptide sequences, 

which are conserved across rats, humans, and mice as previously described[30, 222]. 

Purification of these antibodies is described below.  Secondary antibody for alpha Tubulin 

was purchased from Abcam (Cambridge, UK).  Secondary horse-radish peroxidase 

conjugated antibodies, ECL+ reagents, and ECL film was used to visualize blots (all GE 

Healthcare). Protein levels were quantified by densitometry and ImageJ (NIH).   

Resolving  Stacking 

4.35mL dH2O 6.32mL dH2O 

3mL 40% acrylamide/Bis 37.5:1; 1mL acrylamide/Bis 37.5:1 

2.5mL 1.5M Tris-HCl pH8.8;  

 

2.52mL 0.5M Tris-HCl pH6.8 

100uL 10% SDS;  

 

100uL 10% SDS 

5uL TEMED;  

 

10uL TEMED 

50uL 10% APS 50uL 10% APS 

Table 12:Ingredients for the preparation of two 12% SDS-PAGE gels for the conduct of western 

blotting for DDAH2 
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The protocol for the conduct of a DDAH2 western blot was as follows: 

Stage Protocol 

Run SDS PAGE  10-20uL protein/well plus 2uL protein 

marker (All Blue; BioRad). 150V  

Rinse gel and membrane  Wash gel in transfer buffer for 30mins 

Soak Membrane in methanol for 10mins, 

wash x 2in dH2O, soak in transfer buffer 

for at least 15mins 

Transfer to membrane  Hybond-P (Immobilon), 260mA, 70mins 

Cooled with ice   

Wash in PBS Tween 0.1%  3x10mins in large volumes 

Dry in air 60mins 

Primary antibody incubation  

(In 5% milk with PBS-T)  

in 5% milk PBS-T with continuous  

agitation @ 4°C overnight  

PBS-T washes  3x10mins in large volumes 

Secondary antibody incubation  

(In 5% milk with PBS-T)  

Room temperature 1 hour with agitation  

PBS-T washes  3x10mins in large volumes 

Visualisation either:  

Chemiluminescence  Amersham ECL kit  

Table 13: Protocol for the conduct of Western blots in cell culture, animal tissue and human 

studies. 

3.2.6.1 DDAH antibody synthesis 

Commercially available antibodies to DDAH1 and DDAH2 produce variable outcomes.  Our 

group has developed polyclonal goat antibodies to both genes based on sections of the 

sequence conserved across both rodents and humans. 

Working antibody solutions were extracted from goat serum through a process of affinity 

purification using beads with covalently bound DDAH peptides, which were passed through 

purification columns, a low pressure chromatography system.  Extracted fractions were 

passed through a UV filter and the selected fractions run separately through a SDS-PAGE gel 

to confirm the presence of the eluted protein. Definitive confirmation was obtained by the 

conduct of western blotting of tissue lysates of appropriate samples to confirm successful 

detection of DDAH1 and DDAH2. 
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3.2.7 Liquid chromatography-mass spectrometry / mass spectrometry  

Analysis of methylarginine and L-arginine concentrations was undertaken using a liquid 

chromatograph, triple quadrupole mass spectrometry technique as previously 

demonstrated[30, 47, 223].  This is a high specificity and sensitivity method for the detection 

of methylarginines in concentrations as low as the picomolar range. 

Biological samples underwent methanol protein precipitation in a 1:5 dilution of methanol for 

cell lysate and culture medium and a 1:10 dilution for plasma.  An internal standard of 7-

deuterated (D7) ADMA (Cambridge isotope laboratories, USA) was added at the 

precipitation stage to facilitate correction for extraction efficiency.  Following extraction, 

solutions were evaporated to dryness on a heat block and resuspended in mobile phase (0.1% 

formic acid). 

3.2.7.1 High performance liquid chromatography 

During the HPLC phase samples were pumped at high pressure through a column which 

contains a number of adsorbent materials, to which solutes bind.  The column is then washed 

with an elution buffer across a pH or salt gradient, and solutes are separated based on their 

affinity for the column.  In this study, a hypercarb chromatography column was used 

(Thermo, UK), and through it, a mobile phase of 0.1% formic acid was passed in conjunction 

with 1% acetonitrile, which increased to 50% for minutes five to ten of each sample run.  The 

total run time was fifteen minutes per sample.  A standard curve of ADMA samples of 10 

known concentrations was prepared for 96 well plate (0 to 10μM).  Samples were prepared 

and run immediately 

3.2.7.2 Mass Spectrometry 

Mass spectrometry involves the ionisation of a substance and then detection of that substance 

or fragments of it through comparison of their mass/charge (m/z) ratio.  This study employed 

the Agilent 6400 LCMS/MS system. 

The first step was electro- spray ionisation.  The substance to be analysed was presented to 

the analyser in solution, having travelled through the liquid chromatograph.  The solution is 

is nebulised to form a fine spray [224].  These nebulised droplets are heated and dry nitrogen 

is applied in order produce charged analytes which are in turn transferred into the high 

vacuum chamber via a small opening[225] 
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Once into the vacuum chamber the analyte passes through a quadrupole.  This is made of four 

metal rods which are used to generate varying voltages which facilitate the passage of 

particles with different m/z ratios.  A series of fixed voltages in the quadrupole causes the 

analyser to detect specific analytes in a sample based on their mass/charge ratio[225].  This 

initial phase forms part of the triple quadrupole system.  The second component is made of a 

quadrupole that has an inert gas such as argon at low pressure within it and accelerates the 

fragments towards the third quadrupole.  Collisions of the analyte with this gas result in the 

phenomenon of collision induced dissociation.  Passage of these fragments through a third 

quadrupole analyser allows identification of the m/z ratio of these breakdown products.  This 

in turn permits differentiation of structures that may not be separated by single chamber mass 

spectroscopy alone.  The ability to set and then vary voltages for the first and third 

quadrupoles makes it possible to examine multiple analytes and their products during the 

course of a sample run.  This is known as multiple reaction monitoring (MRM). 

Standardisation of the measurements is achieved using labelled analytes inserted at the 

beginning of the purification process.  This accounts for losses during sample preparation as 

well as variation in the analytical process[225]. 

3.2.7.3 Detected fragments 

The precursor ion/product ions measured were: 

 D7 ADMA: 210/46.0 

 Arginine: 175/60 

 ADMA: 203.1/46 

 SDMA: 203.2/172 and 203.2/72 

 L-NMMA: 189.1/57 
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3.2.8 Promoter reporter construct preparation and utilisation 

3.2.8.1 Promoter reporter development 

Promoter reporter constructs had been developed by the group using a method described 

previously[42, 226].  In brief, a restriction fragment spanning the nucleotides contained with 

the -1755 to -216 territory of the human DDAH2 gene was isolated from a human genomic 

clone and added to a pGL3 basic luciferase vector (Promega, US) (to generate pGL3sal),  a 

promoter reporter construct containing a firefly luciferase reporter.  Specific regions of the 

promoter sequence were selected which represented specific areas likely to represent 

important transcription factor binding sites (Genomatix) and from that a series of 5’ deletion 

sequences were also generated and cloned to the same pGL3 basic reporter construct.  The 5’ 

oligonucleotide sequences were designed and tagged with MluI restriction sites and PCR was 

performed using these primers and a 3’ vector oligonucleotide. Following digestion with 

MluI and SalI, constructs were verified by sequencing prior to cloning of the new construct.  

A 270 base pair fragment spanning nucleotides −927 to −658 was generated by PCR and 

cloned into the pGL3 basic vector (PPIRF).  From this, a site specific construct was also 

made by deleting four base pairs from the relevant consensus region (IRFKO) using 

established methods. 

A representative image of the promoters utilised in these studies can be seen in Figure 6 

below.   

Frozen stocks of these promoter reporter constructs had been stored at -80°C prior to use in 

these studies.  Following thawing, aliquots of these stocks underwent plating and then 

maxiprep (Qiagen, UK) to extract the construct and amplify its concentration prior to 

experiment.  Before use, all of the constructs underwent repeat sequencing in order to 

confirm their identities. 

 

Figure 6: DDAH2 Promoter constructs used in exploring response to pro-inflammatory 

stimulus 

Top image: key promoter regions, -1755pGL3sal - whole promoter region synthesised, PPIRF - 

Active region of DDAH2 promoter construct, IRFKO – PPIRF promoter with deletion of a portion of 

the sequence in the IRF1 region, -657 IRF - downstream region. 
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3.2.8.2 Agar plating  

Agar was sterilised in an autoclave for 60mins before cooling to room temperature.  The 

liquid Agar was then divided into aliquots of 30mls in sterile 100mm plates under a Bunsen 

flame.  Ampicillin was added to each plate under the same conditions because pGL3 

constructs also contain a resistance gene to this antibiotic, which allows for selection of 

plasmid containing bacteria.  Plates were allowed to set at 4°C prior to use. 

Aliquot of Cells from glycerol stock or water suspension were applied to individual plates 

and incubated at 37°C in 5% CO2 and 21% Oxygen overnight.  Following incubation, a 

starter culture was selected from each plate and added to 5mls of LB medium and incubated 

at 37°C in 5% CO2 and 21% overnight with vigorous shaking at 300rpm.  

The following day, aliquots of this fluid were collected for DNA measurement using the 

NanoDrop device and preparation for DNA sequencing to confirm the position of each 

construct within the promoter region of the DDAH2 gene.   

3.2.8.3 Maxi Prep 

The conduct of the plasmid DNA extraction was undertaken using the Maxiprep kit (Qiagen) 

and based upon their recommended protocol.  Following confirmation of the correct identities 

of the constructs by sequencing, the collected sample was diluted 1:500 in fresh LB medium 

and incubated for 16 hours at 37°C in 5% CO2 and 21% Oxygen with agitation.   The 

resultant suspension was centrifuged at 4°C for 15minutes. 

In the next phase, the pellet was resuspended, the bacteria exposed to a lysis buffer and then 

incubated on ice for 15mins.  Following a thirty minute centrifugation step at 4°C, the 

plasmid containing supernatant was removed and this step repeated with a further 15 minute 

centrifuge cycle. 

The supernatant from this is then passed through a proprietary resin column to which the 

plasmid DNA adheres.  The column is washed to remove non-adherent contaminants and 

then the plasmid DNA is collected by the passage of an elution buffer through the column 

into a collection vessel.  This DNA is precipitated using isopropanol and collected after a 

further 30minute centrifuge step.  Washed with 70% ethanol and allowed to dry in air, the 

plasmid pellet was then resuspended and concentration of the collected plasmid DNA 

measured by UV spectrometry at 260nM. 

3.2.8.4 Electroporation 

Nucleofection is an electroporation technique that facilitates insertion of plasmid DNA or 

siRNA into the nucleus of a target cell.  It is a well-established technique in RAW 264.7 cells 

and delivers a high degree of efficiency.  RAW 264 cells were cultured and two million cells 

were harvested per sample.  Following centrifugation, cells were resuspended in 100µL 

proprietary of Nucleofector solution (Lonza, GER) and injected into a purpose made cuvette 

and exposed to electroporation in a nucleofector device. After electroporation, cells were 

reincubated for 12 hours in culture medium. 
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Two plasmids were inserted into the RAW 264 cells.  The first, one of the previously 

described human DDAH2 promoter/reporter constructs containing a portion of the promoter 

region and also a reporter construct expressing firefly luciferase following stimulus.  The 

second construct was a pGL4 control promoter (Promega, US) to act as a positive control 

expressing renilla (sea pansy) luciferase. 

The efficiency of this process was determined using a green fluorescent protein (GFP) 

reporter simultaneously electroporated into the RAW cells with the pGL3 construct.  The 

degree of fluorescence was then measured at eight hours after electroporation using 

fluorescence microscopy which demonstrated a >90% efficiency in surviving cells.  A 

representative image can be seen below in Figure 7. 

 

Figure 7: Light microscopy and Fluorescent microscopy images of electroporated RAW 264.7 

cells 

Left image: Representative brightfield image of RAW 264.7 cells 14 hours following electroporation 

and transfection with GFP reporter.  Right image: Representative GFP fluorescent image of RAW 

264.7 cells 14 hours following electroporation and transfection with GFP reporter. 

 

3.2.8.5 Dual Luciferase Assay 

Following insertion of the human DDAH2 promoter into the RAW 264.7 cells, medium was 

changed and cells exposed to a pro inflammatory cocktail or control stimulus, followed by 

incubation at 37°C in 5% CO2 and 21% Oxygen for 8 hours prior to analysis.  Following 

incubation, cells were washed and lysed (Passive Lysis Buffer).    

Luminescence was determined using the dual Luciferase reporter assay (Promega, USA).  An 

aliquot of cell lysate was applied to a firefly luciferase reporter to generate a stable luciferase 

signal from the pGL3 construct. Following measurement of luminescence, the primary 

reaction was quenched and Renilla (Renilla reniformis or sea pansy) luciferase intensity from 

the pGL4 control promoter stimulated.  Luminescence was then reassessed and used to 

correct each individual measurement for variability of cell number and electroporation 

efficiency.   
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3.3 Biochemical Methods 

3.3.1 Measurement of nitric oxide concentrations 

3.3.1.1 The Griess reaction 

The Griess reaction offers a reliable method for determining the amount of nitrite produced 

by a chemical reaction[227]. Nitrite is the stable end product of NO generation and is the 

result of the interaction between nitroxides and sulfanilic acid that then goes on to react with 

N-(1-napthyl) ethylenediamine.  This then produces a purple azo-dye compound that can be 

measured using spectrophotometric techniques since it absorbs maximally at 546nm [228-

230]. 

Griess reagent is prepared from the mixing of two solutions immediately prior to 

experimentation.  Solution A is 1% (w/v) sulphanilamide   in 5% phosphoric acid.  Solution 

B is 0.1% (v/v) napthylethylenediamine prepared in distilled water.  Both solutions are stored 

at 4°C until shortly before use, when equal volumes of each are mixed together.  100µL of 

the supernatant from the different conditions was removed at each time point under 

investigation and applied in triplicate to a well of a 96 well plate with an equal amount of the 

newly mixed Griess reagent also added to each well at room temperature. After an incubation 

period of 10 minutes, a micro plate reader measured absorption of light at 540nm in each of 

the wells.  In order to determine the nitrite production, a standard curve of absorbance (0 to 

100 µM) was prepared for each sample.  Untreated medium containing monocytes usually 

only contains less than 1μM concentration of nitrite[231, 232].  

3.3.1.2 Chemiluminescent measurement of nitrate and nitrite 

The Sievers NOA 280i (GE Analytical Instruments) was used to measure Nitrate + Nitrite 

(NOx) content of biological samples.   Tissue and plasma samples underwent methanol 

precipitation using 1:10 dilution fraction.  Samples were run in duplicate and the mean value 

taken as the final result.   

The measurement of NO using a chemiluminescent technique requires the re-derivation of 

NO from nitrites and nitrates (stable end-products of NO activity) by reduction in heated 

vanadium chloride. NO is released as a gas by this reaction which is detected and quantified 

by reaction within the detector with ozone which produces light in the red/infra-red spectrum. 

NO produced by this reaction is quantified by comparison against a standard curve of sodium 

nitrate in the range 0 to 100µM. 

3.4 In vivo Methods 

3.4.1 Animal Husbandry 

Animals were house in accordance with home office guidelines and procedures were 

performed under Project Licence (70/7049) and Personal License (76/26000).  Throughout 

the care and experimental phases animals were kept in standard conditions with free access to 

food and water.  
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3.4.2 Transgenic models 

3.4.2.1 Generation and Identification of DDAH2 knockout mice 

Heterozygous DDAH2 genetic knockout mice (ddah2
+/-

), were obtained from the Texas 

Institute for Genomic Medicine (http://www.tigm.org/).  The genetic knockout of DDAH2 

was generated in a high throughput gene-trapping strategy using retroviral vectors and 

insertion of multiple terminal repeat sequences in the DDAH2 gene[233].  Global Knockout 

mice were produced by breeding DDAH2 
+/-

 and subsequent breeding of DDAH2
-/- 

offspring 

to produce a breeding line of globally deficient in DDAH2 (Figure 8). 

 

Figure 8: Schematic representation of the development of a global Ddah2 knockout mouse using 

high throughput gene trapping strategy. 

Tandem PCR was used to identify the virally inserted long terminal repeat (LTR) or the wild-

type allele (ddah2
+
).  This process used a forward primer common to both sequences and can 

be seen in Table 15. 

 

Thermal cycling conditions were as follows:  

95°C for 5 minutes 

40 cycles of 95°C for 30 seconds 

57°C for 40 seconds 

72°C for 1 minute 

72°C for 5 minutes 

PCR products were analysed using standard agarose gel electrophoresis methods and 

visualized with ethidium bromide (Sigma-Aldrich, USA). 
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3.4.2.2 Generation of Macrophage specific (LysMCre) knockout mice 

 DDAH2
flox/flox

LysMCre animals employ the LoxP Cre recombinase technique with tissue 

specificity delivered via Cre expression at the murine M lysozyme locus using a previously 

established method[234] (Figure 9).  This results in 88-98% of deletion of ddah2 in mature 

macrophages and 100% in granulocytes.  This specificity can be achieved in murine models 

because unlike in humans there are two lysozyme genes coding for myeloid cells (M) and 

Paneth Cells (P).  The impact of this process is that DDAH2 knockout can be achieved in the 

two immune cell types described with only microglial cells (the only other cell type 

expressing the M lysozyme) also deficient in DDAH2 [235]. 

 

Figure 9: Schematic representation of the LoxP Cre recombinase model employed to delete 

Ddah2 from murine macrophages 

Schematic representation of the LoxP Cre recombinase model employed to delete Ddah2 from Murine 

cells containing the M Lysozyme (Macrophages, Granulocytes and Glial cells).  Mice Cre positive in 

the Lysozyme M locus were bred with LoxP positive mice at the Ddah2 gene.  Resulting offspring 

had Ddah2 cleaved from the M Lysozyme resulting in tissue specific Ddah2 knockout. 

 

Dual PCR was undertaken to demonstrate the presence of the Cre Recombinase and DDAH2 

LoxP in knockout animals.  PCR protocol and primer sequences can be found in Table 14 and 

Table 15.   

Sequence detection protocol 

Cre Recombinase LoxP  

94°C for 2minutes 94°C for 2minutes 

40cycles of 94°C for 20seconds 35 Cycles of 94°C for 30 seconds 

60°C for 40seconds 65°C for 30seconds 

72°C for 1minute 68°C for 1minute 

72°C for 5minutes 68°C for 7minutes 

Table 14:PCR protocol for the identification of Cre recombinase and LoxP sequences 

 



  

71 

 

  

Primer 

Name 

Target Sequence (5'-3') 

F Common forward 

primer 

CACCCTTTCTGTTTCTTCTCT 

Wt reverse primer, 

Ddah2+ allele 

AAATGGCGTTACTTAAGCTAGCTTGC 

KO reverse primer, 

Ddah2- allele 

AGTACTCCATGCTCCCTTTGA 

Cre  Forward Primer GCCTGCATTACCGGTCGATGCA 

Cre Reverse Primer GTGGCACATGGCGCGGAAC 

ddah2 flox Forward primer GGGCAGGGCTATGGTGAAGG 

ddah2 flox Reverse Primer ACCTCCTGGCTGTTGGGCAG 

Table 15:Primer sequences for genotyping PCR, RT-PCR 

3.4.3 In vivo radiotelemetry of blood pressure and activity 

All studies were undertaken using animals aged between eight and ten weeks of age.  

Anaesthesia was induced in spontaneously breathing animals using isoflurane at a 

concentration of 2-5% in an induction chamber.  When fully anaesthetised, animals were 

shaved and delivered subcutaneous analgesia with buprenorphine at 0.2mg/kg.   

Animals were transferred onto a microsurgery operating table and anaesthesia maintained 

with 1-2% isoflurane. The left internal carotid artery was exposed and two ligatures loosely 

applied to the vessel.  The proximal tie was tightened to obstruct blood flow and the vessel 

cannulated with the HD-X11 radiotelemetry probe (DSI ltd, St Paul, MN, USA) as per the 

manufacturer’s instructions.  Following probe insertion, the distal ligature was tied to 

obstruct flow and the proximal tie secured around the probe.  The unit containing the battery 

and radiotelemetry transmitter were inserted subcutaneously on a left side of the abdominal 

wall. 

Following surgery, animals were recovered in for at least one hour in a warming chamber and 

then once fully active returned to individual cages where they were housed for 14 days.  

Following recovery, telemetry recording was commenced.  Data regarding heart rate, blood 

pressure and activity was continuously recorded of a 24 hour baseline data period. BP 

readings averaged every minute over the measurement period were used and downloaded to 

Excel (Microsoft, US) for analysis.  

3.4.4 Intermittent radiotelemetry monitoring of temperature 

Recording of subcutaneous using a radiotelemetry probe inserted into the subcutaneous tissue 

of the anterior abdominal wall temperature (Bio Medic Data Systems, Seaford, DE, USA) 

was used as an index of sepsis severity and objective experimental endpoint as previously 

demonstrated[236].  
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3.4.5 Determination of Aortic Vascular reactivity 

Following schedule one termination, the thoracic cavity was opened, anterior and middle 

mediastinal structures removed and the aorta dissected.  The isolated aorta was washed in 

warm PBS, slices were mounted on the myograph (Danish Myotechnology, DK) and bathed 

in physiological salt solution (PSS) at pH 7.4 containing the following solutes: 

 NaCl 115mM 

 KCl 4.7mM 

 MgSO4 1.4mM 

 NaHCO3 5mM 

 K2HPO4 1.2mM 

 Na2HPO4 1.1mM 

 CaCl2 1.0mM 

 HEPES 20mM 

 Glucose 5mM 

Functional integrity of the endothelium was demonstrated by the presence of relaxation 

induced by acetylcholine 10-6 mol/L during contraction obtained with phenylephrine 10
-

3
mmol/L.  Concentration-response curves to phenylephrine(Sigma-Aldrich, USA) (10-5 to 

10
-1

mmol/L), acetylcholine(Sigma-Aldrich, USA) (10
-6

 to 10
-3

mmol/L) and sodium 

nitroprusside (Sigma-Aldrich, USA) (10
-8

 to 10
-3

mmol/L) were made for each aortic ring 

sampled. 

Phenylephrine contraction was expressed as absolute tension in mNewtons (mN). Relaxation 

was expressed as a percentage of the phenylephrine-induced contraction. The concentrations 

of agonist producing half-maximum effect (EC50 values) was determined from the individual 

concentration-response curves by nonlinear regression analysis and expressed as moles/L. 

Two-way ANOVA was used for comparison of concentration dependent effects in knockout 

mice and their appropriate controls.  

3.4.6 Invasive Cardiovascular Hemodynamic Measurements in 

anaesthetised animals 

Mice were anaesthetised as described above, shaved and placed on a micro surgery table.  

The right common carotid artery was identified and a 1.4French gauge Millar MikroTip 

pressure catheter inserted and advanced distally until stable blood pressure traces were 

obtained.  Following a fifteen minute period of haemodynamic stability, values were 

recorded using the PowerLab and Chart 5 software (ADInstruments Ltd, UK).   
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3.4.7 Echocardiography 

Trans-thoracic echocardiography was performed under general anaesthesia using a Vivid 7 

echocardiography machine (GE Healthcare, UK) and a 14MHz transducer in spontaneously 

breathing mice anesthetised with isoflurane.  Pulsewave Doppler was used to measure aortic 

outflow tract velocity which results in the acquisition of time integral envelopes to give the 

velocity time integral (VTI).  Following completion of the study, stroke volume index (SVi) 

was calculated as follows: 

SVi = (VTI x 0.0143)/weight  

Where VTI = Stroke distance, 0.0143 = standardised aortic diameter and weight = the animal 

body weight.   

Cardiac output was calculated as the product of stroke volume and heart rate. 

3.4.8 Isolation of primary macrophages 

Following schedule one termination, the animal was positioned and anterior abdominal wall 

fur removed.  The peritoneal cavity was exposed and immediately filled with 3mL cold PBS 

(Invitrogen, UK) and gently agitated for thirty seconds. The peritoneal washout was carefully 

collected by aspiration and spun for ten minutes at 1000 RPM, at 4ºC to sediment the cells. 

Cells were suspended in Dulbecco’s modified Eagles medium (DMEM) cell culture media 

with L-glutamine (all Invitrogen, Paisley, UK), and then incubated for one hour at 37°C and 

5% CO2 to allow macrophages to adhere to the wells. Once the cells had adhered, media was 

removed and cells were gently washed with PBS to remove any non-adherent macrophages. 

Fresh media was then added. Total cell number was counted using a haemocytometer prior to 

experimental application (approximately 2x10
6
 cells viable were retrieved from each animal). 

3.4.9 Collection of murine plasma 

Plasma was obtained via transcutaneous cardiac puncture of anaesthetised mice.  Following 

collection of blood, samples were placed in Lithium-heparin coated tubes (Sarstedt, GER) 

and centrifuged at 2000g for 5mins at 20°C.   After collection, animals were culled using 

schedule one techniques.  Plasma was separated from the samples and stored at -80°C prior to 

analysis. 
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3.4.10 Induction of sepsis in animals 

The Caecal Ligation and Puncture model was used to induce sepsis in male mice from 8-10 

weeks old.  Following induction and maintenance of anaesthesia with isoflurane animals 

were weighed and a modified laporotomy performed utilising a lateral incision in the lower 

left quadrant of the abdominal wall.  The large intestine in the mouse was exposed and a 50% 

portion of the caecum was ligated using 2/0 silk suture.  The portion of caecum distal to the 

obstruction was surgically perforated in two places using a 21G needle.  Before being 

returned to the peritoneal cavity, manual pressure was applied to extrude faeces and ensure 

patency of the iatrogenic perforation.  The proportion of caecum ligated and gauge of 

puncture needle determine severity of this model[237]. The peritoneum and abdominal walls 

were closed with 5/0 and 4/0 ethilon sutures respectively.  The operative steps are 

summarised in Figure 10.  Analgesia with buprenorphine 0.2mg/kg was administered to all 

animals at induction of surgery and every 12 hours until termination. Fluid resuscitation with 

30ml/kg 0.9% sodium chloride solution was administered via subcutaneous injection at 

completion of surgery and at each 24 hour time point until cessation of the experiment.  In 

order to minimise animal suffering and to facilitate determination of differences in plasma 

NO production and ADMA level the end point used was independent blinded assessment of 

illness severity based on an established severity score by an experienced named animal care 

and welfare officer.   

A sample size of 8 animals per group was chosen based on previous mortality model 

estimates of inter group difference, an alpha error of 5% and a beta error of 80%[238]. 
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Figure 10: Schematic Representation and representative images of the conduct of caecal ligation 

and puncture (CLP) in a murine model of polymicrobial sepsis. 

A: Following the induction of anaesthesia and administration of subcutaneous buprenorphine.  The 

left lateral abdominal wall is shaved and prepared with topical antiseptic.  Following draping, the skin 

and peritoneal connective tissue is incised using a lateral incision in the left lower quadrant of the 

abdomen. B: The terminal ileum and ileo-caecal junction is exposed and the blind ending portion of 

caecum identified.  C: A variable portion of the terminal ileum (typically the distal third) is ligated 

using a 2/0 silk suture.  D: Following ligation, a 21G hypodermic needle is used to puncture the 

ligated portion of bowel at two points.  A small amount of faeces is extruded to ensure that the 

puncture sites are patent and the ileo-caecal region is returned to the peritoneal cavity which is closed 

with 5/0 silk, the skin is closed with 5/0 dissolvable ethilon 
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3.4.11 Estimation of whole blood and peritoneal bacterial load 

Samples of whole blood and peritoneal washout fluid were collected as described above.  

Following serial dilutions, aliquots were plated onto freshly prepared 50mm tryptic soy agar 

plates without antibiotic and incubated overnight at 37°C, 21% O2 and 5% CO2.  The 

following day the most appropriate dilution was identified and counted for Colony Forming 

Units (CFU).  Correction was made for dilution and bacterial loads compared. 

3.4.12 Polyinosinic polycytidylic acid stimulus 

Polyinosinic polycytidylic acid (Poly I:C)(Sigma Aldrich) was used as a non-infective model 

of the early response to TLR3 mediated stimulus.  Intraperitoneal injection was undertaken 

and observation over the experimental period was undertaken using established end points 

described above.  Poly I:C was injected at 2mg/kg in all reported experiments based on a 

dose determined in previously published models[239]. 

3.5 Human studies 

3.5.1 Human Hypoxia Study 

Ethical Approval was received from the University College London Ethical review panel on 

4th March 2014 ref: 2416.001.  The title of the study was ‘ A prospective observational study 

into the effects of acute normobaric hypoxia on endogenous regulators of Nitric Oxide 

synthesis on healthy volunteers’. 

3.5.1.1 The Hypoxic Chamber 

The study was conducted in a normobaric hypoxic chamber which is a purpose built device 

supplied and installed by Hypoxico ltd (NY, USA) and installed at the University College 

London Institute for Sports and Exercise Health.  The chamber generates a temperature, 

humidity controlled hypoxic environment with ambient fraction of inspired oxygen of 11-

21%.  The temperature was regulated at between 22°C and 24°C to optimise participant 

comfort and eliminate change in temperature as a source of variation throughout the 

experiment.  CO2 was removed using a purpose built carbon dioxide scrubber that limits the 

CO2 level within the chamber to 0.2%.  The chamber is 8m
2
 in size and made of transparent 

plastic to facilitate continual external safety assessment.  Participants were encouraged to 

remain in the chamber throughout the 8 hour assessment period and a low nitrate lunch was 

provided for all volunteers as well as ad libitem access to water.  If at any stage a participant 

requested extraction from the chamber this was done immediately. 

3.5.1.2 Cardiovascular assessment 

Cardiovascular assessment was undertaken using a variety of methods including traditional 

non-invasive techniques such as non-invasive blood pressure (Omron Ltd, NL) and digital 

pulse oximetry (Nonin Ltd, USA), which gives accurate values of both heart rate and 

peripheral arterial oxygen saturations.   
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In addition, cardiac output, stroke volume and systemic vascular resistance were assessed 

non-invasively using the Clearsight™ device (Edwards Life Sciences, USA) which utilises a 

modified Penaz technique and is now a well established and validated mode of continuous 

assessment of blood pressure[240].  In addition to measuring heart rate and blood pressure 

using this method, the Clearsight™ device was able to interrogate the morphology of the 

arterial pressure waveform to calculate stroke volume and systemic vascular resistance.  The 

Clearsight device has been extensively against other methods of cardiac output assessment 

including oesophageal Doppler and transpulmonary thermodilution[241, 242]. 

3.5.1.3 Assessment of adverse events 

The impacts of acute or subacute hypoxia may or may not be detected by an individual 

exposed to the hypoxic environment, and can, in a small proportion of people be serious.  In 

order to ensure that adverse events were detected early and an optimal safety profile 

maintained, a modified Lake Louise Acute Mountain Sickness (AMS) assessment tool was 

developed.  The Lake Louise Scoring system combines two domains, subjective and 

objective. The subjective component includes a series of questions regarding symptoms of 

acute mountain sickness whereas the objective, a series of assessments undertaken by a third 

party of potential altitude related neurological sequelae[243, 244].  This tool has been 

validated for the assessment of potential mountain sickness  both at sea level in hypobaric 

chambers[244] and at the effective altitude generated by the hypoxic chamber in this 

study[245].  Based on these studies an incidence of one or more symptoms of AMS of around 

30% would be expected.  Due to the daytime only nature of the study, the objective measure 

of sleep quality which is included in the complete Lake Louise assessment was excluded.  

Each remaining domain was scored between 0 and 4 with a total score of 3 plus a headache 

being considered positive for AMS, an indication for immediate cessation of the study and 

removal of the volunteer from the chamber.   

Domains assessed in the modified questionnaire are displayed in Table 16.  Assessments 

were undertaken at twenty minutes after entry into the chamber and on an hourly basis 

throughout the study thereafter, unless the volunteer reported any positive symptoms in 

which case, the study supervisor conducted subjective and objective analyses every twenty 

minutes throughout the study. 
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Subjective assessment criteria -Symptom Objective assessment criteria - Sign 

Headache: 

No headache 0  

Mild headache 1   

Moderate headache 2    

Severe, incapacitating 3    

Change in mental status: 

No change 0 

Lethargy/lassitude 1 

Disoriented/confused 2   

Stupor/semi consciousness 3  

Gastrointestinal: 

No GI symptoms 0  

Poor appetite or nausea 1    

Moderate nausea or vomiting 2 

Severe N&V, incapacitating 3    

Ataxia(heel to toe walking): 

No ataxia 0 

Manoeuvres to maintain balance 1 

Steps off line 2 

Falls down 3 

Can't stand 4   

Fatigue/Weakness (F/W) 

Not tired or weak 0 

Mild fatigue/weakness 1    

Moderate fatigue/weakness 2    

Severe F/W, incapacitating 3    

Peripheral Oedema: 

No oedema 0  

One location 1 

Two or more locations 2    

Dizziness: 

Not dizzy 0  

Mild dizziness 1 

Moderate dizziness 2 

Severe, incapacitating 3    

 

Table 16: Modified Lake Louise acute mountain sickness questionnaire.   

The Lake Louise questionnaire was utilised to determine the presence and severity of features of acute 

mountain sickness and has been widely validated[245].  The sleep quality index was removed due to 

the study duration. 

3.5.1.4 Isolation of Peripheral blood mononuclear cells 

Blood collected from the patient was diluted with twice the volume of balanced salt solution 

and layered carefully over an equal volume of Ficoll-Paque Premium (GE Life Sciences, UK) 

separation medium to avoid mixing of the two liquids. 
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The sample was centrifuged at 400g at 18-20°C for 40mins in a bucket centrifuge without 

break to facilitate separation of the sample into plasma/platelets, monocyte and 

erythrocyte/granulocyte layers.  Following separation, the plasma portion of the separated 

blood is removed using manual pipetting and stored for later analysis.  The mononuclear cell 

layer is removed without disruption of the Ficoll Medium and resuspended in RLT buffer for 

subsequent mRNA analysis or PBS with protease inhibitor for protein determination and 

Western blotting.  The separation process is summarised in Figure 11. 

 

Figure 11: Isolation of peripheral blood mononuclear cells (PBMCs) using Ficoll separation 

Schematic representation of the isolation of human Peripheral Blood Mononuclear Cells (PBMCs).  

Fresh whole blood anticoagulated with EDTA is diluted with 2x the volume of a balanced salt 

solution and carefully layered upon a separation medium (Ficoll-Paque).  Samples are then 

centrifuged at 400g for 40minutes at 400g without break at termination.  Post separation plasma is 

collected for experiment and the remainder carefully removed from the PBMC layer.  The PBMCs are 

collected, washed twice with PBS and stored at -80°C.  

 

3.5.1.5 Plasma sample preparation for analysis 

Whole blood is collected in EDTA at 1.5mg/ml and stored on ice for subsequent preparation.  

Within 60mins of collection, the Cells are removed from plasma by centrifugation for 15 

minutes at 1,000-2,000g at 4°C which removes platelets from the plasma sample.  The 

separated plasma was stored separately at -80 °C pending subsequent analysis. 
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3.5.2 Genome wide association study  

Genome wide association studies (GWAS) have become an important form of translational 

study in a range of disease areas.  By conducting widespread screens of SNPs in human 

samples taken from patients with a pre-defined illness, it is possible to identify genes which 

are associated with that disease state.  This can offer diagnostic and risk stratification in the 

clinic but it can also offer the opportunity for ‘back-translation’ where a finding in a GWAS 

can drive mechanistic investigation in the laboratory.  There are some challenges associated 

with GWAS however, not least is the observation that due to the extensive correction that 

must be undertaken for multiple comparisons, common SNPs are more likely to reach the 

level of significance typically required in this kind of work[246, 247].  This exposes the risk 

that important regulators of response and outcome could be missed for this reason. 

An alternative approach is the hypothesis based interrogation of these data sets once 

collected.  In the presence of a mechanistic finding and a valid hypothesis, specific SNPs or 

genes within a GWAS data set may be interrogated for insights into outcome that are 

significant on this level but do not reach the significance level typically required (usually set 

at a p value of 10
-8

).when more than 1million polymorphisms are being examined across the 

whole genome  

In the field of Nitric Oxide regulation, this method has been successfully employed to explore 

the relationship between MA regulating genes and outcome in chronic kidney disease.  In 

2012,  Caplin et al [21], demonstrated that based on a hypothesis driven approach, it was 

possible to confirm an observation made in animal models that SNPs of the AGXT2 gene are 

associated with systolic and diastolic blood pressure in a large healthy volunteer cohort. 

3.5.2.1 The Genetics Of sepsis and Septic shock in Europe (GenOSept) and 

Genome wide Association in Sepsis (GAinS) Studies 

The GenOSept and GAinS studies were conducted in seventeen countries across Europe 

between 2005 and 2011.  The GenOSept study recruited 1525 patients with severe sepsis and 

septic shock in 143 hospitals in sixteen countries.  Patients included in this study were 

suffering from sepsis as a consequence of either community acquired pneumonia (CAP) 

(n=794) or faecal peritonitis (FP) (n=731).  This study was completed in 2009 at which time 

the GAinS study started to recruit patients with CAP (n=241) in the UK.  In the original 

study[248], two additional data sets were interrogated that had been collected from the 

Vasopressin in Septic Shock Trial (VASST)[76] and the Human Activated Protein C 

Worldwide Evaluation in Severe Sepsis (PROWESS)[249] trials.  The study found that in 

patients with CAP only, a single SNP of the FER gene (rs4957796) was associated with 

survival at the genome wide level. 

In our study, we drew on our previous work showing that in animal models, knockout of 

DDAH1 and DDAH2 both have significant – and in fact opposite – impacts on outcome in 

septic shock[30, 213].  We interrogated the GAinS and GenOSept cohorts with the specific 

hypothesis that SNPs of DDAH1 and DDAH2 are associated with outcome in human sepsis.   
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Our hypothesis based testing was conducted on both the directly measured SNPs within the 

territory of our two genes of interest and also on indirectly measured genes, using imputation 

to identify SNPs in linkage disequilibrium with those that are directly measured. 

This combination of direct and indirect measures is a well established approach and resulted 

in the analysis of 601 SNPs of the DDAH1 gene and 36 for DDAH2.  Explored SNPs are 

published in Appendix 1. 

3.5.3 VAsopressin versus Noradrenaline as Initial therapy in Septic sHock 

(VANISH) study 

The VANISH study was undertaken between 2013 and 2015 and was a randomised 

controlled trial in a 2x2 format of vasopressin vs. noradrenaline with or without the addition 

of exogenous corticosteroids in patients with septic shock.  The VASST study[76] had 

suggested that vasopressin might offer a favourable profile over conventional catecholamines 

in patients with septic shock and that this benefit might particularly prominent in patients 

who also received steroids as an adjunct to their management of sepsis.  This study recruited 

412 participants with vasopressor dependent septic shock from eighteen intensive care units 

in the UK.  The full protocol for this study can has been published[250]. 

The primary endpoint of the study was the number of renal failure free days, with secondary 

end points including 28 day mortality and length of hospital and ICU stay.  The study 

included the collection of an extensive amount of data including routinely collected clinical 

data and detailed information regarding illness severity (SOFA score[251]), degree of shock 

and level of organ support required during the ICU stay.  In a subpopulation of patients 

recruited to three of the study centres, regular blood sampling was undertaken during the first 

seven days of admission to the critical care unit.   
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Score 1 2 3 4 

PaO2/FiO2 ratio 

(mmHg) 

<400 <300 <200 and 

mechanically 

ventilated 

<100 and 

mechanically 

ventilated 

Glasgow Coma Scale 13-14 10-12 6-9 <6 

Mean Arterial 

Pressure or 

Vasopressor use 

(mcg/kg/min) 

<70mmHg Dopamine <5 

or 

Dobutamine 

any dose 

Dopamine >5 or 

epinephrine <0.1 

or 

norephinephrine 

<0.1 

Dopamine >15 or 

epinephrine >0.1 

or 

norephinephrine 

>0.1 

Liver (µmol/L) 20-32 33-101 102-204 >204 

Coagulation (platelet 

count x1000/µL) 

<150 <100 <50 <20 

Renal Creatinine 

(µmol/L) or urine 

output (mL/day) 

110-170 171-299 300-440 or 

<500mls/day 

>440 or 

<200mls/day 

Table 17: The table summarises the Sequential Organ Failure Assessment (SOFA) score 

criteria. 

The maximum score is 24 and both admission and peak SOFA score are predictors of outcome 

in critical illness[252]. 

Samples were collected at admission to the ICU prior to the commencement of the 

intervention and on study day one (24-36 hours), two (48-72 hours) and four (96-120 hours) 

after enrolment.  In 215 patients, plasma and buffy coat samples were collected by 

centrifugation of whole blood at the collection centre immediately following collection.  In a 

further 75 patients, whole blood samples were collected in EDTA tubes and prepared as 

described in below.  All samples were marked with appropriate anonymised study ID and 

reference and frozen at -80°C for storage. Figure 12 summarises with samples collected and 

their analysis. 

 Collection of plasma and buffy coat samples 

 The EDTA bottle was placed in a centrifuge and spun for ten minutes at 1,000 RCF. 

 Following spin, the plasma was immediately transferred into cryo-tubes in 1mls 

aliquots. 

 The buffy coat layer was transferred into one cryo-tube. 



  

83 

 

  

 

Figure 12: Schematic representation of sample handling of blood and plasma collected from 

patients in the VANISH trial 
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Access to these samples for analysis of methylarginines and hypothesis based SNP analysis was 

secured. Buffy coat samples and whole blood were sent for analysis of a series of SNPs based on 

the results of other human studies in this project.  Methylarginines, Arginine and plasma NOx 

were analysed as described above.  In order to ensure result consistency across a large number 

of mass spectrometry analysis and account for potential drift of the results over time, on each 

plate a standard curve using the same set methylarginine standards was prepared and run.  An 

example of the standard curves for ADMA seen in each of the study plates can be seen in 

 

Figure 13 below.  Between each set of patient samples, a blank sample of mobile phase was 

run to ensure that there was no run over between samples. All biochemical analysis was 

undertaken in a blinded fashion and only once complete were the outcomes and treatment 

groups made available for analysis. 

 

 

Figure 13: Relationship between area under the curve (AUC) of the chromatogram for ADMA 

specific fragments against the concentration of known standard concentrations of ADMA.  

 r
2
 for all curves > 0.995. 

 

The following analyses were undertaken of the association between the following 

biochemical and clinical indices and the SNPs that were identified: 
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Clinical Outcome Biochemical measures 

shock duration Plasma Nitrate + Nitrite 

Sequential organ failure assessment (SOFA) 

score 

Plasma ADMA 

Incidence and duration of renal failure Plasma SDMA 

28 day mortality Plasma L-Arginine 

Table 18: Clinical outcomes and biochemical indices measured in the patients recruited into the 

VANISH study and for whom plasma was available. 

3.6 Statistics 

 Statistical analysis was performed using the Prism software package (GraphPad Inc, CA, 

USA).  Normally distributed data was analysed using a t test or Analysis of Variance 

(ANOVA) with Bonferroni post-test comparison of groups as appropriate. In cases where 

samples were taken before and after intervention from a single participant, paired analyses 

were used. Non parametric data was analysed using a Mann Whitney U test.  Correlations 

were analysed with Spearman’s and Pearson’s coefficients, Kaplan Meier analyses using the 

Log Rank test.  Values are expressed as either mean +/- standard deviation or Median +/- 

interquartile range. 
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4 The regulation of monocyte DDAH2 by hypoxia 

4.1 Introduction 

4.1.1 Hypoxia and the innate immune response 

Hypoxia is a common feature of critical illness and may arise as a consequence of a range of 

mechanisms.  Failure to adequately oxygenate the blood as it traverses the lungs, impaired 

delivery due to vascular obstruction and the cell’s inability to utilise it effectively are all ways 

in which cells may be exposed to a hypoxic environment.  In addition to this, in inflamed or 

infected tissue, hypoxia may be severe and arise as a result of reduced perfusion, 

microvascular injury and increased interstitial pressure all of which may be coupled with 

increased oxygen utilisation by immune cells[253-256]. 

Under normal conditions the oxygen tension to which cells are exposed lies in the range of 2-

9kPa.  This equates to around 2.5-9% oxygen.  However, in the context of infection, 

markedly lower levels of oxygen may be available with nadir values of less than 1% 

reported[253].  There is burgeoning evidence to suggest that hypoxia is not simply an 

epiphenomenon associated with infection, but that it does in fact regulate a range of immune 

processes and contributes towards the activation of the innate response. 

These studies explore the hypothesis that as a regulator of the immune response to 

inflammation, DDAH2 may itself play an important role in modulating NO production in 

hypoxia. 

4.1.1.1 Hypoxia inducible factor regulates the hypoxic response 

Hypoxia inducible factors (HIF) were originally discovered in the early 1990s as one of the 

mechanisms by which erythropoietin was synthesised in hypoxic conditions[257, 258]. 

Regulated by both oxygen and iron levels, HIF is found in all mammalian cells and has been 

shown to regulate more than 100 genes in response to hypoxic stress.  HIF regulated genes 

modulate metabolism, vascular tone, new vessel development and apoptosis, with 

implications in both healthy and disease states[259-262].   

