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Abstract 
 

The αβT cell receptor (TCR) orchestrates immunity through the recognition of peptides, derived from 

degraded proteins, presented on major histocompatibility complex (MHC) molecules. The remarkable 

ability of the receptor to respond to a vast plethora of antigens is driven by V(D)J recombination, a 

process which generates a highly diverse TCR repertoire by somatic gene rearrangement of coding 

DNA. TCR diversity is confined to three short hairpin loops on each TCR chain, called the 

complementarity determining region (CDR), which form the antigen-binding site. The germline-

encoded CDR1 and CDR2 loops predominantly contact MHC, whereas the hypervariable CDR3 are non-

germline and primarily bind to the MHC-bound peptide. 

In this study, we developed a novel in vivo mutagenesis approach which redirects somatic gene 

rearrangement using V(D)J recombination machinery to diversify and optimise TCR binding. This 

approach involves embedding a gene recombination cassette into the peptide-binding CDR3β region 

of established TCRs. A retrogenic system was employed to facilitate the in vivo processes necessary 

for gene rearrangement and thymic selection. We demonstrate that the recombination cassette can 

successfully induce gene rearrangement and introduce variation to the targeted CDR3β site. 

Thymocytes expressing the diversified TCRs can be selected on MHC and develop into functional 

peripheral T cells. Subsequent exposure to cognate ligands also allowed us to identify optimised and 

‘immunodominant’ TCRs. 

In addition, we produced a novel chimeric TCR chain which comprises Vα and Cβ domains. This TCR 

chain forms a heterodimer with endogenous TCRα chains to form a unique Vα-Vα antigen-binding 

surface. Thymocytes expressing this novel form of αβTCR were able to engage efficiently with both 

MHC classes and develop normally into functional T cells typical of a conventional repertoire. 

Collectively, these findings suggest that the germline CDR loops are not essential for mediating MHC 

recognition during MHC-restricted T cell development and function. 
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Chapter 1: Introduction 

 

1.1. The immune system  

The immune system is a specialised network of cells and biological processes that work together to 

protect the organism against pathogenic events. In jawed vertebrates, the immunologic defences 

comprise of two distinct arms - the interdependent innate and adaptive immune responses. Both 

responses harness related effector mechanisms and can discriminate self from nonself, but differ 

primarily by their recognition strategies (Janeway et al., 2005).  

Innate immunity provides an immediate host immune response to infectious agents and employs a 

limited number of germline-encoded pattern recognition receptors (PRR) for their detection. These 

receptors recognise evolutionarily conserved pathogen-associated molecular patterns (PAMP) 

generally found on foreign microorganisms, but not the host. The innate immune system encompasses 

both physical barriers, such as the skin, as well as molecular and cellular components including the 

complement system, natural killer cells, monocytes, macrophages and dendritic cells (Janeway & 

Medzhitov, 2002). 

Adaptive immunity, by contrast, is composed of cells bearing highly diverse antigen receptors 

generated through somatic gene rearrangement and able to recognise the plethora of pathogens 

(Azuma, 2006; Tonegawa, 1983). The adaptive immune response is slower to respond, but has the 

advantage of lifelong immunological memory, which promotes a quicker and amplified response 

following subsequent antigenic exposure (Walker & Slifka, 2010). Adaptive immunity is mediated by 

antigen-specific T and B lymphocytes, which are responsible for cellular (cell-mediated) and humoral 

(antibody-mediated) immune responses respectively. T and B lymphocytes, and most cellular 

components of the immune system, originate from pluripotent haematopoietic stem cells (HSCs) in 

the bone marrow (BM). However, T and B cells are distinguished by their antigen receptors and sites 

of differentiation – T cells in thymus and B cells in BM (Janeway et al., 2005).  

 

1.2. Adaptive immunity  

The hallmark of the adaptive immune system is the ability to mount a specific immune response 

against virtually any foreign antigen whilst maintaining tolerance to self. In principle, this is achieved 

through the expression of a huge repertoire of clonally variable receptors in the T and B lymphocyte 

population. B cells engage with intact ligands in their native form via the membrane-bound B cell 



18 
 

receptor (BCR), composed of the antigen-binding immunoglobulin (Ig) associated with the invariant 

Igα/β signalling complex (Harwood & Batista, 2010). Engagement of the BCR with antigen triggers B 

cell activation and differentiation into plasma cells capable of secreting antibodies (Ab), which are the 

main effectors in humoral adaptive immunity. T cells, in contrast, utilise transmembrane T cell 

receptors (TCR) that can only recognise antigens once they have been processed into small peptide 

fragments and displayed by major histocompatibility complex molecules (MHC) on the surface of 

antigen-presenting cells (APCs). Upon effective ligand binding, the TCR along with other accessory 

proteins recruit signalling molecules required for T cell activation (Smith-Garvin, Koretzky & Jordan, 

2009; Rudolph, Stanfield & Wilson, 2006). 

Defects involving the T and B cell populations have indeed highlighted the importance of a functional 

adaptive immune system (Cunningham-Rundles & Ponda, 2005). For example, severe combined 

immunodeficiency (SCID), is a primary immunodeficiency characterised by severely reduced numbers 

of functional T and B cells. This rare disease is caused by mutations in any one of ten distinct genes 

that are inherited in an X-linked or autosomal recessive pattern (Buckley, 2004). Infants born with 

SCID are susceptible to opportunistic infections after waning of maternal antibody, and if left 

untreated leads to 100% mortality (Kelly et al., 2013). DiGeorge syndrome, a genetic disorder 

associated with thymic hypoplasia or aplasia, results in selective absence of T cells (Stoller & Epstein, 

2005; Yagi et al., 2003). Without thymic transplantation, patients born with DiGeorge syndrome 

usually die within the first two years of life (Hudson et al., 2007; Markert et al., 1998). Furthermore, 

extrinsic agents such as the human immunodeficiency virus 1 (HIV-1) which specifically target CD4+ T 

helper cells, also underline the significance of T cells. HIV infection causes T cell deficiency, immune 

dysregulation and eventually leads to clinical acquired immune deficiency syndrome (AIDS; Boasso et 

al., 2008) 

 

1.3. T cell subsets 

T lymphocytes can be broadly classified into several subpopulations based on their effector functions 

and molecular phenotype. The majority of T cells express the heterodimeric αβTCR that recognise 

peptide fragments bound to MHC molecules at the cell surface. These ‘conventional’ αβT cells are 

further divided into two main classes: the CD8+ cytotoxic T cells and the CD4+ T helper cells. The CD8+ 

cytotoxic T cells are responsible for the recognition and direct destruction of virally-infected or 

malignant cells. This is mediated by two possible pathways: engagement of death receptors such as 

the TNF-αR or FasR, or the release of cytolytic molecules - granzymes and perforin (Chattopadhyay et 

al., 2009; Lieberman, 2003; Trapani & Smyth, 2002). The CD4+ T helper (Th) cells play a crucial role in 
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orchestrating the immune response – often involved in the activation of B cells, macrophages and the 

CD8+ cytotoxic T cells. CD4+ T helper subsets include Th type 1 (Th1), Th2, Th17, T follicular helper (Tfh) 

and T regulatory (Tregs) cells. Th1 cells secrete Th1 cytokines including IL-2, IFN-γ and TNF-β in order 

to activate cell-mediated antiviral and antibacterial immunity via macrophages and cytotoxic T cells 

(Kaiko et al., 2007). The Th2 subset coordinates humoral against large extracellular pathogens by 

secreting Th2 cytokines (IL-4, IL-5, IL-9 and IL-13) and are responsible for inducing antibody secretion 

and class-switching to IgE in B cells (Ueno, Banchereau & Vinuesa, 2015; Wynn, 2015). IL-17-producing 

Th17 cells mediate host defense mechanisms especially against extracellular bacterial infections, and 

are involved in the pathogenesis of many autoimmune diseases (Ouyang, Kolls & Zheng, 2008). Tfh 

cells, characterised by the expression of the chemokine receptor CXCR5 for migration to germinal 

centres in secondary lymphoid organs, aid in the differentiation of B cells into plasma cells and 

memory cells (Crotty, 2011; Ansel et al., 1999). Tregs play a key part in actively suppressing antigen-

specific responses that can cause tissue damage through several mechanisms including the secretion 

of IL-4, IL-10 and TGF-β (Sakaguchi et al., 2008).  

The ‘unconventional’ T cell population comprise of T cells that express αβTCRs with very limited 

diversity that do not engage with peptide-MHC (pMHC) ligands. This includes mucosal-associated 

invariant T (MAIT), invariant natural killer T (iNKT) cells, and germline-encoded mycolyl-reactive (GEM) 

T cells involved in anti-bacterial immunity. MAIT cells recognise pterins (microbial riboflavin 

derivatives) in the context of MR1, a non-polymorphic MHC-I-related protein (Kurioka et al., 2015; 

Kjer-Nielsen et al., 2012). The iNKT and GEM T cells bind to glycolipids presented by CD1d and CD1b, 

respectively, which are also non-polymorphic and ‘MHC-I-like’ molecules (Kronenberg & Zajonc, 2013; 

Treiner & Lantz, 2006). A minority of T lymphocytes express the somatically rearranged γδTCR, and 

are also grouped as ‘unconventional’ since they appear to recognise non-peptide antigens. Most γδT 

cells are found in epithelial tissues, and mediate protective immunity against extracellular and 

intracellular pathogens as well as tumour surveillance with innate-like kinetics (Vantourout & Hayday, 

2013; Bonneville, O'Brien & Born, 2010). 

 

1.4. T cell development 

1.4.1. Thymocyte development 

Despite the functional and phenotypical differences between the T cell subsets, all T lymphocytes 

derive from common lymphoid progenitors (CLP) and share early differentiation processes in the 

thymus (Attaf et al., 2015). The thymus facilitates an inductive microenvironment essential for these 
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progenitors to undergo TCR gene rearrangement, selection and proliferation into functionally mature 

T cells (Ciofani & Zúñiga-Pflücker, 2007). The thymic microenvironment is comprised of a network of 

stromal cells which provide structural support and appropriate signals to direct lymphoid 

development (Petrie & Zúñiga-Pflücker, 2007). Upon entering the thymus, the thymic progenitors 

establish an irreversible commitment to the T cell lineage and expression of clonally distributed and 

heterogeneous TCRs (Gerondakis et al., 2014). Additionally, this signals the loss in developmental 

potential towards myeloid, B cell, natural killer (NK) and dendritic cell (DC) lineages (Lu et al., 2005; 

Kawamoto et al., 1999). 

Thymocyte development progresses through a series of checkpoints in discrete areas of the thymus, 

and are typically identified by the cell surface expression of CD4 and CD8 co-receptors (Figure 1.1; 

Gameiro, Nagib & Verinaud, 2010). The earliest thymocytes express neither co-receptor, hence 

denoted as CD4-CD8- double negative (DN), then differentiate into CD4+CD8+ double positive (DP), and 

eventually maturing into single-positive (SP) CD4+ or CD8+ T cells (Anderson & Jenkinson, 2001). During 

the early phase of differentiation, the DN cells can be further subdivided into four main developmental 

stages (DN1 through DN4), based on the surface expression of CD44 (an adhesion molecule) and CD25 

(the α chain of the IL-2 receptor; Ceredig & Rolink, 2002; Godfrey et al., 1993). At the DN1 stage 

(CD44+CD25-), the TCR genes largely remain in their germline configuration. Moreover, the DN1 stage 

represents a crucial checkpoint in T cell lineage commitment (Koch & Radtke, 2011). In particular, the 

evolutionarily conserved Notch signalling pathway has been shown to abrogate multiple cell fate 

potentials including myeloid, DC and B cell potential within the DN1 population (Feyerabend et al., 

2009; Bell & Bhandoola, 2008). Differentiation proceeds to the DN2 stage (CD44+CD25+), where the 

cells upregulate recombination-activating genes (RAG-1 and RAG-2) and initiate simultaneous 

rearrangement of the TCRβ, TCRγ and TCRδ gene loci (Livák et al., 1999; Capone, Hockett & Zlotnik, 

1998).  

Gene rearrangement at these loci predominantly continue into the DN3 stage (CD44-CD25+), where 

commitment to either αβ or γδ T cell fate is specified (Pereira, Boucontet & Cumano, 2012; Ciofani et 

al., 2006; Burtrum et al., 1996). Successful recombination of TCRγ and TCRδ, resulting in expression of 

the γδTCR and induction of Id3 (Inhibitor of DNA-binding 3) promote Notch-independent γδT cell 

specification (Zarin et al., 2014; Lauritsen et al., 2009; Ciofani et al., 2006; Wolfer et al., 2002). 

Conversely, development into αβT cells requires signalling through a functional pre-TCR complex, 

comprising of an in-frame rearranged TCRβ chain, CD3 signalling molecules and an invariant pre-Tα 

(pTα) chain (von Boehmer, 2005). The expression of the nascent TCRβ chain marks an important 

checkpoint in T cell differentiation known as β-selection. Indeed, cells that fail to generate a 

functionally rearranged TCRβ chain remain in the DN3 stage and die by apoptosis (Michie & Zúñiga-
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Pflücker, 2002). Signals derived from the pre-TCR complex, along with active signalling from CXCR4 

(the receptor for the chemokine CXCL12) and the Notch1 receptor, trigger a maturation program 

within the developing thymocytes (Maillard et al., 2006; Ciofani & Zúñiga-Pflücker, 2005; Ciofani et 

al., 2004). This includes cell survival, inhibition of further TCRβ chain gene rearrangement by allelic 

exclusion, induction of rapid cell proliferation and transition into the DN4 (CD44-CD25-) and DP stages 

via upregulation of the CD4 and CD8 co-receptors (Yamasaki et al., 2006; Voll et al., 2000). 

DP thymocytes constitute the largest proportion of all thymocytes at an estimated 80% due to the 

proliferative burst induced through pre-TCR signalling (Wong et al., 2012). At the DP stage, RAG genes 

are re-expressed and gene recombination at the TCRα loci is initiated. The expression of a functional 

TCRα chain replaces the pTα, resulting in low levels of αβTCR assembled with CD3 proteins (Germain, 

Stefanova & Dorfelan, 2002). These developing DP thymocytes then audition for thymic positive and 

negative selection once the αβTCR is expressed, eventually developing into naïve SP T cells (Kyewski 

& Klein, 2006). More than 90% of these precursors are subject to cell death as a result of failing thymic 

selection (Klein et al., 2014; Germain, 2002). 

 

1.4.2. Thymic selection – central tolerance 

The thymic microenvironment consists of functionally distinct niches that drive the processes of 

positive and negative selection. The positive selection of thymocytes occurs predominantly in the 

outer cortex of the thymus, and involves interactions with a single APC type, namely the cortical 

thymic epithelial cells (cTECs). The medullary region of the thymus represent the site of negative 

selection, where thymocytes engage with medullary thymic epithelial cells (mTECs) and thymic DCs. 

Accordingly, the specificity and binding strength of the pre-selection αβTCR repertoire for self-pMHC 

ligands displayed by these APCs determine the fate of the developing thymocytes (Klein et al., 2014; 

Petrie & Zúñiga-Pflücker, 2007).  

Positive selection permits survival of those cells whose receptors engage effectively with self-pMHC 

ligands, thus ensuring MHC-restriction. During this checkpoint, most thymocytes express αβTCRs that 

cannot participate in such interactions and fail to receive a survival signal, which leads to death by 

neglect (Germain, 2002). Additionally, positive selection defines the lineage-specific differentiation 

into either SP CD8+ or CD4+ T cells depending on the binding efficiency with either MHC Class I or Class 

II molecules displayed by thymic APCs, respectively (Taniuchi, 2009). Upon migrating to the medulla, 

SP thymocytes undergo negative selection in which cells with high affinity for self-pMHC ligands are 

clonally deleted via apoptosis, thus removing autoreactive T cells that may cause damage to host 
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tissue (von Boehmer & Melchers, 2010). Here, medullary APCs employ a unique epigenetic mechanism 

which promotes low-level promiscuous expression of non-thymic and tissue-restricted self-antigens 

(Metzger & Anderson, 2011; Derbinski et al., 2001). The mTEC-produced self-antigens may be 

presented to thymocytes directly by mTECs or cross-presented by neighbouring DCs (Hubert et al., 

2011). The ectopic expression of self-antigens in mTECs is regulated by the transcription factor 

autoimmune regulator (AIRE; Eldershaw, Sansom & Narendran, 2010). In the absence of AIRE, 

impaired clonal deletion of self-reactive thymocytes results in the onset of multi-organ and organ-

specific autoimmune diseases such as  autoimmune polyendocrinopathy-candidiasis-ectodermal 

dystrophy (APECED), type 1 diabetes (T1D) and thyroiditis (Mathis & Benoist, 2009). Overall, the 

thymic selection processes and checkpoints ensure that only immunological competent and self-

tolerant T cells are released into the periphery. 

 

1.4.3. CD4-CD8 T cell lineage commitment  

Competent adaptive immunity requires CD4+ T helper cells that interact with MHC Class II ligands and 

CD8+ cytotoxic T cells that recognise MHC Class I ligands. The commitment to either CD4+ or CD8+ T 

cells lineage is simultaneously established during positive selection where developing thymocytes are 

educated for appropriate MHC restriction (Singer, Adoro & Park, 2008). Two main classical models 

have been proposed to elucidate the CD4-CD8 T cell lineage choice: ‘stochastic’ or ‘instructive’, 

depending on whether the termination of co-receptor transcription is random or instructed (Kappes, 

He & He, 2005). The stochastic selection model dictates that co-receptor gene downregulation occurs 

randomly and independent of TCR specificity during positive selection. A subsequent TCR-dependent 

mechanism then rescues and only permits SP thymocytes with matching TCR/MHC and co-receptors 

to differentiate into mature T cells (Singer, Adoro & Park, 2008). 

The instructive model postulates that TCR signals direct DP thymocytes to specifically downmodulate 

the expression of the mismatching co-receptor. In the strength-of-signal instructive model, DP 

thymocytes are directed based on the relative differences in the signal strengths stimulated by TCR 

and co-receptor co-engagement during positive selection. TCR and CD4 co-engagement with MHC 

Class II generates stronger signals, whereas TCR and CD8 co-engagement with Class I molecule induces 

weaker signals (Itano et al., 1996). The updated duration-of-signal instructive model suggests that TCR 

signal duration, in addition to signal strength, determine the T cell lineage outcome. In this model, TCR 

signals of long duration induce CD8 downregulation and differentiation into CD4+ T cells, whereas TCR 

signals of short duration terminate CD4 expression thereby generates CD8+ T cells (Yasutomo et al., 

2000). 
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Recently, molecular mechanisms operating in thymocytes have been described to further understand 

lineage specification. In particular, the mutually exclusive expression of transcription factors ThPOK 

and Runx3 are thought to determine the CD4-CD8 lineage fate. During thymic selection, ThPOK 

induces thymocytes that have received MHC-II signalling to enter the CD4+ lineage whereas Runx3 

promotes cells that have received MHC-I signals to become CD8+ T cells (He et al., 2005; Sun et al., 

2005; Sato et al., 2005; Taniuchi et al., 2002). Definitive lineage fate commitment requires that 

individual thymocytes express either ThPOK or Runx3 but not both. Accordingly, ThPOK upregulates 

SOCS (suppressor of cytokine signalling) cytosolic proteins that suppress Runx3 expression in order to 

adopt the CD4+ lineage fate (Luckey et al., 2014). Reciprocally, intrathymic cytokines signal thymocytes 

to express Runx proteins that bind to a silencer element in the Thpok locus to repress ThPOK 

expression (Park et al., 2010; He et al., 2008; Setoguchi et al., 2008). 

 

1.4.4. Development of Tregs – peripheral tolerance 

The central tolerance mechanism operating in the thymus functions to eliminate the development of 

self-reactive T cells. Although the negative selection process is thought to be efficient, some T cells 

expressing autoreactive TCRs are released into the periphery, in part because not all self-antigens are 

expressed in the thymus. Thus, peripheral tolerance mechanisms exist to balance the shortcomings of 

central tolerance and prevent many autoimmune diseases (Xing & Hogquist, 2012). 

Immunosuppressive CD4+CD25+ Tregs, characterised by the distinctive expression of the forkhead box 

P3 (FoxP3) transcription factor, are essential for maintaining peripheral tolerance (Benoist & Mathis, 

2012). These cells suppress unwanted immune responses through the production of anti-

inflammatory cytokines, direct cell-to-cell contact and modulating the activation state and function of 

APCs (Shevach, 2009). Accordingly, deficiencies in the Foxp3 gene have been shown to cause 

lymphoproliferation and multi-organ autoimmunity in scurfy mice and human IPEX 

(immunodysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome patients (Ziegler, 

2006). 

Two pathways of differentiation have been described for Tregs: in the thymus from immature DP 

precursors, as an alternative to the conventional CD4+ T cell lineage, and induction of FoxP3 in 

peripheral, conventional CD4+ T cells. Thymus-derived Tregs are generally termed as natural Tregs 

(nTregs), while the latter are labelled as peripheral Tregs (pTregs; Benoist & Mathis, 2012). In the 

thymus, antigen presentation on mTECs and thymic DCs induces FoxP3 expression and elicit 

differentiation into nTregs (Hanabuchi et al., 2010; Proietto et al., 2008; Aschenbrenner et al., 2007). 

The strength and duration of TCR engagement with these cells determine whether developing 
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thymocytes undergo clonal deletion or FoxP3 induction. Stronger binding is proposed to trigger 

deletion whereas weaker TCR signals lead to nTreg differentiation (Xing & Hogquist, 2012). In addition, 

CD28 co-stimulation signals of developing thymocytes can also induce Treg differentiation, and IL-2 

signalling is required for Treg survival (Lio et al., 2010; Lio & Hsieh, 2008; Burchill et al., 2008; Vang et 

al., 2008; Tai et al., 2005). In the periphery, the cytokine TGF-β stimulates the conversion of mature T 

cells into the pTreg lineage (Kretschmer et al., 2005). However, its role in thymic differentiation into 

nTregs is much less understood. Liu and colleagues (2008) have shown that the combined loss of TGF-

β and IL-2 signalling abrogates the development of nTregs in the thymus. TGF-β signalling may also be 

involved in preventing negative selection of nTregs that experience strong TCR signals from self-

antigens (Ouyang et al., 2010). 

 

Figure 1.1. Schematic diagram of T cell development in the thymus. Haematopoietic stem cells (HSCs) 

originate from the bone marrow (BM) and give rise to common lymphoid progenitors (CLP), which 

either remain in the BM to produce B cells, or migrate to the thymus to develop T cells. In the thymus, 

CLP 

DN1 DN2 DN3 DN4 

CD44+ 
CD25- 

CD44+ 
CD25+ 

CD44- 
CD25+ 

CD44- 
CD25- 
pTα:β+ 

DP 

TCRβ rearrangement TCRα rearrangement 

CD4+ 
CD8+ 
αβTCR+ 

SP 

CD4+/ 
CD8+ 
αβTCR+ 

γδ 

nTreg 

Death 

CD8 

Exit to periphery 

Cortex 

Medulla 

Positive 
selection 

Negative 
selection 

CD4 



25 
 

CLPs enter as double-negative (DN) thymocytes, and are further subdivided based on the expression 

of CD44 and CD25. T cell commitment is acquired at the DN2 stage where gene recombination of the 

TCR genes is initiated. At the DN3 stage, the TCRβ chain is expressed and pairs with the pTα invariant 

chain to form the pre-TCR, and where the cell undergoes β-selection. Successful pre-TCR complex 

expression and β-selection give rise to DN4 cells, which later differentiate into double-positive (DP) 

cells. DP cells express both co-receptors and undergo positive selection on self-pMHC to further give 

rise to single-positive (SP) CD4+/CD8+ cells. SP cells are subject to negative selection, which removes 

TCRs which bind with high affinity, before exit into the periphery as naïve T cells. 

 

1.5. Generation of the TCR repertoire 

1.5.1. Architecture of the TCR 

Depending on the T cell lineage, the TCR is a heterodimeric glycoprotein consisting of either 

disulphide-linked α and β or γ and δ polypeptide chains. Each chain of the TCR constitutes two 

extracellular Ig-like domains – a variable (V) and a constant (C) domain, followed by a hydrophobic 

transmembrane (TM) region with a short cytoplasmic tail (Rudolph, Stanfield & Wilson, 2006; Davis & 

Bjorkman, 1988). Each domain is composed of a pair of β-sheets that are packed face-to-face by 

hydrophobic interactions and disulphide bonds (Figure 1.2). The V domains are constructed from 9 

antiparallel β strands (five inner and four outer strands) which are labelled A, B, C, C’, C’’, D, E, F, and 

G. In comparison, there are seven β strands that form the C domains (four inner and three outer 

strands) labelled A-G (Allison et al., 2001; Al-Lazikani, Lesk & Chothia, 2000; Novotný et al., 1986).  

The V domain of each TCR chain contains three variable loops called the complementarity determining 

regions (CDRs), which protrude at the membrane-distal ends and collectively form the antigen-binding 

site. The germline-encoded CDR1 and CDR2 loops interact mainly with the MHC molecule and 

constitute the peptides linking the B-C and C’-C’’ strands respectively. Additionally, the CDR1 and CDR2 

loops are proposed to assume a set of unique conformations named canonical structures that are 

determined by the length of the loops and the presence of key residues at particular sites (Al-Lazikani, 

Lesk & Chothia, 2000; Garcia, Teyton & Wilson, 1999; Arden, 1998). The hypervariable CDR3 loop 

combines the ends of the F and G β-sheet strands and engages primarily with the MHC-bound peptide 

fragment (Allison et al., 2001; Al-Lazikani, Lesk & Chothia, 2000). Altogether, the sequence and 

structure of the CDRs determine the TCR binding specificity and affinity (Dunbar et al., 2014). 

Directly adjacent to the amino (N)-terminal V domain and connected by a hinge region is the carboxyl-

terminal C domain (Ely et al., 2005). The C domain functions as a scaffold for the V domain and an 

anchor in the cell membrane via the TM region. Despite not directly participating in antigen 

recognition, the amino acid composition of the C and TM domains play significant roles in the TCR 
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structure and function. Within the C domain, the conserved cysteine residue mediates the 

dimerisation of the TCRα and TCRβ chains via disulphide bridges (Garcia et al., 1996a). Notably, this 

disulphide bond is not necessary for TCR membrane expression or signal transduction (Arnaud et al., 

1997). Moreover, key residues within the TCRα and TCRβ C domains have been described to drive 

proper assembly with the CD3 signalling subunits as well as antigen responsiveness (Kuhns, Davis & 

Garcia, 2006; Werlen, Hausmann & Palmer, 2000; Bäckström et al., 1998; Arnaud et al., 1997; 

Bäckström et al., 1996). Mutagenesis directed at the FG loop in the TCRβ C domain has suggested its 

role in regulating αβT cell development through thymic selection processes (Touma et al., 2006; 

Sasada et al., 2002). In the TCRα TM region, two evolutionarily conserved positively-charged amino 

acids - an arginine and a lysine, have been shown to contribute to its thermodynamic instability and 

the rapid degradation of unassembled TCRα chains (Haga-Friedman, Horovitz-Fried & Cohen, 2012; 

Soetandyo et al., 2010; Bonifacino, Cosson & Klausner, 1990). The same basic residues were also 

essential for the interactions between the TCR and CD3 components (Wucherpfennig et al., 2010; Call 

& Wucherpfennig, 2005). Similarly, the TCRβ chain TM domain contains two evolutionarily conserved 

tyrosine residues that have been proposed to be crucial for TCR signal transduction and complex 

assembly (Kunjibettu et al., 2001). The presence of another residue, Lysine 271, in the TM region may 

have a critical role in the association and stabilisation of the signalling complex (Alcover et al., 1990).  

 

 

 

Figure 1.2. Schematic representation of αβTCR structure. The TCR comprises of a heterodimer of 

disulphide-linked α and β chains. Each chain is composed of a Variable (V; blue), with three CDRs (light 

blue), and a Constant (C; red) domain, followed by a transmembrane region and a short cytoplasmic 

tail. The diagram on the right represents the TCR antigen-binding site. The squares represent the top 

of the β strands that form the variable domains and are labelled accordingly. The blue lines represent 

the CDR loops; the black lines represent other non-CDR links between β strands. Diagram is adapted 

from Al-Lazikani et al., (2000). 

Vβ 

Cβ 

Vα 

Cα 

Cell membrane 



27 
 

1.5.2. Organisation of the αβTCR gene loci and potential diversity  

A hallmark of the adaptive immunity is the intrinsic ability to generate a diverse TCR repertoire in 

order to respond to a plethora of potentially harmful antigens. Accordingly, TCR diversity is achieved 

through three main processes during thymocyte development: (a) somatic gene recombination, which 

facilitates the production of an extensive array of clonally variable receptors from a limited set of 

genes, (b) imprecise joining of the coding ends during gene recombination, and (c) combinatorial 

diversity, the pairing of different V domains within TCRα and TCRβ chains (Turner et al., 2006; Al-

Lazikani, Lesk & Chothia, 2000). The TCRα chain is constructed from the recombination of numerous 

variable (V) and joining (J) gene segments, juxtaposed to a constant (C) segment. Gene recombination 

at the TCRβ locus is similar, with an additional diversity (D) segment inserted in between the V and J 

gene segments, and one of two C-segments utilised for a complete TCRβ chain.  

In the human genome, the TCRα locus is located on chromosome 14 and comprises a total of 96 

functional V, J and C gene segments. The human TCRβ locus found on chromosome 7 contains 64 

functional V, D, J and C segments. The mouse loci for TCRα on chromosome 14 and TCRβ on 

chromosome 6 are composed of a total of 123 and 37 functional gene segments respectively (Bosc & 

Lefranc, 2003). Both TCR gene loci are detailed in Table 1.1 below.  

 

Table 1.1. Number of functional TCR gene segments encoded in the human and mouse genome. 

Data is based on IMGT website database.  

Species  TCR Chain V-segments D-segments J-segments C-segments Total 

Human TCRα 45 - 50 1 96 

TCRβ 47 2 13 2 64 

Mouse TCRα 84 - 38 1 123 

TCRβ 22 2 11 2 37 

 

The focal point of TCR diversity is manifested within the 6 highly flexible CDRs in both TCR chains 

(Godfrey, Rossjohn & McCluskey, 2008). The CDR1 and CDR2 loops are encoded in the germline by the 

TCRα and TCRβ V gene segments. By contrast, the CDR3 is hypervariable as a result of a combination 

of different V, (D) and J gene segments and random nucleotide addition and deletion at the junction 

between these segments (Attaf et al., 2015). V(D)J recombination determines both the length and the 

identity of the amino acid residues present within the CDR3 loops (Stadinski et al., 2014). As a result, 

much of the unique amino acid sequences found in the TCR are present within the CDR3 loop. The 

CDR3 residues have also shown to contribute to a large portion of the TCR binding site including MHC 

contacts, resulting in minimal involvement of the CDR1 and CDR2 loops (Bulek et al., 2012; Gras et al., 
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2012; Borg et al., 2005).  Thus the CDR3 loop may have a significant role in defining both the T cell 

peptide and MHC specificity (Stadinski et al., 2014). 

During T cell development in the thymus, a theoretically large TCR repertoire of up to ~1015 unique 

TCRs can be generated in the mouse (Davis & Bjorkman, 1988). Deep sequencing analysis has revealed 

that the actual number may more likely be around 1011 different TCRs (Robins et al., 2010). The 

theoretical number of possible TCRs in humans is projected to be much larger since humans possess 

a higher number of TCRβ variable genes compared to mice (Sewell, 2012; Lefranc et al., 2009). From 

the pre-selection repertoire, TCRs that bind to self-pMHC with appropriate affinities are positively 

selected, while TCRs that bind too strongly are clonally deleted during negative selection (Goldrath & 

Bevan, 1999; Stockinger, 1999). Hence, the number of unique TCRβ CDR3 sequences expressed in the 

peripheral blood lymphocytes of a healthy adult is estimated to be around ~3 x 106 (Warren et al., 

2011; Robins et al., 2010). The consequence of thymic selection is the absence of strong binding 

interactions which facilitate the prevention of autoimmunity. However, efficient tumour recognition 

is also prevented since most tumours are self-derived (Gattinoni et al., 2006; Boon, Coulie & Van Den 

Eynde, 1997; Kawakami et al., 1994). 

 

1.5.3. V(D)J Recombination 

V(D)J recombination is the central process which assembles functional TCR chains and generates 

antigen receptor diversity during T cell development. In both B and T cells, V(D)J recombination is 

initiated by the RAG recombinase, a lymphoid-specific endonucleolytic complex encoded by the RAG1 

and RAG2 genes. RAG recognises and cleaves genomic DNA at highly conserved recombination signal 

sequences (RSS) flanking the 3’ end of the V, the 5’ end of the J and both ends of the D-segments. The 

RSS is composed of two conserved sequences, a palindromic heptamer residing adjacent to the 

encoding gene segment, and an A/T-rich nonamer. The heptamer and nonamer are separated by a 

non-conserved linker of either 12 or 23 base pairs (Schatz & Ji, 2011). The V-segments exclusively 

contain a 3’-7/23/9 RSS and J-segments a 5’-9/12/7 RSS. The D-segments contain both 5’-9/12/7 and 

3’-7/23/9 RSSs on either ends (Figure 1.4A, B).  

The recombination machinery is governed by the 12/23 rule, which means only RSSs with dissimilar 

sized linkers can recombine efficiently. Generally, an RSS with a 12-nucleotide linker may only fuse 

with an RSS with a 23-nucleotide linker and vice versa (Swanson, 2004). This mechanism prevents non-

productive rearrangement of V or J genes within their own clusters and ensures the obligatory 

inclusion of the Dβ segment between the Vβ and Jβ segments in the correct orientation (Olaru, Petrie 
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& Livák, 2005; Sleckman et al., 2000). Moreover, the assembly of the TCRβ V domain occurs via an 

ordered two-step process, in which Dβ and Jβ gene rearrangement precedes the recombination of Vβ 

to the Dβ-Jβ fusion segment (Figure 1.3; Schatz & Ji, 2011; Ferrier et al., 1990; Born et al., 1985). 

 

 

 

Figure 1.3. Generation of combinatorial diversity by V(D)J recombination. The TCRα and β chains are 

assembled from separate variable (V), diversity (D), junctional (J) and constant (C) gene segments. 

During thymocyte development, gene recombination machinery associates these gene segments 

together to form rearranged TCRα and β chain transcripts. Adapted from Schatz and Ji, (2011). 

 

RAG1 is the principal DNA-binding component and contains most of the residues that catalyse the 

DNA cleavage process. RAG2 enhances the engagement of RAG1 with the heptamer of the RSS, and is 

a crucial cofactor for DNA cleavage (Swanson, 2004; Fugmann & Schatz, 2001). RSS recognition is 

proposed to occur via a capture model where the RAG complex binds to one RSS to form the signal 

complex, and subsequently captures a second different-sized RSS that lacks bound proteins. This forms 

the synaptic or paired complex (Mundy et al., 2002; Jones & Gellert, 2002). Cleavage of the DNA occurs 

in a two-step process: RAG first introduces a single strand nick between the heptamer and the gene 

segment. The free 3’ hydroxyl group that is produced then attacks the phosphodiester bond of the 
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other strand to complete a DNA double strand break. The DNA break is sealed covalently at the end 

of the gene segment, resulting in the formation of a hairpin loop. Hairpin formation only occurs in the 

paired complex and is thought to take place simultaneously at the two RSSs. The single-stranded DNA 

nicking is less tightly regulated and can occur in the signal or paired complex (Swanson, 2004; Jones & 

Gellert, 2002).  

After hairpin formation, the coding ends and the blunt 5’ phosphorylated signal ends remain 

associated with the RAG complex, constituting a transitory structure called the ‘post-cleavage 

complex’ (Hiom & Gellert, 1998; Agrawal & Schatz, 1997). The RAG complex also recruits high mobility 

group (HMG) proteins of the HMG-box family (HMGB1 and HMGB2) for the binding of two RSS signal 

ends together. The HMG proteins interact with the nonamer-binding domain of RAG1 in the absence 

of DNA and enhance its intrinsic DNA-bending activity (Štros, 2010; Aidinis et al., 1999). The DNA 

coding ends are re-joined following RAG-mediated recruitment of a group of ubiquitous DNA repair 

enzymes, most of which facilitate the classical non-homologous end joining (NHEJ) repair pathway 

(Cui & Meek, 2007; Lee et al., 2004). The NHEJ components include Ku70, Ku80, DNA-dependent 

protein kinase catalytic subunit (DNA-PKcs), XRCC4, XLF and DNA ligase IV (Wyman & Kanaar, 2006). 

The Ku70 and Ku80 proteins form a heterodimer that specifically binds DNA ends via a preformed ring 

that can encircle DNA (Downs & Jackson, 2004; Walker, Corpina & Goldberg, 2001). The Ku70/80 

dimer functions to recruit DNA repair kinase DNA-PKcs, which subsequently induces inward 

translocation of the Ku molecule by about one helical turn, allowing accessibility of other proteins 

(Rivera-Calzada et al., 2006; Yoo & Dynan, 1999). The final step of re-joining the DNA ends is mediated 

by ATP-dependent DNA ligase IV, which associates with a dimer of XRCC4 (Modesti et al., 2003; Lee et 

al., 2000). XRCC4 can interact with DNA and functions to stabilise the ligase and stimulate its 

adenylation and ligase activity (Bryans, Valenzano & Stamato, 1999; Modesti, Hesse & Gellert, 1999; 

Grawunder et al., 1998). XLF, a XRCC4-like factor also called Cernunnos, is recruited by Ku and 

promotes the ligation activity of DNA ligase IV towards non-compatible DNA ends (Mahaney, Meek & 

Lees-Miller, 2009; Yano et al., 2007; Ahnesorg, Smith & Jackson, 2006). 

