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Abstract

Recent work in the �eld of signal processing has shown that the singular
value decomposition of a matrix with entries in certain real algebras can be a
powerful tool. In this article we show how to generalise the QR decomposition
and SVD to a wide class of real algebras, including all �nite-dimensional
semi-simple algebras, (twisted) group algebras and Cli�ord algebras. Two
approaches are described for computing the QRD/SVD: one Jacobi method
with a generalised Givens rotation, and one based on the Artin-Wedderburn
theorem.
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1. Introduction

The singular value decomposition (SVD) is one of the most commonly
used matrix decompositions. In particular, the eigenvalue decomposition
(EVD) of a symmetric positive semi-de�nite matrix (e.g. a covariance ma-
trix) is equal to its SVD. Although the SVD is most commonly applied to
real-valued matrices, SVDs of complex-valued matrices are common in sig-
nal processing, with the complex number reiφ representing a narrowband
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wave with amplitude r and phase φ. Recently in the signal processing lit-
erature, generalisations of the SVD/EVD to some other algebras have been
suggested, most notably the algebra of Laurent polynomials R[z, z−1] [14, 4]
and the algebra of quaternions H [16], but also biquaternions H ⊗ C [11],
reduced quaternions [6, 5], quaternion Laurent polynomials H[z, z−1] [15],
and quad-quaternions H⊗H [7, 22].

In this article we propose two methods for computing the SVD (and QRD)
over a general real algebra A. The �rst method generalises the approach of
Foster et al. [4] and can be applied to many �nite and in�nite-dimensional
real algebras, including all (twisted) group algebras. The second approach
applies to �nite-dimensional semi-simple algebras and uses an appropriate
representation of the algebra as in Gai et al. [6] to reduce the problem to
parallel real, complex or quaternion SVDs. Although both approaches have
mild technical conditions on the algebra, these conditions are satis�ed by all
Cli�ord algebras C`(p, q), so that the SVD of a matrix in C`(p, q)m×n can be
computed.

Yet another method for the computation of matrix decompositions in an
algebra is given by Lang et al. [10], which obtains the quaternion PCA of a
quaternion matrix from the complex PCA of its complex matrix representa-
tion, by computing a large number of Moore-Penrose inverses. The authors
believe that this third approach is very ine�cient and hence it will not be
generalised or explored further in this article.

Section 2 provides some preliminary de�nitions and assumptions. Sec-
tion 3 introduces a generalised Givens rotation and uses it to de�ne a Ja-
cobi QR by columns algorithm (Algorithm 1). Section 4 describes the SVD
by QR algorithm (Algorithm 2). Section 5 describes a second approach
to computing the SVD/QRD which is based on the algebra representation
from the Artin-Wedderburn theorem. Finally, Section 6 demonstrates the
usefulness of our general framework by considering three particular exam-
ples of algebra: multivariate Laurent polynomials and the conformal ge-
ometric algebra, for which no previous SVD algorithm exists, and quad-
quaternions, for which our theory improves the existing SVD algorithm.
An example implementation of the proposed algorithms in R is available
at github.com/PaulGinzberg/AlgebraSVD.
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2. Preliminaries

The following preliminary constructs and assumptions are introduced so
that we may de�ne the SVD on an algebra in a way which relates simply to
the usual real SVD.

De�nition 1. A is a d-dimensional algebra over the �eld K if it is a d-
dimensional vector space over K, with a multiplication satisfying ∀x, y, z ∈
A, ∀r, s ∈ K

x(y + z) = xy + xz,

(y + z)x = yx+ zx,

(rx)(sy) = (rs)(xy).

A is associative if furthermore x(yz) = (xy)z.
A is unital if it contains a multiplicative identity.

When referring to an algebra we will henceforth assume that the �eld
is K = R, and that the algebra is unital and associative (assumption A0).
In an abuse of notation we will denote all multiplicative identities by 1, the
meaning being clear from context. In particular, we will identify r ∈ R with
r1 = r ∈ A.

A unital associative real algebra can equivalently be de�ned as a ring
which contains R as a subring of its centre.

Let A be a d-dimensional algebra with (ordered) basis B = {e1, . . . , ed} ⊂
A. The basis de�nes a vector-space isomorphism V : A → Rd; namely
V(a1e1 + . . . + aded) = (a1, . . . , ad)

T. The vector-space isomorphism in turn
de�nes an injective algebra homomorphism •̃ : A→ Rd×d; namely for a ∈ A,
ã is the unique linear transformation such that ∀x ∈ A ãV(x) = V(ax).
We will henceforth refer to Ã = {ã : a ∈ A} ⊆ Rd×d as �the� real matrix
representation (RMR) of A. Ã is itself an algebra isomorphic to A, and hence
we could assume without loss of generality that A is a subalgebra of Rd×d.

The notation used in this article sometimes implicitly assumes d <∞ for
simplicity. However the results in Sections 2, 3& 4 remain applicable when d
is countably in�nite. In the case d = ∞ we must however assume that A is
the (�nite not closed) span of its basis elements, i.e. every element of A has
�nitely-many non-zero coe�cients. Without this assumption, even simple
addition may require an in�nite number of operations.

We will for the rest of Sections 2&3 make the assumption:
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A1: e1 = 1. (For the RMR Ã we have ẽ1 = Id = 1 since we identify 1 with
the multiplicative identity.)

A1 allows us to de�ne the real part <(a1e1+. . .+aded) = a1. We will typically
have <(a) = 1

d
tr(ã), and take this to be the de�nition of < when the basis

does not satisfy A1. The two de�nitions of < are equivalent whenever Id is
orthogonal to the other basis elements ẽi in Rd×d.

Since A is isomorphic to Rd as a vector space, for a ∈ A we may de�ne
the usual Euclidean norm ‖a‖2 = ‖V(a)‖2 and supremum norm ‖a‖∞ =
‖V(a)‖∞. For X = (xij) ∈ Am×n we de�ne the Frobenius (Euclidean) norm

‖X‖F =
(∑m

i=1

∑n
j=1 ‖xij‖22

) 1
2
and supremum norm ‖X‖∞ = max

i,j
‖xij‖∞.