The HIF complex is comprised of the constitutive HIF1β which binds to one of two inducible 

components, HIF1α and HIF 2α.  Under normal conditions, the inducible subunits are 

unstable and as a consequence are readily turned over via the ubiquitin-proteasome 

pathway[263] and by asparaginyl hydroxylase[264].  In hypoxia, these hydroxylase pathways 

are inhibited and the HIF proteins are stabilised.  As a consequence, HIF1α and HIF 2α 

accumulate, translocate to the cell nucleus and form a heterodimer with HIF1β.  This 

heterodimer then binds directly to regions of the promoter sequence of its target genes 

(Hypoxia response elements, HREs) to initiate transcription. 
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4.1.1.2 Hypoxia inducible factor and innate immune cells 

Global knockout of HIF 1α is not compatible with life in murine models, however using a 

similar technique to that employed in this study, a mouse has been developed that is HIF1α-

deficient only in macrophages, granulocytes and microglial cells.  Whilst this mouse is 

phenotypically normal under control conditions, when exposed to an inflammatory stress, it 

displays significantly impaired macrophage activation and induction of the local 

inflammatory response[265].  

The impact of the reduced macrophage function observed in the HIF1α knockout mouse is an 

impaired capacity to kill both Gram-positive and Gram-negative bacteria[265, 266].  By 

contrast, a hypoxic environment appears to improve bactericidal activity of normal 

macrophages and neutrophils[266, 267].  This process may be mediated by a number of 

mechanisms including, in part, by the HIF1α-induced upregulation of iNOS [266] and 

increased cytokine production[267].  It is interesting to note that in contrast to these hypoxia-

mediated processes, HIF does not appear to modulate reactive oxygen species (ROS) 

synthesis by macrophages which appears to be independent of the presence of HIF1α[268] 

This hypoxia-mediated augmentation of the innate response appears to be synergistically 

regulated by nuclear factor κB (NF-κB)[269] whereby hypoxia stimulates the activation of 

NF-κB by inhibiting metabolising hydroxylases.  NF-κB can in turn provoke the upregulation 

of HIF1α, thus HIF synthesis is a major regulator of innate immune response[270].  

In animal models of sepsis, HIF1α deletion in macrophages and granulocytes is protective against a 

normally fatal dose of LPS and significantly reduces the systemic inflammatory state [268]. 

4.1.1.3 The impact of hypoxia on the inflammatory response 

Hypoxia has been shown to induce the synthesis of a number of pro and anti-inflammatory 

mediators of inflammation by innate immune cells.  The list is extensive and includes IL-1, 

TNF-α, PGE2, IFN-γ and IL-10.  This has been demonstrated in both human and murine 

macrophages with a significant number shown to be HIF-mediated[271, 272]. 

Studies also report a number of mechanisms by which hypoxia can regulate NO production 

by immune cells.  It is well established that oxygen is essential for the oxidation of NADPH 

by NOS in the synthesis of NO.  Two moles of oxygen are required for the production of 1 

mole of NO[273].  For this reason, it is well established that in low oxygen conditions, 

isolated macrophages, particularly in murine cell lines and primary culture, produce only 

minimal NO when exposed to a pro-inflammatory stimulus in a hypoxic environment[274].   

However, in murine and human cells it has been demonstrated that hypoxia, via the HIF1α-

mediated stimulation of iNOS HRE elements, is able to upregulate iNOS synthesis and thus 

protein expression[272, 275].  As a consequence, murine cells display increased iNOS 

expression, but no apparent elevation of NO synthesis when cultured in hypoxic conditions.  

If however, they are subsequently returned to a normoxic environment, this upregulation of 

iNOS rapidly leads to the increased synthesis of NO[276].  This pattern is less apparent in 

human cells which produce less NO in response to pro-inflammatory stress and therefore are 

not as oxygen-dependent as murine macrophages. 
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4.1.2   Hypoxia studies in humans and animals 

The growing interest in the hypoxia-mediated response has led to the development of a 

number of techniques designed to further examine the impact of hypoxia on biological 

systems.  They can be divided into those which involve the culture of primary cells or 

immortalised cell lines in a hypoxic environment (ex vivo studies), the exposure of whole 

animals to hypoxic conditions whilst in a controlled environment (in vivo animal studies) and 

studies in humans, which can be divided into normobaric and hypobaric hypoxia trials. 

4.1.2.1 Ex vivo studies of hypoxia 

Tools for exploring the role of hypoxia in tissue culture can be categorised into two groups.  

The first, the hypoxic chambers, are generally smaller devices that rely on sealing the tissue 

culture plate or plates within an airtight container before delivering a known concentration of 

oxygen.  Typically, this is achieved using nitrogen/oxygen mix cylinders to generate 

anoxia/hypoxia within the container.  This method is straightforward, but is limited by the 

ability to adjust and regulate the environment, particularly the ambient CO2 and humidity.  

The alternative and gold standard approach for studies in this area is a modified glove box. 

Nitrogen and CO2 are delivered by regulators at concentrations that can be set and 

continuously measured electronically.  The result is that a titratable oxygen concentration of 

between 1 and 100% can be achieved.  Other advantages of systems such as this include the 

capacity to regulate humidity, adjust the environment during a tissue culture experiment and 

also the availability of an air lock system, meaning that equipment and cells can be 

introduced to the chamber without disrupting the conditions within.  The size of the chamber 

and glove box also means that it is possible to collect and, in some cases, analyse samples 

without exposing them to atmospheric conditions.  For this reason, the hypoxic glove box 

was used in all cell culture studies of murine cells reported in this study. 

4.1.2.2 In vivo animal models of hypoxia 

It is also possible to expose whole animals to hypoxic conditions using modified hypoxic 

chambers.  These may take the form of modified individual cages or larger chambers into 

which the animal is placed.  Some chambers may permit normal atmospheric pressure 

(normobaric), low pressure (hypobaric) or high pressure (hyperbaric) environments; this 

facilitates the study of both hypoxia and also altitude (or diving) as pathological stressors.  

No studies including whole animal models of hypoxia are reported here. 
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4.1.2.3 Human hypoxia studies 

Human studies of hypoxia are a well recognised way to explore the impact of low oxygen 

tensions on a range of pathophysiological responses and have been considered to be a model 

of critical illness worthy of considerable investigation[277, 278].  Hypoxia is also an 

established training tool for endurance athletes in whom chronic hypoxic exposure leads to 

increased erythropoietin synthesis, haemoglobin concentrations and therefore tissue oxygen 

delivery during sport[279]. Broadly, human studies exploring hypoxia are divided into two 

groups, normobaric and hypobaric hypoxia. Each group is associated with different 

advantages and compromises. 

It has long been recognised that altitude exposure results in a series of adaptations leading to 

improved exercise tolerance over time and that some individuals or ethnic groups are better 

adapted to tolerate such exposures.  The discovery that changes in atmospheric pressure at 

altitude reduce available oxygen (although not the actual percentage) and that this provokes a 

range of physiological adaptations is now well established.  Hypobaric hypoxia has been 

shown to affect a range of systems including coagulation, cardiovascular function and 

metabolism[280-282].  The advantages of hypobaric hypoxia studies include the ready 

availability of volunteers, the ability to titrate the severity of the hypoxic exposure based on 

height climbed and the fact that studies can be undertaken with clinically relevant durations 

of up to several weeks.   

The limitations associated with this technique relate to the nature of the hypoxic exposure 

and environmental conditions.  At altitude, the fraction of inspired oxygen remains at 21% 

(as it is at sea level), however, due to the reduction in atmospheric pressure, the available 

number of oxygen molecules is reduced leading to a relative hypoxic exposure.  This differs 

from the mechanisms discussed previously that are responsible for hypoxia in clinical 

populations.  Furthermore, at altitude there are significant changes in the environment that 

make this technique less representative of clinical exposure.  These include barometric 

pressure, temperature and dietary variation as well as increased ultraviolet light exposure.  

The impact of these differences has been debated and results from studies undertaken in these 

environments must therefore be interpreted with these confounders in mind[283].  Of note is 

that it is also possible to conduct hypobaric hypoxia studies at sea level using chambers out 

of which a portion of the gas is pumped in order to simulate the lower barometric pressure 

seen at altitude. 

The alternative strategy for modelling hypoxia in humans is to deliver hypoxic gas mixtures 

to healthy volunteers at sea level.  Normobaric hypoxia may be delivered using a facemask or 

alternatively using larger chambers in which the environment is regulated.  It is both feasible 

and practical to deliver hypoxic mixtures by facemask, however the tolerability of this 

approach and the duration of therapy are limited.  Also, because the peak inspiratory flow 

rate typically exceeds the rate of gas flow that can be delivered by a cylinder, even one with a 

dual stage pressure reducing demand valve, the actual percentage of inspired oxygen cannot 

be defined exactly. Indirect measures such as arterial oxygen concentrations must therefore 

be used which may not reflect subtle changes in hypoxic exposure.   
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The second approach, and the one used in the studies reported here, is the hypoxic chamber.  

These systems include a sealed container of variable size into which a controlled hypoxic 

mixture is pumped and set at a known inspired percentage or target altitude.  Within the 

chamber, humidity and temperature can be readily controlled and CO2 is removed through 

the use of an extraction system that also records the concentrations in the atmosphere.  This 

system confers the advantages that it is a safe, easily monitored and readily reversible 

environment.  It allows continual observation without the requirement for the supervisor to be 

exposed to hypoxia, it is titratable and exposes the volunteer to none of the other 

environmental variation seen at altitude.  The main limitation is time, as spending long 

periods of time in the chamber can prove claustrophobic and uncomfortable.  As a result, the 

duration of studies is typically limited to hours rather than days of continuous exposure.  

Nonetheless, this mode has been well validated for use in studies of the pathophysiology of 

hypoxia[284-290]. 
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4.1.3 Hypoxia and the endogenous regulation of nitric oxide synthesis 

Whilst it has been well established that hypoxia has a direct effect on NOS expression and 

NO synthesis in both humans and animals [291, 292], relatively little work exists that 

explores the relationship between MAs, DDAH and NO synthesis in hypoxia.  These limited 

studies do however pose interesting questions regarding the regulation of NO synthesis by 

DDAH in hypoxic conditions and its relevance to disease. 

4.1.3.1 Methylarginines in hypoxia 

There is some evidence from association studies to suggest that ADMA is elevated in disease 

states in which hypoxia is a feature such as chronic obstructive pulmonary disease[293] and 

asthma[294].  Little is known about the regulation of MA levels in the context of hypoxia 

alone, however some evidence is emerging regarding the mechanistic role that they play in 

regulating the hypoxic response.   

One study of human pulmonary endothelial and smooth muscle cells in culture showed that 

the administration of exogenous ADMA stabilised HIF1α, activated STAT3 and resulted in a 

phenotype consistent with in vitro models of pulmonary vascular dysfunction[295].  In this 

study, ADMA also appeared to act synergistically with hypoxia to regulate cytokine synthesis 

by these cells.  In healthy human volunteers, a study exploring the relationship between MAs 

and normobaric hypoxia suggested that an acute increase in ADMA was associated with 

increased pulmonary artery pressure. However, they also observed that a fall in ADMA made 

participants more likely to experience symptoms of altitude sickness[296].  The size of this 

study makes the interpretation of this data challenging since only modest correlations were 

observed and the change in ADMA was small. 

Animal studies in yaks have shown that ADMA levels are reduced in animals that have 

adapted to living at high altitude and that their cardiac and pulmonary pressures are 

normalised[297].  However, one study compared male cows at 760m altitude to male yaks at 

3000m.  Interpretation of these results is therefore challenging.  In mice, increased ADMA 

was found to be a feature of a three-week whole animal hypoxic exposure.  This study also 

observed that this may in part be mediated by an increase in protein arginine 

methyltransferase 2(PRMT2) in alveolar type II cells[297]. 
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4.1.3.2 Dimethylarginine Dimethylaminohydrolase in hypoxia 

A number of studies have looked at the expression and activity of DDAH in hypoxia models 

at sea level and have primarily explored the mechanisms of hypoxia-induced pulmonary 

hypertension.  In 2003, by utilising hypobaric hypoxia in a pig model of lung development 

and pulmonary hypertension, Arrigoni et al. showed that the development of pulmonary 

hypertension was associated with significant reductions in DDAH2 expression and overall 

DDAH activity[298].  Following 10% oxygen exposure for one week, a rat model 

demonstrated reduced DDAH1 expression and activity leading to an increase in ADMA 

concentrations [299]. Following these experiments, a second rat model of hypoxia showed 

reduced expression of both DDAH1 and DDAH2 which mediated the development of 

pulmonary hypertension.  This study also showed that the mechanism by which DDAH1 was 

regulated in response to hypoxia was via increased microRNA-21[25].   

The yak study described above also proposed increased DDAH2 expression and activity as a 

potential mechanism for the observed reduction in ADMA, although the same previously 

mentioned experimental caveats still apply [297].   

Taken together these experiments have shown that over the course of chronic exposure to low 

oxygen, reduced DDAH expression within the pulmonary vasculature mediates increased 

ADMA concentrations, reduced NO production and provokes pulmonary hypertension.  

These models reflect the impact of medium to long term hypoxia on the development of 

pulmonary hypertension. However, to date, no studies have explored the acute modulation of 

DDAH expression by hypoxia, what happens in innate immune cells or the impact that any 

changes may have on the innate immune response. 

4.2 Study design 

The goal of the studies presented here was to explore, for the first time, the impact of 

normobaric hypoxia on the endogenous inhibitors of NO synthesis and their immune cell 

regulatory enzyme, DDAH2.  These studies were undertaken in primary cell culture models 

and findings were validated in a human study. 

4.2.1 Murine macrophage studies 

These studies utilise a glove box hypoxic chamber to explore the regulation and functional 

role of DDAH2 in immune cells exposed to hypoxia.  In the first series of studies, using 

primary peritoneal macrophages extracted from wild type mice, the regulation of DDAH2 

expression, ADMA level and NO synthesis is explored following exposure to 3% oxygen.   

In the subsequent experiments, the relationship between DDAH2 and NO synthesis is 

explored using primary peritoneal macrophages from macrophage specific DDAH2 knockout 

mice and their floxed littermate controls. 
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4.2.2 Human normobaric hypoxia studies 

Building upon the ex vivo animal studies described above, a human observational healthy 

volunteer study is presented in which 12 male participants were exposed to a systemic 

hypoxic insult with an inspired oxygen fraction of 12% (equivalent to around 4500m in 

altitude) at normal atmospheric pressure.  Peripheral blood mononuclear cells were isolated 

before and after an eight-hour exposure and DDAH2 expression, ADMA concentration and 

cellular NO synthesis was determined. 

4.2.2.1 Power calculation 

The study was powered to detect a 20% drop in plasma ADMA concentration associated with 

an eight-hour hypoxic exposure.  Sample size was based on a power of 90%, an alpha error of 

0.05 and a standard deviation of plasma ADMA concentration of 0.1µM.  This gave an 

estimated sample size of 11. 13 participants were therefore recruited following a two person 

pilot study to ensure adequate sample collection. 

4.3 Results 

4.3.1 Murine macrophages and hypoxia 

4.3.1.1 The impact of hypoxia on NO synthesis and its inhibitors 

The synthesis of nitric oxide by isolated wild type primary murine monocytes exposed to 

hypoxic and normoxic conditions was determined using the chemiluminescent technique as 

described in Chapter 2.  Cells were isolated from twelve mice, counted and allocated to either 

hypoxic exposure at 3% oxygen (with 5% CO2, 37°C and 40% humidity) or 21% oxygen, but 

otherwise identical conditions.  After 12 hours exposure, culture medium was changed and 

both sets of cells were returned to normal incubation conditions.  Medium samples were 

collected at baseline, seven and 24 hours.  Whilst control cells displayed no significant 

difference in NOx concentrations over the course of 24 hours, hypoxia treated cells displayed 

a significant induction of NOx synthesis after 7 and 24 hours of reoxygenation (mean(SD), 

6.3(0.78)µM at 7 hours and 13.7(3.1)µM at 24 hours (p<0.01 by two-way ANOVA)) (Figure 

14). 
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Figure 14: The impact of hypoxia on nitric oxide synthesis in medium taken from primary 

peritoneal murine macrophages.    

Serial measurements of the accumulation of Nitrate/Nitrite in culture medium during 

reoxygenation after 12 hours hypoxic exposure or control incubation.  Nitrate/Nitrite 

concentrations were corrected for cell lysate protein concentration at the time of experimental 

cessation due to differential rates of cell death in the hypoxia and control groups.  n=6 per 

group, *= p<0.01 over control cells at the same time point. 

 

At 24 hours after the reoxygenation phase, in addition to medium collection, cell lysate was 

taken, protein concentration was determined and samples were analysed for levels of NOx.  

When corrected for protein concentration, lysate NOx was 13.21(2.4)µM/mg protein in 

hypoxia treated cells and 8.0(1.7)µM/mg protein in control macrophages (p=0.04) (Figure 

15). 

 

Figure 15: The impact of hypoxia on nitric oxide synthesis in cell lysate of primary peritoneal 

murine macrophages.   

Nitrate/Nitrite concentrations were measured using a chemiluminescent technique and 

corrected for cell lysate protein concentration at the time of experimental cessation. n=6 per 

group, *p=0.038 over control cells at the same time point. 
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The induction of iNOS was also evaluated in cell lysate mRNA using quantitative PCR.  

iNOS displayed a 6- fold increase following hypoxic exposure and reoxygenation compared 

to control cells exposed to normal culture conditions (p=0.01)(Figure 16). 

 

Figure 16: Cell lysate analysis of iNOS mRNA in cells exposed to hypoxia compared to controls.   

qPCR measurement of inducible Nitric Oxide Synthase mRNA expression in cell lysate from 

resident peritoneal macrophages following culture under normal and hypoxic conditions (n=6 

per group, * p=0.01).   

 

Cell lysate L-arginine concentrations were similar in both cell types, 53.9(10.2)µM/mg 

protein in controls vs. 50.29(2.5)µM/mg protein (p=0.60) (Figure 17).  In contrast, ADMA 

concentration, when corrected for cell lysate protein was reduced in hypoxia-exposed cells 

(0.24(0.03)µM/mg protein) compared to 0.32(0.04)µM/mg protein in control cells (p=0.02) 

(Figure 18).  L-NMMA was unchanged across the two groups (0.78(0.013)µM/mg protein 

and 0.77(0.01)µM/mg protein, p=0.74) (Figure 19).  SDMA could not be measured for 

technical reasons. 

 

Figure 17: L-arginine concentrations in control and hypoxia treated primary murine 

macrophages.   

Cell lysate L-arginine was measured in control and hypoxia treated murine macrophages 

following correction for cell lysate protein concentration (n=6, p=0.60).   
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Figure 18: ADMA concentrations in control and hypoxia treated primary murine macrophages.   

Cell lysate ADMA was measured in control and hypoxia treated murine macrophages following 

correction for cell lysate protein concentration (n=6, p=0.02).   

 

 

Figure 19: L-NMMA concentrations in control and hypoxia treated primary murine 

macrophages.   

Cell lysate L-NMMA was measured in control and hypoxia treated murine macrophages 

following correction for cell lysate protein concentration (p=0.7) 

 

4.3.1.2 The impact of hypoxia on DDAH2 expression in wild type murine 

macrophages 

Cell lysate was collected and mRNA and protein was extracted as described above.  

Quantitative PCR revealed a 3.6(0.1)-fold (mean(SD)) increase in DDAH2 mRNA compared 

to control cells (p<0.01).  DDAH2 protein levels showed a similar pattern when evaluated by 

Western blot.  When the relative density of bands was compared, DDAH2 expression was 

shown to be significantly increased (4.5(2.3) fold, p=0.026).  
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Figure 20: DDAH2 mRNA and protein expression changes in primary macrophages following 

hypoxic exposure.   

Left imge) QPCR measurement of DDAH2 mRNA expression in resident peritoneal 

macrophage lysates from wild type (C57Bl6) mice following culture in normal conditions or 

after 12 hours of hypoxic exposure (n=6 per group, * p<0.05).  right image) Change in DDAH2 

protein expression following culture in control (C) and hypoxic (H) conditions as evaluated by 

Western blot densitometry analysis (n=6 per group, (* p<0.05). 

 

4.3.1.3 Hypoxia and pro-inflammatory activation 

In order to explore a potential synergistic relationship between hypoxia and pro-inflammatory 

stimuli, a series of experiments were conducted involving four groups.  Primary peritoneal 

macrophages were exposed to IFN-γ, hypoxia at 3%, IFN-γ and hypoxia together or control 

conditions for 12 hours.  Medium was then changed and cells were exposed to normal culture 

conditions (21% oxygen, 5% carbon dioxide, 37% humidity) for 24 hours.  Medium was 

collected at baseline, 7 and 24 hours and cell lysate was collected after 24 hours of 

reoxygenation.   

Significant increases in medium Nitrite/Nitrate levels were observed following separate 

treatment with either IFN-γ or hypoxia as has been shown previously (Table 19, Figure 21).  

When exposed to both stimuli in conjunction, an exaggerated NOx synthesis was observed 

compared to either stimulus alone, (p<0.01 for both stimuli). 
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Figure 21: Medium Nitrate/Nitrite synthesis in response to Hypoxia, Interferon-gamma or 

hypoxia plus interferon treatment.   

Isolated murine macrophages were incubated in either control or hypoxic (3%) conditions for 

12 hours.  In each condition, one group of cells was exposed to normal medium and the other to 

stimulus with IFN-γ.  Medium was then replaced and cells were returned to normal incubation 

conditions.  Medium was collected at baseline, seven and 24 hours after the medium change.  All 

treatments resulted in significant increases in NOx at seven and 24 hours.  Treatment with IFN-

γ and hypoxia in combination resulted in a significantly greater induction of NO synthesis in 

comparison to either hypoxia or IFN-γ treatment alone (p<0.01 for both). 

 

 Control IFN-γ Hypoxia Hypoxia + IFN-γ 

Time Mean 

(µM) 

SD Mean(µM) SD Mean 

(µM) 

SD Mean 

(µM) 

SD 

Baseline 

(0) 

1.43 0.18 1.7 0.43 1.9 0.59 2.1 1.0 

Seven 0.96 0.11 22.4 0.96 12.6 1.57 41.52 2.37 

Twenty 

four 

2.21 0.36 41.9 4.03 40.8 9.68 75.11 14.17 

Table 19: The impact of hypoxia, Interferon-gamma or both stimuli on medium Nitrate plus 

Nitrite concentrations. 

 

The mechanism of these differences was explored by evaluating iNOS and DDAH2 levels 

using RT-qPCR.  Similar elevations in iNOS induction were observed in both IFN-γ and 

Hypoxia + IFN-γ treated groups (Figure 22, Table 20), however in cells exposed to both 

stimuli, DDAH2 mRNA was significantly higher compared to either hypoxia or IFN-γ treated 

cells alone (p<0.01 compared to both stimulus alone) (Figure 23, Table 20). 
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Figure 22: RT-qPCR analysis of the impact of treatment with hypoxia and Interferon-γ either 

alone or in combination on iNOS mRNA expression.   

Cell lysate was collected following culture for 12 hours in control (21%) or hypoxic (3%) 

conditions with or without IFN-γ before a further 24 hours at 21% oxygen.  iNOS mRNA 

expression was significantly elevated in all treatment conditions over control (p<0.01).  Similar 

levels of iNOS induction were observed in IFN-γ and hypoxia + IFN-γ conditions (p>0.05 by 

Bonferroni comparison following one-way ANOVA). 

 

 

Figure 23: RT-qPCR analysis of the impact of stimulation with hypoxia and Interferon-gamma 

either alone or in combination on DDAH2 mRNA expression.   

DDAH2 mRNA expression was significantly elevated in all treatment conditions over control 

(p<0.01).  Significantly greater induction was observed in IFN-γ plus hypoxia treated cells 

compared to IFN-γ or hypoxia alone (p<0.01 by Bonferroni comparison following one-way 

ANOVA). 
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iNOS mRNA 

Mean 1 21.69 4.011 19.32 

SD 0.1258 10.93 1.316 10.08 

 

DDAH2 mRNA 

Mean 1 8.25 3.632 19.67 

SD 0.3466 5.125 0.1169 2.677 

Table 20: Change in iNOS and DDAH2 mRNA expression following hypoxia, IFN-gamma and 

combination therapy measured using RT-qPCR. 

4.3.2 The impact of hypoxia on DDAH2 deficient murine macrophages 

Macrophage-specific knockout mice (Ddah2
MΦ-

) and litter mate floxed controls 

(Ddah2
flox/flox

)
 
were used as the source of primary peritoneal macrophages.  Animals were 

sacrificed at 8-10 weeks using cervical dislocation and peritoneal washout undertaken as 

described in Chapter 2, followed by hypoxic or control incubation as above.   

4.3.2.1 Comparison of Nitric Oxide synthesis and inhibitors in DDAH2 knockout 

cells and controls 

Nitric oxide concentration was measured before and after hypoxic exposure in the cell lysate 

of primary peritoneal macrophages from Ddah2
MΦ-

 mice and their Ddah2
flox/flox 

littermate 

controls.  Cells deficient in DDAH2 displayed reduced intracellular NOx concentrations at 

baseline compared to controls (mean (SD), 5.15(0.61)µM/mg protein vs. 7.7(0.87)µM/mg 

protein (p=0.014)) (Figure 24).  After hypoxic exposure for 12 hours and reoxygenation for a 

further 24 hours, Ddah2
flox/flox 

cells displayed a significant induction of NOx synthesis 

(11.6(0.94)µM/mg protein (p<0.01).  By contrast, peritoneal macrophages from Ddah2
MΦ- 

mice displayed no significant increase in intracellular NOx following hypoxic exposure 

(p=0.10) (Figure 24). 
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Figure 24: Nitric oxide synthesis in DDAH2 deficient primary peritoneal macrophages following 

hypoxic exposure.   

Change in macrophage intracellular NOx concentration (corrected for cell lysate protein 

concentration) following 12 hours of hypoxic exposure and 24 hours of reoxygenation in 

DDAH2 macrophage-specific knockout (MΦ-) and littermate flox/flox control mice (flox).  

Floxed control cells displayed a significant induction of NO synthesis in response to hypoxia and 

reoxygenation (p<0.01).  Macrophage-specific knockout cells had significantly lower baseline 

NO concentrations and did not display an increase in NO synthesis in response to hypoxic 

stimulation (p=0.10) (n=6 per group, *p<0.05). 

Intracellular ADMA in Ddah2
flox/flox 

mouse macrophages displayed a similar change to that 

seen in peritoneal macrophages from wild type animals (mean(SD), 0.30(0.015)pmol/mg 

protein falling to 0.12(0.01)pmol/mg protein, p=0.01) (Figure 25). Ddah2MΦ- macrophages 

showed no fall in ADMA levels following hypoxic treatment.  In contrast to the floxed cells, 

they instead displayed a two-fold increase with concentrations of 0.13(0.04) µM/mg protein 

in controls and 0.28(0.03) µM/mg protein in treated cells (p=0.06) (Figure 25). 

SDMA concentrations were measured and shown to be unchanged after hypoxic exposure in 

floxed cells (mean(SD), 0.78(0.13)pmol/mg protein vs. 0.80(0.35)pmol/mg protein, p=0.92) 

(Figure 26).  Ddah2
MΦ- 

mouse macrophages also displayed no change in SDMA levels 

between control and hypoxic treated groups with concentrations of 2.27(1.5) mol/mg protein 

and 2.06(1.6)mol/mg protein, respectively (p=0.88) (Figure 26). 

L-arginine concentrations were also unchanged across the two floxed groups with mean(SD) 

L-arginine concentrations of 4.6(0.68)pmol/mg protein in control conditions and 

4.39(0.62)pmol/mg protein after hypoxic stress (p=0.62).  This pattern was similar in the 

DDAH2 deficient macrophages where L-arginine concentrations were 5.92(0.62) pmol/mg 

protein in control and 5.6(0.58) pmol/mg protein in hypoxic conditions (p=0.63) (Figure 27). 
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Figure 25: Intracellular ADMA concentration in control and DDAH2 macrophages following 

exposure to hypoxia.   

Floxed control cells demonstrated a significant reduction in ADMA concentration following 

hypoxic exposure. A trend towards increased ADMA was observed in DDAH2 deficient 

macrophages following hypoxic incubation (p=0.06) (n=6 per group, *p=0.01). 

 

 

Figure 26: Intracellular SDMA concentrations in control and DDAH2 deficient macrophages 

following exposure to hypoxia.   

Floxed control cells demonstrated no changes in SDMA concentration following hypoxic 

exposure (p=0.92).  A similar pattern was seen in DDAH2 deficient cells where SDMA 

concentrations were similar in both hypoxia treated and control groups (p=0.88) (n=6 per 

group). 
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Figure 27: Intracellular L-arginine concentrations in control and DDAH2 deficient 

macrophages following exposure to hypoxia.    

Floxed control cells demonstrated no changes in L-arginine concentration following hypoxic 

exposure (p=0.62).  A similar pattern was seen in DDAH2 deficient cells where L-arginine 

concentrations were similar in both hypoxia treated and control groups (p=0.63) (n=6 per 

group). 

4.3.3 The impact of hypoxia on human peripheral blood mononuclear cells 

A healthy volunteer study was undertaken as described in Chapter 2 using a normobaric 

hypoxic chamber following ethics committee review by the UCL research ethics committee.  

Following a 2 volunteer pilot study to determine technical aspects and tolerability, thirteen 

participants completed a study involving an eight-hour exposure to a 12% inspired oxygen 

concentration which is equivalent to approximately 4500m of altitude.  A blood sample, 

baseline observations and haemodynamic assessment was undertaken prior to entering the 

hypoxic chamber.  Haemodynamic monitoring was performed twenty minutes after entry and 

at least once per hour thereafter.  Upon completion of the study period, volunteers underwent 

repeat blood sampling whilst still in the chamber. 

4.3.3.1 Baseline physiology in healthy volunteers prior to hypoxic exposure 

Participants were eligible for inclusion in the study if they were male, had no significant co-

morbid illnesses, and had not been exposed to prolonged periods at altitudes above 3000m.  

The demographics of the volunteers are described in Table 21 below. 

 Mean SD 

Age 31.17 12.64 

Weight(kg) 78.08 8.754 

Height(cm) 178.3 5.294 

BMI(kg/m
2
) 24.54 2.089 

SaO2(%) 97.25 1.055 

Table 21: Baseline physiological characteristics of healthy male volunteers in the normobaric 

hypoxia study. 
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4.3.3.2 Safety and tolerability of hypoxic chamber exposure in healthy volunteers 

Of the fifteen participants that were included in the pilot and subsequent study, four 

volunteers exhibited subjective symptoms of acute mountain sickness with a modified Lake 

Louise score (described in the methods section) of between 1 and 3.  No significant objective 

signs could be elicited upon examination.  One volunteer suffered from an episode of nausea 

during the main study and he was withdrawn from the hypoxic chamber immediately.  

Observation for 1 hour revealed no subjective or objective sequelae.  Follow up at 24 hours 

revealed no residual symptoms in the participant; however he was excluded from the study 

and further analysis.  Of the participants that completed the study, nine volunteers underwent 

physiological, plasma and paired-monocyte sample collection and a further three underwent 

plasma and physiological measurement analysis only. 

4.3.3.3 The cardiorespiratory impact of hypoxic exposure in healthy volunteers 

Careful monitoring of cardiovascular and respiratory function was undertaken throughout the 

study period.  This offered a robust validation of the degree of hypoxic stress and also 

important safety information.  

Digital arterial oxygen saturations (SaO2) were measured and the saturations recorded in each 

volunteer.  SaO2 fell rapidly upon entry into the chamber and remained similar throughout the 

hypoxic exposure.  Mean(SD) saturations were 86(2.9)% at the one hour time check and 

87(2.0)% at the final check (Figure 28). 

 

Figure 28: The impact of exposure to a 12% hypoxic environment on healthy volunteer arterial 

oxygen saturations.   

The impact of exposure to 12% inspired oxygen fraction on healthy volunteer peripheral 

arterial oxygen saturations measured at rest prior to entrance (0).  Subsequent regular 

measurements are summarised hourly (n=12). 
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There was no significant impact on heart rate during the course of the hypoxia study period.  

Mean(SD) heart rate was 68(11)beats/min prior to entry into the chamber and 72(9) on 

completion of the study (Figure 29).  

 

Figure 29: The impact of exposure to a 12% hypoxic environment on healthy volunteer heart 

rate.   

The impact of exposure to 12% FiO2 on healthy volunteer heart rate measured at rest prior to 

entrance (0).  Subsequent regular measurements are summarised hourly (n=12). 

 

Blood pressure was assessed at each time point using a non-invasive device.  Systolic and 

diastolic blood pressure appeared to fall slightly over the first hour of hypoxic exposure 

(mean(SD) systolic 128(21)mmHg to 118(11)mmHg and diastolic 74(6.3)mmHg to 

70(13)mmHg, however neither of these trends were significant (p=0.16 and 0.34 

respectively).  Blood pressure was otherwise unchanged over the course of the study period. 
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Figure 30: The impact of exposure to a 12% hypoxic environment on healthy volunteer systolic 

and diastolic blood pressure.   

The impact of exposure to 12% FiO2 on healthy volunteer systolic (top left) and diastolic (top 

right) blood pressure measured using the DINAMAP device at rest prior to entrance (0).  

Subsequent regular measurements are summarised hourly.  Lower panels represent change in 

systolic (lower left) and diastolic (lower right) blood pressure from baseline. Data is presented 

as mean(SD) blood pressure (mmHg) (n=12).   

Non-invasive assessment of cardiac output in normobaric hypoxia 

Cardiac output was measured using the Clearsight™ device, disposables for which were 

provided as an unrestricted research tool from Edwards Lifesciences (UK).  This provided a 

non-invasive assessment of haemodynamic changes over the course of the experiment.  The 

device uses a modified Penaz technique as described in Chapter 2 to record pressure variation 

in the digital arteries following partial occlusion of the vessel.  This information is then 

converted into an arterial pressure waveform and from this the stroke volume is derived 

based on the shape of the curve and a nomogram of standard values.  Although the device is 

licensed for continuous use for four hours without interruption, this study was the first to use 

it in a hypoxic environment and so in order to minimise any risk of impaired oxygenation of 

the digit, volunteers underwent 15 minute periods of assessment at each time point.  After 

calibration, the mean value over the final five minutes of each assessment period was taken 

as the measurement at that time point.  The device provided information regarding cardiac 

output and systemic vascular resistance.  Both of these values were automatically corrected 

for body surface area to allow comparison between volunteers. 
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Cardiac index and systemic vascular resistance were stable over the course of the 

experimental period, however between hours four and six, paired analysis revealed increased 

cardiac index and reduced systemic vascular resistance (p<0.01 and (p<0.01, respectively) 

(Figure 31).  This was consistent with changes associated with the consumption of a low 

nitrate meal that was provided at this time in the study period. 

 

Figure 31: The impact of normobaric hypoxia on cardiac and systemic vascular resistance 

indexes in healthy human volunteers.   

The Clearsight™ device was used to analyse the impact of a 12% hypoxic exposure on healthy 

volunteers.  No significant differences were observed over the whole course of the study, 

however paired analysis revealed an increase in cardiac index and reduced systemic vascular 

resistance around the time of eating (p<0.01 for this interaction in both assessments). 

4.3.3.4 Nitric oxide and inhibitors of nitric oxide synthase in the plasma of 

hypoxia-exposed volunteers 

In the twelve healthy volunteers that completed the main study, eight-hour hypoxic exposure 

led to a significant increase in plasma Nitric Oxide concentration from mean(SD) 3.6 

(1.8)µM to 6.4 (3.2)µM (p=0.01) (Figure 32). 

Figure 32: Plasma Nitric Oxide concentration of healthy volunteers before and after exposure to 

an eight-hour hypoxic challenge.   

Plasma Nitric Oxide concentration was measured using a chemiluminescent technique.  Plasma 

from twelve healthy volunteers underwent protein extraction using methanol followed by 

analysis.  Nitric Oxide concentration increased significantly over the course of the study period 

(paired t-test, p=0.01) 
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Plasma L-arginine was unchanged over the course of the experiment (mean(SD), 102(31)µM 

to 111(19)µM, p=0.31).  Plasma ADMA concentration fell significantly from 0.42(0.12)µM 

at baseline, to 0.29(0.05)µM after exposure (p<0.01).  No changes were observed in plasma 

SDMA (0.42(0.1)µM to 0.46(0.14)µM, p=0.119) or L-NMMA levels (0.043(0.01)µM to 

0.046(0.007)µM, p=0.24) (Figure 33). 

 

 

Figure 33: Plasma L-arginine and methylarginine concentrations of volunteers before and after 

an eight-hour hypoxic exposure.   

No significant differences were observed between plasma L-arginine (p=0.31), SDMA (p=0.119) 

or L-NMMA (p=0.24).  Plasma ADMA concentration fell significantly as evaluated by paired 

analysis (p<0.01). 
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The plasma ADMA:Arginine ratio was also significantly reduced by hypoxia, falling from a 

mean(SD) ratio of 0.042(0.01) to 0.027(0.004) ( p<0.01) (Figure 34). 

 

Figure 34: The impact of hypoxia on the plasma ADMA:L-arginine ratio in healthy volunteers 

exposed to an eight-hour period of hypoxia.   

Plasma ADMA:L-arginine ratio fell significantly following the hypoxic challenge (p<0.01). 

4.3.3.5 Endogenous inhibitors of Nitric Oxide synthesis in peripheral blood 

mononuclear cells of hypoxia exposed volunteers 

Peripheral blood mononuclear cells (PBMC) were isolated using a Ficoll separation 

technique and analysed for the concentrations of L-arginine and methylarginines as described 

in Chapter 2.  Results were corrected for cell lysate protein concentration and compared using 

paired analysis of individual results before and after the hypoxic exposure.  PBMC L-

arginine was unchanged at mean(SD) of 24.4(5.1)pmol/mg protein to 24.9(5.0)pmol/mg 

protein (p=0.86).  PBMC ADMA fell from 0.43(0.13)pmol/mg protein to 0.29(0.06)pmol/mg 

protein (p<0.01).  L-NMMA was unchanged (0.43(0.07)pmol/mg protein to 

0.42(0.06)pmol/mg protein, p=0.62) as was SDMA (4.3(0.70)pmol/mg protein to 

4.7(0.75)pmol/mg protein, p=0.15) over the course of the study period (Figure 35) 
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Figure 35: Peripheral blood mononuclear cell L-arginine and methylarginine concentrations of 

volunteers before and after an eight-hour hypoxic exposure.  

 Peripheral blood mononuclear cell L-arginine and methylarginine concentrations in twelve 

healthy volunteers exposed to an eight-hour period of hypoxia.  No significant differences were 

observed between plasma L-arginine (p=0.86), SDMA (p=0.15) or L-NMMA (p=0.62).  Plasma 

ADMA concentration fell significantly as evaluated by paired analysis (p<0.01) (n=9). 

The PBMC ADMA:arginine ratio was also reduced after hypoxic exposure (mean(SD) ratio 

of 0.18(0.03) to 0.14(0.02), p=0.05) (Figure 36).  

 

Figure 36: The impact of hypoxia on the peripheral blood mononuclear cell ADMA:arginine 

ratio in healthy volunteers exposed to an eight-hour period of hypoxia.   

The plasma ADMA:arginine ratio fell significantly following the hypoxic challenge (p=0.05). 
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4.3.3.6 The relationship between plasma and mononuclear cell methylarginine 

concentrations 

There was no significant correlation between plasma and PBMC ADMA concentrations 

before the hypoxic study (r
2
 0.047, p=0.57). However, at the end of the hypoxic study period, 

a positive correlation between the cell and plasma concentrations was observed (r
2
 0.531, 

p=0.026) (Figure 37). 

 

Figure 37: Correlation between plasma and peripheral blood mononuclear cell ADMA 

concentrations before and after eight-hour hypoxic exposure.   

The relationship between plasma and intracellular concentrations of ADMA was determined 

before and after the hypoxic challenge in volunteers where both kinds of sample were available 

(n=9).  No apparent correlation was observed before the challenge (p=0.57), however, a positive 

correlation was detected at the end of the study period (p=0.026). 
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4.3.3.7 Change in DDAH2 expression in the mononuclear cells of humans 

exposed to a hypoxic challenge 

Cell lysate from the healthy volunteer study was examined for DDAH2 mRNA and protein 

expression using methods described previously.  DDAH2 mRNA expression (mean(SD) 

increased 1.9(0.6)-fold over baseline (p=0.03). DDAH2 protein expression showed a similar 

magnitude of increase with a 2.5(0.94)-fold change (p=0.034)(Error! Reference source not 

ound.). 

 

 

Figure 38: DDAH2 mRNA and protein expression changes in peripheral blood mononuclear 

cells following hypoxic exposure. 

 Left image) QPCR measurement of DDAH2 mRNA expression in peripheral blood 

mononuclear cells from healthy volunteers before and after an eight-hour hypoxic challenge 

(*p=0.03). Right image) Change in volunteer DDAH2 protein expression following eight-hour 

hypoxic exposure as evaluated by Western blot densitometry analysis compared to Tubulin 

controls (* p<0.01).  Representative Western blot of four volunteers before (B) and after (A) 

hypoxic challenge.   
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4.3.3.8 Nitric Oxide synthase expression in human mononuclear cells exposed to 

hypoxia 

Human peripheral blood mononuclear cells were examined for the presence of Nitric Oxide 

synthase isoforms.  iNOS was not detectable at the mRNA or protein level, however eNOS 

mRNA expression was shown to display a trend towards being downregulated following 

hypoxic challenge (relative reduction in eNOS mRNA (mean(SD)% 33(30), p=0.08) (Figure 

39).   

 

Figure 39: Change in eNOS mRNA expression in human peripheral blood mononuclear cells 

following eight-hour hypoxic exposure.   

eNOS mRNA was determined in nine healthy volunteers following exposure to an eight-hour 

12% inspired oxygen challenge.  A trend was observed towards a reduction in eNOS mRNA 

expression (p=0.08). 

4.4 Discussion 

In the introduction to this chapter, the mechanisms by which hypoxia regulates the innate 

inflammatory response were reviewed.  It is clear that low oxygen tensions are more than a 

consequence of infection or inflammation and are a key regulator of physiological response.  

This study considers for the first time how endogenous inhibitors of Nitric Oxide Synthase 

and their immune cell regulatory enzyme, DDAH2 contribute towards the hypoxic response.  

By advancing our understanding of the interactions between hypoxia, ADMA and DDAH, 

this study offers an insight into the way in which hypoxia regulates the synthesis of NO in 

immune cells.  
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4.4.1 Murine macrophages 

 

4.4.1.1 Nitric Oxide Synthase induction and inhibition in murine macrophages 

This study confirms the previous observation that in murine macrophages, NO synthesis is 

upregulated in response to hypoxia and that this is mediated by the induction of iNOS[272, 

275].  In addition, the observation that in murine macrophages, hypoxic environments limit 

the ability of increased iNOS protein to synthesise NO is recapitulated [273, 274].  The 

induction of iNOS and degree of NO synthesis is consistent with the literature and reflective 

of the ability of murine macrophages to synthesise more NO in response to stimulus than 

human cells[276]. 

This study did not identify any significant changes in the concentrations of L-arginine or L-

NMMA in cell lysates after the hypoxia and reoxygenation period.  However, a significant 

reduction in intracellular ADMA concentration was observed. This is consistent with reduced 

intracellular NOS inhibition and suggests an additional mechanism by which hypoxia might 

induce increased NO synthesis, particularly in circumstances where NOS protein expression 

is increased but the availability of the key co-factor for NO production, oxygen is limited. 

Also, in wild type cells we were able to show that DDAH2 protein expression was 

significantly increased in response to hypoxia.  This led to the hypothesis that increased 

DDAH2 expression in response to hypoxia might mediate reduced ADMA concentrations 

and therefore increase NO synthesis by macrophages. 

4.4.1.2 The impact of hypoxia and pro-inflammatory co-stimuli on Nitric Oxide 

Synthesis 

Given the co-existence of hypoxia and pro-inflammatory states during the infective process, 

the impact of simultaneous stimulation with hypoxia and IFN-γ, both of which have been 

shown to induce DDAH2 expression, was explored.  This study demonstrated a similar 

degree of iNOS induction in cells exposed to IFN-γ alone and hypoxia + IFN-γ together over 

the study period. Interestingly, the combination of stimuli results in significantly greater NO 

synthesis than IFN-γ alone.  A number of mechanisms for this observation are possible and 

include changes in protein expression not reflected in mRNA levels and also changes in 

eNOS expression not represented here.  However, a possible explanation is found with the 

observed increased expression of DDAH2 mRNA in the co-stimulus group over either 

stimulus alone. This suggests that increased DDAH2 expression mediates reduced ADMA 

and NOS inhibition which results in increased NO production in response to a 

pathophysiological stress. 
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4.4.2 The impact of hypoxia on DDAH2 deficient macrophages 

In order to explore the hypothesis that the upregulation of DDAH2 in wild type macrophages 

when exposed to hypoxia was also responsible for the observed increase in NO synthesis, 

primary peritoneal macrophages were extracted from DDAH2
flox/flox

 and DDAH2
MΦ-

 mice.  

When exposed to the hypoxia-reoxygenation model, differences were observed between 

floxed control cells and DDAH2 deficient macrophages.  In control incubations, NO 

concentrations in the cell lysate of floxed macrophages were significantly higher than those 

of Ddah2
MΦ-

 mice.  However, following hypoxic incubation, floxed cells showed a 

significant additional increase in NO synthesis in contrast to knockout cells in which no 

significant difference was observed.  In control cells, as might be expected in tissues with 

DDAH2, ADMA concentrations fell to a similar degree as demonstrated previously in wild 

type cells. By contrast, ADMA concentration in Ddah2
 MΦ-

 mice rose significantly.  This 

suggests that DDAH2 does not simply play a role in reducing the ADMA concentration 

within cells in response to hypoxia, but also that it prevents a stress-induced increase in 

ADMA levels in these circumstances.  This may offer a mechanism in which animals 

deficient in DDAH2 demonstrate impaired immune function and may in part explain the 

association between polymorphisms of the human DDAH2 gene and outcome in patients with 

septic shock[300] 

4.4.3 Human normobaric hypoxia 

Having made the observation that DDAH2 expression increased in murine macrophages and 

that this mediated changes in NO synthesis, the human normobaric hypoxia study was 

designed to determine whether this mechanism was conserved across mice and humans. 