The initiation of V(D)J recombination is regulated at three distinct levels. Firstly, the RAG proteins are 

expressed at high levels only during specific stages of lymphocyte development: at the DN2-DN4 

stages for TCRβ gene recombination, and DP stage for TCRα. In particular, RAG activity is restricted to 

the G1 phase of the cell cycle since RAG2 is phosphorylated and degraded as cells enter S-phase 

(Desiderio, Lin & Li, 1996). This ensures that the reaction does not occur at other cell types or outside 

the T cell developmental stages, which may otherwise be detrimental to the cell stability. Second, the 

initiation of gene recombination by RAG is modulated by the accessibility of the RSSs within the 

chromatin (Yancopoulos & Alt, 1985). Lastly, V(D)J recombination efficiency is regulated by the spatial 
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location and conformation of the TCR loci in the nucleus, with chromosome looping and condensation 

proposed to facilitate recombination between widely spaced gene segments. Cis-acting transcriptional 

regulatory components such as promoters and enhancers mediate the alterations in DNA methylation, 

chromatin structure and nuclear positioning that affect ability of RAG to engage with the appropriate 

regions of the TCR gene loci (Schatz & Ji, 2011; Cobb et al., 2006; Dudley et al., 2005). 

 

1.5.3. Junctional diversity  

Junctional diversity is a key event during V(D)J recombination which amplifies the possible number of 

unique TCRs in the pre-selection repertoire. This phenomenon is initiated by the opening of the hairpin 

loop at the DNA coding ends, which facilitates the addition and deletion of random nucleotides at the 

recombination junctions. The hairpins of the coding ends are opened by the endonuclease activity of 

the Artemis:DNA-PKcs complex (Chang, Watanabe & Lieber, 2015; Lu, Schwarz & Lieber, 2007). 

Artemis alone has an inherent 5’-3’ exonuclease activity on single-stranded DNA (Li et al., 2014). Upon 

association with DNA-PKcs, a serine/threonine protein kinase, Artemis is phosphorylated, thereby 

activating its 5’-3’ endonuclease activity (Gu et al., 2010; Goodarzi et al., 2006; Ma et al., 2002). The 

Artemis:DNA-PKcs complex generally resects 5’ and 3’ DNA overhangs, to create DNA end structures 

that can be ligated by the DNA ligase IV/XRCC4 complex (Gu et al., 2006; Ma et al., 2002). 

However, when processing DNA hairpins, it preferentially generates an asymmetric opening from 

nicking a few nucleotides away from the terminus, resulting in one DNA strand that is longer than the 

other (Ma, Schwarz & Lieber, 2005; Ma et al., 2002).The shorter strand is extended by the addition of 

nucleotides complementary to the longer strand, resulting in the insertion of palindromic (P) 

nucleotides at the coding junctions by DNA repair enzymes (Dudley et al., 2005). Template-

independent polymerases, such as Terminal deoxynucleotidyl transferase (TdT) and DNA polymerase 

µ modify these junctions by promoting the addition of non-templated (N) nucleotides to the 3’ single-

stranded coding ends (Helmink & Sleckman, 2012; Motea & Berdis, 2010). In addition, TdT may also 

exhibit 3’-5’ exonuclease activity that could further contribute to joint diversification by nucleotide 

removal (Motea & Berdis, 2010). Lastly, the DNA ligase IV/XCRR4 complex joins the processed ends 

together to generate a continuous double-stranded DNA (Figure 1.4C).  
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Figure 1.4. The mechanism of V(D)J recombination. (A) Recombination Signal Sequences (RSS). The 

RSS is composed of a heptamer adjacent to the encoding gene segment and a nonamer, separated by 

a non-conserved linker of either 12 or 23 base pairs. (B) Distribution of RSS flanking the gene segments. 

23RSS flank the 3’ end of V-segment and 12RSS in the 5’ end of J-segment whereas 12RSS and 23RSS 

flank the 5’ and 3’ ends of the D-segment in TCRβ loci. (C) Schematic diagram of V(D)J recombination. 

12RSS and 23RSS are brought together via a RAG complex where DNA nicks are introduced to form a 

hairpin loop at the end of the coding gene segments. These hairpin loops are then broken using 

endonucleases, and repaired and ligated by Ligase IV:XRCC4/XLF complexes. TdT and DNA Pol µ 
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contribute to junctional diversity by adding and/or removing nucleotides. Adapted from Nishana and 

Raghavan, (2012). 

 

1.6. Conventional αβTCR ligands  

1.6.1. Structure of the Major Histocompatibility Complex 

The central interaction in cell-mediated adaptive immunity is between the αβTCR and the peptide 

fragment loaded onto specialised molecules called the major histocompatibility complex (MHC). In 

humans, the antigen-presenting MHC molecules are referred to as the human leukocyte antigen (HLA) 

whereas the mouse MHC are commonly termed as histocompatibility-2 (H2; Kulski et al., 2002). The 

classical MHC molecules are subdivided into MHC Class I (MHC-I) and MHC Class II (MHC-II), both of 

which are highly polymorphic. The classical MHC-I gene encode three classes in humans (HLA-A, HLA-

B and HLA-C) and mice (H2-K, H2-D and H2-L). The MHC-II genes comprise three classes in humans 

(HLA-DR, HLA-DQ and HLA-DP) and two classes in mice (H2-A and H2-E). These gene loci are located 

on chromosome 6 and 17 in the human and mice genomes respectively (Miles et al., 2015; Miles, 

Douek & Price, 2011; Robinson et al., 2011). 

Classical MHC-I molecules are heterodimeric glycoproteins composed of a membrane-spanning heavy 

α polypeptide chain that associates non-covalently with a single β2-microglobulin subunit (β2-m). The 

heavy α chain is composed of three domains: α1 to α3 (Figure 1.5A). The membrane-distal α1 and α2 

domains are polymorphic, and form the peptide-binding groove composed of a β-sheet topped by two 

semi-parallel α-helices. Symmetry is achieved such that each domain contributes an α-helix and four 

strands of a β-sheet. The β2-m forms the non-polymorphic membrane-proximal component of the 

protein along with the α3 domain, which anchors the MHC-I molecule to the membrane via a 

hydrophobic TM stalk with a cytoplasmic tail (Adams & Luoma, 2013). In contrast to MHC-I, MHC-II 

molecules are assembled from the non-covalent association of relatively equivalent α and β chains 

consisting of two domains each (α1, α2; β1, β2; Figure 1.5B). The peptide-binding groove is 

constructed from the membrane-distal α1 and β1 domains, which fold into a seven-stranded β-sheet, 

flanked by two long α-helices. Both chains are also connected to the plasma membrane through TM 

stalks via the α2 and β2 domains (Rudolph, Stanfield & Wilson, 2006).  

The majority of polymorphism in MHC molecules is concentrated in the residues within and around 

the peptide-binding groove, therefore maximising the possible number of peptides that the MHC can 

present. The peptides are bound to MHC via a series of chemically-distinct pockets within the peptide-

binding groove, designated as A-F pockets in MHC-I and P1-P9 pockets in MHC-II (Rossjohn et al., 2015; 
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Adams & Luoma, 2013). The interaction between peptide and MHC is principally governed by primary 

anchor residues that are generally conserved at the N- and C-termini (Madura et al., 2015). The regions 

of the peptide that are exposed can directly contact the TCR, whereas the buried residues can 

indirectly alter TCR binding (Theodossis et al., 2010). 

 

1.6.2. Antigen processing and presentation by MHC Class I 

MHC Class I molecules are expressed at the cell surface of all nucleated cells and present short peptide 

fragments derived from endogenous proteins. The interaction of the αβTCR with pMHC-I ligands 

represents a valuable mechanism for T cells to inspect the intracellular proteome of the target cells 

and is pivotal in eliciting CD8+ T cell-mediated immunity. As such, this display system facilitates the 

eradication of cells that exhibit malignant cellular activity or express non-self, pathogen-derived 

proteins. 

Peptides presented by MHC-I are primarily generated from the proteasome-mediated degradation of 

proteins in the cytoplasm. Standard proteasomes are expressed constitutively in nearly all cells. In 

response to IFN-γ stimulation under inflammatory conditions, the proteasome subunit composition 

changes from standard to “immunosubunits”. This subsequently assembles a specialised form of 

proteasome with altered peptide cleavage activity, called the immunoproteasome (McCarthy & 

Weinberg, 2015; Aki et al., 1994). After proteasome-mediated degradation, aminopeptidases in the 

cytosol or endoplasmic reticulum (ER) can further trim peptides into appropriate lengths necessary 

for MHC-I binding (Brouwenstijn, Serwold & Shastri, 2001; Stoltze et al., 2000; Craiu et al., 1997). The 

products of proteolysis are then translocated into the ER by an ER-based heterodimeric protein called 

the transporter associated with antigen processing (TAP). In the ER, nascent MHC-I molecules 

associate with ER chaperone proteins such as calreticulin, tapasin and ERp57 to form the peptide-

loading complex (PLC). The PLC facilitates the loading of stabilising peptides into the peptide-binding 

groove, before expression on the cell surface (Hansen & Bouvier, 2009). Conversely, peptides and 

MHC-I molecules that fail to associate are returned to the cytosol for degradation (Neefjes et al., 

2011). 

MHC-I molecules possess a peptide-binding cleft, formed between the MHC-I α1 and α2 domain, with 

a closed configuration that is designed to support a single peptide fragment (Figure 1.5C). 

Consequently, antigen presentation by MHC-I is generally restricted to peptides of eight to 14 amino 

acids in length (Rossjohn et al., 2015). Due to this structural constraint, longer peptides (>10 amino 

acids) may adopt a bulging conformation, resulting in the exposure of peptide side chains that interact 
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directly with the TCR (Burrows, Rossjohn & McCluskey, 2006; Miles et al., 2005). Crystal structures of 

pMHC-I complexes have demonstrated that these bulged peptides, similar to peptides of normal 

length, are held at both termini and maintain highly conserved and energetically important contacts 

with the anchor residues within the MHC-I (Stewart-Jones et al., 2003; Speir et al., 2001; Guo et al., 

1992). The central part of the bound peptide can either protrude with marked rigidity or display 

considerable flexibility (Tynan et al., 2005b; Tynan et al., 2005a; Probst-Kepper et al., 2004). A recent 

study has suggested that MHC-I-restricted T cells display an explicit preference for a single MHC-I-

bound peptide of a defined length and that effective CD8+ T cell immunity can only be achieved by 

length-matched antigen-specific T cell clonotypes (Ekeruche-Makinde et al., 2012). Notably, the 

authors have proposed that every TCR is characterised by a unique “peptide-recognition signature” 

that is governed by: a preference for peptide length, the number of peptides that can be recognised 

at the preferred length, and the amino acid sequence of the peptides (Wooldridge, 2013). 

 

1.6.3. Antigen processing and presentation by MHC Class II 

In contrast to MHC-I, Class II MHC molecules predominantly present peptides derived from exogenous 

proteins and are mainly expressed on TECs and professional APCs, such as B cells, DCs and 

macrophages. Non-APCs, including mesenchymal stromal cells, fibroblasts, endothelial and epithelial 

cells can also express MHC-II molecules upon IFN-γ stimulation. The recognition of pMHC-II complexes 

typically leads to the activation of CD4+ Th cells which coordinate antigen-specific humoral and cell-

mediated immune responses (Neefjes et al., 2011; Reith, LeibundGut-Landmann & Waldburger, 2005). 

The MHC-II α1-β1 peptide-binding groove display an open-ended conformation which allows the 

binding of N- and C-terminally extended peptides of up to 30 amino acids in length (Figure 1.5D). The 

peptide backbone in MHC-II adopt a poly-proline type II conformation and reside deeper in the groove 

(Rudolph, Stanfield & Wilson, 2006; Stern et al., 1994). MHC-II-restricted peptides generally exhibit 

the central binding motif of nine ‘core’ residues that form an extensive hydrogen bond network with 

the binding groove. Additionally, peptide side chains also engage with allelic-specific pockets within 

the peptide-binding cleft. The differences between these allelic-specific pockets usually establish the 

binding motif that can be accommodated by different MHC-II alleles (Bhati et al., 2014; Stern et al., 

1994; Brown et al., 1993). 

Proteins, whether self or non-self, are internalised via phagocytosis or clathrin-dependent endocytosis 

and undergo degradation in the endosomal-lysosomal antigen-processing compartments (Roche & 

Furuta, 2015). These compartments are enriched in proteases/cathepsins and disulphide reductases, 

and maintain sufficiently low pH for optimal proteolytic activity (Blum, Wearsch & Cresswell, 2013; 
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Trombetta & Mellman, 2005; Neefjes, 1999). In these compartments, both internalised antigen 

proteolysis and pMHC-II complex formation takes place. The transmembrane MHC-II α and β chains 

are assembled in the ER and associate with a non-polymorphic chaperone protein, the invariant chain 

(Ii). The Ii chain functions to stabilise the newly synthesised MHC-II molecule, and direct the Ii-MHC-II 

complex to an endosomal-lysosomal compartment (Cresswell, 1996). MHC-II cannot bind to antigenic 

peptides until Ii is proteolytically degraded and dissociates from the Ii-MHC-II complex. Hence, Ii is 

gradually digested, leaving a residual class II-associated invariant chain peptide (CLIP) which remains 

bound to the peptide-binding groove of MHC-II. The enzyme HLA-DM (H2-DM in mice), regulated by 

HLA-DO (H2-DO), facilitates the removal of CLIP so that antigenic peptides can be loaded onto nascent 

MHC-II molecules (Denzin, 2013). The pMHC-II complex is only trafficked to the plasma membrane 

once CLIP is substituted and the MHC-II is stabilised with an endosomal peptide (Münz, 2012; 

Trombetta & Mellman, 2005).  

 

 

 

Figure 1.5. Crystal structure of peptide bound to MHC Class I and Class II. The two classes of MHC 

adopt similar overall structures despite different compositions. (A) MHC-I consists of a variable heavy 

chain (grey) folded with the invariant β2-m molecule (cyan). (B) MHC-II is composed of an α-chain 

(grey) and β-chain (cyan). (C) The binding cleft is MHC-I has a closed configuration thereby limiting the 

size of the peptide (red) to 8-14 amino acids in length. (D) The MHC-II peptide-binding groove is open-

(A) (B) 

(C) (D) 
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ended and enables longer peptides to form an elongated conformation with the peptide N- and C-

termini extending outside the groove. Adapted from Attaf et al., (2015). 

 

1.7. TCR-pMHC interactions 

1.7.1. TCR signalling complex 

TCR signalling is essential during multiple stages in the T cell lifecycle: for lineage commitment and 

thymic selection during development, the survival of naive T cells following emigration from the 

thymus, and for the differentiation of these cells into effector populations during an immune response 

(Call & Wucherpfennig, 2005). The signalling event relies on the participation of multiple membrane-

spanning molecules surrounding the TCR microenvironment. In the αβT cell, the TCR signalling 

complex is comprised of the non-covalent association between the clonotypic αβTCR heterodimer for 

antigen recognition and the invariant CD3 subunits for signal transduction (Rossjohn et al., 2015).  

The TCRα and β chains possess short cytoplasmic tails without signalling motifs, hence signal 

transmission is mediated via immunoreceptor tyrosine-based activation motifs (ITAMs) in the 

cytoplasmic domains of the TCR-associated CD3 subunits (Call & Wucherpfennig, 2005; Arnaud et al., 

1997). The signal-transducing CD3 component is assembled from three distinct disulphide-linked 

dimers: CD3γε, CD3δε and CD3ζζ (Kuhns & Badgandi, 2012; Wucherpfennig et al., 2010). Upon TCR-

pMHC engagement, the cytoplasmic ITAM motifs in the CD3 dimers are phosphorylated by the Src-

family kinase Lck, constituting the earliest detectable biochemical consequence of TCR ligation 

(Wucherpfennig et al., 2010; Weiss & Littman, 1994). Each ITAM has two tyrosines and two aliphatic 

residues separated by six to twelve amino acids (Yxx[L/I]x(6-12)Yxx[L/I]). Phosphorylation of both 

tyrosines by Lck facilitates docking for Src homology 2 domain (SH2)-containing proteins such as ZAP-

70, which mediates further downstream signalling for T cell activation (Machida & Mayer, 2005; 

Hatada et al., 1995). Similar to the TCR, CD3γε and CD3δε heterodimers are formed through disulphide 

interactions between two β strands in their extracellular Ig domains (Sun et al., 2004; Kjer-Nielsen et 

al., 2004; Arnett, Harrison & Wiley, 2004; Sun et al., 2001). In contrast, the CD3ζζ homodimer, which 

exhibit a very small ectodomain of nine amino acids, are linked predominantly via contacts within the 

TM domain (Call & Wucherpfennig, 2005; Call et al., 2002). 

In humans and mice, the αβTCR-CD3 signalling complex exists in a 1:1:1:1 stoichiometry for the 

αβTCR:CD3γε:CD3δε:CD3ζζ dimers, although higher-order stoichiometry have also been described 

(Schamel et al., 2005). The composition of the pre-TCR and γδTCR signalling complexes differ from 

αβTCR. Mice deficient in CD3γ, CD3ε or CD3ζ subunits show a near-complete arrest at the DN stage 
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during thymocyte development, the point where pre-TCR signalling is required for further progression 

(Dave, 2009). However, in CD3δ-deficient mice, thymocyte development proceeded to the DP stage, 

suggesting the pre-TCR was functionally intact, and the γδT cells were unperturbed (Dave et al., 1997). 

Collectively, these studies suggest CD3γ, CD3ε and CD3ζ are necessary for all developmental stage and 

T cell lineages, whereas the CD3δ subunit may be dispensable for pre-TCR and γδT cell function in 

mice. Indeed, murine γδT cells have been shown to lack CD3δε, yielding a stoichiometry where there 

are only two CD3γε and one CD3ζζ for every γδTCR (Hayes & Love, 2006). In contrast, the human γδTCR 

incorporates CD3δε (Siegers et al., 2007). 

The TCR and CD3 domains are connected via the basic and acidic residues in their respective TM 

regions and their ectodomain interactions are thought to contribute to TCR-CD3 specificity (Call & 

Wucherpfennig, 2005; Call & Wucherpfennig, 2004; Cosson et al., 1991). Three basic residues are 

located in the TM region of the TCR heterodimer: two in TCRα and one in TCRβ. Conversely, each CD3 

subunit contains a single aspartic or glutamic acid in their TM domains, creating a pair of acidic 

residues in each dimeric molecule. The TCRα chain associates with CD3δε and TCRβ with CD3γε 

through lysine residues positioned near the centre of their TM domains. Additionally, TCRα associates 

with the aspartic acid pair of the CD3ζζ homodimer through an arginine residue in the N-terminal third 

of the TM domain (Call, Pyrdol & Wucherpfennig, 2004; Call et al., 2002). The identity and relative 

positions of the three basic TM residues are fully conserved among the pre-TCR, αβTCR and γδTCR, 

implying a similar assembly mechanism for all TCR forms (Wucherpfennig et al., 2010; Call et al., 2002). 

 

1.7.2. Co-receptors 

In addition to cognate TCRs, the MHC molecules are recognised by their respective co-receptors CD4 

and CD8. CD4 and CD8 are Type I integral membrane glycoproteins expressed by MHC-II-restricted Th 

and MHC-I-restricted cytotoxic T cells, respectively, but lack the peptide specificity of the TCR 

(Germain, 2002).  

CD4 consists of four extracellular Ig-like domains (D1 to D4), a TM region and a short cytoplasmic tail 

(Moldovan et al., 2002). The backbone of the Ig domains are assembled from seven β strands which 

form two β sheets (Wouters, Lau & Hogg, 2004; Brady et al., 1993). CD4 exists in three different forms 

on the cell surface, defined by the state of the D2 cysteine residues: an oxidised monomer, a reduced 

monomer and a covalent dimer linked through the D2 cysteines. The D1 and D4 disulphides are 

conventional cross-sheet Ig disulphides, while the D2 is unusual in that it forms a ‘cross-strand’ 

disulphide bond which links adjacent strands within the same β sheet (Wouters, Lau & Hogg, 2004). 
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The D2 cross-strand is cleaved on the cell surface by thioredoxin, which is a thiol-disulphide 

oxidoreductase secreted by CD4+ T cells (Matthias et al., 2002; Tagaya et al., 1989). Cleavage of the 

D2 bond leads to the formation of disulphide-linked homodimers of CD4 connected via the D2 

cysteines (Maekawa et al., 2006; Lynch et al., 2003). The disulphide-linked dimer is the preferred 

immune co-receptor for binding to APCs, whereas HIV enters susceptible cells through the monomeric 

reduced CD4 form (Azimi et al., 2010; Maekawa et al., 2006). 

Two isoforms of CD8 have been identified: disulphide-linked CD8αβ heterodimers or a CD8αα 

homodimers, which differ in their expression and function (Gangadharan & Cheroutre, 2004). The 

CD8αβ isoform serves as the true αβTCR co-receptor to enhance the functional avidity and is 

constitutively expressed on MHC-I-restricted T cells. In comparison, the CD8αα homodimer identifies 

populations of T cells distinct from conventional MHC-restricted CD4+ or CD8αβ+ T cells, and are 

expressed predominantly in intraepithelial lymphocytes (Cheroutre, 2004). Despite insignificant 

sequence homology between the CD8α and CD8β subunits, crystal structure analysis of the CD8 

homodimer and heterodimer ectodomains demonstrated striking resemblance in size, shape and 

surface electrostatic potential of CDRs of their paired Ig variable region-like domains (Chang et al., 

2005; Devine & Kavathas, 1999). BIAcore binding data have indicated that soluble forms of both 

CD8αβ and CD8αα have similar affinity for classical MHC-I (Kern et al., 1999; Garcia et al., 1996b). 

However, when expressed as cell surface molecules, the coordinated binding of CD8αβ with TCR-

engaged MHC-I is much stronger than membrane-bound CD8αα (Bosselut et al., 2000; Witte, Spoerl 

& Chang, 1999). Collectively, these observations imply that the CD8β ectodomain and/or TM and 

cytoplasmic regions significantly contribute to enhance CD8-MHC interactions (Cheroutre & Lambolez, 

2008). Furthermore, CD8αα has been described as a co-repressor that negatively regulates T cell 

activation (Cheroutre & Lambolez, 2008; Denning et al., 2007; Gangadharan et al., 2006). 

The MHC binding sites for the CD4 and CD8 co-receptors differ from the peptide-binding domains that 

are recognised by the TCR, permitting both TCR and co-receptor to simultaneously bind to a single 

MHC molecule (Rudolph & Wilson, 2002; Gao et al., 1997). Structural analyses of CD8αα-MHC co-

crystals have shown remarkable asymmetrical interaction where one CD8α chain (CD8α1) contributes 

most MHC contact, binding primarily to the α3 domain of the MHC-I molecules, with smaller 

interactions with β2-m and α2 domains, and the other CD8α2 subunit provides some contact with the 

α3 domain only (Rudolph, Stanfield & Wilson, 2006; Kern et al., 1999; Gao et al., 1997). The specific 

binding site of the CD8β subunit is not clear, but is proposed to be analogous to the asymmetric 

interaction of CD8αα homodimers, occupying either the CD8α1 or CD8α2 position (Cheroutre & 

Lambolez, 2008). While both domains of CD8 dimers cooperate to bind to MHC-I, only the N-terminal 

variable-like D1 domain of CD4 contacts the concavity between the non-polymorphic MHC-II α2 and 
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β2 domains, with the second tandem CD4 domain being distal to the interface (Rudolph, Stanfield & 

Wilson, 2006). 

The binding of co-receptors to MHC molecules is thought to augment T cell antigen sensitivity 

(triggering threshold) and response to ligands primarily through the recruitment of essential kinases 

to the intracellular portion of the TCR-CD3 signalling complex (Artyomov et al., 2010; Li et al., 2004; 

Purbhoo et al., 2001). The critical role of Lck kinase association with the cytoplasmic tails of co-

receptors in triggering T cell activation has been elucidated. Indeed, co-receptor-bound Lck mediates 

phosphorylation of ITAM motifs in the cytoplasmic tails of CD3 which is an essential initiation step for 

T cell signalling (Nika et al., 2010; Veillette et al., 1988). Additionally, the CD8 co-receptor facilitates 

enhancement of the TCR-pMHC-I association rate (Laugel et al., 2007; van den Berg et al., 2007; 

Gakamsky et al., 2005; Pecht & Gakamsky, 2005), and the stabilisation of TCR-pMHC-I interactions 

(Wooldridge et al., 2005; Luescher et al., 1995). In contrast, CD4 does not stabilise interactions of TCR 

with pMHC-II complexes (Huppa et al., 2010; Hamad et al., 1998).  

In addition to TCR and co-receptor engagement with pMHC, the classical two-signal hypothesis posits 

that a secondary stimulus is necessary for T cell activation. Two receptors have been described to 

regulate this specific signal: the co-stimulatory CD28 and the co-inhibitory CTLA4 (cytotoxic T 

lymphocyte antigen 4) proteins. CD28 is constitutively expressed on Th and cytototoxic T cells, and 

provides an essential co-stimulatory signal for cell growth and survival following binding with B7-1 

(CD80) and B7-2 (CD86) on APCs (Rudd, Taylor & Schneider, 2009). Conversely, CTLA4 is induced upon 

T cell activation and functions to inhibit immune responses by engaging in competitive binding with 

CD28 (Yao et al., 2011). When CTLA4 is upregulated, expression of CD28 is reduced by endocytosis 

(Rudd, Taylor & Schneider, 2009). Together, the modulation of CD28 and CTLA4 expression on T cells 

provide a regulatory mechanism which promotes T cell responses against non-self and tumour 

antigens and suppresses excessive and autoreactive responses (Chen & Flies, 2013). 

 

1.7.3. TCR-pMHC binding geometry 

Structural studies of TCRs in their free and MHC-bound states have demonstrated that the TCR-pMHC 

interaction abides to certain ‘rules of engagement’ (Attaf et al., 2015). Most human and mouse 

complexes exhibit a typical binding mode, which maximises the contact between the αβTCR and the 

MHC-bound peptide (Rudolph, Stanfield & Wilson, 2006; Garcia et al., 1996a; Garboczi et al., 1996). 

Generally, the hypervariable CDR3 loops bind to the peptide and the germline-encoded CDR1 and 

CDR2 primarily engage with the MHC molecule (Rossjohn et al., 2015). However, the CDR1α and 
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CDR1β loops frequently contribute to peptide recognition by binding over the N-terminal and C-

terminal peptide regions respectively. Further, the CDR3 loops can also contribute to MHC binding 

and stabilise the TCR-pMHC complex (Wucherpfennig et al., 2010; Borg et al., 2005; Wu et al., 2002). 

Upon MHC ligation, the CDR3 loops undergo conformational change, which may indicate involvement 

in TCR cross-reactivity (Rudolph, Stanfield & Wilson, 2006; Lee et al., 2004). Studies have also shown 

that the germline loops can make variable contributions to TCR-pMHC engagement. In some cases, 

CDR1 and CDR2 are responsible for most of the total interaction energetics, whereas in others, the 

CDR3 loops are energetically dominant (Godfrey, Rossjohn & McCluskey, 2008). 

Crystal structures of TCR-pMHC complexes have also revealed that TCRs engage with pMHC ligands in 

an approximately diagonal or orthogonal docking geometry whereby the TCR crosses the long axis of 

the MHC peptide-binding groove at a semi-conserved angle (ranging 22°-87°; Rudolph, Stanfield & 

Wilson, 2006). In this binding orientation, the TCRβ chain resides over the α1 helix of the MHC and the 

TCRα chain is positioned over the other MHC helix (α2 in MHC-I, corresponding to β1 of MHC-II; 

Rossjohn et al., 2015; Adams et al., 2011; Rudolph, Stanfield & Wilson, 2006). Several theories have 

been proposed to explain the invariant orientation. Particularly, the presence of key amino acids in 

the germline CDRs or the absence of blocking amino acids on MHC has been suggested to contribute 

to this stable polarity (Feng et al., 2007; Mazza & Malissen, 2007). Some amino acids in the CDR1 and 

CDR2 loops have shown a preference to bind to an MHC α-helix region that forms a cup. Their location 

on the MHC surface may also be responsible for the docking angle. The vital regions of the TCR on the 

MHC surface are commonly in the same position engaging peptide amino acids 4 to 6 in MHC-I and 

peptide amino acid 5 in MHC-II (Marrack et al., 2008). Extrinsic factors such as co-receptor steric 

influences or CDR3-mediated peptide selection during thymic selection can also be important 

determinants of the TCR-pMHC binding mode (Collins & Riddle, 2008; Huseby et al., 2005; Buslepp et 

al., 2003). Further, the N-terminus of the peptide can be involved in the interface with the TCR 

(Madura et al., 2015). Consequently, the TCR-pMHC docking geometry is considered to influence the 

other components of the TCR-signalling complex, such as the CD4 and CD8 co-receptors, and may 

likely affect efficiency of T cell signalling (Rudolph, Stanfield & Wilson, 2006).  

 

1.7.4. TCR cross-reactivity 

The clonal selection theory proposed that individual T lymphocytes are specific for a single pMHC 

antigen (Sewell, 2012). However, although a large repertoire of TCRs is generated as a result of 

combinatorial and junctional diversity, the theoretical number of possible antigen receptors is 

dwarfed by the vast array of potential antigens that can be encountered (Mason, 1998). Unlike the 
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BCR, the protein sequence of the TCR remains fixed after thymocyte development, and the TCR is not 

thought to undergo affinity maturation. The native T cell repertoire is expected to be able to respond 

to a majority of foreign antigens despite having never encountering them before and being unable to 

adapt to them at a protein sequence level (Sewell, 2012). Hence, each TCR is evoked to be inherently 

highly cross-reactive. Indeed, comprehensive analysis of TCR cross-reactivity demonstrated that a 

single TCR can recognise more than one million different peptides of a defined length presented in the 

context of a single MHC-I molecule (Wooldridge et al., 2012). TCRs are further able to recognise with 

high frequency distinct peptides presented by non-self MHC, known as alloreactivity (Felix & Allen, 

2007). Additionally, a single TCR has shown to bind to both pMHC-I and pMHC-II ligands (Stadinski et 

al., 2011; Yin et al., 2011; Rist et al., 2009). This remarkable binding plasticity is achieved through a 

number of different molecular mechanisms, where the TCR can adopt either a rigid and focused 

mechanism or change the conformation of the flexible CDR loops (Bulek et al., 2012; Yin & Mariuzza, 

2009; Garcia, Teyton & Wilson, 1999). 

The intrinsic ability of TCRs to exhibit cross-reactivity has a number of important implications, both 

positive and negative. Firstly, it facilitates effective immune cover by a limited number of TCRs against 

a virtually unlimited number of foreign peptides that can bind to self-MHC molecules. Second, far 

fewer T cells are needed to inspect a cell presenting a foreign or malignant peptide to trigger an 

immune response, ensuring a more rapid response rate. The idea of extensive TCR cross-reactivity also 

implies that each peptide can be recognised by several TCRs, and that T cell responses are polyclonal. 

Pathogens are less likely to escape immune recognition through altering their antigens, as mutations 

that escape one TCR may still be recognised by another. A further advantage of TCR cross-reactivity is 

heterologous immunity, where an individual T cell can target several infections through different 

peptides (Welsh & Selin, 2002). However, TCR cross-reactivity and heterologous reactivity can also 

result in severe immunopathology (Welsh et al., 2010). The heterologous immune modulation of the 

CD4+ and CD8+ T cell compartments may contribute to incomplete protection leading to increased 

pathogen load and disease progression (Sharma & Thomas, 2013). Notably, several studies have also 

reported the induction of autoimmunity by molecular mimicry, in which exogenous microbial peptides 

with sequence identity to self-peptides induce activation of self-reactive T cells (Wucherpfennig & 

Sethi, 2011). Further, the allorecognition of self-peptides on non-self (allogeneic) MHC poses a 

significant challenge to organ transplantation. This mechanism is likely to be responsible for the clinical 

rejection of MHC-mismatched organs following the transplantation procedure (Ely et al., 2008). As a 

result, transplant candidates and recipients are at increased risk of complications and required to take 

immunosuppressive drugs, which is associated with adverse side effects (Attaf et al., 2015; Noris et 

al., 2007). 
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1.8. MHC restriction 

MHC restriction is an essential feature of αβT cells which dictates that TCRs only recognise antigens 

as peptide fragments bound to MHC molecules on the surface of APCs. The mechanism by which MHC 

restriction is imposed on the TCR repertoire remains debatable. Two principal hypotheses have been 

proposed to account for the focus of αβTCRs on MHC: the germline and selection models. 

According to the germline model, MHC restriction is intrinsic to the TCR structure because TCR and 

MHC have co-evolved to conserve the germline-encoded TCR sequences with the ability to bind MHC, 

and have discarded those that lack MHC reactivity (Garcia et al., 2012; Yin, Wang & Mariuzza, 2012; 

Scott-Browne et al., 2011; Adams et al., 2011; Marrack et al., 2008; Feng et al., 2007). Specific amino 

acids in the germline-encoded CDR1 and CDR2 loops of the TCRα and β chains are conserved during 

evolution because they impose MHC reactivity on TCRs through specific contacts with the MHC α-

helices that form the peptide-binding groove. As mentioned above, structural studies have provided 

evidence for recurrent interactions between MHC and the CDR1 and CDR2 loops (Garcia et al., 2012; 

Marrack et al., 2008; Rudolph, Stanfield & Wilson, 2006). Mutation of key amino acids within the CDR2 

loops to alanine reduced interaction with MHC molecules and resulted in impaired development of 

the TCR repertoire (Scott-Browne et al., 2009). Conversely, mutations to the CDR3 sequences 

preserved MHC recognition, further supporting the notion that the conserved germline CDR loops play 

a predominant role in engaging with MHC (Rubtsova et al., 2009). 

An alternative to the germline theory, the selection model posits that MHC restriction is not intrinsic 

to TCR structure but is imposed by CD4 or CD8 co-receptor engagement (Garcia et al., 2012; Yin, Wang 

& Mariuzza, 2012; Holland et al., 2012; Van Laethem, Tikhonova & Singer, 2012; Adams et al., 2011; 

Van Laethem et al., 2007). In this view, thymic selection is responsible for enriching the peripheral T 

cell repertoire with MHC-specific TCRs and purging the MHC-independent TCRs. During thymocyte 

development, the preselection DN thymocytes express αβTCRs that can recognise a diversity of 

ligands, both MHC and non-MHC, similar to antibodies. However, only TCRs with specificity for MHC 

and co-receptor signalling can mediate positive selection (Rangarajan & Mariuzza, 2014; Tikhonova et 

al., 2012). The critical role of the co-receptors is to recruit the Src tyrosine kinase Lck to the TCR-CD3 

signalling complex following co-receptor binding to MHC. The targeted delivery of Lck occurs via its 

association with the cytoplasmic tail of CD4 or CD8. Only when MHC ligands are engaged will Lck be 

positioned and concentrated to initiate signalling through the phosphorylation of CD3 ITAMs. 

Thymocytes that express αβTCRs and co-receptors that do not recognise MHC cannot transduce 

intracellular signals via Lck and are not positively selected (Van Laethem, Tikhonova & Singer, 2012). 
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The study of mice deficient in MHC-I, MHC-II and co-receptors, designated as ‘quad-deficient mice’, 

demonstrated that selection of MHC-specific TCRs was strictly governed by the CD4 or CD8 co-

receptors. The deletion of both co-receptors in MHC-deficient mice did not impair T cell signalling and 

allowed the selection of T cells with MHC-independent specificities. MHC-independent signalling was 

presumably triggered by intracellular, co-receptor-free Lck. These observations imply a dominant role 

for co-receptors in imprinting MHC bias in addition to promoting cell signalling (Van Laethem et al., 

2007). Complementary work from our group indeed suggested that the TCR structure is not hardwired 

to engage with MHC ligands. TCRs lacking germline-encoded CDR1 and CDR2 loops via extensive in 

vivo diversification were still capable of engaging with MHC and directing thymic positive selection 

(Holland et al., 2012; Attaf et al., unpublished). 

 

1.9. Therapeutic use of the αβTCR 

Harnessing the potential of T cell immunity to direct immunotherapy represents a promising and 

effective approach for combating tumour antigens. Adoptive T cell therapy, which involves the 

isolation and ex vivo expansion of tumour-specific T cells before transfer into immunodepleted 

patients, has shown to mediate cancer regression in patients with malignant melanoma (Morgan et 

al., 2006). However, the generation of tumour-specific T cells via this strategy is often disadvantaged 

in part due thymic selection and TCR cross-reactivity. Thymic selection subjects the T cell repertoire 

to positive selection for TCRs with intermediate affinity while those exhibiting a much higher affinity 

are clonally deleted during negative selection (Goldrath & Bevan, 1999; Stockinger, 1999). Although 

this mechanism operates to prevent autoimmunity, the effective tumour recognition is limited as most 

tumour antigens are derived from normal self-peptides and over-expressed on tumour tissues 

(Gattinoni et al., 2006; Boon, Coulie & Van Den Eynde, 1997; Kawakami et al., 1994). Additionally, 

intrinsic T cell cross-reactivity which provides immune cover implies that an individual TCR-pMHC 

interaction is highly likely to be suboptimal (Sewell, 2012). Altogether, these factors complicate the 

isolation of effective high-affinity TCRs that mediate more effective tumour rejection for therapeutic 

purposes (Malecek et al., 2013; Cole et al., 2007).  