‖ • ‖ will be used to denote an unspeci�ed norm.

De�nition 2. •̄ : A→ A is an involution if it satis�es ∀x, y ∈ A, a ∈ R ⊆ A

(x̄) = x

xy = ȳx̄

ā = a.

An algebra with an involution is called a ∗-algebra.

Rd×d is a ∗-algebra whose (standard) involution is the matrix transpose
•T. In particular, R is a ∗-algebra with the identity as its involution.

De�nition 3. For a real ∗-algebra A, let U(A) = {a ∈ A : āa = 1} denote
the set of unitary elements.

U(A) is a subset of the set of invertible elements (a.k.a. units), and forms
a multiplicative group. We will henceforth make the assumption:

A2: A is a ∗-algebra and ‖ba‖2 = ‖a‖2 ∀a ∈ A, b ∈ U(A).

A su�cient condition1 for A2 is the following assumption:

A3: Ã is closed under •T, and we endow A with the ∗-algebra structure
induced from its RMR, i.e. ∀ a ∈ A we de�ne its involution ā ∈ A to
be the unique element satisfying ˜̄a = ãT.

1It is su�cient because U(Ã) ⊆ U(Rd×d). U(Rd×d) is the set of d × d orthogonal
matrices, and orthogonal matrices are isometries.
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The stronger assumption A3 makes •̃ a ∗-algebra isomorphism between A
and Ã, so that A is a sub-∗-algebra of Rd×d.

De�nition 4. For matrices X ∈ Am×n de�ne the Hermitian transpose as
XH = X̄

T
. A matrix X ∈ Am×m is said to be Hermitian if X = XH. It is

said to be unitary if XHX = Im.

Note that for A = C or A = H, De�nition 4 gives us the usual de�nitions.
Am×m is itself a ∗-algebra with involution •H, and the set of unitary

matrices is precisely U(Am×m).

De�nition 5. A singular value decomposition (SVD) (or ASVD) of a matrix
X ∈ Am×n is a decomposition of the form X = UΛV H, where Λ ∈ Am×n is
diagonal, and U ∈ Am×m and V ∈ An×n are unitary.

De�nition 6. A QR (or AQR) decomposition of a matrix X ∈ Am×n is a
decomposition of the form X = QR, where R ∈ Am×n is upper-triangular,
and Q ∈ Am×m is unitary.

3. A general class of Givens rotations

3.1. The AQR by columns algorithm

In this section we will propose a Jacobi algorithm for the QR decomposi-
tion which generalises the one by Foster et al. [4]. The key di�erence rests in
describing a general approach for de�ning an appropriate Givens/elementary
rotation for the algebra being used.

De�nition 7. For 1 ≤ i ≤ m and b ∈ U(A) de�ne the m×m shift matrix

B(b, i) =

 I i−1 . .
. b .
. . Im−i

 .

For 1 ≤ j < i ≤ m and b ∈ U(A) de�ne the m×m A-Givens rotation

G(θ, b, i, j) = B(b, i)G(θ, 1, i, j)B(b, i)H

=


Ij−1 . . . .
. cos(θ) . − sin(θ)b̄ .
. . I i−j−1 . .
. sin(θ)b . cos(θ) .
. . . . Im−i

 ,

where G(θ, 1, i, j) is the usual real Givens rotation.
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Every A-Givens rotation is unitary, since it is the product of a unitary
R-Givens rotation G(θ, 1, i, j) with unitary diagonal matrices. Note that
B(b, i)H = B(b, i) = B(b̄, i), that G(θ, b, i, j)H = G(−θ, b, i, j) and that
G(0, b, i, j) = Im.

Lemma 8. Let j < i, v ∈ Am×1, b ∈ U(A), θ = −atan2
(
<(b̄vi),<(vj)

)
and

w = G(θ, b, i, j)v. Then <(wj)
2 = <(vj)

2 + <(b̄vi)
2.

Proof. If <(b̄vi) = 0 then wj = ±vj, so we may assume <(b̄vi) 6= 0.

<(wj)
2 = <(vj cos(θ)− b̄vi sin(θ))2

=
(
<(vj) cos(θ)−<(b̄vi) sin(θ)

)2
=
(
<(vj)

2 + <(b̄vi)
2
)−1 (<(vj)

2 + <(b̄vi)
2
)2
.

Algorithm 1 is based on Foster et al. [4, Table I] with the following ad-
ditional changes: The hard iteration limits MaxSweeps and MaxIter are re-
moved for simplicity. Although these are not necessary, one may still wish
to include them in an applied implementation of the algorithm to safeguard
against excessively small choices of ε. β and ‖ • ‖ are introduced to allow
for generalisation. In Foster et al. [4, Table I] β(p(z)) = p`

‖p`‖2
z` where in the

polynomial p(z), the monomial p`z
` has the largest coe�cient (in absolute

value), and ‖ • ‖ = max
j∈Z
‖pj‖2. Our de�nition of a Givens rotation includes

pre- and post-rotation shifting whereas they consider post-rotation shifting
as a separate operation. Finally, we added lines 8�10 to improve stability by
making the real part of the diagonal entries as large as easily achievable, and
lines 28�33 to make the real part of the diagonal entries positive (which in
certain cases ensures uniqueness).