4.4.3.1 The conduct of a normobaric hypoxia study in humans 

This was the first study of its kind to be conducted at the Institute of Sports and Exercise 

Health at UCL and as such presented a number of challenges in terms of study conduct and 

sample collection.  However, it was possible to recruit an adequate number of healthy 

volunteers without previous high altitude exposure and conduct a study at the limit of acute 

hypoxia that most humans can tolerate without acclimatisation. 

As expected following this kind of exposure, a proportion of patients did display minor 

symptoms of altitude sickness and whilst carefully monitored, one had to be withdrawn from 

the study.  The duration, the lack of mandated physical activity and the absence of overnight 

stay in the hypoxic chamber lead to a reduced incidence of acute mountain sickness in this 

study.  One participant was withdrawn from the study following an episode of nausea.  His 

data collection was not completed and so is not included in the presented results. 

The hypoxic chamber at UCL allowed us to generate a reliable and consistent degree of 

hypoxia in our healthy volunteers, as demonstrated by the rapid and stable reduction in 

arterial oxygen saturations observed in the study group.   
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This study was the first to use non-invasive cardiac output analysis using the Clearsight™ 

device and this offered useful insights into the cardiovascular impact of hypoxia beyond what 

is possible using conventional non-invasive technology.  In particular, we were able to 

observe a significant increase in cardiac output and reduction in systemic vascular resistance 

following the meal with which the participants were provided.  This is consistent with 

splanchnic vasodilatation which may be exaggerated in conditions of reduced oxygen 

availability.   

The key goal of this study was to validate the observation that hypoxia in isolation increases 

DDAH2 expression, reduces ADMA levels and enhances NO synthesis.  The normobaric 

hypoxia chamber allows us to eliminate the other effects of a study conducted at altitude 

whilst still delivering clinically relevant degrees of hypoxia.  The duration of the study was 

designed to be the maximum tolerable in order to allow a model consistent with the duration 

of hypoxia that might be seen in acute illness.  By using a ‘whole animal’ model of human 

hypoxia such as this, the physiological response can be more accurately modelled and the 

impact determined. 

This study showed that as in mice, hypoxia leads to an increase in plasma concentrations of 

NO.  In addition, an acute reduction in ADMA concentrations is observed, consistent with 

that seen in mice.  This occurs in conjunction with an increase in DDAH2 expression in 

human PBMCs recapitulating the findings from our murine models and suggesting that this 

mechanism is conserved across species.  This study builds upon a previous observation that 

plasma and PBMC methylarginine concentrations do not correlate in healthy volunteers[17] 

and also demonstrates that after a hypoxic stress, a correlation develops between plasma and 

intracellular ADMA concentrations.  This suggests that under conditions of pro-inflammatory 

stress, monocyte ADMA synthesis may play a role in determining systemic ADMA 

concentrations. 

This study validates previous observations that NOS induction in humans differs from that 

seen in mice.  An increase in iNOS was observed in hypoxia treated murine macrophages 

consistent with previous studies [301]. By contrast, in humans, a trend towards reduced 

eNOS expression was observed.  This is consistent with studies showing that in the absence 

of a pro-inflammatory cytokine, iNOS induction is not observed in human hypoxia[302].  

There is conflicting evidence in the literature regarding the impact of hypoxia on eNOS in 

different tissues, however a number of stimuli have been shown to regulate eNOS in isolated 

human monocytes[303] and hypoxia may be one of these.   

In summary, the human hypoxia study translates the findings made in the animal models and 

confirms that DDAH2 plays a role in the regulation of NO synthesis in response to hypoxia.  

This may play an important role in the human immune response and in part explain the 

association between polymorphisms of DDAH2, plasma ADMA concentrations and shock in 

human sepsis studies[300]. 
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4.4.4 The tissue-specific actions of DDAH2 in hypoxia 

This study provides an interesting insight into the regulation of DDAH2 in macrophages. 

However, it contrasts with the limited published literature that has previously explored the 

impact of hypoxia on DDAH2 expression.  In a study examining pulmonary artery smooth 

muscle and endothelial cell lines, Iannone et al. evaluated the impact of hypoxic exposure 

and showed that in cells exposed to 2% oxygen for up to 48 hours there was a time-dependent 

reduction in DDAH2 mRNA and protein.  This is in contrast to the observations made here 

and leads to the question of how similar stimuli could lead to differential tissue effects.  In 

the vascular tissue models studied, both DDAH1 and DDAH2 were co-expressed whereas in 

immune cells only one is present. It is possible that tissues with differing DDAH distributions 

may react variably in response to stress or that the DDAH2 promoter may contain specific 

response elements that drive differential changes in DDAH2 translation.  Interrogation of 

potential transcription factor binding sites of the DDAH2 promoter using the Matinspector™ 

software reveal multiple potential sites that could facilitate transcription and be relevant to a 

differential tissue response, including NF-κB and HIF-1 ancillary sequence.  This latter 

binding site forms an essential part of the hypoxia response element (HRE) described 

earlier[304], although its role in the absence of the HIF-1 binding site, the other key 

component of the HRE is uncertain. 
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4.4.5 Strengths and limitations 

4.4.5.1 Murine models 

The strengths of this study lie in the demonstration of the induction of NO synthesis as 

mediated by iNOS in a well-validated model and using primary murine cells.  The 

observation that this is associated with increased DDAH2 expression was translated to a 

causative one through the use of cells from knockout animals to confirm that in the absence 

of DDAH2 this phenomenon was abated.   

It must be noted that the LoxP Cre recombinase model of transgenic mouse development is a 

well-utilised and validated one, however there are well-established ‘off target’ effects of this 

technique which may play a role in the immune response.  These issues are addressed in more 

detail in subsequent chapters. 

As described above, the mechanism by which hypoxia drives DDAH2 expression is not yet 

clear.  In the vascular endothelium, mir-21 has been implicated in the regulation of DDAH1, 

however it was not shown to regulate DDAH2 expression.  The mechanism for this action 

remains unclear and merits future exploration. 

4.4.5.2 Human Hypoxia study 

This human study provided direct evidence that the mechanism observed in mice could be 

conserved across species.  By using healthy volunteers in normobaric conditions, it allowed 

the most controlled assessment possible of the impact of hypoxia on PBMC DDAH2.  

Clinical and altitude populations come with multiple confounding observations that limit the 

ability to derive information specifically on hypoxia.  The highly controlled nature of this 

study with environment, diet and exposure tightly regulated makes this a robust observation. 

As with many studies of this kind, it is small in nature, and whilst the sample size target was 

reached, an error caused by this is less likely, but still possible. Furthermore, for technical 

reasons, it was not possible to sort the PBMCs by flow cytometry since that facility was not 

available. Therefore, it is possible that the changes observed in DDAH2 expression are 

mediated by changes in circulating monocyte type.  Whilst the observation remains valid that 

this has a systemic effect, understanding the circulating immune cell types involved and how 

they change in hypoxia would also have been informative. 

For pragmatic reasons, the study duration was limited to eight hours in the chamber.  This 

limitation precluded longer exposure to hypoxia which may have provided further 

information relevant to clinical cohorts. 
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4.4.6 Future work 

Future work in this area can be divided into two areas, first in ex vivo models and secondly 

the translation of these observations into clinical populations.  In primary cells, understanding 

the mechanism by which DDAH2 is regulated is an important step, as is determining if the 

same patterns can be seen in the other major tissue type that only expresses DDAH2 – the 

heart.  In humans, identifying clinical cohorts in which hypoxia and inflammation are 

important components of disease and understanding how DDAH2 is modified in response to 

these stressors may provide useful insights for therapies in these areas.  

4.4.7 Summary statement 

 Hypoxia induces nitric oxide synthesis in primary murine macrophages isolated from 

the peritoneal cavity of wild type mice. 

 In addition to increased iNOS, increased DDAH2 expression and reduced ADMA 

levels provoke elevated NO synthesis in primary murine cells exposed to hypoxia for 

twelve hours followed by reoxygenation for a 24 further hours. 

 DDAH2 deficient macrophages do not display this pattern of response, and ADMA 

levels increase after hypoxia in contrast to wild type cells. 

 In humans, an eight-hour hypoxic exposure recapitulates the increased systemic NO 

synthesis, reduced ADMA and increase DDAH2 expression seen in animals. 
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5 Regulation of DDAH2 by Interferon-gamma  

5.1 Introduction 

5.1.1 Inflammation and Nitric Oxide signalling 

Extensive work has demonstrated that macrophages upregulate nitric oxide (NO) synthesis in 

response to a range of stimuli through the induction of iNOS as discussed previously.  

However, to date, limited work has been undertaken in which the impact of pro-inflammatory 

agents on the endogenous inhibitor of NOS, ADMA and its regulator in immune cells, 

DDAH2 has been explored.  Existing evidence suggests that DDAH2 may play an important 

role in the human inflammatory response[39, 300].  Understanding its regulation in 

macrophages may therefore provide insights into how SNPs of DDAH2 have come to be 

associated with severity of shock in humans. 

One study has explored the impact of exogenous ADMA on the LPS-induced synthesis of 

NO.  In 2013, Pekarova et al. co-incubated RAW 264.7 cells and alveolar macrophages with 

LPS and increasing doses of ADMA[9].  Using high doses of ADMA (10-50µM), which is 

beyond the normal physiological range, they observed that ADMA induced a dose-dependent 

reduction in NO synthesis.  Of note is that in addition to the established mechanism of 

competitive inhibition, the group also observed a dose-dependent reduction in iNOS 

expression following ADMA treatment.  This latter finding has not been replicated in any 

other tissues. 

5.1.2 Tissue culture macrophage models 

There are more than 25 monocyte or macrophage cell lines available for tissue culture use at 

present, each offering a differing pattern of response to stimulus, function and ease of use.  

The choice of cell line is therefore a complex one and can be broadly divided into two 

groups, human and rodent.   

The more common human monocyte cell lines such as U-937 and THP-1 have been derived, 

in most cases, from patients with leukaemia or lymphoma.  Like U-937 and THP-1, they are 

often undifferentiated monocytes and must undergo several days of treatment with stimuli 

such as phorbol-12-myristate-13-acetate (THP-1 cells), phorbol esters, vitamin D3, 

interferon-γ, tumour necrosis factor-α and retinoic acid (U-937 cells) to induce their 

differentiation into macrophages.  The advantage of these cell lines is that their inflammatory 

response is similar to that seen in humans.  However, the experimental process of 

differentiating cells of this kind into terminal macrophages induces a degree of pro-

inflammatory stress.  This means that cells are already activated prior to the initiation of the 

experiment which may distort results[305]. 

Rodent cell lines have more widespread origins.  Some are immortalised through retroviral 

recombination such as ANA-1[306], others from bone marrow isolates (C7[307]) and the 

third group, like most human cell lines, from leukemic models[214]. 
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RAW 264.7 cells were employed in the studies presented here.  They are a macrophage cell 

line that was developed from a murine model of Abelson murine leukaemia virus-induced 

tumour. RAW 264.7 was developed in 1976 and has since been well-validated[214].  Its ease 

of use and ability to manipulate have resulted in it becoming one of the most widespread 

experimental murine macrophage cell lines, with over 1500 articles relating to its 

function[215]. The cell line has been used to examine monocyte function and activity, 

including the regulation of iNOS in response to stimulation[216], receptor signalling and 

LPS[217, 218].   

5.1.3 Polyinosinic polycytidylic acid 

Polyinosinic polycytidylic acid (Poly I:C) is a non-infective model of the response to TLR3-

mediated stimulation.  Poly I:C is a double stranded RNA (dsRNA) and naturally occurring 

TLR3 agonist that mimics viral infection.  It activates the transcription of Type 1 interferons, 

NF-κB and STAT1 which are key mediators of the early anti-viral response[308, 309].   

The binding of Poly I:C to TLR3 results in the activation of a number of downstream 

signalling pathways which drive gene expression[310].  As described previously, TIR-

domain-containing adapter-inducing interferon-β (TRIF) is a critical signalling protein which 

contributes to the activation of all four TLR3-mediated signalling pathways, these being 

interferon regulatory factor-3 (IRF-3), NF-κB, c-Jun N-terminal kinases (JNK) and P38.  

Activation of these pathways stimulates the transcription of target genes via their interferon 

sensitive response elements (ISRE) (IRF-3), κB binding sites (NF- κB) or AP1 (JNK and 

P38) regions.  Activation of these transcription sites leads to the synthesis of Type I 

interferons, TNF-α, NADPH oxidase and STAT1, all of which have diverse pro-

inflammatory actions[308]. 
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Figure 40: Representative image of the inflammatory response to Poly I:C stimulation.   

The binding of Poly I:C to the TLR3 receptor activates TIR-domain-containing adapter-

inducing interferon-β (TRIF), an adaptor protein that facilitates downstream TLR signalling.  

This complex activates interferon regulatory factor-3 (IRF-3), P38, c-Jun N-terminal kinases 

(JNK) and NF-κB. Once activated, they bind to either interferon sensitive response elements 

(ISRE), κB binding sites (NF- κB) or AP1 regions (JNK and P38) to stimulate the transcription 

of a range of pro-inflammatory genes. 

The administration of Poly I:C in animal models has been a widely employed method of 

mimicking viral infection.  In addition, it has been used in human therapeutic studies as an 

adjuvant therapy in H1N1 and H5N1 influenza vaccination [311] and in randomised 

controlled trials of chronic fatigue syndrome[312].  In the studies presented here, the 

administration of Poly I:C into the peritoneal cavity of mice at a dose of 12mg/kg was 

undertaken based on dosage information derived from the literature[239] and pilot work. 

5.2 Study Design 

5.2.1 Tissue culture models of the inflammatory response 

This series of studies employs the RAW 264.7 murine macrophage cell line to explore the 

hypothesis that DDAH2 is a regulator of the acute inflammatory response.  In these studies, 

the stimulation of cells with a number of pro-inflammatory agents representing key 

inflammatory pathways was performed in order to determine their effects on endogenous 

inhibitors of NO synthesis.   

Observed differences between the pro-inflammatory stimuli and their effects on the synthesis 

of and/or responses to the endogenous inhibitor ADMA provoked further mechanistic 

exploration. 
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All studies presented here represent 6-8 independent experiments unless otherwise specified.  

Samples for Nitrite/Nitrate analysis, quantitative PCR and mass spectrometry were analysed 

in duplicate. 

5.2.2 Modelling the viral infection using a TLR3 stimulus 

This study involves macrophage and granulocyte-specific DDAH2 knockout mice developed 

using the LoxP Cre recombinase technique and their floxed littermate controls.  Poly I:C was 

used as a non-infective model of viral infection.  A single 12mg/kg bolus of Poly I:C or sham 

injection was administered into the peritoneal cavity of knockout and control animals and the 

systemic response to Poly I:C administration observed.  

The physiological response was monitored using subcutaneous temperature probes inserted 

into the scruff of the neck 24 hours prior to the experimental injection.  Blood was taken from 

the animals at the end of the six-hour experiment using cardiac puncture under general 

anaesthesia and followed by schedule one termination.  Plasma was isolated and 

measurement of methylarginines and cytokines undertaken as previously described. 

5.3 Results 

5.3.1 Pro-inflammatory stimuli and endogenous inhibitors of Nitric Oxide 

Synthase activity 

Consistent with the existing literature, RAW 264.7 cells stimulated with Lipopolysaccharide 

(LPS) (Salmonella Typhosa) (Sigma, UK) displayed a significant induction of NO synthesis 

[9] (Figure 41). This was largely mediated by the inducible isoform of Nitric Oxide Synthase 

as demonstrated by co-incubation with 1400W (Sigma, UK), a potent and selective iNOS 

inhibitor, which completely inhibited LPS-induced NO synthesis.  Mean(SD) NOx synthesis 

in control cells was 2.0(0.15)µM, it was 27.5(1.3)µM following LPS stimulus and 

2.19(0.05)µM in LPS+1400W treated cells (p<0.01). 

 

Figure 41: Impact of LPS and LPS+1400W on NOx synthesis in RAW 264.7 cells.   

The impact of 5μg/mlL of the pro-inflammatory stimulus, lipopolysaccharide (LPS) alone or in 

combination with the selective iNOS inhibitor, 1400W on Nitrite synthesis in RAW 264.7 cells 

cultured for 12 hours (data presented as mean(SD), * = p<0.01). 
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There was no significant change in cell lysate ADMA levels when corrected for sample 

protein concentration, (mean(SD) 0.63(0.1)pmol/mg protein in controls vs. 

0.66(0.06)pmol/mg protein in LPS treated cells) (Figure 42), however, there was an increase 

in ADMA concentration in the culture medium following incubation (ADMA of 

0.89(0.18)µM in control cells vs. 1.16(0.05)µM, p=0.03) (Figure 42). 

 

 

Figure 42: ADMA concentrations in cell lysate and culture medium following eight-hour 

incubation with LPS.   

Cell lysate (left panel) and culture medium (right panel) were analysed using mass 

spectrometry.  No significant differences were observed between the cell lysates following 

treatment with LPS, however, accumulation of ADMA within the medium was significantly 

increased at the end of the study period (*p=0.03). 

 

 

The uptake of ADMA by RAW cells was measured using two doses of ADMA.  Cell lysate 

ADMA increased from 0.01(0.005)pmol/mg protein in control cells to 0.26(0.16) pmol/mg 

protein in cells exposed to 100µM ADMA and 0.44(0.26)pmol/mg protein in 200µM-treated 

cells  (p<0.01 for both) (Figure 43). 

NOx synthesis was measured following treatment with two doses of LPS. 100ng/mL LPS 

resulted in medium NOx concentrations of 22.6(1.6)µM, and 5µg/mL resulted in a level of 

22.3(0.9)µM suggesting maximal stimulus of the TLR4-mediated response by the lower 

dosing.  Exogenous ADMA administration at a concentration of 100µM resulted in 

significant and similar reductions in NOx synthesis in both dosage groups (15.6(0.65)µM and 

16.6(0.65)µM, respectively, p<0.01) consistent with the existing literature[9] (Figure 43).  
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Figure 43: The impact of ADMA treatment on LPS-induced NOx synthesis.   

Left panel: ADMA accumulates within RAW 264.7 cells in a dose-dependent fashion following 

12-hour incubation with 100µM (ADMA 100) or 200µM (ADMA 200) ADMA as measured by 

mass spectrometric analysis of the cell lysate (* = p<0.01). Right panel: Exogenous ADMA 

administration (100µM in culture medium) results in a significant reduction in NOx synthesis 

by 100ng/mL and 5µg/mL LPS treated cells (* = p<0.01 for both). 

 

 

NOx synthesis in LPS treated cells was compared to levels induced by a cocktail of LPS, 

TNF-α and IFN-γ.  LPS treatment alone increased NOx synthesis as previously shown 

(p<0.01).  Following overnight incubation, the cocktail treatment resulted in a further 

increase in NOx synthesis with levels of 50(4.5)µM in cocktail treated medium compared to 

41.1(1.8)µM in LPS treated cells (p<0.01).  Treatment with the iNOS inhibitor 1400W 

inhibited the action of the pro-inflammatory cocktail, confirming iNOS as the primary 

mechanism for NOx synthesis in this treatment (Figure 44).   

 

Figure 44: Comparison of NOx synthesis following LPS and inflammatory cocktail stimulation.  
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The impact of LPS and cocktail (LPS + IFN-γ+TNF-α) stimuli on NOx synthesis by RAW 264.7 

cells after an eight-hour incubation period.  Significant increases were observed in both 

treatment groups. Cocktail treatment resulted in a greater increase in NOx synthesis than LPS 

alone. Treatment with 1400W inhibited cocktail-induced NOx synthesis (* = p<0.01). 

 

The increased accumulation of NOx within the culture medium over the course of the 

incubation following cocktail treatment was shown to be modest when compared to LPS 

alone. However, there was a significantly greater induction of iNOS mRNA in cocktail 

treated cells (mean(SD), 101(27)-fold compared to 51(13)-fold in LPS treated cells, 

p<0.01)(Figure 45). 

 

 

Figure 45: Change in iNOS induction following LPS and inflammatory cocktail treatment. 

Quantitative PCR analysis of iNOS induction in RAW 264.7 cells treated with LPS and a pro-

inflammatory cocktail for eight-hours.  Data represents the fold change in iNOS mRNA 

compared to untreated control cells and normalised to 1 (* = p<0.01). 

 

Following the same incubation, significantly lower ADMA accumulation was observed in 

culture medium of cocktail treated cells compared to those exposed to LPS, (0.86(0.04)µM 

vs. 1.16(0.05)µM respectively), p<0.01(Figure 46). 
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Figure 46: Accumulation of medium ADMA in cells incubated with LPS and a pro-

inflammatory cocktail.   

Medium ADMA was collected and measured using mass spectrometry at the end of eight hour 

incubation with LPS or a pro-inflammatory cocktail.  ADMA concentration was significantly 

lower in inflammatory cocktail treated cells compared to cells exposed to LPS, p<0.01. 

 

Accumulation of SDMA in the medium of RAW cells cultured in control, cocktail and LPS 

only conditions revealed no significant differences between the groups, p=0.54 by one way 

ANOVA (Figure 47).  L-NMMA could not be analysed for technical reasons. 

 

 

Figure 47: Accumulation of SDMA in culture medium of RAW 264.7 cells incubated with LPS, 

a pro-inflammatory cocktail or control.   

Medium SDMA was collected and measured using mass spectrometry at the end of eight hour 

incubation with LPS or a pro-inflammatory cocktail.  ADMA concentration was unchanged in 

inflammatory cocktail and LPS treated cells compared to controls, p=0.54. 
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In contrast with the previous observation that exogenous ADMA treatment reduced NOx 

synthesis in response to LPS, ADMA treatment at 100µM had no significant impact on NOx 

production in cells exposed to the pro-inflammatory cocktail, mean(SD) 28.4(4.6)µM vs 

25.7(3.3)µM respectively, p=0.23 (Figure 48).  A dose escalation study confirmed the 

observation that there was no impact of increasing doses of ADMA on NOx synthesis 

following cocktail incubation, p=0.85 (one way ANOVA) (Figure 48). 

 

 

 

Figure 48: The impact of exogenous ADMA administration on NOx synthesis in cells treated 

with LPS or a pro-inflammatory cocktail.   

Left panel: Comparison of the effect of exogenous ADMA (100µM) on NOx synthesis following 

stimulus of RAW 264.7 cells with either LPS or a pro-inflammatory cocktail.  ADMA 

significantly reduced NOx synthesis in LPS treated cells (p<0.01) but had no effect on cocktail 

treated cells (p=0.23).  Right panel: Increased doses of ADMA has no effect on NOx synthesis in 

cells treated with a pro-inflammatory cocktail, p=0.85. ADMA 100µM (ADMA 100) and ADMA 

200µM (ADMA 200).     

In order to ensure that supraphysiological L-arginine concentration in culture medium was 

not responsible for the apparent lack of activity of ADMA on cocktail treated cells, a study of 

3 concentrations of L-arginine was undertaken.  Doses ranged from a near physiological 

100µM to normal medium concentration of 300µM.  Simultaneously, a comparison of two 

doses of ADMA was conducted.  ADMA at 50µM and 100µM did not have any effect on 

iNOS activity in cocktail treated cells regardless of medium L-arginine concentration , 

although an increase in NOx synthesis was observed in a dose dependent fashion as L-

arginine concentration increased (Figure 49). 
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Figure 49: The impact of varied two doses of exogenous ADMA on inflammatory cocktail 

treated cells cultured in medium with differing L-arginine concentrations.   

RAW 264.7 cells were incubated in culture medium containing L-arginine at three 

concentrations 100µM (100), 200µM (200) and 300µM (300).  Co-administration of a pro-

inflammatory cocktail and either 0, 50 or 100µM ADMA.  Increasing the L-arginine 

concentration resulted in a dose dependent increase in NOx synthesis, ADMA had no apparent 

effect on the synthesis of NOx. 

 

5.3.2 The regulation of DDAH2 by Interferon-γ 

A comparison of different components of the pro-inflammatory cocktail was undertaken in 

order to explore the different responses observed between LPS alone and the cocktail 

conditions.  A significant reduction in mean(SD) cell lysate ADMA concentration was 

observed following IFN-γ (0.55(0.07)pmol/mg protein and cocktail (0.59(0.06)pmol/mg 

protein) conditions compared to LPS treatment alone (0.66(0.05)pmol/mg protein, p<0.01 

and 0.03 respectively (Figure 50).  Cell lysate SDMA concentration was unchanged across 

the treatment groups (p=0.71 by one way ANOVA)(Figure 51).   
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Figure 50: The impact of incubation with a combination of stimuli on cell lysate ADMA 

concentrations.   

The cell lysate ADMA concentration of cells treated with LPS, IFN-γ or the pro-inflammatory 

cocktail was assessed using mass spectrometry.   Significant reductions in lysate ADMA were 

observed following incubation with IFN-γ alone or cocktail conditions (p<0.01 and p=0.03 

respectively). 

 

 

Figure 51: Cell lysate SDMA concentration following stimulus with LPS, IFN-γ or a pro-

inflammatory cocktail.   

The cell lysate SDMA concentration of cells treated with LPS, IFN-γ or the pro-inflammatory 

cocktail was assessed using mass spectrometry.  No significant differences were observed 

between the groups (p=0.71) by one way ANOVA. 
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iNOS mRNA was differentially induced by the treatments, however as observed previously 

cocktail conditions induced greater iNOS induction that LPS alone.  IFN-γ however also 

demonstrated a trend towards increased expression following incubation with RAW cells, 

mean(SD) 78.9(23.3) fold increase (p=0.13 compared to LPS) (Figure 52). 

 

 

Figure 52: The impact of a range of pro-inflammatory stimuli on iNOS mRNA expression.   

Fold change in iNOS mRNA was measured following eight hour incubations with a series of 

pro-inflammatory stimuli (LPS, IFN-γ, TNF-α) as well as LPS+ TNF-α and all three together 

(cocktail).  Significantly greater iNOS induction was observed in cocktail treated cells(p<0.01). 

 

DDAH2 mRNA was induced to a similar degree in IFN-γ and cocktail conditions (mean (SD) 

1.29(0.14) fold and 1.39(0.09) fold over control cells respectively, p<0.01 for either 

treatments compared to control or LPS alone after an eight hour incubation(Figure 53). 
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Figure 53: Change in DDAH2 mRNA expression following incubation with a range of pro-

inflammatory stimuli.   

Fold change in DDAH2 mRNA was measured following eight hour incubations with a series of 

pro-inflammatory stimuli (LPS, IFN-γ, TNF-α) as well as LPS+ TNF-α and all three together 

(cocktail).  Significantly greater DDAH2 induction was observed in IFN-γ and cocktail treated 

cells(p<0.01). 

 

Time course analysis revealed dynamic iNOS mRNA expression and that DDAH2 mRNA 

appeared to follow a similar pattern over the twenty four hour study period (Figure 54). 

 

 

 

Figure 54: Time course analysis of the relationship between iNOS and DDAH2 mRNA 

expression over 24 hours of IFN-γ treatment.  

Cell lysate was collected from cells incubated with IFN-γ at a series of time points over a 24 

hours period.  iNOS (left panel) and DDAH2 (right panel) mRNA were determined at each time 

point.  Fold change compared to untreated control cells at 24 hours and normalised to 1. 

 

 

5.3.3 The Janus Kinase(JAK)/ Signal Transducer and Activator of 

Transcription(STAT) pathway of DDAH2 transcription 

In order to understand the mechanisms of the apparent IFN-γ mediated upregulation of 

Ddah2, a number of mechanistic studies were undertaken.  The canonical IFN-γ signalling 

pathway was explored through inhibition of the key cellular signalling component Janus 

tyrosine Kinase (JAK)(Figure 55).  The three isoforms of this enzyme can be specifically 

inhibited with CAS 457081-03-7[313] (Merck Millipore, Herts, UK).  This agent has a high 

sensitivity for the JAK enzymes and a dose response experiment revealed that a dose of 4µM 

obtunded IFN-γ mediated NO synthesis completely and so this dose was used for further 

experiments.  Co-incubation of this agent with IFN-γ or pro-inflammatory cocktail resulted in 

the abolition of the effects of interferon treatment on Ddah2 expression, p=0.38 by two way 

ANOVA (Figure 56).   
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Figure 55: Schematic representation of the canonical Type I and II interferon signalling 

pathway.   

Interferon-γ(IFN-γ) binds to the heterodimeric receptor interferon gamma response element 

(IFNGR 1 and 2).  This activates constitutive Janus Kinase (JAK) which phosphorylates Signal 

Transducer and Activator of Transcription(STAT) and directly activates Gamma Activated 

Sites (GAS) in the promoter regions of a number of regions including the major 

histocompatibility complex (MHC).  Interferon α (IFN- α )and β(not shown) bind to the 

heterodimeric receptor interferon alpha response element (IFNAR 1 and 2). This activates 

constitutive Janus Kinase (JAK) which phosphorylates Signal Transducer and Activator of 

Transcription(STAT) and stimulates Interferon Regulatory Factor to bind to the Interferon 

sensitive response element of target promoter regions. 
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Figure 56: the impact of Janus Kinase inhibition on the increase in DDAH2 mRNA expression 

mediated by IFN-γ or pro-inflammatory cocktail treatment.   

RAW 264.7 cells were incubated with either by IFN-γ or pro-inflammatory cocktail.  Treatment 

groups were co-incubated with a Janus Kinase inhibitor at 4µM.  Cells lysate was analysed for 

fold change in DDAH2mRNA expression and compared to untreated control cells which were 

normalised to 1. 

The co-incubation of IFN-γ with Cycloheximide (C15H23NO4) (Sigma, UK) had no impact on 

IFN-γ mediated increase in Ddah2 mRNA level.  This suggests that the signalling pathway 

that increases Ddah2 expression does not require protein translation[314] for efficacy (Figure 

57), p=0.70. 

 

 

 

Figure 57: The impact of cycloheximide co-incubation on IFN-γ mediated induction of DDAH2 

mRNA.   

Raw 264.7 cells were incubated in either IFN-γ alone or in combination with the inhibitor of 

translation cycloheximide.  The co-administration of cycloheximide had no impact on the 

induction of  DDAH2 mRNA synthesis.  Comparison made to untreated controls and 

normalised to 1. 
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5.3.4 Activation of the Human DDAH2 promoter 

A number of potential sites of direct activation of the Ddah2 promoter were identified by 

interrogation of consensus promoter sequences[315].  These included Interferon Regulatory 

Factor 1 (IRF1) and Signal transducer and activator of transcription sites.  Electroporation 

was used to successfully transfect RAW264.7 cells with a group of promoter reporter 

constructs in order to explore this hypothesis.  A high degree of successful transfection was 

achieved using the Nucleofector™ system.  This was demonstrated by using a proprietary 

GFP promoter construct to explore the efficiency of electroporation as described above.  

Success was defined by GFP positivity at 12 hours (Brightfield image and GFP image, Figure 

58).   

 

Figure 58: Representative bright field and Fluorescence images of RAW264.7 cells 

electroporated with DDAH2 promoter and GFP control vectors. 
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Figure 59: Representative image of DDAH2 promoter constructs used in the exploration of IFN-

γ signalling.   

Top image represents a stylised representation of the DDAH2 promoter sequence with 

postulated PPAR and IRF1 transcription factor binding sites highlighted. The second image 

represents the control promoter sequence containing the whole sequence.  The third image 

represents the PPRIF promoter, with a section of the promoter sequence containing the PPAR 

and IRF1 transcription sites only present.  The fourth image describes the IRFKO promoter in 

which the IRF1 section of the PPIRF promoter was replaced with nonsense sequence. The 

bottom image represents the truncated promoter containing only the sequence proximal to the 

IRF1 site. 

Analysis of the impact of IFN-γ treatment on DDAH2 promoter activity was determined by 

comparison of the whole promoter region (PGl3sal) to a section of the promoter (PPIRF), 

containing the PPAR and IRF1 transcription sites only, the IRFKO – made up of the PPIRF 

section with scrambled sequence in the IRF region or a truncated promoter sequence (IRF) 

(Figure 59).  Reductions were observed in the PPIRF and IRFKO compared to the whole 

sequence (mean(SD) reductions 38(16)% and 25(5%) respectively and in the truncated 

sequence 87(1)%, p=0.01, p=0.08, p<0.01 respectively(Figure 60). 
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Figure 60: Response of the DDAH2 promoter reporter constructs to IFN-γ stimulus.   

Impact of IFN-γ stimulus upon firefly luciferase fluorescent intensity in RAW 264.7 cells 

transfected with human DDAH2 promoter reporter constructs representing differing regions of 

the promoter. pGL3sal - whole promoter region synthesised, PPIRF - Active region of DDAH2 

promoter construct, IRFKO – PPIRF promoter with nonsense code in the IRF1 region, IRF - 

downstream region (n=6, *=p<0.05 compared with whole promoter region construct (PGL3sal)  

#=p<0.05 compared with IRFKO and PPIRF promoter constructs).  Results are corrected for 

transfection efficiency using a dual luciferase reporter assay technique employing renilla 

luciferase. 

 

5.3.5 Polyinosinic Polycytidylic acid 

5.3.5.1 Ex vivo pilot study 

Overnight incubation of isolated wild type primary murine macrophages revealed significant 

induction of NOx in response to Poly I:C treatment from 1.3(0.2)µM in the medium of 

control cells and 14.3(1.0)µM in treated medium, p<0.01 (Figure 61).  Evaluation of cell 

lysate revealed that in wild type cells, Poly I:C treatment resulted in a fall in medium ADMA 

accumulation from 0.25(0.05)µM in untreated cells to 0.20(0.02)µM in treated conditions, 

p<0.01 (Figure 61). 
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Figure 61: Impact of Poly I:C treatment on NOx synthesis and ADMA accumulation by 

primary peritoneal macrophages.   

Left panel: impact of Poly I:C treatment of isolated primary peritoneal macrophages on 

Nitrate/Nitrite accumulation in culture medium, p<0.01.  Right panel, Change in accumulation 

of ADMA in medium of primary macrophages treated with PolyI:C and measured using mass 

spectrometry, p<0.01. 

 

5.3.5.2 The systemic response to Poly I:C administration 

Subcutaneous radiofrequency temperature probes were inserted into the scruff of the neck 

and animals allowed 24 hours recovery period.  Six animals of each genotype were allocated 

to sham injection or intraperitoneal administration of Poly I:C. 

Control animals showed no significant variation in temperature over the study period 

(Mean(SD), 35.3(0.44)°C in floxed controls and 35.3(0.26)°C in Ddah2
MΦ- 

mice, p=0.97 by 

two way ANOVA(Figure 62).  In animals treated with Poly I:C, both groups showed 

significant and similar increases in temperature (36.1(0.61)°C in floxed animals and 

36.1(0.55)°C in macrophage specific DDAH2 knockout mice, p=0.96 (Figure 62).  No 

significant difference in maximum temperature change was observed across the genotypes, 

p=0.39 (Figure 63). 
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Figure 62: Change in subcutaneous temperature over a six hour time course in macrophage 

specific knockout and floxed control animals exposed to 12mg/kg Poly I:C injection.   

DDAH2 macrophage specific knockout mice or floxed controls were allocated to either sham or 

Poly I:C groups.  Radiofrequency monitoring of temperature was undertaken before injection 

of both groups and on once per hour thereafter.  No change was noted in the temperature of 

animals in the control group, however both knockout and control mice displayed significant 

increases in temperature over the course of the study, p<0.05 for both groups. 

 

 

Figure 63: Peak temperature change in macrophage specific DDAH2 knockout and floxed 

control animals following Poly I:C injection.   

Peak change in temperature over baseline in macrophage specific DDAH2 knockout mice and 

floxed control mice over the course of a six hour observation following Poly I:C injection, no 

significant difference was observed in the two groups of mice (p=0.39). 
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Plasma methylarginines were measured in macrophage specific DDAH2 knockout mice and 

their floxed litter mate controls using established methods.  Plasma ADMA concentration 

was slightly elevated at baseline in Ddah2
MΦ- 

compared to floxed controls (mean(SD) 

1.69(0.10)µM vs 1.42(0.12)µM respectively, (p=0.049) but remained unchanged when sham 

and Poly I:C groups in both knockout (p=0.41) and controls (p=0.54) (Figure 64).  Plasma 

SDMA concentrations were unchanged across genotypes and also in the response to Poly I:C 

injection, p=0.13 by one way ANOVA(Figure 65).  Plasma L-NMMA concentration fell 

significantly in floxed control animals following Poly I:C treatment, p<0.05 (Bonferroni 

comparison following one way ANOVA, no fall in L-NMMA was observed in Ddah2
MΦ- 

mice treated with Poly I:C, p=0.94. 

 

Figure 64: Plasma ADMA concentration in macrophage specific DDAH2 knockout mice and 

controls in untreated animal and at 6 hours after Poly I:C injection.   

Plasma methylarginines were measured using mass spectrometry.  Plasma ADMA was 

increased in sham injected macrophage specific DDAH2 knockout mice (Ddah2
MΦ- 

C) compared 

to floxed controls (Ddah2
flox 

C), p=0.04.  No significant change in ADMA was observed following 

Poly I:C injection (Ddah2
MΦ- 

S, Ddah2
flox 

S) 
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Figure 65: Plasma SDMA concentration in macrophage specific DDAH2 knockout mice and 

controls in untreated animal and at 6 hours after Poly I:C injection.   

Plasma methylarginines were measured using mass spectrometry.  Plasma SDMA was 

unchanged in sham injected macrophage specific DDAH2 knockout mice (Ddah2
MΦ- 

C) 

compared to floxed controls (Ddah2
flox 

C).  No significant change in SDMA was observed 

following Poly I:C injection (Ddah2
MΦ- 

S, Ddah2
flox 

S) 

 

Figure 66: Plasma L-NMMA concentration in macrophage specific DDAH2 knockout mice and 

controls in untreated animal and at 6 hours after Poly I:C injection.   

Plasma methylarginines were measured using mass spectrometry.  Plasma L-NMMA was 

unchanged in sham injected macrophage specific DDAH2 knockout mice (Ddah2
MΦ- 

C) 

compared to floxed controls (Ddah2
flox 

C).  No significant change in SDMA was observed 

following Poly I:C injection in macrophage specific knockout mice (Ddah2
MΦ- 

S) but a 

significant fall was observed in floxed control animals injected with Poly I:C, p<0.05 (Ddah2
flox 

S). 
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Plasma cytokines were examined using enzyme linked immunosorbent assay (ELISA) 

techniques.  IL-6 was 253(114)pg/ml in floxed animals compared to 194(49)pg/ml in 

knockout mice, p=0.47.  IL-10 levels were similar in Ddah2
flox

 animals (mean(SD)) 

163(66)pg/ml compared to Ddah2
MΦ-

 140(43)pg/ml, p=0.67.  IFN-γ was significantly 

elevated in knockout mice (11.13(6.4)pg/ml) compared to (0.67(0.57)pg/ml in floxed 

controls, p<0.01(Figure 67).  

 

 

Figure 67: Impact of Poly I:C injection on plasma cytokine expression.   

Plasma from mice treated with Poly I:C was compared to plasma of control mice using ELISA 

analysis of cytokine expression.  No significant differences were observed between the control 

and treated mice in IL-6 or IL-10 expression.  Significant increase was observed in IFN-γ 

expression in macrophage specific DDAH2 knockout mice (Ddah2
MΦ-

) compared to floxed 

controls (Ddah2
flox

), p<0.01. 
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5.4 Discussion 

5.4.1 Induction of Ddah2mRNA transcription in murine cells by IFN-γ 

This study shows for the first time that a cytokine which is a well-established regulator of the 

NOS signalling cascade is also a regulator of DDAH2 expression in a murine macrophage 

cell line, and offers further evidence that in the context of an acute inflammatory response, 

upregulation of DDAH2 by IFN-γ is a potential mechanism by which this stimulus is able to 

induce NO synthesis by immune cells.  By reducing the amount of ADMA in the cell, 

DDAH2 limits the ability of ADMA to compete with L-arginine at the NOS binding site and 

therefore results in greater NO synthesis in response to the stimulus.   

It is of note that the change in Ddah2 mRNA expression observed in the course of a 24 hour 

incubation followed a similar pattern to that seen in iNOS mRNA.  This suggests that the 

regulation of these two enzymes, both of which have a role controlling NO synthesis in 

response to inflammatory stress, may have similar regulatory pathways. This may in part also 

explain why NO synthesis does not appear to consistently match the degree of NOS 

expression in activated immune cells[316]. 

Further to the observation that IFN-γ is able to induce Ddah2 mRNA transcription is the 

finding that it is not the case that either LPS or TNF-α have any effect on DDAH2 

expression.  Whilst only performing a limited screen, this may in part explain differences 

observed in experimental models of the inflammatory response and the inconsistent 

relationship between these and studies of more complex polymicrobial insults[317]. 

5.4.2 Activation of the DDAH2 promoter 

It has been shown previously that the human DDAH2 promoter may be stimulated with 

retinoic acid[226], however no studies to date have demonstrated the regulation of DDAH2 

transcription using a physiological stimulus.  Here we show that IFN-γ stimulates 

transcription of DDAH2 mRNA via its canonical signalling pathway and activation of at least 

two sites on the human promoter.  One of these postulated sites lies within the PPIRF due to 

the partial reduction in luciferase activation seen when this region only is stimulated.  The 

binding site is unlikely to be the in the IRF1 region however as replacing the IRF1 sequence 

within the PPIRF promoter with nonsense has no significant impact on the degree of 

luciferase expression observed.  The second binding site for IFN-γ mediated transcription 

appears to lie proximal to the PPIRF region since the whole promoter demonstrates higher 

levels of activity compared to the PPIRF region alone and the promoter that represented the 

region distal to the IRF1 site had negligible response to IFN-γ stimulus.  Interrogation of the 

Matinspector™ database (www.genomatix.de/online_help/help_matinspector.html) revealed 

predicted STAT1 binding sites within the PPIRF region and also proximal to this as predicted 

by the promoter reporter constructs (Figure 68)[315].   
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This experiment relies upon inserting the human promoter sequence into the murine 

macrophage cell line RAW 264.7 and utilising the cells own signalling machinery to initiate 

transcription factor binding to the promoter.  Whilst the promoter sequences of the two 

species are somewhat different, the IFN-γ/JAK/STAT pathway is well conserved across 

species. 

 

 

Figure 68: Postulated STAT1 binding sites in the human DDAH2 promoter sequence. 

Interrogation of the matinspector™ website 

https://www.genomatix.de/online_help/help_matinspector/matinspector_help.html) revealed 

possible transcription factor binding sites for STAT1 on the forward and reverse sequences 

within the PPIRF region and also distal  that that section in the DDAH2 promoter (blue boxes). 

 

The choice of RAW 264.7 cells for this project is a pragmatic one.  Whilst initially  

challenged, there is extensive evidence that human macrophages produce considerable 

amounts of NO in response to stimulus via an iNOS mediated mechanism[318].  However in 

cell culture models, human monocyte cell lines must first be differentiated into the mature 

macrophages of interest which results in upregulation of iNOS at baseline and also cellular 

stress that impairs the response of the cells to the experimental intervention.  

5.4.2.1 Interferon-γ signalling 

IFN-γ modulates a number of immune responses including viral clearance and the early 

response to viral infection.  Impaired function of the signalling pathway is associated with 

increased susceptibility to viral infection[319].  In addition to the anti-viral role, IFN-γ has 

been implicated in a range of autoimmune diseases such as systemic lupus 

erythematosus[320], multiple sclerosis[321] and diabetes[322]. 

Named because they were discovered through their action inhibiting viral replication[323], 

the interferons are divided into two classes, the Type I which include up to twenty subtypes 

of IFN-α and IFN-β and the type II  which contains only IFN-γ[324].  IFN-γ is secreted by a 

broad range of immune cells and synthesis is controlled by pro-inflammatory cytokines such 

as IL-12 and IL-18 and negatively regulated by IL-4 and IL-10[325].  This process facilitates 

the link between IFN-γ and the innate response[326].   
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The interferon gamma receptor (IFNGR) is formed of two components (IFNGR1 and 

IFNGR2) which are both constitutively expressed but lack the intrinsic signalling machinery 

to facilitate signal transduction.  The IFNGR1 intracellular domain contains binding elements 

for both Janus Tyrosine Kinase (JAK)1 and signal transducer and activator of transcription 

(STAT)1.  Both of these are required for induction of the induction of downstream activity. 

Binding of IFN-γ to the IFNGR complex results in phosphorylation and activation of JAK1 

and JAK2 which in turn allows the IFNGR1 to form two docking sites for STAT1.  The 

recruitment and phosphorylation of a pair of latent STAT1 proteins results in the 

translocation of the STAT1 homodimer into the nucleus of the target cell[327].  Binding of 

this group to Gamma Activation Site (GAS) sequences on target genes results in either 

activation or suppression of transcription[325, 328]. 

IFN-γ has been previously shown to be an potent regulator of a range of class I and II MHC 

region molecules including iNOS[329].  In addition, it plays a role in regulating cell growth 

by protecting against pathogen induced apoptosis and proliferation[330].  The microbiocidal 

activity of IFN-γ includes the induction of NADPH oxidase, upregulation of lysosomal 

enzymes and importantly priming of macrophages for NO synthesis[331]. 