Thus, recent advances have focused on improving the binding of any given TCR to its cognate antigen 

by engineering high-affinity TCRs in vitro using yeast, phage or mammalian T cell display systems as 

well as computational design (Malecek et al., 2013; Linette et al., 2013; Smethurst, 2013; Hawse et al., 

2012; Chervin et al., 2009; Zhao et al., 2007; Weber et al., 2005; Kieke et al., 1999). The transfer of 

TCR genes incorporating these augmentations can provide patients with autologous T cells that are 

genetically enhanced with high-affinity TCRs for tumour immunotherapy (Tan et al., 2015). High-
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affinity TCRs as soluble molecules to induce cancer regression further opens up the therapeutic 

benefits of TCRs (Li et al., 2005; Boulter et al., 2003; Holler et al., 2000). Soluble TCRs can be fused to 

other molecules, such as a CD3-specific Fab fragment to suppress tumour growth in vivo (Liddy et al., 

2012). These bispecific T cell-engaging TCRs recruit polyclonal T cells via the CD3-specific Fab 

component but do not induce T cell activation by themselves.  Once these molecules interact with a 

target cell surface, they become potent activators of tumour-specific T cell responses.  

Even though such strategies show great potential, the development of such enhanced TCRs in vitro 

dictates that modified T cells carry a risk of being autoreactive. The absence of in vivo thymic selection 

prior to adoptive cell transfer allows the existence of self-reactive T cells which may cause host tissue 

damage. Indeed, a recent trial of a TCR specific for the protein melanoma-associated antigen (MAGE) 

underlined this serious problem. Following transfusion of T cells with an enhanced MAGE-specific TCR, 

two cancer patients had developed rapid and fatal heart disease. Subsequent studies revealed that 

the modified TCR was also capable of cross-reaction with MHC-I-bound peptide derived from the heart 

protein titin (Linette et al., 2013; Cameron et al., 2013). 

 

1.10. Aims of the project 

Adoptive cell therapy using TCR gene transfer is a promising strategy for targeting leukaemia and solid 

tumours (Heemskerk, 2010; Rosenberg et al., 2008), especially as the TCR can be modified for 

improved performance. The current techniques used involve engineering high-affinity TCRs in vitro 

using computational design, or yeast, phage or mammalian T cell display systems. However, the 

limitations of in vitro generation of high-affinity TCRs include the risk of creating autoreactive TCRs 

that may be deleterious to the host tissue. This study is a proof-of-principle study to functionally 

enhance TCR binding by employing a novel in vivo mutagenesis approach. This technique involves 

inserting a gene recombination cassette into the peptide-binding CDR3 region of established TCRs 

(Holland et al., 2012). The recombination cassette is composed of two distinct RSSs separated by a 

spacer. In this in vivo system, we induce the somatic V(D)J recombination machinery to cleave out this 

cassette, subsequently introducing junctional diversity via addition, deletion or substitution of random 

nucleotides in the targeted CDR loop. This generates a pre-selection repertoire that undergoes 

positive and negative selection before entering the periphery in a mature naïve state.  

To test out novel diversifying technique, we utilise two existing TCR templates that recognise the 

epitopes of the male-specific HY minor histocompatibility antigen: the Marilyn and the MataHari TCRs, 

which are expressed natively in CD4+ and CD8+ T cells respectively (Perez-Diez et al., 2007; Valujskikh 
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et al., 2002). As the CDR3 region is responsible for engaging with the MHC-bound peptide fragment 

and naturally subject to hypervariability, we diversify each TCR by designing the recombination 

cassette into the centre of their respective CDR3β loops. In vivo recombination is permitted through 

applying the diversifying TCR in retrogenic mice (Holst et al., 2006). The retrogenic methodology 

provides key advantages for the study, which includes facilitating rapid generation and analysis of TCR 

transgenic mice. This system also allows the generation of TCR variants that have auditioned for 

thymic selection which eliminates self-reactive cells, and produces MHC-restricted T cells that 

compete to be functionally ‘immunodominant’ instead of focusing solely on increased affinity.  

 In the thesis, we aim to address: 

1. Design of the novel in vivo mutagenesis approach, 

2. The feasibility of this technique through the generation of TCR variants and immunologically 

competent T cells, 

3. The extent of the modifications introduced through the diversifying approach by sequence 

comparison between the TCR template and variants, 

4. Whether TCRs lacking germline-encoded CDRs can still mediate TCR-pMHC interactions and 

result in MHC restriction.  
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Chapter 2  
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Chapter 2: Overview of the in vivo optimisation approach and design of the 

diversifying αβTCR constructs  

 

2.1. Introduction 

Most αβT cells recognise peptide-MHC molecules on APCs through an interaction mediated by the cell 

surface expressed TCR and co-receptor. The TCR is a heterodimer of an α and a β chain, with each 

chain comprised of a constant and variable domain. The constant domains anchor the TCR to the cell 

membrane and associate with the invariant CD3 signalling complex, whereas the variable domains 

confer the antigen-binding site (Rudolph, Stanfield & Wilson, 2006). Within each variable domain are 

three regions where sequence variability is concentrated, termed the hypervariable or 

complementarity-determining regions (CDR). CDR1 and CDR2 are encoded within the V gene segment 

and interact primarily with the MHC molecule, whereas the CDR3 binds mainly with the peptide 

antigen and is formed through the process of V(D)J recombination (Turner et al., 2006; Al-Lazikani, 

Lesk & Chothia, 2000). 

V(D)J recombination is an essential mechanism for the development of T and B cells allowing 

formation of vast antigen receptor repertoires and the establishment of a functional adaptive immune 

system (Bassing, Swat & Alt, 2002). V(D)J recombination generates the variable domains of antigen 

receptors from assembly of one gene segment each from arrays of V, D and J gene segments during 

lymphocyte development (Chun et al., 1991). Gene rearrangement is directed by recombination signal 

sequences (RSS) that flank all V, D and J segments. RSS consist of relatively conserved heptamer and 

nonamer sequences that are separated by a spacer of either 12 or 23bp. Efficient recombination 

occurs between a pair of gene elements with RSS that have different spacer lengths, referred to as the 

12/23 rule (Jung & Alt, 2004; Fugmann et al., 2000). 

The recombination process is initiated by a pair of lymphoid-specific recombinase proteins RAG1 and 

RAG2, encoded by the recombinase-activating genes RAG1 and RAG2, respectively. The RAG proteins, 

with the help of HMG proteins, associate a pair of dissimilar RSSs into a synaptic complex and generate 

double-stranded breaks between the RSSs and coding segments. Ubiquitously expressed components 

of the NHEJ pathway repair these DNA breaks, forming precise signal end joints and imprecise coding 

end joints (Bassing, Swat & Alt, 2002). Nucleotide deletion and TdT-mediated, non-templated 

nucleotide insertion leads to extensive diversification at the resulting coding joint in the CDR3. 

Productive rearrangement is vital because only in-frame VDJ junctions can allow the translation of a 

complete TCR chain structure. Combinatorial association of V, D and J segments, pairing of the TCRα 
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with TCRβ chains, along with imprecise joining of the coding ends, produce the vast diversity of the T 

cell repertoire.  

As such, the amino acid content in the CDR loops are major determinants of TCR binding specificity 

and affinity. Indeed, there have been many studies highlighting enhanced TCR binding through the 

substitution of the amino acid residues within the CDR loops. This includes the use of in vitro yeast 

(Weber et al., 2005; Holler et al., 2000) or phage (Li et al., 2005) display systems, as well as mammalian 

cell display (Chervin et al., 2008; Kessels et al., 2000). Understandably, the purpose of generating 

higher affinity TCR was to overcome the problems associated with malignant cells. T cells that develop 

in the thymus are selected on self-pMHC and their affinity for self must be sufficiently low in order to 

prevent autoimmunity upon release into the periphery (Gallegos & Bevan, 2006; Kappler, Roehm & 

Marrack, 1987). However, many self-antigens are expressed on tumour tissues, and the most effective 

T cells against these antigens would have been deleted during thymic selection (Chervin et al., 2008; 

Dudley & Rosenberg, 2003; Ho et al., 2003). The underlying problem of generating higher affinity TCRs 

is the inevitable introduction of T cells that may respond to healthy tissues and result in autoimmunity. 

Furthermore, in vitro generation of modified TCRs may lead to cross-reactivity to self-pMHC. 

In this study, we have developed a novel approach that focuses on isolating functionally optimised 

TCRs rather than affinity enhancement. In order to circumvent autoimmunity, the optimisation 

technique involves extensive in vivo diversification of a target CDR of an established TCR that is 

subsequently subject to positive and negative thymic selection. TCR variants were generated using a 

site-directed mutagenesis system based on redirecting the V(D)J recombination machinery. A 

retrogenic approach was employed to facilitate the in vivo processes necessary for TCR diversification 

and screening. By challenging the retrogenic TCR repertoire with their cognate antigen, we reasoned 

that ‘optimal’ TCRs would direct enhanced immunological T cell function allowing their isolation based 

on clonal ‘immunodominance’. This chapter describes the design of the mutagenesis system and 

outlines the procedures in the generation of retrogenic mice to optimise two types of male-specific 

TCRs. 

 

2.2. Design of the recombination cassette 

In order to mediate diversification using the thymocyte V(D)J recombination machinery within the 

selected TCR CDR, we must provide the RSS for the recombinase enzymes to identify and initiate the 

process. Our technique involves the use of the novel ‘recombination cassette’ that is appropriately 

inserted into the targeted CDR of the TCR. Indeed, this mutagenesis system is adapted from the 
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concept used by Correia-Neves et al. (2001) that introduced focused diversity to the V-J junction of 

the TCRα chain. In their study, the authors utilised artificial rearrangement substrates between a single 

Vα region and two Jα elements to create a TCRα minilocus transgene. Similar to our system, their 

rearrangement substrate contains two natural RSSs from Vα2.3 and Jα26 segments linked by a 547bp 

sequence (Koop et al., 1992; Okazaki & Sakano, 1988). 

The recombination cassette used in this study utilises the same elements used previously by our group 

(Holland et al., 2012). In the present study to limit vector size we modified the recombination cassette 

to use a shorter RSS linker of 400bp instead of 500bp. The recombination cassette is comprised of the 

murine Vβ8.2 RSS upstream of the murine Dβ1 RSS interlinked by 400bp consisting of genomic 

sequence flanking the RSS (Figure 2.1). The Vβ8.2 and Dβ1 RSS contain a conserved palindromic 

heptamer and A/T-rich nonamer connected by 23 and 12 non-conserved nucleotides respectively. This 

combination of RSSs adheres to the ‘12/23 rule’, where only RSSs with dissimilar nucleotide spacer 

lengths permit efficient recombination between gene segments (Bassing, Swat & Alt, 2002). 

Additionally, the murine Vβ8.2 and Dβ1 RSSs have displayed efficient recombination with each other 

(Wilson, Maréchal & MacDonald, 2001). 

 

 

Figure 2.1. Design of the novel recombination cassette to diversify TCR. The nucleotide sequences of 

the murine Vβ8.2 (7/23/9) and Dβ1 (9/12/7) RSS used in the recombination cassette are defined (in 

boxes), connected by an inter-RSS genomic linker. 

 

2.3. Design of multicistronic retroviral vectors for expression of CDR3β diversifying αβTCRs 

This study investigated the diversification of two male-specific (histocompatibility Y chromosome, HY) 

H2b-restricted TCRs, Marilyn and MataHari from which TCR transgenic strains have been produced 

(Grandjean et al., 2003; Valujskikh et al., 2002). CD4+ T cells from the Marilyn transgenic strain express 

CACAGTG.ATGTGGGGTTTCCTCCCCTCTGC.ACAGAAAGGTTACATCACGTCATTTCACACTCGTTGTT

AGAAATGTGGTGCATTCTTCACCACCGTTCTAAGAAGTCCAGAGCCTAAGTTAGCCCCTTGAAAAGGC

TCAAATTTGTCACACACAGAGTCTTGATTGTGGGACAAGGTATAACCTCTGAGTGACGCACAGCCTTA

GGGCAAGGGCAAAGCTAGGCTAGATTGGGGGCTGTCCAGCGCCAAGAAAAAAGAACATTCAAAAG

AAGAACAGGGGGTAAAGAGGAAACCCCTGCATTAGCTCGCATCTTACCACCACCTTGCACAATGGGG

GTCGGGGGGGGATGTCACCTTCCTTATCTTCAACTCCCCCCCAGAGGAGCAGCTTATCTGGTGGTTTC

TTCCAGCCCTCAAGGGGTAGACCTATGGGAGGGTCCTTTTTTGT.ATAAAGCTGTAA.CATTGTG 

mVβ8.2 RSS 

mDβ1 RSS 
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a HY-specific TCR that recognises the NAGFNSNKANSSRSS peptide from the Dby gene, presented by 

MHC Class II H2-Ab. The CD8+ T cells from MataHari mice are specific for the HY peptide WMHHNMDLI 

derived from the Uty gene complexed with MHC Class I H2-Db. Both Dby and Uty are expressed by 

most mammalian male nucleated cells.  

This in vivo diversification approach has been shown to be effective in generating variants of wild-type 

(WT) germline CDR1 and CDR2 loops (Holland et al., 2012) and can potentially be used to mutate any 

target protein during lymphocyte development. The CDR3 loops of the TCRα and β chains represent 

the site of peptide recognition and contact, and have been highlighted to contain key residues that 

determine peptide specificity (Kessels et al., 2000; Davis & Bjorkman, 1988; Engel & Hedrick, 1988). 

Structural analysis of the diagonal binding between the TCR and pMHC molecule revealed the TCRα 

CDR3 loops to interact primarily with the N-terminus of the MHC-bound peptide, whereas the CDR3 

of the TCRβ bind with the C-terminus (Rudolph, Stanfield & Wilson, 2006). While the CDR3α is formed 

as a result of recombination of two gene segments (V and J), the structure of the CDR3β incorporates 

an additional D segment between the V and J genes. With additional junctional diversity, the CDR3β 

region is the most diverse region of the TCR (Davis & Bjorkman, 1988). Thus CDR3β is highly unique 

and can be used as a marker of T cell clones (Wlodarski et al., 2005; Plasilova, Risitano & Maciejewski, 

2003). Furthermore, the CDR3β region has been shown to be more critical in determining TCR affinity 

(Malecek et al., 2013). Hence, we have chosen to mutate the CDR3β loop by inserting the 

recombination cassette into the centre of each WT TCR CDR3β in order to diversify their binding 

affinity to identify functionally optimal receptors (Figure 2.2). Because of this, the constructs are 

termed ‘CDR3β diversifying’ throughout this study. 

Two systems for designating TCR genes have been widely used: the WHO-IUIS Nomenclature 

Subcommittee on TCR Designation (Radauer et al., 2014) and the International ImMunoGeneTics 

database (IMGT; Lefranc, 2005). In this study, we have used the IMGT system to identify the CDR loops 

of each TCR template (summarised in Table 2.1). The CDR3 loop of each TCR chain is defined as the 

amino acid sequence between the second conserved cysteine in third framework region (FR3) and the 

conserved phenylalanine (F-G-X-G) in FR4 of the variable domain.  
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Table 2.1. CDR1-3 amino acid sequences in each chain of Marilyn and MataHari transgenic TCRs. The 

CDR1-3 sequences were defined based on the guidelines of the IMGT website (Lefranc, 2005). The 

amino acids in CDR3 are underlined, in between residues of the third and fourth framework region 

(FR). 

  CDR1 CDR2 CDR3 

Marilyn transgenic  TCRα DSASQY IFSNGE CAVGNNNNAPRFGAG 

TCRβ FNHDT SITEND CASSIPGSNERLFFGHG 

MataHari transgenic TCRα DTASSY IRSNVDR CAAAMSNYNFGSG 

TCRβ NSHNY SYGAGN CASSDLVEVFFGKG 

 

In this study, we introduced both TCRα and TCRβ chains into the retrogenic mice (Figure 2.2A). To 

ensure simultaneous expression of both chains using a single plasmid, we employed the 2A peptide 

(P2A) sequence to mediate ‘self-cleavage’ between the two chains (Kim et al., 2011; Ryan, FAU & 

Thomas, 1991). The P2A system works through a ribosomal skip mechanism, whereby the 2A 

consensus motif appears to impair normal peptide bond formation between the glycine in the 2A 

peptide and the proline in the 2B peptide immediately adjacent to the 2A peptide. This cleavage does 

not affect translation of the 2B peptide and gene downstream thus ensuring stoichiometric expression 

of proteins flanking the P2A. The relatively smaller-sized P2A system overcomes the limitations of 

using internal ribosomal entry site (IRES) to express multicistronic vectors which exhibit inconsistent 

expression levels between genes positioned before and after the IRES (Szymczak & Vignali, 2005; de 

Felipe, 2004). The -GSG- sequence is attached upstream of the P2A sequence for added polypeptide 

flexibility and improves cleavage efficiency of the P2A (Holst et al., 2006; Szymczak et al., 2004).  

The TCR (CDR3β diversifying) constructs were cloned into the murine stem cell virus-based 6056bp 

pMigR1 retroviral vector (Pear et al., 1998). This vector contains a multiple cloning site (MCS), for 

insertion of the construct, and an IRES-EGFP (enhanced green fluorescent protein) marker cassette 

(Refer to Chapter 7.2.2). The transgene EGFP allows rapid and easy determination of transfection and 

transduction efficiencies using flow cytometry analysis. The percentage of cells that express EGFP will 

correlate to the number of cells that have viral integration and thus carry the diversifying construct. 

The 5’ and 3’ long terminal repeats (LTR) directs random genome integration upon transduction.  

Additionally, the 5’ LTR contains the viral enhancer/promoter that initiates transcription upstream of 

the MCS (Choi et al., 2001). The Marilyn and MataHari αβTCR (CDR3β diversifying) constructs were 

synthesised de novo, and tagged with BglII and EcoRI restriction sites on the amino- and carboxyl- 

ends, respectively, to facilitate sub-cloning into the pMigR1 vector. 
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Figure 2.2. Schematic overview of the novel TCR diversifying technique. (A) The complete TCRα and 

TCRβ chains are connected by the P2A sequence. The linker and P2A amino acid sequences are shown, 

with the ‘cleavage’ point between the 2A and 2B peptides indicated by the arrow. The recombination 

cassette (Vβ8.2RSS-400bp spacer-Dβ1RSS) is inserted into the centre of the TCR CDR3β region. (B) The 

point of insertion of the recombination cassette into the CDR3 region (in bold) of Marilyn (above), and 

MataHari (below) transgenic TCR sequences. CDR3 is defined as the sequence between the second 

conserved cysteine residue in FR3 and the conserved phenylalanine residue in FR4. 

P2A 

Vα Domain 

TCRβ chain TCRα chain 

Cα Domain Vβ Domain Cβ Domain 
V J C D 

CDR1 CDR2 CDR3 

Recombination cassette  

400bp 
Spacer 

Dβ1 RSS 
9/12/7 

Vβ8.2 RSS 
7/12/9 

V J C 

CDR1 CDR2 CDR3 

G S G A T N F S L L K Q A G D V E E N P G P  

Spacer 

Cleavage 
2A 2B 

(A) 

V  F  L  C  A  S  S  I  P  G  S   N  E  R  L  F  F  G  H  G 

gtg ttc ctc tgc gcc tcc agc atc ccc gga agc aac gag agg ctg ttc ttt ggc cac ggc 

Point of insertion of Recombination cassette 
FR3 FR4 

L  Y  F  C  A  S  S  D  L   V  E  V  F  F  G  K  G 

ctg tac ttt tgc gcc agc agc gac ctg gtc gag gtg ttc ttc ggc aag ggc 

Point of insertion of Recombination cassette 

FR3 FR4 

(B) 
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2.4. Overview of retrogenic approach 

The retrogenic mice approach was developed as a faster and flexible alternative to the use of 

conventional germline transgenesis for the study of T cell development (Holst et al., 2006). This system 

uses a single vector encoding both TCRα and TCRβ chains to generate mice that express clonotypic T 

cells via retroviral-mediated stem cell gene transfer into HSCs.  We have implemented the use of the 

retrogenic mice in this study for two main reasons. Firstly, this a relatively quick method of generating 

transgenic mice expressing the desired TCR. Second, the retrogenic approach facilitates the in vivo 

environment necessary to diversify, express and screen the T cell repertoires produced by the TCR 

(CDR3β diversifying) constructs. The thymic microenvironment of the retrogenic mice provide the 

essential spatial and temporal elements required for the V(D)J recombination-based mutagenesis 

technique. Diversification of the TCR is dependent upon RAG proteins that are expressed only during 

lymphocyte development (DN2-3 and DP stages) in the thymus (Casillas et al., 1995). The resultant 

TCR variants would then undergo thymic selection before release as mature T cells into the periphery. 

This includes positive selection of T cells that are able to bind to self-MHC, ensuring MHC restriction, 

thymocyte survival and commitment into either the CD4 or CD8 lineage. Negative selection deletes T 

cells that bind too weakly or too strongly to self-MHC and self-peptides thereby largely purging the 

peripheral T cell repertoire of autoreactive T cells and preventing autoimmunity (Klein et al., 2014). 

The retrogenic approach used in this study is summarised in Figure 2.3 and detailed in Chapter 7.7. 

The multicistronic vector containing the P2A-linked TCRα and TCRβ (CDR3β diversifying) constructs 

were first introduced into the Phoenix™ ecotropic retroviral producer cell line (Holst et al., 2006). The 

virions generated from the transfected cell line were then used to transduce HSCs from pre-treated 

donor TCR-β/δ-/- deficient mice via spin infection (Bettini et al., 2013). The donor mice were injected 

with 5’-Fluorouracil (5’-FU) to enrich the stem cell population (Wang et al., 2006). The transduced 

HSCs were cultured with the relevant cytokines before adoptive transfer into irradiated TCR-β/δ-/- 

deficient female recipient mice. Transfection and transduction efficiencies were assessed based on 

the expression of the EGFP marker gene via flow cytometry. At least 2 x 105 EGFP+ HSCs were 

transferred into each recipient mouse, and left for 8-11 weeks to allow reconstitution of the T cell 

repertoire. The ratio of donor to recipient mice used was typically 3:1, to maximise the number of 

transduced cells carrying the TCR (CDR3β diversifying) construct.  

The use of TCR-β/δ-/- deficient recipient mice ensures that the T cell repertoire will derive entirely from 

the transduced HSCs as only the transgene can express competent TCRβ. Only transduced HSCs 

carrying the TCR constructs can enter the thymus and undergo in vivo T cell development, 

subsequently expressing in-frame TCRβ (after recombination cassette removal). The retrogenic TCRβ 



55 
 

chain will pair with either exogenous or endogenous TCRα. Using female recipients that do not express 

HY antigens allowed passage past thymic selection as male retrogenic mice would have otherwise 

removed Marilyn and MataHari T cells. 

 

 

 

Figure 2.3. Schematic overview of the generation of retrogenic mice incorporating TCR 

diversification. The retroviral vector containing the TCR diversifying constructs is firstly used to 

transfect plated Phoenix™ ecotropic retroviral packaging cells, with the aid of the Lipofectamine® 

transfection reagent and helper plasmid pCLE. The viral supernatant is harvested after 48 hours and 

transfection efficiency is analysed by EGFP expression of the transfected cells. 72 hours before bone 

marrow extraction, the TCR-β/δ-/- deficient donor mice are injected intraperitoneally (i.p.) with 5’-FU. 

The bone marrow cells are then cultured with the appropriate cytokines for 48 hours before 

transduction by the viral supernatant via spin infection. The transduced cells are cultured for a further 

72 hours before injection intravenously (i.v.) into irradiated female TCR-β/δ-/- deficient recipient mice. 

Transduction efficiency is measured by the EGFP expression of the transduced cells. The retrogenic 

mice generated are left to reconstitute the diversifying TCR for at least 8 to 11 weeks. 
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2.5. Results 

2.5.1. Preparation of the retroviral vector containing the αβTCR (CDR3β diversifying) constructs 

The Marilyn and MataHari αβTCR (CDR3β diversifying) constructs were each synthesised de novo and 

introduced separately into the pUC57 plasmid with the BglII and EcoRI restriction sites at the amino- 

and carboxyl- ends respectively. Both restriction sites were chosen to facilitate sub-cloning into the 

MCS of the pMigR1 retroviral vector. The constructs (excluding the recombination cassette) were 

synthesised with codons optimised for translation in mice. 

The pMigR1 and pUC57 plasmids containing the CDR3β diversifying constructs were subjected to 

double digestion using BglII and EcoRI enzymes, isolated using gel electrophoresis and purified. These 

open-ended inserts (Marilyn or MataHari αβTCR (CDR3β diversifying) constructs) and ‘empty’ vector 

were then ligated together using T4 DNA ligase. Ligation was confirmed by running the products on a 

gel, undigested and digested using the same combination of BglII and EcoRI enzymes (Figure 2.4). 

Insertion of the constructs into the retroviral vector was further validated by sequencing, which 

showed 100% identity (not shown; refer to Appendices 1 and 2), verifying the correct orientation and 

sequences in the retroviral vector.  

 

(A)       (B) 

 

 

Figure 2.4. Ligation and sub-cloning of Marilyn and MataHari αβTCR (CDR3β diversifying) constructs 

into the pMigR1 retroviral vector. The CDR3β diversifying constructs were isolated from the pUC57 

plasmid by double digestion using BglII and EcoRI enzymes, before insertion into the pMigR1 retroviral 

vector digested with the same combination of restriction enzymes. The ligated products were 

confirmed to contain the Marilyn (2285bp; A) and MataHari (2273bp; B) αβTCR (CDR3β diversifying) 

constructs in the pMigR1 vector (6038bp). 
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2.5.2. Transfection of the Phoenix™ packaging cell line 

The Marilyn and MataHari αβTCR (CDR3β diversifying) constructs in the pMigR1 vector were 

introduced separately into the Phoenix™ ecotropic packaging cell line with the help of the 

Lipofectamine® 2000 transfection reagent and pCLE helper plasmid. The EGFP reporter gene in the 

pMigR1 vector allowed identification of transfected Phoenix™ cells, and assessment of transfection 

efficiencies by flow cytometry (Figure 2.5A). The transfection efficiency of different retroviral vectors 

were: ‘empty’ pMigR1 – 61.7 ± 8.3%, pMigR1-(Marilyn CDR3β diversifying) – 52.4 ± 12.1% and pMigR1-

(MataHari CDR3β diversifying) – 52.8 ± 8.5% (Mean ± SD, n=10; Figure 2.5A, B). The transfection 

efficiencies between empty pMigR1 and either pMigR1-(Marilyn CDR3β diversifying) or pMigR1-

(MataHari CDR3β diversifying) were shown to be statistically similar (p>0.5; Figure 2.5B). 
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Figure 2.5. Flow cytometric analysis of EGFP reporter expression and summary of transfection 

efficiencies. The pMigR1 retroviral vector, either empty or containing the αβTCR (CDR3β diversifying) 

constructs, was introduced into the Phoenix™ packaging cell line. After 48 hours of culture, the cells 

were harvested and analysed for EGFP expression, which represents cells that integrated the viral DNA 

and TCR constructs. (A) Example of FSC and SSC gating of Phoenix™ cells. Below are overlay histogram 

plots of Phoenix™ cells transfected with the pMock (no plasmid negative control; light grey) and empty 

pMigR1 vector (green), and Phoenix™ cells transfected with the pMigR1-(Marilyn CDR3β diversifying) 

and pMigR1-(MataHari CDR3β diversifying) vectors. Average transfection efficiencies ± standard 

deviation (SD) are shown. (B) Transfection efficiencies of different retroviral vectors, as determined 

by average percentage of EGFP+ Phoenix™ cells (n=10 for each plasmid).  Each bar represents the mean 

of ten different experiments and error bars the SD of the mean.  
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2.5.3. Transduction of HSC and generation of retrogenic mice 

The pMigR1 retroviral vector contains the 5’ LTR that promotes the expression of the TCR constructs 

cloned into the MCS, followed by IRES-mediated expression of the EGFP marker gene. The viral 

supernatant obtained from the transfected Phoenix™ cells were used for transduction of HSC-

enriched cultures from at least eight-week-old TCR-β/δ-/- deficient donor mice. The transduction 

efficiencies and the number of EGFP+ HSCs i.e. cells carrying the TCR constructs, were analysed via 

flow cytometry and summarised in Figure 2.6. During each retrogenic experiment set-up, we ensured 

at least 2 x 105 EGFP+ cells were adoptively transferred into each TCR-β/δ-/- deficient female mouse. 

We generated retrogenic mice expressing the male-specific H2b-restricted TCRs in two strains: MHC 

haplotype-mismatched FVB (H2q) and MHC-matched C57BL/6 (H2b) mice. 

The transduction efficiencies for the Marilyn TCR (CDR3β diversifying) were generally more than 40% 

during the generation of retrogenic mice of either FVB/N or C57BL/6 strain (Figure 2.6A, B). 

Conversely, the MataHari TCR (CDR3β diversifying) displayed notably variable transduction 

efficiencies, ranging from 8.2% up to 40.4%. This observation, coupled with inconsistent HSC culture 

cell yield, resulted in variable numbers of EGFP+ transduced HSCs injected into each mouse between 

different experiment set-ups (Figure 2.6C).   
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Figure 2.6. Summary of transduction efficiencies and the number of EGFP+ HSCs adoptively 

transferred into each retrogenic mice. (A) Example of FSC and SSC gating of the transduced BM culture 

is shown, followed by the histogram plots identifying the transduced EGFP+ HSCs. The range of 

transduction efficiencies in the generation of Marilyn and MataHari TCR (CDR3β diversifying) 

retrogenic mice in either FVB/N (blue) or C57BL/6 strain (orange) is also displayed. (B) Transduction 

efficiency, is measured by the percentage of EGFP+ HSCs. (C) The number of EGFP+ HSCs, carrying the 

diversifying TCR constructs, injected into each mice. Each bar is the mean of different experiments 

and error bars the SD of the mean. The blue bars represent FVB (H2q) recipients, while the orange bars 

denote C57BL/6 (H2b) recipients. For Marilyn TCR (CDR3β diversifying): FVB, n=8, C57BL/6, n= 4; 

MataHari TCR (CDR3β diversifying): FVB, n=8, C57BL/6, n=11. 
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2.6. Discussion 

2.6.1. Summary 

A new strategy was developed to optimise TCR binding in the interest of enhancing functional T cell 

responses. This approach utilises a novel V(D)J recombination-based mutagenesis technique to create 

a library of TCR variants that undergoes normal in vivo T cell development. This is in contrast to the 

majority of approaches that employ in vitro yeast, phage or mammalian cell display systems to 

produce and isolate high affinity variants of template anti-tumour TCRs (Holler et al., 2000; Weber et 

al., 2005; Li et al., 2005; Kessels et al., 2000; Chervin et al., 2008). 

We have tested this concept on two main T cell subsets: cytotoxic CD8+ T cells, obtained from MataHari 

transgenic mice (Valujskikh et al., 2002), and CD4+ T helper cells from Marilyn mice (Grandjean et al., 

2003). Marilyn and MataHari T cells have both been characterised and compared with respect to anti-

tumour responses in vitro and in vivo. Interestingly, even though cytotoxic MataHari T cells were able 

to eliminate tumours in vitro, the Marilyn T helper cells proved to be more effective in vivo (Perez-

Diez et al., 2007). These observations offer an ideal setting to test our novel TCR optimisation strategy 

and provides an opportunity to investigate from two different aspects: Can we improve the in vivo 

anti-tumour activity of MataHari cytotoxic T cells? To what extent can we improve the TCR binding 

and functionality of Marilyn T cells that are already proven to be efficient anti-tumour effector cells?  

Another contributing factor in selecting the Marilyn and MataHari TCRs for our novel approach is that 

retrogenic mice expressing these male Ag-specific TCRs have been shown to be generated 

successfully. Holst et al. (2006) were able to retrovirally introduce both exogenous TCRα and TCRβ 

chains into T cell-deficient female mice, producing functional T cells that are comparable to their 

transgenic counterparts. Additionally, the phenotype of lymphocytes developed from αβTCR that 

lacks a mutagenesis-inducing recombination cassette provides valuable positive control for our study.  

 

2.6.2. Advantages and limitations of retrogenic technology 

The retrogenic aspect of our novel mutagenesis approach provides several key benefits. Firstly, 

retrogenic mice can be produced considerably faster than the traditional transgenic system, which 

may take up to 6 months to generate the required strain. Ideally, the design, production and functional 

analysis of retrogenic mice expressing mutated TCR can be achieved within 3-4 months. Secondly, this 

system permits the option to test and optimise many different TCRs specific for a particular antigen, 

which would be logistically challenging and costly using conventional transgenic approach. Retrogenic 

mice also limit the potential bias as a result of founder effects, as each mouse is individually generated 
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and fundamentally a founder. Further, the inter-mouse variation should be minimal as the multiple 

retroviral insertions give a similar range of expression as reported by EGFP (Figure 2.6B). The main 

advantage is that this approach facilitates in vivo gene recombination and thymic selection processes, 

which are crucial for creating functional TCR variants. Our novel strategy essentially mimics in vivo T 

cell development, tolerising the T cell repertoire through negative selection, thus circumventing the 

possibility of autoimmunity; in contrast, in vitro techniques that concentrate on isolating higher 

affinity TCRs may also confer autoreactivity through TCR cross-reaction. 

However, the use of retrogenic technology comes with its own limitations. Retrogenic mice cannot be 

bred, requiring new mice to be generated for further experiments. Additionally, with a donor to 

recipient mice ratio of 3:1, each experiment set-up demands a substantial number of mice. For 

example, generating a group of 4 retrogenic mice involves extracting HSCs from 12 donor mice. 

Retrogenic mice can lose weight and may have to be culled necessitating repeat experiments and 

causing delays. From a technical standpoint, the variations between transfection efficiencies may lead 

to variable transduction rates of HSCs and thus the number of EGFP+ cells transferred into each 

retrogenic mouse. Moreover, BM extraction and culture proved to be a somewhat inconsistent 

procedure, affecting the number of HSCs available for transduction and adoptive transfer. These 

discrepancies can elicit differences in the TCR reconstitution period, and the number of cells that can 

be isolated for flow cytometric analysis and cell sorting (Scott-Browne et al., 2009). The number of T 

cells in retrogenic mice has already been reported to be generally less than in transgenic mice (Holst 

et al., 2006). 

 

2.6.3. Conclusions 

In this chapter, we have described the design of the recombination cassette that redirects 

mutagenesis using V(D)J recombination machinery.  This approach is designed to diversify and 

optimise TCR binding to the cognate pMHC ligand, subsequently enhancing immunological 

functionality. TCR variants will be produced by modifying the CDR3β, the most diverse region in the 

TCR that defines T cell clonotype and peptide specificity. The recombination cassette was placed in 

the centre of the CDR3β to induce a fair chance of variability around the point of insertion. The pMigR1 

vectors containing the Marilyn and MataHari TCR (CDR3β diversifying) constructs showed comparable 

transfection efficiencies compared to ‘empty’ pMigR1 vectors. This suggests insertion of the 

diversifying TCR constructs into the MCS of the vector did not significantly affect its performance and 

quality. The transduction efficiencies of the HSCs proved to be markedly variable between each 

experiment set-up. However, every female retrogenic mouse generated was assuredly injected with 
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at least 2 x 105 EGFP+ cells to ensure sufficient thymocyte progenitors were available for T cell 

development. The reconstitution of the diversified TCR will be discussed in the Chapters 3 and 4. 
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Chapter 3  
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Chapter 3: Characterisation of H2q retrogenic mice expressing diversifying 

H2b-restricted TCR 

 

3.1. Introduction 

The previous chapter outlined the novel mutagenesis approach designed to optimise the binding of 

the TCR with its cognate antigen and enhance immunological function. Our system essentially 

redirects gene rearrangement to the target region using V(D)J recombination machinery to create 

variants of the TCR. In this study, we have inserted the mutagenesis-inducing recombination cassette 

into the centre of the CDR3β region of two male antigen-specific receptors: the Vβ6+ TCR of CD4+ 

Marilyn Th cells, and the Vβ8.3+ TCR of CD8+ cytotoxic MataHari T lymphocytes. This strategy will 

induce recombination at the centre of the CDR3 loop apex, and introduce sequence diversity before 

and after the point of insertion (Figure 2.2). 

The fate of the TCR (CDR3β diversifying) constructs, introduced via retroviral vectors into TCR-β/δ-/- 

deficient HSCs as a heterodimer of WT TCRα and diversifying TCRβ separated by P2A, is summarised 

in Figure 3.1. During transduction of the HSCs, the LTRs flanking the αβTCR constructs facilitate 

random integration into the genomic DNA. After adoptive transfer into the TCR-β/δ-/- deficient female 

recipient mice, the transduced HSCs enter the thymus where they enter the in vivo T cell 

developmental program. During the DN2-3 and DP stages, the RAG proteins are expressed to initiate 

the gene recombination process, which results in the random DNA sequence diversification with the 

help of NHEJ and TdT enzymes. This creates a permanent TCRβ ‘footprint’ specific for each T 

lymphocyte which can signal progression past the β-selection checkpoint with the pTα (Trop et al., 

2000). Only lymphocytes that integrate, express the TCR construct and produce an in-frame CDR3β 

region can express a functional αβTCR. The vast peripheral T cell repertoire will comprise of the 

exogenous diversified TCRβ chains paired with either its exogenous WT TCRα partner and/or an 

endogenous TCRα chain. Thymic positive and negative selection ensures the T lymphocytes are MHC-

restricted and any autoreactive T cells are clonally deleted, respectively.  

During the earlier part of the project, we experienced a shortage of available TCR-β/δ-/- deficient 

C57BL/6 (H2b) mice. As we awaited the breeding and acquisition of the relevant H2b TCR-β/δ-/- 

deficient mice, we decided to test our TCR optimisation approach in TCR-β/δ-/- deficient FVB/N (H2q) 

female recipient mice which were available at that time. In this chapter, we investigated the viability 

of the newly designed recombination cassette and whether a T cell repertoire can develop and 
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reconstitute the peripheral lymphoid tissues. Additionally, we assessed the phenotypic expression and 

consequences of MHC haplotype-mismatched FVB/N (H2q) mice expressing H2b-restricted TCRs. 