The output from Algorithm 1 satis�es A = QR, and Q is unitary. How-
ever, R may be only approximately upper triangular, in the sense that every
entry below the diagonal has norm at most ε. In most applications this will
be acceptable as long as a su�ciently small ε is chosen.
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Algorithm 1 AQR (By Columns) Decomposition

1: Input: The matrix to be decomposed A ∈ Am×n

2: Specify: A function β : A→ U(A),
3: a norm ‖ • ‖,
4: and the error tolerance ε > 0.
5: Initialise: Q← Im, R← A and g1 ← 1 + ε.
6: while g1 > ε do
7: for k = 1, . . . ,min(m,n) do
8: b← β(rk,k)
9: R← B(b̄, k)R
10: Q← QB(b, k)
11: if k = m then

12: break

13: end if

14: while 1 do
15: i← arg max

`:`>k
‖r`k‖

16: g2 ← ‖rik‖
17: if g2 ≤ ε then
18: break

19: end if

20: b← β(ri,k)
21: θ ← atan2(<(b̄ri,k),<(rk,k))
22: R← G(−θ, b, i, k)R
23: Q← QG(θ, b, i, k)
24: end while

25: end for

26: g1 ← max
`,j:`>j

‖r`j‖
27: end while

28: for k = 1, . . . ,min(m,n) do
29: if <(rk,k) 6= 0 then
30: R← B(sgn(<(rk,k)), k)R
31: Q← QB(sgn(<(rk,k)), k)
32: end if

33: end for

34: Output: R and Q
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3.2. Choosing β

De�nition 9. Given a norm ‖ • ‖, a function β : A → U(A) is said to be
decent (or ‖ • ‖-decent, or (‖ • ‖, ρ)-decent) if there exists ρ > 0 such that∣∣∣<(β(a)a

)∣∣∣ ≥ ρ‖a‖ ∀a ∈ A, (1)∣∣∣<(β(a)a
)∣∣∣ ≥ |<(a)| ∀a ∈ A. (2)

Theorem 10. If β is ‖ • ‖-decent then Algorithm 1 converges.

Proof. Note that A2 implies that A-Givens rotations are isometries, so that
‖R‖2F = ‖A‖2F is constant throughout Algorithm 1.

First we �x k and prove by contradiction that the inner loop (lines 14�24)
converges, i.e. g2 ≤ ε eventually. By Lemma 8, each Givens rotation (line 22)
increases <(rkk)

2 by <(β(rik)rik)
2. Because the monotonically increasing

sequence of <(rkk)
2 is bounded above by ‖R‖2F , it must converge by the

monotone convergence theorem towards some quantity s ≥ 0. Hence there
is some point after which |<(rkk)

2 − s| < ρ2ε2. At the next iteration <(rkk)
2

increases by less than ρ2ε2, which implies ρ2‖rik‖2 ≤ <(β(rik)rik)
2 < ρ2ε2

using (1). Hence g2 = ‖rik‖ < ε.
Now we will prove by contradiction that the outer loop (lines 6�27) con-

verges, i.e. g1 ≤ ε eventually. Consider <(rjj)
2. Line 9 cannot decrease

<(rjj)
2 by (2). The inner loop will not a�ect <(rjj)

2 when k > j and we
have already shown above that the inner loop cannot decrease <(rjj)

2 when
k = j. Hence <(rjj)

2 may only decrease when k < j. Hence <(r11)
2 is

monotonically increasing. Hence (using the same argument as for the in-
ner loop) there is some s1 ≥ 0 such that there is some point after which
|<(r11)

2 − s1| < ρ2ε2 and from then onwards max
`:`>1
‖r`1‖ < ε. From then on-

wards the inner loop will have no e�ect on R when k = 1. Now proceed by
strong induction on j. If max

`,j′:`>j′,j′≤j
‖r`j′‖ < ε then the inner loop will not

a�ect R when k ≤ j. Hence <(rj+1,j+1)
2 is monotonically increasing and

(using the same argument as for <(r11)
2) we will reach a point after which

max
`:`>j+1

‖r`,j+1‖ < ε. Hence by strong induction we will reach a point where

g1 = max
`,j′:`>j′

‖r`j′‖ < ε.
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Remark 11. If β satis�es (1) but not (2), then

β′(a) =

{
β(a) if

∣∣∣<(β(a)a
)∣∣∣ ≥ |<(a)|

1 otherwise

satis�es both (1) and (2).

We will without loss of generality de�ne β(0) = 1 from now on and assume
that a 6= 0 when computing or de�ning β(a).

Lemma 12. If β is (‖ • ‖, ρ)-decent, then it is also (‖ • ‖, ρ′)-decent ∀ρ′ ≤ ρ.
If β is (‖ • ‖2, ρ)-decent, then it is also (‖ • ‖∞, ρ)-decent.

If β is (‖ • ‖∞, ρ)-decent, then it is also (‖ • ‖2, ρd−
1
2 )-decent.

Proof. (2) does not depend on ‖ • ‖ or ρ. In (1) we have ρ‖a‖ ≥ ρ′‖a‖ and
ρ‖a‖2 ≥ ρ‖a‖∞ ≥ ρd−

1
2‖a‖2.

The question remains of choosing an appropriate function β (and norm
‖ • ‖) satisfying the assumptions of De�nition 9. In general the larger∣∣∣<(β(a)a

)∣∣∣ is, the faster the algorithm will converge, so we want
∣∣∣<(β(a)a

)∣∣∣
(and hence ρ) to be large if possible. Hence the obvious choice is

βmax(a) = arg max
b∈U(A)

<
(
b̄a
)
. (3)

One additional requirement is that we should be able to compute β(a) in
a reasonable amount of time, so that a simpler choice may sometimes be
preferable.

Let ‖ • ‖ = ‖ • ‖2. Then ‖a‖22 =
∥∥∥β(a)a

∥∥∥2
2
≥ <

(
β(a)a

)2
, and the best

we can hope for is ρ = 1, which happens when β(a)a = <
(
β(a)a

)
∈ R,

which implies
(
β(a)a

)−1
β(a) = a−1 (or a = 0). Hence ρ = 1 is only possible

when every non-zero a ∈ A has an inverse, i.e. when A is a division algebra.
But Frobenius' theorem states that the only �nite-dimensional real division
algebras (up to isomorphism) are R, C and H [17]. For A = R we can
choose β(a) = 1. For A = C or A = H we can choose β(a) = βmax(a) =
a
‖a‖2 , (assuming •̄ is the usual complex or quaternion conjugation). In those

three cases Algorithm 1 will be a standard real/complex/quaternion QR by
columns algorithm, and will converge in a �nite number of steps even when
ε = 0, so that R is exactly triangular. In addition, the diagonal entries of R
will be real and positive in these three cases.
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Example 13. Let A = Rd′×d′ (d = d′2), then βmax can be computed through
βmax(a) = uvT, where u, v ∈ U(A) are obtained from the real SVD a = udvT

[3]. Similarly, for A = Cd′×d′ (d = 2d′2) or A = Hd′×d′ (d = 4d′2), we have
βmax(a) = uvH where u, v ∈ U(A) are obtained from the complex/quaternion
SVD a = udvH. In all three cases βmax is (‖•‖F , d′−1)-decent (or equivalently
(‖ • ‖2, d′−

1
2 )-decent).