5.4.3 Polyinosinic polycytidylic acid  

It is well established that IFN-γ plays an important role in modulating the response to viral 

infection.  Therefore given the impact that had been observed of IFN-γ on immune cell 

DDAH2, an experiment was conducted to understand whether the viral ‘mimic’ Poly I:C led 

to differing systemic responses in mice deficient in DDAH2 within macrophages when 

compared to their floxed litter mate controls.  Using this ‘upstream’ stimulus allowed the 

exploration of a more physiological model compared to the administration of single cytokines 

alone. 

In isolated cells, Poly I:C led to significant induction of NO synthesis and, like IFN-γ alone 

led to a significant reduction in ADMA accumulation within the cell culture medium. 

The intraperitoneal injection of Poly I:C led to pyrexia consistent with previous 

experiments[239] and was similar in both genotypes.  The impact of the stimulus on plasma 

indices of methylarginine metabolism was measured and no significant differences were seen 

following treatment with Poly I:C in either genotype.  A small elevation over controls was 

seen in macrophage specific knockout mice compared to floxed controls at baseline although 

this was small and statistical significance was borderline. 

SDMA was unchanged in the plasma of these groups of mice at baseline and following 

treatment consistent with the lack of activity of DDAH2 on SDMA.  Interestingly, L-NMMA 

fell significantly in floxed control mice treated with Poly I:C but not in macrophage specific 

knockout animals.  L-NMMA is metabolised by DDAH2 but due to its relatively low 

physiological concentrations, is thought to play a less important part in the regulation of NOS 

activity.   
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Whilst the animals appeared systemically similar in their responses to Poly I:C injection and 

levels of the cytokines IL-6 and IL-10 were not significantly different, an interesting 

observation was that IFN-γ synthesis was elevated almost tenfold in macrophage DDAH2 

deficient mice.  This, combined with the observation that DDAH2 is regulated by IFN-γ 

suggests that DDAH2 plays a role in regulating IFN-γ synthesis and also in turn is regulated 

by it, suggesting a mechanism of synthesis of this pro-inflammatory cytokine that is 

previously unidentified. 

5.4.4 Strengths and limitations 

This study was a pragmatic one, exploring in an in vitro model the regulation of endogenous 

inhibitors of nitric oxide synthase in macrophages.  This study used a widely validated model 

of differentiated murine macrophages.  This meant that it was unnecessary to differentiate the 

cells prior to experiment which reduced the degree of baseline inflammatory activation 

present.  This in turn made it possible to identify small differences in NOx synthesis between 

groups and reliably identify them as due to the intervention being studied.  Also, as potent 

producers of iNOS mediated NO, murine macrophages provide a good model to study subtle 

signalling changes that affect NO synthesis.   

The use of a human promoter reporter construct to validate the observation that murine 

DDAH2 was induced by IFN-γ provided a degree of translation and offers some confidence 

that this finding may also be conserved in humans. 

This study is limited by the observation that all the findings reported relate to changes in 

mRNA expression and protein changes are not directly demonstrated.  However, work done 

in hypoxia and presented in a separate chapter does demonstrate that there is a strong 

relationship between DDAH2 mRNA and protein induction.  Also, the downstream 

physiological effects of increased DDAH2 protein are observed through changes in ADMA 

concentration, making it unlikely that only mRNA changes have taken place. 

Furthermore, this study identifies one potential mechanism for the regulation of ADMA and 

NO synthesis by IFN-γ.  It is possible that other processes including synthesis of ADMA, 

expression of iNOS and protein translation all contribute to the observed changes in NO 

synthesis. 

This study was conducted in a murine macrophage immortalised cell model, and as discussed 

previously, there are differences between murine and human macrophages in terms of 

function and in particular NO synthesis.  Therefore extrapolating the downstream effects of 

changes in DDAH2 expression on these cells to the human immune response may not be 

representative of the in vivo phenotype. 

The conduct of a short term Poly I:C study meant that the long term impact of this viral 

mimic could not be studied.  Also, measuring only plasma indices of methylarginine turnover 

does not preclude tissue specific impacts not reflected in the plasma.  In measuring just three 

cytokines it is possible that other differential impacts on the systemic immune response exist 

that have not been observed which may contribute to differences in the immune response. 
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5.4.5 Future work 

This results of this study pose a number of questions regarding the regulation of DDAH2 in 

vivo and the impact that this may have in disease states.  Future work would involve primary 

human cells treated with IFN-γ to determine if this effect is conserved across species.  In 

addition it could address the role of other pro- and anti-inflammatory stimuli on DDAH2 

expression and explore the impact of these stimuli in combination following inflammatory 

stress in whole animal models.   

In parallel, interrogation of human studies currently underway using IFN-γ as an 

immunomodulatory agent may answer the question of whether DDAH2 regulation is one 

mechanism by which it is able to stimulate the immunoparetic patient[332]. 

Building on the Poly I:C study, further work will explore the role of TLR3 stimulus and viral 

infection and the endogenous inhibition of NO synthesis, particularly focussing on the 

apparent co-regulatory mechanism of IFN-γ and DDAH2.  Also, longer term studies may 

reveal a more significant phenotype not seen in the short term study undertaken. 

5.4.6 Summary statement 

 Unlike LPS or TNF-α, IFN-γ is able to upregulate the expression of DDAH2 which results in 

reduced ADMA concentrations and facilitates increased NO synthesis in a tissue culture 

model of macrophage activity. 

 IFN-γ mediated transcription of DDAH2 mRNA is mediated by the canonical JAK/STAT 

pathway in murine macrophages. 

 Treatment with IFN-γ of RAW 264.7 cells electroporated with human DDAH2 promoter 

reporter constructs demonstrates that the human DDAH2 promoter has two regions that 

contain plausible STAT1 binding sites which may mediate activation of the promoter. 

 Systemic administration of Poly I:C results in differential synthesis of IFN-γ by mice 

deficient in DDAH2 within macrophages compared to floxed litter mate controls. 
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6 The role of global and macrophage specific knockout in 

polymicrobial sepsis 

6.1 Introduction 

6.1.1 Transgenic techniques  

Two distinct transgenic techniques were used in this study in order to develop the global 

DDAH2 knockout (DDAH2
-/-

) and the DDAH2 macrophage specific (DDAH2
MΦ-

) mice, 

high throughput gene trapping and the LoxP Cre recombinase methods respectively.  These 

techniques generate with a high degree of reliability, DDAH2 knockout in the whole animal 

or in macrophages.  Importantly, correct choice of control animals is essential, and in studies 

presented here, DDAH2
-/- 

mice were compared to wild type litter mate controls (DDAH2
+/+

) 

and DDAH2
MΦ- 

mice were compared to floxed litter mate controls (DDAH2
flox/flox

).   

6.1.1.1 Generation of DDAH2 global knockout mice 

The high throughout gene trapping strategy used in the development of the DDAH2
-/-

 mice 

has been described previously[233] and was used to develop heterozygous DDAH2 null 

animals which were secured from the Texas institute of genomic medicine 

(http://tigm.org/technologies.html).   

In brief, embryonic stem (ES) cells are infected with a retroviral vector which contains two 

active regions which preferentially insert at the 5’ end of genes.  The first is made up of a 

splice receptor sequence, an antibiotic marker (Neomycin) and a polyadenylation (pA) signal.  

Following infection, a fusion fragment is created which contains a 5’ fragment of the target 

gene, the antibiotic marker and pA signal within the target gene.  This process facilitates 

identification of ES cells which have undergone successful retroviral integration. 

The second active region of the viral vector is made up of an ES cell active promoter, e.g. 

mouse phosphoglyceratekinase (Pgk), a marker exon such as Bruton’s tyrosine kinase (Btk) 

and a splice donor signal(SD).  Splicing of the vector from the SD as far as the exons 

downstream of the insertion site results in a fusion transcript that can be readily identified 

using high throughput PCR screening.  This is then used to reveal the location of the inserted 

sequence within the gene.  The Btk exon contains termination codons that prevent translation 

of downstream transcripts. In this case, the DDAH2 gene was disrupted through the insertion 

of a 5kb viral gene trap into the first exon of the gene. 

Once identified, ES cells containing the new recombined sequence without a functional 

DDAH2 gene were injected into developing embryos which, if successful, results in a 

chimeric foetus.  If a fertilised oocyte taken from one of these chimeric populations reaches 

term, heterozygotes will be created of the target genotype.  Selective breeding of these 

heterozygote animals will then result in wild type, homozygote knockout and heterozygote 

animals (Figure 69).  
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Figure 69:Schematic representation of the high throughput gene trapping strategy used in the 

development of the DDAH2 global knockout mouse.   

The normal intronic pattern of DDAH2 is displayed with the conventional translation start site 

marked.  At the 5’ end of the viral vector is a neomycin marker and a polyadenylation signal 

(pA).  The second part of the vector is a stem cell promoter, marker exon and a splice donor 

signal.  Following vector insertion, a 5kb section of nonsense sequence was inserted into the first 

exon resulting in disruption of the sequence and loss of function. Btk: Bruton’s tyrosine kinase, 

Pgk: phosphoglyceratekinase, SD: splice donor signal 

6.1.1.2 Generation of the macrophage specific knockout mouse 

The generation of a macrophage specific knockout mouse model is possible because unlike 

humans, mice express two types of lysozyme genes, M and P.  A highly specific LysM Cre 

strain has been developed that delivers around 90% deletion of LoxP flanked target genes in 

macrophages, 100% in granulocytes but normal expression in other immune cells.  With the 

development of CRISPR Cas9 technology, alternative methods may become available 

however at present, the LysMCre method provides the most effective tool for work in this 

area.  In this technique, a site specific DNA recombinase (Cre) expressing animal is bred with 

mice with LoxP sites flanking the target gene.  This results, depending on the orientation of 

the LoxP sites, in cleavage of the gene in tissues expressing LoxP only.  This produces, a Cre 

LoxP mouse in which the original target gene is disrupted (Figure 70).  

 

Figure 70: Schematic representation of the development of the LoxP Cre recombinase model of 

macrophage specific DDAH2 knockout mice. 

 Cre-mediated recombination between two LoxP sites results in the splicing of DDAH2 and one 

LoxP site from the offspring DNA sequence. 
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6.1.2 Mouse models of sepsis 

A number of models are available for the study of sepsis in rodents.  They offer a range of 

mechanism, severity and challenges in safe delivery.  Selecting appropriate animal models is 

critical in undertaking valid studies in this area. 

6.1.2.1 Rodent models vs human studies in sepsis 

The use of rodents in the study of sepsis has been widely employed for many years to explore 

the pathophysiology or mechanism of disease or to testing potential therapeutic agents and 

targets.  Significant controversy has arisen surrounding sepsis models due to concern about 

their validity in pre-clinical testing of novel therapeutics[333, 334].  Over the course of the 

last twenty years, numerous agents have shown great promise in animal studies, only to prove 

ineffective in human trials[333, 335].  A number of potential reasons have been cited for the 

disconnection between successful animal studies and human trials.  They include the timing 

of administration of the agent to be tested, the absence of adequate resuscitation and the lack 

of adjunctive therapies such as antibiotics.  All of these may serve to exaggerate the benefits 

of an agent in animal models.   

Coupled with this are significant differences between rodents and humans in terms of their 

inflammatory response to sepsis.  In a recent study of the impact of inflammatory stress 

(burns, trauma and endotoxaemia) in rodents and humans, poor correlation was observed 

between genes upregulated in humans and animals[46].  In the context of NO signalling, 

these differences are particularly relevant.  There is a high degree of conservation across 

species in terms of genes involved, their regulation and mechanisms of activation, however 

there are differences in the absolute amount of NO synthesised [336].   

In spite of this, the murine models of sepsis can offer significant mechanistic insights into the 

role of particular genes in the pathophysiological response to disease and whilst absolute 

differences must be interpreted with caution, the impact of genetic knockout on outcome in 

disease remains an important tool in the understanding of pathology.  

The choice of model is an important part of study design.  Models can be broadly divided 

into two groups, those that rely on non-infective stimuli to mimic the systemic response to 

infection or those that involve the exposure of the animal to one or more live bacterial 

species.   
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6.1.2.2 Non-infective models of the response to infection 

The most common stimulus used in studies of this type is bacterial endotoxin 

(lipopolysaccharide, LPS).  Derived from the cell wall of Gram negative bacteria, LPS 

directly stimulates TLR4[337] and induces, following intravenous or intraperitoneal 

injection, haemodynamic, haematological and metabolic derangement consistent with sepsis. 

Unfortunately, this response tends to be short lived, severe in terms of cytokine synthesis and 

result, after a short hyperdynamic phase in a hypodynamic circulatory state.   However, LPS 

does offer the further advantage that as a model of inflammatory stress, it can also be 

administered to humans with resultant systemic symptoms, although the dose that must be 

administered to humans is much less than that required in rodents to generate a similar 

response[338].  Fundamentally however, this is a non-infective model without the sustained 

and multifactorial initiating steps that we see in bacterial infection.  As such, the use of LPS 

as a model can only provide limited insights when studying the role of specific genes on the 

pathophysiological response to infection.  It is perhaps for this reason that some agents that 

were tested using this model were ultimately shown to be ineffective in treating human 

disease[317]. 

Polyinosinic polycytidylic acid (Poly I:C) is a further non-infective model of the early 

response to a TLR3 mediated stimulus. Poly I:C is double stranded RNA (dsRNA),  a 

naturally occurring TLR3 stimulus that mimics a viral infection.  It particularly activates the 

transcription of type 1 interferons, NF-κB and STAT1 which are key mediators of the early 

anti-viral response[308, 309].  Poly I:C has been widely used in animals and has remained 

popular since it is both a straightforward and safe technique delivering an alternative route of 

activation to that of bacterial stimuli.  It is rarely fatal, producing a hyperdynamic response 

lasting hours rather than days before resolution. Of note is that not only is Poly I:C safe for 

use as an experimental model in humans, it has also been used therapeutically or tested as an 

immunostimulant to induce a more robust immune response to such diseases as stroke[339], 

viral infection[340] and various subtypes of neoplastic disease[341]. 

Zymosan is a fungal cell wall glucopolysaccharide that stimulates TLR2 and causes a sterile, 

non-infective stimulus which induces the release of reactive oxygen species, cytokines and 

lysosomal enzymes and results in a sepsis like syndrome[342].  When introduced 

intraperitoneally, it causes features consistent with peritonitis[343].  Zymosan produces a 

catabolic state, with reduced muscle mass followed by a clinically relevant recovery 

phenotype[344] and has been used as a model of the sepsis survivor syndrome[345]. 
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6.1.2.3 Infective models of murine sepsis 

There are a number of methods available for inducing bacterial sepsis in rodent models.  

These include bacterial, viral and fungal infections. Only bacterial modalities will be 

reviewed here.  The simplest of these is the intravenous administration of a live bacterial 

culture, these models are limited by the absence of a septic focus – a normal finding in 

human disease  - and also the catastrophic nature of the model with animals typically dying 

within four hours of exposure, making it difficult to detect differences in outcome between 

genotypes[346].   

The administration of live bacteria to model respiratory tract infection has also been 

undertaken.  Models include amongst others, Gram negative infection with Pertussis 

species[347] and inhalation of pseudomonas species to model respiratory tract infection, 

particularly as a recurrent stimulus to model the effects of infection on cystic fibrosis 

models[348].  Challenges of delivery, titrating severity and managing associated respiratory 

failure in severe limit their employment in septic shock models. 

The most common and clinically relevant models of bacterial sepsis in rodents are the 

peritonitis group of techniques.  These can be created using either caecal ligation and 

puncture (CLP) or its variants[349] or intraperitoneal slurry administration.  They involve the 

exposure of the normally sterile peritoneal cavity to a largely gram negative bacterial load 

and induce an initial hyperdynamic response consistent with human disease[350].  CLP 

results in a continuous leak of faecal contents into the peritoneal cavity whereas slurry 

administration is a one-off injection.  The techniques may be modified to titrate the severity 

of the systemic response and deliver a similar inflammatory state to that seen in humans[351] 

by altering the amount of caecum ligated, the size or number of perforations or in the case of 

intraperitoneal slurry, the volume administered.   

This study employs the caecal ligation and puncture model with regular, clinically relevant 

fluid resuscitation to create a septic insult that, in a wild type mouse leads to approximately 

50% mortality at 4 days.  The model is therefore both clinically relevant and adequately 

severe. 

6.1.3 Haemodynamic monitoring in sepsis models 

Haemodynamic monitoring is an important tool in understanding physiology and 

pathophysiology in transgenic models.  Techniques can be divided into non-invasive and 

invasive approaches. 
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6.1.3.1 Non-invasive techniques 

The primary non-invasive method of haemodynamic monitoring is tail cuff measurement.  

Analogous to a sphygmomanometer used in clinical practice, the tail cuff is able to record 

intermittent, awake, non-invasive blood pressure directly measuring systolic and mean 

arterial pressure and calculating diastolic blood pressure.  This technique is useful for long 

term intermittent monitoring of trends in cardiovascular function[352].  However in 

conditions such as sepsis where the pulse pressure is narrowed by vasoconstriction of the 

peripheral circulation and continuous monitoring is an advantage, tail cuff measurements are 

less useful[353]. 

6.1.3.2 Invasive assessment of haemodynamics 

Invasive techniques used to record blood pressure, cardiovascular and other data can be 

divided into those that are undertaken during general anaesthesia and those that permit 

continuous awake recording.  All anaesthetic agents have some impact upon cardiovascular 

function[354] and this must be considered when interpreting measurements undertaken in this 

way, particularly if a subtle effect is expected. 

The most commonly used intermittent monitoring tool is the Millar catheter, a solid state 

transducer inserted into either the femoral or carotid artery of the mouse[355].  This is the 

most sensitive and high frequency device available, offering a rapid response and analysis of 

the arterial pressure waveform.  It is however associated with a high morbidity and must be 

undertaken under general anaesthesia. 

Two invasive methods are in common use that permit continuous awake monitoring of 

haemodynamic function.  The first, the fluid filled catheter system requires the insertion of an 

aortic cannula that is in turn attached to a pressure transducer which may be externalised and 

attached to a tether.  This means that the animal may be conscious and allowed relatively free 

movement around its cage and permits not only direct continuous monitoring but also the 

potential to deliver drugs to the animals via the indwelling catheter[356].  This technique is a 

useful one for continuous monitoring during short studies, however, long term observation 

using this approach is more challenging. 

The second approach, and the one used in the studies presented here is continuous 

haemodynamic monitoring using an indwelling catheter attached to a radiotelemetry 

signalling device.  This permits continuous monitoring over protracted periods whilst still 

allowing free movement of the animal within the cage.  Using a gel filled catheter in a similar 

way to that utilised in the fluid filled catheter model, the carotid artery is cannulated and a 

signalling box sited in the subcutaneous tissues which wirelessly relays the recorded data to a 

receiving device[357].  Monitoring can be initiated and halted as desired using an externally 

applied magnet. Limitations of the technique include a mortality associated with insertion 

even in expert hands of 5-10% and the requirement for a recovery period of at least seven 

days before continuous monitoring can begin.  This is however the gold standard for 

physiological monitoring in models of this kind. 
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6.1.4 End point assessment in murine sepsis models 

There is a considerable amount of interest in non-mortality end points in sepsis models in 

mice.  Whilst it is important to ensure that any end point selected is predictive of death, a 

non-mortality end point reduces the degree of animal suffering and also facilitates collection 

of biological samples including blood.  Studies included here use a combination of validated 

severity score and subcutaneous temperature as robust clinical end points. 

6.1.4.1 Clinical assessment of illness severity 

A number of scoring tools have been developed to provide a reliable non-mortality endpoint 

in sepsis models.  These scores include a range of clinical observations, the presence, absence 

or extent of which can be graded[358, 359].  The cumulative score for each of these indices 

provides an objective assessment of illness severity and offer a threshold for experimental 

termination.  This study employs a five point scale of illness severity validated extensively in 

sepsis[360-362] which proved to be straightforward and reliable (Table 22).  In studies 

undertaken here, illness severity was assessed by a member of the animal technical team, 

blinded to the genotype.  Scoring was undertaken at least once every eight hours through the 

study period and upon reaching a score of four, repeated once every hour until a score of five 

was reached, at which point the severity threshold was considered to have been met.  At this 

point, death was considered inevitable and under general anaesthesia, cardiac puncture for 

collection of blood was undertaken and the animal sacrificed using schedule one methods. 



  

155 

 

  

 

Characteristic Scoring range 

Hunched 0-1 

Bloated 0-1 

Conjunctival injection/mucky eyes 0-1 

Lack of movement 0-2 

Lack of alertness 0-2 

Table 22: Characteristics of the score used in the assessment of illness severity in mice with 

sepsis induced by caecal ligation and puncture.   

Based on [362], a  score of 1-3 implies mild to moderate sepsis and ≥4 severe sepsis.  If a score of 

4 was reached, monitoring was undertaken every hour until a score of 5 was detected which 

heralded schedule one sacrifice. 

6.1.4.2 Subcutaneous temperature 

In circumstances where non-terminal end points are sought, subcutaneous temperature can be 

used as an index of illness severity and the development of progressive hypothermia is a 

predictor of death in murine sepsis[236, 363, 364].  The insertion of a subcutaneous 

temperature probe into the dorsum of the neck or between the peritoneal and the abdominal 

walls either some days before surgery or at the time of sepsis induction is a minimally 

invasive technique which allows the animal to move freely following recovery from 

anaesthesia.  Whilst not offering continuous monitoring, it is readily measureable in the 

conscious animal without causing distress. Measuring temperature as a secondary end point 

can offer objective confirmation that the severity threshold determined by blinded assessment 

is consistent. 

6.1.5 Study design 

The studies reported here describe a series of experiments exploring the impact of knockout 

of global and macrophage specific knockout of DDAH2 on survival, haemodynamics and 

regulators of NO synthesis in sepsis.  The model chosen for the induction of sepsis was 

caecal ligation and puncture (CLP).  Each study included eight animals per group (unless 

otherwise stated) and the length of survival studies was censored at 72 hours following the 

induction of sepsis in illness severity studies.  The duration of other short term assessments of 

the septic response in knockout mice are described on a per experiment basis in the text. 

Specific studies of the pathophysiological response to sepsis include in vivo haemodynamics, 

aortic vascular reactivity, estimation of bacterial load and measures of methylarginines and 

NO synthesis. 
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6.2 Results 

6.2.1 The impact of DDAH2 knockout at baseline 

6.2.1.1 Demonstration of the global knockout of DDAH2 

There were no apparent phenotypic differences between the DDAH2
-/- 

and their wild type 

litter mate controls.  At the time of experiment at age 8-10 weeks, weights were similar 

across the two groups of animals, mean (SD) weight (g): DDAH2
+/+

 24.3 (2.8) vs DDAH2
-/-  

24.4 (1.1) p=0.971. 

Western blots of kidney, heart and liver tissue homogenates showed complete absence of 

DDAH2 protein in Ddah2 knockout animals (Figure 71). This was confirmed with formal 

DDAH2 quantification.  DDAH2 Protein was demonstrated in aortic tissue in wild type 

animals and shown to be absent from knockout mice (Figure 72). 

 

Figure 71: Representative images demonstrating the absence of DDAH2 from kidney, liver and 

heart tissue homogenates in the global DDAH2 knockout mouse.   

Reproduced with permission from Dr Ben Lee. 

 

 

Figure 72: Representative image of the knockout of DDAH2 protein in global DDAH2 knockout 

mice compared to wild type litter mates. 

Reproduced with permission from Dr Ben Lee. 

6.2.1.2 Baseline methylarginine concentrations 

In the Ddah2
-/- 

animals there were significant changes in tissue methylarginine concentrations 

compared to Ddah2
+/+

 litter mate control mice. Results are presented as Mean (SD)μmols/mg 

protein in tissues, µM  in plasma measurements and urinary methylarginine concentrations 

are presented as µM corrected for urinary creatinine, also in µM 
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In myocardial tissue homogenate, ADMA concentration was elevated 0.89(0.20) vs 

0.67(0.13), p=0.02.  Mean L-NMMA concentration was unchanged at 0.215 vs 0.213, p=0.97 

as was SDMA at 0.10 vs 0.11,p=0.85(Figure 73). 

 

Figure 73: Myocardial tissue methylarginine concentrations in DDAH2 global knockout and 

wild type litter mate controls.   

Tissue homogenates underwent protein extraction followed by methylarginine estimation using 

liquid chromatograph, triple quadrupole mass spectrometry.  Mean(SD) concentrations 

presented, corrected for tissue lysate protein concentration measured by Bradford assay.  

ADMA concentration was elevated in DDAH2 knockout mice (Ddah2
-/-

) compared to wild type 

controls (Ddah2
+/+

), p=0.02.  No significant differences were observed in L-NMMA or SDMA 

concentrations. 

 

In renal tissue, ADMA was significantly higher in Ddah2
-/-  

mice at 0.85(0.23) vs 0.44(0.14), 

p<0.01 (Figure 74).  A modest but statistically significant increase in Mean(SD) L-NMMA 

level was also observed in the kidney of knockout mice, 0.56(0.14)µmol/mg protein vs 

0.39(0.16) µmol/mg protein, p=0.04.   Mean renal SDMA concentration was unchanged at 

0.32µmol/mg protein vs 0.36µmol/mg protein, p=0.48. 

In the plasma, there was an increase in L-NMMA level (0.4(0.11)µmol/mg protein vs 

0.28(0.17)µmol/mg protein, p=0.016 (Figure 75).  Plasma ADMA (p=0.50) and SDMA 

(p=0.78) were unchanged when the two groups were compared. 
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Figure 74: Renal tissue methylarginine concentrations in DDAH2 global knockout and wild 

type litter mate controls.   

Tissue homogenates underwent protein extraction followed by methylarginine estimation using 

liquid chromatograph, triple quadrupole mass spectrometry.  Mean(SD) concentrations 

presented, corrected for tissue lysate protein concentration measured by Bradford assay.  

ADMA and L-NMMA concentration was elevated in DDAH2 knockout mice (Ddah2
-/-

) 

compared to wild type controls (Ddah2
+/+

), p<0.01 and 0.04 respectively.  No significant 

difference was observed in SDMA concentration. 

 

 

 

Figure 75: Plasma methylarginine concentrations in DDAH2 global knockout and wild type 

litter mate controls.   

Plasma methylarginine was estimated using liquid chromatograph, triple quadrupole mass 

spectrometry.  Mean(SD) concentrations presented.  L-NMMA concentration was elevated in 

DDAH2 knockout mice (Ddah2
-/-

) compared to wild type controls (Ddah2
+/+

), p=0.016.  No 

significant differences were observed in ADMA or SDMA concentrations. 
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Renal clearance of methylarginines by the kidneys (as measured by urinary methylarginine 

concentration and corrected for urinary creatinine) was significantly deranged in Ddah2
-/- 

 

animals when compared to the wild type litter mates (Figure 76).  When corrected for urinary 

creatinine, ADMA clearance was significantly increased from 0.018(0.004)µM/µM 

creatinine in the wild type animals to 0.031(0.005)µM/µM creatinine in the knockout mice, 

p<0.01.  SDMA excretion was also elevated 0.012(0.004)µM/µM creatinine vs 

0.028(0.005)µM/µM creatinine respectively, p<0.01.  L-NMMA clearance was unchanged, 

p=0.22. 

 

Figure 76: Urinary methylarginine concentrations in DDAH2 global knockout and wild type 

litter mate controls.   

Urine underwent protein extraction followed by methylarginine estimation using liquid 

chromatograph, triple quadrupole mass spectrometry.  Mean(SD) concentrations presented, 

corrected for urine creatinine concentration measured by mass spectrometry (µM).  ADMA and 

SDMA clearance was elevated in DDAH2 knockout mice (Ddah2
-/-

) compared to wild type 

controls (Ddah2
+/+

), p<0.01 for both.  No significant difference was observed in L-NMMA 

concentrations (p=0.22).  Kindly provided by Dr James Tomlinson. 

 

When fed on a nitrate free diet for 12 days prior to analysis, plasma NOx was significantly 

reduced in knockout animals compared to wild type controls 41.2(24.0)µM vs 21.5(10.8)µM, 

(p=0.04) (Figure 77) (Data provided by Dr Laura Dowsett). 
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Figure 77: Plasma nitrate+nitrite concentration in DDAH2 global knockout and wild type litter 

mate controls fed a nitrate free diet.   

Plasma Nirate+Nitrite (NOx) concentration was measured in murine plasma using a 

chemiluminescent technique.  Animals were fed a nitrate-free diet for 12 days prior to blood 

sampling.  Whole blood was collected in tubes containing EDTA and underwent separation of 

the plasma fraction by centrifugation.  Plasma then underwent protein extraction using 

methanol and was analysed as described above.  Plasma NOx was significantly reduced in 

DDAH2 knockout mice (Ddah2
-/-

) compared to controls (Ddah2
+/+

), p=0.04. Data provided by Dr 

Laura Dowsett. 

 

6.2.1.3 Baseline haemodynamics 

Radiofrequency telemetry probe insertion was undertaken in ten Ddah2
+/+ 

animals and eleven 

Ddah2
-/-

 mice.  In one animal from each group, features consistent with significant vascular 

injury caused early sacrifice of the animal and in one animal from the knockout group, the 

probe was non-functional at the time of baseline assessment so the animal was excluded. 

Following a 14 day recovery period, animals were placed in individual cages on 

radiofrequency monitoring platforms.  After one hour to allow adaptation for environmental 

change, a twenty four hour recording period was commenced to facilitate in vivo assessment 

of circadian changes in haemodynamics.  All blood pressure results are reported as 

mean(SD)mmHg 

The data were interrogated for differences between the two groups tested.  Systolic blood 

pressure in Ddah2
-/-

 mice was 118.5(8.7)mmHg vs 112.7(7.5)mmHg, p=0.40 (Figure 78).  

Although no significant difference was observed in the primary analysis of systolic blood 

pressure, when level of activity was taken into account in a secondary analysis undertaken by 

Dr Ben Caplin, Ddah2 knockout mice displayed significantly higher blood pressure when 

their activity level recorded by the radiotelemetry device was greater than 45 counts per 

minute with blood pressures of 131.0(8.7)mmHg vs 112.1(7.4)mmHg, p=0.025.   
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Figure 78: Systolic blood pressure in DDAH2 global knockout mice and wild type controls 

monitored using in vivo radiotelemetry.   

In vivo radiotelemetry monitoring was undertaken for a continuous 24 hour period 14 days 

after the insertion of monitoring devices.  No significant differences were observed when blood 

pressure was considered over the whole period of monitoring in DDAH2 global knockout 

(Ddah2
-/-

) when compared to wild type litter mates (Ddah2
+/+

),p=0.40.  Secondary analysis 

revealed a signifcantly higher blood pressure during periods of high activity in Ddah2
-/-

 mice.  

Data recorded every 20 seconds and averaged over each minute for calculation.  Data presented 

with each data point at 30minutes for clarity. 

Diastolic blood pressure was not significantly different across the two groups with Ddah2 

knockout mice expressing a mean diastolic blood pressure of 93.7(7.1)mmHg and wild type 

control animals 87.76(5.7)mmHg, p=0.27 (Figure 79).  

Heart rate was recorded during the 24 hour observation period, there was no difference 

between heart rates of the two groups of animals, p=0.42.  Mean(SD) heart rate over the 

observation period was 523(57)bpm in the wild type animals and 539(57)bpm in the global 

knockout mice(Figure 80). 
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Figure 79: Diastolic blood pressure in DDAH2 global knockout mice and wild type controls 

monitored using in vivo radiotelemetry.   

In vivo radiotelemetry monitoring was undertaken for a continuous 24 hour period 14 days 

after the insertion of monitoring devices.  No significant differences were observed when blood 

pressure was considered over the whole period of monitoring in DDAH2 global knockout 

(Ddah2
-/-

) when compared to wild type litter mates (Ddah2
+/+

),p=0.27.  Data recorded every 20 

seconds and averaged over each minute for calculation.  Data presented with each data point at 

30minutes for clarity. 

 

 

Figure 80: in vivo heart rate monitoring in global DDAH2 knockout mice and litter mate 

controls.   

In vivo radiotelemetry monitoring was undertaken continuously for 24 hours following a 14 day 

recovery period after probe insertion.  Heart rate was similar in DDAH2 global knockout 

(Ddah2
-/-

) when compared to wild type litter mates (Ddah2
+/+

) (p=0.42).  Data recorded every 20 

seconds and averaged over each minute for calculation.  Data presented with each data point at 

30minutes for clarity. 
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6.2.1.4 Anaesthetised models of cardiac function 

Cardiac function was assessed under anaesthesia as described above in two groups of ten 

animals.  As expected, systemic blood pressure was reduced with a mean (SD) pressure 

(measured using a simultaneous tail cuff sphygmomanometer) mean arterial blood pressure 

of 105.2(6.4)mmHg in Ddah2
-/- 

mice and 99.58(12.3)mmHg in Ddah2
+/+ 

animals, p=0.40.  

Assessment of heart rate during anaesthesia revealed no significant differences between the 

knockout animals (539(54)bpm) compared to the wild type mice in whom the mean heart rate 

was 505(62)bpm, p=0.25. 

Stroke volume (SV) was measured as described above and cardiac output calculated 

accordingly.  In wild type mice, the mean stroke volume was measured as 56(10.9)µL.  This 

compared to 49(9.0)µL in the knockout rodents, p=0.14 (Figure 81).  Cardiac output was 

calculated and corrected for the animal’s body weight in grams at the induction of 

anaesthesia.  In Ddah2
+/+ 

mice it was 1.1(0.3)ml/min/g compared to 0.97(0.20)ml/min/g in 

Ddah2
-/- 

mice, p=0.31(Figure 81). 

 

6.2.1.5 Aortic vascular reactivity 

Aortic vascular reactivity was measured on a subgroup of animals from both genotypes.  

EC50 values can be seen in Table 23 below.  Vessels from DDAH2 deficient mice displayed 

impaired relaxation in response to ACh compared to the wild types (p <0.01, n=3) (Figure 

82). (Analysis by Dr A Slaveiro) 
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Figure 81: Assessment of left ventricular function in anaesthetised  DDAH2 knockout mice and 

their controls.   

Under general anaesthesia, mice underwent transthoracic echocardiographic assessment of 

stroke volume and cardiac output (Corrected for body weight in grams).  No differences were 

observed  between the DDAH2 knockout mice (Ddah2
-/-

) when compared to wild type litter mates 

(Ddah2
+/+

) in stroke volume or cardiac output, p=0.14 and 0.31 respectively. 
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Figure 82: Aortic Vascular relaxation in global DDAH2 knockout mice and their controls 

following incremental doses of Acetylcholine.   

Aortas were isolated from DDAH2 knockout mice (Ddah2
-/-

) and compared to wild type litter 

mates (Ddah2
+/+

).  Following maximal contraction with Phenylephrine, incremental doses of 

acetylcholine were administered and degree of relaxation assessed.  Analysis of genotype 

specific effects was undertaken using two way Analysis of variance (ANOVA).  Acetylcholine 

was associated with significantly reduced relaxation in knockout mice compared to wild type 

controls, p<0.01. (Analysis conducted by Dr Anna Slaveiro) 

The half-maximal dose of Phe-induced contraction was significantly lower in Ddah2
-/-

 

animals than in Ddah2
+/+ 

mice (p<0.01, n=3) (Figure 83).   

 

Figure 83: Aortic Vascular force of contraction in global DDAH2 knockout mice and their 

controls following incremental doses of Phenylephrine.   

Aortas were isolated from DDAH2 knockout mice (Ddah2
-/-

) and compared to wild type litter 

mates (Ddah2
+/+

).  Degree of contraction in response to incremental doses of phenylephrine was 

assessed (mN).  Analysis of genotype specific effects was undertaken using two way analysis of 

variance (ANOVA).  Phenylephrine was associated with significantly reduced contraction in 

knockout mice compared to wild type controls, p<0.01. (Analysis conducted by Dr Anna 

Slaveiro) 
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The EC50 of the response to the NO donor SNP was slightly and statistically significantly 

decreased in knockout mice (Figure 84).   

 

Figure 84: Aortic Vascular relaxation in global DDAH2 knockout mice and their controls 

following incremental doses of Sodium Nitroprusside.   

Aortas were isolated from DDAH2 knockout mice (Ddah2
-/-

) and compared to wild type litter 

mates (Ddah2
+/+

).  Following maximal contraction with Phenylephrine, incremental doses of 

sodium nitroprusside were administered and degree of relaxation assessed.  Analysis of 

genotype specific effects was undertaken using two way Analysis of variance (ANOVA).  

Sodium nitroprusside administration was associated with significantly reduced relaxation in 

knockout mice compared to wild type controls, p<0.01. (Analysis conducted by Dr Anna 

Slaveiro) 

 

 Ddah2
+/+

  Ddah2
-/-

  

 EC50 95% C.I. EC50 95% C.I. p 

Phenylephrine 2.638 x 

10
-7

 

1.258 – 5.530(x 
10-

7
) 

1.408 x 
10-7

 0.8506 – 2.330(x 
10-7

) <0.001 

Acetylcholine 4.345 x 

10
-8

 

2.104 – 8.969(x 
10-

8
) 

8.091 x 
10-8

 3.538 – 18.50(x 
10-8

) 0.0057 

Sodium 

Nitroprusside 

1.009 x 

10
-9

 

0.8357– 1.219(x 
10-9

) 

1.975 x 
10-9

 1.407 – 2.772(x 
10-9

) <0.001 

Table 23: Summary of EC50 (95% confidence intervals) data for baseline assessment of aortic 

vascular reactivity in Ddah2
+/+ 

mice and their Ddah2
-/-

 litter mates.  (Analysis conducted by Dr 

Anna Slaveiro) 

Comparison made by two way analysis of variance (ANOVA). 
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6.2.1.6 Right ventricular phenotyping 

In a subgroup of five animals of each genotype, the right ventricular systolic pressure (RVSP) 

was analysed using transthoracic echocardiography assessment of the regurgitant jet across 

the tricuspid valve.  In addition, at termination of the experiment, the heart was dissected out 

and the right ventricle removed and weighed.  When corrected for total body weight, this 

gave an index of relative right ventricular size.   

This gave an average RVSP of 13.1(4.6)mmHg in wild type animals and 14.2(2.5)mmHg in 

global knockout mice (p=0.79) and corrected mean ventricular masses of 0.81 vs 0.77 

(p=0.64) (Figure 85). 

 

 

Figure 85: Assessment of right ventricular function in global DDAH2 knockout mice and 

controls.   

Right ventricular systolic pressure was similar in both DDAH2 global knockout mice (Ddah2
-/-

) 

and wild type litter mates (Ddah2
+/+

), p=0.79 when assessed using transthoracic 

echocardiography.  When corrected for body mass, right ventricular mass following dissection 

from the rest of the heart was the same in both group, p=0.64. 
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6.2.2 The role of global DDAH2 knockout in sepsis 

6.2.2.1 Survival studies in polymicrobial sepsis 

Utilising the severity scoring system described above as an objective endpoint for termination 

of studies of CLP in sepsis, it having been agreed a priori that a severity score of five or 

more predicted death with a high degree of accuracy.  Our mortality study revealed 

significant differences in mortality between knockout and wild type mice.  At 72 hours after 

the induction of sepsis, 45% of the Ddah2
+/+ 

mice had died whereas 87.5% of the Ddah2
-/-

 

animals had reached the severity threshold and been culled (p<0.01), with a median survival 

of 63 vs 33 hours respectively (Figure 86).  

 

Figure 86: Kaplan Meier curve comparing survival following caecal ligation and puncture in 

DDAH2 global knockout mice and their wild type litter mate controls.   

DDAH2 knockout mice (Ddah2
-/-

) and their litter mate controls (Ddah2
+/+

) had sepsis induced 

using a caecal ligation and puncture model.  A blinded assessment of illness severity was used to 

predict death, a severity threshold score of five or more was considered highly predictive of 

death and an indication for experimental cessation.  Ddah2
-/- 

mice displayed significantly 

increased mortality (87.5%) compared to controls (45%), p<0.01.  Median survival was 63 

hours in controls and 33 hours in knockout mice. 

In addition to the severity score as an index of outcome, intermittent monitoring of 

temperature via a subcutaneous radiofrequency probe was undertaken at each monitoring 

stage.  At 18 hours after the onset of sepsis, the recorded temperature had dropped 

significantly more in the DDAH2 knockout animals consistent with their higher level of 

illness severity (Figure 87).  Knockout mice had displayed a reduction in core temperature of 

-11(6.1)°C compared to -1.4(3.9)°C in wild type controls with sepsis (p<0.01). 
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Figure 87: Radiofrequency monitoring of temperature at 18 hours after the onset of sepsis in 

DDAH2 knockout and wild type control mice.   

Radiofrequency temperature probes were inserted into the abdominal wall at the time of sepsis 

induction and temperature monitored during the course of sepsis.  DDAH2 knockout (Ddah2
-/-

) 

and their litter mate controls (Ddah2
+/+

) were compared at 18 hours after the onset of sepsis.  

Mean temperature was significantly lower (-11.0°C) in knockout mice than in controls (-1.4°C), 

p<0.01. 

In those animals deemed to have reached the severity score threshold for termination, core 

temperatures were significantly reduced in both groups, however knockout animals displayed 

a lower mean reduction in temperature of -13.9(1.6) °C vs -10.6(2.3) °C, p=0.02. (Figure 88). 

 

Figure 88: Radiofrequency monitoring of temperature at illness severity threshold in sepsis in 

DDAH2 knockout and wild type control mice.   

Radiofrequency temperature probes were inserted into the abdominal wall at the time of sepsis 

induction and temperature monitored during the course of sepsis.  DDAH2 knockout (Ddah2
-/-

) 

and their litter mate controls (Ddah2
+/+

) were compared at the time that animals reached the 

pre-determined severity threshold as defined by blinded assessment.  Mean temperature was -

13.9°C in knockout mice and -10.6°C in controls, p<0.01. 
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6.2.2.2 Haemodynamic response to caecal ligation and puncture 

Continuous radiofrequency haemodynamic monitoring of the Ddah2
-/-

 animals and their wild 

type littermates was undertaken over the course of their septic insult.  Displaying the whole 

course of illness for both groups as a single figure is challenging due to the significant 

differences observed in length of survival (Figure 89).  A more robust interrogation of the 

data is possible if a direct comparison is made of the last 24 hours of life for each of the 

experimental groups. Mean systolic blood pressure was similar in both groups of animals 

over the last 24 hours of life (p=0.236), however when blood pressure 12 hours before death 

was directly compared, significant hypotension was observed in the Ddah2
-/- 

mice 

(83(32)mmHg) against 129(45)mmHg in Ddah2
+/+ 

animals, p=0.039, suggesting that blood 

pressure was maintained for longer in the wild type control animals (Figure 90). 

 

Figure 89: Representative images of systolic blood pressure of two mice undergoing in vivo 

radiotelemetry monitoring over the course of the experiment in DDAH2 knockout mice and 

litter mate controls with sepsis.   

In vivo radiotelemetry monitoring was undertaken continuously following the induction of 

sepsis using a moderate severity model of caecal ligation and puncture.  Representative curves 

of two individual mice for the period of global DDAH2 knockout and wild type litter mate 

control are shown.  Reported period is from induction of sepsis until the time that the severity 

threshold was reached.   

Diastolic blood pressure displayed a similar pattern overall to systolic pressure with no 

significant differences detected by two way ANOVA in the data sets as a whole (p=0.44).  A 

trend to earlier onset of cardiovascular compromise persisted however with wild type animals 

maintaining a mean diastolic blood pressure of 97.5(32)mmHg vs 68.4(29)mmHg in Ddah2 

deficient mice (p=0.096) (Figure 91). 
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Figure 90: In vivo radiotelemetry monitoring of systolic blood pressure over the final 24 hours 

of life in DDAH2 knockout mice and litter mate controls with sepsis.   

In vivo radiotelemetry monitoring was undertaken continuously following the induction of 

sepsis using a moderate severity model of caecal ligation and puncture.  No significant 

differences were observed when blood pressure was considered over the whole period of 

monitoring in DDAH2 global knockout (Ddah2
-/-

) when compared to wild type litter mates 

(Ddah2
+/+

), however 12 hours prior to experimental cessation, DDAH2
-/- 

mice were more 

hypotensive than controls, p=0.039.  Data recorded every 20 seconds and averaged over each 

minute for calculation.  Data presented with each data point at 30minutes for clarity. 

 

Figure 91: In vivo radiotelemetry monitoring of diastolic blood pressure over the final 24 hours 

of life in DDAH2 knockout mice and litter mate controls with sepsis.   

In vivo radiotelemetry monitoring was undertaken continuously following the induction of 

sepsis using a moderate severity model of caecal ligation and puncture.  No significant 

differences were observed when diastolic blood pressure was considered over the whole period 

of monitoring in DDAH2 global knockout (Ddah2
-/-

) when compared to wild type litter mates 

(Ddah2
+/+

), however 12 hours prior to experimental cessation, there was a trend to lower blood 

pressure in DDAH2
-/- 

mice (p=0.096).  Data recorded every 20 seconds and averaged over each 

minute for calculation.  Data presented with each data point at 30minutes for clarity. 
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When mean arterial pressure (MAP) is considered, a Ddah2
-/- 

mice were consistently 

hypotensive 12 hours prior to reaching the severity threshold compared to their litter mate 

controls, with mean MAPs of 78.2(29) and 118.1(34) respectively, p=0.03.  Although once 

again, no difference was observed in blood pressure overall, p=0.25 (Figure 92).  