 

Figure 3.1. The fate of the TCR constructs from the retroviral vector to the creation of the T cell 

repertoire. The TCR construct heterodimer containing the WT TCRα and diversifying TCRβ (containing 
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the recombination cassette), linked by P2A sequence is initially cloned into the retroviral vector 

pMigR1. Retroviral-mediated transduction of HSCs results in integration of the αβTCR construct 

randomly into the genomic DNA. The adoptively transferred HSCs enter the retrogenic mouse thymus, 

where V(D)J recombination-based mutagenesis during the DN2-3 stages removes the recombination 

cassette and generates TCRβ variants via modification of the CDR3β. Translation of the αβTCR 

construct mRNA containing the P2A sequence induces the ribosomal skip mechanism, resulting in two 

separate polypeptide chains – the WT TCRα and diversified TCRβ chains. The diversified TCRβ chain 

can pair with either the exogenous WT partner TCRα and/or endogenous TCRα chains produced by 

the competent TCRα locus of TCR-β/δ-/- deficient thymocytes. The TCR complex directs positive and 

negative selection events in the thymus before release into the periphery. 

 

3.2. Results 

3.2.1. Detection of EGFP and TCRβ expression in FVB/N retrogenic mice peripheral blood 

Altogether, a total of 8 retrogenic FVB/N mice (2 cohorts of 4 mice) were generated for each of the 

two αβTCR (CDR3β diversifying) constructs. Due to the varying nature of the transduction efficiencies 

and number of transduced HSCs injected into each TCR-β/δ-/- recipient mice between different 

cohorts, the TCR reconstitution period and total number of T cells generated were not envisaged to 

be uniform. As such, analysis of cell-surface marker expressions and progression were calculated 

according to each independent retrogenic mice set-up. The groups of retrogenic mice generated are 

summarised below (Table 3.1). 

 

Table 3.1. The cohorts of FVB/N retrogenic mice generated from adoptive transfer of HSCs 

containing Marilyn and MataHari αβTCR (CDR3β diversifying) constructs. 

Construct  Group  Transduction 

efficiency 

No. of EGFP+ HSCs 

injected into each mice 

No. of retrogenic 

mice generated 

Marilyn (CDR3β 

diversifying)  

1 42.4% 8.5 x 105 4 

2 41.9% 2.0 x 106 4 

MataHari (CDR3β 

diversifying)  

1 8.2% 2.2 x 105 4 

2 40.4% 3.7 x 106 4 

 

After adoptive transfer of transduced HSCs containing the αβTCR (CDR3β diversifying) constructs, the 

TCR-β/δ-/- deficient female recipient mice were allowed at least 8 weeks to develop the diversified T 

cell repertoires. After 9 weeks, blood of the retrogenic mice (Groups 1 for both Marilyn and MataHari 

αβTCR (CDR3β diversifying)) were sampled from the tail vein, red blood cells lysed and stained using 

fluorochrome-conjugated antibodies (Ab) for TCRβ (C domain) and the CD4 and CD8 co-receptors. 
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Flow cytometric analysis revealed sizeable levels of EGFP+ and EGFP+TCRβ+ expression in the 

lymphocyte populations of both Marilyn and MataHari αβTCR (CDR3β diversifying) retrogenic mice 

(Figure 3.2).  

 

Figure 3.2. Flow cytometric analysis of peripheral blood from FVB/N retrogenic mice transduced 

with Marilyn and MataHari αβTCR (CDR3β diversifying) constructs.  The representative gating of the 

lymphocyte population for all mice is shown, followed by analysis of EGFP+ and EGFP+TCRβ+ 

expression, 9 weeks after transduced HSC adoptive transfer, represented as averages ± SD. Marilyn 

TCR (CDR3β diversifying) data are from retrogenic mice (n=4, above) injected with 8.5x105 EGFP+ HSCs 

each (42.4% transduction efficiency). MataHari TCR (CDR3β diversifying) data was observed in 

retrogenic mice (n=4, below) adoptively transferred with 2.2x105 EGFP+ HSCs each (8.2% transduction 

efficiency). 

 

Two more time points (12 and 16 weeks post-HSC transfer) showed steady progression of EGFP+ and 

EGFP+TCRβ+ levels in the lymphocyte population (Figure 3.3A). As T cell development in the TCR-β/δ-/- 

deficient mice relies on the expression of a functional exogenous TCRβ chain, this data suggests that 

the recombination cassette successfully induced in-frame gene rearrangement in both Marilyn and 

MataHari αβTCR (CDR3β diversifying) constructs. The resultant diversified TCRβ paired with either 

endogenous and/or exogenous TCRα chains and underwent in vivo T cell development and thymic 

selection before maturing into the peripheral blood. Analysis of the EGFP+TCRβ+ lymphocytes also 

showed that both CD4+ and CD8+ T cell were generated, with a clear skewing to the CD4 lineage, for 

both TCR constructs (Figure 3.3B). This bias towards the MHC Class II in the generation of retrogenic 

mice has already been observed previously (Holland et al., 2012; Holst et al., 2006). Perhaps surprising 
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is the observation that the retrogenic mice expressing the diversified MataHari TCR showed 

dominance in the CD4+ T cell compartment even though MataHari transgenic T cells are natively CD8-

positive and MHC Class I-restricted (Valujskikh et al., 2002). Similarly, T cells in from Marilyn transgenic 

mice are typically CD4-positive, but the Marilyn TCR (CDR3β diversifying) retrogenic mice showed a 

small population of MHC Class I-restricted CD8+ T lymphocytes (Grandjean et al., 2003). This suggests 

that the MHC haplotype may play a key role in governing the lineage choice for a given TCR. 

 

Figure 3.3. Progression of EGFP+TCRβ+ cells in the peripheral blood of FVB/N retrogenic mice. (A) 

Flow cytometric analysis of EGFP+ and EGFP+TCRβ+ expression levels sampled at 9, 12 and 16 weeks 

after transduced HSC transfer. Each point represents mean expression ± SD.  (B) Analysis of CD4 and 
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CD8 co-receptor expression in EGFP+ and EGFP+TCRβ+ lymphocytes at the same time points showing 

strong skewing to the CD4 lineage in both Marilyn (above) and MataHari (below) αβTCR (CDR3β 

diversifying) retrogenic mice. Representative figures showing mean co-receptor expression 

percentage for all mice at the specific time points are shown.  

 

3.2.2. Analysis of the FVB/N retrogenic mice primary lymphoid organs 

We have shown that the T cell compartment can indeed be restored in the TCR-β/δ-/- deficient 

retrogenic mice, with a higher frequency of CD4+ compared to CD8+ T cells in the bloodstream. The 

peripheral T cell repertoire is dependent upon the migration of the adoptively transferred HSCs to the 

non-productive thymus of the TCR-β/δ-/- deficient mice, which provides a specialised 

microenvironment for V(D)J recombination and T cell ontogeny. Characterisation of the thymocyte 

populations can reveal whether retrogenic mice follow a typical T cell development and elucidate the 

apparent peripheral bias to the CD4+ T cell lineage. Thus, we harvested thymi from Marilyn (n=7) and 

MataHari (n=5) TCR (CDR3β diversifying) retrogenic mice for analysis. Interestingly, the size of the 

retrogenic mice thymi displayed variable sizes that can be classified into three groups: small, normal 

and enlarged (possible thymoma), summarised in Figure 3.4A. Of the 7 Marilyn TCR (CDR3β 

diversifying) retrogenic mice analysed, there was one occurrence of a small thymus, two showed a 

normal-sized thymus while the remaining four exhibited possible thymomas that partly occupied the 

thoracic cavity. Only one of the five MataHari TCR (CDR3β diversifying) retrogenic mice displayed an 

enlarged and fibrous thymus, while the rest maintained the small thymus size of TCR-β/δ-/- deficient 

mice. Total thymic cellularity was also measured, showing the apparent thymomas generally 

contained at least 1 x 108 cells (Figure 3.4B), significantly higher compared to non-thymoma (small and 

normal) thymi (p=0.0025; p>0.05). 
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(A) 

Mice Strain Thymus type Frequency  

TCR-β/δ-/- deficient 

FVB/N  

 

Small 100% 

 
Marilyn (CDR3β 

diversifying) 

retrogenic  

 

 

 

 

Small 14% 

(1/7) 

 
Normal 29% 

(2/7) 

 
Thymoma 57% 

(4/7) 

 
MataHari (CDR3β 

diversifying) 

retrogenic 

 

Small 80% 

(4/5) 

 
Thymoma 20% 

(1/5) 
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(B)

 

Figure 3.4. Thymic size and cellularity in Marilyn and MataHari TCR (CDR3β diversifying) FVB/N 

retrogenic mice. Thymi were harvested after TCR reconstitution period (>8 weeks) from Marilyn (n=7) 

and MataHari (n=5) TCR (CDR3β diversifying) retrogenic mice, with a small thymus of TCR-β/δ-/- 

deficient FVB/N mouse shown for comparison. (A) Thymi sizes of the retrogenic mice are pictured, and 

frequency of thymus type summarised. (B) Total thymic cellularity was determined from the same 

mice, classified based on the occurrence of non-thymoma (small and normal) and thymoma. Cell count 

showed significantly increased number of thymic cells in thymoma compared to non-thymoma 

(p=0.0025; p>0.05). Data shows mean ± SD for all mice. 

 

Thymocytes were subsequently analysed for expression of EGFP, TCRβ, CD4 and CD8, via flow 

cytometry. Marilyn TCR (CDR3β diversifying) retrogenic thymocytes displayed almost negligible 

expression of EGFP and TCRβ in both thymoma and non-thymoma (Figure 3.5B, C, left). In contrast, 

non-thymoma MataHari TCR (CDR3β diversifying) retrogenic thymocytes expressed pronounced levels 

of EGFP+ (25.4%) and EGFP+TCRβ+ (49.8%), more characteristic of normal thymic T cell development 

(Figure 3.5B, C, right). However, the single thymoma observed in the MataHari TCR (CDR3β 

diversifying) retrogenic mice showed negligible expression of both EGFP and TCRβ. From these 

observations, it is possible the thymoma may have indicated or resulted in a loss EGFP and TCRβ 

expression in thymocytes. 

The co-receptor expression profile describes T cell development in the thymus through the 

distribution of the DN, DP, SPCD4 and SPCD8 subsets. Marilyn TCR (CDR3β diversifying) retrogenic 

mice demonstrated an accumulation at the DP stage, followed by a higher frequency of SPCD4 relative 

to SPCD8 thymocytes (Figure 3.5D, left). This supports the principle of Marilyn TCR expression in CD4+ 

T cells and the presence of higher CD4+ lymphocyte population observed in the circulation (Figure 
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3.3B). Interestingly, similar Marilyn TCR (CDR3β diversifying) retrogenic thymocyte co-receptor 

profiles were seen in both thymoma and non-thymoma examples.  

MataHari TCR (CDR3β diversifying) retrogenic mice exhibited a higher frequency of the DN cells, the 

earliest precursor in T cell ontogeny, compared to DP cells, suggesting a partial block at the DN to DP 

stage in both thymoma and non-thymoma (Figure 3.5D, right). This phenotype is a trait of TCR-β/δ-/- 

deficient mice, as the inability to express the TCRβ gene causes a near complete block in the DN to DP 

transition (Mombaerts et al., 1992). The presence of SPCD4 thymocytes in the MataHari TCR (CDR3β 

diversifying) retrogenic thymi indeed underpin the expression of CD4+ T cells in the periphery (Figure 

3.3C). Again, it is interesting to observe the presence of SPCD4 as MataHari transgenic T cells typically 

express CD8 co-receptors (Valujskikh et al., 2002). Further, in the MataHari TCR (CDR3β diversifying) 

retrogenic thymoma, there is a clear accumulation of SPCD4 thymocytes (96.5%), which indicates that 

there is a greater efficiency with MHC Class II selection. Conversely, the non-thymoma retrogenic mice 

demonstrated higher levels of SPCD8 (35.0%) compared to SPCD4 (13.6%) thymocytes, suggesting that 

selection favours MHC Class I more than Class II. In both cases, it appears CD4+ T cells appear to survive 

or proliferate more efficiently than CD8+ T lymphocytes, based on their higher frequency in the 

bloodstream (Figure 3.3C). Collectively, these findings suggest that the MHC haplotype may have 

contributed to thymus enlargement and/or unusual thymocyte development (co-receptor expression 

profiles) in the FVB/N retrogenic mice. 
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Figure 3.5. Flow cytometric analysis of thymocytes from Marilyn and MataHari TCR (CDR3β 

diversifying) FVB/N retrogenic mice. Thymi were harvested after TCR reconstitution period (>8 

weeks) from Marilyn (n=7) and MataHari (n=5) TCR (CDR3β diversifying) retrogenic mice, and analysed 

for EGFP, TCRβ, CD4 and CD8 expression to study T cell development. (A) The gating of the thymocyte 

population is shown, followed by analysis of (B) EGFP and (C) TCRβ expressions based on the 

occurrence of thymoma and non-thymoma (small- and normal-sized thymi). (D) The DN, DP, SPCD4 

and SPCD8 sub-population distribution is gated on the whole thymocyte population. Representative 

examples are shown. Percentages indicated on plots represent mean ± SD for all mice (for (D) only 

means are shown), calculated to the first decimal place.  
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3.2.3. Analysis of FVB/N retrogenic mice secondary lymphoid tissue 

After analysis of T cell development in the primary lymphoid organ, we examined the spleen to further 

characterise the peripheral T cell phenotype and confirm the observations seen in the circulation. 

Spleens from Marilyn (n=7) and MataHari (n=5) TCR (CDR3β diversifying) retrogenic mice were 

isolated and pictured (Figure 3.6A), showing similar sizes to that of a non-retrogenic TCR-β/δ-/- 

deficient FVB/N mouse. Total splenic cellularity was measured and means of each cell count were 

calculated, displaying similar counts between the two types of retrogenic mouse (p>0.05; Figure 3.6B).  

 

 

Figure 3.6. Splenic size and cellularity in Marilyn and MataHari TCR (CDR3β diversifying) FVB/N 

retrogenic mice. Spleens were harvested after TCR reconstitution period (>8 weeks) from Marilyn 

(n=7) and MataHari (n=5) TCR (CDR3β diversifying) retrogenic mice. (A) Representative spleens of the 

Marilyn and MataHari TCR (CDR3β diversifying) retrogenic mice are shown, along with a non-

retrogenic TCR-β/δ-/- deficient FVB/N mouse spleen. (B) Total splenic cellularity was determined from 

the same animals. Average splenic cell counts of the two sets of retrogenic mice are shown with error 

bars and appear to be statistically similar (p=0.0908; p>0.05). 
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Splenocyte suspensions from the Marilyn (n=7) and MataHari (n=5) TCR (CDR3β diversifying) 

retrogenic mice were prepared as described in Chapter 7.8 and stained with the appropriate 

fluorochrome-conjugated Ab before analysis via flow cytometry.  As expected, both Marilyn and 

MataHari TCR (CDR3β diversifying) retrogenic splenocytes demonstrated pronounced levels of 

EGFP+TCRβ+ T cells (Figure 3.7). Additionally, analysis of co-receptor expressions in both retrogenic 

mice spleens confirmed the skew to the CD4+ T cell compartment as observed in the peripheral blood 

(Figure 3.3C). 

 

Figure 3.7. Flow cytometric analysis of Marilyn and MataHari TCR (CDR3β diversifying) FVB/N 

retrogenic mice splenocytes. Spleens were harvested after the TCR reconstitution period (>8 weeks) 

from Marilyn (n=7) and MataHari (n=5) TCR (CDR3β diversifying) retrogenic mice, and analysed for 

EGFP, TCRβ, CD4 and CD8 expression to characterise the peripheral T cell compartment. Gating of the 

lymphocytes from the parental cell population is shown, followed by analysis of EGFP+ and EGFP+TCRβ+ 

expressions. The splenic CD4+ and CD8+ T cell distributions are also shown demonstrating a skewing 

to the CD4 compartment. Percentages of defined cell populations are shown as mean ± SD.  
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Splenocytes from the retrogenic mice were also stained with fluorochrome-conjugated Ab for the 

specific Vβ chain; anti-Vβ6 for Marilyn TCR (CDR3β diversifying) and anti-Vβ8.3 for MataHari TCR 

(CDR3β diversifying) to detect the presence of their respective TCRβ V domains. As the RSS sequences 

were directed to the TCRβ chain CDR3 loop, mutations were not expected to interfere with the Vβ 

specific epitope. It was therefore anticipated that the TCRβ constant and variable domain-specific Ab 

would detect the same populations and thus show matching percentages of staining. Indeed, a recent 

study by Dr Istvan Bartok, a colleague in the group, identified the germline CDR2 loop as critical for 

the anti-Vβ6 Ab epitope (Istvan Bartok, unpublished data). The recombination cassette and gene 

recombination events are not expected to affect the CDR2β region. Four of the seven Marilyn TCR 

(CDR3β diversifying) retrogenic mice gave the expected result with similar levels of EGFP+TCRβ+ and 

EGFP+Vβ6+ expression (~19.4%; Figure 3.8A; Table 3.2).  Surprisingly, the remaining three retrogenic 

mice displayed negligible binding (1.3%) with the anti-Vβ6 Ab in proportion to the 24.1% EGFP+TCRβ+ 

expression (Figure 3.8B; Table 3.2). Nevertheless, the complete dominance of this Vβ6- T cell 

population suggests it may even have a survival advantage linked to a novel TCR structure. Analysis of 

all five MataHari TCR (CDR3β diversifying) splenocytes revealed more than 50% of the EGFP+ T 

lymphocytes were positively stained with the anti-Vβ8.3 Ab (Figure 3.8C; Table 3.2). This observation 

indicates that the recombination event may alter the CDR3β region to the extent that the structure of 

the TCRβ V domain no longer exhibits the anti-Vβ8.3 Ab epitope.  
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Figure 3.8. Retention and loss in binding with specific anti-Vβ6/8.3 Ab epitope. Splenocytes from the 

Marilyn (n=7) and MataHari (n=5) TCR (CDR3β diversifying) retrogenic mice were stained against anti-

TCRβ, -Vβ6 and -Vβ8.3 Ab, and analysed using flow cytometry. (A) Example of four of seven Marilyn 

TCR (CDR3β diversifying) retrogenic mice which expressed similar levels of EGFP+TCRβ+ and 

EGFP+Vβ6+. (B) Example of the three retrogenic mice whose EGFP+TCRβ+ splenocytes appeared to 

exhibit profound total loss of the anti-Vβ6 Ab epitope. (C) Example of a MataHari TCR (CDR3β 

diversifying) retrogenic mouse splenocyte population displaying reduced positive binding to the anti-

Vβ8.3 Ab relative to anti-TCRβ. Data represents mean ± SD for all mice in each respective classification.  

 

Table 3.2. Retention and loss in binding with specific anti-Vβ6/8.3 Ab epitope. Summary of relative 

binding of the variable domain specific (Vβ6/8.3) and constant domain (TCRβ) Ab. Marilyn (CDR3β 

diversifying) EGFP+TCRβ+ retrogenic splenocytes are variably bound by anti-Vβ6 Ab. Reduced staining 

of EGFP+TCRβ+ retrogenic splenocytes with anti-Vβ8.3 Ab. Data represents mean ± SD. 

Construct  Anti-Vβ6/8.3 

Ab Binding 

Frequency %EGFP+TCRβ+ %EGFP+Vβ6/8.3+
 Ratio of 

Vβ6/8.3 to 

TCRβ (%) 

Marilyn 

(CDR3β 

diversifying)  

 

Complete 

 

57% (4/7) 19.4 ± 8.7 19.4 ± 5.5 ~100 

Negligible 43% (3/7) 24.1 ± 5.5 1.3 ± 0.6 0.1 ± 0 

MataHari 

(CDR3β 

diversifying)  

Reduced 100% (5/5) 37.1 ± 8.2 19.6 ± 9.1 53.7 ± 23.5 

 

EGFP
+
 

TCRβ 

Count 

EGFP
+
 

Vβ6 

19.4±8.7% 19.4±5.5% 

EGFP
+
 

TCRβ 

Count 

EGFP
+
 

Vβ8.3 

37.1±8.2% 
19.6±9.1% 

EGFP
+
 

Vβ6 
EGFP

+
 

TCRβ 

Count 
1.3±0.6% 24.1±5.5% 

(A) (B) 

(C) 
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3.3. Discussion 

3.3.1. Summary 

The FVB/N TCR-β/δ-/- deficient mice used in the generation of retrogenic mice possess targeted 

mutations at the TCRβ and TCRδ gene loci hence are unable to express αβTCR or γδTCR (Mombaerts 

et al., 1992). The detection of peripheral T cell pools in the retrogenic mice indicates that exogenous 

TCRβ chains are generated and pair with endogenous and/or exogenous TCRα chains, resulting in 

functional αβTCRs. The T cells must have developed from the adoptively transferred HSCs (carrying 

the diversifying TCR constructs) that entered the thymic microenvironment and committed to the αβT 

cell lineage. In both types of retrogenic mice, we anticipate simultaneous expression of exogenous 

TCRα and TCRβ chains at the DN stage, with the expression of the latter chain dependent upon the 

lymphocyte-specific V(D)J recombinase enzymes. The expression of the TCRβ chain requires successful 

removal of the recombination cassette and productive, in-frame gene rearrangement resulting in DNA 

sequence diversification. At the end of the DN4 stage, the diversified TCRβ pairs with either the 

surrogate pTα chain to form the pre-TCR, or with the exogenous TCRα with higher affinity, which could 

disrupt pre-TCR formation and function (Borowski et al., 2003; Trop et al., 2000). Despite the 

possibility that premature establishment of the exogenous αβTCR could interfere with pre-TCR and 

conventional αβT cell development, the resultant T lymphocytes that exit the thymus into general 

circulation are still subject to thymic education and exhibit functional, MHC-restricted TCRs. Although 

unusual, αβTCR and other complexes such as γδTCR are proposed to be able to substitute the pre-TCR 

and signal the DN to DP transition in the absence of ligand engagement if they were expressed at the 

DN stage (Erman et al., 2002). As such, formation of the pre-TCR that normally directs development 

to the DP stage can be accompanied by prematurely expressed αβTCR comprised of exogenous TCRα 

with the diversified TCRβ chain.  

In this chapter, we reported three significant findings in H2q retrogenic mice expressing H2b-restricted 

TCRs. Firstly, the occurrence of the abnormally enlarged thymi in some retrogenic mice for both 

Marilyn and MataHari (CDR3β diversifying) TCRs. We have noted that the unusual co-receptor 

expression profiles, which describe the DN, DP and SP thymocyte distributions may be indicative of 

the thymoma event. It is possible that there is poorer selection efficiency as a result of expressing H2b-

restricted TCRs in FVB/N (H2q) mice which may limit ligand engagement, signalling and thymocyte 

progression to the SP compartments. However, as described in allogeneic graft rejection studies, TCRs 

are inherently cross-reactive and commonly allo-MHC reactive, allowing TCR engagement with 

different MHC haplotypes despite selection on autologous pMHC molecules (Zerrahn, Held & Raulet, 

1997). Accordingly, any variant TCRs that respond to self-peptide and H2q MHC molecules in the 
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acceptable affinity range will not be negatively selected and can be positively selected and allowed to 

exit the thymus (D'Orsogna et al., 2011; Marrack & Kappler, 1988). Additionally, the use of H2q 

retrogenic mice may facilitate development of H2b-restricted HY-specific TCRs due to the absence of 

HY self-antigens. Hence, we do not expect clonal deletion nor blockage in the DP stage which can 

cause an accumulation of thymocytes.   

Secondly, a skewing to the CD4+ T cell lineage suggests positive selection during transition from DP to 

SP thymocytes in retrogenic mice appears to be more efficient with MHC Class II. It is possible the 

Marilyn TCR has an intrinsic preference for MHC class II and may exhibit biased selection to the CD4 

lineage on other H2 haplotypes (Grandjean et al., 2003). Conversely to Marilyn, MataHari TCR (CDR3β 

diversifying) T cells did not follow their H2b-directed CD8 lineage preference, demonstrating more 

than three-fold production of CD4+ compared to CD8+ T cells even though the MataHari TCR is 

characteristically expressed in CD8+ cytotoxic T cells (Valujskikh et al., 2002). Equally, the higher CD4+ 

T cell levels may have been caused by a higher death rate of CD8+ T cells, as they are more reliant on 

TCR-dependent survival signals (Sinclair et al., 2013; Seddon & Zamoyska, 2002). It is not clear whether 

the WT TCR/MHC haplotype mismatch, recombination cassette-inducing CDR3β mutagenesis or the 

multi-cistronic retrogenic system expressing a premature αβTCR may have contributed to the CD4 

lineage bias. Holst et al. (2006) previously showed that MataHari female RAG1-/- retrogenic mice 

produced a competent CD4+ T cell compartment, albeit smaller than CD8+ T cells.  

Lastly, in a proportion of retrogenic T cells, mutagenesis of the TCR appears to alter the structure of 

the TCRβ V domain such that anti-Vβ6 or anti-Vβ8.3 Ab can no longer identify the diversified Marilyn 

and MataHari TCRs, respectively. Anti-TCR Vβ Ab are not expected to be generally influenced by the 

CDR3 structure as they are raised against clonal TCRs but detect large proportions of WT repertoires 

containing diverse CDR3 regions. The diversification of the CDR3β, which is predicted to modify length 

and amino acid composition, may however result in significant conformational changes to the V 

domain. For the Marilyn TCR variants, we know that the anti-Vβ6 Ab epitope includes germline CDR2 

(Bartok, unpublished) and may therefore have undergone an aberrant recombination event which 

affects CDR2. Mutation of the CDR3β does not seem to compromise the expression, thymic 

development and selection of the heterodimeric αβTCR. Analysis of the resulting diversified TCR 

CDR3β DNA and peptide sequences can provide valuable information regarding the TCR structure, and 

will be investigated in the next chapter.  
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3.3.2. Conclusions 

This chapter demonstrates the successful restoration of the T cell compartment in the T cell-deficient 

H2q mouse strain. The expression of a functional peripheral T cell repertoire indicates that the αβTCR 

(CDR3β diversifying) transgenes must have undergone successful in vivo removal of the recombination 

cassette and in-frame joining events. This confirms the viability of the recombination cassette strategy 

and supports the application for diversification of H2b-restricted TCRs in MHC/TCR haplotype-matched 

retrogenic mice. The bias to the CD4+ T cell subset and loss of specific Vβ domain epitope will be 

further explored in the next chapter. 
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Chapter 4  
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Chapter 4: Phenotypic and sequence analysis of the T cell repertoire in H2b 

retrogenic mice 

 

4.1. Introduction 

TCR repertoire diversity is one of the hallmarks of the adaptive immune system, which allows effective 

responses against a broad array of pathogens whilst maintaining self-tolerance. Such diversity is 

generated by somatic rearrangement of V, (D), and J genes across the TCRα and β loci, combined with 

random junctional insertion, deletion and substitution of nucleotides.  

As discussed in Chapter 2, we have designed a recombination cassette to induce somatic gene 

recombination in retrogenic mice to facilitate the in vivo generation of TCR variants that are subject 

to thymic positive and negative selection. Together, the selection processes ensure αβT cells released 

into the periphery are restricted to recognising self-MHC within the appropriate affinity range. The 

αβTCR (CDR3β diversifying) constructs were synthesised to contain the recombination cassette 

inserted into the centre of the CDR3β loop before cloning into the pMigR1 retroviral vector (Figure 

2.2). The previous chapter highlighted that the newly designed recombination cassette, which utilises 

a shorter inter-RSS linker compared to that used by Holland et al. (2012), can facilitate reconstitution 

of the peripheral T cell compartment in a lymphopenic host for both αβTCR templates. These data 

indicate that our novel mutagenesis system is functional and can be applied successively onto MHC 

haplotype-matched (H2b) recipient mice. 

In this chapter, we aimed to diversify the Marilyn (CD4+Vβ6+) and MataHari (CD8+Vβ8.3+) TCRs in TCR-

β/δ-/- deficient C57BL/6 (H2b) mice separately to investigate the sequence variation introduced into 

their CDR3β regions, where the recombination cassette is positioned. Removal of the recombination 

cassette and subsequent gene recombination resulting in in-frame mutation should generate variants 

of the TCR CDR3β, with higher variability expected closer to the point of RSS insertion. The target of 

our optimisation system, CDR3β, is the primary site of peptide binding that makes the greatest 

contribution to TCR specificity and which is also subject to great variation (Freeman et al., 2009; 

Bercovici et al., 2000). We will explore modifications to the CDR3β peptide composition, length and 

net charge as a result of our mutagenesis approach. Further, we will challenge the diversified T cell 

repertoire with their cognate antigens in order to isolate and describe the functionally optimal 

receptors. 
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4.2. Results 

4.2.1. Detection of T cell repertoire in retrogenic mice peripheral blood 

Overall, we generated a total of 4 and 11 C57BL/6 retrogenic mice expressing the Marilyn and 

MataHari αβTCR (CDR3β diversifying) constructs, respectively. The summary of transduction 

efficiencies and number of EGFP+ HSCs adoptively transferred into each retrogenic mouse is shown 

below (Table 4.1). Notably, the HSCs were obtained from both male and female C57BL/6 donor mice 

similar to FVB/N retrogenic mice (Refer to Chapter 3.2.1). There were variable transduction 

efficiencies and numbers of transduced HSCs which each TCR-β/δ-/- recipient mice received during 

each experiment set-up.  

 

Table 4.1. The cohorts of C57BL/6 retrogenic mice generated from adoptive transfer of retrovirally-

transduced HSCs containing Marilyn and MataHari αβTCR (CDR3β diversifying) constructs. 

Construct  Group  Transduction 
efficiency 

No. of EGFP+ HSCs 
injected into each mice 

No. of retrogenic 
mice generated 

Marilyn (CDR3β 
diversifying)  

1 42.3% 1.8 x 106 4 

MataHari (CDR3β 
diversifying)  

1 11.7% 2.0 x 105 1 

2 26.2% 6.0 x 105 4 

3 31.5% 2.7 x 106 6 

 

We next analysed the presence of the peripheral T cell repertoires of both classes of retrogenic mice. 

After allowing at least 8 weeks to reconstitute the T cell pool, the mice were sampled at three-week 

intervals, 8, 11 and 14 weeks post-injection. Blood from the retrogenic mice tail vein were collected, 

red blood cells lysed and subsequently stained for TCRβ (C domain), CD4 and CD8 co-receptors using 

the appropriate fluorochrome-conjugated Ab. Flow cytometric analysis indicated steady increases in 

the frequencies of EGFP+TCRβ+ T cells in Marilyn (Group 1; n=4) and MataHari (Group 2; n=4) TCR 

(CDR3β diversifying) retrogenic mice (Figure 4.1A). The same selection bias to MHC Class II restriction 

as observed in WT/MHC-mismatched FVB/N strains appeared in the C57BL/6 retrogenic mice. Both 

groups of retrogenic mice demonstrated a higher frequency of CD4+ compared to CD8+ T cells at all 

time points (Figure 4.1B). Again, it is perhaps surprising to observe a prevailing peripheral CD4+ T cell 

pool in the MataHari TCR (CDR3β diversifying) retrogenic mice since MataHari transgenic T cells are 

typically CD8-positive and MHC Class I-restricted. 
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Figure 4.1. Flow cytometric analysis of peripheral blood from C57BL/6 retrogenic mice transduced 

with Marilyn and MataHari αβTCR (CDR3β diversifying) constructs. Retrogenic mice were allowed 8 

weeks to reconstitute the peripheral T cell pool after adoptive transfer of transduced HSCs. At 8, 11 

and 14 weeks post-injection, blood was sampled for expression of EGFP and EGFP+TCRβ, as well as 

CD4 and CD8 co-receptors. (A) Analysis of blood samples showed increasing numbers of EGFP+ and 

EGFP+TCRβ+ expressing cells in the lymphocyte population. Each point is shown as mean ± SD. (B) Co-

receptor expression profiles gated on EGFP+TCRβ+ cells during the analyses indicated more CD4+ than 
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CD8+ T cells in the periphery. Mean co-receptor expressions are shown on representative plots of 

Marilyn TCR (CDR3β diversifying) retrogenic mice (Group 1; n=4) injected with 1.8x106 EGFP+ HSCs 

each (42.3% transduction efficiency), and MataHari TCR (CDR3β diversifying) retrogenic mice (Group 

2; n=4) adoptively transferred with 6.0x105 EGFP+ HSCs each (26.2% transduction efficiency).  

 

4.2.2. Analysis of C57BL/6 retrogenic mice primary lymphoid organs 

Following the detection of the peripheral T cells in the blood, we then sought to analyse the retrogenic 

mice thymocyte populations. Firstly, we aimed to determine the presence of T cell subsets that are 

not native to WT Marilyn (CD4+Vβ6+) and MataHari (CD8+Vβ8.3+) T cells, and the bias to the CD4 

lineage. Secondly, we wanted to ascertain whether the C57BL/6 retrogenic mice developed the 

apparent thymomas observed in the FVB/N retrogenic mice (Refer to Chapter 3.2.2). Thymi from 

Marilyn (n=4) and MataHari (n=7) TCR (CDR3β diversifying) retrogenic mice were isolated after the 8-

week TCR reconstitution period. All Marilyn TCR (CDR3β diversifying) retrogenic mice displayed a small 

thymus with an average of 12.4 (± 8.2) x 106 cells (Figure 4.2A, C). Conversely, the MataHari TCR 

(CDR3β diversifying) retrogenic exhibited an average thymocyte count of 25.6 (± 31.0) x 106 cells 

(Figure 4.2C). The notably larger cell counts and SD were attributed to two retrogenic mice displaying 

normal-sized thymi (Figure 4.2A, right) which resembled that of WT C57BL/6 mice (Figure 4.2B). The 

majority of the MataHari TCR (CDR3β diversifying) retrogenic exhibited the small thymus of the TCR-

β/δ-/- deficient mice (Figure 4.2A, left; B). Despite these differences, the average cellularity of the 

MataHari TCR (CDR3β diversifying) retrogenic thymi appeared to be similar to that of the TCR-β/δ-/- 

deficient mice (p>0.05; non-significant difference) rather than of normal WT C57BL/6 mice (p<0.01; 

Figure 4.2C). 
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Figure 4.2. Thymic size and cellularity in Marilyn and MataHari TCR (CDR3β diversifying) C57BL/6 

retrogenic mice. Thymi from Marilyn (n=4) and MataHari (n=7) TCR (CDR3β diversifying) retrogenic 

mice were harvested after the TCR reconstitution period (>8 weeks). (A) Thymi sizes of the retrogenic 

mice are pictured, with (B) the thymi of C57BL/6 WT and TCR-β/δ-/- deficient mice shown for 

comparison.  (C) Total thymocyte count is summarised for each type of retrogenic mice type, C57BL/6 

WT (n=3) and TCR-β/δ-/- deficient (n=2) mice. Data is represented as mean ± SD for all mice.   
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We next analysed the thymocytes for cell surface expression of EGFP, TCRβ, CD4 and CD8 via flow 

cytometry. As shown in Figure 4.3, both Marilyn and MataHari TCR (CDR3β diversifying) thymocyte 

populations expressed sizeable levels of EGFP+ and EGFP+TCRβ+ (Figure 4.3A). Interestingly, the 

thymocyte populations showed a large accumulation of DN cells, with considerable detection of 

single-positive CD4+ and CD8+ lymphocytes (Figure 4.3). The near complete block from DN to DP stage 

is a phenotypic trait of TCR-β/δ-/- deficient mice (Mombaerts et al., 1992). The thymic SPCD4:SPCD8 

ratio were found to be ~3:1 in from Marilyn and ~1:1 in MataHari TCR (CDR3β diversifying) retrogenic 

mice. This suggests that, after adoptive transfer, the transduced HSCs migrated effectively to the 

thymic microenvironment, underwent commitment to the αβT cell lineage and differentiated into 

mature thymocytes which reconstituted the peripheral T cell repertoire. The bias to the CD4 lineage 

in Marilyn TCR (CDR3β diversifying) thymocyte supports the higher CD4+ T cell frequency observed in 

the periphery (Figure 4.1B). A smaller proportion of CD8 thymocytes appeared, which may be 

responsible for the presence of the peripheral CD8+ T lymphocytes in the Marilyn TCR (CDR3β 

diversifying) retrogenic mice. This may reflect intrinsic preference of the Marilyn TCR, despite CDR3β 

diversification, for MHC Class II (Holst et al., 2006; Grandjean et al., 2003). Also noteworthy is the ~1:1 

ratio of SPCD4 to SPCD8 amongst MataHari TCR (CDR3β diversifying) thymocytes which seems to 

translate to a higher presence of circulating CD4+ T cells. This further supports the notion that the CD8+ 

T cells appear to survive or proliferate less efficiently compared to their CD4+ counterparts (Sinclair et 

al., 2013; Seddon & Zamoyska, 2002).  
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Figure 4.3. Flow cytometric analysis of Marilyn and MataHari TCR (CDR3β diversifying) C57BL/6 

retrogenic mice thymocytes. Thymi from Marilyn (n=4) and MataHari (n=7) TCR (CDR3β diversifying) 

retrogenic mice were harvested after the TCR reconstitution period (>8 weeks), and analysed for EGFP, 

TCRβ, CD4 and CD8 expression to study T cell ontogeny. (A) Gated on the lymphocyte population, the 

identification of the EGFP and EGFP+TCRβ expression, and analysis of the T cell subsets based on co-

receptor expression is shown. Data is represented as mean ± SD, calculated to the first decimal place. 
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(B) Summary of lymphocyte population percentage based on co-receptor expression. DN: double-

negative, DP: double-negative, SPCD4/CD8: single-positive CD4/CD8. 