We will now consider constructions for β which are appropriate when A
is not a division algebra, and when computation of βmax is di�cult or slow.

De�nition 14. Let B = {e1, e2, . . . , ed} be a basis of A,and a = a1e1 + . . .+
aded ∈ A. De�ne J(a) = arg max

j
|aj| and βB(a) = eJ(a) ∈ B.

De�nition 15. The basis B = {e1, e2, . . . , ed} of A is unitary if B ⊆ U(A)
and <(ēiej) = δij ∀i, j.

Unitary bases for the case A = Cd′×d′ (where the �eld is K = C and
d′ =

√
d), are of interest in the quantum mechanics, quantum computing

and quantum error correcting code literature, where they are called uni-
tary error bases. Methods based on latin squares and projective repre-
sentations for constructing such a basis explicitly for arbitrary d′ are ex-
plained in Klappenecker and Rötteler [9]. Note that if {e1, . . . , ed′2} is such
a unitary error basis for Cd′×d′ with K = C (i.e. viewed as a complex al-
gebra), then {e1, ie1, . . . , ed′2 , ied′2} is a unitary basis for Cd′×d′ with K =
R (i.e. viewed as a real algebra with d = 2d′2), and we also have that
{e1, ie1, je1, ke1, . . . , ed′2 , ied′2 , jed′2 , ked′2} is a unitary basis for Hd′×d′ (with
K = R and d = 4d′2).

One can show that no unitary basis exists for the simple algebra R3×3

with < = 1
3

tr,2 and this implies that although all �nite-dimensional semi-
simple algebras have an invertible basis [12, Corollary 3.2.7], they do not all
have a unitary basis.

The existence of a unitary basis for Rd (with element-wise multiplication)
is equivalent to the existence of a (real) d× d Hadamard matrix. It is known
that (real) d× d Hadamard matrices do not exist when d ≥ 3, d 6= 0 mod 4.
The existence of (real) Hadamard matrices for all d = 0 mod 4 is a long-
standing open conjecture in coding theory [21].

2Indeed there do not exist four mutually orthogonal 3×3 orthogonal matrices, let alone
nine.
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Lemma 16. If B = {e1, e2, . . . , ed} is a unitary basis of A, then βB in De�-

nition 14 is (‖ • ‖∞, 1)-decent (and
(
‖ • ‖2, d−

1
2

)
-decent).

Proof.

<
(
β(a)a

)2
= a2J(a) = ‖a‖2∞ ≥

1

d
‖a‖22 , and ‖a‖2∞ ≥ <(a)2.

De�nition 17. The real twisted group algebra Rα[G] obtained from a group G
with twisting function α : G×G→ {−1, 1} is the real algebra R[B] generated
by the basis B = {bg : g ∈ G} with multiplication bgbh = α(g, h)bgh. To
preserve associativity we require that α satis�es

α(f, g)α(fg, h) = α(f, gh)α(g, h) ∀f, g, h ∈ G. (4)

If α(g, h) = 1 ∀g, h ∈ G then Rα[G] is a group algebra denoted R[G].

The twisted group algebras Rα[G] and R−α[G] are isomorphic, hence we
will from now on assume without loss of generality that α(1, 1) = 1.

Proposition 18. Let G be a (�nite) group and let A be the twisted group
algebra Rα[G] = R[B], with basis B = {bg : g ∈ G}. Let •̄ be the unique
involution such that b̄ = b−1 for all b ∈ B. Then A1, A2, A3 are satis�ed,
and B is a unitary basis.

Proof. Setting g = 1 in (4) implies α(f, 1) = α(1, h) = α(1, 1) ∀f, h ∈ G,
which using the assumption α(1, 1) = 1 implies b1 = 1 and A1 is satis�ed.

The matrices b̃ ∈ B̃ are of the form b̃ = DP where D is diagonal with ±1
on its diagonal entries, and P is a permutation matrix, hence B̃ ⊆ U(Rd×d)

so that ˜̄b = b̃−1 = b̃−1 = b̃T. In particular Ã is closed under •T since

b̃g
T

= (b̃g)
−1 = α(g, g−1)b̃g−1 ∈ Ã. Hence A3 (and A2) is satis�ed.

The above is also a direct consequence of Bales [2, Theorems 4.11, 5.2,
5.3 and 5.5].

b̄gbh = b−1g bh = α(g, g−1)bg−1bh = α(g, g−1)α(g−1, h)bg−1h. Hence either the
real part is 0, or g−1h = 1. In the latter case h = g and we have <(b̄gbg) =
<(1) = 1.
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4. The ASVD by AQRD algorithm

In this section we show that any convergent AQRD algorithm also yields
a convergent ASVD algorithm. This is essentially the same as the approach
taken in Foster et al. [4, Table II] for the special case where A = C[z, z−1] is
the in�nite-dimensional algebra of Laurent polynomials with complex coe�-
cients.

Algorithm 2 ASVD by AQRD
1: Input: The matrix to be decomposed A ∈ Am×n

2: Specify: A function β : A→ U(A),
3: a norm ‖ • ‖,
4: and the error tolerance ε > 0.
5: Initialise: U ← Im, V ← In, D ← A.
6: g ← max

i,j:i 6=j
‖dij‖

7: while g > ε do
8: Compute R and Q from the AQRD of D using Algorithm 1
9: D ← R
10: U ← UQ
11: Compute R and Q from the AQRD of DH using Algorithm 1
12: D ← RH

13: V ← V Q
14: g ← max

i,j:i 6=j
‖dij‖

15: end while

16: Output: U , D and V

The output from Algorithm 2 satis�es A = UDV H, and U , V are both
unitary. However, D may be only approximately diagonal, in the sense that
every o�-diagonal entry has norm at most ε. In most applications this will
be acceptable as long as a su�ciently small ε is chosen.