 

Figure 92: In vivo radiotelemetry monitoring of mean arterial blood pressure over the final 24 

hours of life in DDAH2 knockout mice and litter mate controls with sepsis.   

In vivo radiotelemetry monitoring was undertaken continuously following the induction of 

sepsis using a moderate severity model of caecal ligation and puncture.  No significant 

differences were observed when mean arterial blood pressure was considered over the whole 

period of monitoring in DDAH2 global knockout (Ddah2
-/-

) when compared to wild type litter 

mates (Ddah2
+/+

), however 12 hours prior to experimental cessation, there was a lower blood 

pressure in DDAH2
-/- 

mice (p=0.03).  Data recorded every 20 seconds and averaged over each 

minute for calculation.  Data presented with each data point at 30minutes for clarity. 

 

Heart rate was continuously monitored throughout the period of the sepsis study.  When 

compared to wild type controls, DDAH2 knockout mice had similar heart rates throughout 

the last 24 hours of life although a trend was noted on overall analysis towards a lower heart 

rate in Ddah2
-/- 

mice, mean(SD) heart rate(bpm)  488(53) compared to  571(25) in controls 

(p=0.22) (Figure 93). 
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Figure 93: Radiotelemetry monitoring of heart rate in the final 24 hours of life in septic DDAH2 

knockout mice and litter mate controls.   

In vivo radiotelemetry monitoring was undertaken continuously following the induction of 

sepsis using a moderate severity model of caecal ligation and puncture.  A trend (p=0.1049) to 

lower heart rate in the last 24 hours of life was seen when heart rate was analysed over the 

whole period of monitoring in DDAH2 global knockout (Ddah2
-/-

) when compared to wild type 

litter mates (Ddah2
+/+

), however 12 hours prior to experimental cessation, there was a no 

significant difference in heart rate between the two groups(p=0.22).  Data recorded every 20 

seconds and averaged over each minute for calculation.  Data presented with each data point at 

30minutes for clarity. 

 

6.2.2.3 Aortic vascular reactivity in sepsis 

Aortic vascular reactivity was modelled in global knockout mice and their controls using the 

same technique employed in earlier models.  As expected, when the aortas were isolated six 

hours after the induction of sepsis, overall vascular reactivity was grossly impaired (Figure 

94).  Of note however is that whilst there were no significant differences in the response to 

the vasopressor phenylephrine or acetylcholine treatment, an exaggerated response to sodium 

nitroprusside administration was observed in the DDAH2 knockout mice compared to wild 

type animals(p<0.01), EC50 may be seen for each of these experiments in Table 24 below. 

(Analysis by Dr A Slaveiro) 
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Figure 94: Aortic Vascular relaxation in septic global DDAH2 knockout mice and their controls 

following incremental doses of acetylcholine, phenylephrine and sodium nitroprusside.   

Aortas were isolated from DDAH2 knockout mice (Ddah2
-/-

) and compared to wild type litter 

mates (Ddah2
+/+

) at six hours after the onset of sepsis.  Following maximal contraction with 

phenylephrine, incremental doses of sodium nitroprusside were administered and degree of 

relaxation assessed.  A repeat incremental scale of phenylephrine was undertaken and force of 

contraction recorded. Sodium nitroprusside was then applied at increasing doses and relaxation 

assessed. Analysis of genotype specific effects was undertaken using two way Analysis of 

variance (ANOVA).  No significant differences were observed between groups of septic mice in 

response to phenylephrine (p=0.59) or acetylcholine (p=0.17), however sodium nitroprusside 

administration was associated with significantly reduced relaxation in knockout mice compared 

to wild type controls, p<0.01. (Analysis by Dr A Slaveiro) 
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 Ddah2
+/+ 

sepsis Ddah2
-/- 

sepsis p 

EC50 95% C.I. EC50 95% C.I. 

Phenylephrine 1.37 x 10-4 2.1x10-5–7.8 x 10-

4 
1.27 x 10-4 2.7x10-5 –6.8 x 10-4 0.59 

Acetylcholine 2.7 x 10-5 8.0x10-6-9.0 x 10-

5 
8.0 x 10-6 

 

1.9x10-6 -3.4 x 10-5 0.17 

Sodium 
Nitroprusside 

1.9 x 10-5 1.2x10-5 – 3.0x10-

5 
3.5 x 10-5 1.9 x 10-5  - 6.6x10-5 <0.001 

Table 24: Summary of EC50 (95% confidence intervals) data for assessment of aortic vascular 

reactivity in Ddah2
+/+

 mice and their Ddah2
-/- 

litter mates at six hours after the onset of sepsis. 

Comparison made by two way analysis of variance (ANOVA). (Analysis by Dr A Slaveiro) 

6.2.2.4 Systemic nitric oxide levels in sepsis  

Plasma NOx was measured using the chemiluminescent technique described above.  Nitrate + 

Nitrite concentration was significantly elevated in all Ddah2
-/- 

mice and also non surviving 

Ddah2
+/+ 

animals when compared to wild type mice who did not reach the pre-defined illness 

severity threshold (Figure 95).  Mean(SD) nitric oxide concentration was 98.9(30)µM in 

Ddah2
-/- 

mice, 91.9(37)µM in non-surviving wild type mice and 53.0(26)µM in surviving 

Ddah2
+/+ 

rodents, p=0.018 and 0.046 respectively.  NOx concentrations were similar in non-

surviving animals of both knockout and control groups, p=0.75. 
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Figure 95: Plasma Nitrate+Nitrite(NOx) concentrations in DDAH2 knockout animals and 

surviving and non-surviving litter mate controls at the end of a sepsis study.    

A chemiluminescent technique was used to determine plasma NOx concentrations at the end of 

a caecal ligation and puncture mediated sepsis model in DDAH2 knockout mice (Ddah2
-/-

) and 

compared to wild type litter mates (Ddah2
+/+

) which survived (S) or reached the pre-defined 

severity threshold (NS).  Plasma NOx concentrations were significantly higher on non-surviving 

animals but no difference was observed between genotypes, p=0.75. 

6.2.2.5 Methylarginines in global DDAH2 knockout models of sepsis 

Severe sepsis was associated with significant derangement of the plasma methylarginines in 

both groups of animals, however there increases in ADMA and L-NMMA increased more in 

global Ddah2 knockout animals. ADMA (Mean (SD)µM) in the Ddah2
+/+

 mice was 4.3(0.73) 

compared to Ddah2
-/-

  mice in which it was elevated further to 6.3(1.6),  p=0.015 (Figure 96). 

L-NMMA increased to 0.43(0.28) in wild type mice and 0.93(0.32), p=0.01 (Figure 96) with 

no significant difference in plasma SDMA level detected between the genotypes (p=0.63). 
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Figure 96: Plasma concentrations of methylarginines in DDAH2 knockout mice and wild type 

controls with sepsis.   

Following experimental cessation, plasma taken at terminal bleed by cardiac puncture was 

analysed for methylarginine concentrations.  Whilst all methylarginines were elevated over 

control levels, ADMA and L-NMMA were significantly higher in DDAH2 knockout animals 

(Ddah2
-/-

) compared to controls (Ddah2
+/+

), p=0.015 and 0.01 respectively.   

6.2.2.6 Peritoneal and whole blood bacterial load in sepsis 

In a short term model of sepsis induced using CLP with experimental termination at 6 hours 

after the onset of sepsis, bacterial load was significantly increased in peritoneal lavage fluid 

in global knockout mice.   Representative images of plates exposed to peritoneal lavage fluid 

at a range of dilutions can be seen in Figure 97below.  Total bacterial load was 1.00 x10
7
 

(IQR 1.17 x10
6
 -1.20 x10

9
) in Ddah2 knockout mice and in wild type animals was lower at 

1.01 x10
6
 CFU/ml (IQR 13650-9.50 x10

6
) (p=0.04).  There was also a trend to elevated 

bacterial load in whole blood in knockout mice compared to controls (1084 (IQR 25-6364) vs 

373 (IQR 0-670) (p=0.052)) (Figure 98). 
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Figure 97: Representative images of peritoneal fluid plating following serial dilution after 

collection at six hours after caecal ligation and puncture and 24 hour incubation.   

Representative images of selected dilutions of peritoneal fluid collected from DDAH2 knockout 

mice and their litter mate controls collected six hours after the onset of sepsis were plated on 

Agar and the appropriate dilution counted for assessment of bacterial load at 24 hours. 
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Figure 98: Whole blood and peritoneal washout bacterial loads in DDAH2 knockout mice and 

controls six hours after the onset of sepsis.   

Serial dilutions of blood and peritoneal fluid collected from DDAH2 knockout mice and their 

litter mate controls collected six hours after the onset of sepsis were plated on Agar and the 

appropriate dilution counted for assessment of bacterial load at 24 hours.  DDAH2 knockout 

mice (Ddah2
-/-

) had significantly higher peritoneal (p=0.04) and a trend towards higher blood 

(p=0.052) bacterial loads compared to wild type litter mate controls (Ddah2
+/+

).  Data presented 

as Log10 colony forming units (CFU)/ml fluid. 

 

6.2.3 Macrophage specific DDAH2 knockout  

In order to explore the role of macrophage DDAH2, a macrophage specific Ddah2 deficient 

mouse was developed using the loxP Cre Recombinase technique (Ddah2
MΦ-

).  All studies 

involving these mice were compared to Ddah2
flox/flox 

litter mate controls in order to limit the 

impact of transgenic technique on observed differences in the response to sepsis. 

6.2.3.1 Demonstration of the macrophage specific knockout of DDAH2 

Western blots of kidney, heart, liver and aortic tissue homogenates showed preservation of 

DDAH2 protein in Ddah2 monocyte specific knockout animals (Figure 99). DDAH1 protein 

was also shown to be present in these tissues. 

 

Figure 99: Representative images demonstrating the presence of DDAH2 in kidney, liver and 

heart tissue homogenates in the global DDAH2 macrophage specific knockout mouse (MΦ-). 

Compared to floxed litter mate control mice (flox).  Reproduced with permission of Dr Ben Lee. 
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DDAH2 protein and mRNA was shown to be absent from isolated resident peritoneal 

macrophages (Figure 100). 

 

Figure 100: Demonstration of the absence of DDAH2 protein and mRNA from macrophages 

from DDAH2 knockout mice.   

Representative image displaying the absence of DDAH2 from the macrophages of DDAH2 

knockout mice MΦ- compared to floxed controls (flox).  Second image: quantitative analysis of 

DDAH2 mRNA expression in   (Ddah2
MΦ-

) mice compared to floxed controls (Ddah2
flox/flox

). 

 

Both the Ddah2
MΦ- 

mice and Ddah2
flox/flox

 controls appeared phenotypically normal although 

at the time of experiment at 8 -10 weeks there was a trend towards lower body weight in 

Ddah2
MΦ- 

compared to their control litter mates, Mean(SD) Ddah2
flox/flox

 24.5(2.5)g vs 

DDAH2
MΦ-  

23.0(1.8)g p=0.09. 

6.2.3.2 Survival studies in polymicrobial sepsis 

Survival studies in the macrophage specific knockout animals were conducted in identical 

fashion to studies undertaken in global knockout mice.   Using blinded independent 

assessment of severity and the surrogate marker of subcutaneous temperature as described 

above,   DDAH2
MΦ-  

mice displayed a similar pattern of early excess mortality to Ddah2
-/-

 

animals with 100% of mice reaching the pre-determined severity threshold compared to 50% 

of the Ddah2
flox/flox

 mice (p<0.01), median survival was 24 hours in the macrophage specific 

knockouts and 72hours in floxed control mice(Figure 101).  Greater change was observed in 

subcutaneous temperature at 18 hours post CLP in the knockout mice, mean(SD) temp 

change °C and Ddah2
flox/flox

 -0.8(3.7)°C vs Ddah2
MΦ-

 -9.32(6.4)°C,  p<0.01 (Figure 102).  

Consistent severity of illness at time of sacrifice of those animals reaching illness severity 

threshold was demonstrated by similar body temperatures at sacrifice, p=0.26 (Figure 102).   
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Figure 101: Kaplan Meier curve comparing survival following caecal ligation and puncture in 

DDAH2 macrophage specific knockout mice and their floxed controls.   

DDAH2 macrophage specific knockout mice (Ddah2
MΦ-

) and their litter mate controls 

(Ddah2
flox/flox

) had sepsis induced using a caecal ligation and puncture model.  A blinded 

assessment of illness severity was used to predict death, a severity threshold score of five or 

more was considered highly predictive of death and an indication for experimental cessation.  

Ddah2
-/- 

mice displayed significantly increased mortality (100%) compared to controls (50%), 

p<0.01.  Median survival was 72 hours in controls and 24 hours in knockout mice.  Global 

DDAH2 knockout (Ddah2
-/-

) and Wild type (Ddah2
+/+

) control survival curves are provided for 

comparison. 
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6.2.3.3 Radiotelemetry probe insertion in macrophage specific knockout mice 

In order to model the physiological impact of macrophage specific Ddah2 knockout on 

haemodynamic response in sepsis, radiotelemetry probe insertion was undertaken in a group 

of nine DDAH2
flox/flox 

mice and nine DDAH2
MΦ- 

mice utilising the same technique described 

previously and successfully employed in the global knockout animals and their controls. 

Telemetry probe insertion was uneventful with no apparent haemorrhagic complications and 

all animals displaying a good recovery after one hour in a heated chamber.  Animals were 

returned to their cages and allowed to recover overnight. 

By 12 hours after probe insertion, all animals from both groups displayed significant 

evidence of distress, with limited movement, piloerection and hypothermia prominent.  Fluid 

resuscitation and analgesia with burprenorphine was administered with minimal apparent 

effect.  Based on the level of apparent distress, it was decided, in conjunction with the animal 

welfare team to terminate the experiment.  Animals were euthanised and post mortem 

examination undertaken at the time of probe removal. 

There was no evidence of haemorrhagic complication or cerebrovascular accident and the 

thoracic cavity appeared normal.  Upon dissection of the peritoneal cavity however, there was 

gross discolouration of the proximal small bowel, consistent with mesenteric artery ischaemia 

present to some degree in all animals of both Ddah2 macrophage specific knockout and 

floxed control mice(Figure 103).  Further investigation revealed no displacement of the 

monitoring catheter and no gross abnormality of the great vessels.  Possible mechanisms for 

this are considered in the discussion below. 
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Figure 102: Radiofrequency monitoring of temperature at 18 hours after the onset of sepsis 

and at termination in DDAH2 macrophage specific knockout and floxed controls.   

Temperature monitoring was undertaken in DDAH2 macrophage specific knockout mice 

(Ddah2
MΦ-

 ) and floxed controls (Ddah2
flox/flox

).  No differences were observed at 

experimental cessation however at 18 hours after the onset of sepsis, DDAH2 macrophage 

specific knockout mice displayed significantly greater mean drop in temperature (-9.32°C) 

compared to floxed controls (-0.8°C), p<0.01. 
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Figure 103: Representative image of proximal bowel ischaemia in LoxP animals.   

Arrow highlights region of small bowel ischaemia. 
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6.2.3.4 Haemodynamic response to caecal ligation and puncture 

As an alternative approach to assessing haemodynamics in the macrophage specific mice, 

sepsis was induced using the previously described CLP model including fluid resuscitation 

and analgesia followed by anaesthesia and in vivo assessment of blood pressure undertaken 

using a Millar fluid filled catheter technique.  Blood pressure at 6 hours after the onset of 

sepsis did not reveal any significant differences between the two groups of animals although 

significant haemodynamic compromise was noted in both groups (Figure 104).  

Anaesthetised systolic blood pressure (mean(SD)) was 77.7(39)mmHg in floxed animals 

compared to 80.7(9.6)mmHg in macrophage specific knockout mice, p=0.87.  Diastolic blood 

pressure was similarly reduced compared to normal levels with pressures of 57.7(35)mmHg 

and 62(8.7)mmHg respectively, p=0.79. 

 

Figure 104: Anaesthetised haemodynamic assessment in DDAH2 macrophage specific knockout 

mice with sepsis and floxed controls.   

Six hours after the induction of sepsis, animals were anaesthetised and the right internal carotid 

artery exposed.  Once a stable level of anaesthesia had been achieved, a Millar catheter was 

inserted and after a 15 minute period of stability blood pressure was recorded in DDAH2 

macrophage specific knockout (Ddah2
+/+

) and floxed litter mate controls (Ddah2
flox/flox

).  No 

differences were observed between the systolic and diastolic blood pressures of the two groups, 

p=0.87 and 0.79 respectively. 

6.2.3.5 Aortic vascular reactivity in sepsis 

In the same model of sepsis used to explore aortic vascular reactivity in global knockout 

animals, no significant differences between responses of Ddah2
MΦ-  

and their Ddah2
flox/flox 

litter mates (Figure 105) although in all cases, sepsis related vascular reactivity was 

significantly impaired compared to normal values. EC50 for all experiments can be seen in 

Table 25 below. (Analysis by Dr A Slaveiro) 
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Figure 105: Aortic Vascular responsiveness in septic macrophage specific DDAH2 knockout 

mice and their controls following incremental doses of acetylcholine, phenylephrine and sodium 

nitroprusside.    

Aortas were isolated from DDAH2 knockout mice (Ddah2
MΦ-

) and compared to floxed litter 

mates (Ddah2
flox/flox

) at six hours after the onset of sepsis.  Following maximal contraction with 

phenylephrine, incremental doses of sodium nitroprusside were administered and degree of 

relaxation assessed.  A repeat incremental scale of phenylephrine was undertaken and force of 

contraction recorded. Sodium nitroprusside was then applied at increasing doses and relaxation 

assessed. Analysis of genotype specific effects was undertaken using two way Analysis of 

variance (ANOVA).  No significant differences were observed between groups of septic mice in 

response to phenylephrine (p=0.299), sodium nitroprusside(p=0.97) or acetylcholine (p=0.32), 

however sodium nitroprusside administration was associated with significantly reduced 

relaxation in knockout mice compared to wild type controls, p<0.01. (Analysis by Dr A Slaveiro) 
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 Ddah2
flox/flox 

Sepsis Ddah2
MΦ- 

sepsis  

EC50 95% C.I. EC50 95% C.I. 

Phenylephrine 1.5 x 10
-4

 5.1x10
-5

–4.6 x10
-

4
 

1.9 x 10
-4

 2.7x 10
-5 

– 1.3 x 10
-4

 0.299 

Acetylcholine 8.3 x 10
-5

 2.0x10
-5

–3.4 x10
-

4
 

1.6 x 10
-4

 6.4x 10
-5 

– 4.0 x 10
-4

 0.320 

Sodium 

Nitroprusside 

2.0 x 10
-5

 1.0x10
-5

–4.0 x10
-

5
 

1.2 x 10
-5

 6.6 x 10
-5 

– 2.3 x 10
-5

 0.966 

Table 25: Summary of EC50 (95% confidence intervals) data for baseline assessment of aortic 

vascular reactivity in Ddah2
MΦ-  

mice and their Ddah2
flox/flox 

litter mates.  (Analysis by Dr A 

Slaveiro) 

Comparison made by two way analysis of variance (ANOVA). 

 

6.2.3.6 Systemic nitric oxide levels in sepsis  

Figure 106: Plasma Nitrate+Nitrite(NOx) concentrations in DDAH2 macrophage specific 

knockout animals and floxed litter mate controls at the end of sepsis study.    

A chemiluminescent technique was used to determine plasma NOx concentrations at the end of 

a caecal ligation and puncture mediated sepsis model in DDAH2 knockout mice (Ddah2
MΦ-

) and 

compared to floxed  litter mates (Ddah2
flox/flox

) Plasma NOx concentrations were similar in both 

groups at experimental cessation, p=0.95. 

Systemic levels of nitric oxide were measured in plasma collected from mice at the time of 

termination, either upon reaching the pre-determined severity threshold or at the censor point 

of the experiment at 72 hours (Figure 106).  No significant differences were observed 

between Ddah2
flox/flox 

mice (Mean(SD) 91.9(37.7)µM) and Ddah2
MΦ-  

mice (94.7(30.0) µM), 

p=0.95. 
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6.2.3.7 Methylarginines in macrophage specific DDAH2 knockout models of 

sepsis 

Systemic derangement of ADMA and SDMA consistent with severe sepsis was observed in 

the Ddah2
MΦ-

 animals and their controls (Figure 107) (mean(SD)µM).  ADMA 

concentrations were similarly elevated in both groups at 4.54(0.74) in floxed animals and 

5.5(2.0) in the macrophage specific knockout mice (p=0.226).SDMA was elevated in 

Ddah2
flox/flox 

mice at 6.0(3.9) and similarly increased in Ddah2
MΦ- 

animals at 6.9(2.4), p=0.68.  

For technical reasons L-NMMA could not be reliably measured in these animals. 

 

6.2.3.8 Peritoneal and whole blood bacterial load in sepsis 

Peritoneal bacterial load was significantly elevated in Macrophage specific knockout mice 

(Median (IQR)CFU/ml 9.0x10
5
 (3.93 x10

5
-1.72x10

6
) against 1.0x10

5
 (3.05 x10

5
-3.0 x10

5
), 

p=0.03 in Ddah2
flox/flox 

animals.  A similar trend was observed in whole blood of the 

Ddah2
MΦ- 

mice 1800(1300-3500) vs 200(0-1400) in floxed control mice, p=0.056, Figure 

108.   
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Figure 107: Plasma concentrations of methylarginines in DDAH2 macrophage specific 

knockout mice and floxed controls with sepsis.   

Following experimental cessation, plasma taken at terminal bleed by cardiac puncture was 

analysed for methylarginine concentrations.  All methylarginines were elevated over control 

levels, ADMA and SDMA were similar in both macrophage specific DDAH2 knockout mice 

(Ddah2
MΦ-

) and floxed litter mates (Ddah2
flox/flox

) , p=0.226 and 0.68  respectively.   
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Figure 108: Whole blood and peritoneal washout bacterial loads in macrophage specific 

DDAH2 knockout mice and controls six hours after the onset of sepsis.   

Serial dilutions of blood and peritoneal fluid collected from macrophage specific DDAH2 

knockout mice and their litter mate controls collected six hours after the onset of sepsis were 

plated on Agar and the appropriate dilution counted for assessment of bacterial load at 24 

hours.  DDAH2 knockout mice (Ddah2
MΦ-

) had significantly higher peritoneal (p=0.03) and a 

trend towards higher blood (p=0.056) bacterial loads compared to floxed type litter mate 

controls (Ddah2
flox/flox

).  Data presented as Log10 colony forming units (CFU)/ml fluid. 

 

6.3 Discussion 

This series of experiments provides confirmation for the first time that the functional role of 

DDAH2 in macrophages observed previously translates to a meaningful pathophysiological 

impact in robust animal models of sepsis. 

DDAH1 and DDAH2 have differing tissue distributions and chromosomal locations[23, 24].  

This has led investigators to postulate that they play different roles in the maintenance of 

homeostasis and also the response to pathophysiological stress.  The position of the DDAH2 

gene in the MHC region of chromosome 6, coupled with human small scale human SNP 

association studies led us to explore the role of DDAH2 in sepsis. 
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6.3.1 The baseline physiology of DDAH2 knockout mice 

6.3.1.1 Cardiovascular function 

Our previous work has shown that knockout or pharmacological inhibition of DDAH1 results 

in a mouse or rat with a hypertensive phenotype, which arises as a consequence of elevated 

tissue ADMA concentrations and leads to inhibition of NO synthesis in vascular endothelial 

cells following pro-inflammatory stress.  This modulates increased systemic vascular 

resistance and as a consequence, systemic blood pressure[47, 365].   these observations 

provide a potential mechanism for studies in humans that have associated plasma ADMA 

concentrations and SNP of DDAH1 with the presence of hypertension[33].  In sepsis, this 

elevation of systemic vascular resistance is one mechanism by which DDAH1 inhibition or 

knockout is protective in mouse and rat models of sepsis[213, 223].  In addition to improving 

survival, these studies showed that DDAH1 inhibition preserves organ perfusion and function 

as well as reducing the requirement for noradrenaline therapy to maintain blood pressure in 

rodent septic shock. 

This contrasts starkly with the observations made in these studies of the role of DDAH2 in 

physiology and disease.  The studies here show that under normal physiological conditions, 

global knockout of DDAH2 results in a developmentally normal mouse with a very subtle 

phenotype of increased blood pressure, only clearly demonstrated on secondary analysis 

when animals are at their most active.  This validates the finding observed elsewhere that 

overexpression of DDAH2 generates resistance to the hypertensive phenotype caused by 

ADMA infusion[59].  Consistent with the finding that haemodynamics were minimally 

affected by deletion of DDAH2, we saw in ex vivo analysis of vascular responsiveness 

statistically significant but relatively small differences in reactivity following treatment with 

phenylephrine, acetylcholine and sodium nitroprusside.  The modest impact of knockout on 

responsiveness is consistent with the degree of abnormal response seen in the in vivo testing.  

The decreased response to SNP, a NO donor was perhaps the most surprising ex vivo  finding 

and at present is difficult to understand from the known mechanism of action of DDAH2.  

6.3.1.2 Methylarginine handling 

The pattern of methylarginine handling in the control mice is an interesting one.  It is perhaps 

unsurprising that the pattern of MA concentrations in different tissues is variable between 

organs.  There are multiple mechanisms that determine MA levels and these include PRMT 

expression and transport and the expression of DDAH1 which may compensate for the 

absence of DDAH2 to some degree in those tissues where they are co-expressed.  Also, in the 

kidney and liver AGXT2 may play a role in regulating the MA bioavailability[21] and this 

may be altered in the absence of DDAH2.  The action of AGXT2 may also explain the 

apparent increase in SDMA clearance seen in the urine of global DDAH2 knockout mice. 

Increased ADMA and L-NMMA reaching the kidney may compete with SDMA at the 

AGXT2 active site leading to reduced SDMA metabolism and a greater quantity reaching the 

collecting duct. 



  

189 

 

  

However, as might be expected, ADMA was elevated in both renal and cardiac tissues.  The 

apparent increase in L-NMMA but not ADMA in the plasma may suggest differential 

handling by the tissues resulting in changes in the plasma ‘pool’ of MAs, however it may also 

point towards a role for DDAH2 in handling L-NMMA in preference to ADMA 

intracellularly, although this hypothesis requires further elucidation. 

6.3.2 The septic response in the global knockout mice 

A more apparent contrast to the actions of DDAH1 is the observation that in sepsis, mice 

display the opposite response to infection to that seen in DDAH1 knockout.  It has been 

shown that DDAH2 knockout in macrophages using two different transgenic techniques leads 

to a pattern of significantly impaired cellular function, mediated by elevated ADMA 

concentrations and reduced NO synthesis by the cells in response to inflammatory cytokines.  

These effects result in impaired in vitro phagocytic ability and motility of knockout 

macrophages compared to appropriate controls[30].  The studies presented here addressed the 

question of how this apparent impairment of function at a cellular level contributed to 

modulating the pathophysiology and outcome from sepsis in the whole animal. 

There are many potential models of sepsis in rodents, and here we chose a clinically relevant 

model of polymicrobial sepsis, analogous to human peritonitis, with a moderate to severe 

disease severity producing a rate of death of around 50% in control animals.  Mechanisms for 

modifying the severity of this model include changing the size of bowel perforation, adding 

fluid resuscitation and/or antibiotic agents.  We found that the optimum model included the 

administration of regular fluid resuscitation – which improved survival and also reduced 

suffering, regular long acting opioid analgesia with buprenorphine administered on a regular 

basis and two perforations of the ligated caecum with a 21Gauge needle.  This achieved the 

desired illness severity for these studies coupled with a high degree of reproducibility.   

6.3.2.1 Mortality 

The impact of this model on DDAH2 global knockout mice with sepsis was profound.  

Exaggerated mortality of more than 30% was seen in the knockout mice, with all of the 

excess death arising in the first 24 hours after the induction of sepsis.  

By using temperature as an additional surrogate endpoint, we were able to observe that the 

shock state developed earlier in global knockout mice and also that at the time of termination, 

a similar degree of hypothermia was present in both control and knockout populations, 

validating the blinded observation of severity as a tool for the assessment of severity in 

sepsis. 
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6.3.2.2 Cardiovascular function in sepsis 

The cardiovascular impact of the global knockout of DDAH2 reflected the severity of the 

disease from which the septic mice were suffering.  The early mortality of the Ddah2
-/- 

mice 

prevented a direct comparison of the cardiovascular course of sepsis in the two groups over 

the whole of the disease, however it was possible to examine the terminal phase of disease – 

the last 24 hours – in both groups.  Interrogation of the data set in this way showed that whilst 

at the start of the last day of life and also at termination, both groups were in a similar 

haemodynamic condition, knockout mice deteriorated earlier and displayed a shocked state 

for longer prior to reaching the severity end point than their wild type litter mates.  Of note is 

that the subtle differences in aortic vascular responsiveness observed in control animals 

where completely overwhelmed in the septic mice.  Interestingly, the only significant 

difference observed in the septic models was an exaggerated response to SNP administration 

in DDAH2 knockouts consistent with chronic NO deprivation in these mice. The consistent 

patterns of vascular responsiveness suggest that the hypotension seen in the DDAH2 

deficient mice is not mediated by intrinsic vascular dysfunction but rather an indirect action 

on the vasculature. 

6.3.2.3 The regulation of nitric oxide synthesis 

Consistent with both previous animal[213] and human models[300] of sepsis, systemic levels 

of MAs are globally increased.   This study shows however that in the absence of DDAH2, L-

NMMA and ADMA are both significantly elevated over control animals.  This may – as 

expected - reflect changes in intracellular tissue MA handling, with plasma measurement 

reflecting the net result of changes in MAs across the tissues.  However it is important to note 

that greater illness severity at the time of collection may contribute to the observed 

differences and that given the differential impact of DDAH2 knockout on distinct tissues seen 

at baseline, interpretation of the changes seen in the plasma as reflective of specific tissue 

concentrations must be undertaken with caution.  

6.3.3 Macrophage specific DDAH2 knockout in sepsis 

The demonstration that excess mortality in DDAH2 deficient animals with sepsis arose 

during the first 24 hours of infection and was not mediated by vascular dysfunction, led to the 

suggestion that an impaired innate immune response was responsible.  We therefore used the 

LoxP Cre recombinase mediated macrophage DDAH2 deficient mice in our sepsis model to 

explore this hypothesis. 
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6.3.3.1 Mortality 

The knockout of DDAH2 in macrophages and granulocytes resulted in a near identical 

pattern of exaggerated early mortality to that seen in the global knockout mice.  The degree 

of illness severity was similar in the Ddah2
MΦ- 

mice to that seen in the Ddah2
-/- 

mice when 

temperature was measured at 18 hours after the onset of sepsis, consistent with a similar 

pattern of early deterioration in the knockout mice of both groups.  At termination, 

temperatures were similar suggesting consistent illness severity at the threshold for 

experimental cessation.  The similarities in response across the two transgenic models 

suggest that it is innate immune cell macrophage DDAH2 that plays a critical role in the 

regulation of the innate immune response and that this has a significant impact on the 

systemic response to infection. 

6.3.3.2 Cardiovascular function in sepsis 

Assessing the cardiovascular impact of macrophage specific knockout of DDAH2 in septic 

mice proved challenging.  The attempt to undertake in vivo radiotelemetry in Ddah2
MΦ- 

and 

Ddah2
flox/flox 

controls proved impossible when both knockout and control groups developed 

features of proximal gastrointestinal tract ischaemia making continuing with the experiment 

impossible.  The mechanism for this apparent ischaemic complication was not immediately 

clear.  Given that the finding arose in both groups of mice, it did not appear likely that this 

was DDAH2 mediated, instead it was suggested that a LoxP mediated phenomenon common 

to both groups might be responsible.  The Cre LoxP model has been associated with a 

number of off target genetic and developmental effects [366, 367], and whilst unreported in 

the literature, a vascular malformation impairing mesenteric blood supply which only became 

apparent when the great vessel circulation was disrupted is a possible mechanism for this and 

may arise as a consequence of unidentified genetic variability introduced following breeding 

between floxed and Cre mice. 

Instead of in vivo monitoring, measurement of anaesthetised blood pressure using the Millar 

catheter was considered the best alternative approach.  These experiments revealed no 

significant differences at six hours after the onset of sepsis in systolic or diastolic blood 

pressure between the knockout and control groups.  This method is limited by the single time 

point employed and the requirement for anaesthesia to facilitate catheter insertion.  The use 

of volatile anaesthesia in sepsis mandated an early time point for assessment of 

haemodynamics as the volatile anaesthetic agents used in maintaining the sedation cause 

systemic vasodilatation.  This both increases the risk of death causes by catastrophic 

hypotension and also reduces the sensitivity of the system to detect subtle differences in 

blood pressure between knockout and control groups.  This contributes to the significant 

hypotension and also the similarities between the groups when tested. 
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6.3.3.3 Methylarginine handling 

Plasma methylarginines in the macrophage specific knockout mice and their floxed controls 

were similarly elevated to the level seen in the global knockout models.  No significant 

differences were observed in systemic concentrations of NO or methylarginines between 

Ddah2
MΦ-

 and the relevant controls.  The absence of differences between these two models in 

the systemic concentrations does not necessarily reflect changes concentrations of MAs and 

local NO synthesis in macrophages.  This is because whilst effects of DDAH2 knockout in 

macrophages at a cellular level may have a significant impact, the contribution that they 

make to the ‘pool’ of MAs and NO found in the plasma is relatively modest.  This is in 

contrast to the impact of global knockout where multiple tissues are contributing additional 

MAs to the plasma. 

6.3.4 Strengths and limitations 

These studies explore, for the first time, the impact of DDAH2 knockout on the whole 

organism response to severe infection.  The strengths of this study include the use of two 

different transgenic approaches.  Both of which are associated with their own challenges, 

however the consistency of the response to sepsis across them makes the finding that 

DDAH2 is critical in regulating the systemic innate response to sepsis robust.   

Corroborating this finding with the observations that bacterial load is significantly elevated in 

the abdominal cavity and also the blood in both knockout models suggests that the impacts of 

DDAH2 knockout on monocyte function observed previously lead to impaired bactericidal 

activity in vivo.  

This, coupled with the observation that both at rest and in both models of sepsis, there are 

minor differences only between vascular function in knockout mice and their controls 

suggests that the hypotension seen in the knockout models is likely to be mediated by an 

exaggerated inflammatory state caused by an inability to eradicate bacteria rather than 

intrinsic dysfunction of vascular activity. 

The inability to undertake in vivo monitoring of haemodynamics in the macrophage specific 

knockout mice and their controls is a limitation of this study.  Had this been possible, it 

would have been valuable to observe whether the hypotension seen in the global knockout 

mice was also seen in the Ddah2
MΦ-

 mice.  Had it been present, this would have confirmed 

the observation that intrinsic vascular dysfunction did not play a role in the sepsis induced 

hypotension seen in DDAH2 global knockout mice.   

An additional limitation includes the use of only male mice in this study.  It has been reported 

that female mice display quantitatively different responses to the septic insult[368].  It is not 

clear how this would affect the findings presented here but is the subject of further 

exploration.  
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6.3.5 Future work 

In addition to understanding the role of sex hormones in DDAH2 knockout models of sepsis, 

it would also be interesting to study the impact of sepsis on the only other tissue that 

expresses DDAH2 exclusively – the heart.  The development of a cardiac specific DDAH2 

knockout mouse would provide valuable insights in to the role of DDAH2 in regulating the 

cardiac stress response. 

Whilst understanding the mechanisms of mortality provides potential diagnostic, risk 

stratification and therapeutic insights, none of the studies undertaken here explore the impact 

of knockout on survivors from sepsis.  With increasing interest in the survivor syndrome of 

sepsis and the long term consequences of the disease, a ‘sepsis survivor’ model, developed 

for use in the DDAH1 and DDAH2 knockout rats that the group is currently developing will 

provide great insights into the mechanisms of recovery from severe infections. 

6.3.6 Summary statement 

 Global knockout of DDAH2 in mice results in a developmentally normal mouse with 

a subtle hypertensive phenotype associated with exertion 

 Global DDAH2 knockout results in systemic and organ specific dysregulation of 

methylarginine concentrations, with increased clearance of both L-NMMA and 

ADMA in the urine 

 Global knockout of DDAH2 causes hypotension, impaired bactericidal activity and 

excess early mortality in a caecal ligation and puncture model of septic shock. 

 In sepsis, global DDAH2 knockout is associated with systemic derangement of 

methylarginines 

 Macrophage specific knockout of DDAH2 recapitulates the impaired bactericidal 

activity and early mortality from sepsis of global knockout suggesting the 

macrophage DDAH2 is a critical player in the innate immune response. 
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7 Endogenous inhibitors of nitric oxide synthesis and their 

regulators in human sepsis 

7.1 Introduction 

The work reported here, in conjunction with that undertaken previously presents strong 

evidence from animal experimentation that DDAH1 and DDAH2 both play important roles in 

the response to sepsis.  It appears that in rodent models, DDAH1 inhibition or knockout leads 

to a protective effect based upon improvement in vascular tone and preservation of organ 

perfusion[47, 213, 223].  In contrast, knockout of DDAH2 results in significant impairment 

of the immune response which results in reduced ability to eradicate bacteria.  This in turn 

leads to excess mortality in rodent models of sepsis[30].  

These observations provide mechanistic insight into the role of each DDAH isoform in 

regulating NO synthesis in their respective tissue distributions.  Understanding the relevance 

of these observations in human disease requires an alternative approach.  Building upon small 

studies in the area to date, this chapter focuses on the largest observational study of 

methylarginines and their regulators ever undertaken in patients with septic shock.   

7.1.1 Human sepsis 

As described in the introductory chapter, septic shock is a syndrome characterised by 

catastrophic organ dysfunction and in around 30% of patients, death within 30 days of 

admission to hospital [86, 369-374]. A burgeoning number of patients are admitted to 

intensive care with sepsis each year with over 1million admissions per year in the USA[84], 

120,000 annually in the UK[86] and countless others who are never admitted to hospital or 

go unreported in the developing world.  The immediate costs of managing the care of these 

patients are huge, in the region of $20 billion annually in the US alone[13].   However this 

grossly underestimates the long term costs associated with what was once thought to be a 

transient insult leaving survivors relatively unscathed after discharge.  There is now a 

growing body of evidence suggesting that sepsis leaves its mark on survivors with patients 

displaying an increased risk of premature death[90], long term functional[93] and 

cognitive[99] impairment and progressive chronic kidney disease[96]. 

In summary, sepsis confers acute distress coupled with a significant medical, social and 

health economic burden on survivors and their families in the long term. 
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7.1.2 Human studies of methylarginines and DDAH in sepsis 

7.1.2.1 Methylarginines in sepsis 

As described in the introduction, human studies in this area have been limited to small 

observational studies that have included less than thirty patients with septic shock.  These 

studies have associated derangement of methylarginine levels with other indices of 

inflammatory stress.  Two studies exploring an association of polymorphisms of DDAH2 

with ADMA concentrations and clinical outcomes have included small numbers of patients 

making robust inferences from those data challenging. 

The only study to focus entirely on ADMA in sepsis patients collected a group of 47 

admissions to hospital with severe sepsis and septic shock[40].  Of these patients, who had a 

median SOFA score of 7 in survivors and 9 in non survivors (n=14), they found that ADMA 

was elevated in sepsis patients as a whole (median(IQR) 0.89(0.57-1.09)µM on day 1 and 

1.05(0.71-1.32)µM on day 7) compared to a group of ten healthy volunteers (0.63(0.57-0.71), 

p<0.01.  They did not detect a difference in ADMA concentrations between survivors and 

non-survivors at either day 1 or day 7, however they did observe positive correlations 

between ADMA levels and indices of illness severity such as plasma lactate, SOFA score and 

vasopressor requirement.  Interestingly on Day 1 only 13(34%) of patients required a 

vasopressor infusion suggesting that septic shock by the conventional definition was present 

in only one third of patients.   

A 2012 study by Brenner compared 60 septic patients to 30 healthy volunteers and 30 non-

infected elective surgical patients[207].  Healthy volunteers had a median(IQR) plasma 

ADMA concentration of 0.43(0.37-0.51)µM.  Whilst the average plasma concentrations of 

the septic patients were not reported, the paper states that they were significantly elevated 

throughout the 28 day period of observation over controls.   No differences were observed 

between plasma ADMA concentrations based on survival, acute renal failure or the presence 

of adult respiratory distress syndrome (ARDS).  The authors did observe an association with 

acute liver dysfunction, where ADMA levels were significantly higher throughout the study 

period compared to those in whom liver function remained normal.  It is however impossible 

to determine if this is a reflection of illness severity or of an intrinsic difference in ADMA 

handling caused by liver dysfunction.  Also of note is that only 15 patients in the septic group 

had deranged hepatic function making interpretation of these data difficult. 
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In 2011, Davis et al undertook a study examining 67 patients in a single centre with sepsis 

and septic shock[208].  The non-shock group were not severely unwell, with median SOFA 

scores of 2 and the septic shock group who numbered just 20 were also not at the high risk 

end of the spectrum (median SOFA score 6).  This explains why only six patients overall and 

five in the septic shock group died.  These observations make interpreting the finding of 

increased mortality risk in this study impossible.  The group did note however that there was 

a trend towards elevated plasma ADMA in the sepsis cohort compared to healthy controls 

(median(IQR) 0.57(0.50-0.62)µM vs 0.52(0.39-0.65)µM respectively), p=0.10, and also that 

ADMA was higher in those six patients that did not survive compared to the other 

participants (p=0.01).  They also observed a positive correlation between plasma ADMA and 

SOFA score.  Furthermore it was reported that SDMA and serum creatinine were closely 

correlated and that the association of SDMA with outcome was lost when correction for renal 

function was undertaken. 

Examining the association of SDMA with outcome, Kock et al in 2013[211] undertook a 

study including 160 patients with sepsis in a group of 247 admitted to critical care.  They 

found that SDMA was highest in the septic group (median(IQR) 0.89(0.19-4.0)µM compared 

to 0.38(0.2-1.06)µM in healthy controls, p<0.01. Correlations at a univariate level were 

observed between SDMA and a range of makers of infection severity such as pro-calcitonin 

and also renal and hepatic dysfunction. Only the associations of SDMA with serum creatinine 

and pro-calcitonin survived multivariate correction. These observations led to the hypothesis 

that SDMA might independently predict outcome and the group showed that after 

multivariate Cox regression, SDMA remained positively associated with death both in the 

ICU (hazard ratio 1.379, p=0.042) and after discharge from hospital (hazard ratio 1.357, 

p=0.002).   

It is of interest that in paediatric sepsis, an opposite finding has been observed[209]. Children 

with septic shock have been shown in a study of thirty patients with sepsis to have lower 

plasma ADMA concentrations (median(IQR) 0.38(0.30-0.56)µM) compared to healthy 

controls (0.60(0.54-0.67)µM, p<0.001.  Interestingly the change in ADMA was inversely 

correlated with degree of inflammation measured by IL-6 and IL-8.    Of note is that it was 

the septic patients with neutropenia (13/30) who had the lowest ADMA levels.  Patients with 

sepsis and a normal white cell count did not have a significantly lower ADMA level.  This 

suggests that immune cell regulation of ADMA may contribute more to the plasma pool of 

ADMA in paediatrics than impaired renal clearance does in adults.  The finding of low 

ADMA in sepsis in paediatrics was confirmed by a separate study in children with 

malaria[210].  In that study both uncomplicated and severe malaria were associated with 

lower ADMA (median(IQR) 0.4(0.33-0.47)µM and 0.4(0.3-0.51)µM respectively) compared 

to 0.61(0.56-0.69)µM, p<0.001 for both.  Plasma ADMA remained significantly reduced in 

both groups at 28days compared to healthy volunteers.  
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7.1.2.2 Dimethylarginine Dimethylaminohydrolase 2 

The chromosomal location of the DDAH2 gene within the MHCIII region of chromosome six 

coupled with its tissue distribution had led to the hypothesis that SNPs of DDAH2 might be 

associated with outcome in humans with sepsis. Two studies have explored this association, 

although neither has had the power to make definitive inferences.  In the study reported 

above, O’Dwyer et al examined one DDAH2 SNP(rs805305) in 47 patients to determine if 

there was an association with outcome[40].  The SNP rs805305 is found in the promoter 

region of DDAH2 and has been associated with a functional role in determining ADMA 

concentrations and the presence of hypertension[38, 375].  They found no relationship 

between it and any of the clinical outcomes.  However they did observe that one allelic 

variant was associated with increased ADMA concentrations on day 1 of intensive care 

admission. 

In a follow up to their paediatric ADMA study, Weiss et al associated the rs805305 

polymorphism with lower plasma ADMA concentrations and within that group a greater 

incidence of ‘cold shock’ defined by sepsis with a low cardiac output state was observed[39].  

This study involved only 27 participants and so interpreting these data remains challenging. 

In summary, the literature exploring ADMA, DDAH2 and their association with sepsis have 

been largely small, single centre observational studies.  They raised interesting hypotheses 

regarding a relationship between ADMA and surrogate outcomes in sepsis, however to date 

there is no definitive study exploring robust clinical endpoints and endogenous inhibitors of 

NO synthesis.  Furthermore, no study has had the power to detect differences in either plasma 

methylarginines or clinical outcomes associated with SNPs of methylarginine regulating 

genes. No human studies have explored the role of DDAH1 polymorphisms in sepsis.   