 

4.2.3. Analysis of C57BL/6 retrogenic mice secondary lymphoid tissue 

Following the analysis of the primary lymphoid organs, we proceeded to analyse the spleen and lymph 

nodes (LN) to further characterise the peripheral T lymphocytes, and to study the diversification of 

the TCR CDR3β region as a result of the mutagenesis approach. The spleens and LN of the retrogenic 

mice were harvested at the same time as the thymus after the TCR reconstitution period. Marilyn TCR 

(CDR3β diversifying) retrogenic spleens demonstrated an average total cellularity of 86.6 (± 43.0) x 106 

cells (n=4), whereas their MataHari counterparts displayed a similar mean count of 96.6 (± 71.5) x 106 

cells (n=7; p>0.05, Figure 4.4). The spleen cellularity of the retrogenic mice were shown to be 

statistically similar to that of WT and TCR-β/δ-/- deficient mice (p>0.05; Figure 4.4C). 

 

Figure 4.4. Splenic size and cellularity of Marilyn and MataHari TCR (CDR3β diversifying) C57BL/6 

retrogenic mice. (A) Spleens from the Marilyn (n=4) and MataHari (n=7) TCR (CDR3β diversifying) 

 -

 20.00

 40.00

 60.00

 80.00

 100.00

 120.00

 140.00

 160.00

 180.00

Marilyn (CDR3β 
diversifying) 

MataHari (CDR3β 
diversifying) 

C57BL/6 WT C57BL/6 TCR-β/δ-/-

To
ta

l s
p

le
n

ic
 c

el
l c

o
u

n
t 

(x
1

0
6
)

(A) 

C57BL/6 TCR-β/δ
-/-

 C57BL/6 WT 

Marilyn (CDR3β 
diversifying) 

MataHari (CDR3β 
diversifying) 

(C) 
n.s. 

n.s. 

(B) 



91 
 

retrogenic mice, and (B) C57BL/6 WT (n=3) and TCR-β/δ-/- deficient mice (n=2) were isolated and 

measured. (C) Total splenic cellularity was determined and calculated as mean ± SD. 

 

Spleen and LN cells from the retrogenic mice were subsequently stained for expression of the EGFP, 

TCRβ, CD3, CD4 and CD8. As observed in the peripheral blood, the lymphocytes from the secondary 

lymphoid organs in both Marilyn and MataHari TCR (CDR3β diversifying) retrogenic mice 

demonstrated sizeable levels of EGFP+TCRβ+ expression (Figure 4.5A). In both spleen and LN, CD3 

expression in EGFP+ lymphocytes were analysed and shown to be very similar to TCRβ expression 

levels confirming a complete and functional TCR signalling complex (Figure 4.5A, B). This suggests that 

the differentiation of the transduced HSCs into the T cell compartment, and further activation and 

functionality, is mediated by a functional signalling complex using the recombined retrogenic TCRβ 

chain. As observed in the blood, both Marilyn and MataHari TCR (CDR3β diversifying) retrogenic 

splenocytes showed skewing to the CD4+ T cell lineage with at least a ~3:1 CD4:CD8 ratio. The CD4+ 

lymphocyte population appeared to be statistically higher than the CD8+ cells in the spleen (p<0.001), 

but similar in the lymph nodes (p>0.05; Figure 4.5B).  

Furthermore, we determined the mean fluorescence intensity (MFI) of TCRβ expression in EGFP+ 

splenic lymphocytes in both retrogenic mice. MFI can be used to quantify the protein expression levels 

on each cell. TCRβ MFI in Marilyn (223 ± 64) and MataHari (183 ± 42) TCR (CDR3β diversifying) 

retrogenic mice were shown to be significantly reduced compared to that in WT C57BL/6 mice (731 ± 

224; Figure 4.5C). This suggests that the retrogenic mice T cells may require lower expression of the 

TCR to achieve the equivalent homeostatic and activation signals required for thymic selection and 

release into the periphery observed in WT mice.  
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Figure 4.5. Flow cytometric analysis of retrogenic mice secondary lymphoid organs. (A) Spleens and 

LN were extracted from the Marilyn (spleen, n=4; LN, n=2) and MataHari (spleen, n=7; LN, n=4) TCR 

(CDR3β diversifying) retrogenic mice and subsequently stained for expression of EGFP, TCRβ, CD3, CD4 

and CD8. (B) Graph summarising the expression of EGFP, TCRβ, CD3, CD4 and CD8 in the splenic (left) 

and lymph node (right) lymphocyte populations. (C) TCRβ MFI in splenic lymphocytes of retrogenic 

and WT mice (n=4) is illustrated. Data is presented as mean ± SD for all mice. 

 

We further characterised the T cell repertoire generated in the retrogenic mice based on the specific 

TCRβ chain. The splenic lymphocytes were stained with Ab for their specific Vβ domains: anti-Vβ6 for 

Marilyn TCR, and anti-Vβ8.3 for MataHari TCR. Similar to our observations in the FVB/N retrogenic 

mice, 75% of the Marilyn TCR (CDR3β diversifying) retrogenic mice splenic lymphocytes demonstrated 

very low binding (~3.5%) with the anti-Vβ6 Ab relative to ~31.0% positive staining for EGFP+TCRβ+ 

expression (Figure 4.6B; Table 4.2). The remaining mouse displayed similar staining for anti-TCRβ and 

anti-Vβ6 Ab in the EGFP+ lymphocyte population (9.9% to 9.2%; Figure 4.6A; Table 4.2). The almost 

complete dominance of this Vβ6- T cell population again suggests a survival advantage associated with 
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a structural alteration of the TCR promoting efficient selection during thymic T cell development 

and/or peripheral survival and homeostasis. Analysis of the MataHari TCR (CDR3β diversifying) 

retrogenic mice splenic EGFP+ lymphocytes showed reduced positive staining (73.8%) with the anti-

Vβ8.3 (20.2%) compared to anti-TCRβ Ab (28.2%; Figure 4.6C; Table 4.2). Altogether, the 

recombination event appears to mutate the CDR3β region resulting in disruption of the specific Vβ 

epitopes. We have previously mentioned a possible link between the germline CDR2β loop and the 

anti-Vβ6 Ab epitope (Istvan Bartok, unpublished data). Sequence analysis of the CDR regions may 

explain whether this Ab epitope loss, reduced or complete depending on the αβTCR template, is a 

consequence of our mutagenesis approach.  

 

 

Figure 4.6. Retention and loss in binding with specific anti-Vβ6/8.3 Ab epitope. Splenocytes from the 

Marilyn (n=4) and MataHari (n=7) TCR (CDR3β diversifying) retrogenic mice were stained against anti-

TCRβ, -Vβ6 and -Vβ8.3 antibodies, and analysed using flow cytometry. (A) Only one Marilyn TCR 

(CDR3β diversifying) retrogenic mice expressed similar levels of EGFP+TCRβ+ and EGFP+Vβ6+. (B) The 

other three retrogenic mice EGFP+TCRβ+ splenocytes appeared to exhibit profound total loss in anti-

Vβ6 Ab epitope. (C) MataHari TCR (CDR3β diversifying) retrogenic mice splenocytes displayed reduced 

positive binding to the anti-Vβ8.3 Ab relative to anti-TCRβ Ab. Data represents mean ± SD.  
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Table 4. 2. Summary of retention and loss in binding with specific anti-Vβ6/8.3 Ab epitope compared 

to anti-TCRβ staining in retrogenic mice splenocytes. 

Construct  Anti-Vβ6/8.3 

Ab Binding 

Frequency %EGFP+TCRβ+ %EGFP+Vβ6/8.3+
 Ratio of 

Vβ6/8.3 to 

TCRβ (%) 

Marilyn 

(CDR3β 

diversifying)  

 

Complete 

 

25% (1/4) 9.9 9.2 92.9 

Negligible 75% (3/4) 31.0 ± 9.1 3.5 ± 0.6 12.5 ± 6.1 

MataHari 

(CDR3β 

diversifying)  

Reduced 100% (7/7) 28.2 ± 15.7 20.2 ± 9.1 73.8 ± 10.1 

 

In order to screen the specific pMHC binding capacity of the peripheral T lymphocytes in vitro, we 

stained splenocytes from the Marilyn TCR (CDR3β diversifying) retrogenic mice with fluorochrome-

conjugated HY-IAb multimer (TCMetrix). This multimer complex represents the cognate ligand of 

Marilyn TCR and comprises a fragment of the Dby protein (NAGFNSNRANSSRSS) bound to an H2-Ab 

MHC-II molecule. Gated on the EGFP+CD4+ T lymphocytes, the analysis revealed that only the sole 

Marilyn TCR (CDR3β diversifying) retrogenic mouse that retained the anti-Vβ6 Ab epitope was 

positively stained with the multimer, albeit at a low frequency (10.1%; Figure 4.7A, right). The other 

three retrogenic mice showed negligible staining with the CD4+ Marilyn-specific multimer (0.6 ± 0.1%; 

Figure 4.7A, left; Table 4.3).  

Conversely, splenocytes from MataHari TCR (CDR3β diversifying) retrogenic mice were stained with 

CD8+ MataHari-specific multimers composed of Uty gene peptide (WMHHNMDLI) complexed with a 

H2-Db MHC-I molecule (Immudex). Flow cytometric analysis of the EGFP+CD8+ T cells in MataHari TCR 

(CDR3β diversifying) retrogenic mice showed partial positive staining with the CD8+ MataHari-specific 

multimer pre-antigenic challenge (45.7 ± 27.2%; Figure 4.7B, left; Table 4.3). Additionally, we 

subjected some retrogenic mice (n=2) to antigenic challenge with male spleen cells expressing HY 

antigens in order to activate and expand antigen-specific lymphocytes. However, the data showed a 

three-fold reduction in multimer-positive CD8+ T cells after exposure to cognate ligands (Figure 4.7B, 

right; Table 4.3). This suggests that the immunisation induced proliferation of functionally enhanced 

T lymphocytes that exhibit a lower binding affinity to the cognate pMHC than the WT TCR. Finally, 

these data demonstrate that the mutagenesis approach may not only change the conformation of the 

TCRβ, but also affect the antigen-binding specificity and affinity of the TCR. 
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Figure 4.7. Identification of specific antigen-binding in diversified T cells. Splenocytes from the 

Marilyn (n=4) and MataHari (n=7) TCR (CDR3β diversifying) retrogenic mice were stained against 

antigen-specific pMHC multimers and analysed using flow cytometry. (A) Gated on CD4+ lymphocytes 

(orange), analysis of multimer binding illustrated that only one retrogenic mice (left) showed positive 

staining, with negligible staining on the other three (right). (B) Comparison of CD8+ lymphocytes (blue) 

in MataHari TCR (CDR3β diversifying) retrogenic mice before (n=5, left) and after (n=2, right) exposure 

to cognate ligands in the form of male splenocytes. Black line represents negative control (stained DN 

cells). Data represents mean ± SD.  
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4.2.4. Generation of diversity in the TCR CDR3β using novel in vivo recombination cassette 

To investigate the V(D)J recombination events and resulting modifications to the TCR CDR3β 

sequences, the retrogenic mice spleen cells were segregated into CD4+ and CD8+ lymphocytes using 

fluorescence-activated cell sorting (FACS). Furthermore, the different T cell subsets were separated 

based on Ab staining for their respective specific Vβ domains (Figure 4.8A, B). This would help describe 

the changes to CDR3β sequence induced by the mutagenesis system, which may affect intrinsic 

preference of TCRs for different MHC classes and conformation of the TCR structure. Additionally, we 

were able to compare TCR sequences between naïve and memory peripheral T cells through antigenic 

challenge by injecting male spleen cells (expressing cognate HY antigens) into MataHari TCR (CDR3β 

diversifying) retrogenic mice (Figure 4.8B). This enabled screening of potentially functionally enhanced 

T cells/TCRs that should be amplified relative to those with the WT CDR3 configuration. 

While V(D)J recombination is proposed to be random (Venturi et al., 2006), some TCR sequences are 

generated at higher frequencies compared to others, leading to unequal distribution of T cell 

clonotypes. According to ‘convergent recombination’, multiple recombination events can produce the 

same nucleotide sequence, which subsequently converges to encode the same amino acid and TCR 

sequence (Quigley et al., 2010). Hence, for each sequencing analysis, the spleens of two retrogenic 

mice were pooled to reduce TCR clonotype bias due to ‘convergent recombination’ (Laydon, Bangham 

& Asquith, 2015). Although we expected to obtain four classes of cell populations (CD4+ Vβ6/8.3+/-, 

CD8+ Vβ6/8.3+/-) from each type of retrogenic mice, collection of CD8+ lymphocytes and naïve 

CD8+Vβ8.3- cells from Marilyn and MataHari TCR (CDR3β diversifying) retrogenic mice, respectively, 

was inefficient (Figure 4.8A, B, labelled in red). Nonetheless, total RNA from the attainable sorted cells 

was extracted and cDNA synthesised. The cDNA libraries were subsequently analysed and amplified 

via PCR to confirm presence of the αβTCR construct (Figure 4.8C). PCR was performed using a pair of 

commercially synthesised primers specific for the TCRα V-region and the TCRβ C-region, flanking both 

sides of the recombination cassette insertion point. This would facilitate analysis of CDR3β 

diversification, including the germline CDR regions which should not be affected by the recombination 

cassette. PCR analysis confirmed the removal of the recombination cassette (467bp) and in-frame 

gene recombination in Marilyn and MataHari TCR (CDR3β diversifying) retrogenic mice compared to 

the transgenes cloned into pMigR1 vector (Figure 4.8C). Surprisingly, the CD4+Vβ6- lymphocyte 

population from Marilyn TCR (CDR3β diversifying) retrogenic mice demonstrated an enormous loss of 

about 800bp (Figure 4.8C), which was inconsistent with the expected V(D)J recombination event seen 

in the other populations. 
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Figure 4.8. Cell sorting and PCR analysis of retrogenic mice splenocytes. Splenocytes from Marilyn 

(A) and MataHari (B; top - before, and bottom - after antigenic challenge) TCR (CDR3β diversifying) 

retrogenic mice (n=2 each) were separated using FACS based on CD4+ and CD8+ expression, followed 

by specific anti-Vβ6/8.3 Ab staining. Inadequate collection of cells are coloured in red. (C) PCR of 

sorted cells using primers upstream and downstream of recombination cassette insertion point. 

Analysis confirms removal of recombination cassette and in-frame gene recombination, compared to 

transgene in pMigR1 vector (V). CD8+ Vβ8.3- cells were collected only post-antigenic challenge.  
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The amplified PCR products were then cloned into a bacterial vector and used to transform competent 

E. coli. This facilitated sequence analysis of the diversified TCR repertoire at the single sequence level. 

Our TCR repertoire analysis of the retrogenic mice splenocytes focused on the CDR3β segment as 

defined by LeFranc et al. (2005). As expected, both germline CDR1 and CDR2 sequences in the TCRβ 

chain remained unchanged from the WT template in both retrogenic mice (not shown). Altogether, a 

total of 102 sequences were analysed from the Marilyn TCR (CDR3β diversifying) retrogenic mice 

CD4+Vβ6+ lymphocyte population, yielding 28 distinct events (Table 4.4). Interestingly, the WT CDR3β 

sequence was not maintained after somatic gene recombination. This observation could be due to 

two possible reasons: mutation away from the WT CDR3β sequence generating favourable binding 

with pMHC and in vivo selection during thymic T cell development, or that the transduced HSCs 

containing male BM-derived APCs may have deleted WT Marilyn T cells (Oh & Shin, 2015). Analysis of 

the CD4+Vβ6- lymphocyte TCR sequence showed an absolute loss of the TCRα C domain and TCRβ V 

domain which resulted in the fusion of the Vα and Cβ domains via the Jα and Jβ segments (Figure 4.9). 

The TCRα CDR loops appeared to be conserved (not shown). This novel TCR chain will be explored in 

the next chapter.  

 

 

 

Figure 4.9. Schematic diagram of the diversified TCR repertoire from the naïve CD4+ Vβ6- lymphocyte 

population from Marilyn TCR (CDR3β diversifying) retrogenic mice (n=2). Sequencing analysis of the 

CD4+ Vβ6- T cells revealed the complete loss of the Cα and Vβ domains of the WT Marilyn TCR. This 

lymphocyte population appears to exhibit a novel TCR form comprising of the Marilyn Vα (blue) and 

Cβ (red) joined by the Jα and Jβ segments (purple). 

  

Vα Domain Cβ Domain 

Vα Jα Cβ 

CDR1 CDR2 CDR3 

Jβ 

MKSLSV. . .VGNNNNAPR FGDGTKLSVLED. . .VKRKNS- 
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Table 4.4. Sequence analysis of diversified TCR repertoire in naïve CD4+ Vβ6+ lymphocyte population 

from Marilyn TCR (CDR3β diversifying) retrogenic mice (n=2). Letters in bold indicate amino acid 

changes from WT template, red indicates positively-charged amino acids and blue designates 

negatively-charged amino acids at pH of blood (pH3.5-4.5). 

MUTATION (TOTAL 

FREQUENCY) 

CDR3β PEPTIDE 

SEQUENCE 

LENGTH 

 

CHARGE 

 

FREQUENCY IN 

CD4+Vβ6+  

WT (0)  

 ASSIPGSNERLF 12 0 0 

DELETION (18)  

 ASSNERLF 8 0 8 

 ASSIPRNERLF 11 +1 4 

 ASSIPLNERLF 11 0 2 

 ASSIPGTERLF 11 0 1 

 ASSIGERLF 11 0 1 

 ASSIPGNERLF 11 0 1 

 ASSIPGKERLF 11 +1 1 

SUBSTITUTION (46)  

 ASSIPGSDERLF 12 -1 15 

 ASSIPGSYERLF 12 0 9 

 ASSIPFSNERLF 12 0 7 

 ASSIPGKSERLF 12 +1 4 

 ASSIPGIGERLF 12 0 3 

 ASSIPGIDERLF 12 -1 2 

 ASSIPGISERLF 12 0 2 

 ASSIPGRGERLF 12 +1 2 

 ASSIPGSAERLF 12 0 1 

 ASSVPGSYERLF 12 0 1 

ADDITION (38)  

 ASSIPGSGGERLF 13 0 7 

 ASSIPGRPGERLF 13 +1 7 

 ASSIPGSASERLF 13 0 6 

 ASSIPGSAGERLF 13 0 4 

 ASSIPGSADERLF 13 -1 4 

 ASSIPGSGAERLF 13 0 4 

 ASSIPGSESERLF 13 -1 2 

 ASSIPGSVSERLF 13 0 1 

 ASSIPGSFNERLF 13 0 1 

 ASSIPGGGDERLF 13 -1 1 

 ASSIPASDNEREF 13 -2 1 
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The naïve TCR repertoire in MataHari TCR (CDR3β diversifying) retrogenic mice revealed 24 and 16 

unique events from the analysis of 120 CD4+ and 61 CD8+ lymphocyte sequences, respectively (Tables 

4.5 and 4.6). TCR variants in the CD4+ MHC Class II-specific cells proved to be exclusively different from 

the WT CDR3β, whereas the majority of TCRs in the CD8+ cells were shown to retain the WT sequence. 

Most of the CD4+ lymphocytes (>80%) appear to carry a deletion in the CDR3β loop. To determine 

whether the mutagenesis system, including deletions, affected the TCRβ structure, we compared 

sequences within the CD4+ lymphocyte population based on staining against the anti-Vβ8.3 Ab, a 

possible indicator of the overall TCRβ V shape. Sequence comparison proved to be inconclusive since 

those that were positively and negatively stained showed overlapping CDR3β sequences.  

The high frequency of the WT MataHari CDR3β in the CD8+ population is suggestive of a number of 

interesting insights. Firstly, the MataHari TCR may have a natural bias for MHC Class I during thymic 

selection, leading to a preference to retain the WT CDR3β sequence and selection to the native MHC 

class. In contrast to the diversified Marilyn T cell repertoire, the development of WT MataHari T cells 

does not appear to be sensitive to the presence of male BM-derived APCs in the transduced donor 

HSCs. Instead, this suggests that efficient binding between the WT MataHari TCR and its cognate ligand 

may already exist.   
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Table 4.5. Sequence analysis of diversified TCR repertoire in naive CD4+ lymphocyte population from 
MataHari TCR (CDR3β diversifying) retrogenic mice (n=2) without antigenic challenge. Letters in bold 
indicate amino acid changes from WT template, red indicates positively-charged amino acids and blue 
designates negatively-charged amino acids at pH of blood (pH3.5-4.5). 

MUTATION (TOTAL 

FREQUENCY) 

CDR3β PEPTIDE 

SEQUENCE 

LENGTH 

 

CHARGE 

 

FREQUENCY IN 

CD4+Vβ8.3+  

FREQUENCY IN 

CD4+Vβ8.3-  

WT (0) 

(0) ASSDLVEVF 9 -2 0 0 

DELETION (98) 

(27) ASSDLLLF 8 -1 22 5 

(19) ASSDLRF 7 0 1 18 

(14) ASSGEVF 7 -1 9 5 

(8) ASSDLMF 7 -1 2 6 

(7) ASSDHVF 7 0 0 7 

(4) ASSDLLF 7 -1 0 4 

(4) ASSDLVF 7 -1 1 3 

(3) ASSEAEVF 8 -2 3 0 

(3) ASSDPEVF 8 -2 2 1 

(2) ASSDSEVF 8 -2 0 2 

(2) ASSDLRVF 8 0 0 2 

(1) ASSDLFVF 8 -1 1 0 

(1) ASSDLEVF 8 -2 1 0 

(1) ASSDLQVF 8 -1 1 0 

(1) ASSVEVF 7 -1 1 0 

(1) ASSDRF 6 0 1 0 

SUBSTITUTION (17) 

(8) ASSDLFEVF 9 -2 8 0 

(3) ASSDPVEVF 9 -2 3 0 

(3) ASSDLREVF 9 -1 0 3 

(2) ASSEDVEVF 9 -3 0 2 

(1) ASSDLYEVF 9 -2 1 0 

ADDITION (5) 

(3) ASSDRLTEVF 10 -1 0 3 

(1) ASGDRLTEVF 10 -1 0 1 

(1) ASSDLYVEVF 10 -2 1 0 
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Table 4.6. Sequence analysis of diversified TCR repertoire in naïve CD8+ lymphocyte population from 

MataHari TCR (CDR3β diversifying) retrogenic mice (n=2) without antigenic challenge. Letters in bold 

indicate amino acid changes from WT template, red indicates positively-charged amino acids and blue 

designates negatively-charged amino acids at pH of blood (pH3.5-4.5). 

MUTATION (TOTAL 

FREQUENCY) 

CDR3β PEPTIDE 

SEQUENCE 

LENGTH 

 

CHARGE 

 

FREQUENCY IN 

CD8+Vβ8.3+  

WT (26) 

 ASSDLVEVF 9 -2 26 

DELETION (18) 

 ASSDLRVF 8 0 10 

 ASSDLQVF 8 -1 4 

 ASSDLEVF 8 -2 2 

 ASSDPRVF 8 0 1 

 ASSDLPVF 8 -1 1 

SUBSTITUTION (15) 

 ASSDPVEVF 9 -2 5 

 ASSDLHEVF 9 -1 3 

 ASSVHVEVF 9 0 2 

 ASSDLDEVF 9 -3 1 

 ASSDLREVF 9 -1 1 

 ASSDLAEVF 9 -2 1 

 ASSDLHRVF 9 +1 1 

 ASSEHVEVF 9 -1 1 

ADDITION (2) 

 ASSDLHGRVF 10 +1 1 

 ASSDFFLEVF 10 -2 1 

 

 

We further analysed the diversified, including ‘optimised’, TCR repertoire in MataHari TCR (CDR3β 

diversifying) retrogenic mice after intra-peritoneal injection with male spleen cells expressing HY 

antigens. Sequencing analysis of 128 CD4+ and 97 CD8+ lymphocytes yielded 9 unique events each 

(Tables 4.7 and 4.8). A few key observations can be noted during sequence analysis of the diversified 

and challenged TCR repertoire. Firstly, the diversified CDR3β sequence ‘ASSGEVF’ appeared to be 

prevalent in both T cell subsets (regardless of anti-Vβ8.3 Ab staining) demonstrating TCR 

‘immunodominance’ after activation and stimulation/proliferation by the introduction of male-

specific antigens. This also indicates that the diversified TCR does not seem to exhibit an intrinsic bias 

to a specific MHC class.  

Surprisingly, the WT sequence, which was described to be retained in the majority of naïve CD8+ 

lymphocytes, was not identified. The reduction in MataHari-specific multimer binding suggests a 
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possible dilution of the WT TCR by the ‘immunodominant’ TCRs that appear to demonstrate lower 

binding affinities (Table 4.3). Indeed, clonal expansion of the ‘immunodominant’ T cells may dilute the 

WT cells resulting in the inability to detect the WT CDR3β. Alternatively, it could be by chance that we 

were unable to recognise the WT sequence, although the likelihood of this seems improbable since 

we had sequenced about 100 sequences from each T cell subset.  

 

Table 4.7. Sequence analysis of diversified TCR repertoire in CD4+ lymphocyte population from 

MataHari TCR (CDR3β diversifying) retrogenic mice (n=2) after antigenic challenge. Letters in bold 

indicate amino acid changes from WT template, red indicates positively-charged amino acids and blue 

designates negatively-charged amino acids at pH of blood (pH3.5-4.5). 

MUTATION (TOTAL 

FREQUENCY) 

CDR3β PEPTIDE 

SEQUENCE 

LENGTH 

 

CHARGE 

 

FREQUENCY IN 

CD4+Vβ8.3+  

FREQUENCY IN 

CD4+Vβ8.3-  

WT (0)           

(0) ASSDLVEVF 9 -2 0 0 

DELETION (125) 

(101) ASSGEVF 7 -1 57 44 

(16) ASSDLEVF 8 -2 3 13 

(2) ASSDPEVF 8 -2 2 0 

(2) ASSDLQVF 8 -1 0 2 

(1) ASSDLAF 7 -1 1 0 

(1) ASSDGVF 7 -1 1 0 

(1) ASGGEVF 7 -1 1 0 

(1) ASSDEVF 7 -2 0 1 

SUBSTITUTION (3) 

(3) ASSDPVEVF 9 -2 3 0 
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Table 4.8. Sequence analysis of diversified TCR repertoire in CD8+ lymphocyte population from 

MataHari TCR (CDR3β diversifying) retrogenic mice (n=2) after antigenic challenge. Letters in bold 

indicate amino acid changes from WT template, red indicates positively-charged amino acids and blue 

designates negatively-charged amino acids at pH of blood (pH3.5-4.5). 

MUTATION (TOTAL 

FREQUENCY) 

CDR3β PEPTIDE 

SEQUENCE 

LENGTH 

 

CHARGE 

 

FREQUENCY IN 

CD8+Vβ8.3+  

FREQUENCY IN 

CD8+Vβ8.3-  

WT (0)           

(0) ASSDLVEVF 9 -2 0 0 

DELETION (97)     

(81) ASSGEVF 7 -1 34 47 

(8) ASSDLEVF 8 -2 1 7 

(2) ASSGQVF 7 0 2 0 

(1) ASSGKVF 7 +1 1 0 

(1) ASRTCQVF 8 +1 0 1 

(1) ASSGEAF 7 -1 1 0 

(1) ASNGEVF 7 -1 1 0 

(1) ASSVEVF 7 -1 1 0 

(1) ASRGEVF 7 0 1 0 
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4.2.5. Analysis of TCR repertoire diversity and diversified CDR3β length and net charge 

The Shannon entropy index was used to measure the sequence diversity generated as a result of our 

mutagenesis approach (Wang et al., 1998; Stewart et al., 1997). Shannon entropy index incorporates 

both the number of sequences analysed and frequency of a particular sequence. This method had 

been previously used to describe TCR CDR3α diversity in Tregs and the diversification of germline CDRs 

(Holland et al., 2012; Singh et al., 2010; Ferreira et al., 2009). The diversity index was normalised to 

account for the different number of sequences analysed for each sample. Normalised diversity index 

(D) was calculated as a ratio of the Shannon entropy index (H) expressed as a percentage of the 

maximum diversity (H’) where every sequence analysed is presumed to be distinct. H, H’ and D are 

calculated by: 

H =  − ∑ [ln (
frequency of unique sequence 𝑖

total number of sequences 𝑁
)

𝑖 to 𝑁

] 

H′ = −[𝑁 x ln (
1

𝑁
)] 

Normalised diversity index (D) = H/H′ 

 

The normalised diversity index (D) used to quantify overall diversification of the TCR CDR3β at the 

peptide level facilitates direct comparison between the two αβTCR templates as well as differences 

among the T cell subsets, before and after exposure to cognate HY antigens (Figure 4.10). The D values 

calculated for the male-specific TCRs in their native T cells subset (CD4+ for Marilyn and CD8+ for 

MataHari) appeared to be similar (21.9% to 21.8%). Interestingly, diversity in the CD4+ lymphocytes in 

peripheral MataHari TCR (CDR3β diversifying) repertoire was shown to be less than that in the CD8+ 

cells. This observation was continuous after antigenic challenge. Consistent with the reduction in total 

unique sequences and the accumulation of the diversified/’optimised’ CDR3β sequence ‘ASSGEVF’ 

after HY antigen exposure, both CD4+ and CD8+ lymphocytes in the MataHari TCR (CDR3β diversifying) 

retrogenic mice showed a ~60% reduction in D values.  
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Figure 4.10. Overall peptide sequence diversity of peripheral TCR repertoire generated by the in vivo 

mutagenesis approach in Marilyn and MataHari TCR (CDR3β diversifying) retrogenic mice. 

Normalised diversity index (D) was calculated by the Shannon entropy indices (H) as percentage of 

maximum diversity (H’). Each segment represents a unique CDR3β peptide sequence. Size of each 

segment is proportional to the frequency of a distinct sequence. * denotes WT TCR. 

 

To investigate the impact of the mutagenesis approach on the size of the peptide-binding loop, we 

then measured the length of the TCR CDR3β amino acid residues. Analysis of the CDR3β amino acid 

lengths in Marilyn TCR (CDR3β diversifying) retrogenic mice showed a restricted variation in size. The 

CD4+Vβ6+ Marilyn TCR (CDR3β diversifying) sequences demonstrated a higher preference to either 

maintaining the WT loop size (12 a.a.) through substitution mutations or addition of one amino acid 

before any nucleotide deletions (Figure 4.11A). Likewise, native CD8+ lymphocytes from MataHari TCR 

(CDR3β diversifying) retrogenic mice show a strong constraint in maintaining the WT CDR3β loop size 

(9 a.a.), since the majority retained the WT sequence (Figure 4.11B, left). Over 80% of the MataHari 

TCR (CDR3β diversifying) CD4+ lymphocytes exhibited a deletion of CDR3β amino acids, implying 

binding preference to MHC Class II requires a smaller antigen-binding site (Figure 4.11B). Most 

importantly, after exposure to HY antigens, the resultant ‘immunodominant’ T cells indicate 

‘optimised’ TCR/pMHC binding is driven by a shorter CDR3β loop (7 a.a.; Figure 4.11B, right).  

Marilyn (CDR3β diversifying) MataHari (CDR3β diversifying) 

D = 21.9% D = 15.6% D = 5.4% 

D = 21.8% D = 7.7% 

After antigenic challenge 

CD4+ 

CD8+ 

* 
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Figure 4.11. Analysis of the diversified CDR3β amino acid length distribution in the Marilyn and 

MataHari TCR (CDR3β diversifying) retrogenic mice. The CDR3β amino acid lengths from the 

sequences from Tables 4.4-4.8 are summarised in Marilyn (A) and MataHari (B) TCR (CDR3β 

diversifying) peripheral TCR repertoires. For MataHari TCR (CDR3β diversifying), we compare before 

(left) and after (right) exposure to HY antigens. Data is shown as frequency of length as a percentage 

of total sequences analysed, to one decimal place. 

 

To further explore the TCR/pMHC binding interaction in the CDR3β loop, we examined the net charge 

of the peptide-binding site based on its amino acid composition (Figure 4.12). A summary of the most 

common mutations (substitution and addition; 12 and 13 a.a.) to the diversified CD4+Vβ6+ Marilyn TCR 

CDR3β is shown in Figure 4.12A (left), highlighting the resultant amino acid composition. Modifications 

to the loop were mostly concentrated to not more than three amino acid residues away from the 

insertion of the cassette. As such, the positively-charged glutamic acid (E) and negatively-charged 

arginine (R) remained conserved in all diversified CDR3β, hence the high frequency of 0 net charge 

(Figure 4.12, right). Additionally, most mutations appear to occur after the point of recombination 

cassette insertion.  
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Analysis of the most common lengths (8 and 9 a.a.) in the native CD8+ MataHari TCR repertoire 

revealed similar observations in that mutations were limited to not more than three amino acids from 

the recombination cassette insertion point (Figure 4.12B, right). Most CD8+ lymphocytes conserved 

the WT TCR, hence the high frequency of a negative CDR3β net charge of (-2) (Figure 4.12C, left). 

Conversely, analysis of the most common amino acid lengths (7-9 a.a.) in the CD4+ MataHari TCR 

(CDR3β diversifying) lymphocytes highlight that deletion mutations mainly remove the negatively-

charged glutamic acid (E) residue which may affect the overall ‘interaction codons’ (Figure 4.12B, left). 

Therefore we observe a high frequency of net charge increasing to (-1) (Figure 4.12C, left). A smaller 

proportion of this population removed the negatively-charged aspartic acid (D) residue instead, 

forming the CDR3β sequence ‘ASSGEVF’ with a net charge of (-1). The same CDR3β is observed in 

almost all CD4+ and CD8+ MataHari TCR (CDR3β diversifying) lymphocytes after antigenic ligand 

exposure (Figure 4.12C, right; Tables 4.7 and 4.8). Altogether, the data suggest that the ‘optimised’ 

engagement between MataHari TCR and pMHC seems to favour a shorter peptide-binding loop that 

introduces a glycine (G) residue, with an increased net charge of (-1).    
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Figure 4.12. Analysis of the diversified TCR repertoire CDR3β net charge and amino acid usage in the 

Marilyn and MataHari TCR (CDR3β diversifying) retrogenic mice. The CDR3β amino acid lengths from 

the sequences from Tables 4.4-4.8 are summarised. (A) The CDR3β amino acid composition in 

CD4+Vβ6+ Marilyn TCR (CDR3β diversifying) lymphocytes is shown (left), with the overall net charges 

(right). The black box indicates added residues not present in the WT. (B) The CDR3β amino acid 

composition in CD4+ (left) and CD8+ (right) MataHari TCR (CDR3β diversifying) lymphocytes are 

summarised. (C) Comparison of the overall net charge in CD8+ (blue) and CD4+ (black) MataHari TCR 

(CDR3β diversifying) lymphocytes, before (left) and after (right) exposure to HY antigens. The height 

of each letter corresponds to its frequency. Colours of each letter represent: black - uncharged, red - 

positively-charged and blue - negatively-charged amino acids at pH of blood (pH3.5-4.5). Net charge 

data is shown as frequency as a percentage of total sequences analysed, to one decimal place.  
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4.3. Discussion 

4.3.1. Summary  

The data in this chapter demonstrates the successful application of the in vivo gene recombination-

inducing mutagenesis approach in TCR/MHC haplotype-matched C57BL/6 retrogenic mice. Detection 

of a functional T cell repertoire indicates that the migration of the transduced HSCs into the thymic 

compartment led to effective removal of the recombination cassette and generation of an in-frame 

TCRβ chain. Subsequent sequencing of distinct T cell populations also confirms the modification of the 

target CDR3β that resulted in many variants of the template TCRs. Although the diversification was 

limited to a small range of amino acids around the point of gene recombination, we were able to 

define a sizeable number of novel post-selection CDR3β sequences with similar levels of overall 

diversity in both retrogenic TCRs. 

In addition, phenotypic comparisons between the FVB/N and C57BL/6 retrogenic mice and TCR 

sequence analysis enabled us to address some of the key observations discussed in the previous 

chapter. Firstly, in relation to the enlarged thymi discovered in some of the FVB/N retrogenic mice, all 

C57BL/6 retrogenic mice for both TCRs exhibited small or normal-sized thymi. It is likely that the 

TCR/MHC haplotype mismatch may have contributed to the formation of the enlarged thymus 

associated with an arrest at the DN to DP stage. The different genetic backgrounds of FVB/N and 

C57BL/6 could also underlie the susceptibility to thymoma in FVB/N. 

Similar to the FVB/N strain, the T lymphocyte population in the C57BL/6 retrogenic mice also exhibited 

a skew to the CD4+ T cell lineage for both TCRs. Furthermore, we observed the presence of a small 

population of CD8+ T cells in the Marilyn TCR (CDR3β diversifying) retrogenic mice. These observations 

are surprising since the WT Marilyn transgenic mice are typically selected on the CD4 lineage 

(Grandjean et al., 2003). Conversely, MataHari transgenic mice generally express only CD8+ cytotoxic 

T cells, but we instead observe not only presence, but also dominance of CD4+ T cells in the retrogenic 

mice (Valujskikh et al., 2002). As expected, the mutagenesis system did not affect the germline CDR1 

and CDR2 sequences of both TCRα and β chains. Assuming efficient pairing between exogenous TCRα 

and β chains, we might expect the male-specificity to persist within a proportion of diversified TCR 

repertoires of the appropriate MHC class. Equally, mutation of CDR3β in both constructs may lead to 

binding the alternative MHC class thus switching MHC restriction to the alternate class. The generation 

of unexpected T cell lineages was similarly observed in the generation of WT Marilyn and MataHari 

retrogenic mice which utilised the injection of transduced C57BL/6 bone marrow cells into female 

RAG-1-/- recipient mice (Holst et al., 2006). Thus, it is possible that the presence of the endogenous 
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TCRα locus in the WT or TCR-β/δ-/- deficient thymocytes allows formation of novel αβTCRs that results 

in the uncharacteristic T cell lineages.  