Theorem 19. If β is ‖ • ‖-decent then Algorithm 2 converges.

Proof. Theorem 10 states that each QRD step converges. It remains to show
that eventually g ≤ ε. The proof will proceed by contradiction similarly
to the proof of Theorem 10. The second QR step enforces max

i,k:k<i
‖dki‖ < ε.

<(d11)
2 is increasing and bounded above by ‖A‖2F . Hence there is some
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point after which |<(d11)
2 − s1| < ρ2ε2, so that none of the Givens rota-

tions in the �rst QR step may then increase <(d11)
2 by more than ρ2ε2,

so max
i>1

max(‖di1‖, ‖d1i‖) < ε. From this point onward the second QR step

will not a�ect the �rst column. If max
i,k:k≤j,k<i

max(‖dik‖, ‖dki‖) < ε then the

�rst/second QR step will not a�ect the �rst j rows/columns and <(dj+1,j+1)
2

is monotonically increasing. Using the same argument on <(dj+1,j+1)
2 as on

<(d11)
2 there is some point after which max

i>j+1
max(‖di,j+1‖, ‖dj+1,i‖) < ε. Pro-

ceeding by strong induction on j we eventually have
g = max

i,k:k<i
max(‖dik‖, ‖dki‖) < ε.

Albuquerque and Majid [1] show that every Cli�ord algebra C`(p, q) can

be constructed as a twisted group algebra with group G =
( Z
2Z

)p+q
(Bales [2,

Section 8] shows this for the case p = 0). Hence we may apply our results
to Cli�ord algebras. The reduced quaternions and quad-quaternions are also
examples of twisted group algebras.

Corollary 20. Let A be the 2p+q-dimensional real Cli�ord algebra C`(p, q)
with standard basis of blades B. Then A1, A2, A3 are satis�ed, B is a unitary
basis, βB(a) = eargmax

j
|aj | is (‖ • ‖∞, 1)-decent, and Algorithms 1&2 converge

taking ‖ • ‖ = ‖ • ‖∞, β = βB.

Proof. This follows immediately from Proposition 18, Lemma 16, Theo-
rems 10&19 and [1].

It is important at this point to bear in mind that Proposition 18 (or
equivalently assumption A3) de�nes the involution on A. Di�erent choices
of involution would imply di�erent notions of orthogonality and a di�erent
de�nition of unitary matrix. For the Cli�ord algebra C`(p, q) the involution
imposed by Proposition 18 will be the �Hermitian conjugation� of Marchuk
and Shirokov [13], which is in general di�erent from the standard �Cli�ord
involution�. The reduced quaternion SVD of Gai et al. [6, 5] uses the in-
volution obtained through A3 although this is not stated explicitly. One
may very well wish to specify the involution, so this forced choice may seem
restrictive. It is however not possible in general to compute an SVD with
an arbitrary choice of involution. For example, Verstraete et al. [20] use the
inde�nite Minkowski inner product to de�ne orthogonality, and note that the
(real) SVD can no longer diagonalise all matrices when orthogonal matrices

13



Algebra ‖a‖ β(a) Notes

R |a| 1 β = βB = (±)βmax

C ‖a‖2 a
‖a‖2 β = βmax

H ‖a‖2 a
‖a‖2 β = βmax

R[z, z−1] ‖a‖∞ zJ(a) β = βB = (±)βmax, a =
∑

j∈Z ajz
j

C[z, z−1] max
j∈Z
‖aj‖2

aJ(a)
‖aJ(a)‖2

zJ(a) β = βmax, a =
∑

j∈Z ajz
j

H[z, z−1] max
j∈Z
‖aj‖2

aJ(a)
‖aJ(a)‖2

zJ(a) β = βmax, a =
∑

j∈Z ajz
j

C`(p, q) ‖a‖∞ eJ(a) β = βB, ēj = e−1j

Table 1: Some standard and recommended choices of norm ‖ • ‖ and function β to use
in Algorithms 1&2. All of the β given are (‖ • ‖, 1)-decent. Here J(a) = argmaxj ‖aj‖2.
Note that R, C and H are the only algebras for which one can set ε = 0 in Algorithm 1.

are replaced with �nite Lorentz transformations.3 Even in the simple case
A = C with the identity as its involution instead of complex conjugation, we
have U(C) = {−1, 1} and no decent β exists.

5. Using the classi�cation of real semi-simple algebras

When A3 holds we may assume without loss of generality that A is an
algebra of real matrices. It is then helpful to think of abstract tensor products
⊗ and direct sums ⊕ in terms of explicit Kronecker products and Kronecker
sums.

De�nition 21. Let A be a d-dimensional real vector space with basis B =
{e1, . . . , ed} and let A′ be a d′-dimensional real vector space with basis B′ =
{e′1, . . . , e′d′}. Then

• A ⊕ A′ is a (d + d′)-dimensional real vector space with basis B⊕ =
{e1 ⊕ 0, . . . , ed ⊕ 0, 0⊕ e′1, . . . , 0⊕ e′d′}.4

• A ⊗ A′ is a (d · d′)-dimensional vector space with basis B⊗ = {e1 ⊗
e′1, . . . , e1 ⊗ e′d′ , . . . , ed ⊗ e′1, . . . , ed ⊗ e′d′}.5

3This conclusion would remain even without restricting themselves to proper or-
thochronous Lorentz transformations.

4The particular ordering used here assumes that d <∞.
5The particular ordering used here assumes that d′ <∞.
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If both A and A′ are real algebras, then furthermore

• A⊕A′ is a real algebra with multiplication (x⊕x′)(y⊕y′) = (xx′)⊕(yy′).