7.2 Study design 

7.2.1.1 The Genetics Of sepsis and Septic shock in Europe (GenOSept) and 

Genome wide Association in Sepsis (GAinS) Studies 

The GenOSept and GAinS studies were conducted in seventeen countries across Europe 

between 2005 and 2011.  The GenOSept study recruited 1525 patients with severe sepsis and 

septic shock in 143 hospitals across sixteen countries.  Patients included in this study were 

suffering from sepsis as a consequence of either community acquired pneumonia (CAP) 

(n=794) or faecal peritonitis (FP) (n=731).  This study was completed in 2009 at which time 

the GAinS study started to recruit patients with CAP (n=241) in the UK [248].  GenOSept 

samples were analysed using the Affymetrix 500k SNP chip and GAinS using the Illumina 

1M SNP chip.  The directly measured SNPs are distributed evenly across the 4.5million 

documented SNPs to allow imputation of changes in other unmeasured SNPs through their 

linkage disequilibrium with them. 
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In our study, we drew on our previous work showing that in animal models, knockout of 

DDAH1 and DDAH2 both have significant – and opposite – impacts on outcome in septic 

shock[30, 213].  We interrogated the GAinS and GenOSept cohorts with the specific 

hypothesis that SNPs of DDAH1 and DDAH2 are associated with outcome in human sepsis.   

Analysis of directly measured SNPs and those known to be in linkage disequilibrium with the 

measured polymorphisms was undertaken based on our hypothesis.  601 SNPs of the 

DDAH1 gene and 36 for DDAH2 were examined using this technique.  Explored SNPs are 

published in Appendix 1. 

7.2.2 VAsopressin versus Noradrenaline as Initial therapy in Septic sHock 

(VANISH) study 

The VANISH study was undertaken between 2013 and 2015 and was a randomised 

controlled trial in a 2x2 format of vasopressin vs noradrenaline, with or without the addition 

of corticosteroids in patients with septic shock.  This study recruited 412 participants with 

vasopressor dependent septic shock from eighteen intensive care units in the UK.  The full 

protocol for this study has been published[250]. 

The primary endpoint of the study was the number of renal failure free days, with secondary 

end points including 28 day mortality and length of hospital and ICU stay.  The study 

included the collection of an extensive amount of data including routinely collected clinical 

information and detailed assessment of illness severity (SOFA score[251]), degree of shock 

and level of organ support required during the ICU stay.  In a subpopulation of patients 

recruited to three of the study centres, regular blood sampling was undertaken during the first 

seven days of admission to the critical care unit.   

Samples were collected at admission to the ICU prior to the commencement of the 

intervention and on study day 3, 5 and 7 after enrolment.  In 215 patients, plasma and buffy 

coat samples were collected by centrifugation of whole blood at the collection centre 

immediately following collection.  In a further 75 patients, whole blood was collected in 

EDTA tubes and stored for subsequent analysis(Figure 12). 
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Figure 109: Schematic representation of sample handling of blood and plasma collected from 

patients in the VANISH trial 
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The following analyses were undertaken of the association between the following 

biochemical indices, 28day mortality and the SNPs that were identified: 

 

Biochemical measures 

Plasma Nitrate + Nitrite 

Plasma ADMA 

Plasma SDMA 

Plasma L-Arginine 

Table 26: Clinical outcomes and biochemical indices measured in the patients recruited into the 

VANISH study and for whom plasma was available. 

Samples underwent extraction and analysis prior to release of the clinical outcomes 

associated with each patient.  Treatment group allocation was labelled A, B, C or D in a 

blinded fashion.  Analysis was undertaken of the relationship between the biochemical values 

and outcome as above.  Prior to end point comparison, samples were analysed for group 

allocation, age and sex.   

DNA extraction and analysis of SNPs was undertaken by the external contract research 

organisation LGCgroup plc(UK).  

7.3 Results 

7.3.1 GenOSept database interrogation 

Analysis of polymorphisms of DDAH1, DDAH2 and their association with mortality was 

undertaken using data collected and stored in the GenOSept database by Dr Anna Rautanen 

of the Wellcome Trust Centre for Human Genetics, Oxford, UK.  An initial screen of SNPs 

of DDAH1 and DDAH2 that have previously been associated with disease outcomes or risk 

factors revealed no significant associations with mortality in severe sepsis and septic shock 

(Table 27). 
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SNP GENE Genotyped/Imputed  p (GenOSept+GAinS) 

rs233112 DDAH1 genotyped 0.81688 

rs233128 DDAH1 imputed 0.82937 

rs17384213 DDAH1 imputed 0.24033 

rs7521189 DDAH1 genotyped 0.37867 

rs11161614 DDAH1 imputed 0.5505 

rs669173 DDAH1 imputed 0.099602 

rs1146381 DDAH1 imputed 0.60201 

rs7555486 DDAH1 imputed 0.33726 

rs13373844 DDAH1 imputed 0.32798 

rs37369 AGXT2 genotyped 0.3049 

rs805305 DDAH2 genotyped 0.35586 

rs9267551 DDAH2 imputed 0.87771 

rs805304 DDAH2 genotyped 0.4557 

rs2272592  DDAH2 imputed 0.94835 

rs3131383 DDAH2 imputed 0.18412 

rs707916 DDAH2 genotyped 0.3926 

Table 27: SNPs of DDAH1 and DDAH2 that have previously been associated with disease and 

the probability that they were associated with mortality in severe sepsis and septic shock.   

An interrogation of the dataset formulated by combination of the GAinS and GenOSept 

databases was undertaken.  No positive associations with mortality were found in any of the 

published genes. Analysis undertaken by Dr Anna Rautanen 

 

In the light of these findings, the interrogation was widened to include all remaining SNPs of 

DDAH1(n=601) and DDAH2(n=36).  Exploration of this data set identified a series of 8 

SNPs of DDAH1 that were associated with mortality (Table 28) after adjustment for multiple 

comparisons.  Aside from these SNPs, of the remaining DDAH1 and DDAH2 SNPs 

interrogated, none were strongly associated with outcome (Appendix 1). 
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SNP CHR BP p value adjusted 

OR 

maf 

cases 

maf 

controls 

Location 

rs1524001 1 86017485 9.44E-05 1.976821 0.12583 0.090348 intronic 

rs7531068 1 86016103 9.90E-05 1.97792833 0.12547 0.09016 intronic 

rs10782552 1 86015715 0.000102 1.97662333 0.12536 0.090175 intronic 

rs897255 1 86018583 0.00012 1.97581308 0.12224 0.087754 intronic 

rs72726326 1 86040708 0.000225 1.92317987 0.11944 0.087453 intronic 

rs6576775 1 86030595 0.000337 1.88357205 0.11959 0.088026 intronic 

rs1378226 1 86038738 0.000434 1.84675492 0.12326 0.091876 intronic 

rs6682848 1 86038476 0.000437 1.8463856 0.12323 0.091872 intronic 

Table 28: DDAH1 SNPs associated with an increased odds ratio of death in sepsis.   

SNP: Single nucleotide polymorphism, CHR: Chromosome, BP Base pair, OR: Odds ratio, maf: 

Minor allele frequency cases(sepsis population), controls (healthy cohorts for comparison).  

(Analysis by Dr Anna Rautanen) 

 

Figure 110 represents the position of these SNPs in the first intron of DDAH1and describes 

the degree of linkage disequilibrium between the top SNP and the other SNPs in the region. 

 

Figure 110: Association plot of the SNPs significantly associated with mortality in sepsis.   
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SNP associations in GenOSept/GAinS and the linkage disequilibrium structure in the region 

(each dot represents a SNP, y-axis shows the p-value and  x-axis the chromosomal location; 

colour coding of each dot represents the linkage disequilibrium (LD) between the top associated 

SNP (purple dot) and other SNPs in the region). Red box highlights the seven SNPs associated 

with outcome. Blue spike represents a recombination hotspot in Intron 1 of the DDAH1 gene. 

(Analysis by Dr Anna Rautanen) 

 

7.3.2 VANISH study findings 

7.3.2.1 Demographic and treatment group analysis 

Plasma ADMA concentrations in study participants were analysed based on age, sex and 

treatment group allocation.  Correlations with age were undertaken for each time point and 

peak ADMA and revealed no significant associations (Table 29, representative Figure 111) 

Time point r
2 

p value 

Admission 0.0003 0.84 

Day 3 0.0002 0.81 

Day 5 0.021 0.07 

Day 7 0.018 0.15 

Peak 0.0024 0.44 

Table 29: Linear regression (r
2
) and p value for plasma ADMA concentration against age for 

each time point studied and peak value over the first seven days of ICU admission in patients 

with septic shock. 

 

 

 

Figure 111: Relationship between peak plasma ADMA concentration over the course of the first 

seven days of admission to ICU with septic shock and age. 
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There was an association between sex and peak ADMA value, with men displaying higher 

(median(IQR) peak ADMA concentrations (2.26(1.64-2.99)µM) compared to women 

(1.97(1.42-2.73)µM), p=0.011(figure). 

 

Figure 112: Peak plasma ADMA concentration in women and men over the first seven days of 

admission to the ICU with septic shock.  

Plasma methylarginine concentration was measured using the mass spectrometric technique 

described above.  Each point represents a single patient result, red bar represents median value 

and interquartile range.  Men displayed a higher median peak plasma ADMA concentration 

than women (p=0.01). 

 

Peak plasma ADMA concentration was analysed using one way ANOVA and was similar in 

all four treatment groups studied (p=0.73) as was ADMA concentration at each time point 

examined (day 3: p= 0.98, day 5: p=0.94 and day 7: p=0.18) Representative image, Figure 

113. 

 

Figure 113: Peak plasma ADMA concentration over the course of the first seven days of ICU 

admission presented by treatment group allocation.  
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Plasma methylarginine concentration was measured using the mass spectrometric technique 

described above.  Each point represents a single patient result, red bar represents median value 

and interquartile range.  No differences were observed in median peak plasma ADMA 

concentration across the treatment groups (p=0.73).  Treatment groups were given a blinded 

categorical value A-D. 

 

7.3.2.2 Plasma nitric oxide in human septic shock 

Plasma NOx was significantly elevated in patients with septic shock compared to normal 

values seen in healthy volunteers.  Median(IQR) NOx was 101(63-148)µM on admission, 

92(54-153)µM on day 3, 100(51-149)µM on day 5 and 81(45-120)µM on day 7. A trend 

towards change in NOx concentration was observed by one way ANOVA, p=0.052.  When 

compared directly using non-parametric analysis, a significant reduction in NOx was seen 

between admission and day 7 of ICU stay (p<0.01)(Figure 114). 

 

 

Figure 114: Plasma nitrate+nitrite over the first seven days of ICU admission in patients with 

septic shock.   

Plasma nitrate+nitrite was measured using a chemiluminescent technique as described 

previously.  The number of samples analysed for each study day is represented above each time 

point.  Each point represents a single patient result, red bar represents median value. 

 

7.3.2.3 Methylarginines and L-arginine in human septic shock 

Plasma ADMA concentration rose over the course of admission to intensive care.   

Median(IQR)  was 1.59(1.17-2.2)µM at admission, 1.8(1.3-2.4)µM on day 3, 2.0(1.6-2.7)µM 

on day 5 and  2.2(1.6-2.8)µM at day 7, p=0.08 (1 way ANOVA), p<0.001 if day 0 and 7 are 

compared by Mann Whitney analysis(Figure 115). 
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Figure 115: Plasma ADMA concentrations over the course of the first 7 days of admission to 

ICU with septic shock.   

Plasma methylarginine concentration was measured using the mass spectrometric technique 

described above.  The number of samples analysed for each study day is represented above each 

time point.  Each point represents a single patient result, red bar represents median value. 

 

Plasma SDMA concentration displayed no significant change over the course of the seven 

days studied.  At admission, median(IQR) concentration was 3.4(2.0-5.2)µM, 3.4(1.8-5.3)µM 

on day 3, 3.4(2.0-5.2)µM on day 5 and 3.1(1.7-4.8)µM on day 7, p=0.31 by one way 

ANOVA, p=0.11 by comparison of admission to day 7 plasma values by Mann Whitney 

(Figure 116). 

L-arginine concentration was significantly reduced compared to normal plasma 

concentrations from human volunteer studies presented here and the existing literature[376].  

Median(IQR) plasma concentration was 25.3(17.2-35.1)µM at admission, 30.9(22.8-42.4)µM 

on day 3, 32.6(25.2-47.5)µM on day 5 and 32.9(24.2-47.3)µM on day 7, one way ANOVA 

revealed a significant rise over the course of the study period, p=0.009.  Bonferroni’s 

comparison revealed significant (p<0.05) differences between baseline values and days 5 and 

7(Figure 117).  
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Figure 116: Plasma SDMA over the course of the first seven days of admission to ICU in 

patients with septic shock.  

Plasma methylarginine concentration was measured using the mass spectrometric technique 

described above.  The number of samples analysed for each study day is represented above each 

time point.  Each point represents a single patient result, red bar represents median value. 

 

 

Figure 117: Plasma L-arginine concentrations over the course of the first seven days of 

admission to ICU in patients with septic shock.  

Plasma L-arginine concentration was measured using the mass spectrometric technique 

described above.  The number of samples analysed for each study day is represented above each 

time point.  Each point represents a single patient result, red bar represents median value. 
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7.3.2.4 Correlations between methylarginines and nitric oxide synthesis 

Correlation between plasma methylarginine concentrations and plasma NOx was undertaken 

using both Pearson’s and Spearman’s coefficients to search for both linear and non-linear 

correlations between the measured indices.  Significant positive correlations were detected 

between plasma concentrations of ADMA and nitric oxide at admission and on days 3 and 5 

of ICU stay (Table 30).  SDMA was positively associated with plasma NOx at all four time 

points (Table 31).  Arginine concentration was not associated with NOx at any time point 

(Table 32).  ADMA and SDMA were positively correlated at all time points (Table 33) 

 

Time point Pearson’s r
 

Pearson’s p value Spearman’s r
 

Spearman’s p value 

Admission 0.1675 0.03 0.30 <0.001 

Day 3 0.21 0.002 0.17 0.02 

Day 5 0.38 <0.001 0.25 0.001 

Day 7 0.001 0.67 0.27 0.003 

Table 30: Correlation coefficients and p values for comparison of plasma ADMA and plasma 

NOx concentration over the first seven days of ICU admission with septic shock. 

 

Time point Pearson’s r
 

Pearson’s p value Spearman’s r
 

Spearman’s p value 

Admission 0.25 0.001 0.42 <0.001 

Day 3 0.41 <0.001 0.40 <0.001 

Day 5 0.54 <0.001 0.45 <0.001 

Day 7 0.33 <0.001 0.40 <0.001 

Table 31: Correlation coefficients and p values for comparison of plasma SDMA and plasma 

NOx concentration over the first seven days of ICU admission with septic shock. 

 

Time point Pearson’s r
 

Pearson’s p value Spearman’s r
 

Spearman’s p value 

Admission -0.02 0.82 0.05 0.49 

Day 3 -0.11 0.10 -0.11 0.11 

Day 5 0.04 0.57 -0.05 0.53 

Day 7 0.04 0.68 0.12 0.19 

Table 32: Correlation coefficients and p values for comparison of plasma L-arginine and 

plasma NOx concentration over the first seven days of ICU admission with septic shock. 
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Time point Pearson’s r
 

Pearson’s p value Spearman’s r
 

Spearman’s p value 

Admission 0.53 <0.001 0.56 <0.001 

Day 3 0.50 <0.001 0.51 <0.001 

Day 5 0.67 <0.001 0.51 <0.001 

Day 7 0.22 0.01 0.46 <0.001 

Table 33: Correlation coefficients and p values for comparison of plasma ADMA and SDMA 

concentration over the first seven days of ICU admission with septic shock. 

 

7.3.2.5 Plasma nitric oxide and outcome in septic shock 

Plasma NOx was measured and the relationship between these values and 28 day survival 

determined.  Median(IQR) NOx concentrations of survivors and non-survivors were similar 

on admission (99.2(61.7-145.7)µM vs 100.1(70.3-160.2)µM, p=0.66) and on day 3 (90(51.5-

155.7)µM vs 116.3(57.6-147.4)µM, p=0.92 (Figure 118).  On day 5, plasma NOx was 

significantly higher in non-survivors (116.4(68.4-169.4)µM) compared to those that survived 

ICU admission (95.6(48.7-139.5)µM, p=0.04.  This difference persisted at day 7, with 

survivors displaying a median(IQR) NOx of 77(43.2-116.2)µM and non-survivors 

(117.0(82.1-189.3)µM, p=0.01 (Figure 119). 

 

 

Figure 118: Plasma Nitrate+ Nitrite Concentrations on admission (Left panel) and day 3 (right 

panel) in survivors and non survivors of septic shock.   

Plasma nitrate+nitrite was measured using a chemiluminescent technique as described 

previously.  Samples analysed and were categorised by survival at 28 days after ICU admission.  

Each point represents a single patient value at the respective time point.  The red bars represent 

median and interquartile range. 
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Figure 119: Plasma Nitrate+ Nitrite Concentrations on day 5 (Left panel) and day 7 (right 

panel) in survivors and non survivors of septic shock.   

Plasma nitrate+nitrite was measured using a chemiluminescent technique as described 

previously.  Samples analysed and were categorised by survival at 28 days after ICU admission.  

Each point represents a single patient value at the respective time point.  The red bars represent 

median and interquartile range.  *= p<0.05 (Mann Whitney analysis). 

 

Analysis of survival by quartile of plasma NOx revealed no significant differences between 

outcomes, log rank test,  p=0.91(Figure 120). 

 

Figure 120: Kaplan Meier curves of peak plasma NOx concentrations during the first seven 

days of ICU admission with septic shock divided by quartiles and their relationship with 28 day 

mortality.   

Kaplan Meier survival curves representing the four quartiles of plasma nitrate+nitrite 

concentrations.  Highest quartile red, second green, third blue, fourth (the lowest) purple.  

P=0.91. 
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7.3.2.6 Association between ADMA and outcome in septic shock 

Elevated plasma ADMA concentration was associated with mortality at 28days in samples 

taken at admission, day 3 (Figure 121), day 5 and day 7 (Figure 122) (Table 34), all p values 

<0.001.  When plasma ADMA values were dichotomised, a value in the upper 50% of values 

was associated with a hazard ratio for death at 28days of 3.3(95% Confidence Interval: 2.0-

5.4), p<0.01. 

Time point Survivors Non-survivors 

 Median(µM) Interquartile 

range(µM) 

Median(µM) Inter quartile 

range(µM) 

Admission 1.49 1.11-1.96 2.08 1.50-2.78 

Day 3 1.66 1.28-2.20 2.33 1.53-2.92 

Day 5 1.92 1.43-2.61 2.63 2.08-3.30 

Day 7 2.08 1.49-2.71 2.67 2.22-3.57 

Table 34: Median(IQR) plasma ADMA concentrations of survivors and non-survivors of septic 

shock at admission and on days 3, 5 and 7 of ICU admission.   

Plasma methylarginines were measured using the established mass spectrometry technique.  

Plasma concentrations (median(IQR)µM) are reported in survivors and non-survivors at 

28days after ICU admission.  

 

 

 

Figure 121: Plasma ADMA concentrations on admission (Left panel) and day 3 (right panel) in 

survivors and non survivors of septic shock.   

Plasma methylarginines were measured using a mass spectrometry technique as described 

previously.  Samples analysed and were categorised by survival at 28 days after ICU admission.  

Each point represents a single patient value at the respective time point.  The red bars represent 

median and interquartile range. *=p<0.05 
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Figure 122: Plasma ADMA concentrations on day 5 (Left panel) and day 7 (right panel) in 

survivors and non survivors of septic shock.   

Plasma methylarginines were measured using a mass spectrometry technique as described 

previously.  Samples analysed and were categorised by survival at 28 days after ICU admission.  

Each point represents a single patient value at the respective time point.  The red bars represent 

median and interquartile range. *=p<0.05 

 

Peak plasma ADMA concentrations over the course of the study period were sorted by 

quartiles and revealed a significantly elevated mortality between the upper and lower two 

quartiles with a log rank test p value of <0.001 (Figure 123).   

 

 

Figure 123: Kaplan Meier curves of peak plasma ADMA concentrations during the first seven 

days of ICU admission with septic shock and 28 day mortality.   

Kaplan Meier survival curves representing the four quartiles of peak plasma ADMA 

concentrations.  Highest quartile red, second green, third blue, fourth (the lowest) purple.  

p<0.001. 
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7.3.2.7 Plasma SDMA and outcome in septic shock 

Plasma SDMA was also associated with a trend towards elevated mortality on admission 

(p=0.08) and significantly increased in non-survivors at day 3(p=0.01), day 5(p=0.008) and 

day 7(p=0.01) (Table 35), (Figure 124, Figure 125).  When plasma SDMA values were 

dichotomised, a concentration in the upper 50% of values was associated with a hazard ratio 

for death at 28days of 2.25(95% Confidence Interval: 1.35-3.74), p<0.01. 

 

Time point Survivors Non-survivors 

 Median(µM) Interquartile 

range(µM) 

Median(µM) Inter quartile 

range(µM) 

Admission 3.15 2.10-4.63 4.43 1.81-6.77 

Day 3 3.32 1.73-5.03 4.47 2.66-6.89 

Day 5 3.24 1.95-4.96 5.52 3.15-7.13 

Day 7 2.85 1.67-4.42 4.63 2.46-6.05 

Table 35: Median(IQR) plasma SDMA concentrations of survivors and non-survivors of septic 

shock at admission and on days 3, 5 and 7 of ICU admission.   

Plasma methylarginines were measured using the established mass spectrometry technique.  

Plasma concentrations (median(IQR)µM) are reported in survivors and non-survivors at 

28days after ICU admission. 

 

 

Figure 124: Plasma SDMA concentrations on admission (Left panel) and day 3 (right panel) in 

survivors and non survivors of septic shock.   

Plasma methylarginines were measured using a mass spectrometry technique as described 

previously.  Samples were analysed and categorised by survival at 28 days after ICU admission.  

Each point represents a single patient value at the respective time point.  The red bars represent 

median and interquartile range. *=p<0.05 

 

 



  

214 

 

  

 

Figure 125: Plasma SDMA concentrations on day 5 (left panel) and day 7 (right panel) in 

survivors and non survivors of septic shock.   

Plasma methylarginines were measured using a mass spectrometry technique as described 

previously.  Samples analysed and were categorised by survival at 28 days after ICU admission.  

Each point represents a single patient value at the respective time point.  The red bars represent 

median and interquartile range. *=p<0.05 

Peak plasma SDMA concentrations over the course of the study period were sorted by 

quartiles and revealed a significantly elevated mortality between the quartiles with a log rank 

p value of 0.002 (Figure 126). 

 

 

Figure 126: Kaplan Meier curves of peak plasma SDMA concentrations during the first seven 

days of ICU admission with septic shock and 28 day mortality.   

Kaplan Meier survival curves representing the four quartiles of peak plasma SDMA 

concentrations.  Highest quartile red, second green, third blue, fourth (the lowest) purple.  

P=0.002. 
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7.3.2.8 Plasma L-arginine concentration and outcome in septic shock 

L-arginine concentrations were lower in both survivors and non-survivors compared to 

normal values as described above.  No differences were observed between survivors and non-

survivors at admission(p=0.19) or day 3(p=0.64).  A trend was observed to higher L-arginine 

concentrations in non-survivors at day 5(p=0.06) and L-arginine was significantly higher in 

non-survivors at day 7(p=0.035, Table 36), (Figure 127).  Dichotomised L-arginine 

concentrations revealed no significant differences in mortality associated.  Hazard ratio(95% 

confidence interval)for death at 28 days, 1.32(0.79-2.17) when the upper 50% of values was 

compared to the lower half (Figure 128).  

Time point Survivors Non-survivors 

 Median(µM) Interquartile 

range(µM) 

Median(µM) Inter quartile 

range(µM) 

Admission 24.8 17.2-30.6 27.3 16.8-43.9 

Day 3 30.7 22.5-42.4 32.1 23.0-42.6 

Day 5 32.1 24.7-46.1 38.1 29.5-57.6 

Day 7 32.3 23.0-44.9 38.3 26.1-74.5 

Table 36: Median(IQR) plasma L-arginine concentrations of survivors and non-survivors of 

septic shock at admission and on days 3, 5 and 7 of ICU admission.   

Plasma L-arginine was measured using the established mass spectrometry technique.  Plasma 

concentrations (median(IQR)µM) are reported in survivors and non-survivors at 28days after 

ICU admission. 
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Figure 127: Plasma L-arginine concentrations on admission (top left panel), day 3(top right 

panel), day 5 (bottom left panel) and day 7 (bottom right panel) in survivors and non survivors 

of septic shock.   

Plasma L-arginine was measured using a mass spectrometry technique as described previously.  

Samples analysed and were categorised by survival at 28 days after ICU admission.  Each point 

represents a single patient value at the respective time point.  The red bars represent median 

and interquartile range. *=p<0.05 

 

Figure 128: Kaplan Meier curves of peak plasma L-arginine concentrations during the first 

seven days of ICU admission with septic shock and 28 day mortality.   

Kaplan Meier survival curves representing the upper and lower halves of patients’ peak plasma 

L-arginine concentrations.  Highest 50% red, lower 50% blue.  P=0.34. 
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7.3.2.9 Plasma ADMA:SDMA ratio and outcome in septic shock 

The plasma ADMA concentration is determined by methylarginine synthesis in the tissues, 

metabolism by DDAH isoforms and clearance via the kidney.  SDMA can be employed to 

correct for non-DDAH effects on the ADMA concentration.  SDMA is not metabolised by 

DDAH isoforms but is cleared by the kidney via the same mechanism.  Therefore, correcting 

the ADMA concentration for the paired SDMA concentration will provide an index of the 

DDAH mediated ADMA flux.  When corrected for SDMA, no difference was observed in 

ADMA concentrations between survivors and non-survivors at the four time points (Table 

37), (Figure 129).  However potting of survival curves revealed a significantly reduced 

mortality in the group with the higher ADMA:SDMA ratios(Figure 130), p=0.03.  When 

dichotomised, patients in the higher 50% of ADMA:SDMA ratios displayed a reduced hazard 

ratio(95%CI) for death 0.63(0.37-1.0), p=0.03. 

 

Time point Survivors Non-survivors  

 Median Interquartile 

range 

Median Inter quartile 

range 

p value 

Admission 0.47 0.33-0.66 0.48 0.34-0.71 0.81 

Day 3 0.56 0.37-0.80 0.51 0.38-0.78 0.62 

Day 5 0.66 0.42-0.95 0.56 0.41-0.79 0.32 

Day 7 0.81 0.50-1.13 0.56 0.46-0.84 0.18 

Table 37: Median(IQR) plasma ADMA concentrations corrected for paired plasma SDMA 

concentrations  of survivors and non-survivors of septic shock at admission and on days 3, 5 and 

7 of ICU admission.   

Plasma ADMA:SDMA ratios were measured using the established mass spectrometry 

technique.  Plasma concentrations (median(IQR)) are reported in survivors and non-survivors 

at 28days after ICU admission. 
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Figure 129: Plasma ADMA concentrations corrected for plasma SDMA concentration on 

admission (top left panel), day 3(top right panel), day 5 (bottom left panel) and day 7 (bottom 

right panel) in survivors and non survivors of septic shock.   

Plasma ADMA:SDMA ratios were measured using a mass spectrometry technique as described 

previously.  Samples analysed and were categorised by survival at 28 days after ICU admission.  

Each point represents a single patient value at the respective time point.  The red bars represent 

median and interquartile range.  
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Figure 130: Kaplan Meier curves of peak plasma ADMA concentration corrected for plasma 

SDMA concentration during the first seven days of ICU admission with septic shock and 28 day 

mortality.   

Kaplan Meier survival curves representing the four quartiles of peak plasma ADMA:SDMA 

ratios.  Highest quartile red, second green, third blue, fourth (the lowest) purple, p=0.03. 

 

7.3.2.10 Plasma ADMA:L-arginine ratio and outcome in septic shock 

Plasma ADMA:L-arginine ratio was assessed to determine whether the relationship between 

the endogenous inhibitor and agonist in the plasma was associated with outcome.  No 

difference in ADMA:L-arginine ratio was observed between survivors or non-survivors on 

admission or days 5 or 7, however on day 3 there was a significant association between 

plasma ratios and outcome (Table 38, Figure 131).  Peak ADMA:L-arginine concentration 

was also associated with survival, (median(IQR) 0.069(0.047-0.091) in survivors vs 

0.084(0.056-0.12), p=0.002.  When dichotomised a trend towards increased mortality was 

seen in patients in the upper 50% of ratios, hazard ratio(95% CI) for death at 28days was 

1.56(0.95-2.6), p=0.08.   
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Time point Survivors Non-survivors  

 Median Interquartile 

range 

Median Inter quartile 

range 

p value 

Admission 0.062 0.012-0.088 0.061 0.048-0.098 0.63 

Day 3 0.058 0.039-0.075 0.073 0.052-0.093 0.004 

Day 5 0.058 0.040-0.081 0.068 0.048-0.091 0.20 

Day 7 0.062 0.045-0.086 0.072 0.046-0.085 0.48 

Table 38: Median(IQR) plasma ADMA concentrations corrected for paired plasma L-arginine 

concentrations  of survivors and non-survivors of septic shock at admission and on days 3, 5 and 

7 of ICU admission.   

Plasma ADMA:L-arginine ratios were measured using the established mass spectrometry 

technique.  Plasma concentrations (median(IQR)) are reported in survivors and non-survivors 

at 28days after ICU admission. 

 

Figure 131: Plasma ADMA concentrations corrected for plasma L-arginine concentration on 

admission (top left panel), day 3(top right panel), day 5 (bottom left panel) and day 7 (bottom 

right panel) in survivors and non survivors of septic shock.   

Plasma ADMA:L-arginine ratios were measured using a mass spectrometry technique as 

described previously.  Samples analysed and were categorised by survival at 28 days after ICU 

admission.  Each point represents a single patient value at the respective time point.  The red 

bars represent median and interquartile range. * p<0.05 
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Kaplan Meier analysis of the ADMA:L-arginine ratio by quartile revealed a significant 

association with mortality, p<0.01(Figure 132).   

 

Figure 132: Kaplan Meier curves of peak plasma ADMA concentration corrected for plasma L-

arginine concentration during the first seven days of ICU admission with septic shock and 28 

day mortality.   

Kaplan Meier survival curves representing the four quartiles of peak plasma ADMA:L-arginine 

ratios.  Highest quartile red, second green, third blue, fourth (the lowest) purple, p<0.01. 

 

7.3.3 Single nucleotide polymorphisms of DDAH genes, methylarginines 

and outcome in human septic shock 

7.3.3.1 SNP Genotype and 28day mortality in septic shock 

Buffy coat and whole blood samples were collected as described above from 286 patients 

with septic shock(75 whole blood and 211 buffy coat).  DNA was extracted from these 

samples and analysis of nine pre-defined SNPs undertaken by the external research 

organisation (LGC Sciences ltd).  Analysis of the SNPs was possible in 96.8% of samples.  

The eight SNPs of DDAH1 that had been identified by imputation in the GenOSept analysis 

were directly analysed.  In addition, one SNP of DDAH2, rs805305 which had been 

identified in previous studies as being associated with plasma ADMA concentrations in 

sepsis was also determined.   

As expected, the eight SNPs of DDAH1 were all in linkage disequilibrium with >90% 

concordance between genotypes of the polymorphisms.  Allele frequencies were consistent 

with the incidence of the polymorphisms observed in the GenOSept cohort (Table 39).  Of 

the SNP of the DDAH2 gene analysed, heterozygotes were more common that either the 

major or minor allele homozygote(Table 39) 
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SNP ID rs1524001 n(%) rs7531068 n(%) rs10782552 n(%) 

Major Allele G:G  245(86.6) A:A  245(86.6) A:A 249(86.7) 

Heterozygote G:A  34(12.0) A:C  34(12.2) A:T  34(11.8) 

Minor allele 
homozygote 

A:A 4(1.4) C:C  4(1.4) TT  4(1.4) 

Missing (n)  3  3  0 

 

SNP ID rs897255 n(%) rs72726326 n(%) rs6576775 n(%) 

Major Allele C:C  250(88.3) A:A 238(89.1) T:T  242(87.7) 

Heterozygote C:T  29(10.25) G:A 27(10.1) T:C  31(11.3) 

Minor allele 
homozygote 

T:T  4(1.4) G:G 2(0.7) C:C 3(1.1) 

Missing (n)  5  19  10 

 

SNP ID rs1378226 n(%) rs6682848 n(%) rs805305 n(%) 

Major Allele G:G 249(87.1) C:C 248(87.6) C:G  128(44.7) 

Heterozygote G:A 33(11.5) C:A 31(11.0) C:C  112 
(39.1) 

Minor allele 
homozygote 

A:A 4(1.4) A:A 4(1.4) G:G 40(13.9) 

Missing (n)  0  4  8 

Table 39: SNP ID and allele frequencies eight DDAH1 and one DDAH2 SNP of 286 patients 

with septic shock.   

286 patients included in the VANISH study had DNA extracted from whole blood or buffy coat 

samples and analysis of SNPs undertaken.  Eight SNPs of DDAH1 and one of DDAH2 (rs80305) 

were analysed.  Data presented includes allele frequencies and number of data points that could 

not be collected. 

 

The association with mortality of each of the SNPs of DDAH1 was determined.  No 

association with survival at 28 days any of the SNPs of DDAH1 could be identified, odds 

ratios: 0.84-1.4, all p values non-significant using Fisher’s exact test (Table 40).  The SNP of 

DDAH2, rs805305 displayed increased mortality when heterozygotes and G:G homozygotes 

were considered together with an odds ratio for death in the most common C:C genotype of 

2.0(95% CI 1.1-3.6) (p=0.03). 
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SNP ID rs1524001 rs7531068 rs10782552 
Odds Ratio 0.842 1.126 1.14 
95% CI 0.38-1.84 0.52-2.45 0.52-2.48 
p value 0.682 0.839 0.839 
 
SNP ID rs897255 rs72726326 rs6576775 
Odds Ratio 1.23 1.21 0.976 
95% CI 0.56-2.69 0.51-2.90 0.42-2.27 
p value 0.678 0.65 1 
 
SNP ID rs1378226 rs6682848 rs805305 
Odds Ratio 1.4 1.11 2.04 
95% CI 0.88-1.36 0.49-2.50 1.1-3.9 
p value 0.41 0.83 0.03 
Table 40: Relationship between eight intronic SNPs of DDAH1 and one SNP of DDAH2 with 

mortality in septic shock.   

Eight SNPs were of DDAH1 examined for an association with mortality in septic shock having 

previously been shown to be associated with mortality in genome wide association studies.  No 

significant association was observed between any of the SNPs and 28 day mortality.  Increased 

mortality was observed in heterozygotes and minor allele homozygotes of the DDAH2 SNP 

rs805305(p=0.03). 

 

A representative Kaplan Meier plot of the DDAH1 SNP most strongly associated with 

mortality in the GenOSept study demonstrated no significant differences between the most 

common G:G genotype and the less common A:A and G:A genotypes in combination, hazard 

ratio 0.86 (95% CI 0.42-1.72), p=0.67(Figure 133).  The SNP of DDAH2, rs805305 remained 

strongly associated with increased risk of death through this analysis, with a log-rank p value 

of 0.01 (Figure 134). 
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Figure 133: Kaplan Meier analysis of the impact of the rs1542001 SNP of DDAH1 on 28day 

mortality in sepsis.   

Eight SNPs of DDAH1 were analysed and the relationship to mortality in septic shock 

determined.  The most common G:G genotype was compared to the heterozygote and rare A:A 

homozygote.  No difference in mortality was observed at 28 days, p=0.67.  Similar patterns were 

observed in the seven other SNPs of DDAH1. 

 

 

Figure 134: Kaplan Meier analysis of the impact of the rs805305 SNP of DDAH2 on 28day 

mortality in sepsis.   

One SNP of DDAH2 was analysed and the relationship to mortality in septic shock determined.  

The most common C:C genotype was compared to the heterozygote and G:G homozygote.  A 

significant difference in mortality was observed at 28 days, p=0.03 by Mantel-Cox analysis.   
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7.3.3.2 SNP Genotype and methylarginine concentrations in septic shock 

The impact of SNPs of DDAH1 on plasma ADMA concentrations was explored.  Given the 

linkage of each of the eight directly interrogated SNPs, the two with the most significant 

association with mortality were explored.  Rs1542001 (Figure 135) and rs7531068(Figure 

136) displayed no significant differences in peak plasma ADMA concentrations over the 

course of the first week of ICU admission in the septic shock cohort (p=0.35 and 0.36 

respectively)(Table 41).  ADMA:SDMA ratio revealed a trend to increase in the less 

common genotypes (A:A/G:A in the rs1542001), p=0.06 and (A:C/C:C in the rs7531068), 

p=0.11(Table 41).  ADMA:L-arginine ratio was unchanged in both SNPs (rs1542001 p=0.57 

and rs7531068 p=0.64)(Table 41).     

Rs1542001 G:G Genotype G:A and A:A Genotypes  

 Median Interquartile 

range 

Median Inter quartile 

range 

p value 

Peak 

ADMA(µM) 

2.24 1.55-3.02 1.97 1.57-2.92 0.35 

ADMA:SDMA 

Ratio 

0.69 0.44-1.04 0.83 0.54-1.38 0.06 

ADMA:L-

arginine ratio 

0.07 0.05-0.097 0.06 0.05-0.10 0.57 

 

Rs7361058 A:A Genotype A:C and C:C Genotypes  

 Median Interquartile 

range 

Median Inter quartile 

range 

 

Peak 

ADMA(µM) 

2.16 1.54-2.95 1.87 1.51-2.69 0.36 

ADMA:SDMA 

Ratio 

0.68 0.44-1.00 0.83 0.57-1.65 0.11 

ADMA:L-

arginine ratio 

0.07 0.05-0.10 0.07 0.05-1.00 0.64 

Table 41: Impact of two DDAH1 SNPs on peak plasma ADMA, ADMA:SDMA and ADMA:L-

arginine in septic shock.   

The eight SNPs of DDAH1 associated with increased mortality in severe sepsis and septic shock 

were directly genotyped in a cohort of septic shock patients.  Median(IQR) concentrations of 

ADMA, plasma ADMA:SDMA ratio and ADMA:L-arginine ratio were determined for each 

genotype.  No significant genotype dependent differences were observed in peak plasma ADMA 

or ADMA:L-arginine ratios.  A trend to increased ADMA:SDMA ratio was observed in both 

SNPs (p=0.06 and 0.11).  Analysis by Mann Whitney test. 
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Figure 135: The impact of the DDAH1 SNP rs1524001 on peak plasma ADMA, ADMA:SDMA 

ratio and ADMA:L-arginine ratio in septic shock.   

Plasma methylarginines and L-arginine concentrations were determined using the HPLC triple 

quad mass spectrometry technique as described previously.  Peak plasma ADMA concentration 

over the course of the first week of ICU admission with septic shock was similar in both 

genotype groups. A trend to increase in ADMA:SDMA ratio was observed, p=0.06 and no 

difference was seen between ADMA:L-arginine ratios in the two groups, p=0.57. Red line 

represents median value 
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Figure 136:The impact of the DDAH1 SNP rs7531068 on peak plasma ADMA, ADMA:SDMA 

ratio and ADMA:L-arginine ratio in septic shock.   

Plasma methylarginines and L-arginine concentrations were determined using the HPLC triple 

quad mass spectrometry technique as described previously.  Peak plasma ADMA concentration 

over the course of the first week of ICU admission with septic shock was similar in both 

genotype groups(p=0.35).A trend to increase in ADMA:SDMA ratio was observed, p=0.09 and 

no difference was seen between ADMA:L-arginine ratios in the two groups, p=0.64. Red line 

represents median value 
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Plasma methylarginines were also compared to the rs805305 SNP of DDAH2 (Figure 137).  

Kruskall Wallis analysis was used to explore a relationship between the SNPs of rs805305 

and methylarginines.  Peak plasma ADMA was similar in all three genotypes (p=0.65), Peak 

ADMA:SDMA ratio was genotype  dependent, p=0.004.  Compared to the dominant C:C 

genotype, Dunn’s multiple comparison test revealed that the less common G:G genotype was 

associated with an increased ADMA:SDMA ratio compared to the dominant C:C and 

heterozygote genotypes (Table 42).  ADMA:L-arginine ratio was similar in all three 

groups(p=0.84) 
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Figure 137: The impact of the DDAH2 SNP rs805305 on peak plasma ADMA, ADMA:SDMA 

ratio and ADMA:L-arginine ratio in septic shock.   

Plasma methylarginines and L-arginine concentrations were determined using the HPLC triple 

quad mass spectrometry technique as described previously.  Peak plasma ADMA concentration 

over the course of the first week of ICU admission with septic shock was similar in both 

genotype groups(p=0.65).  Increased ADMA:SDMA ratio was observed, p=0.0043 and no 

difference was seen between ADMA:L-arginine ratios in the two groups, p=0.83. Red line 

represents median value.  Analysis by Mann Whitney test. 
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rs805305 C:C Genotype C:G Genotype G:G Genotype p 

value 

 Media

n 

Interquartil

e range 

Media

n 

Interquartil

e range 

Media

n 

Interquartil

e range 

 

Peak 

ADMA(µM) 

2.16 1.53-3.05 2.24 1.55-2.78 2.02 1.36-3.13 0.65 

ADMA:SDM

A Ratio 

0.69 0.51-0.95 0.64 0.40-0.91 1.0 0.69-1.96 0.004

3 

ADMA:L-

arginine ratio 

0.07 0.06-0.09 0.07 0.05-0.10 0.07 0.04-0.11 0.84 

Table 42:Impact of the DDAH2 SNP rs805305 on peak plasma ADMA, ADMA:SDMA and 

ADMA:L-arginine in septic shock.   

The SNP of DDAH2 rs805305 was directly genotyped in a cohort of septic shock patients.  

Median(IQR) concentrations of ADMA, plasma ADMA:SDMA ratio and ADMA:L-arginine 

ratio were determined for each genotype.  No significant genotype dependent differences were 

observed in peak plasma ADMA or ADMA:L-arginine ratios.  An increased ADMA:SDMA 

ratio was observed in the rs805305 SNP (p=0.0043).  Analysis by Kruskall Wallis test. 

 

7.4 Discussion 

After a series of small studies that represent preliminary observations, the study presented 

here offers the most robust examination of plasma methylarginines, DDAH SNPs and their 

association with outcome in septic shock undertaken to date.  By utilising a high quality 

randomised controlled trial to provide clinical data and samples, combined with a well-

established method for analysing methylarginine and nitric oxide concentrations, this study 

answers a number of the existing questions and presents some new ones for future study. 

7.4.1 Plasma nitric oxide in septic shock 

To date, study has been adequately powered to explore the narrative pattern of plasma NO 

synthesis in early septic shock. The data reveal a pattern of significantly increased NO 

synthesis in patients with septic shock compared to healthy volunteers.  The data is positively 

skewed as might be expected, however of interest is that there is a group of study participants 

that may be described as ‘super-producers’ of NO with plasma concentrations above 200µM.  

This group contains 25 patients of the admission group (14.7%), 31(14.6%) on day 3, 

24(13.7%) on day 5 and 10(7.6%) on day 7.  Of the patients in this group, 71% were 

consistently in this category.  This suggests that there are a proportion of patients with septic 

shock who have a supranormal NOx level in the plasma. Whether this reflects increased 

synthesis or impaired clearance is not clear.  Mortality in this group was 29%.  This compares 

to 25% mortality in the study population as a whole, so whilst this group may not suffer 

excess mortality, they may have a mechanism of shock which is different to that seen in 

others.  
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Interestingly, plasma NO concentrations are similar in septic shock in both survivors and non 

survivors at admission to ICU.  Only by day seven do we see a significant elevation in 

plasma NO in non-survivors compared to those who were alive at day 28.  This may 

represent the failure of shock resolution in this population and may be a predictor of poor 

outcome in this group, a hypothesis that merits further exploration.  Consistent with these 

findings is the observation that peak plasma NOx is not predictive of outcome in septic 

shock.  The synthesis of NO is undoubtedly an important part of the pathophysiology of 

sepsis and is likely to play a role in those patients in whom shock is overwhelming and 

ultimately fatal - as shown here by the day 7 data.   It may be the case however that 

measuring the plasma NO concentrations is not the best tool in this context since it is 

composite value made up of synthesis by different tissues, conversion to stable metabolites 

and clearance, all of which are dynamic and dysregulated in septic shock. 

7.4.2 Plasma L-arginine and methylarginines in septic shock 

This study offers the first robust narrative of the changes in plasma methylarginines observed 

over the first seven days of ICU admission with septic shock.  Plasma ADMA is significantly 

elevated over the healthy controls that are studied elsewhere in this project, and indeed 

appear higher than values reported in the literature previously.  The primary reason for this is 

that this population contains only those with vasopressor dependent septic shock, an inclusion 

criterion for this study.  Studies by other groups have included the spectrum of severe sepsis 

and septic shock and often studied only a handful of patients with the more severe disease 

state and higher mortality.  Hence this study contains a largely un-observed population in 

whom a higher plasma ADMA concentration is, based on animal and cell studies presented 

here entirely feasible.  Secondly, all of the sepsis studies reported have used ELISA 

techniques to determine plasma ADMA concentrations.  This study employs the gold 

standard technique of HPLC triple quad mass spectrometry and so is likely to present a more 

robust assessment of the true plasma MA concentrations.  In addition, the inability to 

measure SDMA using ELISA techniques makes controlling for changes in methylarginine 

concentrations not mediated by DDAH impossible. 