We further propose that the higher frequency of CD4+ compared to CD8+ T cells in the MataHari TCR 

(CDR3β diversifying) mice may be a consequence of the lower TCR surface expression associated with 

the multi-cistronic retrogenic approach. Upon analysing the TCRβ MFI, we observed a significant 

reduction in TCR expression in the retrogenic T cells compared to their WT C57BL/6 counterparts. The 

multi-cistronic system is designed such that early TCRα expression in the DN4 stage allows formation 

of αβTCRs that are capable of ligand-independent signalling transition to the DP stage (Erman, Guinter 

& Singer, 2004; Erman et al., 2002). The retrogenic αβT cells are able to redirect normal thymocyte 

development and circumvent stringent thymic selection checkpoints with reduced TCR signalling 

complexes. Moreover, Sinclair and colleagues (2013) reported that the susceptibility of CD8+ 

thymocytes to apoptosis is the crucial determinant of CD4:CD8 ratio during T cell ontogeny by 

thymopoiesis. Native CD8+ T cells in the periphery also have a greater dependence on homeostatic 

TCR-dependent survival signals than CD4+ T cells (Seddon & Zamoyska, 2002). Hence, we consider the 

lower TCR expression may increase susceptibility of the CD8+ T cell to apoptosis resulting in the lower 

frequency of CD8+ in comparison to CD4+ T cells in the periphery. 

Sequence analysis of distinct T cell populations separated based on staining with specific anti-Vβ 

antibodies was intended to elucidate whether the mutagenesis approach disrupted the overall TCRβ 

structure. Interestingly, the diversification of each TCR produced different outcomes: For Marilyn TCR, 

diversification caused either full or null retention of the anti-Vβ6 Ab epitope in T lymphocytes. In 

contrast, MataHari TCR diversification allowed partial staining of T cells with the anti-Vβ8.3 Ab (~75%). 

We previously reported that the anti-Vβ6 Ab epitopes include the germline CDR2 (Bartok, 

unpublished) which should not be affected by modifications to the CDR3β structure. Indeed, the 

CD4+Vβ6- T cell population from the Marilyn TCR (CDR3β retrogenic) mice, which was shown to 

completely remove the Vβ domain, adheres to this principle. Otherwise, the CD4+Vβ6+ T lymphocytes 

appeared to conserve the TCRβ structure and Ab epitope despite not retaining the WT CDR3β 

sequence. In MataHari TCR (CDR3β diversifying) retrogenic mice, we observed a loss of the anti-Vβ8.3 

Ab epitopes in a small proportion of the CD4+ and CD8+ T cells. To investigate whether the 

modifications to the CDR3β resulted in this epitope loss, we compared the TCR sequences between 

positively and negatively stained cells. However, the overlapping CDR3β sequences in both Vβ8.3+ and 

Vβ8.3- cells, coupled with the unaltered germline CDRs, suggests that the mutagenesis may not 

necessarily affect the TCRβ structure and Ab epitope. Instead, it may be the TCRα partner, which could 

be exogenous or endogenous, that may sterically hinder the Ab binding site.  
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Additionally, the diversification of CDR3β and TCRα pairing may also result in reduced binding affinity 

and/or specificity as shown by the low specific pMHC multimer staining frequency; any high affinity 

TCRs would have been negatively selected during in vivo thymopoiesis. The current technology, lacking 

the available specific anti-Vα antibodies, restricts the identification of TCRα usage in the diversified T 

cells. Altogether, this complicates fully understanding whether it is truly the mutagenesis approach or 

the TCRα that results in a T cell lineage and/or antigen-binding capacity which are more effective than 

the WT.  

The analysis of the diversified CDR3β sequences also allowed us to define significant findings regarding 

the mutagenesis. Firstly, the mutagenesis approach does not necessarily exhibit a preference to 

remove the WT template. We initially assumed a mutagenesis mechanism bias or the presence of 

male APCs that may delete WT male-specific TCRs contributing to the absence of WT sequences in the 

diversified Marilyn T cells (Oh & Shin, 2015). However, this is not the case for MataHari TCR since a 

high frequency of diversified sequences conserved the WT CDR3β. Further, in both Marilyn and 

MataHari TCR diversification, we noticed a higher frequency of mutations occur after the 

recombination cassette insertion point and the majority introduce glycine residues. This bias may be 

attributed to the location of the CDR3β region within the J-segment which was described to be guanine 

nucleotide rich (Moss & Bell, 1996). Alternatively, glycine may be introduced to confer flexibility to 

the CDR3β in order to optimise the location of peptide contact points and pMHC docking upon 

removal of charged amino acids (Cole et al., 2014; Huang & Nau, 2003). 

We also noted that the mutagenesis system generated a limited range of CDR3β length distribution. 

For both TCRs, the diversified CDR3β lengths appeared similar to within two amino acids of the WT 

CDR3α and CDR3β. Based on the limited length variation of processed peptides, the CDR3 antigen-

binding sites of TCRα and β chains are under selective pressure to maintain a fairly narrow combined 

length distribution and efficient contact with pMHC ligands (Johnson & Wu, 1999). Previous work from 

our group have indeed shown that the long C6 TCR CDR3β influences efficient pairing with its cognate 

TCRα chain whilst negating pairing with other endogenous TCRα chains (Bartok et al., 2010). Thus, we 

deduce that the CDR3α partner may confer a selective pressure on the diversified CDR3β in order to 

maintain a narrow combined CDR3 length distribution.  

One of the biggest challenges encountered during the generation of the Marilyn TCR (CDR3β 

diversifying) retrogenic mice was the unpredictable occurrence of the CD4+Vβ6- population. This cell 

population was revealed to express a novel TCR chain comprising of the Marilyn Vα and Cβ domains 

fused at the J-segment. We propose that this novel TCR chain may be caused by the unexpected 

sequence identity in the Jα- and Jβ-segments as a result of codon optimisation during αβTCR (CDR3β 
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diversifying) synthesis. The lack of diversity in and around the point of gene recombination suggests 

that the recombination cassette may not be the causative factor, but rather the nucleotide sequence 

similarity caused a predominant ribosomal skip during transcription of the integrated exogenous TCR 

(Im et al., 2014). Hence, the random incidence of this phenomenon in either FVB/N or C57BL/6 mice 

impeded fully describing Marilyn TCR diversification and screening for optimised TCRs after exposure 

to cognate ligands as we have done for the MataHari TCR.   

 

4.3.2. Conclusions 

The present chapter highlights the successful utilisation of the novel mutagenesis concept. The 

recombination cassette was shown to redirect gene rearrangement and introduce variation to the 

targeted CDR3β peptide-binding site. In vivo thymic selection ensured the generation of a functional 

self-tolerant and MHC-restricted T cell repertoire. Subsequent exposure to cognate ligands also 

allowed us to identify ‘optimised’ and ‘immunodominant’ TCRs. Although the development of αβT 

cells was generally unaffected, there were interesting observations with regards to uncharacteristic T 

cell lineages and consequences of the TCR modification. It should be born in mind that our analyses 

of the TCR repertoires is very limited (with n=2 in most cases) and will likely capture a small fraction 

of the total diversity. Furthermore, we have discovered a novel TCR chain which comprises of a V 

domain from the TCRα attached to the C domain of TCRβ chain. In the next chapter, we will attempt 

to characterise the phenotype and functionality of this novel TCR. 
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Chapter 5: Phenotypic characterisation and functional analysis of a novel 

chimeric TCR chain 

 

5.1. Introduction 

The primary focus of this study is the diversification of a template TCR using a recombination cassette 

that redirects somatic gene recombination in the target CDR. During analysis of the Marilyn TCR 

(CDR3β diversifying) retrogenic mice, it was noted that a proportion (3 of 7 FVB/N and 3 of 4 C57BL/6  

retrogenic mice) developed a dominant population of peripheral T cells which appeared to express 

the TCRβ constant domain but not the Marilyn Vβ6 domain as determined by flow cytometry (Figure 

5.1A). PCR analysis of the transgene revealed deletion of a significant portion of the template TCR 

including the Cα and Vβ domains (Figure 5.1B). Further sequence analysis confirmed the transgene 

comprised of only the Vα and Cβ domains joined together by a fused Jα-Jβ gene segment.  

We hypothesised that an aberrant gene recombination event had resulted in the fusion of the TCR Vα 

to the Cβ domain, forming a chimeric Vα-Cβ chain which forms a heterodimer with endogenous TCRα 

chains (Figure 5.1C). Secondly, we hypothesised that this novel form of αβTCR would use a Vα-Vα 

dimeric antigen-binding surface which is able to engage functionally with self-MHC-I and –II and direct 

positive selection during thymocyte development. According to the germline hypothesis, the TCR 

requires both germline TCRα and TCRβ CDRs to interact efficiently with cognate MHC ligands. As the 

chimeric Vα-Cβ TCR chain lacks the germline TCRβ CDRs, this hypothesis predicts it would be unable 

to support normal T cell engagement with APCs.  

In this chapter, the nature of the recombination event that directed the removal of the TCR Cα and Vβ 

domains was investigated. We also aimed to characterise the functionality of the Vα-Cβ fusion TCR: 

Firstly by determining whether the Vα-Cβ fusion TCR can be co-expressed on the surface of normal T 

cells expressing WT αβTCR in vitro. Second, we generated retrogenic mice expressing the novel Vα-Cβ 

fusion TCR to investigate whether the chimeric chain can mediate in vivo thymic selection and T cell 

development.  
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Figure 5.1. The loss of the Marilyn Vβ6 domain in Marilyn TCR (CDR3β diversifying) retrogenic mice. 

Analysis of the Marilyn TCR (CDR3β diversifying) C57BL/6 mice showed two classes of T lymphocyte 

populations: EGFP+TCRβ+Vβ6+ and EGFP+TCRβ+Vβ6-. (A) Retention (top) and loss (bottom) of the Vβ6 

domain in the EGFP+ T lymphocytes. (B) PCR analysis using primers in the Vα and Cβ domains of the 

mRNA extracted from these two populations show the deletion of a large portion (~800bp) of the 

Marilyn αβTCR construct. (C) Schematic diagram of the Marilyn TCR (CDR3β diversifying) construct 

highlighting the deleted Cα and Vβ segments, and relative positions of the PCR primers used in (B).  
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5.2. Results 

5.2.1. Preparation of sequencing and retroviral vectors containing the novel chimeric TCR  

To amplify cDNA corresponding to the complete Vα-Cβ fusion TCR construct, we performed PCR using 

Taq polymerase on the cDNA derived from the sorted CD4+Vβ6- Marilyn TCR (CDR3β diversifying) 

lymphocytes (Refer to Chapter 4.2.4; Figure 4.8A). The PCR primers were designed to include the 

leader sequence upstream of the Vα domain and termination codon of the Cβ domain to encode the 

entire open reading frame (ORF). The BglII and EcoRI restriction sites on opposite sides of the TCR 

construct were also incorporated to facilitate sub-cloning into the MCS of the pMigR1 vector. The PCR 

was shown via gel electrophoresis to synthesise the PCR product of the correct length (933bp; Figure 

5.2A). To enable further amplification and stable sequencing of the Vα-Cβ fusion TCR, we first sub-

cloned the PCR product into the pCR™2.1 vector. Taq polymerase has a non-template-dependent 

activity that adds a single deoxyadenosine (A) to the 3’ ends of the PCR products.  The pCR™2.1 vector 

contains complementary 3’ deoxythymidine (T) overhangs that enable efficient ligation with the PCR 

products. Further, the pCR™2.1 vector includes primer sites flanking the ligation site to facilitate 

sequencing of the inserts. The ligation was confirmed by double digestion with BglII and EcoRI 

restriction enzymes, followed by gel electrophoresis analysis (Figure 5.2B). The open-ended inserts 

(Vα-Cβ fusion TCR construct containing BglII and EcoRI restriction sites) were then isolated and 

purified before ligation into ‘empty’ pMigR1 vectors. Ligation was confirmed as before (Figure 5.2C). 

Insertion was further verified by sequencing, which showed 100% identity and correct orientation in 

the retroviral vector (not shown).    

 

Figure 5.2. Amplification and sub-cloning of the complete Vα-Cβ fusion TCR construct. (A) PCR was 

performed on the cDNA of the sorted CD4+Vβ6- Marilyn TCR (CDR3β diversifying) lymphocytes using 
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primers that include BglII and EcoRI restriction sites, and entire ORF. Gel electrophoresis analysis 

confirmed the presence of a PCR product of the correct size (933bp). The PCR product was then ligated 

into the pCR™2.1 and pMigR1 vectors. Sub-cloning of Vα-Cβ fusion TCR into vectors pCR™2.1 

(~3900bp; B) and pMigR1 (6038bp; C) was confirmed by double digestion using BglII and EcoRI and gel 

electrophoresis. 

 

5.2.2. Analysis of recombination event leading to deletion of Cα and Vβ domains 

To characterise the recombination event leading to the formation of the Vα-Cβ fusion TCR, we 

compared the sequence of the complete Vα-Cβ fusion TCR in the pCR™2.1 vector with the Marilyn 

TCR (CDR3β diversifying) construct in the pMigR1 vector. Sequence analysis demonstrated that the J-

segments of the Marilyn TCRα and β chains exhibited similar nucleotide and amino acid sequences 

(Figure 5.3). Further, we confirmed that the Vα-Cβ TCR junction occurred within the J-segments of 

both TCRα and β chains (Figure 5.3B, boxed). The fusion Vα-Cβ TCR contains an aspartic acid (D) amino 

acid residue at the junction rather than the alanine (A) or histidine (H) residues present in the TCRα 

and β J-segments of the original construct respectively. The aspartic acid codon (g-ac) appears to have 

been produced by a recombination event occurring within the alanine (gcc) and histidine (cac) codons. 

Indeed, there is a direct repeat of at least 18 nucleotides in the TCRα and β J-segments suggesting that 

the fusion may have been caused by a homologous recombination event. We propose that the codon 

optimisation applied during the de novo synthesis of the Marilyn TCR (CDR3β diversifying) construct 

to increase translation, and which introduced differences from the original germline, may have 

contributed to this unexpected nucleotide sequence homology shared by the J-segments of the 

Marilyn TCRα and β chains. Notably, this aberrant recombination event appears to lack any diversity 

and may be unrelated to the presence of the recombination cassette. All three CDRs of the Marilyn 

TCRα chain also remain unaltered.  

We hypothesise that the fusion, at the point where the Vα and Cβ domains are joined, allows efficient 

folding of the Vα and Cβ protein domains and their linkage through the chimeric J-segment. A 

molecular model, made by Istvan Bartok (unpublished), illustrates the proposed position the novel Vα 

domain assumes in place of the WT Vβ of the Marilyn TCRβ chain (Figure 5.4). The combined Jα-Jβ 

segment does not appear to affect the protein folding of the Vα and Cβ domains. Hence, the novel 

Vα-Cβ TCR chain is able to maintain a conformation similar to that of the WT Marilyn TCRβ chain. 
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Figure 5.3. Comparison of the nucleotide and amino acid sequences of the Marilyn TCRα and β 

chains with the Vα-Cβ fusion TCR. (A) The complete amino acid sequences of the TCRα and β chains 

Marilyn TCR (CDR3β diversifying) constructs are shown, and compared with that of the Vα-Cβ fusion 

TCR. CDRs are shown in bold. (B) The sequence homology in the J-segments of the TCRα and β chains 

are proposed to have led to recombination of the Vα and Cβ domains at point of fusion (boxed). 

Nucleotide and amino acid sequences maintained into the Vα-Cβ fusion TCR are shown underlined.  

Key 
Leader Sequence 
V Region  
D Region V Domain 
J Region  
C Domain 
Connecting Region 
Transmembrane Region 
Cytoplasmic Region 

R  F  G  A  G  T  K  L  T  V  K    

agg ttc gga gcc ggc acc aag ctg acc gtg aag 

Marilyn TCRα chain: 

F  F  G  H  G  T  K  L  S  V  L   

ttt ttc ggc cac ggc acc aag ctg tcc gtg ctg 

Marilyn TCRβ chain: 

R  F  G  D  G  T  K  L  S  V  L   

agg ttc gga gac ggc acc aag ctg tcc gtg ctg 

Vα-Cβ fusion TCR: 

(B) 

MKSLSVSLVVLWLLLNWVNSQQNVQQSPESLIVPEGARTSLNCTFSDSASQYFWWYRQHS 
GKAPKALMSIFSNGEKEEGRFTIHLNKASLHFSLHIRDSQPSDSALYLCAVGNNNNAPRF 

GAGTKLTVKPNIQNPEPAVYQLKDPRSQDSTLCLFTDFDSQINVPKTMESGTFITDKTVL 

DMKAMDSKSNGAIAWSNQTSFTCQDIFKETNATYPSSDVPCDATLTEKSFETDMNLNFQN 
LSVMGLRILLLKVAGFNLLMTLRLWSS 

Marilyn TCRα chain: 

MNKWVFCWVTLCLLTVETTHGDGGIITQTPKFLIGQEGQKLTLKCQQNFNHDTMYWYRQD 
SGKGLRLIYYSITENDLQKGDLSEGYDASREKKSSFSLTVTSAQKNEMAVFLCASSIPGS, 

NERLFFGHGTKLSVLEDLRNVTPPKVSLFEPSKAEIANKQKATLVCLARGFFPDHVELSW 
WVNGKEVHSGVSTDPQAYKESNYSYCLSSRLRVSATFWHNPRNHFRCQVQFHGLSEEDKW 
PEGSPKPVTQNISAEAWGRADCGITSASYHQGVLSATILYEILLGKATLYAVLVSGLVLM 
AMVKRKNS- 

Marilyn TCRβ chain (“,” denotes insertion of recombination cassette): 

MKSLSVSLVVLWLLLNWVNSQQNVQQSPESLIVPEGARTSLNCTFSDSASQYFWWYRQHS 
GKAPKALMSIFSNGEKEEGRFTIHLNKASLHFSLHIRDSQPSDSALYLCAVGNNNNAPRF 

GDGTKLSVLEDLRNVTPPKVSLFEPSKAEIANKQKATLVCLARGFFPDHVELSW 
WVNGKEVHSGVSTDPQAYKESNYSYCLSSRLRVSATFWHNPRNHFRCQVQFHGLSEEDKW 
PEGSPKPVTQNISAEAWGRADCGITSASYHQGVLSATILYEILLGKATLYAVLVSGLVLM 
AMVKRKNS- 

Vα-Cβ fusion TCR: 

(A) 
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Figure 5.4. Molecular model of Vα-Cβ fusion TCR. The three-dimensional structure of the Vα-Cβ TCR 

chain is illustrated based on its primary structure. The TCR Vα (blue) is shown superimposed onto the 

Vβ (green) domain, attached to the Cβ (yellow) of the Marilyn TCRβ chain. The J-segment (white) 

connects the Vα and Cβ domains, with the point of fusion shown in red. Provided by Istvan Bartok, 

unpublished. 

 

5.2.3. Functional characterisation of Vα-Cβ fusion TCR chain 

5.2.3.1. Phoenix™ cell transfection and generation of C57BL/6 retrogenic mice 

In order to deliver the Vα-Cβ fusion TCR construct in the pMigR1 vectors into HSCs for the 

development of T cells in retrogenic mice, we used the Phoenix™ ecotropic packaging cell line to 

produce retroviral particles. As described in Chapter 2, we transfected the Phoenix™ cells with the 

help of the Lipofectamine® 2000 transfection reagent and pCLE helper plasmid. The expression of the 

EGFP gene in the pMigR1 vector facilitated the identification of transfected and transduced cells. The 

transfection efficiencies measured by flow cytometry were: ‘empty’ pMigR1 – 61.7 ± 8.3% and 

pMigR1-(Vα-Cβ fusion TCR) – 70.6 ± 0.9% (Figure 5.5A). The transfection efficiencies between the 

empty pMigR1 and pMigR1-(Vα-Cβ fusion TCR) were shown to be statistically similar (p>0.5).  

The retroviral particles in the supernatant were then used for the transduction of HSC-enriched 

cultures from at least eight-week-old TCR-β/δ-/- deficient donor mice (C57BL/6; male and female). Two 
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sets of two retrogenic mice were generated. The average transduction efficiencies during each set-up 

was 8.5 ± 7.8% (Figure 5.5B). Although transduction efficiency rates were quite low, we ensured at 

least 2 x 105 GFP+ cells were injected into each C57BL/6 TCR-β/δ-/- deficient female recipient mouse. 

This would be sufficient to determine whether the Vα-Cβ fusion TCR chain can direct T cell 

development. 

 

  

Figure 5.5. Flow cytometric analysis of EGFP reporter expression in transfected and transduced cells. 

(A) Transfection efficiencies of ‘empty’ pMigR1 (n=10) and pMigR1-(Vα-Cβ fusion TCR) (n=3) 

determined by the average percentage of EGFP+ Phoenix™ cells. Each bar represents the mean ± SD. 

(B) Transduction efficiency, measured by percentage of EGFP+ HSCs, during the generation of 

retrogenic mice (n=2). Data is presented as mean ± SD. 

 

 

5.2.3.2. Analysis of co-expression of novel TCR in normal αβT cells 

The Vα-Cβ fusion TCR was initially reported in a proportion of Marilyn TCR (CDR3β diversifying) 

retrogenic mice which expressed Vβ6- T lymphocytes (Chapters 3 and 4). Conversely, we also observed 

Marilyn TCR (CDR3β diversifying) retrogenic mice that exhibited positive Vβ6 expression. We proposed 

that the Vα-Cβ fusion chain pairs with endogenous TCRα chains instead of forming a Vα-Cβ TCR 

homodimer. However, the proposed Vα-Cβ/TCRα heterodimer may be relatively unstable since it lacks 

the Vα-Vβ interface required for normal αβTCR pairing. Additionally, the Vα-Cβ TCR may be 

disadvantaged from pairing with endogenous TCRα when competing with WT TCRβ. To investigate 
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this hypothesis, we transduced the Vα-Cβ TCR chain into peripheral T cells which already express a 

WT αβTCR repertoire.  

The retroviral supernatant (Figure 5.5) was used to transfer the Vα-Cβ TCR transgene into splenocytes 

collected from Vβ11+ TCR transgenic mice. After culturing for 48 hours, the transduced T cells were 

stained with anti-TCRβ (C domain) and anti-Vβ11 Ab and analysed via flow cytometry. The anti-TCRβ 

Ab would detect both the WT TCRβ and Vα-Cβ TCR chains. In contrast, the anti-Vβ11 Ab staining would 

detect only the WT transgenic TCR. EGFP expression facilitates detection of transduced T cells and 

correlates to the expression of the Vα-Cβ TCR chain since both proteins are translated from the same 

mRNA. 

Flow cytometric analysis demonstrated a relatively low transduction efficiency, shown by the 14.0% 

EGFP expression in CD4+ and CD8+ T cells (Figure 5.6). In both CD4+ and CD8+ T lymphocytes, we 

observed an increase in cell surface TCRβ expression levels with increasing EGFP expression (Figure 

5.6B). This upward trend indicates the expression of the exogenous Vα-Cβ fusion chain with the 

endogenous TCRα. Conversely, a downward trend of endogenous Vβ11+ TCR was seen with increasing 

EGFP levels. To support this observation, we measured the MFI of TCRβ and Vβ11 expressions in the 

transduced T cells relative to EGFP expression levels (EGFP-, low and high EGFP). The TCRβ MFI showed 

a progressive increment while the Vβ11 MFI showed a gradual reduction with increasing EGFP (Table 

5.1). This downward Vβ11:EGFP trend is likely due to the exogenous Vα-Cβ fusion chain successfully 

competing with endogenous TCRβ chains for pairing with endogenous TCRα.  

Thus it can be concluded that both types of TCRs can be co-expressed on the T cell surface. These data 

also demonstrate that the Vα-Cβ fusion chain pairs efficiently with the endogenous TCRα chain and 

appears to form stable heterodimers despite exhibiting the uncharacteristic Vα-Cβ interface. Since the 

up-modulation of the TCR is observed in the majority both CD4+ and CD8+ T lymphocytes, we may 

assume that pairing is possibly efficient across the majority of Vα segments expressed by Vβ11 

transgenic T cells. 

 

Table 5.1. Comparison of the MFI of TCRβ and Vβ11 expressions relative to EGFP expression in 

transduced CD8+ and CD4+ T cells. 

 CD8 CD4 

EGFP 

expression level 

Non EGFP Low EGFP High EGFP Non EGFP Low EGFP High EGFP 

MFI (TCRβ) 474 990 1976 363 776 1577 

MFI (Vβ11) 143 146 89 157 160 103 
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Figure 5.6. Flow cytometric analysis of transduced T cells. The retroviral supernatant containing the 

Vα-Cβ TCR transgene was used to transduce T cells extracted from Vβ11+ transgenic mice. After 

culturing for 48 hours, the transduced cells were harvested and stained with anti-TCRβ and anti-Vβ11 

Ab. (A) The transduced cells were analysed based on co-receptor expression. The CD8+ and CD4+ T 

cells were then analysed for expression the reporter EGFP gene against (B) anti-TCRβ and (C) anti-

Vβ11 Ab staining.   
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5.2.4. Phenotypic analysis of the retrogenic mice expressing the Vα-Cβ fusion TCR chain  

5.2.4.1. Analysis of retrogenic mice primary lymphoid organs 

The retrogenic mice were given at least 8 weeks to reconstitute the peripheral T cell repertoire. After 

this period, the mice were culled and analysed to characterise T cell development directed by the Vα-

Cβ fusion TCR chain. The retrogenic mice (n=3) displayed a small thymus with an average of 16.7 (± 

12.7) x 106 cells (Figure 5.7A, B). The thymocyte cell count was statistically lower than that of WT 

C57BL/6 mice (p>0.05).  

Thymocytes were subsequently analysed for EGFP, TCRβ, CD4 and CD8 expression via flow cytometry. 

The retrogenic thymocytes expressed pronounced levels of EGFP+ (15.6 ± 9.4%) and within this, 

EGFP+TCRβ+ represented 84.8 ± 15.3% (Figure 5.7C). The thymocyte co-receptor expression profile 

demonstrated a higher frequency of DN cells relative to DP cells, suggesting a partial block at the DN 

to DP stage – a trait of the TCR-β/δ-/- deficient recipient mice (Mombaerts et al., 1992). There are also 

sizeable proportions of SPCD4 and SPCD8 cells at a ratio of 4:1, similar to that observed in WT C57BL/6 

thymocytes (Figure 5.7C). Altogether, this data suggests that the transduced HSCs successfully 

migrated to the thymic microenvironment to undergo T cell development which results in a higher 

frequency of CD4+ compared to CD8+ T cells. The T cells can only develop from expressing the Vα-Cβ 

fusion TCR chain, followed by pairing with endogenous TCRα chains to produce a functional TCR 

heterodimer. Additionally, the similar SPCD4:SPCD8 ratios imply that the T cells expressing the Vα-Cβ 

fusion TCR chain may exhibit a development fate similar to that of WT thymocytes. 
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Figure 5.7. Analysis of thymus from C57BL/6 retrogenic mice expressing the Vα-Cβ fusion TCR chain. 

Thymi from the retrogenic mice (n=3) were harvested after the TCR reconstitution period (>8 weeks). 

(A) Representative example of the retrogenic thymus is shown, compared to that of a WT C57BL/6 

thymus. (B) The average thymocyte cell count of the retrogenic mice is shown to be statistically lower 

than that of WT C57BL/6 mice (p>0.05). (C) The flow cytometric analysis of EGFP, TCRβ, CD4 and CD8 

expression in the thymocytes are shown. The DN, DP, SPCD4 and SPCD8 sub-population distribution 

is gated on the whole thymocyte population. Similar staining in WT mice are shown for comparison. 

Percentages indicated on representative plots denote mean ± SD for all mice, calculated to the first 

decimal place.  
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5.2.4.2. Analysis of retrogenic mice secondary lymphoid tissue 

Following the analysis of T cell development, we investigated the peripheral T cell phenotype by 

analysing the spleen and LN of the retrogenic mice. Spleens from the retrogenic mice were isolated 

(Figure 5.8A), and shown to be of similar size to that of a WT mice. The total splenic cellularity was 

measured and the mean calculated (43.0 ± 15.9 x 106), showing a statistically similar count to WT 

(p<0.05; Figure 5.8B). 

 

 

Figure 5.8. Splenic size and cellularity in retrogenic mice expressing the Vα-Cβ fusion TCR chain. 

Spleens from the retrogenic mice (n=3) after the TCR reconstitution period and WT mice (n=2) were 

harvested. (A) Representative spleen of the retrogenic mice is shown, along with a WT mouse spleen. 

(B) Total splenic cellularity was determined and average splenic cell counts are shown with error bars. 

Cellularity appeared to be statistically similar (p<0.05). 

 

Splenocyte and LN suspensions from the retrogenic and WT mice were then prepared for Ab staining 

and flow cytometric analysis. Both secondary lymphoid organs displayed sizeable proportions of EGFP+ 

and a relatively high EGFP+TCRβ+ expression (Figure 5.9A, B). Staining with anti-CD3 Ab in the 

splenocyte revealed similar levels of EGFP+TCRβ+ and EGFP+CD3+, indicating the T cells express a 

functional TCR signalling complex (Figure 5.9B, C). The presence of peripheral T cells also confirms that 

the lymphocytes emigrate from the thymus after undergoing the sequential stages of thymic selection. 

It is likely that selection mechanisms ensuring self-tolerance and self-MHC restriction are operating as 

for conventional αβT cell development. Analysis of the co-receptor expression demonstrated a skew 

to the CD4+ T cell compartment in both spleen and LN (Figure 5.9D). Notably, the splenocytes 

maintained the 4:1 CD4:CD8 ratio observed in the thymus, whereas the LN showed a lower ratio of 
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about 2:1, similar to that of WT spleens. From these data we may infer that the novel form of TCR 

engages productively with both MHC-I and -II. 

 

 

Figure 5.9. Flow cytometric analysis of retrogenic mice expressing the Vα-Cβ fusion TCR chain. The 

spleen and LN from the retrogenic mice (n=3) and WT mice (n=2) were harvested and analysed for (A) 

EGFP, (B) TCRβ, (C) CD3 and (D) CD4 and CD8 co-receptor expression to characterise the peripheral T 

cell compartment. Percentages of defined populations are shown as mean ± SD for all mice.  
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To investigate TCRα pairing with the Vα-Cβ fusion TCR chain, we stained the splenocytes with a small 

panel of anti-Vα Abs. There were variable levels of positive staining in EGFP+ retrogenic lymphocytes 

for all three anti-Vα Ab tested (Vα2, Vα3.2 and Vα11; Figure 5.10A). The co-receptor expression 

profiles for each Vα usage were also shown to be variable (Figure 5.10A, bottom). This data further 

confirms our previous observation (Refer to Chapter 5.2.3.2) that the Vα-Cβ fusion TCR forms 

heterodimers with a wide range of endogenous TCRα chains rather than forming homodimers. To 

further characterise the peripheral T cell compartment, we stained the splenocytes for intracellular 

FoxP3 expression in order to identify the presence of CD4+ Treg cells. The retrogenic lymphocyte 

population showed positive staining for intracellular FoxP3 expression (7.5 ± 11.6%), with the 

expected skew to the CD4 lineage (Figure 5.10B). Altogether, the lymphocytes expressing the Vα-Cβ 

fusion TCR appear to exhibit a typical T cell phenotype closely resembling WT mice. 

 

 

Figure 5.10. Flow cytometric analysis of Vα usage and FoxP3 staining in the retrogenic peripheral T 

lymphocytes. (A) The splenocytes from the retrogenic mice (n=3) were stained against specific anti-

Vα Ab, along with their respective co-receptor expression profiles. (B) Flow cytometric analysis of 

intracellular Foxp3 staining in splenocytes after fixation/permeabilisation, with a CD4 lineage skew. 

Percentages of defined populations are shown as mean ± SD for all mice. 
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5.3. Discussion 

5.3.1. Summary 

The functional αβT cell repertoire is specialised to recognise and respond to MHC-bound peptide 

ligands (Garcia, Teyton & Wilson, 1999; Davis & Bjorkman, 1988). There are two main mechanisms 

thought to underpin MHC restriction across αβT cell repertoires, namely the germline and selection 

models. According to the germline theory, the TCR is evolutionarily biased to engage only with MHC 

through the germline CDR1 and CDR2 loops. Functional and structural studies have suggested that 

some conserved amino acids within TCRα and β chains have co-evolved to interact with MHC Class I 

and II (Garcia et al., 2012; Scott-Browne et al., 2009; Marrack et al., 2008). In contrast, the alternative 

selection model proposes that MHC restriction is imposed by the CD4 and CD8 co-receptors that bind 

and co-localise Lck to the TCR signalling complex only during MHC engagement (Tikhonova et al., 2012; 

Van Laethem, Tikhonova & Singer, 2012; Van Laethem et al., 2007). The present chapter describes a 

TCR heterodimer expressing two sets of germline TCRα CDRs which provides support for the selection 

model.  

In the previous chapter, the fortuitous expression of a Marilyn TCR (CDR3β diversifying) T cell 

population that completely lacked the specific anti-Vβ6 Ab epitope led to the discovery of a large 

deletion in the template TCR construct through PCR analysis. Indeed, sequencing of the fusion TCR 

chain confirmed the loss of the Cα and Vβ domains in the primary structure of this construct. We 

proposed a recombination-deletion event between homologous sequences in the Jα and Jβ segment 

directed a fusion between the Vα and Cβ domains. Previous studies have described a high frequency 

of recombination-deletion events during retroviral reverse transcription (Im et al., 2014; Zhang & 

Sapp, 1999). Hence, it is possible that this aberrant recombination may have occurred during the 

transduction of HSCs by the retroviral particles. Nonetheless, this fusion, which occurred within the J-

segment, left the Cα and Vβ sequences unaltered. Such modifications within the Cα and Vβ domains 

could have disrupted the folding and pairing of this fusion TCR chain. Sequence analysis showed that 

the recombination introduced an aspartic acid in place of the arginine and histidine residues within 

the Jα and Jβ segments respectively. According to the IMGT database, aspartic acid is found at this 

position (FR4 region) in other Jα segments, so we can presume this substitution to have minimal 

impact (Lefranc, 2005).  

Further, we generated retrogenic mice in order to characterise whether the novel Vα-Cβ fusion TCR 

chain can direct T cell development. The presence of peripheral T cells in the retrogenic mice indicate 

that the exogenous Vα-Cβ TCR chain are expressed, pairing with endogenous TCRα chains, to form a 

novel TCR heterodimer. We have shown that despite displaying a distinct Vα-Cβ interface that replaces 
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the natural Vβ-Cβ interface, the novel TCR chain is capable of efficiently pairing with TCRα chains. 

Similarly, even though the novel TCR heterodimer forms an abnormal Vα-Vα antigen-binding 

interface, the retrogenic T cells are able to undergo thymic selection and develop a functional 

repertoire that is educated in MHC restriction and self-tolerance. Even with the entire Vβ structure 

replaced by the Vα domain, there may be only subtle differences in the positions of the CDRs and 

overall topology of the novel TCR chain. The binding between the side chains in the J-segment with 

those of Cβ remain conserved, consequently maintaining the molecular ball-and-socket joint that 

modulates flexibility between the Vα and Cβ domains (Landolfi et al., 2001; Lesk & Chothia, 1988).  

The development of both CD4+ and CD8+ T cell compartments also indicate that the Vα-Cβ TCR relies 

on co-receptors for efficient TCR signalling, consistent with the selection model. Moreover, this shows 

that the Vα-Cβ TCR can engage with both classes of MHC despite their Vα-Vα homodimer antigen-

binding site. Additionally, we observe a typical frequency of regulatory T cells within the peripheral 

CD4+ lymphocyte population. Regulatory CD4+ T cells arising in the thymus (nTregs) require higher 

affinity engagement with MHC-II than conventional CD4+ T cells. Hence, we can deduce that the novel 

TCR featuring the Vα-Cβ TCR chain, can efficiently engage with MHC in a co-receptor-dependent 

manner similar to that of conventional TCR repertoires.   

 

5.3.2. Conclusions 

Altogether, these data support the view that the WT αβTCR is not intrinsically specific for MHC, as the 

exchange of the germline CDRβ with that of CDRα does not significantly impair MHC recognition, and 

aberrant CDR configurations can still engage with MHC forming unconventional interfaces. The Vα-Cβ 

fusion TCR chain is shown to have limited impact regarding T cell development. Despite an unusual 

antigen-binding site, thymocytes are able to develop normally and generate functional T cells typical 

of a conventional repertoire. The novel Vα-Cβ TCR chain provides a new platform to study the bias to 

MHC restriction that utilises a change in the entire V domain rather than just modifying the CDRs. 

Previous studies in our group have already shown the expendability of the CDRs in terms of facilitating 

MHC recognition and thymic T cell selection (Holland et al., 2012; Attaf et al., unpublished). 
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Chapter 6 

 

Discussion  
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Chapter 6: Discussion 

 

αβT cells orchestrate cell-mediated immunity against foreign pathogens and cellular malignancies via 

the interaction between the TCR and pMHC (Garcia, Teyton & Wilson, 1999; Davis & Bjorkman, 1988). 

CD8+ cytotoxic T lymphocytes recognise mainly intracellular proteins, processed by the proteasome 

into short peptides, and presented on all nucleated cells by MHC-I molecules. Cytotoxic T cell immunity 

provide an important mechanism to scrutinise the internal proteome of virally-infected or aberrant 

cells that would be otherwise hidden from the immune system. On the contrary, CD4+ Th cells 

recognise peptides derived from exogenous proteins in the context of MHC-II molecules on the surface 

of professional APCs. Conventional Th cells control adaptive immunity in an antigen-specific manner 

by activating other effector immune cells such as B cells, macrophages and the cytotoxic T cells.   