• A⊗A′ is a real algebra with multiplication satisfying (x⊗x′)(y⊗ y′) =
(xx′)⊗ (yy′).

If both A and A′ are ∗-algebras then furthermore

• A⊕ A′ is a ∗-algebra with involution a⊕ a′ = ā⊕ ā′.

• A⊗ A′ is a ∗-algebra with involution satisfying a⊗ a′ = ā⊗ ā′.

Proposition 22. Let A be a d-dimensional real algebra with unitary basis
B = {e1, . . . , ed} and let A′ be a d′-dimensional real algebra with unitary basis
B′ = {e′1, . . . , e′d′}. Then B⊗ is a unitary basis for A⊗ A′.

If furthermore both A and A′ satisfy A1 (resp. A3) then A⊗ A′ satis�es
A1 (resp. A3).

Also, if d = d′ then B± = {e1 ⊕ e′1, e1 ⊕ −e′1, . . . , ed ⊕ e′d, ed ⊕ −e′d} is a
unitary basis for A⊕A′. If furthermore both A and A′ satisfy A1 (resp. A3)
then (using the basis B±) A⊕ A′ satis�es A1 (resp. A3).

Proof. The proofs involve checking of the de�nitions, which is straightforward
once one notes that U(A⊕A′) = U(A)⊕U(A′), U(A⊗A′) ⊇ U(A)⊗U(A′),
<(a⊕ a′) = 1

2
(<(a) + <(a′)) (when d = d′) and <(a⊗ a′) = <(a)<(a′).

Consider the case A = Rk×k, •̄ = •T. We can identify A ∈ Am×n =
Rm×n ⊗ A with an m× n block-matrix with k × k blocks M ∈ Rmk×nk (the
i′, j′-entry of the i, j-entry of A is the ki+ i′, kj + j′-entry of M ). Similarly
for Am×m, An×n. Every upper triangular (resp. diagonal) matrix in Rmk×mk

is also upper triangular (resp. diagonal) in Am×n. The unitary matrices in
Am×m (resp. An×n) are orthogonal matrices in Rmk×mk (resp. Rnk×nk) and
vice-versa. A RQRD (resp. RSVD) of M ∈ Rmk×nk is thus immediately also
an AQRD (resp. ASVD) of A ∈ Am×n. This block-matrix based approach
remains valid if we replace R with C or H and •T with •H. In other words,
the QRD (resp. SVD) of a (block-)matrix is also a valid block-QRD (resp.
block-SVD).

Gai et al. [5] uses the fact that the reduced quaternion algebra is isomor-
phic to C⊕C to compute the reduced quaternion SVD through two parallel
CSVDs. We will now generalise this technique to all semi-simple algebras.
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Let A =
⊕s

`=1A`. We identify Ak with the subalgebra
(⊕k−1

`=1{0}
)
⊕Ak⊕(⊕s

`=k+1{0}
)
of A. Let 1k =

(⊕k−1
`=1 0

)
⊕ 1 ⊕

(⊕s
`=k+1 0

)
∈ A denote the

identity of Ak. Since 12
k = 1k = 1̄k and 1k1` = 0 ∀ k 6= `, multiplication by 1k

is an orthogonal projection into the subalgebra Ak. Since A 3 1 =
∑s

`=1 1`,
every element a ∈ A can be written as

∑s
`=1 a1`, where a1k ∈ Ak.

Let A ∈ Am×n and Ak = A1k. We may treat Ak as belonging to Am×n
k

and compute its AkQRD Ak = QkRk. These s AkQRDs can be added
to form the AQRD A = (

∑s
`=1Q`1`) (

∑s
`=1 R`1`). Similarly, the s AkSVDs

Ak = U kDkV
H
k can be added to form the ASVD

A = (
∑s

`=1U `1`) (
∑s

`=1D`1`) (
∑s

`=1 V `1`)
H
.

Because of Frobenius' theorem [17], in the case of real algebras the Artin-
Wedderburn theorem [8] can be stated as

Proposition 23. Every �nite-dimensional real semi-simple algebra is iso-
morphic to a direct sum

An1×n1
1 ⊕ · · · ⊕ Ans×ns

s

of �nitely many matrix algebras where A1, . . . .,As ∈ {R,C,H}.

Corollary 24. If A is a (�nite-dimensional real) semi-simple algebra, then
after choosing the representation of A given by Proposition 23, with cor-
responding quaternion matrix involution •H, an AQRD (resp. ASVD) of
A ∈ Am×n can be obtained by computing s independent AkQRDs (resp.
AkSVDs) of matrices Ak ∈ Ankm×nkn

k , where A1, . . . .,As ∈ {R,C,H}.

Thus real, complex and quaternion QRD (resp. SVD) algorithms are in
principle su�cient to compute AQRDs (resp. ASVDs) for any semi-simple
algebra A. One caveat is that to use this result in practice one must be able
to compute the isomorphism between A and

⊕s
`=1 A

n`×n`
` explicitly. Because

real algebras are also real vector spaces, the isomorphism will be an invertible
linear change of basis.

Every Cli�ord algebra C`(p, q) is either a simple algebra isomorphic to
Rn×n, Cn×n, or Hn×n or a semi-simple algebra isomorphic to Rn×n ⊕ Rn×n ,
or Hn×n ⊕Hn×n. Explicit constructions of these isomorphisms are available
in [19].

The use of Corollary 24 to compute the QRD has advantages over the
direct use of Algorithm 1. It is inherrently parallelised, and as mentioned in
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page 9, we may set ε = 0 when computing QRDs in R,C or H. We would
also expect it to be more computationally e�cient, epecially for small ε. This
expectation is con�rmed in Section 6.3 Figure 3.

6. Examples

6.1. Multivariate Laurent polynomial algebra

Let z1, . . . , zκ be κ abstract commuting variables . The in�nite-dimensional
algebra of κ-variate Laurent polynomials with real coe�cients is
A = R[z1, z

−1
1 , . . . , zκ, z

−1
κ ]. It is a commutative algebra and its standard

basis is the set of monomials B = {
∏κ

k=1 z
ρk
k : ρ1, . . . , ρκ ∈ Z}. B is a multi-

plicative group which is isomorphic to the additive group Zκ, so A is a group
algebra. Each element of A is by de�nition a �nite linear combination of
monomials.