Consistent with previous studies in this area[207], ADMA appears to rise over the first week 

of ICU admission.  In the context of the septic insult this is perhaps unexpected and may 

represent a change in ADMA flux.  In the early stage of septic shock, impaired renal 

clearance coupled with endothelial and immune release of ADMA into the circulation may 

lead to higher values at presentation and in the early days of admission.  By day 7 however, 

the shocked state has resolved in the majority of patients and so if this was the only 

mechanism for elevated ADMA, a reduction in plasma concentrations over time might be 

expected.  In this patient group, protein catabolism, progressive critical illness polymyopathy 

and weakness is a common feature and it may be that increased ADMA release from muscle 

in part mediates the late increase in plasma concentrations seen in this study. 
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Plasma SDMA is also elevated in septic shock although in the population as a whole appears 

to be stable over the course of the first week of ICU stay.  Given that it is not metabolised by 

DDAH isoforms and is largely cleared by the kidney with a small proportion metabolised by 

AGXT2, this increase is likely to represent a pattern of kidney injury in these patients.  It 

would prove valuable to determine if this elevation resolves with improving renal function 

and whether it is a useful marker of kidney function in the context of acute kidney injury. 

L-arginine concentrations are significantly reduced in the septic shock group compared to 

controls that have values in the 80-100µM range.  The reduction seen in these studies is 

consistent with a recent meta-analysis of L-arginine concentrations in sepsis[377].  Of note is 

that this meta-analysis included 192 patients with sepsis, this makes the data presented here 

one of the biggest studies exploring L-arginine concentrations in critical illness of any 

aetiology. 

It is of note that in initial analysis of associations between ADMA, SDMA and plasma NOx, 

positive correlations were observed at multiple time points between both methylarginines and 

plasma NOx.  This may appear paradoxical as increased concentrations of ADMA might be 

expected to be associated with lower NO synthesis.  This highlights an important observation 

that the relationship between plasma measures and intracellular bioavailability is not 

consistent.  Whilst elevated ADMA intracellularly certainly reduces NO synthesis, the 

transport and clearance of the two is markedly different.  In this case, correlations are likely 

because Nitrate, SDMA and ADMA are all cleared to some degree by the kidney and in the 

context of septic shock, all of these will experience some degree of reduced excretion.  This 

will mediate the loose positive correlations between them.  The choice of statistical test 

employed in this analysis is important.  Whilst Spearman’s coefficient is conventionally 

employed in parametric data sets and Pearson’s employed for non-parametric, they can also 

be used to detect different kinds of associations.  Whilst Spearman’s searches for a linear 

relationship, Pearson’s is better able to detect non-linear correlations between samples.  In the 

study values presented, both tests reveal positive associations although the degree of linear 

correlation is less strong.  

7.4.3 Methylarginines and outcome in septic shock 

In addition to building understanding of the narrative pattern of NO and methylarginine 

expression in septic shock, a study of this size has the power to make robust inferences 

regarding the relationship of these important disease mediators with outcome in septic shock. 
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This study provides validation of the pilot data that had associated ADMA and SDMA with 

shock severity in sepsis.  Interrogation of plasma ADMA concentrations in non-survivors at 

all time points studied revealed significantly elevated concentrations compared to those who 

were still alive at 28 days.  This finding was borne out when peak ADMA concentration 

during the seven days studied was considered.  Whether dichotomised or considered in 

quartiles, plasma ADMA concentration is strongly associated with increased 28 day 

mortality.  Plasma SDMA, displays a similar association, with higher SDMA concentrations 

associated with non-survival on days 3, 5 and 7 as well as on Kaplan Meier analysis.  When 

patients in the upper 50% of SDMA values were compared to the lower 50%, a hazard ratio 

of 2.25 is observed, consistent with the only previous study in this area with power to detect 

mortality differences[211].  These data suggest that both plasma ADMA and SDMA have the 

potential to act alone or in a panel as biomarkers predictive of poor outcome in sepsis.  

Receiver operator characteristic (ROC) analysis reveals an area under the curve(95% CI) of 

0.71(0.63-0.78), p<0.0001 for peak ADMA concentration and 0.64(0.56-0.73), p<0.001 for 

peak SDMA level(Figure 138). 

 

 

Figure 138: Receiver Operator Characteristic curves for peak plasma ADMA (Left) and SDMA 

(right) over the course of a seven day ICU admission with septic shock. 

 

However, whilst both increased plasma ADMA and SDMA are in isolation associated with 

worsened outcome, their differing actions and metabolism means that they are unlikely to 

have similar mechanistic effects.  Methylarginine clearance by the kidney is mediated by 

amino acid transporters removing the freely filtered amino acids and their derivatives from 

the tubular fluid.  In the acute kidney injury that is typically seen in sepsis, as well as chronic 

kidney disease this process is impaired[12].  Since SDMA is not metabolised by DDAH and 

the kidney is the primary route of excretion and in small part metabolism by AGXT2, it may 

be that SDMA acts as a biomarker of renal dysfunction.  This merits further exploration in 

itself, however in addition it can serve as an index of impaired MA clearance.  Correcting for 

SDMA may therefore give an indication of the impact of ADMA flux on outcome that is 

independent of renal function.   
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When this secondary analysis is undertaken, ADMA appears to have an opposite effect on 

outcome, with improved survival when ADMA is corrected for impaired renal MA clearance.  

This observation may suggest that in sepsis, patients that are able to maintain higher 

intracellular concentrations of ADMA are able to control NO synthesis more effectively and 

have less severe shock.  This increase may be reflected in plasma ADMA.  In diseases where 

renal dysfunction is an important feature, this effect may not be readily seen due to 

competing factors determining the ‘pool’ of plasma MA concentrations.  No previous study 

has been able to undertake the analysis of ADMA:SDMA ratio and so the observation has not 

previously been made.  It is of interest that inhibition of DDAH1 and increase of intracellular 

ADMA within the vasculature is associated with improved outcomes in rodent models of 

sepsis[213].  It may be the case that ADMA, corrected for plasma SDMA concentrations 

demonstrates the physiological response that therapeutic inhibition takes advantage of.  

Circumstantial corroboration of this observation may be found in the apparently paradoxical 

observation that in paediatric sepsis, elevations in the plasma ADMA concentration are 

associated with less severe shock[209]. Clinically significant acute kidney injury is much less 

common in children on the ICU.  This raises the possibility that the elevation in ADMA 

observed is mediated, at least in part, by increased intracellular concentrations rather than 

impaired renal clearance alone and therefore reflects the same pattern of protection observed 

when ADMA is corrected for SDMA in adults. 

Given the consistent pattern of reduced L-arginine concentrations in septic shock observed 

here and the absence of survival impact on patients with differing L-arginine concentrations, 

the differences seen in the survival of patients with elevated ADMA:L-arginine ratios seem 

likely to reflect increases in ADMA rather than L-arginine mediated changes.  This does raise 

the question of whether increases in the competitive inhibitor (ADMA) relative to the 

substrate at the NOS enzyme (L-arginine) are deleterious.  However in the light of the 

observation that once corrected for renal clearance ADMA is protective, this would appear 

likely to be a similar pattern to that seen in uncorrected ADMA, reflecting largely the impact 

of renal failure on outcome in septic shock.  

In summary, both plasma ADMA and SDMA concentrations are associated with increased 

mortality in septic shock, however when plasma ADMA is corrected for SDMA which may 

reflect renal clearance of methylarginines, increases in ADMA are associated with a 

protective effect in septic shock.  Plasma nitrate+nitrite and L-arginine do not predict 

mortality in septic shock. 
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7.4.4 Genomic associations with outcome and methylarginines in septic 

shock 

This study undertook two experiments exploring the role of SNPs of DDAH1 and DDAH2 in 

sepsis.  The first was interrogation of the genome wide study cohort – the GenOSept study - 

which showed that a group of intronic DDAH1 SNPs were associated with mortality in 

severe sepsis and septic shock.  This observation is of considerable interest since in the 

original study, only one SNP was associated at a genome wide level with mortality[248], 

however the tightly clustered group of SNPs within the first intron of DDAH1 almost reach 

genome wide significance and display a consistent pattern of increased odds ratio of death in 

sepsis.  It is of interest that none of the DDAH2 polymorphisms identified in previous studies 

were associated with mortality in this study. 

This observation was further explored by direct genotyping of the DDAH1 polymorphisms 

identified in the GenOSept study in a prospective cohort of septic shock patients in the 

VANISH study. This revealed that like the GenOSept study, the minor alleles were more 

common in septic patients (~12%) compared to matched healthy controls (~9%).  This may 

suggest that these SNPs of DDAH1 may play a role in susceptibility to sepsis, perhaps 

mediating an increased metabolism of ADMA by the vasculature and predisposing those 

people to overproduction of NO and septic shock.  It has previously been shown that regions 

of intron 1 of DDAH1 are associated with functional differences in the turnover of ADMA 

and it may be the case that these SNPs replicate that effect[378].  It is of interest that in a 

population of only septic shock patients, this difference in mortality is not observed.  This 

may be due to power of the study, however given the findings of the GWAS study and the 

reasonable size of this phase of the project – 286 patients were analysed – an alternative 

explanation is more likely.   

It may be the case that whilst polymorphisms of DDAH1 increase the susceptibility to septic 

shock in people with early infections or the transition from severe sepsis to the shock state, in 

patients who already have established septic shock, no difference in mortality is observed.  

This would explain the exaggerated mortality seen in the severe sepsis/septic shock group in 

the GenOSept study compared to the VANISH study.  Another possible explanation for the 

apparent difference observed here is that in the GenOSept study, the patients were drawn 

only from community acquired pneumonia and faecal peritonitis cohorts.  In the VANISH 

study, any cause of septic shock was an acceptable criteria for inclusion and whilst the 

majority of patients had either respiratory tract  or abdominal sources of infection, differences 

in the underlying infective source may contribute to the differences observed between the 

studies.  Of interest is the observation in a sub-group of 215 genotyped patients that no 

significant differences were observed between ADMA concentrations and genotype.  This 

may suggest that in this context, the DDAH1 SNPs do not have a significant effect on plasma 

ADMA levels.  A limitation of this study is that the number of available samples prohibited 

analysis of outcome or methylarginine concentrations in the rare homozygote populations of 

DDAH1 SNPs which arise in 1.4% of patients giving insufficient numbers to conduct robust 

analysis. 
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The second phase of the VANISH genotype interrogation was to determine whether the 

rs805305 SNP DDAH2, which had previously been associated with plasma ADMA levels 

and inflammatory state in sepsis was explored[40, 208, 209].  This study was able to show by 

direct genotyping that the SNP of DDAH2 was strongly associated with 28 day mortality, 

with the least common C:C genotype displaying significantly lower death than the C:G 

heterozygotes which in turn were relatively protected compared to the most prevalent G:G 

homozygote.  A potential mechanism for this benefit is that plasma ADMA:SDMA ratio in 

the C:C homozygote was elevated, which was shown in the observational studies of sepsis to 

confer protection in septic shock.  It is possible that this SNP has a functional impact on 

ADMA turnover which results in increased NOS inhibition and limits the exaggerated NO 

synthesis seen in septic shock.  Of note is that the rs805305 SNP has been implicated through 

this mechanism in essential hypertension, offering corroboration of this hypothesis[38, 375]. 

7.4.5 Strengths and limitations 

The key limitation of this study is that this work was undertaken in a subgroup of participants 

in a randomised controlled trial of vasopressin vs noradrenaline in septic shock.  Hence this 

analysis was not the primary intention of the VANISH study.  However, by building this 

series of experiments into the prospective study and confirming that no treatment group effect 

was observed, we have undertaken the largest study of this kind to date which would have 

been impossible through conventional observational study techniques.  The size of this study 

means that associations detected are likely to be robust and that small groups, previously 

considered outlying values[379] and therefore ignored can be identified as potentially 

important groups of patients in whom specific therapeutic strategies may be appropriate. 

By including only patients with septic shock in this study, one of the main limitations of most 

human sepsis trials has been eliminated.  Because most studies in this area – even phase III 

studies – include patients with severe sepsis and septic shock, a broad spectrum of disease is 

included.  This increases the number of patients that are eligible but, as seen in the studies 

undertaken previously in this area[40, 207, 208] reduces the ability of the studies to detect 

differences in survival in the patients most likely to die as a consequence of their infections. 

The results presented here are a detailed assessment of the impact of septic shock on 

methylarginine concentrations during the first week of critical care admission.  This makes it 

possible to detect narrative changes over the first week that may not have been apparent if 

only one or two samples had been taken.  However, this study does not reveal the longer term 

narrative of MA regulation.  A later analysis might help to identify patients with delayed or 

slow recovery, severity of polymyopathy and the persistence of kidney dysfunction after the 

recovery of gross clinical renal failure. 
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To date, only the outcome of association with mortality has been explored.  This was only a 

secondary outcome of the original study, however this study included four groups of patients 

and therefore by considering the population as a whole and categorising the outcomes by 

survival status, we have sufficient power to make the presented observations.  Further 

analysis of severity of organ failure, composite renal failure outcomes and biochemical 

indices of disease severity and their relationship to plasma MA levels will all contribute to 

the narrative observations made here. 

By undertaking a hypothesis based interrogation of the GWAS data set in the GenOSept 

study, there is potential for identifying genes that do not achieve the required significance at 

the genome wide level.  The typical threshold for genome wide statistical significance is a p 

value of at least 10
-6

, in the observations presented here, a p value of 10
-5 

was detected in the 

two most closely related SNPs of DDAH1.  This makes a spurious finding possible, however 

since the linkage between the SNPs and their allele frequencies was confirmed in the 

VANISH cohort, differences in the result due to the sampled population must be considered 

before ruling out a potentially important observation.  

7.4.6 Future work 

Building on the work presented here, further analysis of the existing data set will reveal 

associations between other indices of inflammation and organ dysfunction and 

methylarginines.  Understanding these relationships will build a picture of how ADMA or 

SDMA may be employed as biomarkers in human sepsis.   

It is clear that there is a disparity between plasma and intracellular indices of NOS inhibition.  

Future work will look to determine from monocytes extracted from whole blood how 

intracellular methylarginine concentrations change in sepsis.  Also, following patients over a 

longer time course will give insights into the changes in MA seen in the recovery phase and 

how they relate to longer term outcomes such as chronic renal, cognitive and functional 

impairment in survivors of sepsis. 

Finally, the evidence presented here that ADMA may have a protective role in septic shock 

provides further evidence that DDAH1 inhibition may be a therapeutically advantageous 

approach to improve vascular tone in sepsis.  The translation of the compound L-257 into 

clinical practice is underway and will constitute a major portion of forthcoming work in this 

area. 
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7.4.7 Summary statement 

 Presented here are the first results from the largest ever study of methylarginines and nitric 

oxide synthesis in septic shock,  exploring the relationship between these, polymorphisms of 

ADMA regulating genes and 28 day mortality. 

 High plasma ADMA and SDMA concentrations are associated with an increased risk of death 

in patients with septic shock 

 When corrected for renal clearance of methylarginines however, ADMA has a protective 

effect in patients with septic shock. 

 Plasma NO concentrations do not associate with outcome, although a group of patients who 

are ‘super-producers’ of NO have been identified in the first study of this size to explore 

plasma nitrate+nitrite concentrations in sepsis. 

 SNPs within the intron of DDAH1 are associated with an increased risk of death in severe 

sepsis and septic shock; however in septic shock alone no significant association was 

detected. 

 The DDAH2 SNP rs805305 is associated with reduced mortality in septic shock and mediates 

an increased ADMA:SDMA ratio, a potential mechanism for this protective effect. 
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8 General discussion 

Each chapter of results presented here contains a detailed discussion of the methodology, 

implications, strengths and limitations of the work contained within it.  This chapter offers a 

brief summary of the context for the work, the background data upon which this project was 

built and a narrative description of the findings of each group of experiments.  This is 

followed by discussion of the immediate clinical implications of this work, future projects in 

this area and concluding remarks. 

8.1 Clinical context 

Sepsis is a disease that poses challenges for patients, clinicians and researchers.   

For patients and their families, sepsis is an alien and poorly understood syndrome.  Whilst 

most people have heard of ‘septicaemia’, this does not translate well into understanding of 

the impact of sepsis as a disease.  Unlike other specialties, who have managed to effectively 

educate the public about illnesses such as myocardial infarction, stroke and cancer; sepsis, 

which kills more people in this country than bowel and breast cancer combined has limited 

penetration of the public consciousness.  When exposed to sepsis therefore, patients and their 

families are poorly equipped to cope with the high risk of early mortality in the days after 

diagnosis.  Because of the nature of the illness, there is minimal time to prepare people for 

the experience of prolonged intensive care admission, ventilation, haemofiltration and 

profound weakness that will arise as a consequence of something as ostensibly simple as a 

chest infection.  In addition, even as intensivists we are not good at explaining the longer 

term sequelae of critical illness, in part because this work has only come to fore in recent 

years.  Patients and families do not leave hospital prepared for what may be long periods of 

rehabilitation, significant long term cognitive, functional and organ impairment all of which 

will have significant healthcare and economic impacts long after the patient is discharged 

from the ICU[93, 96, 99]. 

For clinicians, sepsis remains a challenging disease.  Improvements in outcome from critical 

care as a whole have been mediated by simple measures to limit iatrogenic injury that leads 

to increased mortality.  Examples of treatments of this kind include, regulating fluid 

balance[69], less injurious ventilation strategies[380], improved infection control and central 

line care[381].  This has led to a trend towards improved survival in critical care as a whole 

and to some degree in sepsis, where mortality has fallen from 30-40% fifteen years ago to 20-

30% now.  These improvements must have a plateau point however and to date, no specific 

therapy for sepsis has been shown to improve survival since the introduction of antibiotics.  

The reasons for this are varied and certainly include poor selection of animal models, 

incorrect endpoints in early trials and poor drug design with limited understanding of the 

mechanisms involved.  Moving forward, maintaining engagement with clinicians in sepsis 

research is a critical part of academic activity in this area. 
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For academics, sepsis has proven difficult to study in a robust fashion.  It presents suddenly 

with limited prodrome, is followed by rapid clinical deterioration and the requirement for 

immediate therapy.  This makes is difficult to recruit patients for studies using traditional 

models of informed consent and so interventional studies in this area tend to be smaller than 

those of other specialties in spite of the large number of patients we encounter.  In addition, 

sepsis is a broad church of disease aetiologies and severity.  The pathophysiology of a gram 

negative infection of the urinary tract is certainly different from that of hospital acquired 

multi-resistant gram positive chest infection or post-operative peritonitis due to anastomotic 

leak, however all of these infections may lead to a physiological response that is of sufficient 

magnitude to merit the diagnosis of severe sepsis or septic shock and therefore be included in 

the same study of sepsis patients.  These heterogeneous groups have common features, the 

study of which is valuable, however it is critical to understand that in undertaking large phase 

III interventional trials based on existing diagnostic criteria, we risk missing specific 

populations of patients who would benefit from a treatment amidst the ‘noise’ of the 

heterogeneous patient sample.  

8.2 Methylarginine regulation 

8.3 ADMA, DDAH and NO in sepsis 

8.3.1 Global NOS inhibition in sepsis 

The field of NO regulation provides one of the best examples of a therapy that was based on 

incomplete understanding of the physiology, limited understanding of the differences 

between animal and human sepsis and hurried progression to phase III.  This is global NOS 

inhibition in sepsis and caused significant harm to the field of NO research in this area. 

Synthetic L-NMMA (546C88) was developed when it was determined that elevations in NO 

synthesis were associated with vascular dysfunction in shock states[191, 196].  L-NMMA 

was shown to be protective in animal models of septic shock and in healthy volunteers to 

cause a rise in blood pressure mediated by reduced NO availability and increased systemic 

vascular resistance[382, 383].  When trialled in sepsis, L-NMMA did indeed inhibit NOS, 

and in doing so improved blood pressure significantly[200]. However it was also associated 

with significantly increased mortality[384] and so was withdrawn from use, one of a tranche 

of drugs trialled between 1995 and 2010 which were not effective.  In fact, L-NMMA 

delivered exactly the profile of response we might expect given the understanding we now 

how of NOS, ADMA and NO in sepsis.  As a pan-NOS inhibitor, L-NMMA reduced NO 

synthesis not just in the vasculature but also in the heart and immune cells, both of which are 

essential parts of the normal septic response.  As a result, L-NAME treated patients displayed 

impaired immune and cardiac function in spite of their improved blood pressure.  The net 

result of these effects was increased mortality.  Animal models had failed to predict this 

effect because rodents, whilst employing near identical genetic and signalling pathways, are 

able to produce more NO in response to sepsis, therefore reducing their NOS activity does 

not have the same deleterious effects that were seen in humans.  Only as work has continued 

in this area have we shown that the tissue specificity of the NO response to infection is 

critical and modulating it must be done with insight into the tissues to be targeted. 
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8.3.2 ADMA and DDAH in sepsis 

Sepsis models have been used in DDAH research since its discovery as a tool to explore the 

physiology of NOS regulation by ADMA and in turn by DDAH[47].  A modest amount of 

work has described limited associations between ADMA and surrogate endpoints of 

inflammatory state in human sepsis [40, 207, 208]and in a handful of patients SNPs of 

DDAH2 have also been related to both plasma ADMA and shock severity in sepsis[39, 40].   

In animals, it has been clearly demonstrated that knockout or pharmacological inhibition of 

DDAH1, the predominant isoform in the vasculature leads to improved vascular tone without 

harmful impacts on immune cell or cardiac function because of the absence of the isoform in 

these tissues[213].  Pilot work in isolated primary macrophages of Ddah2 knockout mice has 

shown that when exposed to inflammatory stimulus, cells deficient in DDAH2 display 

impaired motility, phagocytosis and bactericidal ability compared to controls[30].   

The studies presented here explore the role of DDAH2 in sepsis in three ways.  The first goal 

of this work was to understand how DDAH2 expression changes in response to stimuli 

commonly experienced in a septic or critically ill patient.  Second this study aimed to 

determine the impact of global and tissue specific DDAH2 knockout on a whole animal 

model of sepsis.  Thirdly this project observed for the first time in a robust fashion the 

relationship between septic shock, methylarginine concentrations, SNPs of DDAH genes and 

outcome in humans.  

8.4 Summary of results 

8.4.1 Regulation of DDAH2 by hypoxia 

DDAH2 is found in the immune cells of both humans and mice, it is highly conserved and 

regulates ADMA concentrations within the cell.  Reductions in intracellular ADMA lead to 

an increase in L-arginine binding to NOS isoforms and result in increased NO synthesis.  In 

the studies presented here, it was shown that hypoxia is able to increase expression of 

DDAH2 in murine primary peritoneal macrophages.  An increase in DDAH2 mediates 

reduced competitive inhibition by ADMA with L-arginine at the active site of NOS which in 

turn results in increased NO synthesis by macrophages.  This finding was recapitulated in a 

human study of normobaric hypoxia, deomonstrating that hypoxia mediated induction of 

DDAH2 expression is preserved across species. 

Changes in DDAH2 expression may be one of the mechanisms by which NO synthesis is 

increased in response to pathophysiological stress.  This is particularly important in hypoxia 

where one of the essential co-factors for NOS, oxygen has limited availability.  In conditions 

such as critical illness where oxygen availability is impaired, reducing competitive inhibition 

of NOS is a further mechanism for increasing immune cell NO production. 
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8.4.2 Regulation of DDAH2 expression by Interferon-γ 

In this series of studies, the regulation of NO synthesis by ADMA and its regulators was 

explored using the immortalised murine macrophage cell line RAW264.7.  The expression of 

DDAH2 was shown to be determined by IFN-γ, and activated, like a number of other genes 

within the MHC region of chromosome 6 by the canonical JAK/STAT signalling pathway. 

This results in reductions in ADMA concentrations within the cell and increased NO 

synthesis by macrophages.  In contrast, TNF-α and LPS have no effect on DDAH2 

expression or ADMA mediated inhibition of NO synthesis. 

In a study of macrophage specific Ddah2 knockout mice and controls, differential synthesis 

of IFN-γ was observed in response to polyinosinic polycytidylic acid, a viral mimic and 

TLR3 stimulus.  This suggests a regulatory role for DDAH2 in the viral response that may 

differ to that observed in bacterial infection. 

8.4.3 Impact of Ddah2 knockout on outcome in murine septic shock 

This study explored the role of DDAH2 in the systemic response to infection.  The model 

chosen was the caecal ligation and puncture technique which, coupled with regular analgesia 

and fluid resuscitation produced a clinically relevant model with 50% mortality in control 

animals.  Two kinds of transgenic animals were used in these studies.  The first were global 

Ddah2 knockout mice developed using a high throughput gene trapping strategy which were 

compared to wild type litter mate controls.  The second were macrophage and granulocyte 

specific Ddah2 knockouts, which were made using the LoxP Cre recombinase technique.  

These mice were compared to their floxed litter mate controls.   

Studies in global knockout mice showed that sepsis led to early mortality compared to 

controls associated with significant hypotension observed up to twelve hours prior to death.  

Ex vivo analysis revealed that this phenomenon was unlikely to be mediated by intrinsic 

vascular dysfunction.  Follow up studies in macrophage and granulocyte specific knockout 

mice revealed a similar pattern of early mortality suggesting that immune cell DDAH2 is an 

important mediator of the response to sepsis.  The preliminary finding of in vitro innate 

immune cell dysfunction was corroborated by the observation that bacterial loads were higher 

in knockout mice than controls. 

This study suggests that in contrast to DDAH1, DDAH2 has limited activity under normal 

conditions but when exposed to a pro-inflammatory stress such as sepsis, plays a critical role 

in regulating the innate immune response. 

8.4.4 Methylarginines and NO in human septic shock 

In the light of pilot work suggesting that ADMA concentrations in the plasma are increased 

and that this was associated with the inflammatory state of patients with sepsis, we undertook 

the definitive study of early methylarginine and NO levels in human septic shock[40, 207, 

377].   
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This study used serial plasma samples from patients from a subgroup of 215 patients in the 

VANISH trial, a randomised controlled study exploring vasopressor choice in sepsis.  By 

analysing the plasma concentrations of NO, ADMA, SDMA and L-arginine this study built 

the first complete picture of the relationship between NO, its substrate and its endogenous 

inhibitors over the first seven days of admission to the ICU with septic shock.   

Plasma NO, ADMA and SDMA are all significantly elevated over normal plasma 

concentrations throughout the first seven days of ICU admission and plasma L-arginine is 

significantly depressed.  ADMA appears to rise throughout the first week, even though shock 

resolves in these patients around day 4.  This implies that more than one mechanism may be 

responsible for this persistent elevation.  Analysis of the relationships between these indices 

showed that plasma ADMA, SDMA and NO(nitrate+nitrite) are all positively correlated, 

suggesting that clearance of all three may be impaired by sepsis associated acute kidney 

injury or other common metabolic pathways. 

Whilst plasma NO and L-arginine concentrations are not strongly associated with mortality, 

patients in the top half of plasma concentrations of ADMA and SDMA display a 2-3 fold 

increase in the hazard ratio for mortality at 28 days compared to those with lower values.  

This suggests that both ADMA and SDMA may have a role as biomarkers of illness severity 

in septic shock.  However, when the clearance of methylarginines by the kidney and changes 

in rate of synthesis are accounted for it appears that ADMA may exert a protective effect in 

sepsis.  This challenges the hypothesis that measuring plasma ADMA concentrations is a 

simple surrogate for intracellular levels in dynamic disease states such as sepsis and merits 

further investigation as a potential therapeutic target.  Changes in SDMA, not mediated by 

DDAH may reflect the illness severity of patients with sepsis such that the relationship 

between them serves as a useful control in studies of the role of ADMA in dynamic diseases 

such as sepsis.  
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Figure 139: Representative image of the synthesis and regulation of ADMA and SDMA in 

sepsis.  

Protein Arginine Methyl Transferases (PRMT) catalyse the methylation of arginine containing 

protein residues to ADMA and SDMA which are released upon proteolysis.  ADMA and SDMA 

are transported via the y
+ 

cationic amino acid transporter into and out of the circulation.  

SDMA is not metabolised in most cells whereas ADMA is metabolised by the two isoforms of 

dimethylarginine dimethylaminohydrolase (DDAH) in diffuse tissues.  ADMA acts 

intracellularly to inhibit nitric oxide synthase (NOS), SDMA has no action on NOS isoforms.  

SDMA is cleared by the kidney largely unchanged and in small part through metabolism by 

AGXT2(not shown).  ADMA is largely metabolised by DDAH to dimethylamine (DMA), a small 

amount by AGXT2 and a proportion is cleared unchanged through the kidney. In sepsis, the 

synthesis of ADMA and SDMA may be increased through high protein turnover by patients in a 

catabolic state, clearance by the tubule and AGXT2 are impaired by acute kidney injury.  

Differences in the concentrations of these methylarginines may be related to the metabolism by 

DDAH isoforms which only metabolises ADMA.  nb.  L-NMMA (monomethylarginine) is 

considered to have the same synthetic pathway, activity, metabolism and clearance as ADMA 

but is present in only 10% of the concentration.  Not shown for clarity. 
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8.4.5 Polymorphisms of the DDAH genes in human sepsis 

This study has offered insights into the role of SNPs of both DDAH1 and DDAH2 in human 

severe sepsis and septic shock.  In a large cohort of severe sepsis and septic shock patients, a 

number of SNPs within the first intron of DDAH1 are associated with mortality.  However in 

a second cohort of septic shock patients, this association is not seen.  Both cohorts have 

similar incidences of the SNPs, which are higher than the general population and the direct 

analysis of the VANISH cohort confirms the high degree of linkage between the SNPs.  This 

suggests that the difference may lie in the nature of the study cohorts.  In the GWAS study, 

severe sepsis and septic shock patients were considered together, this is significantly different 

from the VANISH population who were already in established septic shock at the time of 

recruitment.  This suggests that the role of the SNPs of DDAH1 in determining mortality may 

be in making the transition to septic shock more likely.  Once the patient is in vasopressor 

dependent shock however the risk of death is determined by other factors.  This may explain 

the difference between the observed results. 

DDAH2 SNPs are not associated with mortality in the GenOSept cohort as a whole, however 

when a septic shock only population is considered, a strong association with mortality is 

observed.  It is also the case that in the least common G:G homozygote, the ADMA:SDMA 

ratio is increased, recapitulating the observation that ADMA:SDMA ratio predicts outcome 

in septic shock and offering a potential mechanism for this effect.  It is an interesting contrast 

that whilst DDAH1 SNPs may be associated with the risk of transition from severe sepsis to 

septic shock, the SNP of the DDAH2 promoter that we studied is shown to have its effect 

when septic shock has become established.  

It is also important to observe that in mouse models of septic shock, knockout of DDAH2 

from monocytes or in the whole animal leads to an increased mortality, however when a SNP 

of DDAH2 which appears to reduce DDAH2 activity is considered in humans, it appears to 

offer a protective effect.  This may seem to be a contrast in effect; however the knockout of a 

gene leads to a number of effects such as adaptive responses and a maximal effect size that 

would not be seen with a SNP.  The animal models studied here provide strong evidence for a 

mechanistic role for DDAH2 in sepsis.  The human studies, undertaken in the challenging 

clinical and scientific environment of critical illness, corroborate this observation that 

DDAH2 is an important mediator of outcome across species. 

8.5 Clinical implications 

8.5.1.1 Understanding methylarginines in sepsis 

This study answers a number of questions about the role of ADMA in sepsis.  Changes in 

ADMA concentrations have an impact on immune cell function that not only impairs NO 

synthesis but has a functional impact on immune cells that limits their ability to mount 

essential innate responses.  Conditions which elevate intracellular ADMA therefore may well 

be associated with impaired immune function.   
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In addition to this, it is clear that as a biomarker of critical illness, ADMA and SDMA 

concentration in the plasma may play a role as part of a panel of tools that may allow us to 

better predict which of our patients will not benefit from prolonged critical care.  However 

this study also shows that understanding the role of ADMA is more complex than simply 

measuring plasma methylarginine concentrations.  It is important to recognise that the plasma 

reflects the net result of MA movement, synthesis and clearance and that within the cell, 

different concentrations are likely to be found.  In fact it may well be the case that the ability 

to increase ADMA availability within the cell offers a protective mechanism in septic shock.  

By competing with L-arginine, ADMA may limit the exaggerated NO synthesis seen in 

septic shock and prevent the associated vascular dysfunction, organ failure and death. 
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8.5.1.2 DDAH genes and sepsis outcomes 

This study has significant implications for our understanding of sepsis and its progression as 

a disease.  By considering populations with only septic shock, for the first time a DDAH SNP 

has been found in an adequately powered study which is associated with 28 day mortality in 

septic shock.  In addition, a group of intronic SNPs have been associated with the progression 

of severe sepsis to septic shock.  Both of these findings have profound implications both for 

our knowledge of the mechanisms that underlie the pathogenesis of sepsis but also in 

stratifying the risk of disease progression or death in patients admitted to hospital with sepsis. 

8.5.1.3 Therapeutic modulation of DDAH isoforms 

Modulating the function of the isoforms of DDAH1 and DDAH2 is an area of considerable 

interest.  This study presents further evidence that there may be a place for both of these 

therapeutic strategies. 

DDAH1 inhibition using a highly specific inhibitor has been shown to increase vascular tone 

and improve mortality in animal models of sepsis[212, 213].  These studies show that unlike 

global NOS inhibition that has an impact on all tissues, inhibition solely of DDAH1 

eliminates the potentially deleterious effects seen when Ddah2 is knocked out in immune 

cells.  It may also be the case that DDAH1 inhibition plays a protective role in the kidney[8], 

making it an ideal target for patients with sepsis. 

In contrast, inhibiting DDAH2 in sepsis – whilst not yet possible – would be associated with 

significant immune dysfunction and possibly poor outcomes in sepsis.   This is consistent 

with a number of studies that have attempted to modulate the exaggerated immune response 

in sepsis and have been shown to be ineffective or in some cases harmful[385].  However, 

there are a large number of chronic disease states in which inflammation is a persistent and 

pathological component.  Diseases such as arthritis, inflammatory bowel disease, connective 

tissue disorders and even atherosclerosis all exhibit significant chronic inflammatory 

components which may be amenable to modification of DDAH2 activity as a therapeutic 

target.  Of note is that because the actions of DDAH2 on NO synthesis are indirect, knockout 

does not result in complete abolition of NO production by immune cells.  This means that 

inhibition of DDAH2 may provide a more tolerable means of limiting the immune response 

in these chronic conditions. 

8.6 Future projects 

8.6.1 Animal studies 

The studies presented here have shown that animal studies can provide valuable mechanistic 

insights into the role of DDAH2 in determining mortality in sepsis. Future studies will focus 

on understanding better the role of DDAH isoforms in regulating the recovery from sepsis.  

The development of Ddah1 and Ddah2 knockout rats using the CRISPR Cas9 technique 

means that it is now possible to develop a more clinically relevant model of sepsis and 

understand not just how DDAH isoform knockout affects mortality but also what the impact 

is on organ function, muscle catabolism and cognition in survivors of a septic insult. 
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In parallel to this work is a better understanding of how different types of infection modulate 

the septic response and explore whether inhibition of DDAH1 may be more effective in some 

disease states that others and whether DDAH2 plays a more significant immune role in viral 

than bacterial infection. 

8.6.2 Human studies 

Human studies moving forward can be divided into interventional and observational studies.  

The translation of L-257 into human trials forms a major part of the work to be undertaken 

over the next two years.  Building a package of IP and evidence of efficacy in a number of 

models will herald engagement with potential funders and ultimately phase I studies in 

humans.  If successful, phase IIa and IIb studies will be undertaken to fully understand the 

role of L-257 as a modulator of haemodynamics in sepsis. 

In addition to the drug development work, observational studies, built around randomised 

controlled trials that are currently underway will explore the intracellular regulation of 

ADMA.  By taking whole blood samples and extracting mononuclear cells from patients with 

sepsis, it will be possible to understand how the intracellular expression of DDAH2 varies, 

how this affects cellular ADMA concentrations and how this relates to both outcome and 

plasma indices of methylarginine concentrations.  Genotyping of a further cohort of septic 

shock patients will deliver definitive confirmation that DDAH1 SNPs play a role in the 

transition from severe sepsis to septic shock and that rs805305 predicts mortality in patients 

in established shock. 

A second observational arm will examine patients admitted to critical care and focus on those 

who have survived critical illness.  By taking serial samples over the course of ICU 

admission, it will be possible to understand how methylarginine turnover and the regulation 

of NO synthesis predict and possibly regulate the recovery phase of critical illness.  Work 

within the group has already shown a role for these enzymes in blood brain barrier, 

mitochondrial, renal and cardiac function.  All of these may be important in patients who 

have suffered the inflammatory stress of sepsis and survived. 
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8.7 Conclusions 

 Dimethylarginine dimethylaminohydrolase 2 is the only DDAH isoform expressed in immune 

cells.  It is present in both human and murine cells and metabolises ADMA.  ADMA is a 

competitive inhibitor of L-arginine, the substrate for nitric oxide synthase. 

 DDAH2 expression is upregulated in hypoxia in both mice and human immune cells.  This 

leads to the increased metabolism of ADMA and reduced inhibition of nitric oxide synthase.  

This in turn leads to increased systemic and intracellular nitric oxide concentrations 

 Interferon-γ regulates DDAH2 expression via the JAK/STAT pathway, directly stimulating 

two postulated transcription factor binding sites on the human DDAH2 promoter.  In contrast, 

lipopolysaccharide and tumour necrosis factor have no impact on DDAH2 expression or 

ADMA regulation. 

 Global and macrophage specific Ddah2 knockout mice display exaggerated early mortality in 

a caecal ligation and puncture model of septic shock.  This is mediated by impaired innate 

immune function and ability to eradicate bacteria.  Cardiovascular collapse does not arise as a 

result of intrinsic vascular dysfunction; instead it appears to result from an overwhelming 

infectious insult. 

 In human septic shock, ADMA, SDMA and NO levels in the plasma are elevated over 

controls.  Positive correlations between them suggest that impaired clearance plays an 

important role in determining plasma methylarginine and nitrate concentrations in sepsis. 

 High plasma ADMA and SDMA are both associated with an increased risk of death in septic 

shock and may offer promise as biomarkers of disease outcome.  The biology of ADMA is 

more complex and correction for impaired clearance suggests that ADMA may have a 

protective role in sepsis.  Future work will elucidate the relationship of intracellular ADMA 

concentrations to outcome in sepsis.   

 SNPs of the first intron of DDAH1 are associated with increased risk of death in severe sepsis 

and septic shock cohorts and may play an important role in the progression to septic shock. 

 The DDAH2 promoter SNP rs805305 is associated with mortality in septic shock and also an 

increased ADMA:SDMA ratio. 
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Appendix – SNPs interrogated in the GenOSept and 

GAinS analysis 

A. DDAH1 SNPs interrogated in the GenOSept and 

GAinS analysis 

 

SNP CHR BP P adjusted 
OR 

maf 
cases 

maf 
controls 

rs233104 1 85775186 0.79663 0.95954698 0.090988 0.09389 

rs35240561 1 85775217 0.51037 0.92796803 0.19034 0.20426 

rs12047189 1 85775448 0.62643 1.06058856 0.17501 0.16185 

rs12122154 1 85775865 0.79522 1.05726671 0.05216 0.049756 

rs4949897 1 85776121 0.61489 1.06272036 0.17538 0.16179 

rs11161595 1 85776360 0.63919 1.10862444 0.050102 0.045393 

rs34642410 1 85776712 0.60207 1.13718965 0.038796 0.034037 

rs34561661 1 85777250 0.46196 0.92010269 0.1914 0.20674 

rs6669293 1 85777524 0.66058 0.95695874 0.27908 0.28301 

rs72722663 1 85777534 0.62093 1.0615414 0.1751 0.16159 

rs4949889 1 85778344 0.62406 1.06094073 0.17495 0.16149 

rs79095356 1 85778440 0.61715 0.91100946 0.059631 0.065878 

rs233105 1 85778531 0.17849 0.69105214 0.023174 0.033029 

rs1874807 1 85779393 0.58234 1.05156444 0.47786 0.493 

rs72722664 1 85779606 0.36632 1.2188405 0.055093 0.044129 

rs11590830 1 85779863 0.60817 1.11899392 0.050432 0.045285 

rs72722665 1 85780781 0.39693 1.13808839 0.10601 0.095618 

rs12042780 1 85780903 0.75529 1.03807496 0.17472 0.16398 

rs233108 1 85781720 0.71897 0.9669205 0.36752 0.37207 

rs10489510 1 85782571 0.75802 1.03755917 0.17454 0.16377 

rs233109 1 85783101 0.76541 0.97277156 0.38424 0.38738 

rs12138621 1 85783970 0.39494 0.90900562 0.19313 0.2102 

rs11161597 1 85784936 0.39711 0.90943386 0.19313 0.21016 

rs233111 1 85785655 0.68217 0.95984641 0.28049 0.2799 

rs233112 1 85785751 0.7627 0.97247005 0.38415 0.38734 

rs3813600 1 85786166 0.31748 1.16581452 0.10616 0.093909 

rs233113 1 85786299 0.71149 0.96606805 0.3673 0.37202 

rs233114 1 85786957 0.71153 0.96607288 0.3673 0.37202 

rs233115 1 85786977 0.71686 0.9667223 0.3673 0.37169 

rs3087894 1 85787118 0.71778 0.96681511 0.36722 0.37132 

rs1498375 1 85787323 0.71776 0.96681318 0.36722 0.37132 

rs1498374 1 85787334 0.40683 0.91121264 0.19314 0.20969 

rs233117 1 85787682 0.67742 0.92567877 0.074639 0.073609 

rs233118 1 85787967 0.7628 0.97248172 0.38415 0.38734 
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rs233119 1 85788052 0.71146 0.96606515 0.3673 0.37202 

rs233120 1 85788490 0.68837 0.96338997 0.36885 0.3746 

rs2300633 1 85788826 0.65831 1.05457095 0.17407 0.16114 

rs17590006 1 85789270 0.54277 0.93673205 0.2271 0.23303 

rs12140272 1 85789757 0.38895 0.90795905 0.19315 0.21089 

rs233121 1 85789913 0.71049 0.96594923 0.3673 0.37205 

rs1498373 1 85790633 0.71369 0.96631733 0.36722 0.37166 

rs72722671 1 85791003 0.047917 1.77652641 0.040444 0.028898 

rs2300634 1 85791257 0.72038 0.96711197 0.36745 0.37171 

rs233124 1 85791658 0.75895 0.97202476 0.38415 0.38769 

rs233125 1 85792056 0.85147 0.94975616 0.027951 0.029141 

rs2284797 1 85792383 0.46985 0.91766489 0.17969 0.19336 

rs12122816 1 85792384 0.46985 0.91766489 0.17969 0.19336 

rs2268667 1 85793746 0.72066 0.96714485 0.36686 0.37129 

rs233127 1 85793801 0.68897 0.96332927 0.367 0.3726 

rs233128 1 85794413 0.68981 0.96073468 0.28377 0.28453 

rs72722672 1 85794568 0.85769 0.96667397 0.060037 0.062969 

rs143314690 1 85794729 0.12964 0.65890231 0.020899 0.031354 

rs18582 1 85794819 0.60694 0.95311663 0.36432 0.37301 

rs233130 1 85795112 0.69274 0.96377347 0.36688 0.37239 

rs233131 1 85795259 0.69274 0.96377347 0.36688 0.37239 

rs731194 1 85795951 0.68585 1.04982029 0.17345 0.16121 

rs11161599 1 85795965 0.4035 0.91068702 0.19335 0.21043 

rs423105 1 85796427 0.69286 0.96378793 0.36688 0.37239 

rs233132 1 85796545 0.69286 0.96378793 0.36688 0.37239 

rs233133 1 85796557 0.74445 0.97029804 0.38373 0.38769 

rs761601 1 85797298 0.69899 0.96452069 0.3668 0.37168 

rs2389913 1 85798075 0.39656 0.87184816 0.093293 0.088915 

rs12121675 1 85798484 0.69333 0.96370408 0.36444 0.36967 

rs233055 1 85798486 0.6841 0.9628304 0.38213 0.38806 

rs78193202 1 85798617 0.76526 1.06428584 0.052726 0.049576 

rs233057 1 85798855 0.69299 0.96380431 0.36688 0.37239 

rs233058 1 85798865 0.69299 0.96380431 0.36688 0.37239 

rs233059 1 85798936 0.69299 0.96380431 0.36688 0.37239 

rs233060 1 85798943 0.69299 0.96380431 0.36688 0.37239 

rs233061 1 85799282 0.74454 0.97030774 0.38373 0.38769 

rs72722676 1 85799538 0.85419 0.95063414 0.027919 0.029125 

rs72722677 1 85800179 0.48274 1.11024421 0.11017 0.10174 

rs233062 1 85800385 0.69303 0.96380913 0.36692 0.37244 

rs3768227 1 85804087 0.69923 0.96455059 0.3668 0.37167 

rs173026 1 85804249 0.69321 0.9638313 0.36689 0.37239 

rs190804399 1 85804743 0.87085 0.97879701 0.14964 0.14768 

rs74599242 1 85804747 0.9355 0.99180467 0.28377 0.28045 

rs12035116 1 85804837 0.66517 1.05336837 0.17321 0.16066 
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rs233066 1 85804930 0.70215 0.96490947 0.36689 0.37167 