The TCR-pMHC interaction is a significant event that initiates T cell signalling and governs T cell-

mediated immune responses. Due to the rigors of thymic selection, natural tumour-reactive TCRs 

generally bind to cognate pMHC ligands with weak affinity, thus limiting their therapeutic potential 

(Bridgeman et al., 2012; Cole et al., 2007). Thymic selection is presumably designed to ensure host 

protection against foreign pathogens and to limit autoreactivity (Chervin et al., 2009; Dudley & 

Rosenberg, 2003; Ho et al., 2003). Additionally, in order to fully defend the host against all possible 

immunogenic epitopes, TCR cross-reactivity likely results in suboptimal engagement of the TCR with a 

proportion of pMHC ligands (Sewell, 2012; Wooldridge et al., 2012). Current efforts implemented to 

overcome this limitation focus on enhancing the TCR binding affinity by modifying key residues within 

the antigen-binding CDR loops. This is achieved using several in vitro techniques, leading to the 

development of novel immunotherapeutics including TCR-engineered T cells for adoptive therapy and 

soluble TCRs bound to anti-CD3 Ab fragments (Malecek et al., 2013; Linette et al., 2013; Smethurst, 

2013; Chervin et al., 2009; Zhao et al., 2007; Weber et al., 2005; Li et al., 2005; Kieke et al., 1999). 

However, the lack of natural screening processes risk the possibility of off target reactivity. A recent 

clinical trial reported fatal cardiac toxicity in two patients following administration of T cells expressing 

high-affinity MAGE-A3-specifc TCRs (Linette et al., 2013). The cross-reactive recognition, through 

molecular mimicry, of an unrelated peptide derived from the muscle protein Titin and presentation of 

this peptide on cardiac tissues in vivo was suggested to mediate the observed toxicity (Raman et al., 

2015; Cameron et al., 2013). 

The principal aim of this study was to develop a new strategy that optimises TCR binding and T cell 

functionality in contrast to emphasising only on affinity enhancement. This approach involves the 

insertion of a gene recombination cassette into the hypervariable CDR3 to diversify an established TCR 
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template and generate a library of TCR variants. The main difference between this novel technique 

and previous approaches is the diversification of TCRs in vivo using retrogenic mice, which facilitates 

the deletion of potentially autoreactive cells. We tested this approach using two male-specific TCRs, 

Marilyn and MataHari, and successfully identified at least 20 unique variants each, with modifications 

concentrated mostly around the insertion point. Despite variations in the CDR3 length, amino acid 

composition and shape, the retrogenic TCRs were capable of directing T cell development and creating 

a functionally competent T cell repertoire. In addition, an unexpected phenomenon that lead to the 

formation of a chimeric TCR chain comprising a Vα fused to a Cβ domain provided a new platform of 

understanding the mechanisms underlying MHC restriction.  

 

6.1. Implications of this study 

6.1.1. Viability of the in vivo mutagenesis approach  

The generation of double-stranded DNA breaks can be both detrimental and beneficial to organisms. 

Those stimulated by exogenous DNA-damaging agents or endogenously-produced reactive oxygen 

species can result in disruption to the genome and lead to tumorigenesis or apoptosis (Hoeijmakers, 

2001). Conversely, DNA breaks are beneficial when regulated properly in the context of specialised 

events such as V(D)J recombination, which necessitates genome rearrangement in order to produce 

functional antigen receptors (Wyman & Kanaar, 2006). In B cells, additional DNA strand breaks are 

induced to further diversify the Ig variable region genes by somatic hypermutation. This process 

essentially introduces point mutations and generates mutant clones that have a wide range of 

affinities for the immunising antigen (De Silva & Klein, 2015). 

Analogous to somatic hypermutation in B cells, we designed a novel approach to diversify and 

ameliorate TCR binding affinity using V(D)J recombination machinery. The mutagenesis approach used 

in this study utilises essentially the same principle applied previously by our group: a recombination 

cassette comprised of two dissimilar-sized RSSs separated by a genomic linker (Holland et al., 2012). 

In this study, we shortened the size of the linker from 500bp to 400bp with the intention of optimising 

the efficiency of HSC transduction. Having used this approach for remodelling the germline CDR1 and 

CDR2 loops, we decided to test the effect of the recombination cassette in the peptide-binding CDR3β 

loop. In Chapters 3 and 4, we demonstrated the successful restoration of the T cell repertoire in T cell-

deficient mice through analyses of the peripheral blood and lymphoid organs. The sampling of 

peripheral blood at three week intervals after the T cell reconstitution period showed steady increases 

in the frequency of EGFP+TCRβ+ cells in the retrogenic mice. Moreover, in MataHari TCR (CDR3β 
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diversifying) retrogenic mice, we injected male spleen cells to mimic a vaccination event to examine 

the functional capability of the retrogenic T cells. The results revealed a sharp increase and gross 

‘immunodominance’ of a specific TCR (ASSGEVF) in the MataHari TCR (CDR3β diversifying) T cells. 

Sequence analysis of the TCR repertoire indicated that the WT and inferior TCR variants were possibly 

outcompeted by the ‘optimised’ affinity competitors over time. Despite limited investigation into the 

T cell function, these observations underpin the ability of the retrogenic T cells to undergo 

homeostatic proliferation, survival and antigen-specific expansion.  

Indeed, these observations broadly demonstrate the structural integrity of the TCR-CD3 signalling 

complex following modifications to the CDR3β loop. Regardless of possible conformational changes to 

the TCR, as observed with the reduced anti-Vβ8.3 relative to anti-TCRβ Ab staining in MataHari TCR 

(CDR3β diversifying) retrogenic mice, we can presume TCR-MHC and/or TCR-peptide interaction 

points may be modified. The mutations directed to the TCR CDR3β loop are not expected to alter the 

germline CDR loop conformation as the framework regions of the V domain that provide a protein 

scaffold for these loops are maintained. Further, CDR3β diversification is unlikely to affect pairing of 

the TCRβ with a TCRα partner, exogenous or endogenous, since inter-chain interface is mostly 

concentrated at the constant domain of each chain (Richman et al., 2009). With regards to TCR 

association with the CD3 subunits, the very similar levels of CD3 and TCRβ expression levels indicate 

that the retrogenic T cells exhibit a functional T cell signalling complex. Hence, we can presume the 

critical extracellular and TM contacts were also conserved. This includes the extracellular interface in 

which TCR Cα D-E and Cβ C-C’ loops interact with CD3δɛ and CD3γɛ, respectively, allowing the 

stabilisation of the TCR-CD3 organisation (Kuhns & Davis, 2007). Assembly at the TM level is mediated 

by interactions between the TCRα with CD3δɛ and CD3ζζ, and TCRβ with CD3γɛ (Wucherpfennig et al., 

2010; Call & Wucherpfennig, 2005; Call et al., 2002). Moreover, the physical association between the 

TCR Cβ F-G loop with CD3γɛ is proposed to regulate αβT cell development through the control of 

negative selection in DP cells (Touma et al., 2006). CDR3β mutagenesis also did not appear to affect 

the conformational change in the A-B loop within the TCR Cα domain which is triggered upon pMHC 

ligation to initiate T cell signalling (Beddoe et al., 2009). 

Interestingly, T cell development in retrogenic mice was not characteristic of a normal T cell setting. 

Most of the retrogenic mice displayed reduced thymic cellularity and accumulated DN cells, which is 

suggestive of impaired DN to DP transition. We mentioned earlier that the early expression of the 

exogenous TCRα chain, to which the diversified TCRβ chain has a higher affinity compared to pTα 

chain, may have contributed to this observation (Trop et al., 2000). The presence of the exogenous 

TCRα outcompetes pTα for pairing with TCRβ, thereby impairing normal formation and function of the 

pre-TCR and produces a block in proliferation and differentiation (Borowski et al., 2003; Lacorazza et 
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al., 2001). The analysis of the TCRβ expression MFI (Figure 4.5) in the peripheral lymphocytes indicated 

a lower cell surface expression of the retrogenic TCR compared to WT, which reflects an αβTCR 

signalling apparatus that is capable of ligand-independent signalling with a lower activation threshold 

(Erman, Guinter & Singer, 2004). However, this may also result in a signalling complex that is less 

efficient for development into the DP stage. Alternatively, the limited reserve of HSCs that can give 

rise to αβT cells may have depleted at the time of culling, resulting in the return to the TCR-β/δ-/- 

deficient mice phenotype (Mombaerts et al., 1992). Another possibility is that the retrogenic TCRβ 

chain only has one attempt at gene rearrangement and may be less efficient than the two WT TCRβ 

loci, thus fewer DN thymocytes can progress past β-selection. Most important, we conclude that the 

recombination cassette-based mutagenesis did not contribute to the atypical T cell development 

pattern.  

 

6.1.2. Diversification profile using in vivo recombination cassette and its consequences 

Sequence analysis performed in Chapter 4 provided valuable insight into the extent of in vivo 

diversification induced by the recombination cassette. The sizeable number of TCR variants generated 

for each TCR emphasise the requirement of diversity in the CDR3 loop in order to maximise peptide 

recognition (Freeman et al., 2009; Bercovici et al., 2000). According to the Shannon entropy index, the 

degree of diversity generated for both TCRs before stimulation by male HY antigens was found to be 

approximately similar (~15-20%). In MataHari TCR (CDR3β diversifying) retrogenic mice, this diversity 

reduced in both T cell subsets mainly through bias to the ‘ASSGEVF’ CDR3 loop. This signifies 

‘immunodominance’ of this TCR which may mediate more optimal binding and signalling in response 

to antigenic stimulation than the WT and other variants. From this limited information, we may infer 

that an ‘optimised’ affinity requires a shorter loop than the WT, whilst introducing a glycine and an 

increased net charge of (-1) to the peptide-binding region. The most commonly used flexible linkers 

have sequences comprising primarily of glycine and serine residues (‘GS’ linker); small or polar amino 

acids which provide good flexibility and solubility (Chen, Zaro & Shen, 2012). Glycine has low 

preference to form an α-helix, and its lack of a sidechain maximises rotational freedom of the 

polypeptide backbone so that adjacent domains are free to move relative to one another (Pace & 

Scholtz, 1998). Furthermore, comparative sequence analysis of the TCR chain showed that amino acid 

usage in the guanine-rich CDR3β region is non-random with a preference for glycines (Moss & Bell, 

1996). We can only speculate at this point that the ‘immunodominant’ mutation in the MataHari TCR 

confers an intrinsic glycine bias to the CDR3β that either prevents steric hindrance or provides 

polypeptide flexibility to facilitate improved contact points with the MHC-bound peptide.  
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The analysis of the diversified Marilyn and MataHari TCR repertoires also revealed a restricted length 

distribution of the CDR3β loops. Both TCR repertoires appeared to exhibit CDR3β lengths to within 

two amino acids of the original WT CDR3α and CDR3β combined size. Relative to Ig heavy and light 

chains, and TCRγ and δ chains, the CDR3 loop size distributions of TCRα and β chains are narrow and 

closely matched, which suggests that pairing of CDR3 loops with similar size may be preferred to 

generate functional repertoire of αβTCR (Hughes et al., 2003; Rock et al., 1994; Pannetier et al., 1993). 

Structural studies of TCR-pMHC-I crystals have also shown that the restricted sizes of the CDR3 loops 

are influenced by the minor length variations of the processed peptide bound to the MHC-I cleft. The 

CDR3 loops of the TCRα and β chains are in close contact with each other such that the CDR3α loop 

primarily binds to residues 4 and 5 of the peptide, whereas the CDR3β binds to residues 5-8 (Johnson 

& Wu, 1999; Garcia et al., 1996a). Thus, we can assume that these loops have direct impact on each 

other, particularly with regards to size and shape, and are under selective pressure to maintain fairly 

narrow combined length distributions in order to facilitate efficient contact with the pMHC ligands. 

Previous work from our group have also described the influence of the partner CDR3α loop in the C6 

TCR. The unusually long C6 TCR CDR3β was shown to pair efficiently only with its cognate TCRα chain 

whilst pairing poorly with other endogenous TCRα chains (Bartok et al., 2010). We propose that the 

novel recombination cassette approach has limited bearing on the CDR3β loop size due to the 

structural constraints conferred by either the partner TCRα chain and/or the MHC-bound peptide.  

One of the more surprising findings throughout the whole study was the apparent bias to MHC Class 

II and the CD4+ T cell lineage. This observation is particularly unexpected in the MataHari TCR (CDR3β 

diversifying) retrogenic mice. MataHari transgenic mice typically express only CD8+ cytotoxic T cells, 

but the retrogenic mice exhibited not only a presence but a strong preference for CD4+ T cells (Holst 

et al., 2006; Valujskikh et al., 2002). As expected, analysis of the CDR1 and CDR2 loops showed that 

the recombination cassette did not affect the sequences outside the CDR3β loop. Assuming efficient 

pairing between the exogenous TCRα and diversified TCRβ chains, we might expect the diversified T 

cell repertoire to be selected predominantly with MHC Class I. Mutation of the CDR3β should not 

diverge binding to the alternative MHC class since MHC contacts are primarily mediated by the CDR1 

and CDR2 loops. However, even though some studies have reported inherent preference of TCR V 

genes for specific MHC class (Sim et al., 1996; DerSimonian, Band & Brenner, 1991; Jameson, Kaye & 

Gascoigne, 1990), all V-segments can give rise to MHC-I or MHC-II-restricted receptors (Stadinski et 

al., 2011; Jorgensen et al., 1992; Garman et al., 1986). Thus, it should not be perplexing that the 

diversified MataHari TCR is able to mediate selection on class II whilst maintaining the WT CDR1 and 

CDR2 loops. Likewise, this explains the presence of retrogenic CD8+ T cells expressing the diversified 

Marilyn TCR, which is characteristically restricted on MHC Class II in Marilyn transgenic mice 



138 
 

(Grandjean et al., 2003). Altogether, these observations challenge the notion that germline residues 

within the V-segments determine an intrinsic MHC class preference. 

From the analysis of the thymi in Marilyn TCR (CDR3β diversifying) retrogenic mice, we observed a 

higher frequency of SPCD4 relative to SPCD8 thymocytes suggesting a more efficient positive selection 

process with pMHC-II, which translates to more CD4+ than CD8+ T cells in the periphery. Conversely, 

although the SPCD4:SPCD8 ratio was found to be ~1:1 in the MataHari TCR (CDR3β diversifying) 

retrogenic thymi, a higher frequency of peripheral CD4+ T cells was detected. Instead of a more 

efficient selection on pMHC-II, we propose a higher death rate of CD8+ T cells may be the causative 

factor for the predominance of CD4+ lymphocytes in MataHari TCR (CDR3β diversifying) retrogenic 

mice. Asymmetric cell death between SPCD8 and SPCD4 thymocytes due to different signalling 

requirements was described to be the key determinant of a higher naïve CD4:CD8 ratio in the 

periphery (Sinclair et al., 2013). Naïve CD8+ T cells are more dependent on IL-15 survival signals than 

CD4+ T cells and die more rapidly in the absence of either IL-7 or TCR-dependent survival signals 

(Seddon & Zamoyska, 2002). It is possible the reduced TCR cell surface expression, shown by the lower 

TCRβ MFI in retrogenic mice, may enhance this susceptibility to cell death. This MHC Class II skew was 

similarly observed in retrogenic T cells following mutation of the germline CDR loops using glycine-

linkers and the recombination cassette approach which suggest that the bias was independent of the 

mutagenesis system (Holland et al., 2012). Since each TCR can be expressed in either CD4+ or CD8+ T 

cell subsets, the clear benefit is the extended ability to elicit both cytotoxic and Th immune responses 

within the same host upon engagement with the appropriate pMHC ligand. This is particularly useful 

for MataHari CD8+ T cells, which were reported to be less effective against tumours in vivo compared 

to Marilyn CD4+ T cells (Perez-Diez et al., 2007). The class switching was demonstrated to not diminish 

the T cell activation and function in MataHari TCR (CDR3β diversifying) retrogenic mice, as evidenced 

by the ‘immunodominance’ of the ‘optimised’ TCR in both T cell subsets.  

 

6.1.3. Limitations and improvements to the in vivo mutagenesis approach 

At the end of Chapter 2, we discussed the advantages and limitations encountered during the 

generation of the retrogenic mice. In particular, the retrogenic mutagenesis approach is marked by 

the high consumption of mice which is directly related to the variable transduction and transfection 

rates. It is clear that this novel approach requires optimisation in order to be more economical and 

efficient. Since its inception, modifications to the original protocol have been applied to improve the 

overall experimental procedures (Holst et al., 2006). Recent improvements have been focused on 

maximising the efficiency of the HSC transduction and T cell reconstitution (Bettini et al., 2013). As 
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recommended by the original authors, the present study implemented spin transduction of HSC-

enriched cultures with the viral supernatant which replaces the previous method of co-culturing with 

the viral producer cell line. This change was proposed to increase consistency of HSC transduction and 

reconstitution, as well as reduce the ratio of donor to recipients. 

Comparison of the transfection efficiencies between the empty pMigR1 vector and those containing 

the TCR (CDR3β diversifying) sequences revealed a slight drop in EGFP reporter expression (Figure 

2.5). Although these differences were not significant, it appears that the insertion of the diversifying 

TCR constructs may directly reduce efficiency of the transduction, and downstream transfection rates. 

Hence, it is important to optimise the size of the recombination cassette to improve the efficiency of 

these processes. The present study has already established that shortening the genomic linker by 

100bp from the original design (Holland et al., 2012) maintains a functional recombination cassette 

that is capable of diversifying the target CDR. It is therefore theoretically possible to further reduce 

the size of the genomic linker and decrease the overall recombination cassette. A new linker size must 

be short to facilitate a more efficient genomic integration, but long enough to allow bending of the 

DNA strand and juxtaposition of the RSS and coding ends in the RAG complex for gene rearrangement. 

In terms of correcting the atypical thymic selection due to early TCRα expression, Baldwin and 

colleagues (2005) have designed a new model in which TCRα would be delayed until the DP stage as 

is the case in WT and transgenic mice. This technique utilises a Cre/lox-based conditional strategy to 

express the TCRα chain specifically at the DP stage and allow the exogenous TCRβ chain to pair 

efficiently with the pTα to form a functional pre-TCR. The pre-TCR could then signal efficient passage 

past the β-selection checkpoint and progression to DP compartment, during which the TCRβ will pair 

accordingly with the TCRα partner chains. Indeed, appropriate timing of TCRα expression should 

amend defects in the thymocyte development observed in the present retrogenic mice. 

Other than improvements to the TCR (CDR3β diversifying) construct design, to fully maximise the 

potential diversified TCR repertoire, further studies must ensure adoptive transfer of the appropriate 

BM cells. As the BM cells generally contain APCs/DCs in addition to HSCs, an improvement to the 

current study should either separate these cells from the donor HSCs or utilise only female donor BM 

cells. Thymic DC presentation of self-antigens play an important role in negative selection of CD4+ 

thymocytes (Oh & Shin, 2015). When MHC-II expression was specifically ablated in BM-derived APCs 

in mice, SPCD4 thymocytes accumulated in the thymus (Hinterberger et al., 2010; Liston et al., 2008; 

van Meerwijk et al., 1997). Also, when MHC-II I-E molecule was specifically expressed on DCs in 

transgenic mice, the I-E-reactive CD4+ T cells were negatively selected (Brocker, 1999). The presence 

of male BM-derived APCs presenting HY antigens in the transduced BM graft may have contributed to 
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the absence of the WT Marilyn sequence in the diversified TCR repertoire. The role of DCs in CD8+ T 

cell deletion is less clear; specific removal of MHC-I expression in BM-derived APCs slightly increased 

levels of SPCD8 thymocytes, but DC depletion had no effect on CD8+ T cell frequency (Ohnmacht et 

al., 2009; van Meerwijk et al., 1997). Importantly, DCs that may present the specific target antigen 

must be removed before adoptive transfer into the retrogenic host to prevent deletion of potentially 

‘optimised’ TCRs.  

 

6.1.4. Future perspectives 

The present study describes the ability of the recombination cassette to induce in vivo modification to 

the target CDR3β and generate a variant TCR library with an extensive range of affinities. It would 

therefore be interesting to further investigate the functional capacity of the diversified TCRs in vivo. 

Future work can aim to evaluate the potential anti-tumour activity of retrogenic T cells expressing the 

diversified/’optimised’ TCRs. The H2b murine MB49 bladder carcinoma represents a model tumour to 

assess the diversified Marilyn and MataHari TCRs (Summerhayes & Franks, 1979). MB49 cells express 

both MataHari-specific Uty peptide complexed with H2-Db and Marilyn-specific Dby complexed with 

H2-Ab. Both antigens can be presented directly by target cells, or indirectly by host cells (Grandjean et 

al., 2003; Valujskikh et al., 2002; Braun et al., 2001). Like most tumour cells, MB49 does not express 

H2-Ab under normal circumstances in vitro, but can upregulate the Class II molecule in vivo or when 

cultured with IFN-γ (Perez-Diez et al., 2007). Currently, the CD4+ Th cells expressing Marilyn TCRs 

partnered with NK cells have been shown to serve as efficient anti-tumour effectors against MB49 in 

vivo. CD8+ T cells expressing MataHari TCR demonstrate potent anti-tumour activity in vitro, but does 

not translate equally effective in vivo without the addition of other aids. We can therefore further 

strengthen the use of our novel mutagenesis approach by examining whether an ‘optimised’ MataHari 

TCR can mediate an improved ability to clear MB49 in vivo. 

The next stage of the study can also aim to diversify the partner CDR3α loop or a combination of both 

CDR3α and CDR3β regions using the in vivo recombination cassette approach. The TCR CDR3β 

mediates the majority of binding with the MHC-bound peptide relative to the CDR3α loop (Rudolph, 

Stanfield & Wilson, 2006; Stewart-Jones et al., 2003; Garcia et al., 1996a). Comparing the functional 

improvements between diversifying either the CDR3α or CDR3β, or both, would help elucidate the 

best way of maximising the TCR immunotherapeutic potential. Further, we have also performed pilot 

experiments involving the generation of retrogenic mice which develop both Marilyn and MataHari 

TCR (CDR3β diversifying) sequences simultaneously through co-injection of HSCs expressing Marilyn 

and MataHari diversifying TCR vectors. The aim of this study was to assess whether both diversifying 
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TCRs would outcompete each other or co-operate leading to enhanced immunity following the CDR3β 

modifications. The preliminary results have shown similar levels of Vβ6+ and Vβ8.3+ T cells. However, 

due to the unpredictable nature of the Marilyn TCR diversification (i.e. homologous ribosomal skip 

mechanism generating the chimeric TCR chain), we could not continue and fully interpret the efficacy 

of this study. Notably, further studies regarding Marilyn TCR diversification should utilise a new 

sequence that avoids a stretch of nucleotide homology in the J-segments. 

Expansion of the current study should also address the structural and molecular basis that govern the 

‘optimised’ TCR binding affinity. Analysis of co-crystal structures of the TCRs bound to cognate pMHC 

would reveal differences in the recognition patterns between the WT TCR and the diversified TCR. We 

would be able to determine the optimal CDR3β-peptide contact points that mediate an enhanced 

immune response (Cole et al., 2014; Huang & Nau, 2003). Moreover, in the context of pMHC-I 

recognition, it would be of interest to see what type of conformation the processed peptide adopts as 

a result of an ‘optimised’ CDR3β loop; whether it forms a ‘bulge’ or gets flattened into the peptide-

binding groove to allow the TCR to contact the MHC better (Cole et al., 2014; Tynan et al., 2005b; 

Tynan et al., 2005a). If MHC contacts are mediated exclusively by the germline CDR1 and CDR2 loops, 

it is unlikely that the TCR-pMHC docking orientation would vary significantly. Sequence analysis of the 

diversified TCR sequences have already shown that the germline loops remain intact. However, with 

the MHC class switching, we would expect a possible difference in the TCR docking modes.  

 

6.1.5. A new understanding of the mechanism underpinning MHC restriction  

In Chapters 3 and 4, we reported the occurrence of the Vβ6- T cells in 3 out of 7 FVB/N and 3 of 4 

C57BL/6 mice produced during the diversification of the Marilyn TCR CDR3β. We deduce that the 

codon optimisation applied during the de novo synthesis of the Marilyn TCR (CDR3β diversifying) 

sequence may have contributed to these observations. The stretch of at least 18 identical nucleotides 

within the J-segments of the WT Marilyn TCRα and β chains is thought to facilitate a possible 

homologous recombination-deletion process which resulted in the formation of the chimeric TCR 

chain comprising of a Vα connected to a Cβ domain (Im et al., 2014; Zhang & Sapp, 1999). Importantly, 

the skip mechanism and resultant hybrid TCR chain did not show any significant effects on the 

development and maintenance of a functional ‘αβT cell’ repertoire. Through PCR analysis of the Vβ6- 

retrogenic T cells, we found that the Vα and Cβ domains remained intact, and the fusion was focused 

at an amino acid substitution for aspartic acid in resulting Jα-Jβ segment. According to the IMGT 

database, this particular amino acid can be found in the same position within the FR4 region of other 
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J-segments (Lefranc, 2005). Hence, we believe this substitution to have minimal, if any, difference in 

the folding of the essential β-sheets that make up the connected Vα and Cβ structures.  

Based on the dominance of this TCR chain when it occurs in the retrogenic mice (i.e. almost all T cells 

were Vβ6-), the TCR may have enhanced MHC recognition or signalling properties. This suggests a 

potential selection advantage of this TCR chain or that it is able to outcompete the other diversified 

Marilyn TCRs. The novel TCR configuration has major differences from the regular αβTCR 

configuration. First, the antigen-binding site is a Vα-Vα dimer without any Vβ CDR structure. Second, 

the inter-domain interfaces are modified, whereby the natural Vβ-Cβ interface is replaced with a 

distinct Vα-Cβ interface. Similarly, the natural Vα-Vβ antigen-binding surface is replaced by a Vα-Vα 

interface. As shown by the three-dimensional model of the fusion TCR chain, there may subtle 

differences between the conformation and position assumed by the Vα domain in place of the WT Vβ 

domain (Figure 5.4). As the novel Vα-Cβ TCR chain is produced following a non-V(D)J recombination 

event, we do not know the stage(s) of T cell development when this event occurs. Indeed it could take 

place prior to the ‘window’ of V(D)J recombination within the DN thymocyte compartment and so 

remove the recombination cassette. It is likely the Vα-Cβ chain will associate with the pre-TCR through 

the conventional Cβ-pTα interface (Pang et al., 2010). Retrogenic mice produced directly with the 

novel Vα-Cβ TCR chain developed peripheral T cell repertoires (Refer to Chapter 5.2.4). We can 

therefore presume a novel configuration of the pre-TCR comprised of the Vα-Cβ fusion/pTα chain is 

expressed and is able to substitute for the WT pre-TCR in progressing through the β-selection 

checkpoint. Following gene rearrangement of the endogenous Vα-Jα genes at the DP stage, the fusion 

TCR chain is able to pair efficiently with TCRα. The fusion chain retains an intact Cβ domain, which 

provides a protein scaffold for the Vα domain and CDR loops, and allows inter-chain disulphide 

interactions with the endogenous TCR Cα domain (Richman et al., 2009). Despite alterations to the 

antigen-binding surface, the hybrid TCR-endogenous TCRα ‘heterodimer’ can recognise self-pMHC 

and direct progression past thymic positive and negative selection. Further, higher affinity 

engagement with pMHC-II on mTECs and thymic DCs can also induce FoxP3 expression and stimulate 

differentiation into nTregs (Hanabuchi et al., 2010; Proietto et al., 2008; Aschenbrenner et al., 2007). 

As a result, we identified a typical T cell repertoire in the peripheral lymphoid organs, with a higher 

frequency of CD4+ than CD8+ T cells, and a sizeable population of regulatory T cells. This data also 

indicates that the novel TCR dimer engages productively with pMHC-I and pMHC-II, which further 

challenges the notion that germline TCR V-segments and CDR loops have intrinsic preference to bind 

to specific MHC classes (Sim et al., 1996; DerSimonian, Band & Brenner, 1991; Jameson, Kaye & 

Gascoigne, 1990). 
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Importantly, the novel TCR dimer is capable of associating efficiently with the CD3 signalling 

apparatus, as indicated by the similar levels of CD3 and TCRβ expression levels in the splenic T cells. 

Similar to the T cell signalling complex in Marilyn and MataHari diversified TCRs, it is reasonable to 

assume that the extracellular and TM structures within the Cβ domain are conserved to facilitate the 

crucial interactions with the CD3 subunits. In particular, the TCR Cβ F-G loop which mediates 

association with CD3γɛ and regulates αβT cell development may be advantaged to explain the 

dominance of the Vβ6- T cell population (Wucherpfennig et al., 2010; Touma et al., 2006; Call & 

Wucherpfennig, 2005; Call et al., 2002). 

With a new Vα-Vα antigen-binding interface, we may expect the novel TCR dimer to exhibit a different 

docking orientation and affinity compared to the WT Marilyn TCR. Generally, the TCRβ interacts with 

the α1 helix of the MHC and the C-terminus of the peptide, whereas the TCRα binds primarily to the 

α2 or β1 MHC helices and the peptide N-terminus (Rudolph, Stanfield & Wilson, 2006; Garboczi et al., 

1996). Further structural studies would provide valuable insight into the new docking mode applied 

by the Vα-Vα interface, whether the hybrid TCR chain assumes the place of a conventional TCRβ chain. 

It is possible that a lack of CDRβ loops may necessitate the aid of compensatory mechanism for ligand 

engagement or that the novel TCR CDR must undergo numerous and possibly large conformational 

changes upon pMHC binding (Burrows et al., 2010; Armstrong, Piepenbrink & Baker, 2008). However, 

the challenge of producing TCR-pMHC co-crystals here is that the specific antigen of this hybrid TCR is 

not yet clear. Since it only retains the Marilyn Vα1.1 segment, and binds to a wide array of endogenous 

TCRα chains, logic dictates that the TCR would not be restricted to the Marilyn-specific Dby complexed 

with H2-Ab. Conversely, minimal conservation of key germline contacts has been shown to retain 

pMHC specificity in TCRs where the rest of the sequence remain unchanged (Scott-Browne et al., 

2011). Functional studies must then be performed to investigate and identify the immunogenic 

ligands, including antigenic challenge with model antigens such as hen egg lysozyme (HEL) or 

ovalbumin (OVA; Kumar, Cristan & Paul, 2008). Preliminary proliferation assays (not shown) where 

retrogenic T cells expressing the chimeric TCR chain are cultured with syngeneic (C57BL/6) and 

allogeneic (FVB/N) spleen cells have demonstrated that the TCR retains pMHC specificity and can 

respond to foreign pMHC. 

Overall, the study presented in Chapter 5 demonstrated the dispensability of the germline-encoded 

TCR CDRβ as well as the entire Vβ domain in mediating MHC-directed events such as T cell selection, 

signalling, development of nTregs and homeostatic proliferation. Such observations are not in line 

with the model which proposes germline CDRs have co-evolved with MHC over time and play key roles 

in contacting MHC chains and impose MHC restriction on αβTCR recognition (Garcia et al., 2012; 

Marrack et al., 2008). The tremendous plasticity of the TCR despite substitution of a Vβ with a Vα 
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domain without significantly affecting the ability to recognise MHC supports the idea that extrinsic 

factors enforce MHC restriction on the αβTCR during thymic selection (Tikhonova et al., 2012; Van 

Laethem, Tikhonova & Singer, 2012; Van Laethem et al., 2007). The TCR appears to employ an 

opportunistic antigen-binding interface, rather than being hardwired to engage MHC ligands (Holland 

et al., 2012; Attaf et al., unpublished). 

 

6.2. Concluding remarks 

Researchers designing immunotherapy have long focused on enhancing the TCR binding affinity. The 

work presented in this Thesis demonstrates a novel in vivo mutagenesis approach that aims to 

generate TCR variants with an array of binding affinities before screening for an ‘optimised’ TCR with 

enhanced immunological function. This technique involves insertion of a recombination cassette into 

the target CDR in order to induce diversification using in vivo V(D)J recombination machinery. αβT cells 

expressing these diversified TCRs are subject to positive and negative selection during thymocyte 

development which purges the pre-selection repertoire of autoreactive T cells, whilst ensuring that 

these cells are self-MHC restricted before entering the periphery. Collectively, our lab has tested the 

recombination cassette approach on all three CDR loops of the TCRβ chain, and successfully generated 

a functional T cell repertoire. Despite changes to the amino acid composition, length and shape of the 

CDR loops, the diversified TCR maintains the ability to recognise pMHC ligands and direct T cell 

development, activation and cellular responses. These studies highlight the adaptable nature of the 

TCR structure and underpins the flexibility of the ligand recognition portion. In summary, the 

recombination cassette provides an effective and unbiased alternative to maximising the TCR 

immunotherapeutic potential. 
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Chapter 7 

 

Materials and Methods  
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Chapter 7: Materials and Methods 

 

7.1. TCR Nomenclature 

Both Marilyn and MataHari αβTCRs recognise epitopes of the male-specific HY minor 

histocompatibility antigen. Marilyn TCR recognise the NAGFNSNKANSSRSS peptide from the Dby gene, 

presented by MHC Class II H2-Ab, whereas MataHari TCR are specific for the HY peptide WMHHNMDLI 

derived from the Uty gene complexed with MHC Class I H2-Db. The nomenclature system used to label 

the V and J regions of these TCRs is based on the work by Arden et al. (1995) and proposed by the 

International Union of Immunological Societies (WHO-IUIS TCR; Radauer et al., 2014). The same 

system is adopted by the companies supplying the antibodies. According to this nomenclature, 

Marilyn TCR expresses Vα1.1-Jα35 and Vβ6-Jβ2.3 whereas MataHari TCR uses Vα15-Jα16 and Vβ8.3-

Jβ1.1. The ImMunoGeneTics (IMGT) database (www.imgt.org/IMGTrepertoire) was used as reference 

during sequence analysis to identify the CDR loops and C domains of each TCRα and β chain. The 

CDR3β region of the Marilyn and MataHari TCRs is defined by the amino acid sequence supported by 

two highly conserved framework branches: between the second conserved cysteine in FR3 and the 

conserved phenylalanine (F-G-X-G) in FR4 of the V domain (Lefranc, 2005).     

 

7.2. Design of the αβTCR (CDR3β diversifying) Sequences  

7.2.1. Recombination cassette design and synthesis 

The Marilyn and MataHari αβTCR sequences, including the 2A peptide sequence, were kindly provided 

by Dr. Kate Vignali (St. Jude, Memphis, USA). To generate diversity in the Marilyn and MataHari TCRs, 

a recombination cassette was inserted into the centre of the target CDR3β regions. The recombination 

cassette used in the present study is composed of an RSS from murine Vβ8.2 (heptamer-23bp-

nonamer) at the 5’ end and an RSS from murine Dβ1 (nonamer-12bp-heptamer) at the 3’ end, 

separated by a 400bp genomic linker (modified from (Holland et al., 2012). The complete Marilyn and 

MataHari αβTCR (CDR3β diversifying) constructs were synthesised de novo into a pUC57 vector 

containing the kanamycin resistance gene (GENEWIZ, USA). The BglII and EcoRI restriction sites were 

tagged at the 5’ and 3’ ends respectively to facilitate cloning into the pMigR1 vector. 

 

 

file:///C:/Users/Hazim/AppData/Roaming/Microsoft/Word/www.imgt.org/IMGTrepertoire
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7.2.2. Plasmid vector 

The Marilyn and MataHari αβTCR (CDR3β diversifying) constructs were sub-cloned into the 6056-bp 

retroviral vector, pMigR1. pMigR1 is a murine stem cell virus (MSCV)-based vector containing a 

multiple cloning site (MCS), and IRES-EGFP (internal ribosomal entry site-enhanced green fluorescent 

protein) marker cassette and ampicillin resistance gene (Figure 7.1). The plasmid vector was kindly 

provided by Dr. Istvan Bartok. The pCR™2.1 cloning vector was used for amplification and sequencing 

of PCR products (Thermo Scientific, UK). pCR™2.1 contains complementary 3’ deoxythymidine (T) 

overhangs that enable efficient ligation with the PCR products and primer sites flanking the ligation 

site to facilitate sequencing of the inserts. 

 

Figure 7.1. Plasmid vector pMigR1. The plasmid map illustrates the positions of the origin (Ori), the 5’ 

and 3’ long terminal repeats (LTR), internal ribosome entry site (IRES), and the enhanced green 

fluorescent protein (EGFP) and ampicillin resistance (AMP) genes. The multiple cloning sites (MCS) 

contain the BglII, XhoI, HpaI and EcoRI restriction sites. 

 

7.3. Mice 

C57BL/6 and FVB/N TCR-β/δ-/- deficient mice, male and female, were used as donors of BM cells to 

generate retrogenic mice. Only female TCR-β/δ-/- deficient mice were used as lymphopenic recipients. 

TCR-β/δ-/- deficient mice contain a deletion from the Dβ1.3 segment to the Cβ2 gene segment, and 

thus lack the ability to generate any TCRβ chain due to the loss of both constant domains (Mombaerts 

et al., 1992). WT C57BL/6 (H2b) and FVB/N (H2q) mice were obtained from Harlan (Blackthorn, UK). 

Marilyn transgenic C57BL/6 mice were kind gifts from Prof. Marina Botto. These mice were used as 

controls during various parts of this study. 

All mice were maintained under specific pathogen-free conditions at the Central Biological Services 

Unit in Hammersmith Hospital Campus, Imperial College London. All procedures involving mice were 
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carried out in accordance with Home Office guidelines as stated in the project licence and Animals 

(Scientific Procedures) Act 1986.  

 

7.4. Cell counting 

Cells were mixed 1:1 with trypan blue solution (Invitrogen, UK). The mixture was loaded into a 

haemocytometer (Neubauer 0.0025mm2, Germany) and the number of cells in four grids was counted 

to obtain an average. The total number of cells in each sample was calculated by: 

Total number of cells = Average number of cells counted x Dilution factor x 104 x Volume of media 

 

7.5. Media and Reagents 

Table 7.1. List of reagents and buffers. 