If κ = 1 then A is the usual Laurent polynomials, and can be used to
represent time-series and convolutive �lters acting on them, as in McWhirter
et al. [14]. Setting κ = 2 A allows the same type of analysis to be per-
formed on images and convolutive �lters acting on them (e.g. blurring and
2D shifting), κ = 3 can be used for 3D images or videos, and so forth.

By Proposition 18, Lemma 16 and Theorem 10 (resp. Theorem 19) the
QRD (resp. SVD) of a multivariate Laurent polynomial matrix can be com-

puted using Algorithm 1 (resp. Algorithm 2) with
∏κ

k=1 z
ρk
k =

∏κ
k=1 z

−ρk
k ,

‖ • ‖ = ‖ • ‖∞ and β = βB (see De�nition 14).
Because A is in�nite-dimensional, the approach of Section 5 cannot be

applied directly. However, the group Z can be approximated for large δ by
the �nite cyclic group Cδ = Z

δZ , and by extension the algebra A ∼= R[Zκ]
can be approximated by A′ = R[Cκδ ]. More precisely, any �nite sequence of
calculations performed in R[Zκ] and in R[Cκδ ] will produce identical results
if δ is su�ciently large. If δ is larger than twice the largest (positive or
negative) power of zk in a signal, then viewing that signal as belonging to
R[Cκδ ] instead of R[Zκ] is conceptually the same as using the periodic edge
extension convention on the signal of size δ × · · · × δ rather than the zero-
padding edge extension convention.

We can now use the approach of Section 5 to compute the QRD or SVD
of matrices in R[Cκδ ] by noting that for even δ R[Cκδ ] is (∗-)algebra-isomorphic

to C( δ2)
κ

=
⊕( δ2)

κ

`=1 C, with the isomorphism given explicitly by the positive
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frequencies of the κ-dimensional discrete Fourier transform. This �approxi-

mate isomorphism� between R[z1, z
−1
1 , . . . , zκ, z

−1
κ ] and C( δ2)

κ

generalises to
higher dimensions the fact that decompositions of Laurent polynomial matri-
ces are at least approximately equivalent to parallel frequency-by-frequency
decompositions of complex matrices.

6.2. Quad-quaternion algebra

Let A be the quad-quaternion algebra H ⊗ H. Gong et al. [7] reduces
the problem of computing the eigenvalue decomposition of a Hermitian co-
variance matrix in An×n to the EVD of a Hermitian 2n × 2n biquaternion
matrix, and Le Bihan et al. [11] reduces the problem of computing the EVD of
a Hermitian m×m biquaternion matrix to the EVD of a Hermitian 2m×2m
quaternion matrix, so that ultimately the EVD of a Hermitian 4n×4n quater-
nion matrix is required.

Using instead the approach described in Section 5, we note that the al-
gebra H⊗H is isomorphic to R4×4. An explicit isomorphism is given by

1⊗ 1 7→ I4, i⊗ 1 7→


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , j⊗ 1 7→


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

1⊗ i 7→


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , 1⊗ j 7→


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,

where the remaining 11 basis elements can be obtained from products of these
5. This isomorphism can be obtained by identifying the quad-quaternion
a ⊗ b with the linear transformation q 7→ aqb, q ∈ H, and it is a ∗-algebra
isomorphism. Because H ⊗ H is a twisted group algebra, this gives us a
unitary basis for R4×4, and in particular the basis is orthogonal. The 1

2
‖ • ‖F

norm on the R4×4 representation is equal to the ‖ • ‖2 norm on H⊗H.
The EVD of a Hermitian matrix is equal to its SVD. The isomorphism

above allows us to compute the ASVD of an n × n quad-quaternion matrix
from the SVD of a 4n× 4n real matrix. This is a more direct, simpler, and
more computationally e�cient approach compared to using the EVD/SVD
of a 4n× 4n quaternion matrix.
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Similarly, the algebra of biquaternions H⊗C is isomorphic to C2×2, and
computing the SVD of a 2n×2n complex matrix is a more direct and e�cient
way of obtaining a biquaternion SVD than computing the SVD of a 2n× 2n
quaternion matrix as in Le Bihan et al. [11].

6.3. Conformal geometric algebra C`(4, 1)

Consider the 32-dimensional conformal geometric algebra A = C`(4, 1)
with standard ordered basis

B = {e1, . . . , e32}
= {γ0,

γ1, γ2, γ3, γ+, γ−,

γ1γ2, γ1γ3, γ1γ+, γ1γ−, γ2γ3, γ2γ+, γ2γ−, γ3γ+, γ3γ−, γ+γ−,

γ1γ2γ3, γ1γ2γ+, γ1γ2γ−, γ1γ3γ+, γ1γ3γ−, γ1γ+γ−,

γ2γ3γ+, γ2γ3γ−, γ2γ+γ−, γ3γ+γ−,

γ1γ2γ3γ+, γ1γ2γ3γ−, γ1γ2γ+γ−, γ1γ3γ+γ−, γ2γ3γ+γ−,

γ1γ2γ3γ+γ−},

where γ0 = 1, γ21 = γ22 = γ23 = γ2+ = 1, γ2− = −1 and the grade-1 basis
elements {γ1, γ2, γ3, γ+, γ−} anti-commute.

Tian [19, Theorem 2.5.2] describes an isomorphism between C`(4, 1) and
C4×4. After correcting some typos in Tian [19, Equation 2.4.4], the isomor-
phism is given by

γ0 7→ I4, γ1 7→


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , γ2 7→


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

γ3 7→


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , γ+ 7→


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , γ− 7→


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,

where the remaining 28 basis elements can be obtained from products of
these 6. This isomorphism is a ∗-algebra isomorphism (using the involution
ēi = e−1i ).