rs233067 1 85804978 0.69255 0.96375227 0.36689 0.3724 

rs233068 1 85805355 0.74415 0.97026214 0.38373 0.3877 

rs233069 1 85805466 0.69266 0.9637648 0.36689 0.3724 

rs233071 1 85806005 0.69274 0.9637754 0.36689 0.3724 

rs233072 1 85807695 0.74386 0.97022915 0.38373 0.38771 

rs12717763 1 85808164 0.37286 0.90531801 0.1936 0.21106 

rs3768226 1 85808325 0.4923 0.92916309 0.22711 0.23435 

rs233074 1 85809065 0.79044 0.97538892 0.36716 0.3688 

rs233075 1 85809124 0.39921 0.87253719 0.09323 0.088917 

rs3768224 1 85809173 0.55249 1.13866896 0.051201 0.045349 

rs3768223 1 85809183 0.39152 0.90862755 0.1936 0.21089 

rs12120551 1 85810903 0.39074 0.90847855 0.19357 0.21089 

rs12124170 1 85811182 0.69741 0.96432684 0.36678 0.37171 

rs4949898 1 85811652 0.66594 1.05323249 0.17321 0.16067 

rs36166679 1 85812626 0.42354 1.19042454 0.049503 0.043243 

rs140553832 1 85813467 0.27831 0.70992922 0.016622 0.024378 

rs56373808 1 85813622 0.30324 0.85028814 0.080817 0.094059 

rs233080 1 85814552 0.70501 0.96278322 0.28111 0.28112 

rs2284798 1 85814578 0.69131 1.08631692 0.053799 0.049893 

rs233081 1 85814973 0.41788 0.87734937 0.093374 0.08944 

rs61769484 1 85815240 0.53747 0.93580608 0.22719 0.23342 

rs2284800 1 85815610 0.36579 1.14508629 0.10823 0.097255 

rs10158674 1 85816134 0.39894 0.9099533 0.19353 0.21054 

rs2076699 1 85817295 0.36815 0.90378842 0.19214 0.20997 

rs233087 1 85821000 0.19479 0.86046701 0.20171 0.18647 

rs2300637 1 85822772 0.69631 0.96419666 0.36668 0.37159 

rs233091 1 85823044 0.69055 0.9635104 0.36677 0.37229 

rs233093 1 85823120 0.66369 0.96011712 0.36539 0.37157 

rs2300639 1 85823676 0.3973 0.90962941 0.19346 0.21056 

rs2300640 1 85823795 0.39664 0.90950844 0.19346 0.21058 

rs2235990 1 85823902 0.69096 1.08640491 0.053878 0.04995 

rs233095 1 85824816 0.69829 0.96443967 0.36675 0.37161 

rs233097 1 85825473 0.74018 0.96979167 0.38358 0.38762 

rs72954638 1 85826140 0.35285 0.8676039 0.088209 0.10177 

rs233099 1 85826194 0.68946 0.96337455 0.36674 0.37231 

rs2474123 1 85827452 0.83824 0.98174861 0.43677 0.43801 

rs7520993 1 85828090 0.43232 1.12458041 0.11014 0.10031 

rs36062892 1 85828626 0.70345 0.96227116 0.26872 0.27114 

rs12130145 1 85828970 0.39339 0.90885928 0.1933 0.2106 

rs233046 1 85829405 0.6488 0.9555454 0.28866 0.28809 

rs111820059 1 85830429 0.79177 0.96497026 0.13064 0.12822 

rs113752360 1 85830446 0.3206 0.85867051 0.087075 0.1011 

rs233047 1 85830570 0.67488 0.96155838 0.36635 0.37252 
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rs4949890 1 85830632 0.7025 0.96485254 0.36555 0.37028 

rs66811655 1 85831544 0.6688 0.96066166 0.36389 0.37001 

rs12038426 1 85831790 0.68523 1.04986754 0.17324 0.16101 

rs71652696 1 85831792 0.35434 0.89981148 0.18586 0.20498 

rs72722689 1 85832808 0.92156 0.97328046 0.029229 0.029901 

rs12136295 1 85833730 0.68949 1.08644294 0.054462 0.050372 

rs75481609 1 85834202 0.33421 1.37847801 0.028053 0.020907 

rs12758768 1 85835206 0.41877 0.91405549 0.19728 0.21527 

rs72722690 1 85835362 0.26686 0.84088531 0.082471 0.09646 

rs72722691 1 85835439 0.68929 1.04916961 0.17325 0.16108 

rs79695640 1 85836073 0.43217 0.91638106 0.19793 0.21561 

rs986639 1 85836392 0.54335 0.92379601 0.15478 0.16554 

rs1498377 1 85836436 0.85987 0.98273576 0.31496 0.3127 

rs4475804 1 85836466 0.86105 0.98217675 0.26661 0.26752 

rs79594869 1 85836755 0.82688 1.0489 0.048334 0.045668 

rs72722692 1 85837169 0.78701 0.96416774 0.1306 0.12827 

rs233050 1 85837793 0.76624 0.97269958 0.37068 0.3758 

rs4949899 1 85838237 0.63209 1.05915773 0.17364 0.16071 

rs233051 1 85838413 0.75825 0.96983532 0.28659 0.28686 

rs140056707 1 85838505 0.34603 1.36712501 0.027991 0.020983 

rs233053 1 85839507 0.79985 0.9768824 0.38738 0.39196 

rs233054 1 85840191 0.76207 0.97221044 0.37059 0.37587 

rs1391556 1 85841056 0.63277 1.05903276 0.17365 0.16072 

rs2012683 1 85841485 0.70843 0.96575896 0.37055 0.37744 

rs12139958 1 85842112 0.37771 0.906648 0.19681 0.21603 

rs76842501 1 85842370 0.752 1.06718143 0.052866 0.049822 

rs10873700 1 85842824 0.83489 1.04428245 0.051459 0.049386 

rs78200919 1 85843395 0.27332 1.16976164 0.15224 0.13676 

rs75140285 1 85843762 0.68145 1.08627455 0.057575 0.053669 

rs72722697 1 85843863 0.04095 1.99164315 0.029965 0.01963 

rs2064510 1 85844330 0.63308 1.05897769 0.17366 0.16073 

rs729655 1 85844617 0.8832 0.98668247 0.41755 0.42011 

rs2011825 1 85844671 0.72025 0.96699012 0.36704 0.37385 

rs4512701 1 85844835 0.633 1.05899146 0.17366 0.16073 

rs4631749 1 85844852 0.633 1.05899146 0.17366 0.16073 

rs997251 1 85845367 0.71344 0.96635695 0.37053 0.37678 

rs35092233 1 85845821 0.89267 0.9865917 0.27443 0.27215 

rs1884139 1 85845998 0.76481 0.97242337 0.37428 0.37901 

rs12044537 1 85846385 0.73554 0.96927976 0.38686 0.3928 

rs67611930 1 85846592 0.70576 0.96543935 0.37053 0.37749 

rs11161604 1 85847260 0.49448 1.19298671 0.038688 0.032724 

rs2207368 1 85847683 0.68594 0.96299024 0.36965 0.37706 

rs7553530 1 85848566 0.81058 1.05064367 0.051796 0.049333 

rs12568573 1 85848821 0.43374 1.12390587 0.10823 0.099037 
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rs12047422 1 85848830 0.71165 0.96614244 0.37052 0.37682 

rs3920521 1 85848866 0.7794 0.97498226 0.42517 0.42964 

rs79817777 1 85848923 0.82717 1.04595882 0.051799 0.050026 

rs11588128 1 85848998 0.43369 1.12391711 0.10823 0.099037 

rs72724604 1 85849182 0.82351 0.94030875 0.027771 0.029207 

rs72724605 1 85849188 0.29502 0.84960818 0.083558 0.096749 

rs12140103 1 85849489 0.77693 0.97388602 0.37025 0.37564 

rs12140170 1 85849723 0.37493 0.90614404 0.19676 0.21608 

rs72724606 1 85850246 0.70383 0.96520574 0.37051 0.37752 

rs761602 1 85851308 0.43196 0.88155314 0.094787 0.090385 

rs61769490 1 85851370 0.92327 0.99040186 0.27431 0.27107 

rs72724608 1 85852755 0.46792 1.09081705 0.18251 0.16584 

rs36110608 1 85852936 0.38194 0.90735274 0.19805 0.21704 

rs12116463 1 85853705 0.74592 1.06887319 0.052938 0.049816 

rs11161606 1 85853902 0.8121 0.97871088 0.42343 0.42758 

rs10782548 1 85855098 0.77448 0.97182357 0.28564 0.28638 

rs10489513 1 85855622 0.70063 0.96513432 0.38564 0.39284 

rs12140935 1 85855716 0.36547 0.90439416 0.19666 0.21627 

rs11161607 1 85855855 0.69096 0.9635104 0.36817 0.37524 

rs72724610 1 85856396 0.041355 1.98780298 0.03 0.019669 

rs1342323 1 85857574 0.61617 0.94148299 0.17379 0.16065 

rs12022248 1 85857681 0.53934 0.93661122 0.25014 0.25176 

rs77529889 1 85857838 0.69182 0.93262695 0.081635 0.08287 

rs12033483 1 85858123 0.61983 1.06150637 0.17369 0.16064 

rs6576761 1 85858274 0.72434 1.03249273 0.42157 0.42826 

rs6671599 1 85858857 0.68161 1.0389764 0.37043 0.37794 

rs35193119 1 85859265 0.34684 0.90080182 0.19665 0.21661 

rs6659486 1 85859372 0.92155 0.99017815 0.2742 0.271 

rs6576763 1 85859376 0.72837 1.03260527 0.3872 0.39327 

rs7515261 1 85859804 0.62538 0.94302074 0.17378 0.16134 

rs10747318 1 85859910 0.60881 0.94021002 0.17349 0.16085 

rs12140457 1 85860170 0.33776 0.8982831 0.19439 0.21472 

rs10873701 1 85860374 0.62538 0.94302074 0.17378 0.16134 

rs35876501 1 85860624 0.92116 0.99012855 0.27419 0.271 

rs35294786 1 85860743 0.92106 0.99011706 0.27419 0.271 

rs34750524 1 85860778 0.58174 1.14034403 0.040784 0.036191 

rs4949900 1 85861034 0.67875 1.0393505 0.37043 0.37796 

rs4428939 1 85861564 0.62552 0.94303677 0.17376 0.16132 

rs2177461 1 85861976 0.67756 1.03950434 0.37043 0.378 

rs12564698 1 85862711 0.42076 1.12857977 0.1077 0.098301 

rs11161609 1 85862736 0.99746 1.00029428 0.47653 0.47881 

rs3949301 1 85863383 0.67511 1.03982975 0.37043 0.37804 

rs61769518 1 85864246 0.34591 1.16959788 0.091277 0.086126 

rs12034249 1 85864391 0.61283 1.06279794 0.17369 0.16049 



  

283 

 

  

rs12118950 1 85864519 0.34217 0.89989247 0.19665 0.21667 

rs12402128 1 85864711 0.92093 0.99010023 0.27419 0.27102 

rs11161610 1 85865896 0.40522 1.08194571 0.38948 0.40528 

rs2892888 1 85866147 0.82677 1.02061154 0.36941 0.37311 

rs6576764 1 85866411 0.67318 1.0400783 0.37043 0.37805 

rs12125557 1 85867406 0.76253 1.02864561 0.38276 0.38649 

rs6704103 1 85868657 0.67734 1.03958334 0.36987 0.37753 

rs11161611 1 85868679 0.66771 1.04082847 0.37066 0.37845 

rs111933205 1 85868702 0.59174 1.14141646 0.038248 0.03362 

rs1357635 1 85868798 0.50789 0.92389209 0.17874 0.16415 

rs1357636 1 85869042 0.61645 0.94152724 0.17377 0.16064 

rs61769519 1 85870024 0.42553 1.13762186 0.093305 0.089139 

rs12758237 1 85870783 0.33774 0.89902899 0.19665 0.21675 

rs6576765 1 85871012 0.71806 1.03390718 0.3872 0.3934 

rs2037594 1 85871618 0.58406 0.93864588 0.19055 0.17663 

rs17387935 1 85871701 0.76147 0.9676537 0.22793 0.22824 

rs12133722 1 85873237 0.33524 0.89853466 0.19663 0.21681 

rs66924115 1 85873751 0.29217 0.84850441 0.08364 0.097064 

rs12123722 1 85873950 0.78953 1.05645398 0.051927 0.049234 

rs12564550 1 85874205 0.43903 1.12241207 0.10822 0.099116 

rs6657732 1 85874495 0.91307 0.9901133 0.49542 0.4929 

rs6657817 1 85874614 0.66611 1.04100855 0.37043 0.37817 

rs80164976 1 85874960 0.78898 1.05660929 0.05193 0.049231 

rs4949902 1 85875488 0.40877 1.14190737 0.094843 0.090237 

rs6673833 1 85875622 0.94324 0.99279359 0.26871 0.26496 

rs6576766 1 85876218 0.85886 1.01654843 0.39296 0.39472 

rs6576767 1 85876316 0.70827 1.03553997 0.36915 0.37597 

rs17127199 1 85876355 0.43869 1.12250186 0.10823 0.099113 

rs1554597 1 85877098 0.64454 1.04390136 0.37043 0.37829 

rs17127201 1 85877498 0.78763 1.05698763 0.051933 0.04922 

rs12138852 1 85878208 0.32459 0.89638972 0.19646 0.21692 

rs1001604 1 85879524 0.65701 1.04219806 0.38109 0.38952 

rs12132677 1 85879613 0.32276 0.89600436 0.19639 0.21692 

rs78773881 1 85880460 0.78586 1.0574803 0.051936 0.049205 

rs7532508 1 85880468 0.73039 1.0350037 0.28525 0.28529 

rs76032550 1 85880540 0.72486 1.07491222 0.053043 0.04969 

rs10493764 1 85880663 0.92331 0.99039285 0.27411 0.2709 

rs76711495 1 85880859 0.7243 1.07507347 0.053044 0.049686 

rs7554669 1 85880933 0.82008 0.9737643 0.17593 0.18542 

rs7546931 1 85880976 0.51644 0.93166125 0.22718 0.21105 

rs17127231 1 85881185 0.72377 1.07522829 0.053044 0.04968 

rs10782549 1 85881278 0.6092 0.9403821 0.17419 0.16138 

rs12062903 1 85881594 0.26836 0.840776 0.082573 0.096495 

rs56215900 1 85881759 0.43792 1.12273761 0.10825 0.099155 
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rs2016104 1 85882871 0.5943 0.93796185 0.17458 0.16144 

rs1975755 1 85882905 0.5061 0.9300518 0.22755 0.21126 

rs1006988 1 85883320 0.49063 0.92930712 0.24335 0.22589 

rs1006989 1 85883456 0.52209 0.92839592 0.19174 0.17657 

rs7539738 1 85884024 0.55217 0.9335031 0.19144 0.17676 

rs7525786 1 85884076 0.88582 1.01305853 0.44233 0.44416 

rs7547571 1 85884091 0.78201 1.02535511 0.42328 0.42792 

rs10873702 1 85884101 0.50398 0.92970588 0.22753 0.21107 

rs61783046 1 85884365 0.99823 0.9997779 0.28169 0.27597 

rs2124139 1 85884370 0.58777 1.06744613 0.17452 0.16075 

rs17384213 1 85884621 0.5874 1.06751445 0.17453 0.16076 

rs12123745 1 85884772 0.30644 0.89256138 0.19574 0.21688 

rs1965876 1 85885178 0.59077 0.93738893 0.17468 0.16146 

rs1608537 1 85885731 0.58993 0.93725302 0.1747 0.16146 

rs1608536 1 85885836 0.30128 0.89143746 0.19628 0.21741 

rs2840319 1 85886224 0.78109 1.02546483 0.42328 0.42796 

rs11161613 1 85886678 0.73587 1.07166231 0.052872 0.049751 

rs12064909 1 85886681 0.27036 0.84125538 0.082619 0.096492 

rs72724630 1 85886964 0.27374 0.84218127 0.08261 0.096205 

rs35479962 1 85887753 0.62413 1.12437801 0.040306 0.036215 

rs6697083 1 85887775 0.79201 1.02432412 0.43381 0.43782 

rs6420965 1 85888480 0.59967 0.938202 0.1725 0.15998 

rs1523995 1 85888986 0.58827 0.93699625 0.17484 0.16162 

rs7555670 1 85889080 0.5383 0.93123651 0.19181 0.17679 

rs7521189 1 85889596 0.81759 0.97940308 0.44994 0.45505 

rs12135333 1 85890494 0.30057 0.89130375 0.19548 0.21693 

rs1523994 1 85890726 0.4973 0.92866984 0.22779 0.21109 

rs12128907 1 85891385 0.29664 0.89049303 0.1954 0.21702 

rs6672870 1 85891457 0.6077 0.94049401 0.17702 0.16431 

rs12129013 1 85891709 0.47948 0.93165286 0.26495 0.28179 

rs12126355 1 85891874 0.54848 1.13805424 0.051172 0.045442 

rs2389948 1 85892383 0.57207 0.93442492 0.17531 0.16164 

rs72724632 1 85892717 0.43013 1.12499658 0.10842 0.099114 

rs7540393 1 85893728 0.96965 0.9962375 0.28406 0.27888 

rs12131926 1 85893955 0.34877 0.90342697 0.21234 0.23235 

rs12029221 1 85893977 0.53324 1.07765674 0.17661 0.16174 

rs1146374 1 85894027 0.46542 0.92350968 0.22955 0.21225 

rs561614 1 85894864 0.85801 1.02062481 0.23325 0.23223 

rs561422 1 85894932 0.43134 0.91752817 0.23382 0.21527 

rs1146377 1 85895609 0.44267 0.91279314 0.21529 0.19757 

rs12125900 1 85895781 0.29432 0.8899411 0.19521 0.21699 

rs1146378 1 85895820 0.36908 0.89920881 0.21417 0.19437 

rs1146379 1 85896551 0.61325 1.04854239 0.39568 0.40532 

rs17127399 1 85897168 0.75913 1.06380276 0.05273 0.049252 
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rs12743049 1 85897386 0.29643 0.89040399 0.19526 0.21698 

rs138155098 1 85897526 0.32361 0.72667932 0.01654 0.022933 

rs17384381 1 85897570 0.29063 0.88910495 0.19272 0.21396 

rs11582061 1 85897781 0.45096 1.11857997 0.10823 0.099444 

rs17388521 1 85897904 0.31943 0.8949835 0.19426 0.21606 

rs551140 1 85898042 0.22573 0.82087043 0.073877 0.089287 

rs11161614 1 85898160 0.42101 0.9164892 0.21257 0.23102 

rs553257 1 85898330 0.74387 0.96225287 0.16875 0.18003 

rs35956189 1 85898461 0.97709 0.99716104 0.28389 0.27875 

rs990916 1 85898508 0.57466 1.06982384 0.1749 0.16067 

rs1523993 1 85899128 0.86801 0.98347211 0.27287 0.27121 

rs506082 1 85899215 0.87776 1.01432361 0.38988 0.39307 

rs669173 1 85899428 0.52559 0.9428661 0.40782 0.41595 

rs12129502 1 85900727 0.37732 0.90635157 0.19921 0.21857 

rs12130380 1 85901309 0.41667 0.9155164 0.21623 0.23452 

rs12736004 1 85901367 0.38452 0.90772573 0.19993 0.21895 

rs570121 1 85901598 0.26164 0.88675194 0.31375 0.28571 

rs3851268 1 85901887 0.60181 1.06483728 0.17605 0.16245 

rs12131258 1 85901913 0.59261 1.09417866 0.086834 0.079845 

rs76807140 1 85901919 0.61384 0.9515843 0.49113 0.4805 

rs593728 1 85902045 0.5691 0.90690371 0.081628 0.074446 

rs76046560 1 85903135 0.58828 1.12660648 0.04753 0.042389 

rs539714 1 85904338 0.58874 0.93683978 0.1733 0.16016 

rs17127565 1 85904962 0.62975 1.11454918 0.044207 0.039774 

rs12130591 1 85904985 0.38663 0.90945478 0.20274 0.22111 

rs591917 1 85905136 0.63126 1.04937841 0.28339 0.28138 

rs17388696 1 85905427 0.71258 1.04560221 0.16942 0.15857 

rs604974 1 85905705 0.59791 0.9382902 0.17291 0.16 

rs12724823 1 85906385 0.43591 0.91767682 0.20387 0.22058 

rs11161615 1 85906816 0.62996 0.95247064 0.26372 0.27538 

rs11161616 1 85907625 0.45634 0.92309604 0.21951 0.23574 

rs499869 1 85907851 0.59577 0.93776678 0.17265 0.15933 

rs28816748 1 85908182 0.62718 1.11547464 0.044288 0.039748 

rs141311774 1 85908251 0.70288 1.08893374 0.044523 0.040751 

rs1261681 1 85908282 0.60666 0.93955962 0.17499 0.16232 

rs138821189 1 85908433 0.62166 1.11597672 0.047174 0.042505 

rs1240939 1 85908649 0.95249 1.00545704 0.44786 0.44661 

rs4949903 1 85908724 0.17404 1.25341271 0.10067 0.089876 

rs10782550 1 85908784 0.41748 0.913288 0.21116 0.22879 

rs80091879 1 85909013 0.70308 1.0858347 0.048402 0.04411 

rs147156346 1 85909169 0.62763 1.11524041 0.04441 0.039849 

rs661686 1 85909210 0.93057 0.99211555 0.44391 0.44002 

rs4949904 1 85909275 0.16521 1.17362823 0.20623 0.18977 

rs149476073 1 85909708 0.16881 1.17212694 0.20666 0.19026 
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rs61783053 1 85910700 0.28988 1.18525744 0.097133 0.090098 

rs12034839 1 85910777 0.87641 0.98508633 0.32594 0.33341 

rs12049529 1 85910893 0.46084 0.92368331 0.2195 0.23565 

rs28529751 1 85910951 0.45092 0.92012753 0.20401 0.22032 

rs1146381 1 85911290 0.76947 0.9734761 0.49675 0.49088 

rs2124140 1 85912143 0.072552 1.66066811 0.041179 0.029583 

rs600098 1 85912584 0.57098 0.93280696 0.16833 0.15561 

rs17388780 1 85912729 0.51154 0.93332948 0.2338 0.23982 

rs17127623 1 85913005 0.30076 1.18333888 0.095384 0.088981 

rs17127637 1 85913412 0.23915 1.21627146 0.09296 0.085449 

rs530006 1 85913508 0.61876 0.95567632 0.45236 0.46339 

rs11161617 1 85913538 0.46223 0.92385052 0.21945 0.23572 

rs72724639 1 85913632 0.064446 1.78446741 0.03182 0.021327 

rs631817 1 85913740 0.58276 0.93477633 0.16826 0.15578 

rs648216 1 85915057 0.59186 1.05526192 0.28381 0.28099 

rs648310 1 85915134 0.34189 0.91501118 0.40593 0.4189 

rs659070 1 85915149 0.58301 0.9348427 0.16799 0.15564 

rs11587876 1 85915183 0.16541 1.17283043 0.20565 0.1895 

rs61783054 1 85915221 0.29237 1.18412014 0.096498 0.089635 

rs74098835 1 85915373 0.43073 0.91080815 0.18475 0.20078 

rs11801146 1 85915374 0.43073 0.91080815 0.18475 0.20078 

rs11161618 1 85915402 0.24015 0.90000946 0.4375 0.45967 

rs2935 1 85917563 0.48115 1.11086612 0.10754 0.099875 

rs17127710 1 85918009 0.19951 1.16031324 0.20286 0.18893 

rs1146382 1 85918101 0.92913 0.99189552 0.43937 0.43634 

rs1146383 1 85918329 0.57413 0.93550293 0.18381 0.17103 

rs35761966 1 85918357 0.46789 0.92221214 0.204 0.21991 

rs56216312 1 85918454 0.51708 1.11678051 0.088488 0.08129 

rs7555486 1 85918970 0.61987 0.95149866 0.2725 0.27587 

rs1146384 1 85919710 0.57829 1.05832768 0.30848 0.30281 

rs13373844 1 85919759 0.64557 0.95490827 0.27371 0.27668 

rs12717764 1 85920219 0.76541 0.97151653 0.32401 0.32338 

rs67644506 1 85920734 0.4781 1.11268944 0.10857 0.10087 

rs12143626 1 85921219 0.71258 1.08608556 0.045205 0.041294 

rs3738111 1 85921557 0.17599 1.24554103 0.099988 0.089932 

rs506733 1 85922661 0.93944 0.99226983 0.37261 0.37101 

rs36104818 1 85923472 0.99065 1.00120112 0.26678 0.2615 

rs877041 1 85923920 0.73311 1.0327798 0.37928 0.36822 

rs582145 1 85923999 0.70491 0.96501368 0.39673 0.38492 

rs12568675 1 85924464 0.56623 1.08961345 0.11068 0.10451 

rs597168 1 85925028 0.98459 0.99804791 0.28518 0.27929 

rs974874 1 85925108 0.82475 0.97756353 0.30039 0.30742 

rs17389112 1 85925235 0.96015 0.99490473 0.2672 0.26274 

rs1523991 1 85925978 0.72716 1.03355881 0.37933 0.36804 
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rs6658151 1 85926281 0.53144 1.09799523 0.11234 0.10532 

rs61783057 1 85926726 0.86662 0.98302965 0.26818 0.2657 

rs56154783 1 85926818 0.57488 1.08717436 0.11103 0.10487 

rs485928 1 85926904 0.90313 0.98844725 0.30593 0.30946 

rs12032315 1 85927407 0.77738 0.96358941 0.1342 0.13303 

rs480414 1 85927463 0.86306 0.98369538 0.30488 0.30946 

rs1146386 1 85927482 0.8538 1.01870376 0.31877 0.32535 

rs1241321 1 85927879 0.51859 0.93889747 0.31149 0.31998 

rs1241320 1 85928237 0.94737 0.99334733 0.28628 0.27934 

rs4949905 1 85928564 0.81556 0.96820736 0.12328 0.12168 

rs11161619 1 85928811 0.49343 0.86749112 0.049769 0.057296 

rs529582 1 85929008 0.94083 0.99252349 0.28645 0.27934 

rs527762 1 85929214 0.95832 0.99473461 0.28685 0.28004 

rs12044882 1 85931014 0.69819 0.95079576 0.14358 0.14362 

rs61783058 1 85931756 0.14093 1.27979512 0.095965 0.085695 

rs61223539 1 85931843 0.9892 1.00138035 0.26832 0.26275 

rs55639236 1 85932800 0.6464 1.06995972 0.11296 0.10804 

rs4949906 1 85933598 0.22422 1.21481281 0.10264 0.09469 

rs1403956 1 85933638 0.87661 1.01355606 0.48933 0.48609 

rs149635670 1 85934276 0.78484 1.03058747 0.24044 0.22885 

rs539750 1 85934458 0.089127 0.5741469 0.014998 0.023825 

rs665091 1 85935422 0.5579 0.93303273 0.18277 0.19351 

rs542109 1 85935933 0.1483 0.79209812 0.082851 0.10003 

rs535723 1 85936622 0.57666 0.93829395 0.20089 0.211 

rs1403953 1 85936774 0.8594 1.01590211 0.4959 0.49202 

rs11161621 1 85936912 0.47958 0.93516715 0.50796 0.49005 

rs587843 1 85937641 0.8884 0.98615868 0.30872 0.30838 

rs12079811 1 85937647 0.31976 0.81176045 0.049737 0.060289 

rs7539880 1 85938435 0.4828 1.10713987 0.11842 0.11014 

rs7547650 1 85938436 0.48116 1.10757174 0.11842 0.11009 

rs12060713 1 85938487 0.63614 0.95598027 0.46048 0.46192 

rs2210073 1 85938561 0.99448 0.99910761 0.15122 0.1504 

rs79401519 1 85938569 0.20677 1.23228479 0.10033 0.092087 

rs12735541 1 85938605 0.87579 0.96125361 0.035322 0.036415 

rs12038062 1 85938724 0.42482 0.91390103 0.20438 0.21381 

rs72724648 1 85938729 0.43106 0.79621184 0.025122 0.030898 

rs7540169 1 85938736 0.36185 1.16820689 0.093349 0.083458 

rs12134668 1 85938882 0.75085 0.96686829 0.28645 0.29453 

rs76145780 1 85938894 0.20352 1.23446787 0.10027 0.091929 

rs12134672 1 85938901 0.75069 0.96684315 0.28643 0.29451 

rs10157640 1 85939177 0.54112 1.06372511 0.38131 0.37815 

rs10157643 1 85939250 0.7645 1.02928872 0.48287 0.48479 

rs10782551 1 85939275 0.27768 0.80734839 0.059762 0.071463 

rs150926317 1 85939316 0.36403 1.29480486 0.035474 0.031346 
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rs7538364 1 85939350 0.79676 1.02503627 0.48493 0.48628 

rs10158333 1 85939476 0.70199 0.96006432 0.2848 0.29385 

rs61785160 1 85939827 0.1988 1.23817683 0.1003 0.091801 

rs10157511 1 85939854 0.7165 0.96202196 0.28544 0.29442 

rs975880 1 85939935 0.48855 1.10507809 0.1189 0.11022 

rs1403955 1 85940105 0.61266 0.95165472 0.41289 0.42063 

rs1403954 1 85940157 0.63893 0.95499517 0.41363 0.42048 

rs1403951 1 85940249 0.82301 1.02210477 0.48878 0.48908 

rs72724659 1 85942181 0.15471 0.85911714 0.24041 0.26048 

rs512298 1 85942879 0.20681 1.13467924 0.41051 0.39222 

rs17127783 1 85943006 0.94678 1.0087199 0.15317 0.15278 

rs68072919 1 85943635 0.20784 0.87435396 0.22492 0.24231 

rs2168199 1 85943856 0.25693 1.11859116 0.42838 0.41178 

rs596520 1 85944749 0.24902 1.12046077 0.42894 0.4119 

rs1241338 1 85945151 0.26999 0.89677526 0.42909 0.41335 

rs1774666 1 85945246 0.30239 1.27207573 0.037886 0.046667 

rs1755314 1 85945249 0.24684 1.12076333 0.42835 0.41122 

rs1146390 1 85945508 0.27207 1.11402546 0.4282 0.41224 

rs10493766 1 85945660 0.23033 0.88092746 0.22095 0.23725 

rs1146393 1 85946445 0.38413 1.0890971 0.48197 0.4707 

rs1146394 1 85947200 0.33349 1.09925096 0.45632 0.44192 

rs478496 1 85948630 0.6293 1.05593011 0.19268 0.20256 

rs55940591 1 85948694 0.85374 1.02391652 0.14535 0.1434 

rs114275915 1 85949338 0.5522 1.21763445 0.023611 0.021297 

rs685176 1 85949388 0.10978 1.15534615 0.4269 0.45483 

rs76002294 1 85949535 0.76546 0.91769701 0.028634 0.030642 

rs17391765 1 85949883 0.93955 1.00966198 0.14635 0.14596 

rs17127802 1 85950320 0.23539 0.88195874 0.22176 0.23769 

rs17391800 1 85951222 0.90688 1.01494558 0.14634 0.14545 

rs17127805 1 85951495 0.25894 0.88718655 0.2233 0.23871 

rs1146395 1 85951597 0.074835 1.19439526 0.28055 0.30799 

rs57794103 1 85951899 0.47322 0.84801242 0.041328 0.045465 

rs17127806 1 85953046 0.24698 0.88453783 0.22355 0.23937 

rs6661365 1 85953366 0.93484 1.0104381 0.14614 0.1455 

rs534004 1 85953405 0.23079 1.13541702 0.22266 0.23936 

rs562080 1 85954113 0.15145 1.13724651 0.43445 0.45932 

rs6665825 1 85955261 0.83286 0.97467909 0.15701 0.15821 

rs17099243 1 85955709 0.26448 0.88735513 0.2266 0.24173 

rs11161622 1 85956591 0.269 0.89629113 0.39196 0.40542 

rs11161623 1 85956663 0.2795 0.89711609 0.37917 0.39033 

rs17392043 1 85957134 0.9578 1.00682619 0.14469 0.14423 

rs72724671 1 85957652 0.93369 1.01076351 0.14557 0.14485 

rs551379 1 85958322 0.36847 1.1008075 0.31404 0.3017 

rs1952642 1 85959459 0.29128 0.89933471 0.37917 0.38962 
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rs2222515 1 85959529 0.3174 0.89399062 0.21677 0.22678 

rs1361714 1 85960156 0.29028 0.89898404 0.37843 0.38892 

rs1361715 1 85960392 0.26832 0.89592372 0.39214 0.4052 

rs6661976 1 85960515 0.29458 0.89992847 0.37917 0.38943 

rs7535386 1 85962610 0.27563 0.89714301 0.40248 0.41657 

rs12745559 1 85962958 0.30577 0.90175718 0.38245 0.39271 

rs12745805 1 85962970 0.37053 0.91402258 0.38683 0.39478 

rs61785165 1 85964405 0.98725 0.99793384 0.14401 0.14458 

rs61785166 1 85964429 0.98688 0.99787546 0.14401 0.14458 

rs113037091 1 85964512 0.68621 1.06635362 0.11467 0.11239 

rs61785167 1 85964519 0.98611 0.99774914 0.144 0.14459 

rs12085736 1 85964708 0.20949 0.87368096 0.24286 0.25764 

rs636379 1 85965127 0.197 1.13593943 0.43858 0.42093 

rs78560891 1 85965679 0.97366 0.99572656 0.14389 0.14474 

rs1240764 1 85965759 0.23877 1.1264375 0.41697 0.40044 

rs1241375 1 85965780 0.20318 1.13429351 0.43428 0.41623 

rs6576769 1 85967092 0.81316 0.97146892 0.16997 0.17487 

rs563199 1 85967270 0.16627 1.14697725 0.44436 0.42575 

rs12060378 1 85967977 0.28971 0.9024518 0.41632 0.43019 

rs72724680 1 85968486 0.87561 0.98378195 0.32008 0.31927 

rs572245 1 85968572 0.82806 1.02483539 0.2868 0.29225 

rs72724681 1 85969709 0.99279 0.99907116 0.36443 0.35884 

rs2066357 1 85971357 0.32004 1.11498394 0.29711 0.28475 

rs17392306 1 85971852 0.63097 0.94449961 0.21499 0.22365 

rs10493768 1 85972024 0.58339 0.94514682 0.36806 0.36137 

rs61785199 1 85972286 0.57251 0.93503156 0.21284 0.2232 

rs10493769 1 85972426 0.85712 1.0176703 0.32927 0.32093 

rs55866846 1 85973274 0.99053 0.99870774 0.29146 0.28916 

rs12024511 1 85974666 0.90058 0.98629774 0.30098 0.30071 

rs1240759 1 85977428 0.43627 0.90784556 0.17827 0.1881 

rs138273116 1 85978094 0.78297 1.08035317 0.035965 0.034483 

rs11806789 1 85979832 0.48049 0.91607137 0.17817 0.18719 

rs150418406 1 85981896 0.95917 1.01415626 0.032362 0.033047 

rs71654706 1 85983660 0.93889 1.01244682 0.10845 0.1067 

rs671020 1 85987130 0.80458 1.04962609 0.066983 0.068945 

rs567401 1 85988158 0.63901 0.93866183 0.1481 0.15384 

rs481582 1 85994163 0.50739 1.12405198 0.079763 0.086007 

rs549660 1 85994419 0.58332 0.92710171 0.13969 0.14667 

rs683146 1 85995684 0.57569 1.10158715 0.085987 0.09065 

rs144024662 1 86004523 0.71194 1.10465051 0.0323 0.030437 

rs17099678 1 86006208 0.93243 1.02241451 0.032012 0.032095 

rs1813203 1 86006583 0.63645 1.06846923 0.12511 0.11981 

rs79068413 1 86006771 0.62466 0.9004866 0.048259 0.052979 

rs6679477 1 86007419 0.55047 0.88137684 0.048905 0.054152 
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rs6666916 1 86007429 0.82266 1.06053553 0.033116 0.031694 

rs6667327 1 86007799 0.82189 1.06080388 0.033133 0.031702 

rs34181267 1 86008146 0.67199 1.06076675 0.12516 0.12059 

rs35560539 1 86008280 0.67961 1.05917044 0.12517 0.12095 

rs17099679 1 86008398 0.61236 1.07299628 0.12652 0.12065 

rs12734233 1 86008536 0.63981 1.06742051 0.125 0.11996 

rs11161635 1 86008940 0.22223 0.87296484 0.20272 0.21683 

rs12738255 1 86008978 0.65053 1.06553924 0.1248 0.12004 

rs972674 1 86009218 0.63479 1.06949973 0.12602 0.12077 

rs11161636 1 86010248 0.58691 1.05069726 0.37652 0.38282 

rs1524004 1 86011057 0.2859 0.90045058 0.28811 0.30529 

rs1524002 1 86011289 0.98627 1.00230956 0.15418 0.15114 

rs7536438 1 86014249 0.73545 1.03273332 0.40458 0.3933 

rs17390740 1 86014981 0.017282 0.7256264 0.12529 0.15959 

rs71654708 1 86015302 0.98309 1.00519083 0.038477 0.036428 

rs10782552 1 86015715 0.00010192 0.50591328 0.12536 0.090175 

rs7531068 1 86016103 9.90E-05 0.50557949 0.12547 0.09016 

rs79073958 1 86017258 0.22358 0.82640526 0.081207 0.09183 

rs1880209 1 86017278 0.70116 1.04197401 0.24642 0.24279 

rs1880208 1 86017307 0.62824 0.94732695 0.24914 0.24879 

rs1524001 1 86017485 9.44E-05 0.5058627 0.12583 0.090348 

rs138985640 1 86017838 0.23045 0.68260426 0.018892 0.025349 

rs74723550 1 86018184 0.24346 0.72052152 0.020515 0.027813 

rs17127877 1 86018324 0.20394 0.82041087 0.080752 0.092109 

rs897255 1 86018583 0.0001204 0.50612075 0.12224 0.087754 

rs80322172 1 86018861 0.2039 0.82059959 0.080761 0.09214 

rs17390886 1 86019123 0.60518 1.06849274 0.14857 0.13556 

rs17127878 1 86019307 0.0095136 0.70235943 0.1143 0.14969 

rs11161637 1 86021169 0.55007 1.05665895 0.4436 0.42594 

rs17127881 1 86021214 0.1945 0.81790425 0.080793 0.092837 

rs71654710 1 86022361 0.91898 0.97614123 0.039448 0.038777 

rs76548961 1 86023016 0.33169 0.81510365 0.051183 0.059785 

rs10747322 1 86023841 0.81905 0.97429709 0.23277 0.23527 

rs6656373 1 86025642 0.84778 1.01923567 0.2925 0.2895 

rs12070993 1 86025987 0.23638 0.83255999 0.083039 0.093348 

rs79594399 1 86026159 0.23981 0.83362635 0.082918 0.093086 

rs11161638 1 86026583 0.94097 0.99168159 0.22719 0.2292 

rs1378227 1 86028530 0.81147 0.97326586 0.23409 0.23632 

rs7522274 1 86029244 0.81153 0.97327559 0.23409 0.23631 

rs138722718 1 86030422 0.58751 0.9064413 0.063459 0.065419 

rs6576775 1 86030595 0.00033732 0.53090616 0.11959 0.088026 

rs7528000 1 86030624 0.89888 1.0143865 0.23885 0.23716 

rs12090959 1 86031235 0.24609 0.83543728 0.083011 0.092989 

rs9970631 1 86031501 0.66483 1.04142503 0.43336 0.42022 
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rs12734039 1 86031531 0.98903 1.00139267 0.27855 0.27899 

rs12409518 1 86031687 0.71481 1.03479879 0.43242 0.42208 

rs61783713 1 86033462 0.6225 1.06579074 0.14717 0.13521 

rs10493770 1 86034864 0.22761 0.85371318 0.12738 0.13807 

rs10493771 1 86035403 0.83466 1.02041867 0.37594 0.37132 

rs10493772 1 86035513 0.50889 1.08115942 0.22299 0.2121 

rs1378228 1 86036573 0.6985 0.96093261 0.35058 0.35074 

rs2297138 1 86037931 0.009494 0.73677701 0.1686 0.21035 

rs2297139 1 86038234 0.012123 0.74591025 0.17192 0.21236 

rs6682848 1 86038476 0.00043678 0.54159868 0.12323 0.091872 

rs1378226 1 86038738 0.0004342 0.54149037 0.12326 0.091876 

rs721471 1 86039011 0.54214 1.07461773 0.2219 0.21222 

rs75408726 1 86039973 0.011756 0.74538084 0.17223 0.21288 

rs12086058 1 86040054 0.91605 0.99036838 0.43942 0.43781 

rs12034319 1 86040107 0.53095 1.07676589 0.22177 0.21162 

rs74399770 1 86040370 0.011738 0.74545538 0.17231 0.21292 

rs112584068 1 86040637 0.6531 1.06051538 0.14736 0.13664 

rs72726326 1 86040708 0.00022467 1.92317987 0.11944 0.087453 

rs61783714 1 86041612 0.47822 1.20835508 0.039127 0.034241 

rs71654711 1 86042392 0.42772 0.83627314 0.040064 0.044359 

rs116261635 1 86044028 0.18976 1.4718204 0.036454 0.029707 

rs954353 1 86044651 0.81294 0.97816002 0.43496 0.43768 

rs3753795 1 86045104 0.87106 1.01812938 0.25821 0.2526 

rs3753794 1 86045642 0.60789 1.06271717 0.21586 0.2072 

rs3753793 1 86045888 0.97514 0.99654887 0.25322 0.25064 

rs2297140 1 86046561 0.96405 1.00418594 0.49765 0.4979 

rs2297141 1 86046924 0.72718 1.03338312 0.41875 0.41419 

rs9658584 1 86047311 0.02576 0.78201606 0.1807 0.21602 

rs35234617 1 86049527 0.58709 0.86413178 0.026774 0.030365 

rs7543409 1 86049823 0.065943 0.84697 0.52095 0.48913 

rs6576776 1 86050077 0.030868 0.79534444 0.29118 0.26054 

rs1329961 1 86050700 0.95773 0.99460421 0.26873 0.26795 

rs1571549 1 86050965 0.050018 0.83761225 0.52472 0.49042 

rs9658595 1 86051247 0.78254 1.0304535 0.24965 0.24462 

rs7549783 1 86051951 0.36466 1.1284782 0.16451 0.15362 

rs12734475 1 86052701 0.37019 0.76886491 0.018352 0.02411 

rs12756618 1 86052888 0.69045 0.92353738 0.052529 0.054328 

rs4370804 1 86052985 0.76636 1.03281181 0.25008 0.2446 

rs55750909 1 86053765 0.025115 0.76844215 0.15527 0.18836 
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B. DDAH2 SNPs analysed in the GAinS and GenOSept 

cohorts 

 

 

SNP CHR BP P adjusted 

OR 

maf 

cases 

maf 

controls 

rs116821080 6 31684843 0.20892 1.366223 0.041288 0.032022 

rs115090578 6 31684844 0.28731 1.32293136 0.036642 0.029503 

rs116588512 6 31685654 0.70545 1.050754 0.14065 0.14843 

rs114767747 6 31685945 0.19207 0.80233424 0.065572 0.08209 

rs114217246 6 31686497 0.21075 1.14346143 0.23793 0.21224 

rs114330570 6 31686726 0.3568 1.29898086 0.031412 0.02073 

rs115777364 6 31687008 0.2193 1.14099421 0.23786 0.21238 

rs115138428 6 31688200 0.26616 0.82647964 0.064024 0.077538 

rs116316082 6 31688217 0.1826 1.14220431 0.3782 0.34483 

rs115268511 6 31688388 0.075507 0.67973654 0.039479 0.053368 

rs115395274 6 31688518 0.31194 0.90753876 0.51887 0.49316 

rs116799208 6 31688799 0.2109 1.36424341 0.04123 0.032001 

rs114316669 6 31690009 0.2212 1.13936376 0.23933 0.21384 

rs115871250 6 31690876 0.029103 1.36819178 0.13265 0.10317 

rs116739740 6 31691657 0.17943 0.79741503 0.065691 0.082816 

rs116193838 6 31692163 0.18366 1.14193021 0.37836 0.34476 

rs114777003 6 31692386 0.46315 1.15150525 0.064242 0.058322 

rs114860403 6 31692970 0.48883 1.20858469 0.03197 0.022529 

rs114397592 6 31695368 0.17328 0.69769028 0.027078 0.038006 

rs116485062 6 31695590 0.43362 1.15638643 0.071424 0.064719 

rs116512138 6 31697387 0.15753 1.15230006 0.37766 0.34299 

rs116109728 6 31697558 0.17451 1.14524662 0.37896 0.34501 

rs115034626 6 31697957 0.36898 1.13792906 0.10333 0.11423 

rs114585169 6 31698088 0.23453 1.12587442 0.38017 0.34861 

rs115643301 6 31698352 0.69867 1.05195885 0.14061 0.14871 

rs115943095 6 31699573 0.70387 1.12095388 0.025451 0.02296 
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rs144489798 6 31700657 0.31292 0.84090213 0.065104 0.07756 

rs115490753 6 31702710 0.43162 0.87594673 0.070245 0.080317 

rs3131383 6 31704294 0.52579 0.87230164 0.097561 0.098403 

rs28366163 6 31704804 0.52788 1.12618971 0.068309 0.062695 

rs378538 6 31704934 0.32446 0.84441601 0.065265 0.077455 

rs148749314 6 31705183 0.21626 1.36938263 0.039651 0.025881 

rs3101018 6 31705864 0.52601 0.87237142 0.097561 0.098401 

rs28381344 6 31707526 0.56263 1.16694591 0.032412 0.030846 

rs3131382 6 31707730 0.62803 1.09786787 0.065738 0.069661 

rs409558 6 31708147 0.02917 1.31679401 0.17534 0.1378 

rs2075789 6 31708328 0.038974 1.39280542 0.10595 0.081143 

 

 

 

 

 

  

 

 