Medium Use Composition 

 

Ampicillin Antibiotics for growth of bacteria 

in LB media 

Stock solution of 50mg/ml 

(500mg Ampicillin powder 

(Sigma) dissolved in 10ml ddH2O; 

diluted 1:1000 in LB media 

Blood buffer Collection of blood 1x PBS, 100U/ml Heparin, 2mM 

EDTA 

(Ethylenediaminetetraacetic 

acid) 

Collection buffer Collection of cells after sorting 1x PBS, 10% FCS, filtered through 

0.45µm filter 

Complete RPMI medium 

(R10) 

Maintenance of non-adherent 

mouse/tumour cell lines 

RPMI (Roswell Park Memorial 

Institute) 1640 supplemented 

with 10% foetal calf serum (FCS; 

GIBCO, UK), 20mM HEPES (N-2-

hydroxyethylpiperazine-N-2-

ethane sulfonic acid), 100U/ml 

penicillin, 10µg/ml Streptomycin, 

2mM L-glutamine and 2 x10-5M 

β2-mercaptoethanol 

Complete IMDM medium 

(D10) 

Maintenance of adherent phoenix 

cell line 

IMDM (Iscove’s Modified 

Dulbecco’s Medium) 

supplemented with 10% FCS and 

2mM L-glutamine 
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FoxP3 
Fixation/Permeabilisation 
working solution 

Preparation of cells for 
intracellular staining 

FoxP3 Fixation/Permeabilisation 
Concentrate (1 part), FoxP3 
Fixation/Permeabilisation Diluent 
(3 parts); Purchased from 
eBioscience, UK 

Freezing medium Preservation of  cells in liquid 

nitrogen 

FCS containing 20% 

dimethylsulphoxide (DMSO). 1ml 

freezing medium + 1ml cell 

suspension 

LB (Luria-Bertani) 

Broth/Agar 

Medium for growth of bacteria Supplied by MRC (unspecified) 

Opti-MEM® Cationic lipid transfection of 

plasmids into Phoenix cells 

Purchased from GIBCO, UK 

Permeabilisation buffer Re-suspension of cells for 
intracellular staining  

Dilution of the 10X 
Permeabilisation Buffer 
concentrate with distilled water 

Phosphate buffered 

saline (PBS) 

Re-suspension and washing of 

cells. Also for reagents for in vivo 

use  

Reconstituted from tablets 

(Oxoid Ltd, Hampshire, UK); 

Supplied by MRC (unspecified) 

RBC (Red blood cells) lysis 

buffer 

Depletion of red blood cells before 

cell counting/FACS 

Purchased from Qiagen, UK 

(unspecified) 

Sort buffer Re-suspension of cells before 

sorting 

1x PBS (Ca/Mg++ free), 1mM 

EDTA, 25mM HEPES pH7.0, 1% 

FCS and 0.02% sodium azide 

Tris-Acetate-EDTA (TAE) 

buffer 

Agarose gel electrophoresis – gel 

and running buffer 

Supplied by MRC (unspecified) 

 

7.6. Molecular Biology 

7.6.1. DNA digestion with restriction enzymes 

The pMigR1 vector, and the Marilyn (2285bp) and MataHari (2273bp) αβTCR (CDR3β diversifying) 

constructs in the pUC57 plasmid, were digested using the same set of BglII and EcoRI restriction 

enzymes. For 5µg of DNA double digestion, a reaction mixture of 20µl containing 2µl 10X NEB buffer 

3, 10 units of each enzyme and ddH2O was incubated at 37℃ for an hour (all from New England 

BioLabs, UK).  

 

7.6.2. Agarose gel electrophoresis of DNA 

Electrophoresis gels containing 1.2% (w/v) agarose (Sigma) dissolved in 1X TAE buffer were prepared 

for the separation of DNA fragments (300 - 7,000bp). For visualisation of DNA, the gels were stained 
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with SYBR® Safe at a 1:10,000 dilution (Life Technologies, UK). Samples were mixed with 5X loading 

buffer (1:5 dilution; Bioline, UK) before loading into gel. HyperLadder™ 1kb (Bioline, UK) was used as 

a molecular weight standard. The electrophoresis was performed in a 1X TAE running buffer at 90-

120V. Gels were visualised under Safe Imager™ blue-light transilluminator (Invitrogen, UK) for gel 

extraction, or with G:BOX iChemi XR for documentation using the GeneSnap software (Syngene, UK). 

The desired DNA bands from the agarose gels were excised carefully using a clean blade or scalpel. 

The QIAEX II Gel Extraction kit (Qiagen, UK) was used to purify DNA from the agarose gels as per 

manufacturer’s instructions. The kit uses the principle of binding DNA to silica bead suspensions in the 

presence of chaotropic salts.  

 

7.6.3. Determination of nucleic acid concentration 

The concentrations of RNA and DNA were obtained using the NanoDrop 2000C Spectrophotometer 

(Thermo Scientific, UK). Nucleic acid purity was assessed by observing ratio of absorbance at 

wavelengths 260nm and 280nm. A 260/280 ratio of ~1.8 is generally accepted as ‘pure’ for DNA; a 

ratio of ~2.0 is generally accepted as “pure” for RNA. If the ratio is appreciably lower or higher in either 

case, it may indicate the presence of protein, phenol or other contaminants that absorb strongly at or 

near 280nm. 

 

7.6.4. DNA ligation 

Ligation reactions were performed using T4 DNA Ligase according to the manufacturer’s protocol 

(New England BioLabs, UK). Digested inserts and vectors were mixed at a molar ratio of 3:1 for efficient 

location. Along with 1µl T4 DNA ligase and 2µl 10X ligase buffer, made up to 20 µl with ddH2O, the 

vector and insert mixture was incubated overnight at 16℃. Ligation mixtures were heat inactivated at 

65℃ for 10 minutes before storage at -20℃. 

 

7.6.5. Bacterial transformation 

One Shot® TOP10 Chemically Competent E.coli (Life Technologies, UK) was used for bacterial 

transformation of pUC57 and pCR™2.1 vectors. Conversely, One Shot® Stbl3™ Chemically Competent 

E.coli (Life Technologies, UK) was used for pMigR1 vectors which contain multiple nucleotide repeats. 

Both transformation procedures were performed according to the kit instructions. To summarise, 
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chemically competent E.coli cells were first thawed on ice. 1 to 5µl of DNA was then gently mixed into 

each vial containing 50µl cells and incubated on ice for 30 minutes. The bacteria were heat shocked 

for 30-45 seconds at 42℃ and immediately cooled on ice for 2 minutes. After addition of 250µl SOC 

media, bacteria were incubated at 37℃ with shaking for 1 hour. Each transformation mixture was 

then spread on selective LB agar plates containing 50µg/ml ampicillin (Sigma, UK) and incubated 

overnight at 37℃. Plates were stored at 4℃. 

 

7.6.6. Isolation of plasmid DNA 

Following bacterial transformation, individual colonies from the selective LB agar plates were picked 

and grown overnight in selective LB broth containing 50µg/ml ampicillin (Sigma, UK) and incubated at 

37℃ overnight with shaking. For small scale extraction of plasmid DNA, colonies were grown in 2-3ml 

of selective LB media and isolated using either the QuickLyse Miniprep Kit or QIAprep® Spin Miniprep 

Kit (Qiagen, UK). For large scale extractions, 100ml of overnight culture were used and purified using 

EndoFree® Plasmid Maxi Kit (Qiagen, UK). Both isolation of plasmid DNA techniques were performed 

according to the manufacturer’s protocol. 

 

7.6.7. RNA extraction and cDNA synthesis 

RNA was extracted from the sorted cells (Section 7.8.5) using the RNeasy Mini Kit (Qiagen, UK) 

according to the manufacturer’s protocol. Briefly, 1 x 107 spleen cells were first lysed and homogenised 

using a 30-gauge needle and 1ml syringe (Becton Dickinson, UK) with lysis buffer, before precipitation 

with ethanol.  The RNA from the sample was then collected and washed in a spin column, and later 

eluted in 50µl of RNase-free water. RNA concentration was measured using appropriate settings on 

the spectrophotometer. 

Complementary DNA (cDNA) was synthesised from RNA using the iScript™ cDNA Synthesis Kit (Bio-

Rad, UK) following the company’s manual. cDNA was produced into a total volume of 20µl. Successful 

cDNA synthesis was confirmed by polymerase chain reaction (PCR; see next section) using specific 

primer pairs. cDNA was stored at -20°C. 
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7.6.8. Polymerase Chain Reaction  

PCR was used to amplify cDNA using sequence-specific oligonucleotide primers for genotyping the 

retrogenic mice and determining the αβTCR (CDR3β diversifying) sequences. Additionally, PCR was 

also performed to synthesise the Marilyn fusion sequence before cloning into the pCR™2.1 vector. A 

standard PCR contained: 1µl of template DNA, 1µl of each forward and reverse primer at 10µM 

concentration, 5µl of 10X PCR buffer, 1.5µl of 50mM MgCl2, 1µl of 10µM deoxyribonucleoside 

triphosphate (dNTP) mix, 0.5µl of BIOTAQ™ DNA Polymerase, and made up to 50µl with ddH2O. All 

reagents were from Bioline, UK. The PCR was performed using the 2720 Thermal Cycler (Applied 

Biosystems, Warrington, UK) under the following programme in Table 7.2. PCR samples were analysed 

by agarose gel electrophoresis (Section 7.6.2), and stored at -20℃.  

 

Table 7.2. General PCR programme. 

PCR Step 

 

No. of cycles  Duration Temperature 

Initial denaturation 1 cycle  5 minutes 94℃ 

Denaturation 30-35 cycles 30 seconds 94℃ 

Annealing 30 seconds 62℃ 

Extension 30 seconds 72℃ 

Final extension 1 cycle  5 minutes 72℃ 

Cooling  Indefinite 4/20℃ 

 

 

7.6.9. Primer design and synthesis 

The forward and reverse primers were designed based on guidelines from Life Technologies, UK. This 

included designing primers complementary to the target sequence that were 18-21 nucleotides long, 

with AT/GC content ratios at ~1:1 whilst avoiding single nucleotide repeats. In order to facilitate 

efficient PCR, forward and reverse primers for genotyping PCR were intentionally designed to facilitate 

matching annealing temperatures of 62℃. Sequencing primers were designed to have melting 

temperatures of 50℃ to 55℃ following guidelines from the MRC CSC Genomics Core Laboratory at 

Imperial College London, UK.  Primers were stored at -20℃. The full list of PCR primers are listed in 

Table 7.3; the list of sequencing primer is shown in Table 7.4. 
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Table 7.3. List of PCR primers. *, ** and *** denote the same reverse primers for Marilyn and 
MataHari αβTCRs. 

Target 

sequence 

 

Primer name 

(F/R; Binding site) 

Sequence (5’-3’) Annealing 

temperature (℃) 

Marilyn 

αβTCR 

(CDR3β 

diversifying)  

F 1G 

28C 

676G 

812C 

939C 

GGAGATCTACCACCATGAAGA 

CCGTGAGCCTGGTGGTGC 

GCGATGCCACCCTGACCG 

CAGCGGATCCGGCGCTAC 

CACGGCGACGGAGGCATC 

62 

R 1926C* 

2042C** 

2135G*** 

2266G 

GTGGACACGCCGGAGTGC 

CTCCTCGGAGAGGCCGTG 

GCTGGCGGAGGTGATGCC 

CCGAATTCGCTCAGCTGTTC 

62 

MataHari 

αβTCR 

(CDR3β 

diversifying) 

F 65G 

676G 

828G 

941C 

GGACTGGGAGTCCCACGG 

GCGACGTGCCCTGCGATG 

GGCAGCGGAGCCACCAAC 

CATGGAGGCCGCCGTCAC 

62 

R 1914C* 

2030C** 

2123G*** 

GTGGACACGCCGGAGTGC 

CTCCTCGGAGAGGCCGTG 

GCTGGCGGAGGTGATGCC 

62 

 

 

7.6.10. Preparation of DNA for sequencing 

The TOPO® TA Cloning® Kit was used for cloning fresh PCR samples into the pCR™2.1-TOPO® vector 

according to the manufacturer’s protocol. The cloning reaction was transformed into One Shot® 

TOP10 Chemically Competent E.coli (Life Technologies, UK) and 50-150µl of the transformation mix 

was plated onto selective LB agar plates containing 50µg/ml ampicillin before overnight incubation at 

37℃. Randomly selected colonies were cultured and purified DNA were analysed for positive insertion 

of the desired PCR samples (Refer to Sections 7.6.6-7.6.8). This was done by digestion using EcoRI 

restriction enzyme and agarose gel electrophoresis (Section 7.6.2). 500-600ng of the positively 

identified DNA plasmids were mixed with 1µl of the appropriate sequencing primer (10µM 

concentration) and made up to 10µl with sterile ddH2O prior to sequencing. The full list of sequencing 

primers are listed below (Table 7.4). 
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Table 7.4. List of sequencing primers used. * denotes the same reverse primers for Marilyn and 

MataHari αβTCRs. 

Target sequence 

 

Primer name 

(F/R; Binding site) 

Sequence (5’-3’) Melting 

temperature (℃) 

Marilyn αβTCR 

(CDR3β 

diversifying) 

F 287C 

1819C 

CTTCAGCCTGCACATC 

CAACAAGCAGAAGGCTAC 

50 

54 

R 1939C  

1942C* 

TAGTTGCTCTCCTTGTAG 

GAGTAGTTGCTCTCCTTG 

54 

52 

MataHari αβTCR 

(CDR3β 

diversifying) 

F 927C CTGTGCACCAAACACATG 54 

R 1930C* GAGTAGTTGCTCTCCTTG 54 

pCR™2.1-TOPO® 

Insert 

F M13 Forward Primer GTAAAACGACGGCCAG 50 

R M13 Reverse Primer CAGGAAACAGCTATGAC 50 

 

7.6.11. DNA Sequencing 

Sequencing of the TCR DNA/PCR samples was performed by the MRC CSC Genomics Core Laboratory 

(Imperial College London, UK) using an Applied Biosystems 3730xl DNA Analyser (Applied Biosystems, 

Warrington, UK). Read-out and quality of sequences at nucleotide level were analysed using the 

Chromas Lite version 2.1.1 software (Technelysium Pty Ltd, Australia). The nucleotide sequences were 

translated into amino acid sequences using the ExPASy Translate tool 

(http://web.expasy.org/tools/translate/). Sequence alignments between two or more sequences 

were generated using the NCBI Basic Local Alignment Search Tool (BLAST; 

http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

 

7.7. Cell culture 

7.7.1. Maintenance of Phoenix™ ecotropic retrovirus packaging cell line 

The Phoenix™ ecotropic packaging cell line was kindly provided by Dr. Istvan Bartok. Frozen vials of 

cells were removed from liquid nitrogen and thawed rapidly at 37℃ before washing with 50ml 

complete IMDM growth media (D10) and spinning at 1,500rpm for 5 minutes. The supernatant was 

removed and the cells were grown in a 75cm3 cell culture flask containing 15ml of fresh D10 media, in 

a 37℃ incubator supplied with 5% CO2. Phoenix™ cells were split at 1:4 or 1:5 at 70-80% confluence 

every 2-3 days to maintain growth and transfection efficiencies. Cells were split by rinsing with PBS, 

trypsinised for detachment from flask and quenched with D10 media prior to subculture in fresh 

media.  

http://web.expasy.org/tools/translate/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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7.7.2. Lipofectamine®-based transfection of Phoenix™ cells 

Prior to transfection, Phoenix™ cells were plated onto 6-well cell culture plates at 0.5 x 106 cells in 2ml 

fresh D10 media per well (37℃, 5% CO2). After 24 hours, the cells in each well were transfected with 

3µg of pMigR1 plasmid containing the desired TCR (CDR3β diversifying) constructs and 1µg of pCLE 

retroviral helper plasmid using the Lipofectamine® 3000 Reagent (Life Technologies, UK). Briefly, 10µl 

of Lipofectamine® 3000 Reagent was mixed with 250µl of Opti-MEM® media and incubated for 5 

minutes at room temperature. This mixture was then added to the 250µl of the same media containing 

both plasmids and left to stand for 20 minutes at room temperature. The transfection mixture was 

finally added to each well and incubated overnight at 37℃ with 5% CO2.  

The following day, the cells were washed and the media was replaced with 2ml fresh D10. 48 hours 

post-transfection, the viral supernatant (D10 media covering the transfected Phoenix™ cells) was 

collected from individual wells and used for stem cell transduction (Section 7.7.3). The transfected 

Phoenix™ cells were harvested to determine transfection efficiency based on GFP expression. In brief, 

the cells were removed from the plates using cell scrapers and washed twice with PBS and centrifuged 

at 1,500rpm for 5 minutes. Samples were re-suspended in 400µl of PBS and analysed immediately by 

flow cytometry (Section 7.8). 

 

7.7.3. Transduction of murine haematopoietic stem cells (HSCs)  

BM cells were obtained from mice that were about six to eight weeks old. 72 hours prior to harvesting, 

BM donor mice were administered intraperitoneally (i.p.) with 5’-Fluorouracil (5’-FU; InvivoGen, USA) 

using a sterile 27-gauge needle and 1ml syringe (Becton Dickinson, UK), at a concentration of 

150mg/kg body weight. The femur and tibia were cut off the donor mice and surrounding skin and 

muscle tissues removed using scissors to obtain clean bones. Both ends of each bone were cut and a 

10ml syringe containing ice-cold sterile PBS and 30-gauge needle were used to flush out the BM cells. 

The cells were then washed twice with ice-cold sterile PBS. Red blood cells were lysed for 10 minutes 

on ice using RBC lysis buffer (Qiagen, UK). Total cell number was determined after washing, and a 

single-cell suspension of 106 cells per ml in complete RPMI media (R10) supplemented with 20ng/ml 

recombinant mouse IL-3, 10ng/ml recombinant mouse IL-6, 50ng/ml recombinant mouse Stem Cell 

Factor (SCF) and 50ng/ml recombinant human Flt-3 Ligand (All from Life Technologies, UK). The cell 

suspension was distributed onto 12-well plates and incubated overnight at 37℃ with 5% CO2.  

After 48 hours, the BM cells were harvested, and re-suspended at 2 x 106 cells per ml viral supernatant 

(Section 7.7.2) with 8µg/ml polybrene, and plated onto 12-well plates. Spin infection was induced by 
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centrifugation at 2,000rpm for 90 minutes. After centrifugation, half the viral supernatant in each well 

was replaced with fresh R10 media containing fresh cytokines at the same concentrations as stated 

before. Cells were then incubated overnight at 37℃ with 5% CO2. 48 hours later, the cells were 

harvested and washed twice with sterile PBS. 0.5 x 106 cells were analysed by flow cytometry (Section 

7.8) for GFP expression. The remaining cells were prepared for injection intravenously (i.v.) into female 

TCR-β/δ-/- deficient mice that have been irradiated at 600rad. At least 0.2 x 106 GFP+ HSCs in 200µl 

sterile PBS were injected into the lateral tail vein of each recipient mouse.  

 

7.7.4. Blood collection 

Mice were initially pre-warmed in a thermobox (Datesand Ltd, UK) at 37°C for 10 minutes to allow 

blood vessels to dilate and increase blood flow. Each mouse was then gently held in a restraining cone 

before its vein was pricked using a 25G needle. Blood droplets were aspirated immediately using 29G 

Insulin Syringe & Needle (Terumo, UK) and collected into an Eppendorf tube containing 200µl blood 

buffer. 

 

7.8. Flow cytometry  

7.8.1. Preparation of single-cell suspensions 

Lymphoid organs from relevant mice were harvested by dissection. Cell suspensions from the isolated 

lymphoid organs were obtained by passing the organs through a 70µm nylon mesh strainer (Becton 

Dickinson, Oxford, UK) using the base of a 1ml syringe plunger. The cells were washed twice with PBS 

and spinning at 1,500rpm. Where necessary, blood, thymus and spleen cells were depleted of RBC 

using 1ml of RBC lysis buffer (Qiagen, UK) and incubated for 10 minutes at room temperature. Cells 

were counted after washing, as described in Section 7.4, to prepare a cell concentration of 107 cells 

per ml re-suspended in PBS.  

 

7.8.2. Cell surface staining 

For each cell staining condition, 0.5µl of the necessary fluorochrome-conjugated antibody (1:200 

dilution) was added to a suspension of 106 cells in 100µl of PBS. The samples were incubated in the 

dark at room temperature for 20 minutes. This was followed by washing twice with 3ml of PBS and 

spinning at 1,500rpm for 5 minutes. The supernatant was discarded and the cells were re-suspended 
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in a final volume of 400µl of PBS. The samples were kept at 4℃ before acquisition. Acquisition of flow 

cytometry data was performed on a FACSCalibur™ cytometer using the CellQuest™ software (BD 

Biosciences). At least 50,000 and 100,000 cells were collected for thymus and spleen analyses 

respectively. Cells from WT C57BL/6 mice were used as single-stained controls to set up compensation 

settings. Data analysis was performed using the FlowJo version 10 software (FlowJo, LLC, USA). The 

full list of antibodies is summarised below (Table 7.5). All antibodies were purchased either from 

BioLegend, UK or eBioscience, UK. 

Table 7.5. List of monoclonal antibodies. 

Antigen 

 

Fluorochrome Origin Clone 

FoxP3 (Intracellular) PE Rat NRRF-30 

TCRβ (C domain) PE, APC Armenian hamster H57-597 

Vβ6 TCR PE Rat RR4-7 

Vβ8.3 TCR PE Mouse 8C1 

CD3ε PE Armenian hamster 145-2C11 

CD4 PerCP, APC Rat RM4-5 

CD5 PE Rat 53-7.3 

CD8α PerCP Rat 53-6.7 

CD8β PerCP Rat YTS156.7.7 

CD69 PE Armenian hamster H1.2F3 

 

 

7.8.3. MHC Dextramer™ staining 

Cells from the MataHari TCR (CDR3β diversifying) retrogenic mice were stained with PE-conjugated 

CD8+ MataHari-specific Uty peptide (WMHHNMDLI) in the context of H2-Db MHC Dextramer™ 

(Immudex, Denmark). Staining of cells was performed according to the manufacturer’s protocol. In 

brief, 1-3 x 106 cells were transferred into polystyrene tube and 2ml PBS containing 5% FCS at pH7.4 

added before centrifugation at 300g for 5 minutes. The supernatant was removed and the cells were 

re-suspended in a total volume of 50µl of PBS (5% FCS, pH7.4). 10µl of the MHC Dextramer™ was 

added and to this suspension and incubated in the dark for 10 minutes. Additional antibodies (e.g. 

anti-CD4 and anti-CD8 Ab) were added afterwards and incubated in the dark at 2-8℃ for 20 minutes. 

This was followed by washing twice with 2ml PBS (5% FCS, pH7.4) and spinning at 300g for 5 minutes. 

The supernatant was discarded and the cells were re-suspended in 400µl of PBS and stored at 2-8℃ 

in the dark until analysis. 
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7.8.4. Multimer staining 

Cells from the Marilyn TCR (CDR3β diversifying) retrogenic mice were stained with PE-conjugated CD4+ 

Marilyn-specific Dby peptide fragment (NAGFNSNRANSSRSS) bound to an H2-Ab multimer (TCMetrix, 

Switzerland). Multimer staining was performed following the recommended staining of CD4+ T cells. 

Briefly, 106 cells were re-suspended in 50µl of PBS containing 0.5% BSA, 5mM EDTA and 0.02% sodium 

azide. The cell suspension was incubated with 10µl of the multimer (50µg/ml concentration), along 

with other antibodies (anti-CD4, anti-CD8 Ab), at 37℃ in the dark for 30-60 minutes. The cells were 

then washed twice with 2ml of PBS (0.5% BSA, 5mM EDTA and 0.02% sodium azide) before a final 

wash with 2ml PBS. The supernatant was removed before re-suspending the cells in 400µl of PBS. Cells 

were stored at 4℃ in the dark before flow cytometry analysis. 

 

7.8.5. Fluorescence-activated cell sorting (FACS) 

For purification of specific splenic T cell subsets from retrogenic mice, single-cell suspensions were 

prepared as in Section 7.8.1. These cells were stained with a combination of anti-Vβ6, anti-CD4 and 

anti-CD8 Ab for Marilyn TCR (CDR3β diversifying) or anti-Vβ8.3, anti-CD4 and anti-CD8 Ab for MataHari 

TCR (CDR3β diversifying) as described in Section 7.8.2. The samples were re-suspended in sort buffer 

at a concentration of 20 million cells per ml and filtered through 35µM nylon mesh. The FACSAriaII™ 

flow cytometer at the MRC Clinical Sciences Centre Flow Cytometry Facility in Hammersmith Hospital 

was used for sorting cells. For Marilyn TCR (CDR3β diversifying) samples, T cells were separated based 

on CD4+Vβ6+ and CD4+Vβ6- gating. Conversely, MataHari TCR (CDR3β diversifying) T cells were divided 

based on CD4+Vβ8.3+, CD8+Vβ8.3+ CD8+Vβ8.3- gating. Sorted cells were collected into collection buffer, 

centrifuged at 1,500rpm for 5 minutes and supernatant removed before RNA extraction (Section 

7.6.7). 

 

7.8.6. Intracellular FoxP3 staining 

Cells from the retrogenic mice expressing the Vα-Cβ fusion TCR chain were first stained with anti-CD4 

and anti-CD8 Ab as described in Section 7.8.2. After the last wash, the supernatant was removed and 

sample vortexed before adding 1ml of FoxP3 Fixation/Permeabilisation working solution. The cell 

suspension was then incubated at 4℃ for 60 minutes in the dark and washed twice with 2ml of 1X 

Permeabilisation buffer. Following re-suspension in 100µl 1X Permeabilisation buffer, the cells were 

labelled with PE-conjugated anti-FoxP3 (intracellular) Ab and incubated at room temperature for 30 
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minutes. The stained cells were washed twice with 2ml of 1X Permeabilisation buffer before re-

suspension in 400µl of PBS. Cells were stored at 4℃ in the dark before data acquisition. Splenocyte 

suspensions from WT C57BL/6 mice which have been treated with the FoxP3 

Fixation/Permeabilisation working solution and either stained or unstained with the anti-FoxP3 Ab 

were used as the positive and negative controls respectively.  

 

7.9. Statistical analysis 

7.9.1. Shannon entropy analysis 

The Shannon entropy index was used to measure the sequence diversity generated from the 

mutagenesis approach (Wang et al., 1998; Stewart et al., 1997). Refer to Chapter 4.2.5 for calculation 

and explanation details. 

 

7.9.2. Unpaired student’s t-test 

Variations between different groups were analysed by two-tailed, unpaired t-tests using GraphPad 

Prism 5 (http://graphpad.com/quickcalcs/ttest1/; GraphPad Software Inc, La Jolla, USA). All data is 

shown in relevant figures as mean ± standard deviation. P values are given for 95% confidence 

intervals where p≥0.05 is not significant (n.s.), p<0.05 is significant (*), p<0.01 (**) is very significant 

and p<0.001 (***) is extremely significant. 

  

http://graphpad.com/quickcalcs/ttest1/
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Appendix 1 

 

Marilyn TCR (CDR3β diversifying) Construct 

 

GGAGATCTACCACCATGAAGAGCCTGTCCGTGAGCCTGGTGGTGCTGTGGCTCCTGCTGAACTGGGTGAACAGCCAGCA 

GAACGTGCAGCAGTCCCCCGAAAGCCTGATCGTCCCTGAGGGCGCTAGGACCTCCCTGAACTGCACATTTAGCGACAGC 

GCTAGCCAGTACTTCTGGTGGTACAGACAGCATAGCGGCAAAGCCCCTAAGGCCCTGATGAGCATCTTCAGCAATGGCG 

AGAAAGAGGAGGGCAGGTTCACCATCCACCTCAACAAAGCCTCCCTCCACTTCAGCCTGCACATCAGGGACAGCCAACC 

CAGCGATAGCGCCCTGTATCTGTGCGCCGTCGGCAATAACAACAACGCTCCCAGGTTCGGAGCCGGCACCAAGCTGACC 

GTGAAGCCCAACATCCAGAACCCCGAACCCGCTGTCTACCAACTGAAAGACCCCAGGAGCCAGGATTCCACCCTCTGTC 

TGTTCACCGACTTCGACTCCCAGATCAATGTCCCCAAGACCATGGAGTCCGGAACCTTCATCACCGACAAGACCGTGCT 

GGACATGAAGGCCATGGATTCCAAGTCCAACGGCGCCATCGCTTGGTCCAACCAGACCAGCTTCACCTGCCAGGACATC 

TTCAAGGAAACCAACGCCACCTACCCCTCCAGCGACGTCCCTTGCGATGCCACCCTGACCGAGAAGAGCTTCGAGACCG 

ACATGAACCTCAACTTTCAGAACCTGTCCGTGATGGGACTCAGAATCCTCCTCCTCAAAGTCGCCGGATTCAACCTCCT 

CATGACCCTGAGACTGTGGTCCAGCGGATCCGGCGCTACCAACTTTTCCCTGCTGAAGCAGGCTGGCGACGTGGAAGAG 

AACCCCGGACCTATGAACAAGTGGGTGTTCTGCTGGGTCACCCTCTGCCTGCTCACAGTGGAGACCACACACGGCGACG 

GAGGCATCATCACCCAGACCCCCAAGTTCCTGATCGGCCAGGAAGGACAGAAGCTCACACTGAAGTGCCAGCAGAACTT 

TAACCACGACACCATGTACTGGTACAGGCAGGACAGCGGAAAAGGCCTGAGGCTGATCTACTACTCCATCACCGAGAAC 

GATCTGCAGAAGGGCGATCTCAGCGAGGGCTATGACGCCTCCAGAGAGAAGAAGAGCTCCTTCAGCCTCACAGTGACAT 

CCGCCCAGAAGAACGAGATGGCCGTGTTCCTCTGCGCCTCCAGCATCCCCGGAAGCCACAGTGATGTGGGGTTTCCTCC 

CCTCTGCACAGAAAGGTTACATCACGTCATTTCACACTCGTTGTTAGAAATGTGGTGCATTCTTCACCACCGTTCTAAG 

AAGTCCAGAGCCTAAGTTAGCCCCTTGAAAAGGCTCAAATTTGTCACACACAGAGTCTTGATTGTGGGACAAGGTATAA 

CCTCTGAGTGACGCACAGCCTTAGGGCAAGGGCAAAGCTAGGCTAGATTGGGGGCTGTCCAGCGCCAAGAAAAAAGAAC 

ATTCAAAAGAAGAACAGGGGGTAAAGAGGAAACCCCTGCATTAGCTCGCATCTTACCACCACCTTGCACAATGGGGGTC 

GGGGGGGGATGTCACCTTCCTTATCTTCAACTCCCCCCCAGAGGAGCAGCTTATCTGGTGGTTTCTTCCAGCCCTCAAG 

GGGTAGACCTATGGGAGGGTCCTTTTTTGTATAAAGCTGTAACATTGTGAACGAGAGGCTGTTCTTTGGCCACGGCACC 

AAGCTGTCCGTGCTGGAAGACCTGAGGAACGTGACCCCCCCCAAGGTGAGCCTCTTCGAGCCCAGCAAGGCCGAGATCG 

CCAACAAGCAGAAGGCTACCCTGGTCTGCCTGGCCAGGGGATTCTTCCCCGACCACGTGGAGCTGAGCTGGTGGGTGAA 

CGGCAAGGAGGTGCACTCCGGCGTGTCCACAGACCCTCAGGCCTACAAGGAGAGCAACTACTCCTACTGCCTGAGCTCC 

AGACTGAGGGTGAGCGCCACCTTCTGGCACAATCCCAGGAACCACTTCAGGTGCCAGGTGCAGTTCCACGGCCTCTCCG 

AGGAGGACAAGTGGCCTGAGGGCAGCCCTAAGCCTGTGACCCAGAACATCTCCGCCGAAGCCTGGGGAAGGGCTGATTG 

CGGCATCACCTCCGCCAGCTACCATCAGGGCGTGCTCAGCGCTACCATCCTGTACGAGATCCTGCTGGGCAAGGCCACA 

CTGTACGCCGTCCTGGTCAGCGGCCTCGTGCTGATGGCCATGGTGAAAAGGAAGAACAGCTGAGCGAATTCGG 

 

Key  

Start codon - ATG 

Stop codon - TGA 

–GSG- linker - GATCCGGC 

P2A sequence - GCTACCAACTTTTCCCTGCTGAAGCAGGCTGGCGACGTGGAAGAGAACCCCGGACCT   

TCRα CDRs are shown underlined; TCRβ CDRs shown underlined and in bold 

Recombination cassette is highlighted in grey box  
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Appendix 2 

 

MataHari TCR (CDR3β diversifying) Construct 

 

GGAGATCTACCACCATGATGAAGACCTCCCTGCACACCGTCTTTCTCTTCCTCTGGCTGTGGATGGACTGGGAGTCCCA 

CGGCGAGAAGGTCGAACAGCACGAGAGCACCCTGAGCGTGAGGGAAGGCGATAGCGCCGTGATCAATTGCACCTACACA 

GACACCGCCTCCAGCTACTTTCCTTGGTACAAGCAGGAGGCTGGCAAGGGACTGCACTTTGTGATCGACATCAGAAGCA 

ACGTGGACAGGAAGCAGAGCCAGAGGCTGATCGTCCTGCTCGACAAGAAGGCCAAGAGGTTTAGCCTGCACATTACCGC 

CACCCAGCCTGAGGACTCCGCTATCTACTTCTGTGCCGCCGCCATGAGCAACTATAACGTGCTCTACTTCGGCTCCGGC 

ACCAAACTGACCGTGGAGCCCAACATCCAAAACCCCGAACCCGCCGTGTACCAGCTCAAGGACCCCAGGAGCCAAGATA 

GCACACTGTGCCTCTTCACCGACTTCGACAGCCAGATCAACGTCCCCAAGACCATGGAATCCGGCACCTTCATTACCGA 

CAAGACCGTCCTCGACATGAAGGCCATGGACAGCAAGTCCAACGGAGCTATTGCTTGGAGCAACCAGACCAGCTTCACA 

TGCCAGGATATCTTCAAAGAGACCAACGCCACCTATCCCAGCAGCGACGTGCCCTGCGATGCCACACTGACCGAGAAAA 

GCTTCGAGACCGACATGAACCTCAACTTCCAGAACCTCAGCGTCATGGGCCTGAGGATTCTCCTGCTGAAGGTCGCTGG 

CTTCAACCTGCTCATGACCCTGAGACTCTGGAGCAGCGGCAGCGGAGCCACCAACTTTAGCCTGCTCAAGCAAGCCGGC 

GACGTCGAGGAAAATCCTGGCCCTATGGGCTCCAGACTCTTTCTGGTCCTGTCCCTGCTGTGCACCAAACACATGGAGG 

CCGCCGTCACACAATCCCCCAGGAACAAGGTGACCGTCACCGGCGGCAACGTGACCCTCTCCTGCAGGCAGACCAACTC 

CCATAACTATATGTACTGGTACAGGCAGGACACCGGCCACGGCCTGAGACTCATCCACTACAGCTACGGCGCTGGCAAC 

CTCCAGATTGGCGACGTCCCCGACGGATACAAGGCCACCAGGACAACACAGGAAGACTTCTTTCTGCTGCTGGAGCTGG 

CTAGCCCTAGCCAGACCAGCCTGTACTTTTGCGCCAGCAGCGACCTGCACAGTGATGTGGGGTTTCCTCCCCTCTGCAC 

AGAAAGGTTACATCACGTCATTTCACACTCGTTGTTAGAAATGTGGTGCATTCTTCACCACCGTTCTAAGAAGTCCAGA 

GCCTAAGTTAGCCCCTTGAAAAGGCTCAAATTTGTCACACACAGAGTCTTGATTGTGGGACAAGGTATAACCTCTGAGT 

GACGCACAGCCTTAGGGCAAGGGCAAAGCTAGGCTAGATTGGGGGCTGTCCAGCGCCAAGAAAAAAGAACATTCAAAAG 

AAGAACAGGGGGTAAAGAGGAAACCCCTGCATTAGCTCGCATCTTACCACCACCTTGCACAATGGGGGTCGGGGGGGGA 

TGTCACCTTCCTTATCTTCAACTCCCCCCCAGAGGAGCAGCTTATCTGGTGGTTTCTTCCAGCCCTCAAGGGGTAGACC 

TATGGGAGGGTCCTTTTTTGTATAAAGCTGTAACATTGTGGTCGAGGTGTTCTTCGGCAAGGGCACCAGGCTGACCGTG 

GTGGAAGACCTGAGGAACGTGACCCCCCCCAAGGTGAGCCTCTTCGAGCCCAGCAAGGCCGAGATCGCCAACAAGCAGA 

AGGCTACCCTGGTCTGCCTGGCCAGGGGATTCTTCCCCGACCACGTGGAGCTGAGCTGGTGGGTGAACGGCAAGGAGGT 

GCACTCCGGCGTGTCCACAGACCCTCAGGCCTACAAGGAGAGCAACTACTCCTACTGCCTGAGCTCCAGACTGAGGGTG 

AGCGCCACCTTCTGGCACAATCCCAGGAACCACTTCAGGTGCCAGGTGCAGTTCCACGGCCTCTCCGAGGAGGACAAGT 

GGCCTGAGGGCAGCCCTAAGCCTGTGACCCAGAACATCTCCGCCGAAGCCTGGGGAAGGGCTGATTGCGGCATCACCTC 

CGCCAGCTACCATCAGGGCGTGCTCAGCGCTACCATCCTGTACGAGATCCTGCTGGGCAAGGCCACACTGTACGCCGTC 

CTGGTCAGCGGCCTCGTGCTGATGGCCATGGTGAAAAAAAAGAACAGCTGAGCGAATTCGG 

 

Key  

Start codon - ATG 

Stop codon - TGA 

–GSG- linker - GATCCGGC 

P2A sequence - GCTACCAACTTTTCCCTGCTGAAGCAGGCTGGCGACGTGGAAGAGAACCCCGGACCT   

TCRα CDRs are shown underlined; TCRβ CDRs shown underlined and in bold 

Recombination cassette is highlighted in grey box  
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