Figure 1 shows a matrix A ∈ C`(4, 1)3×2 whose coe�cients are random
standard Gaussian, along with its C`(4, 1)QRD, which was computed both
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directly in C`(4, 1) using Algorithm 1 with ēi = e−1i , ‖ • ‖ = ‖ • ‖∞, β = βB
and ε = 10−16; and through the CQRD of the C4×4 representation using
Algorithm 1 with complex conjugation, ‖•‖ = ‖•‖2, β = βmax and ε = 10−16 .
The �rst approach required 1658 Givens rotations and 2 sweeps. The second
approach required 80 Givens rotations and 1 sweep. Note that we would
normally expect the QR decomposition of a matrix in C12×8 to require 60
Givens rotations, since there are 60 entries below the diagonal, and this
would be the case with standard CQR algorithms. However, our �naive�
implementation of the C Givens rotations may fail to set a coe�cient exactly
to 0 because of rounding error. Let ‖ • ‖2 be the norm on C`(4, 1). After
setting all entries of R below the diagonal to 0, the reconstruction error
‖A−QR‖F is 3.39 · 10−14 and 1.21 · 10−14 for the �rst and second approach
respectively.

Figure 2 shows the C`(4, 1)SVD of A. Again, this was computed both
directly in C`(4, 1) using Algorithm 2 with ēi = e−1i , ‖ • ‖ = ‖ • ‖∞, β = βB
and ε = 10−16; and through the CSVD of the C4×4 representation using
Algorithm 2 with complex conjugation, ‖•‖ = ‖•‖2, β = βmax and ε = 10−16 .
The �rst approach required 209 QRDs and a total of 42935 Givens rotations.
The second approach required 387 QRDs and a total of 2770 Givens rotations.
Let ‖ • ‖2 be the norm on C`(4, 1). After setting all o�-diagonal entries of D
to 0, the reconstruction error ‖A−UDV H‖F is 8.51 · 10−13 and 5.71 · 10−14

for the �rst and second approach respectively.
When comparing the two approaches one should bear in mind that a

C`(4, 1) Givens rotations (with b = 1) requires 16 times more real additions
and multiplications than a C Givens rotation (with b = 1), and also that the
error tolerance ε used in each approach refers to a di�erent norm, so that one
should set the error tolerance to ε

16
instead of ε in the second approach to

ensure that max
i,j:i<j

‖rij‖∞ ≤ ε. Figure 3 compensates for these two facts when

comparing the computational complexity of the two approaches for varying
ε. It shows that the second approach is much more computationally e�cient.

One of the features of the C`(4, 1)SVD obtained with the approach of
Section 5 is that because the diagonal elements of D must have a real diago-
nal representation in C4×4, they are restricted to lie in a 4-dimensional sub-
space of C`(4, 1), namely the subalgebra spanned by {γ0, γ1, γ2γ−, γ1γ2γ−}.
This feature is noticeable in the middle right subplot of Figure 2. Similarly,
because the diagonal elements of R in a C`(4, 1)QR obtained using the ap-
proach of Section 5 must have a representation which is upper triangular with
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Figure 1: Top: A Gaussian random matrix A ∈ C`(4, 1)3×2.
Left: The C`(4, 1)QR of A computed using Algorithm 1 with ‖ • ‖∞ and βB.
Right: The C`(4, 1)QR of A computed using the approach of Section 5, i.e. the CQR of
a representation of A in C12×8.
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Figure 2: Left: The C`(4, 1)SVD of A computed using Algorithm 2 with ‖ • ‖∞ and βB.
Right: The C`(4, 1)SVD of the same matrix A computed using the approach of Section 5,
i.e. the CSVD of a representation of A in C12×8.
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Figure 3: The number of Givens rotations needed to decompose A ∈ C`(4, 1)3×2 as a
function of the error tolerance ε.
Left: Curve 1 corresponds to the C`(4, 1)QRD computed using Algorithm 1 with ‖ • ‖∞
and βB. Curve 2 corresponds to the C`(4, 1)QRD computed using the approach of Sec-
tion 5.
Right: Curve 1 corresponds to the C`(4, 1)SVD computed using Algorithm 2 with ‖ • ‖∞
and βB. Curve 2 corresponds to the C`(4, 1)SVD computed using the approach of Sec-
tion 5.
Each C`(4, 1) Givens rotation involves about 16 times more operations than each C Givens
rotation. Also, when using the approach of Section 5 the error tolerance should be set to ε

16
if one wishes to ensure that all coe�cients below the diagonal are less than ε when trans-
forming back to C`(4, 1). Hence for a fair comparison, Curve 2 is plotted on a di�erent
scale, corresponding to the top and right axes.
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real diagonal entries in C4×4, they are restricted to lie in a 10-dimensional
subspace of C`(4, 1).

7. Conclusion

The computation of matrix decompositions such as the QRD, SVD, or
symmetric EVD for matrices over an algebra A has so far required the de-
velopment of bespoke algorithms for each new algebra considered. We have
described two general approaches to compute these matrix decompositions.
The �rst approach generalises standard real, complex, quaternion and poly-
nomial QR and SVD algorithms. It can be easily applied to (twisted) group
algebras and in particular Cli�ord algebras in their standard basis. The
second approach uses a representation of A which reduces the matrix to a
Kronecker sum of real, complex and quaternion matrices, which can then be
decomposed in parallel. Although the Artin-Wedderburn theorem guarantees
that this latter method is applicable to any �nite-dimensional semi-simple al-
gebra, �nding the representation explicitly may not be straightforward for
algebras other than C`(p, q). The number of operations required for a QRD
using the �rst approach typically grows to in�nity as the error tolerance ε
tends to 0, whereas this is not true of the second approach which is typically
more computationally e�cient. Another source of computational e�ciency
for the second approach is that it can rely on more sophisticated R/C/HSVD
algorithms, such as using Householder transformations [18].

Although the approaches described here are general enough to cover the
wide range of algebras used in signal processing, they do not apply to all real
algebras. For example, the algebra of upper triangular matrices in Rm×m

(m > 1) is not semi-simple and does not admit any norm with a decent β.
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